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1 Introduction

The theory of infinite tensor products of Hilbert spaces started with the semi-
nal paper by von Neumann [19]. Later on, Guichardet [14, 15] approached this
matter from a slightly different point of view and developed a unified framework
for treating several related concepts involving operators, algebras and function-
als. The notion of infinite tensor product has been mainly used in this form in
operator algebras and quantum field theory over the last three decades (see

e. g. [11] for a recent overview). : :

The existence of some infinite tensor product of representations of a group
has been established and used in some recent works. For example, it was shown
in [1] that a locally compact group is o-amenable if and only if there exists
an infinite tensor power of its regular representation. Such an infinite tensor
power construction was then a useful tool for studying covariance of certain (in-
duced) product-type representations of generalized Cuntz algebras with respect
to natural product-type actions. This circle of ideas has been generalized and
thoroughly investigated in [6]. In another direction, the infinite tensor product
of certain unitary representations of some group of diffeomorphisms was shown
to exist under suitable assumptions in [16], and a relation between such rep-
resentations and some unitary representations of (infinite) permutation groups
was obtained and used to characterize their irreducibility.

In this paper we start a discussion of infinite tensor products of projective
unitary representations of a group. To avoid technicalities, we stick to the case
of a discrete group, although it could be of interest in the future to consider
a locally compact (or even just a topological) group and strongly continuous
projective unitary representations of such a group. Now it is quite easy to realize
that it is impossible to form the infinite tensor power of a single projective
unitary representation unless the associated 2-cocycle vanishes. However one
still has the possibility to form the infinite tensor product of different projective
unitary representations. Somewhat surprisingly, this idea (which is due to the
second author) leads to some potentially interesting results which we present
below.

Our analysis, which uses standard techniques in representation theory and
infinite tensor products, elucidates on quite general grounds the crucial points
on which the whole construction relies. Besides its intrinsic interest, this new
generality has also the potential advantage to allow for extensions of the anal-
ysis given in [1, 6] to a broader class of product-type actions on the 0**-degree
part of extended Cuntz algebras. It is also relevant when studying extensions
of product-type actions from the algebraic to the von Neumann algebra level.
Moreover many familiar (nuclear) C*-algebras like the noncommutative tori may
be presented as twisted group C*-algebras of amenable groups. Our treatment
can be successfully employed to obtain new faithful representations of such al-
gebras on infinite tensor product spaces. We illustrate this for noncommutative
tori.

The paper is organized as follows. Section 2 is devoted to some prelim-
inaries on projective unitary representations, product sequences of 2-cocycles
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and infinite tensor products. Section 3 contains our main results concerning
necessary conditions and sufficient conditions for the existence of infinite ten-
sor products of projective unitary representations. We especially display some
sufficient conditions for countable amenable groups in the case of projective
regular representations and in the case of projective representations associated
with CCR-representations of bilinear maps. In order to illustrate our work with
some concrete examplées we present in section 4 some explicit computations con-
cerning finitely generated free abelian groups. The next section deals with some
applications to the existence problem for infinite tensor products of actions of a
group G on von Neumann algebras. One of our result exhibits an obstruction for
extending some algebraic tensor power action of G to the weak closure that lies
in the second cohomology group H?(G,T). In another result, the obstruction
lies in the non-amenability of G. In the final section we collect some related
remarks about projective unitary representations of restricted direct products
of groups and associated operator algebras.

2 Preliminaries

Throughout this note G denotes a non-trivial discrete group, with neutral ele-
ment e, while \-denotes the (left) regular representation of G acting on £2(G).

A 2-cocycle (or multiplier) on G with values in the circle group T is a map
u: G x G — T such that ‘

u(z,y)u(zy, 2) = uly, 2)u(z,yz)  (z,9,2 €G),
see e.g. [7, Chapter IV]. We will consider only normalized 2-cocycles, satisfying
u(z,e) =ule,z) =1 (z € G).

The set of all such 2-cocycles, which is denoted by Z?(G, T), becomes an abelian
group under pointwise product. We equip Z2(G, T) with the topology of point-
wise convergence. o

A 2-cocycle v on G is called a coboundary whenever v(z,y) = p(z)p(y)p(zy)
(z,y € G) for some p : G — T, p(e) = 1, in which case we write v = dp (such
a p is uniquely determined up to multiplication by a character). The set of all
coboundaries, which is denoted by B%(G,T), is a subgroup of Z?(G, T), which
is easily seen to be closed (using Tychonov’s theorem). The quotient group
H?(G,T) := Z*G,T)/B?*(G,T) is called the second cohomology group of G
with values in T. We denote elements in H%(G, T) by [u] and write v ~ u when
[v] =[u] (u,v € Z%(G,T)). We also write v ~, u when we have v = (dp)u for
some coboundary dp.

We shall be interested in product sequences in Z2(G, T): we call a sequence
(u;) in Z2(G, T) for a product sequence whenever the (pointwise) infinite product
u = [[,u; exists on G x G (u being then obviously a 2-cocycle itself). Such
a product sequence will occasionally be called I-free if u; # 1 for every i.
Notice that 1-free product sequences are easily seen to exist since we allow
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the u;’s to be coboundaries (and G is assumed to be non-trivial). One could
also consider product sequences satisfying the stronger requirement that all u;’s
are cohomogically non-trivial, but this would then be meaningful only when
H?(G,T) is non-trivial, and in fact only when H?(G,T) is infinite (as may be
deduced from the closedness of B?(G, T)). However we have chosen not to make
any cohomological assumption on G in this paper.

Another cohomological problem concerning product sequences is that per-
turbing a product sequence ( by a coboundary in each component) does not
necessarily lead to a product sequence, as may be illustrated by taking all u;’s
to be 1 and perturbing by the same coboundary v # 1 in each component.
(One possible way to avoid this problem could be to allow only for perturba-
tion in finitely many components). The following lemma somewhat clarifies this
problem.

Lemma 2.1. Let (u;) and (v;) be two sequences in Z*(G, T) satisfying v; ~p; u;
for every 1.

i) Assume that p := ], p;i exists. Then (v;) is a product sequence if and only
if (ui) is a product sequence, in which case we have [[, v; ~, [[; w:.

ii) Assume that (u;) and (v;) are both product sequences. Then [], vi ~ [], ui
(even if [, pi does not necessarily exist).

Proof. As i) is straightforward, we only show ii). So we assume that u = [], u;
and v = [[,v; both exist. Then w := [[,dp; = [];%v; also exists and is
the limit of a net of 2-coboundaries. As B%(G,T) is closed, this implies that
w € B%(G,T). Since v = wu, this shows that v ~ u, as asserted. O

A projective unitary representation U of G on a Hilbert space #H associated
with some u € Z2?(@, T) is a map from G into the group of unitaries on # such
that

U()U(y) = u(z,y)U(zy)  (z,y € G).

If we pick a p : G — T satisfying p(e) = 1 and set V = pU, then V is also
a projective unitary representation of G on H associated with a 2-cocycle v
satisfying v ~, u. Such a V is called a perturbation of U.

To each u € Z%(G,T) one may associate the (left) u-regular projective uni-
tary representation A\, of G on £2(G) defined by

M@ D) =u o) f@ry)  (F€B(G), .y €G).

The (twisted) reduced group C*-algebra C}(G,u) (resp. group von Neumann
algebra V. N(G,u)) is then defined as the C*-algebra (resp. von Neumann al-
gebra) acting on £2(G) generated by A,(G). It is well known (and easy to see)
that if v ~, u, then ), is unitarily equivalent to pA,. This implies that C} (G, v)
(resp. VN(G,v)) is (spatially) isomorphic to C; (G, u) (resp. VN(G,u)) when-
ever v ~ u. One can also define the (twisted) full group C*-algebra C*(G,u).
In the case where G is amenable ([10, 12, 22, 23]) it is known that C*(G,u) and
C:(G,u) are (canonically) isomorphic, see [27].
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For i = 1,2, let U; be a projective unitary representation of G on a Hilbert
space H; associated with u; € Z2(G,T). Then the naturally defined tensor
product representation U; ® Us is easily seen to be a projective unitary repre-
sentation of G on the Hilbert space H; ® H2 associated with the product cocycle
uius. In the case of ordinary unitary representations of a group, it is a classical
result of Fell (cf. [10], 13.11.3) that the (left) regular representation acts in an
absorbing way with respect to tensoring (up to multiplicity and equivalence).
In the projective case we have the following analogue.

Proposition 2.2. Let u,v be elements in Z%(G,T) and let V be any projective
unitary representation of G on a Hilbert space ‘H associated with v. Then the
tensor product representation Ay, @ V' is unitarily equivalent to Ay, @ Iy, i.e. to
(dim V) « Ayy.

Proof. We leave to the reader to check that the same unitary operator W as in
the non-projective case ( which is determined on £2(G) ® H (= £2(G,H)) by
(W(f ®¥))(z) = f(z)V(z~1)y) implements the asserted equivalence. )

We conclude this section by recalling a few facts and some notation concern-
ing infinite tensor products.

Let H = {H;} denote a sequence of Hilbert spaces and ¢ = {¢;} be a
sequence of unit vectors where ¢; € H; for each i > 1. We denote by H? or
by ®f ‘H; the associated infinite tensor product Hilbert space of the H;’s along
the sequence ¢ (sometimes called the incomplete direct product space detemined
by ¢), whose construction goes back to von Neumann [19]. We will follow the
slightly different approach given by Guichardet in [14, 15]. We give here only
a short account, and the reader should consult these papers for full details on
this matter.

For any sequence 1; € ‘H; such that

11— il < o0 and 3711 (s,60)| < o0

there corresponds a so-called decomposable vector
®i'¢}i =11711111/11®®’l,bn®¢n+1 ®¢n+2®... €%¢

depending linearly on each 9; (in fact one gets here convergence over the net
consisting of nonempty finite subsets of N ordered by inclusion, cf. [15, Part II,
Proposition 5]). If ®;¢; is another decomposable vector in H?, then

(®:iti, ®:&:) = H(’J’i,&')

7

(where the infinite product above is convergent in the unordered sense, cf. [19,
§2]). Each finite tensor product #; ® ... ® Hy, is embedded in H? by extending
the map identifying a simple tensor of the form ¥ ®...®y with the elementary
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decomposable vector ¥; ® ... ® ¥y ® Ppi1 @ Ppiz ® ... € H?. The set of all
elementary decomposable vectors in H¢ obtained by letting & vary in N is total
in H?.

Let T1, T, ... be a sequence of bounded linear operators where each T; acts
on H;. For each fixed n € N there exists a unique bounded linear operator T,
acting on H® which is determined by

Tn(®i¢i) - T177["1 ®...0 Tn";bn ® ¢n+1 ® 77bn-l—2 ®...

for each decomposable vector ®;1;. Similarly, one may define T for each
(nonempty) finite J C N. Under certain assumptions, the net {TJ} converges in
the strong operator topology to a bounded linear operator on ¢ which is then
denoted by ®;T;.

By [15, Part II, Proposition 6]), a sufficient condition for ®;T; to exist is
that

[T exists, 37 1~ [Tl < o0 and 3 [1 = (Tidi, )| < o0,

in which case we have (®;T;) (®;%;) = ®;T;1; for all elementary decomposable
vectors ®;v;.

When all T}’s are unitaries (which is the case of interest in this paper) we
have the following useful result will be used several times in the sequel.

Proposition 2.3. Let (T;) be a sequence of unitaries where each T; acts on H;.
Then ®;T; exists on H® if and only if

(%) Z 1= (Tigi, ¢i)| < o0,

1
in which case ®;T; is a unitary on H® satisfying (2:T;)* = ;T .
Proof. Assume first that (*) holds. It is then quite elementary to deduce from
Guichardet’s result mentioned above that ®;T; and ®;T;" both exist. Moreover,
these two operators are then isometries, being the strong limit of a net of uni-
taries, and they are easily seen to be the inverse of each other. So both are
unitaries satisfying (®,7;)* = ®;T};".

Assume now that T := ®;T; exists on H?. Then T is non-zero (being an
isometry), so there are elementary decomposable vectors ®;1; and ®;¢; such
that

0# c:= (T ®ivi,®i&i)-
Let J be any finite subset of N large enough so that v; = & = ¢; for all i ¢ J.
Then we have _
(T @i v, ®i&) = [ [(Ti v, &)
=
Since T = lim; Ty, we get ¢ = limy [Lics(Tivi, &), e [1;en(Ti i, &) converges
to a non-zero value. Thus we get }°. |1—(T;v;,&)| < oo (see [19, Lemma 2.5.1])

and therefore ). |1— (T} ¢;, ¢i)| < oo since ¢; = & = ¢; for all but finitely many
1’s. O
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3 Infinite tensor products of projective unitary
representations

In this section we shall discuss the following (loosely formulated) problem: If
U; is a sequence of projective unitary representations of a group G, when is it
possible to form the infinite tensor product ®;U; 7

The most elementary case to consider consists obviously of picking just one
projective unitary representation U of G on a Hilbert space H with associated 2-
cocycle u and trying to form the infinite tensor product of U with itself infinitely
many times, i.e. its infinite tensor power. For each ¢ € N, put then U; = U,
H; =M and let ¢ = {@;} be a sequence of unit vectors in .

Now, if we assume that U®*(z) := ®;U;(z) exists on ®? H; for all z € G,
then Proposition 2.3 gives

Z|1~ (U ()i, $3) | < oo,

and especially

lim (U(2)¢s, ¢i) = 1

for all z € G. Letting then w be any weak* limit point of the sequence (wg,)
of vector states of B(H), we have w(U(z)) = 1 for all z € G, from which it
follows (using the Cauchy-Schwarz inequality for states, as in [4]) that w is
multiplicative at each U(z). This implies that

1=w(U(z))w(U(@y)) =w(U(x)U(y))

= w(u(z,y)U(zy)) = u(z,y)w(U(zy)) = u(e,y)

for all z,y € G, i.e. u is the trivial 2-cocycle on G and consequently, U is an
ordinary unitary representation of G.

Concerning infinite tensor powers of unitary representations, we refer to
[1] in the case of the regular representation and [6] in the case of the adjoint
representation. More generally, we have (cf. [9]):

Proposition 3.1. Let U be a unitary representation of G on H.

1) If U™ egists (i.e. U®®(z) emists for all z € G) on H® = Q% M,
for some sequence ¢ = {¢s} of unit vectors in H, then 1 (= the trivial one-
dimensional representation of G) is weakly contained in U in the sense of Fell
([10]).(As usual, we denote this by 1 < U ).

2) If G is countable and 1 < U, then there ezists a sequence ¢ = (¢;) of
unit vectors in H such that U®™® ezists on H?® (and U®™ is then a unitary
representation of G).

Proof. For completeness, we sketch the proof.
1) When U® exists on H?, we have lim; (U(z)¢;,¢;) = 1 for all z € G, so
1< U by [10], 18.1.4.




Infinite tensor products and projective representations 8

2) Assume G = {¢1,92,---},1 < U and set G, = {g1,...,9=}. By a
straightforward adaptation of the proof given by Eymard in [12, p. 48-49], to
the present context, we obtain the following.

For each n € N, there exists a unit vector ¢, in H satisfying

1~ U@nb0) | <

for all g € G,,.
Let now z € G and choose N € N such that z € Gy (CGny1 C..0).
Then we have

Zu—wwmA—Zu— (@) ) |+ D |1 = (U(2) i, ¢3) |

<N i>N
< Z | 1- ¢z7 ¢z I + Z

<N 1,>N
< o0.

O

This proposition has some bearing on the concept of amenability for groups
and on the concept of amenability of representations.

Concerning group-amenability, the celebrated Hulanicki-Reiter theorem as-
serts that G is amenable if and only if 1 < A. Using the above proposition,
it is not difficult to deduce that G is countable and amenable if and only if
A® exists along some sequence of unit vectors in £2(G), as first shown in [1].
Moreover, the sequence of unit vectors may then be chosen in a specific way (cf.
[8]) which we now review for later use.

We first introduce some terminology. A sequence (F;) of non-empty, finite
subsets of G will be called a F-sequence (resp. o F-sequence) for G whenever

F,NzF;
lign% =1forall z €@,

(resp. le— #E r”’;F)l < oo for allz € G).

A F-sequence (F;) for G is often called a Fdlner sequence in the literature. We
remark that the definition is usually phrased in a slightly different, but equiv-
alent, way (involving the symmetric difference of sets) and that some authors
also require that F; C F;y; for every ¢. Anyhow, thanks to Fdlner, one knows
that G is countable and amenable if and ony if G has a F-sequence. We will call
G for o-amenable whenever G is countable and amenable. Now, obviously, a
o F-sequence for G is also a F-sequence. Moreover, when G is o-amenable, any
F-sequence has some subsequence which is a o F-sequence, as is easily checked.
Hence we can also conclude that a G is o-amenable if and only if G has a
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o F-sequence. Finally, when (F}) is a o F-sequence for G, xr, denotes the chara-
teristic function of F; and we set ¢ := xr, /#(Fi)'/?, then \® exists along the
sequence (¢;) of unit vectors in £2(G): this readily follows from the equation

(Mz)xF,xr) = #(F NzF)

which holds for every £ € G and every non-empty, finite subset F' of G.

Concerning amenability of representations, we recall that a unitary represen-
tation 7 of G on a Hilbert space H is called amenable (in the sense of Bekka, cf.
[5]) whenever there exists a state w on B(H) satisfying w(m(z)Tn(z)*) = w(T)
forall z € G and all T € B(H). It is easy to see that 7 is amenable when-
ever 1 < 7, while the converse implication is not necessarily true. Bekka has
shown that 7 is amenable if and only if 1 < 7 ® 7, and that amenability of
a group is characterized by the fact that all its unitary representations are
amenable (and it suffices to check this for its regular representation). However,
many non-amenable groups, such as non-abelian free groups, do have amenable
representations. Hence, using the above proposition, it is clear that one may
produce examples of unitary representations of non-amenable groups for which
the associated infinite tensor power representation exists.

The next natural step now is to try to form the infinite tensor product of a
sequence of (possibly) different unitary representations of G. In the simple case
where G = 7, this boils down to the question of existence of the infinite tensor
product of a sequence of unitary operators, and we have no more conceptual
answer to this question than the one provided by Proposition 2.3. In the case
where G is a group acting on some standard Borel space S with a quasi-invariant
measure, one may construct sequences of unitary representations of G associated
with suitably chosen Borel 1-cocycles on S x G and study the existence of the
resulting infinite tensor products, essentially along the same lines as in [16].
Since this would lead us too far away from our main task, we don’t elaborate
on this matter here. Therefore, we arrive to the final step of generality, which
is to consider a sequence of projective unitary representations. Before attacking
the (main) problem whether it is possible to form an infinite tensor product
of such a sequence in some cases, we first show that this construction, when
possible, produces a new projective unitary representation of G, and also make
some general observations.

Theorem 3.2. Let U; be a sequence of projective unitary representations of G
acting respectively on a Hilbert space H; and with associated u; € Z*(G,T). Let
& = (¢;) be a sequence of unit vectors where each ¢; € H;. Assume that ®;U;(z)
exists on H® = ®?H,« for each © € G. Then we have

i) (u;) is a product sequence in Z*(G,T).

ii) The map © — U%(z) := ®;U;() is a projective unitary representation of
G on H® with u =[], u; as its associated 2-cocycle.

Proof. We notice first that Proposition 2.3 implies that each U?(z) := ®;U;(z)
is a unitary.




Infinite tensor products and projective representations 10

i) Let g,h € G. We must show that ], u;(g, h) converges. Now

®;U;(gh)

and
(®iUs(9))(®:Us(h)) = @:iUs(9)Ui(h) = @sus(g, h) Us(gh)

are both unitaries. Putting a; = (U;(gh))¢s , ¢; ), we deduce from Proposition
2.3 that

Z|1—ai] < oo - and Z|1—ui(g,h)ai| < 0.
i [
This implies that >, |1 — u;(g,h)| < oo, and therefore that [], u:(g,h) con-
verges, as desired. ( We use here implicitely that whenever z € T and a € C,
then |[1-2|=1-Z|<|l—a|+|a—Z| =|1—a|+|za—1]).

ii) Using i) we get

U%(2) U%(y) = ®sus(e,y) Ui(zy) = (H ui(z,9)) ®; Ui(zy) = u(z,y) U%(zy)

for all z,y € G, as asserted. O
The following corollary is now easily deduced from Proposition 2.2 :

Corollary 3.3. Under the same assumptions and with the same notation as in

Theorem 3.2, we have:
i) If Uy, is equal to Ay, for ome k, then U? is unitarily equivalent to Ay, ® I,

where H denotes the infinite tensor product ®g’¢ « i along the sequence ¢/ =

(P4) iz -
i) A ® U? is unitarily equivalent to Ay, ® Iy .

The case where infinitely many of the U;’s in Theorem 3.2 are projective
regular representations of G can not occur when G is uncountable or non-
amenable. This follows easily from our next theorem:

Theorem 3.4. Let (u;) be a sequence in Z2(G,T) and set U; = Ay, for every
i. Let ¢ = (¢;) be a sequence of unit vectors in £2(G). Assume that ®;U;(z)

exists on H? = ®%42(G) for each z € G. Then G is o-amenable.

Proof. Let us first mention that if u; ~ 1 for all but finitely many ¢’s, then the
result is quite easily obtained by reorganizing part of the proof of Theorem 5
in [1]. Furthermore, the proof of the general case is similar and requires only
that one now takes advantage of the existence of an ”absolute value” in £2(G),
cf. [6] for this terminology. A sketch is as follows.

By hypothesis, Y, |1 — (Ui(z)¢:, ¢:)| < oo for every © € G. Notice that

[(Ui(z) i, di)| < (A(@)|sl, [4]) < 1.
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Therefore, setting fi(z) := |(Ui(z)ps, #i)| > 0 we have 0 < f; < 1, fi € Co(G)
and f; — 1 pointwise. Then f;'([1/2,1]) =: H; is finite, and G = U;H; is
therefore countable. Moreover, we get

A@)dil, 1gel) =1 (z € G),

so 1 < X and the amenability of G follows. O

We now turn our attention to the problem of showing that it is possible
to form the infinite tensor product of a sequence of projective unitary repre-
sentations of G, at least in some specific situations. Some concrete examples
illustrating our results will be given in the next section.

In view of Theorem 3.4, it is quite natural to wonder whether some converse
holds. So we assume that G is o-amenable, let (u;) be a product sequence in
Z*(G,T) and set U; = A, for every i. The question is then whether it does
always exist a sequence ¢ = (¢;) of unit vectors in £2(G) such that ®;U; exists
on H? = ®242(Q), i. e. such that

Z l]. — (Us(z)i, i) < 00 forallz € G.

7

It is conceivable that the answer to this question is positive and we shall provide
a partial answer in this direction. Our approach is based on the following
inequality :

(¥) Z 11— (Ui(2)i, $i)| < Z 11— (A=), di)| + Z [((A(e) — Ui(2)) s, 6:)

which is valid for every z € G and every sequence (¢;) C £2(G), as follows
from the triangle inequality.

Now, since G is assumed to be o-amenable, we can surely find some sequence
(¢;) of unit vectors in £2(G) making the first sum of the right hand side of the
above inequality convergent for every z € GG, and the problem is then whether
(¢) can also be chosen so that the second sum is convergent for every z € G.
There is some flexibility of choice here and it is not difficult to see that this
might be achieved if one is willing to eventually replace (U;) by one suitably
chosen subsequence if necessary. We illustrate this by showing that all ¢;’s may
then even be chosen as normalized characteristic functions associated with some
o F-sequence for G.

We first record an easy calculation. Let xr denote the characteristic function
of some finite (non-empty) subset F C G and set ¢p := xr/ (#F)l/ ®. Let
u € Z?(G, T). Then we have

Cu(@)drdr) = = S u(y,a)

#F yeEFNzF
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and therefore

((A(@) = Au(2))¢r; 9r) = Z (1-u(y™,z))

yEFnzF

for all z,y € G.

Theorem 3.5. Let (u;) be a sequence in Z*(G,T) and assume that G
(is o-amenable and) has a o F-sequence (F;) which satisfies

0 3 gr

Z]l—uz ,z)| < oo for all z € G,

' yeF;

or

Z (1—u;(y™,2)) | < oo for allz € G.

yEF;NzF;

1
;#Fil

Set U; = Ay, and ¢; := XFi/(#E)l/z for every 1.
Then ¢ = (¢;) is a sequence of unit vectors in £2(G) such that ®;U; exists on
HE = @202(G).

Proof. Since (1) clearly implies (2), we assume that (2) holds. Using the in-
equality (x) above, we get

Z 11— (Ui(z)¢i, ¢i)| <

i

#(F; ﬂ zF;) _
le Z# > (-uwlyhe) |
z yeF;Nz F;
for all z € G. By assumption, both sums on the right hand side of this inequality
are convergent for all z € G, and we can therefore conclude that the left hand
side converges for all z € G, as desired. ]

Clearly, if u; = 1 for all but finitely many 4’s, any oF-sequence (F;) for G
trivially satisfies (1) (and (2)). In this case, the above theorem could also have
been deduced from [9] or [1].

This theorem enables us to obtain the following general existence results.

Corollary 3.6. Let G be o-amenable and let (v;) be a product sequence in
Z*(G,T). Then there ezist a subsequence (u;) of (vj) and a sequence ¢ = (¢;)
of unit vectors in £2(G) such that ®;\,, eists on H? = @2£2(Q).

Proof. First we pick a oF-sequence (F;) for G and a growing sequence (H;)
of non-empty finite subsets of G satisfying U;H; = G. Since the (pointwise)
product []; v; exists, we can choose a subsequence (u;) of (v;) satisfying

11 —wui(y™,2)| < 1/i® forallzGHi,yeFi,ieN.
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Let z € G and choose N € N such that z € Hy. Then we get

1
Z iF, S —uiy o)

yEF;
1 \
< Z 2 + Z "y > 1y
<N i>N yeF;
=2(N=1) + Y 1/i* <oc.
i>N

This shows that (F;) satisfies (1) in Theorem 3.5, from which the result then
clearly follows. O

Corollary 3.7. Let G be o-amenable. Then there always exist some I1-free
product sequence (u;) in Z2(G,T) and some sequence ¢ = (¢;) of unit vectors
in £2(Q) such that @\, ezists on H? = ®P02(Q). If H*(G,T) is non-trivial
and 1 # [u] € H%*(G,T), then the sequence (u;) above may chosen so that

u = Hiui.

Proof. Since 1-free product sequences do exist in B?(G,T) and 1-freeness is
clearly preserved when passing to subsequences, the first assertion follows from
the previous corollary. The 1-free product sequence (u;) is then in B2?(G,T).
Therefore (by closedness) [, u; € B%(G,T), so we may write it as dp for some
normalized p : G — T. Assume now H?(G,T) is non-trivial and 1 # [u] €
H?*(G,T). Set v; = dpu and v; = u;_1,5 > 1. Then (v;) is a 1-free product
sequence satisfying u = [], v;. Further we can define a new sequence ¢ = (¢;)
of unit vectors in £2(G), by setting 91 = &, and ¥; = ¥;_1,7 > 1. It is then
obvious that ®;),, exists on H¥, which proves the second assertion. O

Remarks.

1) It follows from Corollary 3.3 that representations obtained as the infinite
tensor product of projective regular representations are never irreducible.

2) It is unknown to us whether the second assertion of the Corollary 3.7 may
be strengthened into that all u; may be chosen to be non-trivial in cohomology
if one assumes that H2(G, T) is infinite (the above proof ensures only that one
of the wu;’s satisfies this requirement). We will see that this may be done in an
example considered in Section 4.

3) Let G be o-amenable and let (u;) and (v;) be two sequences in Z2(G,T)
satisfying v; ~,, u; for every i. Assume that ®;),, exists on H? = ®f€2 (G) for
some sequence ¢ = (¢;) of unit vectors in £2(G). As []; v; does not necessarily
exist, it may happen that ®;\,, can not be formed at all (cf. Theorem 3.2).
However, it is quite clear that p;A,, ® pady, ® - - - exists on ®¥:£2(G), where 9);
is defined by v;(z) = pi(z~1)¢;(z), and this may be considered as a problem
of gauge fixing. On the other hand, let us also assume that ®;\,, exists on
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HY = ®§p€2(G) for some sequence 9 = (v;) of unit vectors in £?(G). Then we
may conclude that ®;\,, is, up to unitary equivalence, just a perturbation of
®iAu; -

(To prove this, we first appeal to Theorem 3.2 and obtain that both u = [, u;
and v = [[, v; exist. Using Lemma 2.1 we may then write v = dpu for some
normalized p : G — T. Now, using that A, ~ pA, and Corollary 3.3, we get

®idy;, 2 Ay @I = p(Ay ®I) ~ p Q4 Ay,

where I denotes the identity representation of G on any infinite separable Hilbert
space)

4) To produce examples of infinite tensor product of projective unitary rep-
resentations of not necessarily amenable groups, one can proceed as follows.
Let G be any countable group possessing a non-trivial amenable factor group
K (one can here for instance let G be any non-perfect, non-amenable group,
e. g. any non-abelian countable free group, since G/[G, G] is then non-trivial
and abelian) and let (v;) be a sequence in Z?(K,T) such that ®;\,, exists on
®?Z2 (K). Using the canonical homomorphism 7 : G — K, we may lift each v;
to a u; € Z2(G,T) in an obvious way. Now, set U;(z) := Ay, (7(z)), (z € G), for
each 7. It is then a simple matter to check that each U; is a projective unitary
representation of G on £2(K) associated to u;, and that ®;U; exists on ®f’£2 (K).

‘We now turn to another class of examples which is in spirit related to the
setting of the Stone-Mackey-von Neumann theorem, i. e. with so called CCR-
representations of a locally compact group and its dual (cf. [24]). Our approach
is different from the one in [17], which deals with CCR-representations of the
direct sum of countably many copies of R on infinite tensor product spaces.

‘We consider two discrete groups A and B satisfying the following weak form
of duality: we assume that there exists a non-trivial bilinear map
o : A x B — T. This amounts to assume that the abelianized groups A,; and
B, satisfy the same weak form of duality, but it seems worthwile not restricting
at once to the case of abelian groups, even if this may cause some degeneracy.
We just mention here one simple example where this type of weak duality is
present: Let A = Z and B be any group satisfying By, # {0}. Then pick
1# v € Hom(B,T) and define o(n,b) = v(b)" (n € Z,b € B).

Going back to our general setting, we set G = Ax B and define u, : GXG —
T by
'U'cr( ((11, bl)) (0,2, b2) ) = 0'(112, bl)

There is some obvious arbitrariness in this definition, and our choice is governed
by what follows. First, it is an easy exercise to check that u, is a non-trivial
2-cocycle on G (in fact a bicharacter). When both A and B are abelian, then
[us] # 1 in H?(G,T), as follows from [18] since u, is clearly non-symmetric.
Secondly, it is well known that there is a canonical way to produce a projective
unitary representation U, of G on £?(B) associated with u,. We recall this
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construction (and remark that a similar representation can be constructed on
£2(A) in an analogous way):

For each a € 4,b € B we set 0,(b) = o(a,b), so the map (a — 0,) belongs to
Hom(A, B) where B := Hom(B, T). Let then V,(a) denote the multiplication
operator by the function o, on £2(B) and Ap be the left regular representation
of B on £?(B). By computation we have

Vo (@) (8) = ala,b) Ap(5)Vo (@)

for all a € A,b € B. If we now put U,(a,b) := V,(a)Ap(b) for all (a,b) € G,
then U, is as desired. The triple {V,, Ag,£?(B)} is a CCR-representation of o
if we agree to call a triple {V, W, H} for a CCR-representation of o whenever V'
and W are unitary representations of respectively A and B on H which satisfy
the CCR-relation

V(a)W(b) = o(a,b) W(b)V(a)

for all a € A,b € B. There is an obvious 1-1 correspondence between CCR-
representations of o, projective unitary representations of G associated with u,
and nondegenerate representations of C*(G, u,). For the sake of completeness,
we mention that the C*-algebra C*(G, u,) may be decomposed as the ordinary
crossed product C*(B) x, A where a is the action of A on C*(B) naturally
induced by the homomorphism (a — o,) from A4 into B (and anagously as the
crossed product of C*(A) by the induced action of B).

Assume now that (o;) is a sequence of bilinear maps from A x B into T.
(In the example mentioned earlier, this is achieved by first picking a sequence
in Hom(B, T)). Then we set U; := U,, and consider the question: when is it
possible to form ®;U; on ®f£2 (B) for some sequence ¢ = (¢;) of unit vectors in
¢%(B) ? Or, equivalently, when is it possible to form the infinite tensor product
of the CCR-representations associated with the o;’s 7 In the case of a positive
answer []; u,, will exist (as a consequence of Theorem 3.2), so [[; o; will then
exist too and the infinite tensor product of the CCR-representations associated
with the o;’s will be a CCR-representation of this product map.

Since U;(e,b) = Ap(b), we must at least require that B is s-amenable and
¢ is chosen so that ®;Ap exists on ®$€2(B), in accordance with Theorem 3.4.
The question reduces then clearly to whether ¢ can also be chosen so that ®;V,
exist on ®7£2(B), i. e. whether

Z 11— (Vo (@), i) | = Z 11— ((04)a ¢is i) < 00

holds for every a € A. Remark that our first requirement on ¢ prevents us from
choosing ¢; = d. for every i, which would have made all these sums convergent
in a trivial way. Choosing ¢ to be associated with a oF-sequence for B leads to
the following:
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Theorem 3.8. Let notation be as introduced above.
Assume that B is o-amenable and let (F;) be a o F-sequence for B.

Set ¢ = () where ¢ = xr, /#(F3)/>.
Then ®;U; ezists (as a representation of G = A X B) on ®°£2(B) whenever

Z#( 12 (-aab) <o

bEF;
for every a € A.

Proof. As we have

11— ((0:)a 65, ¢i)| = |Z

bEF;

for every a € A, this is just a consequence of the above discussion. O

4 The case of free abelian groups

The purpose of this section is to exhibit concrete situations where our results
in the previous section apply. We consider only the simple but instructive
case where G is a finitely generated free abelian group, although it could be
interesting to consider other groups for which the second cohomology group has
been computed, e. g. the 3-dimensional integer Heisenberg goup ( see [20]).

We let N € N and set G = ZY. When z = (z1,... ,2n) € G, we set

N
2y = |z;] and |z]e =max{|z;|,i=1,...,N}
j=1

When m € N, we define K,,, C G by
Kn={z€G||z|le <m} (={0,1,...,m}").
To each N x N real matrix A, one may associate us € Z%(G,T) b

ua(z,y) = e ),

Obviously, one may assume without loss of generality that A € My ((—m,7]), i.e
all of A’s coefficients belong to (—m, 7). It is quite easy to see that us € B%(G, T)
if and only if A is symmetric. In fact we have [u4] = [up] where B denotes the
skew-symmetric part of 4, i.e. B = (A— A?)/2. Thus every element in H2(G, T)
may be written as [u4] for some skew-symmetric A € My ((—m, 7]). We refer to
(2, 3] for proofs of these facts. Twisted group C*-algebras of the form C*(G,u 4)
are often called noncommutative N-tori (since C*(G,u4) is isomorphic to the
continuous functions on the N-torus in the case where A is symmetric).
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It will be convenient for us to use the following norm on My (R):
when A = [a;;] € My(R), we set |A]|e = max{|a;;],1 <i,j < N}

We first record a technical lemma.

Lemma 4.1. Let A € My ((—m,7]), z,y € G and m € N. Then

(1) 11 = ua(z,y)| < |Aloolal1|yh

(2) Yoex, lol = Mﬁ
#(z+K,n)NKn z
9 1- At ¢ o

Proof. 1) follows from |1 — %' (4%)| < |z - (Ay)| < |Aloo|z|1]y1-

m m N
2) Yok, 1Th = X0 Yoek,, 125l = Nm+ )N YTy k) = Hmipt

K’I"r Km, K’I" K’"l N B
3) 1 - Hletgelnfal - #fgtfnll < G loh = 25 =

Proposition 4.2. Let (4;) be a sequence in My((—m,n]) and (m;) be a se-
quence in N. For each i € N, we set

Fz:Kmi CG:

Ui =UA; € Z? (G,T).

¢ =

Then we have:
(1) (F;) is a F-sequence for G if and only if m; = +o0o.
(2) (F;) is a oF-sequence for G if and only if 3 oo; = o < 00.
(3) T, us exists & >, |Aileo < 00.

(4) The projective unitary representation ®;\y,; of G exists on ®fi£2 (G) when-
ever

o0

1
Z— < 0o and Zm1|A loo < 00
=1 i=1

(and then [], u; is the associated 2-cocycle).
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Proof. The nontrivial parts of (1) and (2) are consequences of Lemma 4.1, part
(3).

Assertion (3) relies on the inequality 2|0|/7 < |1 — €| < |§] which holds
when 6] < 7.

Concerning (4) let z,y € G. Then we have

27 3 =0, < oy (ke lvh) - (by Lemma 4.1, (1)

yEF; yEF;
|$| | 4]0
= |y|1
(ms + 1)V yEZF
|z]1]4iloo Nmy(m; + 1)

= (mi £ DN 5 (by Lemma 4.1, (2))

for every 7 € N. Hence we have

Z# X:|1——uz —y,z)| < I|1Zm1|A|oo

yEF

Now if we assume that >~ -2 < oo and S mz|A loo < 00, then {F;} is
a oF-sequence for G (by (2 )) and > 5 ey DY ui(—y,z)| < oo for all
z € G, and the conclusion follows from Theorem 3.5 (since condition (1) in this
theorem is satisfied). _ O

Example. Let A € My((—,7]) and set 4; = 27°4 and u; = ua, (i €N).
Then clearly us = [, ua,. Further, if we let m; = i?, then >, 1/m; < oo
and 37, mi|Aifoo = |Aloo 3;4%/2% < 00 s0 (4) in the above Proposition applies.
Corollary 3.3 then gives

)‘uA ® I= ®i)‘uia

thus producing an infinite tensor product decomposition of the amplification of
Au, - Using this we may clearly obtain a faithful representation of the noncom-
mutative N-torus C*(G,us) =~ C}(G,ua) onto the C*-algebra generated by
®iAy,. Notice also that [u4]-is non-trivial if and only if all [u;] are non-trivial
(cf. our earlier remarks in Sections 2 and 3).

Remark. We don’t know whether statement (4) in Proposition 4.2 may be
strenghtened to the optimal statement: ®;A,; exists on ®%2(G) whenever
S 1/m; < oo and 3, |4i|oo < 00. In the proof of (4), we appeal to condition (1)
in Theorem 3.5. One may wonder whether this better result could be obtained
by appealing to condition (2) in Theorem 3.5 .

We shall now exhibit projective unitary representations arising from CCR-
representations of bilinear maps on some direct product decomposition of G.
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We assume from now on that N > 2 and write G = ZN ~ Z x Z° where
1< PQ<Nand P+Q = N.

To each P x @ matrix D with coefficients in (—m, 7], one may associate a
bilinear map op : ZF x Z9 — T by

op(a,b) = e (DY),

Following the construction described at the end of the previous section, we
obtain a CCR-representation of op on £2(Z®), or, equivalently, a projective
unitary representation Up of G = Z¥ with associated 2-cocycle uP. This
cocycle is easy to describe: a simple computation gives

uP(z,y) = =PV (z,y € Q)

where D is the N x N matrix given by

= 0 o0
p-(5 %)
Notice that u” = up and [u”] is non-trivial whenever D # 0.

Proposition 4.3. Let (D;) be a sequence of P X Q matrices with coefficients
in (—m, 7], and let (U;) = (Up,) be the associated sequence of projective unitary
representations of G on £2(Z9). Let (n;) be a sequence in .

Set Hy = {b € Z? | bloo < i} and ¢; = 1/(#H;)"*xm, (i € N).

Then ®;U; exists on @Y £2(Z%) whenever 3, 1/n; < 0o and ¥, 14| Di|eo < 00.
Proof. This follows from Theorem 3.8. As the details are quite similar to the
proof of the previous proposition, we leave these to the reader. |

Example. We take P = Q = 1 so that G = Z x Z = Z?, and let (D;) = (6;)
be a sequence in (—m, 7]. This gives rise to the sequence (U;) of representations
of Z?% on ¢%(Z) with associated 2-cocycles

uj(z,y) = e (2,y € 7).
By Proposition 4.3 we can then form the infinite tensor representation ®;U;
whenever we can choose a sequence (n;) in N such that 33, 1/n; < oo and
> 15105] < 0o (e.g. nj = j* will do if (5]6;]) is bounded).
A more careful analysis of this situation (still based on Theorem 3.8) in-

volving the familiar Dirichlet sums gives that ®;U; will exist whenever we can
choose (n;) such that

J ;
J

> 2n; +1 sin(6;/2)
Assuming that . |0;| < oo (so ][ u; exists), it would be interesting to know
whether such a choice of (n;) can always be made.

It is well known that U; is an irreducible projective representation of 72 on
¢%(Z) if and only if 8/ is irrational. A problem which ought to be investigated
in the future is to find conditions (if any) ensuring that ®;U; (exists and) is
irreducible.
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5 Infinite products of actions

For each i € N let #; be a Hilbert space, ¢; € H; a unit vector, M; C B(H;) a
von Neumann algebra and «; : G — Aut(M;) an action of G on M;. We denote
by I; the identity operator on H;. We can form the *-algebra éz M, (resp. von
Neumann algebra ®;(M;, ¢;)) acting on ®E¢i)7-ii generated by operators of the
form ®;T; where T; € M; and T; = I; for all but finitely many i’s. At the
a

*_algebraic level we can easily define an action ®; o; of G on <§y M, such that
for every finite J C N we have

®; 0i(®icsTi) ® (®igs L)) = (®icrai(Ty)) ® (RigsTi)-

One natural question is whether éi a; may be extended to an action of G on the
von Neumann algebra ®;(M;, ¢;). As we shall see, the answer may be negative
in some situations, regardless of the choice of unit vectors ¢;.

We consider only the case where each «;(g) is unitarily implemented, i. e.
for every i and g we can write a;(g) = Ad (Ui(g)), where U;(g) is a unitary on
H;. This assumption is automatically satisfied for many classes of von Neumann
algebras (see [25], §8).

Let us first remark that the following condition:

() D (1= |Ui(g)pisd:)) <00 (9€G)

7

clearly holds whenever ®;U;(g) exists on ®fi?{i (9 € G). In fact, using [14,
§1.2], (*) is equivalent to the following condition:

(%) 3 p; : G — T, p;(e) = 1 such that ® p;(g)Ui(g) exists on ®f" Hi (9€G).

Theorem 5.1. With the assumptions and notation introduced above we have:

1) If condition (x) holds, then éi a; extends to a unitarily implemented
automorphic action a on ®;(M;, ;). Moreover if U;(g) € M, for every i and
g € G, then every ag is an inner automorphism of ®;(M;, ¢;).

2) Conversely suppose that an extension o of éz a; exists on ®;(M;, ¢;)
for some choice of unit vectors ¢; in such. a way that oy = Ad(U(g)) with
U(g) € LI(®?“H¢) for every g € G. Then condition (x) holds in the following
two cases:

i) the M; have the property that any automorphism is unitarily implemented
(onH;), and the same is true for every tensor product ®scs(Ms, ¢s) with S C N
(S possibly infinite);

i) the M; are factors, U;(g) € M; and U(g) € ®;(M;, ¢5).

Proof. 1) If (x) holds then (*x) holds and one can take oy = Ad(U(g)) where
U(g) = ®ipi(g9)Ui(g) is well defined on ®?“Hi. If Ui(g) € M; then we have
U(g) € ®i(M;, ¢;) and a4 is inner for every g € G.
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2) Assume that an extension a of éi a; exists on M? = ®;(M;, ¢;)
for some choice of unit vectors ¢; in such a way that oy = Ad(U(g)) with

U(g) € U(®%H,;) for every g € G.

We assume first that we are in the situation described in case 1).
Let J be a non-empty finite subset of N. Then we may identify M?¢ with
(®icgM;) ® ;M where ;M := ®,¢J(M“¢Z) We may then consider ;M as
a von Neumann subalgebra of M? in the obvious way. It is easy to see that o
restricts to an action ya of G on ;M and that we then have o = (®ies0;) ® sou.

For each g € G, using our hypothesis, we may write ya, = Ad ;U(g) for
some ;U(g) € U(®fij7-ti) . Set now Uj(g9) = ®icsUi(g) for each g € G.
Then oy = Ad(U. J(g§® 7U(g)). Therefore, for each g € G, there exists some
z(g) € T such that U(g) = z(9)Us(g9) ® sU(g). Since U(g) # 0 we can pick two
elementary decomposable vectors ®; and ®¢; in ®?“Hi which do not depend
on J satisfying

0# c(g) := |(U(g) ® 91, 08)| = [] 1Usl9)ws, &I 11U (9) ®igs i, ®iga )]

ieJ

for each g € G. Since |(;U(9) ®igs Vi, ®igs&i)| < 1 we get

O<C <H| 'sz,gz

ieJ

As this holds fore every J, one easily deduces that [,y [(Ui(g)%i, &)| converges
to a non-zero number. Since ¥; = £ = ¢; for all but finitely many i’s, this
implies that () holds, as claimed.

Assume now that we are in the situation described in case ii).
We define U;(g) as in i) and set V;(g) = (Us(9) ® (®igs1L:) )*U(g). Then, using
that we may write a = (®;cs0) @ ja, we get

Vi(9) € (®:i(Mi, 1)) N ((®icsMi) ® (®4¢sCLL))".

Using now that all M, are factors, it is a simple exercise to deduce that Vy(g) €

(®iesCL) ® (®i¢7(Mi, ¢;)). We may therefore write V;(g) = (®icsL;)® sV (9)
for some unitary sV (g) € ®;¢s(M;, ¢;). This gives U(g) = Us(g9) ® sV (g) and
we can clearly proceed further in the same way as above to show that (%)
holds. O

The proof of the above result is nearly connected to the proof of a lemma in
[26] (see also [13]).

The case of interest for us in this paper is the one where we set M; = B(H,;)
for every i. As is well-known, every automorphism of a type I factor is inner.
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Therefore we can then write a;(g) = AdU,(g) for every i (g € G) , where
g — U;(g) is easily seen to be a projective unitary representation of G on #,;.
Then we have

Corollary 5.2. Let ¢; € H; be a sequence of unit vectors. Then éz a; ex-
tends (uniquely) to an action a = ®o; on ®;(B(Hi),¢:) (= B®YH,) [14,
Proposition 1.6]) if and only if ®;p;U; exists on ®f’””Hi.

Proof. This follows from theorem 5.1, using again the fact that every automor-
phism a type I factor is inner. O

In view of our positive existence results concerning infinite tensor product
of projective unitary representations, it is clear that one may use the above
corollary to produce examples where ® o; extends to an action on ®;(B(%,;), 1)
for some suitable choice of the sequence (¢;). We can also use it to present two
different types of obstruction for the existence of such an extension, regardless
of the choice of the vectors ¢;.

Corollary 5.3. Let u; be a sequence in Z*(G,T) and a; = Ad\,; be the
associated sequence of actions of G on B({*(G)). If G is non o-amenable

group, then éi a; does not extend to an infinite tensor product action of G
on ®;(B(£%(G)), ¢;), regardless of the choice of the vectors ¢;.

Proof. According to Corollary 5.2, the existence of such an extension would
imply the existence of ®;p;\,; on ®f"Z2(G) for some choice of functions p; :
G — T with p;(e) = 1. It is straightforward to see that this amounts to the
existence of ®;\,, on some ®;“£2 (@) for some v; € Z2(G, T) with v; ~ u;. This
is impossible if G is not o-amenable, as follows from Theorem 3.4. O

Corollary 5.4. Let a; be a sequence of actions of G on B(H;), so that
a; = AdU;(g) where U; are projective representations of G with associated
2-cocycles u;. Assume that [u;] = [u] for every i and [u] # [1] in H*(G,T).

Then éz a; does not extend to ®;(B(H;), ;) for any choice of the ¢;.

Proof. If such an extension exists for some choice of ¢;, (*) holds and therefore
®p;U; exists on ®?"7{¢. It follows then from Theorem 3.2 that [],(dp;)u; exists.
Hence dp;u; — 1 (in the pointwise topology). As each u; = (dp})u for some pi,
we get that u is a limit of 2-coboundaries. Since B%(G,T) is closed, this means
that u is itself a coboundary, i. e. [u] = 1, which gives a contradiction. O

The simplest example of the above situation occurs when choosing G =

Zgy X Zo. In fact, let
01 1 0
v=(10) w0 )
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‘We have
0 -1

VW:(l 0

) =-WV.

A projective (irreducible) unitary representation of G = Zs x Zz on C? is de-
fined by setting U((a,b)) = V¢ W? (a,b € Z3). Since Ve W? = o(a,b)W°U?
where o(a,b) = —1 if a = b = 1 and 1 otherwise, the associated cocycle is
easily computed to be u((ay,b1), (az,b2)) = (—1)22% and its class is not trivial
in cohomology. Remark that.U is.nothing but the projective representation
associated to the CCR representation of ¢ on C? = ¢%(Zs) determined by V
and W. Consider the action o of G on M;(C) given by a(qp) = Ad (U((a,b))).
Then, according to the above result, the infinite tensor product of a does not
make sense as an action on the type I factor ®;(M3(C),¢;). Of course, the
normalized trace of 4 = M5(C) is a-invariant. Therefore ®;c, considered as a
product action on the UHF algebra of type 2%, still extends to the weak closure
in the GNS representation given by the (unique) tracial state (= the infinite
tensor product of the trace states), which is the well known unique hyperfinite
factor of type II;.

If G is a non amenable group and we consider the action & = AdA on
B(£%(@)), then there are no a-invariant states (see e. g. [5]). Therefore the
invariance argument sketched above to extend the algebraic tensor power of a
is not available. It is conceivable that it is impossible to extend this algebraic
tensor power action to ®;(B(¢£2(G)), p;) regardless of the choice of normal states
p; on B(£2(G@)) (here we are using the same notation as in [26]).

6 Further comments

For the sake of completeness we include in this section some comments on pro-
jective unitary representations of restricted direct product of groups and their
associated C*-algebras. Our discussion is based on [14], where Guichardet deals
with the non-projective case.

Let (G4)icr be afamily of discrete groups, e; € G; their neutral elements, U; :
G; — U(H;) a family of projective representations with associated 2-cocycles
u;, ¢; € H; any family of unit vectors, and consider the restricted product
@iG«L‘(C XiGi). Then

@Gy 3 g = (g:) ~ Ulg) = ®:Ui(g:) € U(®H;)

(notation: U = ®%:U;) is a projective representation of @;G; on ®% H; with
2-cocycle

u(g,h) = [Juilgihi),  g,h€®Gi, g=(9:)h=(hi).

Moreover U (®;G;)" = ®%U;(G;)".
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A natural example of this situation is as follows. If H; = £2(G;), ¢i = I,
Ui = (A\g,)w; with u; € Z%(G;,T) then we have ®*H; = (%(8,G;) via the
unitary transformation T' defined by

Rifi — (®:Gi > g=(g:) = H.fi(gi))

(where f; = ¢; for all but finitely many indices) [14, Corollary 1.2]. In fact,
using T' as intertwiner, one easily checks that

®¢i U; = (}‘®¢Gi)u
with u as above (cf. [14, Proposition 1.7] for the non-projective case). Thus

we get the natural identification ®feiVN (Gi,u;) =2 VN(®,;G;,u), and also
QMInC* (G4, u;) =2 CfF (@G, u) by appealing to [15, part II, Proposition 14].

Recall now that if all the C*-algebras A; are nuclear then the natural sur-
jection ®™2*4; — ®™4; is in fact an isomorphism. This is proved in [14,
Proposition 2.3] in the special case where all the A4; are GCR ( = type I),
but the proof goes through in the general case. Moreover there is a natural
identification ®***C*(G;) ~ C*(®;G;), [14, Corollary 2.3]. In a similar vein, it
is possible to show the existence of an isomorphism

®?“”‘C* (Gi, ui) - C* (@iGi, u).
In fact this follows by setting A; = C in the more general statement
7™ (Ai Xasu; Gi) = (BT A;) Xou (BiG:)

(cf. [14, Proposition 2.13]) obtained by exploiting the relevant universal prop-
erties. Here x refers to the twisted crossed product construction [21] and o and
u are naturally defined in terms of the o;’s and the u;’s.

Assume that all G;’s are amenable. Then ®;G; is amenable as well, and
PaxC*(G;) ~ @MRC*(G;) [14, Corollary 2.4]. The obvious twisted version
of this statement, namely

®;naxC* (G,, ui) ~ ®;nin0* (Gi, ui),

follows then immediately from the nuclearity of C*(G;,u;), cf. [21, Corollary
3.9].

Going back to our situation in the previous sections, we may consider the
case where all G;’s coincide with a given group G. Our results can be obvi-
ously strenghtened to get (projective) unitary representations of the subgroup
generated by @;G; and the diagonal copy of G embedded in the unrestricted
direct product x;G;, acting on ®%: H; for suitably chosen vectors ¢; (which can
definitely not be chosen as some Dirac delta functions). We will not address the
apparently complicated problem of representing the whole unrestricted direct
product or any other subgroup of it containing the diagonal.
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and infinite tensor products. Section 3 contains our main results concerning
necessary conditions and sufficient conditions for the existence of infinite ten-
sor products of projective unitary representations. We especially display some
sufficient conditions for countable amenable groups in the case of projective
regular representations and in the case of projective representations associated
with CCR-representations of bilinear maps. In order to illustrate our work with
some concrete examples we present in section 4 some explicit computations con-
cerning finitely generated free abelian groups. The next section deals with some
applications to the existence problem for infinite tensor products of actions of a
group G on von Neumann algebras. One of our result exhibits an obstruction for
extending some algebraic tensor power action of G to the weak closure that lies
in the second cohomology group H?(G,T). In another result, the obstruction
lies in the non-amenability of G. In the final section we collect some related
remarks about projective unitary representations of restricted direct products
of groups and associated operator algebras.

2 Preliminaries

Throughout this note G denotes a non-trivial discrete group, with neutral ele-
ment e, while A denotes the (left) regular representation of G acting on £2(G).

A 2-cocycle (or multiplier) on G with values in the circle group T is a map
u: G x G — T such that

u(z,y)u(zy, z) = u(y, 2)u(z,yz) (29,2 € G),
see e.g. [7, Chapter IV]. We will consider only normalized 2-cocycles, satisfying
u(z,e) = ule,z) =1 (z € G).

The set of all such 2-cocycles, which is denoted by Z2(G, T), becomes an abelian
group under pointwise product. We equip Z 2(@, T) with the topology of point-
wise convergence. _

A 2-cocycle v on G is called a coboundary whenever v(z,y) = p(z)p(y)p(zy)
(z,y € G) for some p : G — T, p(e) = 1, in which case we write v = dp (such
a p is uniquely determined up to multiplication by a character). The set of all
coboundaries, which is denoted by B2(G, T), is a subgroup of Z%(G, T), which
is easily seen to be closed (using Tychonov’s theorem). The quotient group
H*(G,T) := Z*(G,T)/B%*G,T) is called the second cohomology group of G
with values in T. We denote elements in H*(G, T) by [u] and write v ~ u when
[v] = [u] (u,v € Z*(G,T)). We also write v ~, u when we have v = (dp)u for
some coboundary dp.

We shall be interested in product sequences in Z2(G, T): we call a sequence
(u;) in Z%(G, T) for a product sequence whenever the (pointwise) infinite product
u = [, u; exists on G x G (u being then obviously a 2-cocycle itself). Such
a product sequence will occasionally be called I-free if u; # 1 for every i.
Notice that 1-free product sequences are easily seen to exist since we allow
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For i = 1,2, let U; be a projective unitary representation of G on a Hilbert
space H; associated with u; € Z2(G,T). Then the naturally defined tensor
product representation U; ® U is easily seen to be a projective unitary repre-
sentation of G on the Hilbert space H; ® H2 associated with the product cocycle
u1us. In the case of ordinary unitary representations of a group, it is a classical
result of Fell (cf. [10], 13.11.3) that the (left) regular representation acts in an
absorbing way with respect to tensoring (up to multiplicity and equivalence).
In the projective case we have the following analogue.

Proposition 2.2. Let u,v be elements in Z*(G,T) and let V' be any projective
unitary representation of G on a Hilbert space H associated with v. Then the
tensor product representation A, ® V is unitarily equivalent to Auy ® I3, i.e to
(dim V) - Ayy.

Proof. We leave to the reader to check that the same unitary operator W asin
the non-projective case ( which is determined on £*(G) ® H (= £*(G,#)) by
(W(f ®))(z) = f(z)V(z7)y) implements the asserted equivalence. O

We conclude this section by recalling a few facts and some notation concern-
ing infinite tensor products.

Let H = {#;} denote a sequence of Hilbert spaces and ¢ = {¢:} be a
sequence of unit vectors where ¢; € H; for each i > 1. We denote by H? or
by ®? H; the associated infinite tensor product Hilbert space of the #;’s along
the sequence ¢ (sometimes called the incomplete direct product space detemined
by ¢), whose construction goes back to von Neumann [19]. We will follow the
slightly different approach given by Guichardet in [14, 15]. We give here only
a short account, and the reader should consult these papers for full details on
this matter.

For any sequence 1; € H; such that

> 11— |[[9ll| < oo and Z|1-<wi,¢i)|<oo

1

there corresponds a so-called decomposable vector

®i'¢’i:hg1¢1®,..®’(/)n®¢n+1 Q@ Py ®...€H®

depending linearly on each ; (in fact one gets here convergence over the net
consisting of nonempty finite subsets of N ordered by inclusion, cf. [15, Part II,
Proposition 5)). If ®,&; is another decomposable vector in H?, then

(®ii, ®iki) = H(‘/’n &)

1

(where the infinite product above is convergent in the unordered sense, cf. (19,
§2]). Each finite tensor product H; ® ... ® H; is embedded in H® by extending
the map identifying a simple tensor of the form ¥ @...®1; with the elementary
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3 Infinite tensor products of projective unitary
representations

In this section we shall discuss the following (loosely formulated) problem: If
U; is a sequence of projective unitary representations of a group G, when is it
possible to form the infinite tensor product ®;U; ?

The most elementary case to consider consists obviously of picking just one
projective unitary representation U of G on a Hilbert space H with associated 2-
cocycle u and trying to form the infinite tensor product of U with itself infinitely
many times, i.e. its infinite tensor power. For each ¢ € N, put then U; = U,
H; = H and let ¢ = {¢;} be a sequence of unit vectors in H.

Now, if we assume that U®*(z) := ®;U;(z) exists on ®f H; for all z € G,
then Proposition 2.3 gives

Z |1— (U(z)di, ¢i) | < oo,

and especially
lim (U(z)¢s, ¢:) = 1

for all z € G. Letting then w be any weak* limit point of the sequence (wg,)
of vector states of B(#), we have w(U(z)) = 1 for all z € G, from which it
follows (using the Cauchy-Schwarz inequality for states, as in [4]) that w is
multiplicative at each U(z). This implies that

1=w(U(2))w(U(y)) =w(U()U(y))

= w(u(z,y)U(zy)) = u(e,y)w(U(zy)) = u(z,y)

for all z,y € G, i.e. u is the trivial 2-cocycle on G and consequently, U is an
ordinary unitary representation of G.

Concerning infinite tensor powers of unitary representations, we refer to
[1] in the case of the regular representation and [6] in the case of the adjoint
representation. More generally, we have (cf. [9]):

Proposition 3.1. Let U be a unitary representation of G on H.

1) If UB® ezists (i.e. U®®(z) ezists for all z € G) on H® = Q¢ H,
for some sequence ¢ = {¢;} of unit vectors in H, then 1 (= the trivial one-
dimensional representation of G) is weakly contained in U in the sense of Fell
([10]).(As usual, we denote this by 1 < U).

2) If G is countable and 1 < U, then there ezists a sequence ¢ = (¢;) of
unit vectors in H such that U®™ ezists on H?® (and U®> is then a unitary
representation of G ).

Proof. For completeness, we sketch the proof.
1) When U®® exists on H?, we have lim; (U(z)¢;,¢;) =1 for all z € G, so
1< U by [10], 18.1.4.
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o F-sequence. Finally, when (F}) is a o F-sequence for G, xr, denotes the chara-
teristic function of F; and we set ¢; := xr. /#(F;)*/?, then A®> exists along the
sequence (¢;) of unit vectors in £2(G): this readily follows from the equation

(Mz)xr,xr) = #(F NzF)

which holds for every € G and every non-empty, finite subset F' of G.

Concerning amenability of representations, we recall that a unitary represen-
tation 7 of G on a Hilbert space H is called amenable (in the sense of Bekka, cf.
[5]) whenever there exists a state w on B(H) satisfying w(m(z)Tn(z)*) = w(T)
for all z € G and all T € B(#H). It is easy to see that 7 is amenable when-
ever 1 < 7, while the converse implication is not necessarily true. Bekka has
shown that 7 is amenable if and only if 1 < 7 ® 7, and that amenability of
a group is characterized by the fact that all its unitary representations are
amenable (and it suffices to check this for its regular representation). However,
many non-amenable groups, such as non-abelian free groups, do have amenable
representations. Hence, using the above proposition, it is clear that one may
produce examples of unitary representations of non-amenable groups for which
the associated infinite tensor power representation exists.

The next natural step now is to try to form the infinite tensor product of a
sequence of (possibly) different unitary representations of G. In the simple case
where G = Z, this boils down to the question of existence of the infinite tensor
product of a sequence of unitary operators, and we have no more conceptual
answer to this question than the one provided by Proposition 2.3. In the case
where G is a group acting on some standard Borel space S with a quasi-invariant
measure, one may construct sequences of unitary representations of G associated
with suitably chosen Borel 1-cocycles on S X G and study the existence of the
resulting infinite tensor products, essentially along the same lines as in [16].
Since this would lead us too far away from our main task, we don’t elaborate
on this matter here. Therefore, we arrive to the final step of generality, which
is to consider a sequence of projective unitary representations. Before attacking
the (main) problem whether it is possible to form an infinite tensor product
of such a sequence in some cases, we first show that this construction, when
possible, produces a new projective unitary representation of G, and also make
some general observations.

Theorem 3.2. Let U; be a sequence of projective unitary representations of G
acting respectively on a Hilbert space H; and with associated u; € Z%*(G,T). Let
& = (¢:) be a sequence of unit vectors where each ¢; € H;. Assume that ®;U;(z)
ezists on H® = ®H,; for each = € G. Then we have

i) (u;) is a product sequence in Z*(G,T).

i) The map = — U®(z) := ®;U;(z) is a projective unitary representation of
G on H? with u = [, u; as its associated 2-cocycle.

Proof. We notice first that Proposition 2.3 implies that each U?(z) := ®;U;(x)
is a unitary.
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Therefore, setting f;(z) := |(Ui(z)¢:, :)| > 0 we have 0 < f; < 1, f; € Co(G)
and f; — 1 pointwise. Then f;'([1/2,1]) =: H; is finite, and G = U;H; is
therefore countable. Moreover, we get

(A(@)l¢il, 16:i) =1 (z€G),

so 1 < X and the amenability of G follows. O

We now turn our attention to the problem of showing that it is possible
to form the infinite tensor product of a sequence of projective unitary repre-
sentations of G, at least in some specific situations. Some concrete examples
illustrating our results will be given in the next section.

In view of Theorem 3.4, it is quite natural to wonder whether some converse
holds. So we assume that G is c-amenable, let (u;) be a product sequence in
Z*(G,T) and set U; = A, for every i. The question is then whether it does
always exist a sequence ¢ = (¢;) of unit vectors in £2(G) such that ®;U; exists
on H?® = ®%£2(G), i. e. such that

2 |1 — (Ui(z)¢s, ¢i)| < oo forallz € G.

i

Tt is conceivable that the answer to this question is positive and we shall provide
a partial answer in this direction. Our approach is based on the following
inequality :

le— ¢@,¢z|<ZI1— ¢1,¢1|+Zl ()i, 1)

which is valid for every £ € G and every sequence (¢;) C £2(G), as follows
from the triangle inequality.

Now, since G is assumed to be g-amenable, we can surely find some sequence
(¢;) of unit vectors in ¢2(G) making the first sum of the right hand side of the
above inequality convergent for every z € G, and the problem is then whether
(¢;) can also be chosen so that the second sum is convergent for every r € G.
There is some flexibility of choice here and it is not difficult to see that this
might be achieved if one is willing to eventually replace (U;) by one suitably
chosen subsequence if necessary. We illustrate this by showing that all ¢;’s may
then even be chosen as normalized characteristic functions associated with some
o F-sequence for G.

We first record an easy calculation. Let x ¢ denote the characteristic function
of some finite (non-empty) subset ' C G and set ¢p := XF/(#F)I/Q. Let
u € Z*(G,T). Then we have

(u(e)or ) = 25 3 uly™a)
yeFNzF
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Let z € G and choose N € N such that £ € Hy. Then we get

> 2r T h-ue)

yeF;
1 ”
322 + Z#FiZm
i<N i>N y€EF;
=2(N-1) + Y 1/i* <o
i>N
This shows that (F;) satisfies (1) in Theorem 3.5, from which the result then
clearly follows. O

Corollary 3.7. Let G be o-amenable. Then there always ezist some 1-free
product sequence (u;) in Z%(G,T) and some sequence ¢ = (¢;) of unit vectors
in 2(G) such that ®;\y, exists on H® = ®203(G). If H*(G,T) is non-trivial
and 1 # [u] € H%(G,T), then the sequence (u;) above may chosen so that

u =[], us.

Proof. Since 1-free product sequences do exist in B?(G,T) and 1-freeness is
clearly preserved when passing to subsequences, the first assertion follows from
the previous corollary. The 1-free product sequence (u;) is then in B*(G,T).
Therefore (by closedness) []; u; € B?(G,T), so we may write it as dp for some
normalized p : G — T. Assume now HZ(G,T) is non-trivial and 1 # [u] €
H?(G,T). Set v; = dpu and v; = u;_1,i > 1. Then (v;) is a 1-free product
sequence satisfying u = [, v;. Further we can define a new sequence ¢ = (¢;)
of unit vectors in £2(G), by setting ¢1 = 0. and 9; = 9;_1,4 > 1. It is then
obvious that ®;)\,, exists on #¥, which proves the second assertion. O

Remarks.

1) It follows from Corollary 3.3 that representations obtained as the infinite
tensor product of projective regular representations are never irreducible.

2) It is unknown to us whether the second assertion of the Corollary 3.7 may
be strengthened into that all u; may be chosen to be non-trivial in cohomology
if one assumes that H?(G, T) is infinite (the above proof ensures only that one
of the u;’s satisfies this requirement). We will see that this may be done in an
example considered in Section 4.

3) Let G be o-amenable and let (u;) and (v;) be two sequences in Z2(@, T)
satisfying v; ~,, u; for every i. Assume that ®;\,, exists on H? = ®@7¢(G) for
some sequence ¢ = (¢;) of unit vectors in £2(G). As [], v; does not necessarily
exist, it may happen that ®;),, can not be formed at all (cf. Theorem 3.2).
However, it is quite clear that p;A,, ® paAy, @ - -+ exists on ®Yi£2(G), where 9;
is defined by v;(z) = p;(z~1)¢i(z), and this may be considered as a problem
of gauge fixing. On the other hand, let us also assume that ®;A,; exists on
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construction (and remark that a similar representation can be constructed on
£%(A) in an analogous way):

For each a € A,b € B we set 04 (b) = o(a,b), so the map (a — 0,) belongs to
Hom(A, B) where B := Hom(B,T). Let then V,(a) denote the multiplication
operator by the function o, on £2(B) and Ap be the left regular representation
of B on ¢2(B). By computation we have

Vo (a)AB(b) = o(a,b) Ap(b)V(a)

for all a € A,b € B. If we now put U,(a,b) := V,(a)Ap(b) for all (a,b) € G,
then U, is as desired. The triple {V,, g, £?(B)} is a CCR-representation of &
if we agree to call a triple {V, W, H} for a CCR-representation of o whenever V'
and W are unitary representations of respectively A and B on H which satisfy
the CCR-relation

V(a)W(b) = a(a,b) W(b)V (a)

for all @ € A,b € B. There is an obvious 1-1 correspondence between CCR-
representations of o, projective unitary representations of G associated with u,
and nondegenerate representations of C*(G,u.). For the sake of completeness,
we mention that the C*-algebra C*(G, u,) may be decomposed as the ordinary
crossed product C*(B) xo A where a is the action of A on C*(B) naturally
induced by the homomorphism (a — 0,) from A into B (and anagously as the
crossed product of C*(A) by the induced action of B).

Assume now that (o;) is a sequence of bilinear maps from A x B into T.
(In the example mentioned earlier, this is achieved by first picking a sequence
in Hom(B, T)). Then we set U; := U,, and consider the question: when is it
possible to form ®;U; on ®f€2 (B) for some sequence ¢ = (¢;) of unit vectors in
£2(B) ? Or, equivalently, when is it possible to form the infinite tensor product
of the CCR-representations associated with the o;’s 7 In the case of a positive
answer [], u,, will exist (as a consequence of Theorem 3.2), so []; oi will then
exist too and the infinite tensor product of the CCR-representations associated
with the o;’s will be a CCR-representation of this product map.

Since U;(e,b) = Ap(b), we must at least require that B is o-amenable and
¢ is chosen so that ®;Ap exists on ®%£2(B), in accordance with Theorem 3.4.
The question reduces then clearly to whether ¢ can also be chosen so that ®;V5,
exist on ®”£2(B), i. e. whether

le— . ¢z,¢1|—Z|1— 01)a bir $i)] < 0

holds for every a € A. Remark that our first requirement on ¢ prevents us from
choosing ¢; = d. for every i, which would have made all these sums convergent
in a trivial way. Choosing ¢ to be associated with a oF-sequence for B leads to
the following:
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It will be convenient for us to use the following norm on My (R):
when A = [a;;] € My (R), we set [A|oo = max{|a;;|,1 <i,5 < N}

We first record a technical lemma.

Lemma 4.1. Let A € My((—n,7]), z,y € G and m € N. Then
(1) 11 - ua(z,y)| < |Alslzl1]yl
m{m N
(2) Teex,, loh = T2

— K"" KT”' —
(3) 1 #((3+#K’ln ) S T|):111 .

Proof. 1) follows from |1 — e®(4¥)| < |z - (Ay)| < |A|oo|z]1]yl1-

N - m m(m N
2) Yoek,, 12h = Xjot Xeex,, 12l = N(m+ 1)V (L k) = Nmipslle,
:c|1

#((z+K,)NKy) _ #(Eu\(@+Kn)) o (mtp¥ 1 |
3)1- == #K., - #Iéu hS Tm+1)N m+1 o

lz]1 =

Proposition 4.2. Let (4;) be a sequence in My((—m,m]) and (m;) be a se-
quence in N. For each i € N, we set

Fi:Km.-CGa

1
¢ = WXF,- € 2(G),
u; =ua, € 245G, T).

Then we have:
(1) (F;) is a F-sequence for G if and only if m; — +00.
(2) (F) is a oF-sequence for G if and only if 3 o0 - < o0.

i=1 m,

(3) 11, ui ezists & 3, [Ai|o < 0.

(4) The projective unitary representation ®; Ay, of G exists on ®% 02(G) when-
1

ever
oo

Z—n—ll— < 0o and imi|Ai|m < 00
1

i=1 =1

(and then [],; u; is the associated 2-cocycle).
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We assume from now on that N > 2 and write G = ZN ~ ZF x Z? where
1<P,Q<Nand P+Q=N.

To each P x Q matrix D with coefficients in (—m, 7], one may associate a
bilinear map op : ZF x Z9 — T by

op(a,b) = e (PY),

Following the construction described at the end of the previous section, we
obtain a CCR-representation of op on £2(Z%), or, equivalently, a projective
unitary representation Up of G = Z¥ with associated 2-cocycle uP. This
cocycle is easy to describe: a simple computation gives

WP(a,y) =P (z,y€G)
where D is the N x N matrix given by

- 0 0
5= (1 0).
Notice that u” = up and [uP] is non-trivial whenever D # 0.

Proposition 4.3. Let (D;) be a sequence of P x QQ matrices with coefficients
in (—m, ], and let (U;) = (Up;) be the associated sequence of projective unitary
representations of G on £*(Z°). Let (n;) be a sequence in N.

Set H; = {b € Z9 | |bloo < ni} and ¢; = 1/(#H;)**xm, (i € N).

Then ®;U; ezists on ®2“132(ZQ) whenever Y., 1/n; < 0o and Y, n;|Dileo < 00.
Proof. This follows from Theorem 3.8. As the details are quite similar to the
proof of the previous proposition, we leave these to the reader. O

Example. We take P = Q = 1 so that G = Z x Z = Z2, and let (D;) = (6;)
be a sequence in (—,7]. This gives rise to the sequence (U;) of representations
of Z? on (?(Z) with associated 2-cocycles

uj(z,y) = e7HT (a,y € Z7).
By Proposition 4.3 we can then form the infinite tensor representation ®;U;
whenever we can choose a sequence (n;) in N such that ) .1/n; < oo and
>, 4165 < oo (e.g. nj = j* will do if (j*]6;]) is bounded).
A more careful analysis of this situation (still based on Theorem 3.8) in-

volving the familiar Dirichlet sums gives that ®;U; will exist whenever we can
choose (n;) such that

Zni<ooand2|l— 1 s1n((2nj+1)0j/2)l<oo
J i

> 2n; +1 sin(6;/2)
Assuming that 3, [0;] < oo (so ][, u; exists), it would be interesting to know
whether such a choice of (n;) can always be made.

It is well known that U; is an irreducible projective representation of Z? on
¢%(Z) if and only if 6, /7 is irrational. A problem which ought to be investigated
in the future is to find conditions (if any) ensuring that ®;U; (exists and) is
irreducible.
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2) Assume that an extension a of éi a; exists on M? = ®;(M;,¢;)
for some choice of unit vectors ¢; in such a way that oy = Ad(U(g)) with

U(g) € U(@?iﬂi) for every g € G.

We assume first that we are in the situation described in case i).
Let J be a non-empty finite subset of N. Then we may identify M? with
(®icsM;) ® s M where yM := ®;¢;(M;, ¢;). We may then consider ;M as
a von Neumann subalgebra of M? in the obvious way. It is easy to see that «
restricts to an action ya of G on ;M and that we then have a = (Q;csa;) ® sa.

For each g € G, using our hypothesis, we may write jo, = Ad ;U(g) for
some jU(g) € L{(®fiﬁ{i) . Set now Uj(g) = ®iecsUi(g) for each g € G.
Then a, = Ad (U_;(gf@ sU(g)). Therefore, for each g € G, there exists some
z(g) € T such that U(g) = z(g)Us(g) ® sU(g). Since U(g) # 0 we can pick two
elementary decomposable vectors ®; and ®¢; in ®‘f”’Hi which do not depend
on J satisfying

0# c(g) == |(U(9) ® ¥:, ®&)| = H [(Us(9)%s, &)l 1(4U(9) ®igs ¥is ®igsil

ieJ
for each g € G. Since |(JU(9) ®:igs s, ®igs&i)| < 1 we get

0<c(g) < H [(U:(g)%i, &)I-

ieJ

As this holds fore every J, one easily deduces that [T,y [(Ui(9)¥:, &)| converges
to a non-zero number. Since ¥; = £ = ¢; for all but finitely many i’s, this
implies that (*) holds, as claimed.

Assume now that we are in the situation described in case ii).
We define U;(g) as in i) and set V;(g) = (Us(9) ® (®igs ;) )*U(g). Then, using
that we may write a = (Qicsa;) ® s, we get

Vi(g) € (®:i(Mi, ¢:)) N ((®iesMi) ® (®igsCL)) .

Using now that all M; are factors, it is a simple exercise to deduce that V;(g) €
(®icsCLi) ® (®igs (M, ¢i)). We may therefore write V;(g) = (®:iesLi) @5V (9)
for some unitary ;V (g) € ®,¢7(Mi, ¢;). This gives U(g) = Us(g) ® sV (g) and
we can clearly proceed further in the same way as above to show that (x)
holds. O

The proof of the above result is nearly connected to the proof of a lemma in
[26] (see also [13]).

The case of interest for us in this paper is the one where we set M; = B(#;)
for every i. As is well-known, every automorphism of a type I factor is inner.
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‘We have
0 -1

VW=<1 0

) — WV,

A projective (irreducible) unitary representation of G = Zy x Z2 on C? is de-
fined by setting U((a,b)) = Ve W? (a,b € Zj). Since Ve W?® = o(a,b)W°U"
where o(a,b) = —1 if a = b = 1 and 1 otherwise, the associated cocycle is
easily computed to be u((az,b1), (az,b2)) = (—1)%2% and its class is not trivial
in cohomology. Remark that U is nothing but the projective representation
associated to the CCR representation of o on C? = ¢%(Z,) determined by V
and W. Consider the action a of G on M;(C) given by a(, ) = Ad (U((a,d))).
Then, according to the above result, the infinite tensor product of o does not
make sense as an action on the type I factor ®;(M2(C), ;). Of course, the
normalized trace of A = M(C) is a-invariant. Therefore ®;a, considered as a
product action on the UHF algebra of type 2%, still extends to the weak closure
in the GNS representation given by the (unique) tracial state (= the infinite
tensor product of the trace states), which is the well known unique hyperfinite
factor of type II;.

If G is a non amenable group and we consider the action a = AdAX on
B(¢£3(G)), then there are no a-invariant states (see e. g. [5]). Therefore the
invariance argument sketched above to extend the algebraic tensor power of
is not available. It is conceivable that it is impossible to extend this algebraic
tensor power action to ®;(B(£2(G)), p;) regardless of the choice of normal states
p;i on B(£3(G)) (here we are using the same notation as in [26]).

6 Further comments

For the sake of completeness we include in this section some comments on pro-
jective unitary representations of restricted direct product of groups and their
associated C*-algebras. Our discussion is based on [14], where Guichardet deals
with the non-projective case.

Let (G;)icr be a family of discrete groups, e; € G; their neutral elements, U :
G; — U(H;) a family of projective representations with associated 2-cocycles
ui, ¢; € H; any family of unit vectors, and consider the restricted product
®:G4(C x;G;). Then

®:G;>9=(g9:) — Ulg) = ®;Ui(g:) € U(®¢H1’)

(notation: U = ®%:U;) is a projective representation of ©,G; on ®¢ H; with
2-cocycle

u(g,h) = [Juilgihe),  g,h€ &G g=(g)h= ()

Moreover U (®;G;)" = ®% Ui(G;)".
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