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Abstract

We develop a multiparameter white noise theory for fractional Brownian motion
with Hurst multiparameter H = (Hy,...,Hy) € (%, 1), The theory is used to
solve the linear and a quasi-linear heat equation driven by multiparameter fractional
white noise. It is proved that for some values of H (depending on the dimension)
the solution has a jointly continuous version in ¢ and z.

1 Introduction

Recall that if 0 < H < 1 then the (I-parameter) fractional Brownian motion with Hurst
parameter H is the Gaussian process By (t) = By (t,w); t € R, w € () satisfying

(1.1) By(0) = E[Bg(t))=0 forallte R
and
(1.2) E[Bu(s)Bu(t)] = H{|s/* + [t|" —|s—t*"}  foralls,teR.

Here E denotes the expectation with respect to the probability law P for
{Bpr(t,w)}erwea, where (2, F) is a measurable space.

If H = 1 then By(t) coincides with the standard Brownian motion B(¢). Much of the
recent interest in fractional Brownian motion stems from its property that if H > % then
By (t) has a long range dependence, in the sense that

o0

> E[Bg(1)(Bu(n+1) = Bu(n))] = oo

n=1
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Moreover, for any H € (0,1) and a > 0 the law of { By (at)}ier is the same as the law of
{a® By (t)}ier, i-e. By(t) is H-self-similar.

For more information on 1-parameter fractional Brownian motion see e.g. [MV], [NVV]
and the references therein.

Recently a stochastic calculus based on Itoé-type of integration with respect to By ()
has been constructed for H > % [DHP]. Subsequently a corresponding fractional white
noise theory has been developed [H@], and this has been used to study the corresponding
fractional models in mathematical finance [HQ|, [HOS].

As in [H1], [H2] and [HOZ] we define d-parameter fractional Brownian motion By (x);
T = (z1,...,74) € R? with Hurst parameter H = (Hy,... ,Hy) € (0,1)% as a Gaussian
process on R% with mean

(1.3) E[Bg(z)]=0  for all z € R?

and covariance

d
(1.4) E[Bu(z)Br(y)] = (%)dH(IIiFHi T e A
i=1
We also assume that
(1.5) By(0) =0 as.
From now on we will assume that
(1.6) s<H; <1 fori=1,...,d.

The purpose of this paper is to extend the fractional white noise theory to the multipa-
rameter case and use this theory to study the linear and quasilinear heat equation with a
fractional white noise force.

2 Multiparameter fractional white noise

In this section we outline how the multiparameter white noise theory for standard Brow-
nian motion (see e.g. [HKPS], [HOUZ] or [K]) can be extended to fractional Brownian
motion. In the I-parameter case such an extension was presented in [HO]. The following
outline will follow the introduction in [HOZ] closely.

Fix a parameter dimension d € N and a Hurst parameter

(2.1) H=(H,.. . H)el1*
Define
d
(2:2) o(z,9) = pulzy) = | [ Hi(2H: = Dz = 5™
=1




for z = (z1,... ,24) € R% vy = (y1,... ,54) € R%
Let Li(Rd) be the space of measurable functions f: R? — R satisfying

(2.3) |f\i //f o(z,y)drdy < oo

Rd R4

where dx = dx; ...dzy and dy = dy; . . . dyy denotes Lebesgue measure.
Then L2(R?) is a separable Hilbert space with the inner product

(24) //f o(x,y)dz dy ; f.g€ Li(Rd) .

R4 R4

In fact, we have (see [HQ, Lemma 2.1] for the case d = 1):

Lemma 2.1 For f € L2(R?) andu = (uy, ... ,uq) € R* define

o0 oo d
(2.5) T f(u) = /.../f(:vl, wa) [ e — )% dwy . dxa
o o i=1
where
Hy(2H;, — 1) -T'(5 — H;)
2.6 = 2 : =1,....d.
( ) CHl \/F(Hz_%)l—\(2_2HZ) ) ? ) )

Then Ty 1s an isometry from LZ(R?) into L*(R?).
Proof. For f,g € L2(R?) we have

P )F (9>)L2(Rd)

R4 wu; Ud
/ / HCH ;— U;) H 3/2dy)du1 dug
d T; \Y;
//f <H & (s — u) Ty ) 3/2duz)dxdy
R4 R4 —co
~ [ [ 105wt v)dzdy.
RY R¢




where we have used the fact that (see e.g. [GN, p. 404])
Zi\Yi
20 / & (s — )P (s — ) P, = H(2H, — 1) — 72

—co O

Let S(R?) be the Schwartz space of rapidly decreasing smooth functions on R%. The
dual of S(R?), the space of tempered distributions, is denoted by &'(R%). The functional

f—ex(=35lfl;);  feSRY

is positive definite on S(R?), so by the Bochner-Minlos theorem there exists a probability
measure f, on S'(R) such that

2.5) [ ety = pe s
S'(R4)

where (w, f) denotes the action of w € Q: = §'(R?) on f € S(R?). From (2.8) one can
deduce that if f, € S(RY) and f, — f in L2(R") then

(2.9) (w, f): = nl—l—>ngo<w7 fn) exists in  L?(uy)

and defines a Gaussian random variable. Moreover,

(2.10) E[(-,f)]=0
and
(2.11) Bl (ol =(f9), for fige LL(RY).

Here, and in the following, £[-] = E,,_[-] denotes the expectation with respect to p,.
In particular, we may define

(2.12) Br(z) = (0, Xom()); o= (z1,...,34) € R?
where
d
Xoa(v) = [ [ Xowg(wi)  for y=(v1,...,ya) € R
i=1
and

1 if 0<y; <
Xozg (i) = ¢ —1 if 2 <y <0, except z; =9; =0

0 otherwise




Using (2.10)—(2.11) and Kolmogorov’s criterion, we see that By(z); z € R? is a Gaussian
process and it has a continuous version. Furthermore, we see that

E[Bu(z)] =0

and

d
(2.13) BB (@)Ba )] = ()" [ [ + 1o = fas — ™)

i=1

Therefore By(z); # € R® is a d-parameter fractional Brownian motion with Hurst pa-
rameter H = (Hy,... ,Hy) € (5,1)% (see (1.3)-(1.5)). It is this version of By(z) we will
use from now on.

Let f € Li(Rd). The stochastic integral of f with respect to the fractional Brownian
motion By(z) is the Gaussian random variable on {2 defined by

(2.14) /f )dBg(x /f JdBy(z,w) = (w, f) .

Note that this is a natural definition from the point of view of Riemann sums:
If f, is a simple integrand of the form

then (2.13) gives

=

n

/fn )dBy(z w, fn) =Zan)BH (y5)

J=1

and if f, — f in L2(R*) then by (2.9) we have, as desired, that

/ﬁwwmwzmnwﬂ%ﬁz/WM&mw
d R4

Note that from (2.14) and (2.11) we have the fractional Ito isometry

(2.15) /f )dBy(z }=|f|§; for feI2(RY).

As in [H@Z] we now proceed in analogy with [HOUZ] (as done in [HQ] in the 1-
parameter case) to obtain a multiparameter fractional chaos expansion:




Let

dar
halt) = (~1e" () tER, n=0,12,..

be the standard Hermite polynomials and let

(2.16) ha(t) = 774 ((n = D) VPh (V210 P2 n=1,2,..

d
be the Hermite functions. Let N = {1,2,...}. For a € N% let 1,(z) = [] ha,(z:). Then

{7 }aena constitutes an orthonormal basis of L2(R%). Therefore

ea(z): =T (na)(x); aeN’, zeR

constitutes an orthonormal basis of L2(R?). From now on we let {a®}2, be a fixed

ordering of N¢ with the property that
i <j=la¥ <o)
and we write
(2.17) en(x): = e m(z) . (See (2.2.7) in [HOUZ])
Then just as in [H®, Lemma 3.1] we can prove
Lemma 2.2 There exists a locally bounded function C(x) on R® such that

d
’/en a:ydy’<C’ H 1/6

=1

Let J = (NY). denote the set of all (finite) multi-indices a = (ay, ...

a; € Ng: =NU{0}. Then if a = (ay,...,qn) € J we define
(2.18) Ha(w) = ha, ({w, €1)) -+ - ha,, ((w, ) -
In particular, if we put

¥ =(0,0,...,1) (the ¢’th unit vector)
then by (2.14) we get

(2.19) Hoo (W) = hi((w, e) = (w, &) = /ei(m)dBH(:c) .

Rd

, Q) With

As is well-known in a more general context (see e.g. [J, Theorem 2.6]) we have the

following Wiener-It6 chaos expansion theorem (see also [DHP] and [HQ)):

6




Theorem 2.3 Let F € L2(u¢). Then there exist constants c, € R for a € J, such that

(2.20) F(w) = Z CaHo(w) (convergence in L*(u,)) .
aeJ

Moreover, we have the isometry,

(2.21) 1P,y = D aldd
aedJ
where ! = arlag!. . an! ifa=(a1,...,am) € J.

Example 2.4 If F(w) = (w, f) for some f € L?D(Rd), then F' has the expansion

(2.22) Flw) = <w> Z(f, ei)wei> - Z( freoHoo (W) -

In particular, for d-parameter fractional Brownian motion we get, by (2.12),

(o]

Br(z) = (w, Xoai()) = D (Ko €:)pHew (w)

i=1

(2.23) e
::121[g/(gzlz@owcun»dv)du}%eamw>,
where !:ZZ and O/:—/O i oz <0.

Next we proceed as in [HOUZ] to define the multiparameter fractional Hida test func-

*

tion space (S)y and distribution space (S)%:

Definition 2.5 a) (The multiparameter fractional Hida test function spaces) For k € N
define (S)mk to be the space of all

(2.24) P(w) = 3 aaHa(w) € L2(n,)
aceJ
such that
(2.25) Illf: =D ala?(2N)* < oo
acJ
where

Ny =J[@)" i v=0n. ) ET.

J




Define (S)y = () (S)mx with the projective topology.
k=1

b) (The multiparameter fractional Hida distribution spaces)
For g € N let (S)}; _, be the space of all formal expansions

(2.26) Gw) =) bsHa(w)
BeJ
such that
(2.27) IGNF = BZ(N) ™ < oo .
BeJ
Define
(S)ir =S,
g=1

with the inductive topology. Then (S)3 becomes the dual of (S)y when the action of
G € (S)3y given by (2.26) on ¢ € (S)y given by (2.24) is defined by

(2.28) (G o) = claaba .

aceJ

Example 2.6 (Multiparameter fractional white noise)
Define, for y € R?

(2.29) wat) = 3 | [ ot viar| o)

=1 R4

Then as in [HQ, Example 3.6] we obtain that Wy (y) € (S)% for all y. Moreover, Wy (y)
is integrable in (S)j for 0 <y; <z;;i=1,...,d, and

(2.30) /IWH(y)dy = 2 U </ei(v)s0(y,v)d?) dy} Hew(w) = Bp(z),

Rd

by (2.23). Therefore By(x) is differentiable with respect to = in (S)% and we have

3d

(2.31) g Br(e) = Walz) i (S)y.

This justifies the name (multiparameter) fractional white noise for Wy (z).

The Wick product is defined just as in [HOUZ] and [HQ:




Definition 2.7 Suppose F(w) = > aoHa(w) and G(w) = > bgHg(w) both belong to
acJ BeJ
(S)3- Then we define their Wick product (F ¢ G)(w) by

(2.32) (FoG)w)= Y aabgHaJrg(w):Z( S aabﬁ)m(m‘
o,BeT yed a+B=vy

Example 2.8 a) ([HO, Example 3.9]) If f,g € L2(R%) then

(2.33) (R/ddeH> o (R/gdBH) - (/deH> - (R/dgdBH) (o),

b) ([HQ, Example 3.10]) If f € L2(R?) then
% Ly
exp = ; m

converges in (S)j; and is given by

(2.34) exp®({w, f)) = exp((w, f) = 31f[5) -

We now use multiparameter fractional white noise to define integration with respect
to multiparameter fractional Brownian motion, just as in [HQ, Definition 3.11] for the
1-parameter case:

Definition 2.9 Suppose Y : R* — (S)% is a given function such that Y (z) o Wy (z) is
integrable in (S)3 for x € R Then we define the multiparameter fractional stochastic
integral (of Ité type) of Y (x) by

(2.35) / Y (2)dBy () = / Y () o Wi(z)do
R R

Remark 2.10 If H = % this definition gives an extension of the Ito-Skorohod integral.
See [HOUZ, Section 2.5] for more details.

3 The linear heat equation driven by fractional white
noise

In this section we illustrate the theory above by applying it to the linear stochastic
fractional heat equation

(3.1) %—g(t,x)=%AU(t,x)+WH(t,x); te(0,00), z€DCR"
(3.2) U(0,z) =0; z €D
(3.3) U(t,z) =0; t>0, xz€0D




Here Wy (t, z) iS the fractional white noise with Hurst parameter H = (Ho, Hy,... , H,) €

(5, )™ A = Z —7 is the Laplace operator, D C R™ is a bounded open set with smooth

=1

boundary 9D, 0 < T < oo is a constant. We are looking for a solution U : [0, 00) X D —
(S)3 which is continuously differentiable in (¢, z) and twice continuously differentiable in
z, i.e. belongs to C+?((0,00) x D;(8)3), and which satisfies (3.1) in the strong sense (as
an (S)%-valued function).

Based on the corresponding solution in the deterministic case (with Wg (¢, z) replaced
by a bounded deterministic function) it is natural to guess that the solution will be

(3.4) Ult,z) = //WH(s,y)G’t_s(x,y)dyds

where Gy_,(z,7) is the Green function for the heat operator 2 2 — 3A. It is well-known
[D] that G is smooth in (0,7") x D and that

a2
(3.5) Gulz,y) ~u™?exp (— |9:5—y|) in (0,00) x D,
U

where the notation X ~ Y means that

1

EXSYSC’X in (0,00) x D,
for some positive constant C' < oo depending only on D.

We use this to verify that U(t, z) € Sy, for all (¢,z) € [0,00) x D:
Using (2.29) we see that the expansion of U(t, z) is

Ult,z) = //Gtsxy

(3.6) = Zbk(t7$)He(k)( )

k=1

(3.7) be(t, z) = baw (¢, ) //Gt 2,y U or (y,v)dv]dyds

In the following C' denote constants, not necessarily the same from place to place. From

[ [ extw)ts 0 Py s

k=1 “Fn

10




Lemma 2.2 and (3.7) we obtain that

d t
(3.8) et < € [[(@) [ [ Geoslovdyas
i=1 0D
: 2
<C H(Osz))l/G/ </3””/2exp< )dy>d3
=1 0 Rn
t
:\/ng
T [ ([ e s )
=1 0 Rn
d
= C [Tt
i=1
Therefore

oo d 0o
d+3
3.9 <ot (R))1/3(9k) k3 (2k) f e
(3.9) _C’()ZH( X:: < 00 or q > 3

Here we used the fact |a*)| < k, which is the consequence of the special order. Hence
Ult,z) € (S)jy_, for all ¢ > d+3 , for all ¢, z.

In fact, this estimate also shows that U(t, z) is uniformly continuous as a function from
[0,T] x D into (S)3 for any T < co and that U(t, z) satisfies (3.2) and (3.3). Moreover,
by the properties of Gy_¢(x,y) we get from (3.4) that

%_(t]( z) — AU(t, 2) //WHsy (——A) Gy-o(z,y)dy ds + Wi (t,2)

(3.10) = Wg(t,z), so U(t, z) satisfies (3.1) also .

In the standard white noise case (H; = 3 for all ¢) the same solution formula (3.4) holds.
In this case we see that the solution U(t, z) belongs to L?(u) (u being the standard white
noise measure) iff

(3.11) E,[U*(t, )] //G (z,y)dyds < oo .

11




Now, if D C (=%R, 3R)™ and we put F' = [-R, R]",

t

_ 2y
//Gtsxydsdyw//s " exp e dy ds

0D
2
~ / ( / s exp <_T> dz) ds
O F/Vs
Hence
(3.12) E Ut z)] <oco<=n=1.

Next, consider the fractional case % < H; <1 for all 7. Then

E'W[U2(t,:z)]:/t/t//Gt_r(x,y)Gt_s(x,z)gp(r,s,y,z)drdsdydz

0 0 DD
t t 9 9
N////r_n/gs_n/zexp B k1 D O
or 0s
0 0DD
(3.13) = s [y — 2™ dys .. dyuder . dzadrds .
=1

Choose 1 < ¢ < p < oo such that }l} + % = 1. By the Holder inequality we have

ir /1 2 2 ‘
H/ /2 o < yil* s =z > s — 2P 2y
or 0s
1 1 1/p
2 |z — yil? /2R plzi — 22
< - | dy; —— | dz
_HﬁR exp< or > y{{ iR o 0s :
iR 1/q
[ o] )
iR

(3.14) ~ (g)nﬂK%)n/Tm it g(2H; —2) > —1.

Substituted into (3.13) this gives

t t
(3.15) B, [U*(t,z)] < C(p) / / () TP — s as




Combined with the requirement ¢(2H; — 2) > —1 we obtain from this that

1
EW[U2(t,x)] < 00 if n< ] for 1<i<n.

1

We summarize what we have proved:

Theorem 3.1 a) For any space dimension n there is a unique strong solution U(t,z) :
[0,00) X D — (8)% of the fractional heat equation (8.1)-(3.3). The solution is given by

(3.16) U(t,z) = // Wi (s, y)Gi—s(z,y)dy ds .
0D

It belongs to C12((0,00) x D — (S)5) N C([0,00) x D — (S)%).

b) If H = (Ho, Hi,... ,Hy,) € (5, 1) and
1 .

(3.17) Hi>1—>=  for i=12,...,n
n

then U(t,z) € L*(u,) for allt >0, z € D.

¢) In particular, for all H € (3,1) we have
(3.18) Ult,z) € L*(p,) if n<2.

Remark 3.2 Note that condition (3.17) is sharp at H; = 3, in the sense that if we let
H, — % for i = 1,... ,n then (3.17) reduces to the condition n = 1 which we found for
the standard white noise case (3.12).

Remark 3.3 In [HI| (and more generally in [H2]) the heat equation with a fractional
white notse potential is studied:

%(t,x)=%Au(t,x)—l—u(t,x)<>WH(t,x) : zeR", t>0.

There it is shown that if H = (Ho, Hy,..., H,) with H; € (%, 1) fori=0,1,...,n and

Hi+Hy+ -+ Hy>n—

2Hy -1

then u(t, z) € L*(p,) for all ¢, z.

13




4 The quasilinear stochastic fractional heat equation
Let f: R — R be a function satisfying

(4.1) [f(z) = fy)| < Llz — 9] for all z,y € R
(4.2) |f(z)] < M(1+ |z|) forall z € R,

where L and M are constants.
In this section we consider the following quasi-linear generalization of equation (3.1)-
(3.3):

(4.3) %[ti(t,x) — IAU(t2) + f(U(t,2) + Wa(t,a);  £>0, 2 €R”

(4.4) U(0,z) = Up(z) ; z e R"

where Up(x) is a given bounded deterministic function on R™.
We say that U(t, x) is a solution of (4.3)—(4.4) if

/U(t,x)go(a:)dx—/Uo(a:)gp(az)dac

R~ R
(4.5) -1 O/ R/ Uls, o) Ap()dz ds + O/ R/ F(U (s, 7))o (w)de ds
+0/R[ o(x)dBg (s, )

for all ¢ € C§°(R™).
As in Walsh [W] we can show that U(¢,z) solves (4.5) if and only if it satisfies the
following integral equation

Ut z) = / Uoly)Gi(z, y)dy + / / F(U(5,9))Go_o(, y)dy ds

R" 0 R"
t
(46) +// Gt—s<may)dBH(8)y) )
0 Rn
where
_ —n/2 |117 — y|2 . n
(4.7) Gis(z,y) = 2n(t —s)) ™ exp | — ; s<t,z€eR
2(t — s)
is the Green function for the heat operator 2’% — A in (0,00) x R™.

14




For the proof of our main result, we need the following two lemmas. Let 0 < o < 1.
Define, for u > 0,

(4.9 ofu.9) = [ Iy == Jzeap(~5)dz

_%(1_1

Lemma 4.1 Assume p > . Then g(u,y) < C(1+u P)), where C' is a constant

independent of y and u.

Proof. In the proof, we will use C' to denote a generic constant independent of y and
u. First,note that

22

1 22 1
glu,y) = / y — 2| " —=exp(——)dz + / y — 2|7 —=exp(—-—)dz
|z—yl<1 v Vu T |2—y|>1 | Vu 2u

By Holder inequality,

-1

wovseta [ a7 -0

[z—y|<1 lz—yl<1

(4.9) <O(1+u 7079

Let F'(y1,v2,- .- ,Ys) denote a function on R™.

Lemma 4.2 Let h = (hy, hg,... ,hy,) with h; >0, 1 <i < n. Asume that F and all its
partial derivatives of first order are integrable with respect to the Lebesque measure. Then

aw)  [1r-w-Fea < ([ i
=\

R”

Yo, >yn>

Proof. Observe that

n

F(y—h) —F(y) = Z(F(yl) )yi—l)yi_hi)yi—l—l —hi—}—la"‘ >yn_hn)

i=1
_F yl)'-' 7@/1 1, Yi, Yir1 — hi-{-la'“ y Yn _‘hn»

(4.11) = Z/

Integrating the equation (4.11), we get

HYi-1, 2, Yit1 — h¢+1, ey Yn — hn)dz

15




1w =1 - Fldy

< Z / dyy - - - dyi—1dYiz1 - - - dyn
=g

Yi

oF
'/dyi / Oy

(yh 5 Yi—1, 2, i1 — hi-|-17 oy UYn — h’n)dz

R yi—hy
= / dyy -+~ dys1dyiss - dyn
ilen—l
oF i
-/dz By; (Y1, ¥im1s 2 Uit — higr, Yo — ha) / dy;
R ' z

—, [ OF
3 MEUEREAIET

7

Our main result is the following:

Theorem 4.3 Let H = (Ho, Hy,..., H,) € (3, 1)"™ with
1 .
H>1-- for i=1,2,... ,n.
n

Then there exists a unique L*(u,)-valued random field solution U(t,z); t >0, z € R"™ of
(4.8)=(4.4). Moreover, the solution has a jointly continuous version in (t,z) if Ho > 2.

Proof. Define

(4.12) V(t, x) z// Gi—s(z,y)dBu(s,y) .

0 R™

Dividing R into regions {z;|z — y| < 1} and {z;|z —y| > 1}, we see that a slight
modification of the arguments in Section 4 gives that E,_[V?(t,z)] < co, so V (t,z) exists
as an ordinary random field. The existence of the solution now follows by usual Picard
iteration: Define

(4.13) Uo(t, z) = Up()

and iteratively

16




(4.14) U, ) = / Uo(y)Gel, y)dy

R»

+// F(U;(s,9)Ge—s(z,y)dy ds + V(t,z) ; j=0,1,2,...

0 R™

Then by (4.2) Uj(t,z) € wa for all j. We have

Upta(t, @) = Us(t, 2) = //[f(Uj(S,y)) = [(Uj1(5,9))Go-s(2, y)dy ds

0 Rnm

and therefore by (4.1), if ¢t € [0, T,

Eu Ui (t, x) — Uyt z) ]

<15, ( / J1045.9) = Upms(s.0)1G sl )y d”

0 Rn
i t
< L( !/ Gt_su,y)dyds) E{ [ [ sts) - Uj_1<s,y>|2Gt_s<x,y>dyds]
0 R™ 0 R®
t
< Cr [ sup E(U(5,9) - Us-a(s,9)lds
Y
t s1 Sj—1
<. <O // = / sup E[|Uy(s,y) — Uo(s,y)*Jdsds;_1 . .. ds;
00 o !
T
< ATC%W for some constants Ar, Or .

It follows that the sequence {U;(t, z)}2, of random fields converges in L*(,) to a random
field U(t, z). Letting k — oo in (4.10) we see that U(t, z) is a solution of (4.3)—(4.4). The
uniqueness follows from the Gronwall inequality. It is not difficult to see that both

/ Usly)Gilz,y)dy  and / / F(U(5,9))Ges(, 5)dy ds

R 0 R»

are jointly continuous in (¢,z). So to finish the proof of the theorem it suffices to prove
that V (¢, ) has a jointly continuous version.
To this end, consider for h € R
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t+h

V(t+ha)— Vi) = ‘//wamwaﬂsw
t R

t
(4.15) +//(Gt+h_s(:v,y) — Gy_s(z,y))dBy(s,y)
0 Rn
By the estimate in (3.15) it follows that
t+h t+h
[I//Gt+hsxydBH(S y)‘ }<C/( )2Ho—2du
t R
(4.16) <cpt

To estimate the second term on the right hand side of (4.15), we use (2.15) and proceed
as follows:

ED]/K%%A%M—GH@wWBM&wﬂ

0 R™

<C / / X ()Xo, () — s
R R
(.
(5]
{ern—ge (- ot

(4.17) H lyi — 2 i_Qdy dz} drds

< c//;rm (8)|r — s[707
([l )

R"R"
2 2
. h —-n/2 _ |yl _ —n/2 _ ﬂ
{<8+ ) exp( 2(s+h) b 2s
(4.18) : H ly: — 2 Py dz} drds
i=1
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From (4.17) to (4.18), we first perform the change of variables: z —y =9/, z — 2z = 2/,
t—r =7 t—s=s and then we change the name of ¢/, 2/, 7', s’ back to y, z,7, s again
for simplicitiy. (4.18) is further less than

t s

C/ds/ dr(s —r)*"7

0
IYL/|2 1 —29) 12 _w
[/dy/ v 2= exp< oy + Y ly|° exp o )dv
Rn
i -n/2 _ ’Z|2 .- n/2 o I_Z_LQ_
{(7" + h) exp ( ——2(7" y r exp 5

=1

t s
< C’/ds/ dr(s — T)QHO_Q

0

[/ dv/ndy —y73T exp< |';J|2> + 2722 |y[Pexp (— %))
Jelirren(gtig) ()

n

(4.19) H’yz 4 }

Choose p > 1 such that

for i=1,2,... ,n

2H; -1 n-—2

This is possible since H; > 1— 2 fori=1,2,...,n. Then

2
P Sd  and P2 @H-2>-1 i=1,2...,n
p—1 p—1

Now applying Lemma, 4.1 repeatedly to this choice of p and to o = 2 — 2H;, we get

t s
) s+h 1 1\ n
(4.19) < C/ds/dr(s_mwo—?,/ dvl <1+C7"_5(1 ;))
s v
(420) < C/ ds/ d?“/ 1"‘7”_%(1_1_1’))(8—7")2]{0—2
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Choose (3 such that 2 — 2Hy < 8 < 1. It follows that (4.20) is dominated by

s s+h
K 1 1 _n(p_1
O/ dS/d’l“Sl—_ﬁ /dvv—ﬁ(l_f_fr 2(1 P))(S—T)2H0_2
0
0 s

t S
' 1 _ngp_1
< Chl'ﬁ/ds/dr——l 57 2 (1 ”)(3—7")%[0"2
SI-

0 0
t 5 s
1 _n(-1 _np_1
=Chl"ﬁ/ds————1 ﬂ[/r 21 ”)(s—r)QHO“er-i—/r 2(1 P)(S—T)QHO—QdT]
s
0 0 s
t
(4.21) < Chl—ﬁ/ llﬁsl‘ﬂ“ p)=(222H0) g < Opih

0
On the other hand, for k € R™ we have

Vt,z+k)—V(t,z) = //(Gt_s(:c +k,y) — Gi_s(z,y))dBu(s,y)

0 Rn
Hence, by (4.7),

E[|V(t,z+k) - V(tz))?

< O/t/tlr—sfH“'2

oo (on - E2) - 520

{iemor (o (- E550) e (- 525) )}

ﬁ lys — 2" P dy dz dr ds

wof[re {25 ()

.{S—n/Z‘ <exp <_ %) —exp < |Z|2>> } H| 24y dz dr ds

<o o f e [afe (on ——> =)
o (- ) o ()
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Applying Lemma 4.1 and Lemma 4.2 we get

i s
(4.22) < C/ds/d?"(s—r)2H°_2<1+7~‘%<1—%>>”
0 0

n

2
Y Ikl [ s exp (— h;—‘) [y:ldy
8

i=1 Rn

1 _9 —m(-1 s _9 —n(—1
§C|k|/d8——l-[/dT(s_r)2Ho 2,730 p)+/ dT(S_T)QHo 2, ~51-3)
S 3
t

_3
ds < C|k|, if Hy> 2.
0

Combining the estimates (4.16), (4.21) and (4.23) we get, for some § < 1,
E[[V(t+hz+h) = V(t,2)*) < Ch'™" +[k]].

Since V(t+ h,z + k) — V(t,x) is a Gaussian random variable with mean zero, it follows
that for any m > 1

E[[V({t+haz+k) = V(Et,z)|*™ <CnB[|[V(t+hx+k)—V(tz)™
< Cp[R P 4 [K|]™ < Co[RP + |K||™ if m is big enough .

Hence by Kolmogorov’s theorem we conclude that V(¢,z) admits a jointly continuous
version. O
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