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Abstract

In the theory of isometric immersions of submanifolds there are fundamental
theorems of John Nash for the C"-case and Burstin-Cartan-Janet-Schléfly for the
analytic case (also see Robert Greene (2) for the case of local isometric immersions).
These theorems require, however, a large codimension and are of practically no help
in considering concrete questions in low codimensions. An obvious way of producing
large varieties of isometrically immersed homogeneous submanifolds is to take the
orbits of Lie group actions. In low codimensions the following theorem should often
be true: Let a compact, connected Lie group G act on the connected manifold N
with principal orbit type M = G/H. Then, among all the G-homogeneous metrics
on G/H the only ones which allow an isometric immersion into N are those which
are already realized as the orbit metrics of this action. Obviously this is true for
the spheres S"(r) of R® under the standard SO(n)-action. With a little work it
is also easy to prove for the larger classes of metrics invariant under the unitary or
symplectic groups. A slightly more challenging example is to prove this result for
the second Stiefel manifold of 2-frames: SO(n)/SO(n—2) of R?" under the diagonal
_embedding SO(n) — SO(n) x SO(n) acting on R?".

Such theorems follow from a careful study of the Gauss equation: (R(X AY)Z, W) =
B(X,W)B(Y, Z)-B(X, Z)B(Y,W), where R is the curvature operator of the submanifold
M and B is the second fundamental form. In the case of a non-Euclidean surrounding
space N, however, the Gauss equation reads: (R'(X AY)Z,W) = B(X,Z)B(Y,W) —
B(X,W)B(Y, Z), where Rt = Rt — R and R! is the part of the curvature operator R of
N tangential to M. This varies with M’s position in IV, so the left hand side is also not
given. There has not been much study of this, but we will report on the solution of the
probably most basic question in isometric immersions into non-classical geometries.

Let N = CP(n) with metric normalized such that sectional curvatures are in [1,4].
Each geodesic sphere S**~1(r) = U(n)/U(n — 1) determines a different homothety class,
a7y, of metrics (r € (0,%),a* € (0,00)).

Theorem: These Berger metrics vy,(r € (0,%)) are the only U(n)-invariant metrics on
S52=1 which allow an isometric immersion into CP(n).




Remark: This is a 1-dimensional set in the 2-dimensional variety of all U(n)-imvariant
metrics. Thus no non-trivial homothetic image a2y, of v, (a? # 1) or no Berger metric
from a geodesic sphere in complex hyperbolic space allows such an isometric immersion.

We give the flavor of the argument for one of the easier cases:
Let {e;, Je;;i=0,...,n— 1} be a adapted orthonormal basis for
T,CP(n) = C* =2 R?". Then

R(ei N 6j) = —e; N\ €5 — Jei A Jej
R(e; N Je)) = —2egANJeg— - —4de; ANJe; — - — 21 A Jep_1

For $?"~! = U(n)/U(n—1) we choose an adapted orthonormal basis Yy, Y1, J'Ys, ..., Yu_1,
J' Y1, T,J'Y 1T, S*~1 = R = RY, @ R?"~2 where the isotropy action of U(n — 1)
on R?"~2 is by the standard representation and J' is the almost complex structure defined
by this action on R*"~2. Now, let a?y, be the metric of $?*~!(r) multiplied by o?. Then

A t2
Rty A Y) = —=LY A Y,
. 1+ cot?r 1
R(Y: AY;) = ————YiAY; = =TV A 'Y,
A 2
R, AJY;) = =i
4 2
_ ._j_&zﬂ_rm JY e - % ATV,

Now, choose the basis {e;, Je;} such that Jeg is normal to M at p. Then Yy = ey cos ¢ +
Jey sin p, and let Y} = e;.

Lemma 1 RI(XAY)AR(X AZ)=0.

Proof. The Gauss equation may be written: (RY(XAY)Wy, Ws) = —(BAB)(X,Y, Wy, Ws)
= —BAB(X AY)(Wy,W,) where B A B is defined by: (B A B)(X,Y,Z,W) = B(X, Z)
B(Y,W) — B(X,W)B(Y,Z). Let B be the shape operator, i.e. (B(X),}/) = B(X,Y).
Then: RYX AY) = B(X) A B(Y). Hence R(X AY)AR(X A Z) = B(X) A B(Y) A
B(X)AB(Z)=0. qe.d.

Proposition 2 We have sin p = 0, hence we may assume Yy = eg.

Proof. R'(Yy AY;) = cosp(—1+ C"t2’")eo A e +sinp[(4 — °°t2’")el A Jep + 2eq N\ Jeg +

at ot
oo+ 2ep_1 AJey_1]. Forn > 4itiseasy: RI(YpAY)) AR (YoAY)) = ---8sin® pey A Jeg A
es A Jes+---=0,ie. sin?p = 0. For n = 3 it follows by more delicate choices.  q.e.d.

Proposition 3 We have o* =1, i.e. S 1 = §2-1(r),

Proof. We have Yy = e, Y1 = €1, J'Y] = cospJe; + sinpe;. Now choose Y3_= es3
perpendicular to e, e1, Je1, €3, Jez (and hence to Yy, Y1, J'Y;). Then R(Y1AY3) = R (ey A
63)—R(Y'1/\Y:3) = (—1+l+z+t2r)61/\63—J€1AJ63+&1—4J’61/\J163. Rt(yl/\}/g)/\Rt(Y’l/\K;) =
2(—1+ B2Ye, Aeg A (=Jer A Jeg + LJ'er A Jeg) = 0. R(Y, AYY) ARUY A Ys) =

2




2(=1+ cocz#)eo ANep A (—Jey Nes + a—ﬂJ’el A J'es). Hence Jey A Jeg = Eﬂ—J’el A J'es, and
at =1. q.e.d.

We now deal with the more complicated cases n = 3 and (especially) n = 2, and give
a couple of typ1cal arguments. Assume first n = 3. Then R/ (Yo AY)) AR (Yo A YY) =
2smgocosgo("°t L —1)eg Aer Aey A Jeg + 2sin® (4 — "‘)Ot#)el A Jer A eg A Jea+ terms
of other type = 0. Hence, either sinp = 0 or «t’r — 4. In the latter case we have
the term 6sin @ cos ey A e; A es A Jey, hence cosp = 0; i.e. we let Yy = Jeq, Y1 = €.
Choose Y; = ey orthonormal to eg, e, Jeq, J'Y; (and hence to Y7,Y;). Then RY(YoAYs,) =
Rt(Jel/\eg)-—Rt(Yo/\Yg) = —J61A62+61AJ€2+CC25T}/0/\)/2 = (CO;zr—l)Jel/\eg+el/\Jeg.
Hence R (Yo AY2) ARY (Y AYs) = 2(0(:2#—1)4761 NegNeyANJeg = 6Je; Aeg Aep AJey # 0,
which is a contradition. Hence sin ¢ = 0.

This proves the following:

Proposition 4 For n =3 we have sinp =0, i.e. Yy = eq.

We also need:

Proposition 5 For n = 3 we have o? = 1.

Proof. Yy =eg, Y1 = ey, J'Y] =cospJe;+sinpe;. We define: Yy = — sinpJe; +cos e,
then Y3 is orthonormal to Y, Y:, J'Y;. By dimension J'Y, = £Jey. Yo A J'Y] = —Je; A
ey, hence: RY(Y: A J'Y,) = Ri(ey A (£Jer)) — R(Y1 A J'Ys) = Fey A Jey + Jey A ey +
Lot ry, AJ'Y; — LTV A Y, = (B2 1)V, A J'Y + (:I:l— %)J’Yl/\Yg. By setting
RY(Y1 A JYy) AR(Y1 AJYs) =0 we get: a) 1+ cot?r = a* or b) a* = 1. We also
have Rt(Y{) AYy) = (25 — 1)Y5 A Y;. In case a) we have RY(Yp A Y;) A Rt(Yl NJ'Ys) =
( )(:I: 1-— —)Yb AYy AN J'Y; AY, # 0, which is a contradition. Hence o? = 1.

q.e.d.

For n = 2 this argument breaks down, since dim M, = 3 and any wedge product of
4 vectors is zero. Indeed, the Gauss equations do have other solutions. Most of those
are eliminated by the Codazzi equations: (R(X AY)Z,N)=YB(X,Z) - B(X,VyZ) —
XB(Y,Z)+ B(Y,VxZ)+ B([X,Y],Z). We note that this is a considerably more com-
plicated case and only outline a few highlights of the constructions.

Let n = 2 and let SU(2) & S3(r) C CP(2) be the geodesic sphere of radius r, r €
(0,Z). An orthogonal basis for SU(2) at a point p is given by: Ep = (0 Dy Er=(%1%),
Ey = J'E; = (9§). An orthonormal basis is given by smrcoerO’ smEl, smrEg, and a
homothetic image of this by: Yy = mEo, Y, = o5 Bt = 1,2. We again need
to prove that if S, with Y; as an orthonormal basis, admits an isometric immersion into
CP(2), it follows that o = 1.

Extend Y; to left-invariant vector fields on S®. Then, in the Koszul formula: (VxY, Z) =
XY, Z2)+Y(X,2)-Z(X,Y)+(X,Y),Z) = ([Y, Z], X) +([Z, X],Y) the three first terms
of the right hand side vanish.

We compute:

1) [Mon]=

2 2cotr
Yy, [Y1,Yo]=

Yv2, [Y'OaY’Z] - YI)

a?sinrcosr a?sinrcosr

and by repeated use of the Koszul formula we find:




1 +sin?r _cotr

(2) VYO)/I = _2——'__}/2, V}/1}/2) - Yé)
a?sinrcosr
1+sin®r cot
T e Vali=
cotr cotr
ViY==Y, VpYi=-—_Y
o o?

VYo = Vy Y1 =Vy, Y, =0.

R(YoAY1)Ys = Vi, Vi, Yo— Vi Vi Yo—Vire Yo = =V, (COtTYZ) 0——2—— 9L Y, =

a?sinrcosr a?
cotr _14sin?y __cotr 2 Y. = — cot?r Y,
a? o?sinrcosr a? a?sinrcosr af 11l

Similarly: R(YoAY1)Y; = 257, and R(YpAY;)Ys = 0. Hence R(YoAY:) = —20rYyA
Y;. By similar computations R(YyAY;) = —CoatZ"Yb/\YQ and R(Y{AY;) = —‘H'i—‘ifz’"Yl AYs.
Now, let —Jep be normal to S* at p, then J(—Jeg) = e is in T,53. Yy = egcosp +
Jeisinp. Choose Y7 = e;, then Y; is normal to eg and Yy. Y, = F(sin ey — cos pJey),
say Yy = —sin pey + cos pJe;. Now R(eg Ae;) = —eg Aeg — Jeg AJes, i =1,2.

Rle; Neg) = —dey Aey —2eg A Jeg .
R(Yy AY)) = R(Yy A V) — R(Yo AY)) = R(eocos o+ Jersinp) Aer) + @52V, A Y,
= <°°t r _1—3sin? go)YO/\Y1+3sm<pcosg0Y1/\Y2+[381ngocosgoYo (3sin? p—1)Y3]AJeg .

By similar computations R(Yp AY3) = (°°at—4r —1)YoAY, = Y1 AJey, and R(Y1AY,) =
3sin pcos Yy AYi + (9%"?—4—1—3 cos? ) Y1 AYs+[3sin ¢ cos Y+ (1 —3 cos? o) Vo] A Jeg.
Now, consider Gauss’ equations:
Gl (R(Yo AY1)Yp, Vi) = ©5T — 1~ 3sin ¢ = boobyy — b3

G2. (R(Yy AY1)Yo,Ya) = 0 = boobi2 — bo1boz
G3. (R(Yo AY1)Y1,Y2) = 3sinpcos ¢ = borbia — boabiy
Gd. (R(Yo A Ya)Yy, Ya) = 5T — 1 = bogby, — b2,
G5, (R(Y1 A Y)Yy, Y,) = 0= 201522 — bo2b12
G6. < (le A 1/2)1/1, Yé> 4+Z(1t —1- 3COS Y = b11b22 - b%2 where bij - B(Y;, Y;)
For example, by expanding the determinant gogggiggg = 0 after the first line, I obtain:
02012022
t2
0-boo = (5= = 1)bor +0-bp =0
at

Assume o # cot?r, then by; = 0. Similarly, under this assumption, we get:

(3) bio=0.
. ) cot?r
—3sm<pcoscpb00+(1+3sm<p— )b02:o
4 t2
(——tc%;-—r —1—3cos? (p)bog + 3sin @ cos pbyy =0




boobo1 b
Furthermore: det B = | boibi1bs
bo2b12b22
4 + cot?r
(4) (—i_oﬂ— — 1 — 3cos? go) boo + 3 sin ¢ cos by,
cot?r t2r
= ( v —1>b11=3sing0cosg0b02+<co —1— 3sin? go)bgz
ot

(3) and (4) give 4 equations for the 4 unknowns bog, b11, ba2, boz (in terms of ). But we also
have the Codazzi equaions: (R(X AY)Z,N) =YB(X,Z) - B(X,VyZ) - XB(Y,Z) +
B(Y,VxZ)+ B([X,Y],Z), where N is a normal vector of T,S®.
Cl. (R(YoAY1)Yy, —Jeg) = —3sinpcosp
= Y1 (boo) + % bo2 + —rm2rboz = Yi(boo) + ﬁ;ﬁ—mboz
Similarly:
C5. (R(YoAYy)Y:,—Jeg) =1 =By — 2 p, 4 gdsi’r
C9. (R(Y1AY2)Yy, —Jeo) = —3singpcosp = —Y;(bg2) + 3<% byo
(There are 9 such equations altogether.)

Now, from the 4 equations from (3) and (4) we may solve by, b11, bao (in terms of ¢)
and substitute into C5. Although this is quite laborious, it works, and we get a non-trivial
expression in sin ¢ equal to 1. Hence sin ¢ must be constant, and the terms Y3 (boo), Y1 (ba2)
must vanish. C1 and C9 gives af;ﬁ‘fco"wb = a2?;icx?i2c2srb02’ since r € (0, %) this implies
bpe = 0. But then, by C1 again, sin ¢ cosp = 0. One can show that cos¢ = 0 leads to a
contradiction. Consider sin¢ = 0. Then bgyby; = C"atjr — 1 = bgobgo. Since a* # cot?r,

b = by # 0. biby = b3 = £ — 4 C5 now says: <% (bgy — b1) = 1. By solving

by = £4/ ﬁ—z‘?ﬁ — 4 and by = :I:(“:# - 1) (4—*%?}& —4) M2 and substituting this into

C5 we now get an equation for a:

o+ (2cot’r — 1)a® — 6cot? ra* +4cot’r =0,

Obviously * = 1 is a solution, and by dividing by a* — 1 we get: a® + 2cot?ra? —
4cot?r =0. a* = Veot?r + 4cot?r — cot?r as a possible second solution. To eliminate
this we consider Maeda’s condition for the principal curvatures of a hypersurface. by
is the principal curvature along the principal direction, b;; along the direction e;. Then
b 22 — 3%2?1_1;;3 - b11, i.e. b00b11+2 = 2b bOObll 2b11—2b00b11 8+2C0t L —8— 2c0t2r+2 =2
5 =8 ie at=1 q.e.d.

Remark. Alternatively, we could require that the curvature tensor of the total curvature
constructed from the metric of S and B be parallell.

Remark. This is of course only a small part of the work. One needs to check cosp = 0,
o = cot? r, and then one must check that none of the U(n)-invariant metrics of the spheres
in complex hyperbolic or Euclidean space admit an isometric immersion into CP(n). All
these results are true for local isometric immersions, obviously. Corresponding results also
hold for complex hyperbolic space and quaternionic projective and hyperbolic spaces, and
will be published shortly.
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