(" )

ISBN 82-553-1218-8 No. 1
ISSN 08062439 January 2000
Pure Mathematics

A solvable irreversible investment
problem with transaction costs

by
A. Qksendal

|
i
|

DIEPARTMIENT OF MATHEMATICS

UNIVERSITY QF OSLO

MATEMATISK INSTITUTT/UNIVERSITETET | OSLO




A solvable irreversible investment problem with transaction
costs

Anders @ksendal
Department of Mathematics
University of Oslo
P.O.Box 1053 Blindern
N-0316 Oslo
Norway
E-mail: anderso@math.uio.no

ABSTRACT: This paper mathematically treats the following economic problem: A com-
pany wants to expand its capacity in investments that are irreversible. The problem is to
find the best investment strategy taking the fluctuating market into account. We assume
that to each investment there is associated a fixed transaction cost, in addition to the cost
of the actual investment. We solve an example explicitly and show that

lim JC = Jo

C—0t
where Jo denotes the value function with transaction cost C. We also show that the value
function is not robust with respect to the transaction costs (at C=0) in the sense that

. Jo

im —= = —o0

c—o+ dC

KEY WORDS Impulse control, Irreversible investments, Fixed transaction costs, Quasi-
variational inequalities, Nonrobustness feature.

1 Introduction

This paper focuses on the problem of investing in an uncertain market, when the invest-
ments are considered to be irreversible. This means that once an investment has been made
and the market later drops to a less favorable state, we cannot undo the investment. The
risk of overinvesting means that we should wait longer to invest, than if the investments
were totally or partially reversible. On the other hand we do not want to wait too long and
miss out on any profits due to our lack of capacity. In addition we have a fixed transaction
cost associated with each investment. The problem then is to find a proper investment
strategy taking the fluctuating marked into account. Numerous examples of irreversible
investments exist, for example purchase of highly specified production machinery, educat-
ing staff members or spending money on advertising. See Dixit and Pindyck [2] for further
economic discussions of the problem. See also Kobila [3] and (ksendal [5] for a treatment
of the same problem without transaction costs.

We will assume that our investments have two effects on our economy. The first is that
the income increases. In general the income will depend on the current state of the market
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and the current investment level, which will be denoted by 6 and k, respectively. This is
reasonable since a favourable market could for instance mean greater sales of a product.
On the other hand a high capacity could result in higher maintenance costs. The income
function will be denoted by

II(0, k) : E x [0,00) — [0, 00)

The second effect of an investment is obviously that it costs money. We will assume that
an investment has different costs depending on what our capacity is and naturally also
depending on how much we want to increase our capacity. The function I'(k) will be such
that an increase in capacity from k& to ¢ will cost
I'(q) —T'(k)

Also we will have a transaction cost associated with each investment. This will be constant
and denoted by C.

In addition we have a discount factor A built into the model. This factor is considered
to be strictly positive and constant.

Another assumption is that the market process is not affected by the investments made.
This is a valid assumption if we are considered to be small investors in a large market.

The market process will be denoted by ©;. It takes values in the interval E C R. We
will show that the solution to the problem is to find a forbidden region F C E x [0, 00) and
an investment region Z C F X [0,00) such that the optimal solution is to invest whenever
(O4, k) hits F and then invest until we are outside Z. Suppose we start in the point A in
the figure below. Then we should wait until (©y, k) hits F (point B) before we invest. The
optimal strategy is to invest our way out of Z (point C). Then we should wait until we hit
F again before investing further and so on.

¢

This paper is organized as follows: Section 2 gives some preliminary results, section
3 gives sufficient conditions in the general case. In section 4 we give an example that is
explicitly solvable by using the methods developed in section 3. In section 5 we show that
if Jo denotes the optimal value function with the transaction cost C' then

Iim Jo=Jy
C—0t
and

im —4& =
C—0+ dC o
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2 Preliminary results

2.1 The Market Process

The marked process, ©, is assumed to be an Ito diffusion on the interval £ C R

O, = pu(,)dt + o(,)dB;

2.2 The Controls
We will let functions of the form
Ki(w) : [0,00) x Q — [0, 00)
represent the investment strategies. They are required to be:
1. Measurable with respect to the o-algebra Bjg o) X M
2. Non-decreasing as a function of ¢, for a.e. w
3. Right-continuous as a function of ¢, for a.e. w
4. Adapted to the filtration M; = {0(6;);s < t}

Because of our transaction cost a large family of these controls will not be optimal. If
we consider our total income to be finite, we can only have a finite amount of investments
within each finite period, if not our transaction costs will become infinitely large. Therefore
we can assume that our controls for each w € 2 only have a countable amount of jumps.
Then we only need to consider controls of the form:

Kt = Z ki(w)XTiSt<Ti+1 (1)
=0

where {7;}$2; is a family of ©;-stopping times such that 7; — oo a.s. as i — co.

2.3 Conditions

We assume that IT and ' are continuous and continuously differentiable wrt. k. Further-
more if we define

N(b) £ kes[lggo){(ﬂ — AL)(6, k)}

then we assume that E? [ [ e~ |N(©;)|dt] < oo for all 6. Then we can easily prove the
following result

Lemma 2.1. For all controls Ky of the form in (1):

lim E° { / " eI - AT)(O, Kt)dt] — B { /O ¥ eI - ar)ey, Kt)dt]

n—oQo 0

Proof. Since N(8) > (II — AI')(0, k) we have by monotone convergence:

lim E" [ / " e M(N(0y) — (IT — AT')(©y, Kt))dt] = E° [ / h e M(N(0y) — (I — AT')(6y, Kt))dt]

n—=00 0 0

The result easily follows. O
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2.4 The mathematical problem

Now we are ready to present the precise mathematical problem. We want to maximize
the expected profit after we have deducted the expected cost of our investments and the
transaction costs. The total expected discounted income is given by

Ef { / e MTI(Oy, Ky) dt]
0

where II(f, k) denotes the income rate when the market is in the state 6 and our investment
level is k. The expected reduction of funds due to the investments is a bit different. The
total expected cost of the investments (not including the transaction cost) is given by

o0

> B [P (ki(w)) — e (ki ()]

i=1
Changing the indexes then gives

=S E {e_)‘“l‘(ki (w)) — e+ 1D (k; (w))] — T(ko)

1=0

= c>OE‘9 Ooe—/\t)\r i (w)) — * M (ke 9
e [Tt - [ <<>>] (ko)

=E° [ /O h e‘”AF(Kt)dt] — (ko)

Therefore the total expected profit for the control K is

E [ /0 e~ (IT — AT)( @t,Kt)dt] ZEG[ -ATi]Jrr(ko)

=0

But I'(ko) does not depend on the control K;. Then if we define

TR (K, £ R [/0 e M(II — A)(Oy, Ky) dt} ZEQ[ —/\Ti]

the problem is to find the control that maximizes this expression. Or in other words finding
a K such that

J(0,k) (K}) = sup{J(e’k) (K)}
K

We also want to know what the maximum value J&F) (K}) is




3 CONSTRUCTING A SOLUTION

3 Constructing a solution

3.1 Sufficient conditions

With the conditions on II and I given earlier we now present a verification theorem using
quasi variational inequalities (See [1] for an elaborate treatment of QVIs)

Proposition 3.1. Define

A ov 1 ) @
Lv = )\1/+,u(9)80 +350 (9)892

Suppose we are given v : E x [0,00) — R and two strictly increasing locally Lipschitz
continuous functions ¢, : [0,00) — E such that the following holds:

1. ve CYE x [0,00))
2. ve CPYE x [0,00))
3.
v € C*(E x [0,00)\0Y)

and the second order derivatives are locally bounded near Ov, where O denotes the

set {(0,k) : (k) = 6}.

I < —(IT = AI')(0, k) when (k) < 0
N=—@=2D)G, k) when (k) >0

v(0,k) —v(0,9) <C

for all 0 and all ¢ < k.

v(0,k)—v(b,q) =C

for k= ¢71(8) and ¢ < ().

7. There exists a function h(8) > supgv(0,k) such that {e *"h(©;)}, is uniformly
integrable and

lim e Mh(0) =0 a.s.
t—o00
Then

00 o0
/ e M(IT = AT)(O, Ky)dt — »  Ce
0

i=1

v(6,k) > sup B¢
Kt

Let ko =k, 1o = 0. Define {k;}2, inductively by
kiv1 = ¢~ (9(k:))
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Let 7,11 denote the first hitting time of the process Oy to the set [1)(k;),00) and K} denote
the control:

o
K; = Z kiXri<t<riii
i=0
Suppose further that
8. 1; <00 a.s.
9. {e (0, K¥)}r<r, is uniformly integrable for all 3.
10.

lim E [e"\T”y(@Tn,K:n)] =0

n—oo

Then K} is optimal.

Proof. From @ksendal [6] (Theorem D.1) we know that there exists a sequence of C*
functions {v;}52; such that

vj — v uniformly on compacts
Av; — Av; — Av — Av uniformly on compact subsets of E x [0, 00)\0%

{Lv;}72,  islocally bounded

Let K be a given control. The Ito formula for semimartingales (see Protter [4]) gives

t
e™Mu;(O4, Ky) — v;(0, k) = / e Luj(05,Ky)ds + Y e (15(Os, Ko) — vj(05-, Ks))

0 0<s<t

¢
+ / e *v;(O5, K,)dBs
0
Define 7 £ min{7;, R,inf{t > 0: |©;] + |K;| > R}}. Then
R n

/ " e_ASLVj<@sa Ks)ds - Z e_)\TiR <Vj(®7-R7 kz-l—l) - Vj(GT.R7 kl)) XT.R=T‘,;:|
0 T Z T

1=1

vi(0,k) = —E°

+E? [e—hfyj(@ﬁ, KTT{E)]

Letting j — oo we get

R n
V(97k) = -E9 / 6_/\SL1/(937 KS)dS - Z e—/\TiR (V(@TiR) k’H—l) - V(@TRa kl)) XTR:T,:] (2)

0

i=1

+E° [e—Affy(eTﬁ,KTﬁ)] (3)
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using assumptions 4) and 5) and taking limsupg_, ., and limsup,,_,, on both sides we get

v(0,k) > limsup lim sup E?

n—o0 R—o0

TR -
/ e_’\t(H — A\I')(6y, Kt)dt] — lim sup lim sup E°Y [Z e~ CXTR=T«]
0 Y

n—oo  R—oo =1

+ lim sup lim sup E? [e_)‘ﬂ?u(eﬁ, KT}})}

n—oo R—oo

using lemma 2.1 and assumption 7)

v(0,k) > E° { / B e M(IT — \[') (O, Ky)dt — i Ce (4)

0 i=1

To see that K gives equality in (4) note that (O, K;) never enters F and always
invests from 1 to ¢. Thus using assumption 3) and 5) in equation (2)-(3) we get

R o>»
/ e M(I1— A[) (0, K7 )dt — > Ce™ix n_, + e Y(O, 5, K:R)]
0 ‘ =1 % n

v(0,k) = E°

Letting R — oo and using lemma 2.1 and assumption 9) this equals

Tn n
=B’ / e M(IL— AD)(Oy, Kf)dt — Y Ce™™ + e ™u(Oy,, K:n)}

0 =1

Letting n — oo and using lemma 2.1 and assumption 10) we get

[e'e) oo
.y / NI = AD)(Oy, Kp)dt — 3 Ce
0

i=1

3.2 Nescessary conditions

We now present two conditions that heuristically have to be satisfied in order for the
problem to have a solution of the form given in proposition 3.1. Suppose 7y and 74 denote
the first hitting times for ©; to the sets [1(k),00) and [¢(k), 00), respectively. Then we
must have:

E° / e e M(II), — A\[')(©4, k)dt} =0 (5)

Te

To see why this is reasonable let K} denote the optimal control given in 3.1. Suppose
that the expression above is strictly positive for k = k1. Then there exists a § € (0, ka — k1)
such that

> EY l/w e M(IT — A[')(©y, k1)

¢

TP
E° { / e M(IT — \D)(Oy, ky + 6)
T
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Then compare the strategies
o0
K;,k = Z kiXTiStSTi-)-l
i=0
and
[ee]
K = Z IXT <t<Tit1
i=0

where 151' = k;, whenever ¢ # 1 and 151 =k1+6. K, is an Increasing control from the choice
of §. Comparing the value functions for the controls K} and K; we get

JOR) Ky — JOR)(K,) = B [/ e (IT — AT)( @t,Kt>dt:| ZE&[ An]
0

g [ /O T e - AP)(@t,Kddt] £y o]

i=1

= Ff — EY <0

’7'¢ T¢

/ M (IT = AT)(64, k1) / &M (IT = AT)(©y, ky + 5)
T¢, T¢

In other words the control K is not optimal. A similar argument applies if we assume the
expression in (5) to be strictly negative.

" The other nescessary condition is a consequence of the fact that it should decrease
the value function if we invest before or after we hit the function . Suppose we keep
k € [0,00) fixed. Let 7, be the first hitting time of the process ©; to the set [¢(k), co).
Then it must be suboptimal to invest slightly before or slightly after ©; hits [¢(k), 00).
Suppose we invest slightly after ¢)(k), say at the time when ©; hits ), where ) > (k). Let
K denote the first hitting time for the process ©; to the set [1/3, 00). Consider the strategy

K, given by
Kt = k’iXK,,;<t<K,i+1

where k; = 7; for ¢ # 1 and K1 = %y Then comparing the value functions of K and K,
gives:

J(K;) = J (k) = B [/% e M(IT - AI)(6y, ¢‘1(¢(k)))dt}
Ty

—E? /w? e—At(H — /\I‘)(Gt,k)dt] _ g [Oe“*"%} LB [Ce‘*ﬁz]
Ty

Viewing this expression as a function of 1 it must be decreasing in )= 1 (k), otherwise K
is not an optimal control. Similar argumentation for 7,3 < (k) gives that the expression
above must be decreasing for ?,Z = (k). Then supposing that the expression above is
differentiable wrt. ) we must have

Y=t

< [Ee [ [ e (@m-anyen s ) - (- Anjen k) - Al || =0 (@
T

di
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4 A simple example

It turns out that in some cases the conditions we presented in the previous section are
enough to determine the functions ¢ and v. A similar example for a controlled Brownian
motion can be found in [6].

dO; = V2 dB,
I1(0, k) = 6k
(k) = nk?

A=1
In this case we have the following equality:
E? [e™™] = e

Then (5) becomes

9 ™ e
E e (O — 2nk)dt
T

[

Top
/ e M(IT, — AT}) (O, k)dt | = E
Te

Using Dynkin’s theorem this equals

_ g {e—w E? [ /0 " et - 2nk)dtH _ B [e—w B [ /0 T, - an)dtH

= "(¢ — k) — Y (¢ — 2nk)
- This expression has to be zero, hence we obtain the equality:
(6 = 2nk) = e (¢ — 2nk)
Now we see that if we choose
(k) =2nk+V
and
dk) =2nk+W

where V' and W are constants, then the equality above is independent of k and can be
written

We W =veV (7)

The question now is whether the condition given in (6) agrees with our assumptions on the
form of (k) and ¢(k). For simplicity of notation we will set d = V2—nW. From (6) we have
the expression

fod / e (- XD)(©4, ¢ (6(R))dt — (11— XD)(©,, k) — C] dt

T
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=E?

/T"3 e [0u(k + d) — n(k + d)* — (©:k — nk*) — C] dt
T

-y [ / ¥ e H(©,d — 2nkd — nd? — C)dt
TP

Using Dynkin’s theorem this equals

o0
=F° [e_Tw EY { / et (0yd — 2nkd — nd® — C)dtH
0

— g [e‘ 3 EY [ /0 " e(04d — 2kd — pd? — O)dt”
Computing this expression explicitly then gives
= =¥ (spd — 2kd — 1d® — C) — =Y (pd — 2nkd — nd?* — C)
This function is differentiable wrt.z@, and the derivative is
=P (d — 2nkd — nd* — C — d)

which must be zero for zﬁ = for every k. Thus

Yd —2nkd —nd?> —C —d =0 (8)
(k) is assumed to be of the form ¥ (k) = 2nk + V. Inserting this then gives

Vd—nd®>—d=C (9)

But W =V — 2nd and inserting this in (7) we get

2nd
V=1 (10)
inserting this in (9) we get
2nd?
1—e—2nd —nd2 —d=0C (11)

The function C(d) = 172;’% — nd? — d is strictly increasing for d > 0, hence to each C
there is only one solution d > 0. Furthermore from (10) there is only one pair V' and W for
each d. Then we have uniquely determined two functions (k) and ¢(k) that agree with
the nescessary conditions. We now need to show that the value function associated with

these functions satisfies proposition 3.1.

10
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4.1 The value function

With the candidate for the optimal investment strategy given in the previous section it is
possible to compute the value function. In this section we will compute this value function
and show that it satisfies the conditions given in proposition 3.1. The control in question
always has a constant investment increase of d = V2_—W 7; denotes the first hitting time
of the process ©; to the value ¢;—1 = ¥(ki—1) =2nk +V + (V —W)(¢ —1) for i > 1 and
70 = 0. It is easily seen that k;(w) = k + id. The value function for this control is

+
JOR) (K = ZE“’ [ / Ok — nk2) dt] ZE" [Ce™m]
=0
Using Dynkin’s theorem we get

= EEe [e‘”Een [/ e (O4k; — nk?)dt” - ZEG |:6—Ti+1E@"'i+1 [/ e (Ok; — nk?)dt”
i=0 0 0

=0

o0
—Y E’[CeT
i=1

Changing the summation index on the first sum and using that ©,,, is constant this equals

=F [ / e " (Opk — nkQ)dt} + > B[] (E@”’“ [ / ™ (Ocki1 — ki)t
0 0

1=0

—E®min [/ e_t(@tki — nk%)dt] — C)
0

. Inserting kiy1 = k; +d
0o e 0o
= F° { / e Ok — nkQ)dt] + > B [e7mir1] EOnin [ / et (©yd — 2nk;d — nd* — C)dt]
0 P 0
This expression can be computed explicitly using that E?[©;] = 6 and E?[e~"+1] = f=¥:,
since ;41 denotes the first hitting time for the process to the value ;. This gives
[ee]
=0k —nk® + ) e (id — 2nkid — nd* — O)
=0
Then by using (8)
o0
=0k —nk* +) e’ id
=0
Inserting ¢; = 2nk +V + (V —= W)i

(o)
— 0k — nk? + d69—2nk—v Z e—(V—W)i
1=0

11
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0—2mk—V

_ 2

w-v _ W
Recall from (7) that e =¥
v
— 0k — ]C2 v 0-2nk-V
Nk~ + 2776

This is the value function if we start above the function 1. If we start below, then we should
immedeately invest until we hit #~%(#) and then follow the same strategy as if we started in
the state (0, ¢~ 1(0) Then the value function would be J@®) (K7) = JE@47 ) (K¥) — C.
This equals JO¥™ (9)) K}). Thus our candidate for the optimal value function is

JOK) 0k — nk2 V ef—2mk=V whenever (k) > (12)
Z_n - + 277 whenever ¢(k) < 0

We now need to check that v(6, k) satisfies the conditions in proposition 3.1.
Lemma 4.1. The function v(0,k) in 12 satisfies proposition 3.1.1-10

Proof. Proof of 1) - 4) is left to the reader.
Proof of 5) and 6) For k > ¢~1(#) we have

v (0,k) = 0 — 2nk — Vef~2mh=V
Then it is easily seen that

<0  whenever $71(8) < k
vg(0,k) =< >0  whenever v 1(0) <k < ¢71(0)
=0  whenever k< ¢~H0)

Thus the maximum value for v(6, q) — v(6, k) is obtained for ¢ = ¢~1(6) and k = ¢ ~1(9).
The construction of v(f, k) shows that this maximum is C.

Proof of 7) It is easily seen that v(6,k) < K(1+ ), for some constant K. The result
easily holds for this function.

Proof of 8) Since 7; is the first hitting time to an interval for the one dimentional brownian
motion the result easily follows.

Proof of 9) 7 < 7; implies that K is bounded. Then v(©,, K;) is bounded from below
by the function —|©|K,, — K2. The result follows.

Proof of 10) It is easily seen that

e_’\T"u(@Tn,K:n) >0 forn>1
Combined with 6) this gives the result. O

Remark 4.2. The contruction of v(0, k) obviously shows that K} is optimal. Hence it was
not nessescary to show 3.1.7-9.

12
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5 Discussion

We now discuss the nature of the solution further. First notice that the set where it is
locally profitable to invest, or in other words the set

U = {(8,k) : (Il — AT)(8, k) > 0}

in this case is the set where 8 > 2k. It is never optimal to invest outside this region, since
W then would be negative, and then there exists no V # W such that We™" = Ve V.
Recall from (11) that

2nd?

2 —

Thus as the transactions cost C' increases to infinity, then d increases to infinity also. Recall
from (10) that

2nd

V= 1 — e 2nd

(14)
Then V — coand W — 0 as C — 0.

A perhaps more interesting question is what happends when C — 0, and how does this
relate to the case where C' = 07 From (13) it is seen that d — 0 as C — 0. Then from
(14) we see that as d — 0 then V, W — 1. The case where C' = 0 can be solved using the
methods developed in @ksendal [5]. This gives that the solution in the case C' = 0 is to
invest infinitesimaly to stay above the function Y (k) = 2k+1. This is the same strategy we
get from letting C' — 0. It is also easily verified that the value function in (12) converges
to

Sk _ |0k = nk? + 55?21 for § < 2nk + 1

0 %—i—ﬁ for 6 > 2nk + 1
as C — 0. Again the results in @Oksendal [5] can be used to show that this is the optimal
value function in the case C' = 0. 0.5)

We now want to show the nonrobustness of value function. Let J;" denote the optimal
value function with transaction cost C. Then we have the following result:

Proposition 5.1.

o dJgP
S T o R

Proof. To show this we note by (12) that the only term in the value function that is
dependent of C'is V. Then it is easily seen that

c

i g {limc_,0+ %(1 — V)ef2nk=14L whenever 2nk +1> 6
im =

c—ot+ dC limg_o+ 55(1 = V)5 whenever 2nk + 1 < 0
But
av (1-V)4L
lim (1—V)-—= = i dd
Fo = Vige = e

13
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Inserting from (13) and (14) we get

1—e~2md_2pd 2n(1—e—21%)—4n?de—21¢

N hm 1—e—2nd (1—3—27id)2
- And(l—e—21d)—4n2d2e—2nd
d—0+ 4nd( 6(1_62277;7)2 e —ond—1
B . 1—e=2n4_92pnd 1 .
ut note that limg_,q+ —emap = 3 Then the expression above equals
2n(1—e—214) —4n2de—2nd
= lim (e %)
— 9 Adnd(1—e—21d)—4n2d2e—2nd
2 d—0t 21 ( 6(1_6227];))2 = - 2nd - 1
But this equals
1 I 1
T oo 2nd—(2nd+1)(1—e-214)

1—e—2nd + 2n(1—e—214)—4n2de—2n4d

The denominator is easily seen to tend to zero as d — 0% by I'Hopitals rule. The result
follows. O

14
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