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Abstract. We construct a family of integral kernels for solving the d-equation with C*
and Holder estimates in thin tubes around totally real submanifolds in C™ (theorems 1.1
and 3.1). Combining this with the proof of a theorem of Serre we solve the d-equation with
estimates for holomorphic forms in such tubes (theorem 5.1). We apply these techniques
and a method of Moser to approximate C*-diffeomorphisms between totally real subman-
ifolds in C™ in the C*-topology by biholomorphic mappings in tubes, by unimodular and
symplectic biholomorphic mappings, and by automorphisms of C™.

& 1. The results.

Let C™ denote the complex n-dimensional Euclidean space with complex coordinates
z = (21,...,%n). We shall consider compact C*-submanifolds M C C™ (k > 1), with or
without boundary. Such a submanifold is totally real in C™ if for each » € M the tangent
space T, M (which is a real subspace of T,C") contains no complex line; equivalently, the
complex subspace TS M = T, M +iT, M of T,C™ has complex dimension m = dimg M for
each z € M. Welet TsM = {z € C™":dp(2) <5} denote the tube of radius § > 0 around
M here |z| is the Euclidean length of z and d(z),= inf{|z = w|iw € M}

For any open set U C C™ and integers p,q € Z we denote by le,,q(U) the space of
differential forms of class C! and of bidegree (p,¢) on U. For each multiindex a € Z3"
we denote by 9 the corresponding partial derivative of order |a| with respect to the
underlying real coordinates on C™.

The following is one of the main results of the paper; for additional estimates see
theorem 3.1 in sect. 3 below.

1.1 Theorem. Let M C C" be a closed, totally real, C!-submanifold and let 0 < ¢ < 1.
Denote by Ts the tube of radius § > 0 around M. There exist constants §g > 0 and C' > 0
such that the following holds for all 0 < § < 8,1 > 1,p >0, ¢ > 1: For any u € le,,q(fs)

with Ou = 0 there is a v € C} ,_,(7T5) satisfying v = u in Tos and the estimates

ol oo (72s) < COllullpoo (73);

1670l =7y < € (81100l ooy + 8 Ml g ()5 led <L (L)
If ¢ = 1 and the equation Ov = u has a solution vy € C(l;'é)(%), there is a solution
v € C(l:é)(fs) of Ov = u satisfying for 1 < 7 < n and | =1

18;0%]| o= (725) < C (0(0;0%0,6) + 8 Jul [0 (7))




Here w(f,d) = sup{|f(z)— f(y)|: |z —y| < &} is the modulus of continuity of a function;
when f is a differential form on C", w(f,t) is defined as the sum of the moduli of continuity
of its components (in the standard basis).

The solution in theorem 1.1 is obtained by a family of integral kernels, depending on
§ > 0 and constructed specifically for thin tubes (and hence is given by a linear solution
operator on each tube 7s). Immediate examples show that the gain of ¢ in the estimate
for v is the best possible. When u is a (0,1)-form (or a (p,1)-form), the estimates for
the derivatives of v in (1.1) follow from the sup-norm estimate by shrinking the tube and
applying the interior regularity for the J-operator (lemma 3.2). This is not the case in
bidegrees (p, q) for ¢ > 1. We refer to section 3 below for further details.

Another major result of the paper is theorem 5.1 in section 5 on solving the equation
dv = u for holomorphic forms in tubes 75 with precise estimates. Theorem 5.1 is obtained
by using the solutions of the d-equation, provided by theorem 3.1, in the proof of Serre’s
theorem to the effect that, on pseudoconvex domains, the de Rham cohomology groups
are given by holomorphic forms.

We now apply these results to the problem of approximating smooth diffeomorphisms
between totally real submanifolds in C™ by biholomorphic maps in tubes 7s and by holo-
morphic automorphism of C”. The technical tools developed here are very precise and
give optimal results without any loss of derivatives in these approximation problems.

Recall that the complez normal bundle vyy — M of a totally real submanifold M C
C", defined as the quotient bundle vy = TC"|p/ TCYM, can be realized as a complex
subbundle of TC"|ps such that TC™ | = TYM @ vy. Given a diffeomorphisms f: My —
My between totally real submanifolds My, M; C C™, we say that the complex normal
bundles m;: v; — M; are isomorphic over f if there exists a C-vector bundle map ¢: vy — v
satisfying w1 o ¢ = f o mg. '

1.2 Theorem. Let f: Mo — My be a diffeomorphism of class C* between compact totally
real submanifolds My, My C C", with or without boundary (n > 1, k > 2).. Assume that
the complex normal bundles to My and M, are isomorphic over f. Then there are numbers
S0 > 0 and @ > 0 such that for each § € (0,dg) there exists an injective holomorphic
map Fs: TsMy — C™ such that Fs(TsMo) D TasMy and the following estimates hold for
0<r<kaséd—0:

1 Fslato — Flleraaey = o677, I1Fs  ae — £ ler () = o(6577). (1.2)

The C"(M)-norm is defined as usual by using a finite open covering of M by coordinate
charts and a corresponding partition of unity; see sect. 3 for the details. An important
aspect of theorem 1.2 is the precise relationship between the rate of approximation on My
resp. M; and the radius § of the tube on which the approximating biholomorphic map Fj
is defined. The condition on the isomorphism of the complex normal bundles over f is a
necessary one since any biholomorphic map defined near My which is sufficiently close to f
in the C! (Mp)-norm induces such an isomorphism. If My and M; are contractible (such as
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arcs or totally real discs), or if they are of maximal real dimension n, theorem 1.2 applies
to any C*-diffeomorphism f: Mg — M.

When all data in theorem 1.2 are real-analytic, f extends to a biholomorphic map
F from a neighborhood of My onto a neighborhood of M; (see remark 1 after the proof
of theorem 1.2 in sect. 4). In such case we say that My and M, are biholomorphically
equivalent; such pairs of submanifolds have identical local analytic properties in C™. This
is not so if f is smooth but non real-analytic, for there exist smooth arcs in C™ which are
complete pluripolar as well as arcs which are not pluripolar [DF], yet any diffeomorphism
between smooth arcs can be approximated as in theorem 1.2.

We don’t know whether in general there exist biholomorphic maps Fs in a fized open
neighborhood of My and satisfying (1.2) as § — 0. However, in certain situations we
can approximate diffeomorphisms by global holomorphic automorphisms of C™. Before
stating the result we recall some relevant notions. A compact set K C C™ is polynomially
convez if for each z € C"\K there is a holomorphic polynomial P on C" such that
|P(2)| > sup{|P(z)|: z € K}. AutC" denotes the group of all holomorphic automorphisms
of C™.

Definition 1.

(a) A CF-isotopy (or a C*-flow) in C™ is a family of C*-diffeomorphisms f;: My — M,
(t € [0,1]) between C*-submanifolds M, C C™ such that fo is the identity on My, and
both fi(z) and 2 fi(z) are continuous with respect to (t,z) € [0,1] x Mo and of class
C*¥(My) in the second variable for each fixed t € [0,1].

(b) The isotopy in (a) is said to be totally real (resp. polynomially convez) if the subman-
ifold M; C C™ is totally real (resp. compact. polynomially convex) for each t € [0,1].

(c) The infinitessimal generator of fy as in (a) is the time-dependent vector field X; on
C" which is uniquely defined along M, by the equation 2 fi(z) = X¢(f:(2)) (z € Mo,
te[0,1]) \

(d) A holomorphic 1sotopy (or holomorphic flow) on a domain D C C" is a family of

' injective holomorphic maps Fy: D — C" such that Fy is the identity on D and such
that the maps Fy(z) and %Ft(z) are continuous with respect to (t,z) € [0,1] x D.
Its infinitesimal generator X;, defined as in (c), is a holomorphic vector field on the

domain Dy = Fy(D) for each t € [0,1].

‘1.3 Theorem. Let My C C™ be a compact C¥-submanifold of C* (n > 2, k > 2).
Assume that fi: My — My C C™ (¢t € [0,1]) is a C¥-isotopy such that the submanifold
M = fi(Mo) C C™ is totally real and polynomially convex for each t € [0,1]. Set f =
fi: Mo — M. Then there exists a sequence of holomorphic automorphisms F; € AutC"
(j =1,2,3,...) such that

Jim (1m0 = flleraae) =0, lim, WE by = £ lerany = 0. (1.3)

Combining theorem 1.3 with corollary 4.2 from [FR] we obtain:
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1.4 Corollary. Let f: My — M; be C*-diffecomorphism (k > 2) between compact, totally
real, polynomially convex submanifolds of C" of real dimensionm. If 1 <m < 2n/3, there
exists a sequence F; € AutC™ (57 = 1,2,3,...) satisfying (1.3).

Theorems 1.2 and 1.3 are proved in sect. 4 below. A weaker version of theorem 1.3
(with loss of derivatives) was obtained in [FL] by applying Hormander’s L*-method for
solving the O-equations in tubes. For a converse to theorem 1.3 see remark 2 on p. 135
in [FL]. When f is a real-analytic diffeomorphism as in theorem 1.3, the approximat-
ing sequence of automorphisms F; € AutC™ can be chosen such that it converges to a
biholomorphic map F in an open neighborhood of My in C™ satisfying F'|y, = f [FR]. -

We now consider the approximation problem for maps preserving one of the forms

w=dz Ndzg N+ Ndzy, (1.4)
n=2n" w= ZdZQj_l A dz;. (1.5)
j=1

A holomorphicmap F' between domains in C” satisfying F*w = w will be called a holomor-
phic w-map. (1.4) is the (standard) complez volume form on C™; in this case F*w = JF-w,
where JF' is the complex Jacobian determinant of F', and w-maps are called unimodular.
(1.5) is the standard holomorphic symplectic form, and holomorphic w-maps are called
symplectic holomorphic. We denote the corresponding automorphism group by

Aut,C" = {F € AwtC™: F*w = w}.

For convenience we state the approximation results for w-maps (theorems 1.5, 1.7 and
corollary 1.6) only for closed submanifolds; for an extension to manifolds with boundary
see the remark following theorem 1.7.

1.5 Theorem. Let w be any of the forms (1.4), (1.5). Let f:My — M; be a C*-
diffeomorphism between closed totally real submanifolds in C™ (k,n > 2). Assume that
there is a C*~'-map L: My — GL(n, C) satisfying

Lz|TzMo = dfz, Liw=w (Z € ]\/fo). _ (1.6)

z

Then for each sufficiently small § > 0 there is an injective holomorphic map Fy: Ts My — C"
such that Ffw = w and (1.2) holds as 6 — 0. If Mo, My and f are real-analytic and if
there exists a continuous L satisfying (1.6), then f extends to a biholomorphic map F on
a neighborhood of My satisfying F*w = w.

The notation Liw in (1.6) denotes the pull-back of the multi-covector w ¢,y by the C-linear

map L, (which we may interpret as a map 7,C™ — T(,)C"). Clearly (1.6) implies that

the complex normal bundles v; — M; are isomorphic over f. The condition in theorem

1.5 can be expressed as follows:

(*) There exists a C¥~'-map L: My — SL(n,C) (resp. L: Moy — SP(n,C)) such that
L,=df, on T,M; for each z € Mp.




Here SL(n,C) (resp. SP(n,C)) is the linear unimodular (resp. linear symplectic) group
on C™ (resp. on C?").

The only obvious necessary condition for the approximation of a C*-diffeomorphism
f: Moy — M, by holomorphic w-maps is that the complex normal bundles v; — M; are
isomorphic over f and f*(ifw) = t§w, where 1;: M; < C™ is the inclusion. Theorem
1.5 reduces this (analytic) approximation problem to the geometric problem of finding an
extension I of df satisfying (1.6). The regularity of L is not the key point; in fact it
would suffice to assume the existence of a continuous L satisfying (1.6), since an argument
similar to the one in the proof of theorem 1.5 for the real-analytic case then allows us
to approximate L by a C¥~'-map satisfying (1.6). We expect that such extension does
not always exist, although we do not have specific examples at this time. Here are some
positive results in this direction.

1.6 Corollary. Let w be one of the forms (1.4), (1.5), and let k,n > 2. Let f: My — M,
be a C*-diffeomorphism between closed totally real submanifolds such that the complex
normal bundles to My resp. My in C™ are isomorphic over f and f*w = ijw. Then the
conclusion of theorem 1.5 holds in each of the following cases:

(i) dim My = dim My = n,
(ii) w =dz; A -+ Ndz, and My is simply connected,

(iii) w =dz1 A -+ A dz, and vy admits a complex line subbundle.

In cases (ii) and (iii) we have f*w = ifw = 0 when m < n. Finally we present
approximation results for w-flows. We first introduce convenient terminology.

Definition 2. Let w be a differential form on C™ and let fi: My — My C C™ (¢t € [0,1])
be a C*-isotopy with the infinitesimal generator X, (definition 1).

(a) fi is an w-flow if the form fjw on My is independent of t € [0,1].

(b) An w-flow f; is closed (resp. ezact) if for each t € [0, 1] the pull-back to M; of the form
oy = X¢|w (the contraction of w by X;) is closed (resp. exact).

(c) Let U C C™ be an open set and w a holomorphic form on C". A holomorphic flow
FuU — C™ (t € (0,1]) satisfying Ffw = w for all t is called a holomorphic w-flow.

Remark. If dw = 0 (this holds for the forms (1.4), (1.5)) then a flow f;: Mo — M, is an
w-flow if and only if the pull-back of a; = X¢|w to M, is a closed form on M; for each
t € [0,1]. This can be seen from the following formula for the Lie derivative Lx,w ([AMR],
p. 370, Theorem 5.4.1. and p.429, Theorem 6.4.8. (iv)):

1
%(f;"w) = (Lx,w) = f{ (d(Xe)w) + X |dw) = £ (do),

Hence ffw is independent of ¢ if and only if d(ifc;) = 0 on M, for each ¢ € {0, 1].
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1.7 Theorem. Letw be any of the forms (1.4), (1.5). Assume that My C C™ is a closed
totally real submanifold and fy: Mg — M; C C™ (¢t € [0,1) is a totally real w-flow of class
CF for some k > 2. Then for each sufficiently small § > 0 there is a holomorphic w-flow
F2:TsMo — C™ (¢ € [0,1]) such that for 0 < r < k we have the following estimates as
§ > 0 (uniformly with respect to t € [0,1]):

1F? = feller (e = o(6*77),  IINED)™ = f7 lerqany = o(8" 7).

Ifin additionn > 2 and f; is an exact w-flow which is totally real and polynomially convex,
there is for each € > 0 a holomorphic w-flow F} € Aut,, C" such that for all ¢t € [0, 1]

1F — fillerarey < & I1FT = Fit lewan) < e

Remark. Theorems 1.5, 1.7 and corollary 1.6 extend to the following situation. Let My
be a compact domain in a totally real submanifold M) C C", not necessarily closed or
compact. In particular, My may be a totally real submanifold with boundary My and
M} a larger submanifold containing My. In the context of theorem 1.5 or corollary 1.6
assume that f: M} — M! is a C*-diffeomorphism between totally real submanifolds in C"
(k> 2) and L: M} — GL(n,C) is a C*~1-map satisfying (1.6) on M]. Then the conclusion
of theorem 1.5 holds for Mp: There exist holomorphic w-maps Fj: TsMy — C™ for all
sufficiently small § > 0 satisfying (1.2) as § — 0. Likewise, if the flow f; as in theorem
1.7 is defined on M, the conclusion of that theorem applies on the compact subdomain

Moy C M}, A

In our last result we consider the problem of approximating a diffeomorphism f: My —
M; by holomorphic w-automorphisms of C™. Assuming that My and M; are polynomially
convex we have two necessary conditions for such approximation:

- ffw =1jw, and , o
— there is a totally real, polynomially convex flow fi: Mo — My C C™ (¢ € [0,1]) with
fo = Idy, and f1 = f. '

The necessity of the second conditions follows from connectedness of the group Aut,C™;
see [FR]. When dim My is smaller than the degree of w, the first condition is trivial since
both sides are zero. We summarize some of the situations when such an approximation is
possible. Let 3 be a holomorphic form on C” satisfying df = w; when w is given by (1.4)

we may take § = 1 zyzl(—l)j_ldzl Ao d/z\j -+ A dzp, and when w is the form (1.5) we

!
may take 3 = Z;"Zl Z9j—1dz2;.

1.8 Theorem. Let n,k > 2. Let My C C" be a compact connected C*-submanifold
of dimension m and let fi: Mo — My (¢t € [0,1]) be a totally real, polynomially convex
Ck-flow. Assume either that w is the volume form (1.4), df8 = w, and at least one of the
following four conditions holds:




(i) m<n-—2;
(ii) m =n — 1 and H" ' (Mo; R) = 0;
(iii) m = n — 1, My is closed and orientable, and f]\/fo 8= f]\/fo fiB#0;
(iv) m = n, My is closed and satisfies H" 7' (My; R) = 0, and f;w is independent of t,

or that n = 2n' (n' > 2), w is the form (1.5), df = w, and at least one of the following
three conditions holds:

v) Mgy is an arc;
3

(vi) My is a circle and f]\/[o 6= fMo iB;
(vii) m = 2, My is closed and satisfies H'(Mo; R) = 0, and f}w is independent of t € [0,1].
Set f = f1: Mo — M,. Then there is a sequence F; € Aut,C" satisfying (1.3).

Remark. For real-analytic data the corresponding results were obtained in [F2] for the
symplectic case and in [F3] for the unimodular case. In that situation the approximating
sequence Fj € Aut,,C" can be chosen such that it converges to a holomorphic w-map F
in a neighborhood of Mp.

The paper is organized as follows. In sect. 2 we collect some preliminary material,
mostly extensions of certain well known results. In sect. 3 we construct a family of integral
kernels for solving the 8-equation in tubes and we prove the stated estimates; we conclude
the section by historical remarks concerning such kernels. In sect. 4 we apply theorem 3.1
to prove theorems 1.2 and 1.3. In sect. 5 we solve the equation dv = u in tubes, where
u is an exact holomorphic form and we find a holomorphic solution v satisfying good
estimates. In sections 6 and 7 we prove the results on approximating w-diffeomorphisms
by holomorphic w-maps and w-automorphisms. At the end of section 4 we also include a
correction to [FL].
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& 2. Geometric preliminaries.

We denote by X |v the contraction of a form v by a vector field X. We shall use the
following version of the Poincaré’s lemma ([AMR], p.437, Deformation Lemma 6.4.17.):

2.1 Lemma. Let M be a C*-manifold and w a closed C* p-form on I x M; I = [0,1],
p>0. Fort € I let is: M — I x M be the injection x — (t,z). Then the (p — 1)-form
v = 01 ij(%]w)dt on M satisfies dv = ifw — i{w. In particular, Iet F:I x M — N be a
C%?-map and u a closed C' p-form on N; p > 0. Setting fi = Foiwu: M — N and w = F*u

we get dv = ffu — fiu.




We shall apply this to the case when F' is a deformation retraction of a tubular
neighborhood 75 = TsM of a submanifold M C C™ onto M. This means that f; is the
identity on Ts, fi|ar is the identity for all ¢, and fo(75) = M. Set 7 = fo. With u a closed
C! p-form on 75 and v as above we get dv = v — 7*u in Ty.

In the situation that we shall consider we have the following local description of the
retraction F. Let M be a C*-submanifold in C*. For U a small open neighborhood in
M of a point zg € M there is a C*-diffeomorphism ¢: O — 71 (U), where O is open in
R™ x R?"™ ™, such that

(i) F7HU) =0n@R™ x {0}*""™) = 0" x {0}*"~™, \ |
(ii) for 2’ € O’, the set O = {y’ € R*™:(2',y) € O} is starshaped with respect to 0,
(iii) the map f; = F o1y is ¢-conjugate to (z',y’) — (2',ty’) for each t € I = [0, 1]. '

Let u = Zifl+|fl=1’ wr g(2, y')dm'I A dy'” in these coordinates. Then

w = Z' uLJ(:c',ty')d:v’I A cl(ty')J
[I|+{J|=p

and it is easy to check that

n 1
v= ZI (1) Z Z ST (/0 uI,J(m',ty’)HKldt) da'’ A dy'™

1+IK]=p =1 7= | K[+1

where € eq uals, if JK is a permutation of J, the signature of that permutation, and
J 1 J E g )
equals zero otherwise.

I is constructed by retracting to M along the fibers of a vector bundle supplementary
to the tangent bundle TM. The normal bundle to M in C™ is an obvious choice, but
is only of class C¥~' when M is a CF-submanifold. We shall show below that there are
C*-subbundles E of M x C™ that are arbitrarily close to the normal bundle. When k > 1,
it is easy to see that (z + E,)N7s is starshaped with respect to z for all z € M when § > 0
is small enough and E is sufficiently close to the normal bundle. The map G:E — C",
G(z,v) = z+v, maps the zero section 0g diffeomorphically onto M, and its derivative dG
is an isomorphism at each point of 0x; hence G is a C*-diffeomorphism of a neighborhood
Us C E of Og onto T for § > 0 small. We may assume that Us N E, is starshaped with
respect to (z,0) for each z € M. When f; is G-conjugate to the map (z,v) = (2,tv) in Us
for t € I, the map F' has the properties listed above.

The local coordinates (z',y') are constructed as follows. Let ¢: 0" — U C M be

a local C* parametrization, and s1,...,82,_m sections of B — M over U which form
2n—m

a C*-trivialization of Ely. We set d(a',y") = ¢(¢') + 355" y; sj(p(2')) for o' € O,
y' € R*™~ ™ and restrict it to O = ¢~ 1(7T5). Then the fiber O, is starshaped for all
z' € O' when ¢ > 0 is small enough. #

2.2 Lemma. (Approximation of subbundles) Let M be a C*-submanifold of C" and
E — M a C'-subbundle (real or complex) of M x C™ for some 0 <[ < k. Then there is'a
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C*_subbundle E' of M x C™ arbitrarily close to E in the C' topology. Moreover, if M is
totally real in C™ and the bundle E is complex, E' may be taken as the restriction to M
of a holomorphic subbundle of U x C™ for some open neighborhood U of M in C™.

Proof. A proof may be based on the following standard result. If L: M — Ling(C™,C")
is a C! map such that L, has constant rank r independent of z € M (abusing the language
we shall say that L has rank r), then

Ep={(z,v) e M x C™":v € L,(C")} . (2.1)

is a complex C'-subbundle of rank » of the trivial bundle M x C", and every subbundle
E of M x C"™ appears in this manner, for instance by setting L, to be the orthogonal
- projection of C" onto the fiber E, for z € M. The analogous result holds for real vector
bundles.

A more regular approximation to a subbundle E may then be obtained by approxi-
mating the corresponding map L defining E by a more regular map of rank r. The problem
is that the rank of a generic perturbation of L may increase. To overcome this we use the
following result:

Let C' be a positively oriented simple closed curve in C, and let L € Ling(C™,C")
be a linear map with no eigenvalues on C'. Then C™ = V. @ V_, where Vy resp. V_
are L-invariant subspaces of C" spanned by the generalized eigenvectors of L inside resp.

outside of C'. The map
P(L) = L/ (¢CI—L)""d¢ (2.2)
C

- 2mi
is the projection onto Vi with kernel V_ (see [GLR]). Note that P(L) depends holomor-
phically on L; thus, if L depends C* or holomorphically on a parameter, so does P(L).

We now take C' to be a curve which encircles 1 but not zero; for instance
C={CeC|c—1=1/2}. (2.3

Let P be the associated projection operator (2.2). If L is a projection then P(L) = L.
Moreover, for each L’ sufficiently near a projection L, each eigenvalue of L' is either near
0 or near 1 and hence P(L') is a projection with the same rank as L.

Thus, to smoothen F, let L, be the orthogonal projection onto E, for z € M; we ap-
proximate L by a C¥-map L': M — Ling(C", C") and let E’ be the bundle (2.1) associated
to P(L'). By (2.2) the difference equals

1
PIY~L=— [ (CI-LY'—(I-L)") d
2m Jo
and is C'-small when L' — L is.

In the real case we extend L: R" — R"™ to a complex linear map L: C" — C™ and
observe that P(L) is also real (i.e., it maps R"™ to itself) when C is the curve (2.3). Hence
the restriction of P(L) to R™ solves the problem.
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Let now M be a totally real submanifold of C* and E — M a C' rank r complex
subbundle of M x C™. For each z € M let L,:C* — E, be the orthogonal projection
onto E,. We may approximate the C'-map L: M — Ling(C™, C") as well as we like in the -
Cl-topology on M by the restriction to M of a holomorphic map L: U — Ling(C"™,C")
defined on an open neighborhood U € C™ of M. Shrinking U we may assume that L/ has
exactly r eigenvalues inside C' (2.3) for each z € U, so P(L/) is a rank r projection. The
map z — P(L’) is holomorphic in U and determines a holomorphic rank r vector bundle
E'" over U, with E'|ps close to M. #

Let d = 8 4 0 be the splitting of the exterior derivative on a complex manifold.

Definition 3. (0-flat functions) If M is a closed subset in a complex manifold X and
u is a C¥-function (k > 1) defined in a neighborhood of M in X, we say that u is 0-flat
(to order k) on M if 8%(0u)(z) = 0 for each z € M and each derivative 8% of total order
|a| < k — 1 with respect to the underlying real local coordinates on X.

We shall commonly use the phrase ‘u is a -flat C¥-function’ when it is clear from the
context which subset M C X is meant.

2.3 Lemma. (0-flat partitions of unity) Let M be a totally real C*-submanifold of
a complex manifold X; k > 1. For every open covering U of M in X there exists a
C* partition of unity on a neighborhood of M in X, subordinate to the covering U and
consisting of functions that are 0-flat to order k on M.

Proof.  We may assume that ¢ consists of coordinate neighborhoods. Let ¢% be a CF
partition of unity sub01 dinate to U]y = {UNM:U € U}. We may assume that the index
sets agree, so supp ¢, C U, for each v. By passing to local coordinates we may find a
O-flat CF extension ng,, of ¢ with supp qS,, C U,. Since p= > qﬁy =lonM, p#0in a
neighborhood V of M in X. It is immediate that ¢, = qb,,//) is a C* partition of unity on
V which is 9-flat (to order k) on M. &
As a consequence of lemma 2.3 we see that the usual results about d-flat extensions of

maps into CV are also valid for totally real submanifolds in arbitrary complex manifolds.

2.4 Lemma. (Asymptotic complexifications) Let M be a totally real C¥-submanifold
of C™ of real dimension m < n; k > 1. Then there exists a C*_submanifold M S M in
C™, of real dimension 2m, with the following property: M may be covered by C* Jocal
parametrizations Z:U — Z(U) C M, with U C C™ open subsets, such that Z7'(M) =
UNR™ and 7 is E/—ﬂat on U NR™. Moreover there is a C¥-retraction of a neighborhood
of M in C" onto M which is 0-flat on M. :

Proof. By a theorem of Whitney ([Wh2], Theorem 1, p. 654) there exists a C*-manifold
My and a Ck-diffeomorphism G°: My — M. The manifold My has a complexification j;f()
which is a complex manifold containing Mo as a maximal real submanifold. The map G°
has a O-flat extension G: My — C™ which is an injective immersion at M. (To obtain G
it suffices to patch local 9-flat extensions of Gy by a a—flat partition of unity provided by
lemma 2.3). Hence G maps a neighborhood of My in My diffeomorphically onto its image
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M C C* When Z°: U — M, (U open in C™) is a local holomorphic parametrization with
(29" Y(Mo) = UNR™, themap Z = Go 2% U — M is a local parametrization of the
type described in lemma 2.4. Note that TZM = TE M for each z € M.

Next we prove the existence of a retraction onto M which is O-flat on M. Let v — M

be the complex normal bundle of M in C™. By lemma 2.2 there is an open neighborhood
O of M in C™ and a holomorphic rank (n —m) subbundle N C O x C™ such that N|y

approximates v well. Shrinking O we may assume that N is transversal to M in O.
This means that the map ¢: N|z — C", ¢(2,v) = 2+ v, is a C*-diffeomorphism from
a neighborhood W of the zero section in N|r onto its image Op C O C C". We may

assume that W N N, is starshaped with respect to 0, € N, for each z € M. Now the
deformation retraction (z,v) — (z,tv) (¢ € [0, 1]) of W onto the zero section in N|M may
be transported by (;5 to a retraction F:[0,1] X Og — Og of OO onto the submanifold M N Op.

Set m = Fy: Og — Mn Ogp. Let U c C™ and let Z:U — M be a local C*- -parametrization
such that Z(U N R™) ¢ M and Z is d-flat on U N R™. Choose holomorphic sections
$1,...,8n—m of N which provide a trivialization of N near Z(U). Then

(2, w') = Z(") + Y w)s;(Z(2"))
j=1
is a C*-diffeomorphism of a neighborhood W of U x {0}"~™ in C™ onto Y Z(U)),
and it is 0-flat on (U NR™) x {0}"7™. In these coordinates the maps F; are given by
(#',w') = (2',tw’), hence Fy is O-flat on w1 (M). M

2.5 Lemma. (The rough multiplication) Let U be an open set in R, f € C¥(U) and
g € C*H(U), where k > 1. Let E be a closed subset of U such that f(z) = 0 for allz € E.
Then there exists a function h € C¥(U) such that

(i) |0%(h = fg)| = o(d%_w) for |a| < k, uniformly on compacts in U,
(ii) at points of E we have 0%h =} o 5., <§> 9Pf 9%=Pq for |a| < k, and
(iii) if U ¢ CN and if f and g as above are 3-flat on E C f71(0), then so is h.

The proof is similar to the better known ‘Glaeser-Kneser rough composition theorem’;
the main point is to verify that the collection of functions (aah)lalgk on FE, defined by
(ii), are a Whitney system, i.e., they satisfy the assumptions of the Whitney’s extension
theorem (see [Wh1] or [T]). We shall leave out the details of this verification. Let h be
a CF-function provided by Whitney’s theorem, having the partial derivatives given by (ii)
at-points of E. Then (i) follows easily by comparing the Taylor expansions of 9%h, o f
and 9P g about the nearest point in E. The case (iii) follows from (ii) which is seen as
follows. From (ii) we get at points of E and for |a| <k —1

9%“0h = 0%(9f-g) + Z <a> oPF 92=Fay.
0ipea P
If f and g are O-flat on E, this expression vanishes when |af <k — 1, so we get (iil). #

The following lemma, is needed in the proof of theorem 1.4 and its corollaries.
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2.6 Lemma. Let M be a totally real, m-dimensional C*-submanifold of C*, f: M — CP
a C*-map and I: M — Ling(C™, CP) a C¥~'-map such that for each z € M, |, agrees with
df, on T, M. Then there is a neighborhood U C C™ of M and a Ck-map F:U — CP which
is O-flat on M and satisfies F'(z) = f(z) and dF, =1, for all z € M.

Proof. Tt suffices to prove the result for functions (p = 1); the general case then follows
by applying it componentwise. So we shall assume p = 1.

We first consider the local case. Fix a point zg € M. Choose e1,...,ep—m € C" such
that these vectors, together with the tangent space T, M, span a totally real subspace
of T,,C™ of maximal dimension n. When x:U — M is a C*-parametrization of a small
neighborhood of zy in M, with x(0) = zo, and V is a sufficiently small neighborhood of 0
in R®™™ ™ the map ¢(z,y) = k(z) + Z] yje; (z € U, y € V) is a C*-diffeomorphism
onto an n-dimensional totally real submanifold in C™. Observe that for ¢ € U and (u,v) €
R™ x R™*™™ we have

n—m

Li(z) © dp(e,0y(1,v) = df g(a) 0 drig(u) + Z V5 Le(z) (7).
=1

Since l,(5)(e;) is only of class C k=1 in 2, we apply the rough multlphcatlon lemma to the

pans Yj, Loy (ej) for 1 < g <n—mto get a C* function hon U XV satlsfymg 5o ( ,0) =0,

ay h(2,0) = Loy (ej) for 1 <i<mand 1 <j <n-—m. With F°(z,y) = f(k(z )) + h(z,y)

it follows that dFY, oy = le(z) © dd(z0). When F [0 resp. qb are C*-extensions of FO resp. ¢
(z,0) (z) (,0)-

which are 0-flat on R™, we see that qS 1sal ’”—dlffeommghlsm of a neighborhood of 0 € C™
onto a neighborhood of 70 € C". Thus, near z, F = F%0 ¢~ is a C* O-flat extension of
f. When z € M we have dF, = [, on a maximal totally real subspace, so these two lincar
maps are equal on T, C™. This establishes the local case.

For the global case let U = {U;} be an open covering of M and F' (1) a 9-flat extension
of f in U;, with sz(i) =1, for z € U; N M. By lemma 2.3 there is a partition of unity {¢;}
by 0-flat C*-functions on a neighborhood of M subordinate to . We set F' = . ¢;F (),
where the term with index 7 is zero outside U;. When 2z € M, dF, = Zngz(z)sz(z) +
Yo, f(2)d(¢i),. Since ). ¢p; =1, > . dp; =0 and we get dF, =1.. #

&3. Solving the 0-equation in tubes around totally real manifolds.

In this section we construct a family of integral kernel, depending on a parameter
§ > 0, for solving the d-equation in tubes TsM around compact totally real submanifolds
M c C™ of class C!. The main result is theorem 3.1 which is identical with theorem 1.1
except that it contains additional Hélder estimates (3.3) and (3.4).

We denote by dps the Euclidean distance to M. If M is of class CF, it is well known
that p = d3; is a C* strictly plurisubharmonic function in a neighborhood of M when
k > 1, and when k = 1 there is a strictly plurisubharmonic C*-function p such that
p=di + o(d3;). As in sect. 1 let 75 denote the tubular neighborhood of M of radius 4,
i.e., the set of points whose distance to M is less than d.
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For a domain D in R™ (or in C"), a bounded function u in D belongs to the Holder
class A°(D) for some 0 < s < 1if |uls, p: = sup{|u(z-+h)—u(2)||h|7°:h # 0, z,2+h € D} <
oo; in this case the Holder s-norm of u is defined by ||u||a+(p)y = ||u||ze (D) + |u|s,p. When
s =1 we set |u|y p:=sup{|u(z + h) + u(z — h) — 2u(z)||h| "+ h #0, 2,z —h,z+h € D}
AY(D) is called the Zygmund class on D. When D is a tubular neighborhood 75M of a
submanifold M, we write |uls s for |u|s, ;. When s =k +a, k€ Z; and 0 < a <1, we .
take [|ullas(py = lluller(py + D ula,p. We sometimes write Ck+e(D) for A¥T*(D) when
0<a<l

We extend function space norms to vector fields or differential forms on open sets in R"
‘as the sum of the norms of the components. When M is a compact C¥-manifold, we define
the norms on functions or forms on M as follows: Let ®;:U; — V; C M, 3 = 1,--+,p,
be a covering of M by local parametrizations, and {¢1,---,¢,} a ck paltition of unity
subordinate to the covering {Vi,---,V,} of M. Then we set |[ul| = >, |®}(#;u)l,
where || - || is a Hélder or some other function space norm. Different c1101ces of {@ } and
{¢;} give rise to equivalent norms on the same space.

Let z = (21,...,2n) be the complex coordinates and (z1,y1,. .., %n,¥n) (2 = z; +1y;)
- the underlying real coordinates on C* = R2?". For 1 < j < 2n, 9; denotes the partial
derivative with respect to the j-th variable. If o = (ay,...,a2,) is a multiindex of length
2n then 8% denotes the corresponding partial derivative of order |a| = a1 + -+ + ag, with
respect to the real variables on C* = R2",

If f is a function or a form near M, we shall say that f vanishes to order | on M if
1£(2)] = o(dp(2)!) and 8°f = 0 on M When la| < 1. Recall that any C*-function f on
M can be extended to a C*-function on C™ such that f vanishes to order kK — 1 on M
(Lemma 4.3 in [H6W]).

We call a continuous function w:Ry - R4 a modulus of continuity if it is non-
decreasing, sub-additive, and w(0) = 0. If f: A — C, A C R", is uniformly continuous, we
define the modulus of continuity of f by w(f,t) = sup{|f(z) — f(y)|:|c —y| < t}, ¢t > 0.
w(f,").is clearly a modulus of continuity as defined above. We say that a modulus of
continuity w is a modulus of continuity for a function f if w(f,t) <w(t) for all t > 0. If f
is a form on A, w(f,t) is defined as the sum of the moduli of continuity of its components,

We denote by le,yq(U) the space of (p,q)-forms of class C' on an open set U C C".

3.1 Theorem. Let M C C" be a closed totally real C*-submanifold and let 0 < ¢ < 1.
Denote by Ts the tube of radius § > 0 around M. Then there exist constants ég > 0
and C > 0 such that the following holds for 0 < § < do, I > 1, p > 0, ¢ > 1: For each

u € Cl 7:5 with Ou = 0 there is a v € C Ts) satisfying Ov = u in Tes and
(p,g—1)

10%]|eo(7e) < C (5[|aau||me) + 51_""I|U||me)> S (3.1)

In particular we have ||v|| e (7.5) < Céllul|zeo(73). If ¢ =1 and the equation Ov = u has a
solution vg € CH' (7:;) there is a solution v € C(l;'(l))('ﬁs) of Qv = u satisfying for 1 < j <n

10;0%0]| oo (72p) < C (w(8;0%00,8) + 87 |ullreo(rsy)»  laf =1 (3.2)
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If we assume in addition that 0%u € A%(Ts) for some |a| <1 and0 < s < 1, we may choose
v as above satisfying also the following estimates (with a constant Cs depending only on
s and c):

1050%0] 007y < Cis (8°110%ulInscrsy + 81l oo (75 ) (3.3)

10;0%]|ae(725) < Cs (||3Q'U||As(73) + 5_|a]"SIIUHLm(m) (3.4)

Remarks. 1. If u is of class C, there is in general no C* solution v to dv = u.

2. In (3.3) one may be tempted to delete §° and use instead the L>(7s) norm of 0%u in the
first term on the right hand side. This however is false even when n = 1 and is a well known
phenomenon. Since the Bochner-Martinelli operator used in the proof is a homogeneous
convolution operator, it gains one derivative in norms such as Holder, Zygmund, Sobolev,
but not in the sup-norm or the C'-norm.

3. Theorem 3.1 has the following extension to non-closed totally real C!-submanifolds M’
in C™, Let K be a compact subset of M’ and let K’ C M’ be a compact neighborhood of
K in M'. For § > 0 we set

={z € C™:dk(z) < ¢}, Us ={z € C":dgi (z) < 6}

Choose ¢ € (0,1). Given a form u € C! (Uj) with Ou = 0, we can solve v = u in U,s,
and the estimates in theorem 3.1 remain valid when the tube 74 is replaced by U5 on the
left hand side, and 7y is replaced by Uy on the right hand side of each estimate. The proof
can be obtained by simple modifications of the kernel construction below. This applies
to compact totally real submanifolds with boundary in C" since any such is a compact
domain in a larger totally real submanifold. , r

In this section C' denotes some constant whose value may change every time it occurs,
but which does not depend on quantities such as u, ¢ etc.

For (0, 1)-forms u (and hence for (p,1)-forms, 0 < p < n) a large part of the result
comes from the interior elliptic regularity of the Jd-operator and has nothing to do with
the particular solution v:

3.2 Lemma. Let 0 < c < 1. There exists a constant C > 0 satisfying the following. If
K C C" is a compact subset, Ts = {z:d(z,I{) < 8}, and v a continuous function in Ts
such that Jv € C(o 1)(Ts), then v € C'(7s) and

10 ][ oo (725) < C(SN10%B0|poo (73 + 81 NI0ll oo (73)); el L.
If Ov = Of for some f € C(Ts), then v is also C!*' and satisfies
10;0%v]| oo (72 < C(w(8;0°F,8) + 67 H[ollzeo(ms)); Nl = 1.
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Proof. We apply the Bochner-Martinelli formula
o2) = [ 9©BCA) - [ Bo(0) ABLC2),
0Ts Ts

valid for g € C*(Ts), where B((,z) is the Bochner-Martinelli kernel

B¢,2) = en Y (1) ] n e

J=1

which is a closed integrable (n,n — 1)-form. Let z € T¢s and let x: R — [0,1] be a cut-

off function with x(¢) = 1 when [t| < 3 and x(t) = 0 when [¢t| > 1. For w € C" set
xs(w) = /\((12|w|)5) It follows that the partial derivatives satisfy |0%ys| < Cod~1el for all

«. Applying the Bochner-Martinelli formula to ¢(¢) = xs({ — z)v({) we obtain

o(z) = - [r B (xa(¢ — 2)0(Q)) A B(G,2)
=~ [ Bo(¢) A xs(C — #)B(C,2) — /T v(¢) Bexs(C — 2) A B(C, 2)

Ts

These are convolution operators and we may differentiate on either integrand. This gives
for |a| <1:

0av(z) = 0%I1(z) + 0%I1(%) :
0°30(¢) A xs(¢ ~ B(C2) — [ w(0) 02 BrslC — ) A B 2)

Ts

2 7

Setting ¢ = 15¢, ¢ = 1¢’ and using [B((, z)| < C|¢ —z|* 72" we can estimate the integrals
for o] <1 as follows: \

9°L(2)| < C / 10°B0(Q)|- |¢ — 2|*2"aV
C—2]<e's
< ClpBolsmiry [ Il TmaY
[¢—=z|<c’é

2nll

c'§
Ty r ] a
gcnaaav”mm)/ e < 0310%Tll s,
0

on() < | 0(O)]- 5210V < ooy 1.
15 <|¢—sl<e'
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This proves the first estimate in lemma 3.2. The estimate for |0“I;| also holds for deriva-
tives of order |a| =1+ 1.

We now assume that dv = 9f for some f € C1(7s); then v — f is holomorphic and
hence v is also C't1. We wish to estimate the derivatives of order [+ 1 of I;(z). For |a| =1
we have

0;0°I1(z) = —0; 9%0v(¢) A xs(¢ — 2)B((, 2).

We now apply (3.5) to f, replacing df by dv(= Of) in the first term on the right hand
side and differentiating under the integral, to get

0;0°F(2) = ~05 | 9°Bul¢) A xo(¢ ~2)B(G, )

A 0;0° f(¢) A Bxs(¢ — 2) A B((, 2).
[
Observe that the first term on the right hand side equals 0;0%I;(z) from the previous
display. For a fixed z € C™ we also apply (3.5) to the constant function 9;0% f(z):

0,0°f(2) == | 050" 1(z)Bxal¢ — 2) A B¢, 2).

Combining the above three formulas we get

0,001, (+) = / (8,0 £(C) — ;07 £(2)) Bxs(C — 2) A B(C, 2)

Ts
and hence [0;0%I1(z)| < Cw(0;0°f, ). o

From lemma 3.2 it follows that the estimates (3.1) and (3.2) in theorem 3.1 will be
proved for (p,1)-forms u if we can find a solution v which satisfies a sup-norm estimate
1] | pos (7os) < C8lul|z50(73)- Such a solution is obtained by a linear operator given by an
integral kernel that we now construct.

Construction of the kernel for (0,1)-forms. We shall use the Koppelman’s formula which
we now recall. For v,w € C" let < v,w >= ) &  viw;. Let V. C C*® and @' C § cC C"
be open subsets such that Q has piecewise C'-boundary and QxQ C V. Let P = P((,2) =
(Py,...,Pp):V — C" be a C'-map satisfying

(i) P(¢,z) = ¢ — z in a neighborhood of the diagonal of Q' x ', and
(ii) the function ®:V — C, ®((,2) =< P((,2),( — = >, satisfies ®((,z) # 0 when z € Q'
and ¢ € Q\{z}.

Any such map P is called a Leray map for the pair Q' C © and @ is the corresponding
support function. We shall use the notation

d¢ =d¢i N --- NdCp,
ECPU] :ECPl /\---E/CE]‘---/\ECPM

——

gcp[i,j] :gcpl /\"'ECPZ'"'EC/E]""/\ECPTL-
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Define the integral kernels

n

K(C,2) = cn®(C,2) ™™ Y (—1)' 7 P; 8¢ P[j] A dC,
j=1

L(C,2) = ea®((,2)™" > (—1)"M P8, P ABcPli, j] A dC.
1£]

Note that the kernel K((,z) is locally integrable when z € €. It is also important to
observe that, if a((,#) is a C! function, the kernels generated by P resp. aP are identical
outside the zero set @ = 0. For a suitable choice of the constant ¢, € R we then have the
following Koppelman-Leray representation formula for d-closed (0, 1)-forms u € Céyl(ﬁ):

u(z) = /ag L(¢,2) Au(¢) + 0, /Q K(¢,2z) Au(Q), ze Q. (3.6)

This follows by applying the Stokes formula to the first integral on the right hand side to
transfer the integration to an e-sphere around z and using 9,K = —0¢L; in the limit as
¢ — 0 we obtain (3.6) by a usual residue calculation. For ¢ near z, the kernel L coincides
with the B-M kernel for (0,1)-forms; in fact, for the Leray map P((,z) = ¢ —z, (3.6) is
the classical Bochner-Martinelli-Koppelman formula.

We have a lot of freedom in the choice of the map P which determines K and L. If
we choose it such that P((,-) is holomorphic in §’ when ¢ € 0, then L((, z) = 0 for such
¢ and z (since each term in I contains a derivative EZPZ-), and hence the function

o) = [ K2 Au(0) (3.7

solves the equation dv = u in {2’

We shall construct the integral kernel of our solution operator on 75 by combining the
Bochner-Martinelli kernel Z'——z near the diagonal ( = z of the smaller tube 7.5 with the
Henkin kernel when ( is near the boundary of 7s and z € T¢s. This will give a family of
- linear solution operators of the form (3.7) depending on ¢ for small é > 0.

Let p be the strongly plurisubharmonic function mentioned in the beginning of this
section. Since {p < (1 —¢€)6%} C Ts C {p < (1 + €)6?} for sufficiently small § > 0, we may
replace the tube Ts with the sublevel sets {p < 6%} which we still denote by Ts.

The construction of the kernel will proceed through several lemmas. First we recall
from [HL] the following well known result about the existence of the Henkin support
function ® and the corresponding Leray map P on a fixed strongly plurisubharmonic
domain which in our case is a tube 75, of some fixed (small) radius do > 0.

3.3 Lemma. There exist constants C, R > 0 such that, for éo > 0 sufficiently small, there
are functions ®((, z) and A((, 2) in C*(Ts, X Ts,), with ® holomorphic in z, and there is a
C'-function B((, ), defined for (,z € Ts, and | — z| < R, satisfying the following:
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(i) |B(C, )] > C and ReA(C,#) 2 p(¢) — p(s) + CIC — 2 when |¢ — 2| < R,

(iii) |®(¢, 2)| > C when |( — 2| > £, and

(iv) with ® as above, there exists a.map P = P((,z) = (P1,--+, P,) such that for all j,
P; € CY(Tso % Tso), Pj is holomorphic in z, and ®((,z) =< P({,2),{ — z >.

Proof.  This follows from the proof of Theorems 2.4.3 and 2.5.5. in [HL]. A((,2) is an
approximate Levi polynomial in z € C™ of the form

n

22 Ll = 2= 3 a0 = 5)(G = ),

7,k=1

where aji are C! functions which approximate the partial derivatives 0?p/0¢;0¢k suffi-
ciently well on 75, (Lemma 2.4.2 in [HL]). In fact, when p is of class C* or better, we might
simply take a;x = 0% p/9¢;0(k.

The only small change from [HL] is that, in our situation, the maps ® and P may be
defined globally for ¢ € Ts,, and not only for { near the boundary of 7s,, provided that
do > 0 is sufficiently small. This follows from the thinness of the tube 75, and can be
seen as follows. Observe that for ( € M the linear terms in A((,-) vanish and we have
RA((,2z) < 0 for all points z € M\{(} sufficiently close to ¢.” Hence for ég > 0 small
we can choose € > 0 (depending on dp) such that RA((,2) < 0 whenever z,{ € Ts, and
€ < |¢ — z| < 2e. The proof of Theorem 2.4.3 in [HL] (which proceeds by cutting of log A
on B((,2¢) N Ts, and solving a G-equation on Tg,) then gives a globally defined & (and
hence P). L]

Let ®, P, A and B be as in lemma 3.3, constructed on a fixed tube 75,. P is not quite
a Leray map since it does not equal ¢ — z near the diagonal, and we shall now modify it
suitably on tubes Ts for 0 < § < dg. Let 0 < ¢ < ¢’ < 1. Choose a cut-off function As such
that A\s = 1 in Tws and Ay = 0 near 975. We may assume that its (real) gradient satisfies
|VAs]| < €61 for some C' > 0 independent of 6. We will show that for a suitably chosen
function ¢((,z) on T x T, the conditions in Koppelman’s formula (3.6) are satisfied for

the pair of domains Q = 75 and Q' = T,s if we define the Leray map P by
P(¢,2) = (1= X(0))$(C,2)P(C, 2) + Ao (O = 2,

with the corresponding support function given by
=< P (—z>=(1-Xs)p®+ \s|¢ — 2|°.

We need to find ¢ such that 5({, z) # 0 when z € Tos and ¢ € T5\{z}. When ¢ € T cs, we
have 5((, z) = |¢ — z|?, so the condition is satisfied for any choice of ¢. Hence it suffices
to consider the points ¢ where p({) > p(z). Let ¢: R — [0,1] be a cut-off function such
that ¥(t) = 1 for [t| < 1R and () = 0 for [t| > 2R. Set

QZS(C;Z) = f‘/"('C - Z|)B(C,Z)_1 + (1 - ¢(‘C - Z|))¢(C>Z)>
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where B is as in lemma 3.3. Then ¢® = A + (1 —)|®|* (since B~1® = A), and we have
the following estimates for the real part (¢, z) := Re¢®((, z) when p(¢) > p(z):

— when |[( — 2| < 3R, § =ReA > C|¢ - 2|,

~ when 1R <|(—2| <R, 0 =yRed+ (1 —9)|®> 2 pC|¢ — 2> + (1 - P)C? > 0,

— when | —2| >R, 0=19> > C*.

This verifies the required properties, and hence (3.6) is valid when K ((, z) and L((, z) are
the kernels generated by the Leray map P. For ¢ near 975 we have P = @P; since ¢ # 0
there, the kernel L is identical to the one generated by the holomorphic Leray map P,
and hence the first term in (3.6) is zero. This gives us the solution formula (3.7) for the
equation Ov = u in T.s. This completes the construction of the kernel for (0, 1)-forms.

Proof of the sup-norm estimates. It suffices to show that the sup-norm estimate holds in
our situation when n > 3. In case n < 3 we simply identify C* with C™ x {0} C C? and
extend f independently of the additional variables; the solution to the extended problem
- will satisfy the estimates, and its restriction to C™ will be a solution to the original 0-
problem.

3.4 Lemma. The solution v( fT K((,z) ANu(¢) defined above satisfies the estimate
][ peo (724) < COl|ul|poo(75) When n>3.

Proof. Let P° = ¢P. PY is independent of § and P = (1 = A\)P° 4+ \({ — 2). This gives

OP; = ON({ — 2j — PP) + (1 — N)OP) + \dC,
=: ON({; —zj — P}) +n; (3.8)

The terms in K((, z) are of the form Cf“”]g]gﬁ[]] A dC. Since ON A O\ = 0, this is a sum

of terms of the following two types:
Q" P; il A d¢  and 3~ "P; (Ck — 21 — PR)ON Anlj, k] AdC.
We shall estimate the integrals of these over 75 when z € T.s. We have already shown that

Re&’(é‘,z) > C|¢ — z|% For | — 2| < %R we have

| ZP;‘)(C,z)(Cj —2j) =< P%((,2),( — 2 >= A((, 2)

_22 3@ = z;) + O(I¢ — 2]?).

This implies P}(¢,z) = 2 CJ) + O(|¢ — 2|) = O(6 + | — z|). By choice of A this gives

(1-— /\(C,z))PJQ(C, z) = O(|¢ — #|) and therefore P; (¢, 2) = O(¢ — 2|). Since |n;| < C, we
get

@~ Pimlj) Ad = O(I¢ — 2" %),
“mBi(Cr — 2k — POYONAnlg, k] AdC = O(|¢ — 2" 72" + 67 ¢ - 2P,

KR
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which shows that the kernel K((,z) has a singularity of the same type as the Bochner-
Martinelli kernel on the diagonal.

Locally we may straighten M, i.e., for each p € M there is a neighborhood V, of p
and a Cl-diffeomorphism ¥:U — V,, where U is a neighborhood of the origin in R*",
such that ¥ is nearly volume and distance preserving, and ¥(U N R™) = V, N M, where
m is the dimension of M. We denote the points in R*" by (u',u") € R™ x R?™~™, By
compactness we may assume that 75 is covered by a finite number (independent of §) of
sets

K = i({(u',u"); |u'] < a,|u"] < 63)

for some constant a. We keep the notation ¢ and z for the points in the new coordinates
also. We then have the estimate ({ = (u’,u")):

|| K6 nu©)] < Cliullimery | (I = 21720 4 671¢ = 22=2)av (¢)
K; |[u'|<a,|u"]| <8
< Cllullzocrn) [ (112 + 67 ¢P2m)av (©).
fu'|<a,]u’|<é

For m < t < 2n we estimate these integrals as follows:

\/55 2n—1 a 2n—m, . m—1 - '

1 r dr ) r dr

— < C / -|-/ - <ot 3.9
/Iu’ISa,lu”|$6 <l < 0 rt s rt ) &)

Hence

[ K2 Au(O] < Cllalamersy (64 578) = 2C ullumirsy
<

j

when 2n — 2 > m. Since m < n, this holds for n > 2. »

Construction of the kernel for forms of higher degree. We consider the form

n

K((,2) = en®((,2) " Y (~1)/ 7 PP A d(( — 2)

j=1

on Ts X Tas, where O is now taken with respect to both ¢ and z. We decompose

K(C,z):z Z Kp (¢, 2),

p<ng<n—1
where I, ; has bidegree (p, ¢) with respect to z and (n—p, n—q¢—1) with respect to {. When

q >0, Kp,(¢,2) =0 when z € Tus and  is near 0Ts. (Recall that IK((,2) = K%((, 2)
depends on § via the cutoff function \s.) It follows that the (p,¢ — 1)-form

o(z) = /T Kpyer(C,2) Au(C) = (—1)P* [r u(() A Fpg1(62)
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solves Ov = u in Tug for each O-closed (p,q)-form u in 75, ¢ > 0. The precise meaning of
the integral is as follows. Write

Kpg-1(¢,2) = Z Z kI,J((,Z)dzI/‘\dEJ,

[=p|J]=¢-1

where kr 7((,2) is an (n — p,n — ¢)-form in ¢ € Ts depending smoothly on z € 7ers. Then

v(z) =Y D (=1t (/nu(g)mm((,zo dzt A dz7.

[I|=p |J]=¢—1

-This completes the construction of the kernel. The reader may find some additional refer-
ences and historical remarks about the solution formula at the end of this section.

Before proceeding we make the following elementary

Geometric observations.  Let M be a compact m-dimensional C!-submanifold of RY.
There exists a constant B > 0 such that, if 29, z; € T5(M) for sufficiently small §, then zo
and z; may be joined by a path in T5(M) of length no more than B|z; — z|. This is due
to the fact that the tubes may be locally straightened, in a uniform way, to tubes around
R™ x {0} in RY.

From this we get the following: If u € CH(Ts M), |[u|lre(ms) < A, Juller(r) < At~ for
t<1land 0 < s <1, then |ulss < max(2,B)At™*. We see this as follows: If |h| < ¢, we
can integrate Du from z to z + h to get |u(z + h) — w(2)||h|7* < BAt™'|h|'™° < BAt™*.
If |h| > t, the triangle inequality gives |u(z + h) — u(z)||h|7° < 24¢7°.

We also have a corresponding result for compact manifolds M: if |jullcrary < A
and [[ul|er+1(a) < At for ¢ > 0, then ||u||¢r+sary < CAt™*, where C is a constant
independent of u.

Proof of the estimates for forms of higher degree. The proof of the sup-norm estimate,
which we gave for (0, 1)-forms, carries over almost verbatim to the general case. However,
lemma 3.2 almost certainly fails, at least for the solutions constructed here, and we must
proceed differently to estimate the derivatives.

With ¢g = ¢’ — ¢ we introduce smooth cut-off functions xs € C§°(B(0,cod)) with
ys(w) = 1 when |w| < co6/2 and [0%xs| < Cod~12l. Then we decompose v as v’ + ", with
V(@) = [ 6l = DK aa (62) A ()
L)
0(2) = [ (1= (€ = 2Dy ga(6,2) A,
é .

and estimate each summand separately.

Recall that when z € Tos and | — 2| < ¢od, K((,2) equals the Bochner-Martinelli
kernel. Thus v’(2) is obtained for z € Tes by applying a convolution operator to u; hence

9%'(z) = [r xs(C — 2)Kp ¢—1(C, 2) A 0%u(().

21




Thus the components of 0%v’(z) are linear combinations of terms h(z) = (k * g)(z), where
k(w) = xs(w)wjjw]| 2" and g is a component of 8%u. Since |k(w)| < |w|'™2" and k is
supported by B(0, cpd), an obvious estimate gives |h(z)| < Cdl|g]|oo, sO

1% [ oo (7o) < CONIO%ul| oo (75
To estimate the finer norms of A we introduce the auxiliary kernels
k(w) = xs(w)w; (" + [wl*)™ > 0.

This is a smooth function of (t,z) satisfying |k:(2)] < |k(2)| and lim 0 ki(2) = k().
Since each k¢ has compact support it follows that [ 9;DPk,(w)dV (w) = 0 for every (¢, z)-
derivative D?. Thus, setting h¢(2) = (k¢ * g)(2), we see that \

DF O hy(2 / 9; DPky(w)(g(z —w) — g(2)) dV (w).

Observing that |87 ys(w)] < Co|w]~!"! on suppys, a simple calculation gives
g th ¥ g
|DP8jki(w)] < Cglao 7PN + o) 72",

Assume that 9%u € A*(7s) for some s € (0,1). We have g € A°(75), and for t > 0 we can
estimate in polar coordinates:

mmxaigcwgﬁ/ (4 [w])*2"dV (w)

|w|<cod
605
<Clglus [ r*7tr = Cublgle
0 .
For the first order derivatives with respect to (¢,z) we get in the same way:

DO, hu(2)] < Clglas / w71+ )2V ()

|w|<cod
< Clyls,s /006(75 +r)* 72 dr < Cit* gl s (3.10)
By the dominated convergence theoremowe have ht( ) = h(z) and
8jhi(z) = Ry (2) / 0k(w)(g(z — w) — g(2)) AV (w)
as t — 0. We also have
Ostulz) = hep(2) < [ 1 Z205he(@ldr < Clolust'

hence the convergence of the derivatives is uniform and therefore h;)(2) = 9;h(z). Thus
10;h(2)] < Csé°lgls,s, and we conclude that

10;0%0" || oo (1) < Cs6°(0%uls,s.

We have also shown that
;0% (z) = /T 9; (xs(¢ — 2)Kp,g—1((,2)) A (8%u(() — (0%u)z).
s
In order to estimate the A®-norm of 0;0%’ we need the following standard
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Lemma. Let ¢ € C(7Ts) have an extension b € CHR' x T5) satisfying |D$(t, z)| < AtsH
for some 0 < s < 1. Then ¢ € A*(Ts) and |¢|ss < (B +2/s)A

This is just a slight modification of Proposition 2 in the Appendix 1 of [HL]. Applying
this to ¢ = 9;h and ¢(t,2) = 9;h(2), (3.10) gives |0jhls.cs < Co(B +2/s)|gls,s. Thus

|0;0%0 5,06 < Cs|0%uls,s.

In order to study v we set I/ _,(¢,2) = (1—xs(¢— 2))Kp,q—1(C, z) on Ts x Tes. This
kernel has continuous z-derivatives of all orders, and it equals zero when |{ — 2| < ¢od/2.
It follows that v” is a smooth form with

a%v"( / oK (¢, 2) Au(C).

. We recall the formula (3.8) and point out that |[O\s] = O(671), IQZ(C,z)| > C|¢ — z|? on
Ts x Tes, and the quantities |D,¢((, 2)|, |n;| and |PJQ| are all bounded by C|¢ — z|, while
their derivatives with respect to z are bounded independently of § (since As is independent
of z).

An induction on |a| shows that the components of 03 K/

P 1(¢, 2z) are linear combina-

tions of terms of the type -

g—n—kag(l - Xd(C - Z))(LQ(C, Z) e CLt(C,Z)
with 8 < a, k <|a— ] and t > 2k + 1 — |a — B, and of terms of the type

oAs(€)
n—Fk

I ) z
g (g2)-- (4,
with k < |af and ¢t > 2k + 2 — |a|, where the a;j((, z) have continuous z-derivatives of all
orders that have upper bounds independent of §, and |a;((,z)| < C|¢ — z| when ¢ > 0 and
-1 <j <t Since |{ —z| > /2 when K], # 0, it follows easily that

7

5K (G )| < Cab ¢ — 2f2nmlal
Thus |
0" (4)] < Cad ™ il [ 1€ = 22=2n=lel qy ()
\B(z,c06/2)
< O8] oo (73

for z € Tos, o € Z7. The last estimate follows for |a] > 2, || = 2 and |a| = 1, respectively,
from the following three integral estimates:

/ IC— 2|72V (¢) = Cd 7Y, >0, (3.11)
¢—z|>6
/ IC— 272V (¢) < Cler), z€Ts, (3.12)
Ts\B(z,c196)
|€ — 2724V () < Cs6®%; 0 < s<2n—m. (3.13)
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(3.11) follows immediately by a change of variable. (3.12) is proved exactly like (3.9); in
the sum in the middle of (3.9) the first integral has lower limit ¢;6 instead of 0. Finally
(3.13) follows by setting t = 2n — s in (3.9). '

Using the geometric observation following the construction of the kernel we have
100" e (7e6) < Cao8* 1] poo72,)-

This completes the proof of the Holder estimates in theorem 3.1 for the case 0 < s < 1.
The proof for s = 1 goes along the same lines, with certain small modifications; since that
case will not be used in the paper, we omit the details. . [

Remarks on constructions of kernels. The first integral kernel operators with holomor-
phic kernels, solving the d-equation on strongly pseudoconvex domains in C", have been
constructed by Henkin and, independently, R. de Arellano (see the references in [HL]).
Henkin’s approach is to patch the Bochner-Martinelli and Leray kernels on the boundary
Q. Our patching of the two kernels (by first multiplying by ¢) is the same as in Qvrelid
[@1, @2]). The whole construction is similar to the one by Harvey and Wells [HaW].

It seems that the first really precise L and C*-estimates for the d-equation in thin
tubes around a totally real submanifold M C C", proved by means of integral solution
operators, are due to Harvey and Wells [HaW] in 1972. A little later Range and Siu
[RS] (1974) used a more refined kernel construction to prove estimates for the highest
order derivatives of their solution on M and deduced C*-approximation of C*-functions
on a C*-submanifold M C C™ by holomorphic functions, a case left open in [HaW]. In
fact this approximation problem has been one of the original motivations in proving such
estimates. Later on this approximation has been accomplished more efliciently, and in
greater generality, by Baouendi and Treves [BT1, BT2] by using the convolution with the
complex Gaussian kernel. This latter method does not seem to give the approximation of
diffeomorphisms obtained in this paper because we must work in tubular neighborhoods
and not solely on the submanifold.

As said earlier our construction of the kernel in this paper is close to [HaW], and our
main contribution is the way we estimate the solutions. We find it quite striking that
this simple and seemingly crude construction of the kernel gives rise to results that are
essentially optimal for the applications to mappings presented in this paper. For the benefit
of the reader we have given a fairly self contained presentation based on the text [HL].
Another closely related paper is [BB] where Bruna and Burgués approximate O-closed jets
on a totally real set X in Holder norms by functions holomorphic in a neighborhood of X.
It seems likely that their method, making use of weighted integral kernels of Anderson and
Berndtsson type [AB], may also be used to prove our results. However, we believe that our
approach is simpler and more elementary. Our results, suitably reformulated, may also be
proved for neighborhoods of totally real sets.

&4. Proof of theorems 1.2 and 1.3.

Proof of theorem 1.2. We consider first the case dim My = dim M; = n. Let d(z) denote
the Euclidean distance of z to Mo, and let 75 (resp. 7§) denote the open tube of radius §
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around My (resp. around M;). The C k —di_ffeomorphism f: Mo — My can be extended to a
Ck-map on C7, still denoted f, which is O-flat to order k at Mo:

0°(BF)(2)| = o(d()F ) 0< ol <E-1L

In particular, the derivative D f(z) is a non-degenerate C-linear map at each point z € Mo
(the complexification of df,:T; Mo — Ty, M), and hence f is a C* diffeomorphism in
some neighborhood of My in C". The (0,1)-form u = 9f of class C*~! satisfies Ou = 0

and »
110%u|| oo (73) = o(6*711eD); 0<|a|<k-1

as § — 0. Applying theorem 3.1 (specifically the estimates (3.1), withl=%—12> 0 and a
fixed constant 0 < ¢ < 1), we get for each sufficiently small § > 0 a solution vs to dvs = u
in 75 satisfying the following estimates:

18%0s1l =720y < € (S118%wll o073y + 8l oo 7))
<C (50(5k—1—]a|) 4+ 51—|a|0(5k—1))

= o(§k~lely; la] <k-—1.

Moreover, since v = u has a solution of class C*! = C*, namely f, we can choose v
which in addition satisfies the estimates (3.2) for the derivatives of top order k:

10%s|| poo (Top) < C (wi(F36) + 6 FHH0f || peo (725)) = 0(1); o] = k.

Here wi(f;d) denotes the modulus of continuity of the k-th order derivatives of f. Set
Fs = f —vs in Ts. Then 0F5; = 0 and the estimates on vs imply

15— fller(resy = osller ey = o(8*™) - 0 <k

which gives the first estimate in (1.2). It remains to prove that Fs is biholomorphic and
satisfies the inverse estimates in (1.2) for all sufficiently small § > 0. To simplify the
notation we replace § by ¢§/2, so that Fs is holomorphic in the tube T35 and it satisfies

k—

15 = fller(7zs) = 0(6°7");  0<r<k (4.1)
as § — 0. Since f is a diffeomorphism near My, so is any sufficiently close C! approximation
of f; hence (4.1) with r = 1 implies that for ¢ > 0 sufficiently small, say 0 < ¢ < do < 1,
the map Fjs is diffeomorphic (and hence biholomorphic) in Ta5. Decreasing do if necessary,
there is a number ¢ > 0 such that

() = F() 2 20z — 2l 24 € T,

Since f(Mp) = M, the above implies that f(7s) contains the tube 75 ;.
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Fix an € > 0. By (4.1), applied with r = 0, we get a constant &, = di(€), with
0 < 8y < o, such that ||[Fs — fl|re (725) < aes® for 0 < § < &;. Fix a point z € T5 and let
w = f(z). For each 2’ with |2/ — 2| = ¥ we have

|[Fs(2') — w| = |(Fs(2') = f(2')) + (f(2') = £(2))]
> |f(2') = £(2)] = |Es(") = ()]

> 2ae8* — aes® = aes”.

This means that the image by Fs of the sphere S = {2': |2’ — 2| = ¢§*} is a hypersurface
containing the ball B(w;aed®) = {w':jw’ — w| < aes*} in the bounded component of
its complement. By degree theory the Fs-image of the ball B(z;ed*) contains the ball
B(w; aed®). Hence there is a point ¢ € B(z;€d¥) such that F5(¢) = w = f(z), and we have
|Fy Y (w) — f7H(w)| = |¢ — 2| < e6*. Since this applies to any point w € 75,4, we conclude
that F5(72s) D T),s and

|F = f e ry,,) S e85 0<8 < dife). (4.2)

Since € > 0 was arbitrary, this gives the inverse estimate in (1.2) for r = 0.

We proceed to estimate the derivatives of the inverse maps. Denote by ||A|| the
spectral norm of a linear map A € GL(R,2n). Note that Df~*(w) = Df(z)™! where
w = f(z). Fix a point w € T, ; and let z = f~!(w), zs = F; '(w) (these are points in
T2s). By (4.2) we have |z — z5| < ek, Writing A = Df(2), B = DF;s(zs), we get

|DF5 (w) = Df (w)]] = []A™! = B7|

=[|A7(B - AB7|
<[IA7H- 14 = Bl [IB7H.

Since f is a diffeomorphism and Fj is Cl-close to f, the eigenvalues of A and B are
uniformly bounded away from zero, and this gives a uniform estimate on [[A” 1]] and
||B7!]| (independent of §). The middle term is

|A = Bl = ||Df(2) — DFs(zs)l| < [|IDf(2) — Df(2s)ll + [|Df(25) — DFs(z5)ll

The second term on the right hand side is of size o(§¥ 1) according to (4.1). As § — 0, we
have z5 — z, and hence the first term on the right hand side goes to zero (by continuity of
DF). Hence sup{||DF; ' (w)—Df 1 (w)||:w € T,s} goes to zero as § — 0. This completes
the proof when k& = 1. If k > 1, we can further estimate ||Df(z) — Df(z5)|| < Clz — 25| <
C'ed*, where C is an upper bound for the second derivatives of f. This gives

sup{|[DF; ™ (w) — D~ (w)[}:w € Thas} = o(6*)

as required by (1.2) for derivatives or order r = 1. To get the estimates (1.2) for the
higher derivatives of F 5_1 — f~1 we may apply the same method to the tangent map, i.e.,
the induced map on tangent bundles over the tubes which equals the derivative of the

26




given map on each tangent space. We leave out the details. This proves theorem 1.2 when
dim Mgy = n.

Suppose now that m = dim My < n. We are assuming that there is an isomorphism
¢: vg — vy of the complex normal bundles vy — My resp. v1 — My over f; by approxima-
tion we may assume that ¢ is of class C k=1 TForeach z € My we have T,C" = TZC Mo®vo, .
Let [, be the C-linear map on C™ which is uniquely defined by taking [, = df, on TE My
and [, = ¢, on vg . Clearly I, € GL(n,C) for each z € M. Applying lemma 2.6 we obtain
a CF-extension ]?of f which is O-flat on My. Now the proof may proceed exactly as before.
This proves theorem 1.2. #

Remarks. 1.1f fo: Mg — My is a real-analytic diffeomorphism and if the complex normal
bundles to My resp. M, are isomorphic over f then f estends to a biholomorphic map
F from neighborhood of My onto a neighborhood of M;. We see this as follows. Let
¢: 19 — v1 be the continuous isomorphism (over f) of the complex normal bundles to
My resp. M. There exist complexifications JE C C™ of M; (i = 0,1) such that f
extends to a biholomorphic map j? Mo — M, and such ‘that the complex normal bundles
vi — M; extend to holomorphic vector bundles v; — M;. We define a continuous map
b My — GL(n,C) by ¢(z) = df, ® ¢,. Since My C My is totally real, ¢ may be
approximated by a holomorphic map 12; : Mo — GL(n,C). We now define (z: 7o — M; x C"
by ‘gz(v) = ( 1 (2), b, (v)). Clearly ¢ is a holomorphic vector bundle isomorphism between
Vo and a holomorphic sub-bundle v, C ]f\;fl x C™ which is an approximation of 7. In
particular, ¢ is a biholomorphic map between neighborhoods V; of the zero sections of
7;. By the tubular neighborhood theorem these neighborhoods map biholomorphically
onto neighborhoods of My resp. M; under the projection maps. This gives the desired
biholomorphic extension of f.

2. If instead of theorem 3.1 we use Hérmander’s L?-estimates when solving Ovg = u(= gf)
in 75, the resulting holomorphic maps Fs = f — vs can be shown to satisfy the weaker
estimate ||Fs|ao — fller(ago) = 0(6%7771) for 0 < r <1, where [ is the smallest integer
larger than 1dim M. This approach had been used in [FL].

Proof of theorem 1.8. The proof can be obtained by repeating the proof of theorem 1.1 in
[FL] (or its more technical version, theorem 2.1 in [FL]), except that one applies theorem
3.1 above whenever solving a 0-equation. This gives the improved estimates in (1.3) with
no loss of derivatives. We leave out the details. [ )

A correction to [FL]. We take this opportunity to correct an error in the proof of Lemma
4.1 in [FL]. The equation numbers below refer to that paper. The lemma is correct as
stated, but the proof of the estimate (4.5) is not correct. Using the notation of that proof,
we have the higher variational equations

9 DPgu(e) = DX(u(x) 0 D' u(z) + H (1,)

for p < k, where D?f denotes the p-th order derivative of a map f:) C R"™ — R", so
Drf ¢ LP(R™®,R"). H%(t,2) is a sum of terms involving derivatives of the vector field Xy
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and derivatives of order less than p of the flow ¢;, and H} = 0. We use the same notation
for Y and its flow 5.

Choose unit vectors vy,---,vp, € R™ and set y(t) = [DPpy(x) — DPos(z)|(v1, -+, vp).
It will be sufficient to show that ||y(¢)|| = o(e¥~P), uniformly for 0 <t <+tp, z € K(¢) and
unit vectors vy, -+, vp. y(t) satisfies the differential equation

y'(t) = DY (i) y(t) + (DXe(de(x)) — DY (Yi(x)) 0 DPde(z)(v1, -+, vp)
+ (H,]{’(t> 7“) - H?’ﬁ(tm))(vlﬁ U 7”17)'

This is a linear system y’' = A(¢) oy + b(t), y € R™. Suppose the matrix norms satisfy
|A®)]] < A and ||b(¢)]] < b for ¢t € [0,%0). The function u(t) = |ly(¢)| is differentiable
outside the zeroes of u, with u/(t) = y'(t)-y(&)/lly®l < Iy (®)]], so w'(t) < Au(t) +b
outside the zeroes of u. Since ¢o = 9§ = Id, we have y(0) = 0. We shall first show that
u(t) < %(e’” — 1) for t € [0,%0]. If u(t) = 0, there is nothing to prove. If not, let ¢; be the
largest zero of w on [0,¢]. Thus u/(s) < Au(s) 4 b for s € (t1,¢]. Setting v(s) = u(s)e=4
we get v'(s) < be™ 4 for s € (t1,t]. Integration from #; to ¢ gives v(s) < %(e‘Atl — e~ 4t),
Thus u(t) < &(eA70) —1) < L (eAt — 1),

In our situation, the matrix norm of A(t) = DY(v{(x)) is bounded independently
of € >0, z € K(¢) and t, by (4.4). It is therefore sufficient to prove that b = o(e"~7),
uniformly in z, ¢+ and unit vectors vy, +,v,. It is shown in [FL] that the matrix norm
IDX(¢e(2)) — DYE(W5 (@) poe (o) = o(e¥™1). Since the flow ¢y(z) is of class C, it
follows that the matrix norm || DP¢¢(z)|| is uniformly bounded for z € K(e) and t € [0, to].
Applying (4.4) and (4.5) inductively as in [FL] we obtain |[H% — H).||zeo(5c(e)) = 0(eF7P),
uniformly in ¢, which proves the claim. @

&5. Solving the equation dv = u for holomorphic forms in tubes.

Let d denote the exterior derivative. In this section we solve the equation dv = u
with sup-norm estimates for holomorphic forms in tubes 75 = TsM around totally real
submanifolds M C C™. We denote by A® the Holder spaces as in sect. 3 above. We first
state our main result for closed submanifolds; for an extension to compact submanifolds
with boundary see remark 3 following theorem 5.1.

5.1 Theorem. Let 1: M « C™ denote the inclusion of a closed, m-dimensional, totally
real submanifold of class C* in C™. Let a positive constant ¢ < 1 be given. Then there exist
positive constants C, & and Cs for all s € (0,1) such that, if u is a d-closed holomorphic
p-form in the tube Ts = TsM for some 0 < § < §p and 1 < p < n, then:

(a) If p > m, the equation dv = u has a holomorphic solution v in Ts satisfying
Nvllzee (725) < Cllul|poo(73)- (5.1)

(b) If p < m and the form 1*u is exact on M, then for any solution of dvy = 1*u of class
A*(M) (0 < s < 1) there is a holomorphic solution v of dv = u in Ts satisfying

1|z (725) < Cs (8l1w)|peo(73) + lvollneo (ary + 8°{vollas(ary) - (5.2)

28




(c) If p < m and i*u is exact on M, there is a holomorphic solution of dv = u with

ollpee(72s) < Cllullzeo(7s)- (5.3)

Remarks. 1. If Q is a Stein manifold, the Rham cohomology groups H?(€; C) can be
calculated by holomorphic forms in the following sense: Each closed form is cohomologous
to a closed holomorphic p-form, and if a holomorphic form u is exact (i.e., u = dvg for
some, not necessarily holomorphic, (p — 1)-form wvg), then also v = dv for a holomorphic

(p — 1)-form v on . (See [H6), Theorem 2.7.10.)

2. On a C?-manifold M, C'-forms and the d-operator d: C;_l (M) — Cg(]\/f) are intrinsically
defined. By duality, the notion dv = u (weakly) is well defined on M. The condition in
theorem 5.1 that :*u be exact on M need only hold in the weak sense.

3. Theorem 5.1 has an extension to non-closed totally real C1-submanifolds M’ in C™. Let
K be a compact subset of M’ and let ' C M’ be a compact neighborhood of K in M.
(For instance, X = M may be a compact totally real submanifold with boundary in C™.)
For § > 0 we set

Us =4z € C":dg(z) < 6}, Ui ={z€ C":dgi(z) < d}.

Choose ¢ € (0,1). Assume that u is a d-closed holomorphic p-form in Ug, with i*u exact on
UiNM' (where i: M' — C™ is the inclusion map). Then there is a holomorphic solution of
dv = u in U such that the estimates (5.1), (5.2) and (5.3) are valid when 7 is replaced
by Ues and T is replaced by Uj. [

Proof of theorem 5.1.  We give the details in the case when M is closed (compact and
without boundary); for the non-closed case see remark 4 following the proof.

Since M is a strong deformation retraction of the tube 75, the equation dv = u has a
“differentiable solution on 7 under the assumptions above. The strategy is to first find a
good differentiable solution v and then successively get rid of its (p— ¢ —1, ¢)-components
for ¢ > 0. The second part, lemma 5.2 below, follows the proof of Serre’s theorem (Theorem
2.7.10 in [H&]) which amounts to solving a d-equation at each step. We use the solution
provided by theorem 3.1; it is here that we need the sharp estimates (3.3) and (3.4) for
the Holder norms.

5.2 Lemma. Let 0 < ¢ < ¢ < 1. Let u be a closed holomorphic p-form on 7Ts for
0 < § < & as in theorem 5.1. Suppose that there exists a differentiable (p — 1)-form v, on
Teys satisfying dvy = u and

||7)1||L°°(TC15) < 4y, ||7)1]|A5(Tc15) < As677, (5'4)

where As depends on § and w. Then there exists a holomorphic (p — 1)-form v in Tgs
satisfying dv = u and ||v||geo(7,5) < Cods for 0 < 6 < 8o, where Cy is an absolute
. constant.
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Proof of lemma 5.2. Let v = quqo v(g) Where vy is of bidegree (p — 1 — q,9). By
comparing the terms of bidegree (p — 1 — go,go + 1) in the equation dv; = vy + Ov; = u
and taking into account that u is holomorphic, we see that gv(qo) =0. If go > 0, we get
by theorem 3.1 a form w on T solving Jw = V(go) and satisfying the following estimates
for some fixed ¢ < co < 1 and for all 1 < 7 < 2n:

[|0jw|| Lo (T,,5) < Ch <||v(qo)||L°°(7215) + 55””(qo)||As(Tcla)> <201 4s,

1870l s (7epey < Ct (ool lne(Teps) + 5ol () < 20145577,

Thus the form vy = v; — w solves dvy = dv; = wu, it only has components of bidegree
(p—q—1,q) for g < g, and it satisfies

||U2HL°°(TCQ<5) < CIAtS) ||U2“A”(Tc26) < C'As 670

Repeated use of this argument gives a holomorphic solution of the equation dv = u satis-
fying [|v][peo(724) < CoAs. W ‘

To prove theorem 5.1 it thus suffices to construct a good differentiable solution satis-
fying lemma 5.2, with As as small as possible. Let F' = {F;}:[0,1] x 75, — Ts, be a C? de-
formation retraction of a tube 75, onto M, with Fy the identity map and © = Fp: 75, — M
a retraction onto M. Let iy: M — [0,1] X M be the map @ — (¢,2). By lemma 2.1 the form
0= 01 i;‘(%JF*u)dt solves d = u — w*u in Tj,. In the special local coordinates provided
by lemma 2.4, if u = ZIII+IJI=P ug,ydz! Ady”, the components of ¥ are linear combinations

of terms y; fol t|J|_1uI,J(:v,ty)dt for y € J. Since the variables y; are transverse to M, we
have |y;| = O(6) on 75 and hence |[B||peo(75) < C6l|ul|peo(7;), with C independent of 4.
Replacing § by ¢;d and changing C' in each step below if necessary (but keeping it inde-
pendent of §), it follows from Cauchy’s inequalities that |[Dul|e(7, ;) < C07HullLeo(73)
and thus ‘

1D5] oo (72,5) < Cllullzoo(rys  Wllac(r,y < €8 lullpeo(7s).-

In part (a) of theorem 5.1 we have p > m, and hence 7*u = 7*(1*u) = 0 by degree rea-
sons; so the form vy = ¥ satisfies dv; = u and the estimate (5.4) with As = Cé||u||peo(7;).-
Lemma 5.2 now completes the proof in this case.

To prove case (b) we set v1 = ¥ + 7 vg, where vy € A*(M) solves dvg = i*u. We get

vl Les (7, ) < C (8[lullzoo 73y + lvollzes(aay) 5
vallas (72,5 < C (6 7 Mullzeo(7s) + llvollacany) -

Lemma 5.2 then provides a holomorphic solution of dv = u satisfying the estimates (5.2).

Finally, to prove part (c¢) in theorem 5.1, we shall construct a good solution of dvy = 1*u
on M belonging to A*(M) and apply (b). In order to circumvent problems caused by low
differentiability of M we use the following result of Whitney [Wh2]: If M is a compact
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C* manifold, k > 1, possibly with boundary, the underlying topological manifold may be
. given a structure of a C*° manifold, denoted My, such that the set-theoretical identity map
i0: My — M is a Ck-diffeomorphism.

Let i9: Mo — M be as above. We choose a smooth Riemann metric on My. We refer
to Wells [We] for what follows. Let d* denote the Hilbert space adjoint of the exterior
- derivative d with respect to the corresponding inner product on forms. The Laplace oper-
ator A\ = d*d + dd* has a corresponding Green’s operator G: Lgp)(]\/fo) — pr)(]\/fo)) with
the property that § = d*G(«) is the solution of d = a with minimal L*-norm (orthogo-
nal to the null-space of A), provided that the equation df = « is (weakly) solvable. For
further details see section 4.5 in [We].

The Green’s operator is a classical pseudodifferential operator of order —2, so it induces
bounded operators L= — A? and A® — A*+? for s > 0. (See [S], section VI, 5.3.) Now ifu
is a C1-form on My, and vo = (i5")*(d*Gigu) is a C*-form on M with dvy = i*u, satisfying

[lvollasary < Calliullzeo(ary < Csllullzeo(75)-

"Substituting this into (5.2) gives (5.3). &

“Remarks. 1. In general the constant C' = Cs in the estimate (5.3) cannot be chosen so

that lims_0 Cs = 0. To see this, let 1*u # 0 and choose a form ¢ € C(1 M) with

fM uAd#£ 0. If vs solves dvs = v in Tes and satisfies lims_o ||vs||zeo(75) = 0, we get

m—p)(

/u/\gb: clvg/\¢zi/ vs ANdp — 0
M M

M

as ¢ — 0, a contradiction.

2. If M is only of class C!, the operator d is not well defined on M. Instead, we call a
p-form « on M exact if there exists an integrable (p — 1)-form § on M such that for each
smooth (m — p)-form ¢ on a neighborhood of M we have [,, BA*(dp) = (—1)? [}, a Ai*¢.
* Then it is not hard to verify that d(i303) = it (weakly) on My, and also d(7*f) = 7*a on
Ts,- Using this, the proof carries over with only minor changes to the case when M is of
class C1T¢€ for some € > 0, when dvg = 1*u is interpreted as above.

3. If M is of class C2%€ for some € > 0, a more refined argument gives a holomorphic solution
of dv = u that also satisfies ||v]|¢1(7.,) < Clog(1/6)|}ul|re(75) whenever i*u is exact. This
reflects the fact that one expects to ‘gain almost a derivative’ in the interior estimates
for the d-equation. We cannot establish such estimates with a constant independent of
§. In fact, when M = {z € C™:|z;| = 1, 1 < j < n}, this would lead to the estimate
[18llcr(ary < constllal|pes (ary for a solution of df = a, a contradiction.

4. Small changes are needed to prove theorem 5.1 when M = K is a compact subset of
a larger totally real C?-submanifold M’ C C™ (see remark 3 following the statement of
theorem 5.1). We follow the same proof as above, using the appropriate version of O-results
given by remark 3 following theorem 3.1. During the proof we shrink K’ D K and é > 0
several times. In the proof of (5.2), we observe that the L?-minimal solution of dvg = ¢*u in
ULNM' also satisfies d*vg = 0 when p > 1, and we may apply the interior elliptic estimates
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to obtain Holder estimates for vg in a neighborhood of K. There are also arguments to
get the necessary control of ||vg||z2, for instance the Hodge decomposition in a manifold
with boundary.

& 6. Proof of theorem 1.5.

In this section we prove theorem 1.5. We shall adapt a method of J. Moser [M] to the
holomorphic setting.

Let w be either the holomorphic volume form dz; A --- A dz, or the holomorphic
symplectic form 2?121 dzgj—1 Ndzgj, n = 2n'. Write M = My and let f: M = My — M,
be a CF-diffeomorphism as in theorem 1.5 (k > 2), satisfying the condition (1.6) for some
C*lmap L: M — GL(n,C). Let i: M < C" denote the inclusion. We assume in the
proofs that M is compact and without boundary. As usual we denote by 75 = TsM the
tube of radius § around M. ‘ ‘

_ Bylemma 2.6 there is a neighborhood U C C™ of M and a C k -diffeomorphism ]? U—
f(U) C C™ extending f such that f is 0-flat on M and satisfies (f*w), = w, at all points
z € M. The proof of theorem 1.2 then gives for each small § > 0 a holomorphic map
F§:Ts — C" of the form |

F{ = ]?+ Rs, ||Rsllci¢crzan = o(6F7); 0<j5<Ek. (6.1)

To prove theorem 1.5 we must construct biholomorphic maps Fj as above which in addition
satisfy Fjw = w. We need the following two lemmas.

6.1 Lemma. (Existence of a good O-flat extension.) If f is any O-flat C*-extension of
f satisfying (f*w), = w, for all z € M, there exists another J-flat Ck-extension f of'f
satisfying |f*w — w| = o(di;!) near M and df, = df, for all z € M.

6.2 Lemma. (Approximation of a good d-flat extension.) Assume that )? is any O-flat
C*-extension of f satisfying |f*w —w| = o(dﬁ,[_l). Then for all sufficiently small § > 0 there
exist biholomorphic maps Fs: Ts — C" with Ffw = w and ||Fs — fll¢i(r;m) = 0o(6*77) for
0<5<k. , ‘

We postpone the proof of lemmas 6.1 and 6.2 for a moment.

Proof of theorem 1.5 in the smooth case. Let f:M = Mo — M be a Ck—diffegmorphism
as in theorem 1.5. By lemma 2.6 there is a J-flat extension f of f satisfying SJfw=wat
points of M. By lemma 6.1 we can modify this extension, still denoting it f, such that
|ffw —w| = o(dgd_l). Finally we apply lemma 6.2 to get biholomorphic maps Fs in tubes
Ts around M satisfying Fifw = w and the estimates (1.2). This proves theorem 1.5 in
the smooth case, granted that lemmas 6.1 and 6.2 hold. We postpone the proof in the
real-analytic case to the end of this section. &

Proof of Lemma 6.2. Let f be as in lemma 6.2 and let F{:Ts — C™ (for small § > 0)
be holomorphic maps of the form (6.1) obtained as in the proof of theorem 1.2. From the

estimates on Rs in (6.1) and the assumption |Frw—w| = o(d5 1) it follows that

||(Fé)*w—w|[cj(76) :o(ék_j_l), 0<y<k-1.
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Set w® = (F})*w; this is a holomorphic p-form on 75 which is close to w. Choose constants
0 < a < ¢ < 1. Using Moser’s method [M] we shall construct a holomorphic map Gs: Tos —
Ts which is very close to the identity map and satisfies Ggu)‘s = w on Tgs. The holomorphic

"map Fs = Ff o Gs: Tes — C™ is then close to Fy (and hence to f), and it satisfies Ffw =
GE(w®) = w.

We first outline the Moser’s method, postponing the estimates for a moment. Set
wl = (F4)*w and w? = (1 — t)w + twf for t € [0,1]. Then dw? =0, and w?¢ is close to w for
each ¢t and §. Our goal is to construct a C1-family of holomorphic maps Gy = Gs¢: Tas — Ts
satisfying Go = Id and Gfw! = w for all ¢ € [0,1]; the time-one map Gs = Gs1 will then
solve the problem.

To simplify the notation we suppress d for the moment, writing w? = w; and Gst =
G4. Suppose that such a flow Gy exists. Denote by Z; its infinitesimal generator; this
is a holomorphic time-dependent vector field on the image of Gy, satisfying %Gt(z) =
Z(G(2)) for each t € [0,1] and each z in the domain of Gy. Differentiating the equation
G¥ws = w on t and applying the time-dependent Lie derivative theorem ([AMR], Theorem
5.4.5., p. 372), we have

d d
0= %( fw) = Gy (thwt + %wt) =G (d(Ztht) 4wy — w). (6.2)
We have also used the Cartan’s formula for the Lie derivative Lz wy, as well as dw; = 0.
This shows that Gfw; = w holds for all ¢ € [0,1] if and only if the generator Z; satisfies
the equation d(Z;|w¢) +wy —w =0 for all ¢ € {0, 1].
At this point we observe that w is exact holomorphic on C”, w = df; in fact when

w is the volume form (1.4) we may take = Z?zl(—l)ﬂ"ldz[j], and when w is the

symplectic form (1.5) we may take § = Z?lzl z3j—1dz25. Hence the difference wy —w =
Frdp —dp =d (Fé* 06— ,8) is exact holomorphic on 7s. By theorem 5.1 we can solve the
equation dv = w; —w to get a small holomorphic (p — 1)-form v = vs in Tes. Let Z; be the
unique holomorphic vector field on 75 solving the (algebraic !) equation Z;|w; +v = 0.
Integrating Z; we get a flow G satisfying Giw; = w on its domain of definition.

For this approach to work we must choose vs on 7 to have as small sup-norm as
possible; this will imply that |Z;| is small, and hence its flow G¢(z) will not escape the tube
Tes (on which Z; is defined) before time ¢ = 1, provided that the initial point Go(z) = =
belongs to the smaller tube 7T,5. (In particular, the solution vs = (F5)* — 8 may not work

since Fj is not close to the identity map.)

In order to apply theorem 5.1 efficiently we must first show that dvg = t*(w; — w)
has a solution on M with small norm. Consider the map h:[0,1] x M — C", h(t,z) =
F(z) + tRs(2), and set w = h*w. Also let 4;: M — [0,1] x M denote the injection 7,(z) =
(t,2) (z € M, ¢t € [0,1]). It follows from lemma 2.1 that vo = fol i7(Z|w)dt solves

dvg = 7w — tyw. We have 1jw = t*w; and ijw = 1* f*w = 1"w, so dvg = i*(w1 —w). It

follows from the formula above that vo = 2?:1 r? vj, where ¢, .- 7% are the components
of Rs and vy, -, v, are (p— 1)-forms on M with ||vj||¢ck—1(ar) bounded independently of 4.

This gives ||vol|c:(ary = o(6*71) for 0 <1 <k — 1. Tt follows that |lvollas(ar) = o(6%¢) for
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a given s € (0,1). Since |jwy —w||fe(7;) = o(6%71), it follows from theorem 5.1 that for all
sufficiently small § > 0 we have a holomorphic solution of dvs = w1 — w in T, satisfying
lvs |l oo (72s) = 0(6F). |

Let Z? be the holomorphic vector field in Tos satisfying Z? |w! = vs. The above
estimate on vg implies HZfHLoo(TCJ) = 0(8*), uniformly in ¢ € [0, 1]. The standard formula
for the rate of escape of the flow shows that we can choose dg > 0 sufficiently small such
that for all § € (0,d) and all initial points z € Ty, the flow Gs¢(2) of Z{ remains in T
for all t € [0,1]. At ¢t =1 we get a map Gs = Gs5,1:Tas — Tes satisfying G}wf = w and
|Gs(2) — 2| = o(6%) for 2 € Tas. -

Set Fs = Gj o F}. Since the maps Fj have uniformly bounded C'-norms on 75, we
see that ||Fs — Fy§||zeo(T.s) = 0(6%). Replacing a by a smaller constant and applying the
Cauchy inequalities we also get

1Fs — fllei(as) < I1Fs — Fillei(ras) + 1Fs = Flleicrsy = 0o(6*77),  j <k

By construction we have Fyw = w, so Fj solves the problem. A

Remark.  This method applies on any domain D CC C™ on which we can solve the
0-equations with estimates (e.g., on pseudoconvex domains); it shows that for any holo-
morphic map F': D — C™ for which |F*w — w| is sufficiently uniformly small on D there
exists a holomorphic map F: D' — C" on a slightly smaller domain D’ CC D such that
F*w = w and F is uniformly close to F' on D'. We obtain F' in the form F' = F' oG, where
G: D' — D is a holomorphic map close to the identity, chosen such that G*(F"*w) = w.
The precise amount of shrinking of the domain depends on ||[F™*w — w||ze(p) and on the
constants in the solutions of the 0-equations; we do not know if there is a solution to this
problem on all of D.

We now turn to the proof of lemma 6.1. We shall need the following:

6.3 Lemma. Let u be a d-closed p-form of class C*=! in a neighborhood of M, with
p > 1, such that the (p,0)-component u' of u is 0-flat on M, and u" = u—u'is (k—1)-flat on
M. Assume i*u = 0, where 1: M — C™ is the inclusion. Then there exists a (p— 1, 0)-form

v in a neighborhood of M such that v = Zﬁil (jvj, where each (j is a 9-flat C*-function
vanishing on M, each v; is a 8-flat C¥~'-form, and |u — dv| = o(d; ). Fu =0 on M, we

may take v; =0 on M for all j.

Remark. Using the rough multiplication (lemma 2.5) we see that there is a 0-flat (p, 0)-
form v of class C* that also satisfies |dv — u| = o(di; ). However, the version stated

above is often technically more convenient since we may wish to postpone the use of rough
multiplication.

Proof of Lemma 6.3. In the case m = n we may take v = 0 which can be seen as follows.
We have v/ = EI I=p ¥ rdz!, where the coefficients u; are C*-functions that are O-flat on

M; hence 1*u = 0 means that uy = 0 on M for all I (since the coefficients of u” vanish on
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M). Tt follows from the Cauchy-Riemann equations that each ur is flat on M, so we way
choose v = 0.

When m < n, we use the asymptotically holomorphic extension M of M (lemma 2.4)
and the d-flat retraction F to M. Recall that a neighborhood of M may be covered by
Ck-charts G;:U; — Vi, Gi(z) = (zéi)(z),wéi)(z)) € Cm x Cr™ 1 < <r,satisfying

~ Gy is O-flat on M, Gy(M NTU;) = Vin (R™ x {0}), Gs(M nU;) = V0 (C™ x {0});

— the retraction F is given in these local coordinates by (¢, (z/,w")) — (2, tw’).

. Let 7: M < C" be the inclusion. Arguing as in the case m = n and making use of the
O-flat local parametrizations of M, we see that 1*u is flat on M, and so is 7*u = 7*i*u,
where & = Fy. When F:[0,1] x W — W is the retraction to M, the form

1
0
U= (= | F*u)dt 6.3
[ izgiEm (6.)

solves dv = u — *u on a neighborhood of M according to lemma 2.1. Expressing u in the
G-coordinates (z(;(2),w(;(2)) (which are J-flat on M) we get

u = Z CLI’j(ZE,i),wEi)>CZZE£) A dwz‘[) + 1"21-)
[T|+}J|=p

on U;, where the ar y are C*F—1_functions that are O-flat on R™ x {0} and T'Ei) is a C*¥~1-form
" that is flat on M. Using the formula following lemma 2.1 we see that v (6.3) is a linear
combination of terms

1
Wiy, (/0 CLI,](ZEi),t'lUEi))tu(]dt) dzg) A dw(%,

where |I| + |K| = p—1and 1 < j < n—m, plus a remainder term r(; satisfying

0%y = o(dM_|a|) on U; for |a| <k — 1. Here wy;) ; denotes the j-th component of wiy.

Since Gy is O-flat, it follows that

:Z Z w( 4950927+ i
j=1 |=p

in U;, where each J( ) isa O-flat C*~*-function and (i) behaves like r(z)

Choose a 0-flat partition of unity {t;}?_, subordinate to the covering {U;};_,, and
choose O-flat cut-off functions x; € C§°(U;), with x; = 1 near suppy; " M for s =1,---,r
Let (1, ., (n (with N = r(n —m)) be some enumeration of the collection of functions
{’sz i <r,j <n—m}. Furthermore let v1,---,vn be the corresponding enumeration

of the f01ms i Z|L| —p—1 gg }Jclz , prolonged by zero outside U;. Set v = Zl 1 Gop. Clearly
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|dv —u| = o(dﬁfl). Furthermore,if v = 0 on M, we also see that fol ar 7(7',tw' )t Eldt = 0
on V; N(R™ x {0}), and hence vy = -+ = vy =0 on M. 'S

Proof of Lemma 6.1. In the unimodular case, w = dz; A -+ A dzy, we could successively
increase the order of vanishing of fw —w on M by adding certain correction terms to f.
This seems harder to do in the symplectic case, so we shall instead present an argument
that works uniformly in both cases. It is a modification of Moser’s method: With w; =
(1 —t)w + tf*w, we shall construct a C!-family of O-flat C*-maps ¢; on a neighborhood of
M, with go = 1d and |% giwe| = o(dﬁ,[_ 1) uniformly in ¢. Given such a family, integration
in t gives ||gfw; —wl|| = o(d%!). We will also show that gy is O-flat on M. Hence the map
f: f 0 gy will satisfy lemma 6.1. Furthermore, we shall see that l91(2) — 2| = O(dm(2)?),
so Dgy = Id on M and hence )/C\ and flla\fe the same differential on M.

We shall obtain g; by integrating a certain real time-dependent vector field X; of class
C*. Differentiating Edt—g;‘wt as in (6.2) we see that X, must satisfy |d(X¢|wy) 4+ w1 —w| =
o(dﬁ,j_l). We shall now construct such a vector field. More precisely, we shall construct a
continuous family of C* real vector fields Xy on a tube 7o = Ts,, satisfying the following
properties for each ¢ € [0, 1]:
(1) X, considered as a map To — C™, is O-flat on M. (Here we identify a real tangent
vector X = Z?:l a;0/0x; + b;0/0y; € T,C™ with the corresponding complex vector
(a1 +1b1,. .., an +1iby) € C™.)
(2) |X4(2)] < Cdpi(2)? for some C' > 0 independent of ¢ € [0, 1].
(3) |d(X¢]w:) +wi —w| = o(di "), uniformly in ¢ € [0, 1].

Let us first show that this solves the problem. We must show that X; can be integrated
from t = 0 to t = 1 for all initial values in a smaller tube. Recall that, after shrinking do
if necessary, the function dy; is differentiable in 7o\ M, with a gradient of length one. Let
z(t) be an integral curve of X; in To\M, ¢ € (0,20}, and set u(t) = das(2(t)). Then

u'(t) = Vi (2(t) Xi(2(t)) < [Xa(2(2)] < Cu(t)”.

Here we denoted by v-w the real inner product of the vectors v,w € Cm". Integrat-
ing the inequality u'(#)/u(t)? < C from 0 to t gives 1/u(0) — 1/u(t) < Ct and thus
u(t)(1 — Ctu(0)) < w(0) for 0 < ¢ < to. Let the initial value z(0) € Ts,\M, where
51 < min(dp/2,1/2C). It follows that u(t) < w(0)/(1 — Ctu(0)) < 2u(0), and hence the
integral curve extends to all values ¢+ € [0,1]. Since |X¢(2(%))] < Cu(t)?, we see that
|2(t) — 2(0)] < 4Cu(0)?*t. In other words, the time-t diffeomorphisms g; are well defined
on Ts, for all t € [0, 1] and they satisfy |g:(2) — 2| < 4Ctdy(2)*. In particular, gi(z) = =
and Dgy(z) = Id for z € M and ¢t € [0,1].

To show that the C¥-maps ¢; are O-flat on M, we consider the variational equation
%ngt(z) = D, X(g¢(2)) 0 D,gi(z) with the initial condition D,gy = Id. Decomposing
the differential D¢ as the sum of a C-linear part D’¢ and a C-conjugate part D" ¢, we get

2 Dla(z) = Dl (ran(2) = D! (Xil0u(2)))
= (DLX0)(@1(2)) © Dlai(z) + (DY X)(0u(2)) 0 Dlan(2).
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We apply both sides to a unit vector v € C™ and set y(¢t) = D% g:(z)v € C". We obtain
a linear differential equation y'(t) = A(#)y(t) + b(t) with the initial condition y(0) =
D"go(z)v = 0. The function u(t) = |y(t)| is differentiable when u(t) # 0 and u'(t) =
y'(1)-y(t)/ly(t)] < |y’ (t)]. Thus, if |A(t)] < A and [b(t)] < b, we see that u'(t) < Au(t) +b
~where u(t) # 0. We shall prove that u(t) < &(eAt —1), ¢t € [0,1]. If u(t) = 0, there
is nothing to prove. If not, let ¢y be the largest zero of u on the interval [0,¢]. Then
v(s) = u(s)a=A® satisfies the differential inequality v'(s) < be™#* for s € (to,t]. Integration
from tg to ¢ gives v(t) < %(e“AtO — e~ 4 and u(t) < %(eA(t_to) -1)< —%(e‘“ —1).

We know that |D,X:(2)| and |D,g:(z)| are bounded uniformly in z € 75, and ¢ €
[0, 1], while | D" X(2) = o(dpm(z)*™!). Thus we may choose the upper bound A for |A(¢)]
independently of z € 73, and the unit vector v, and we may choose the upper bound b of
|b(t)] to be of size b = o(dar(z)* 1), uniformly in v. Since u(t) = |D]G(2)v], it follows
that | DY g.(2)| = o(dar(2)F), so each g4 is O-flat on M.

By assumption we have |d(X;|w), + (w1 — wo).| = o(dM(z)k_l). Since dpr(g:(z)) <
2dyr(z) and the norms |D,g¢(2)| are bounded uniformly in z € 75, and ¢ € [0, 1], we have
|2 (gwe):| = o(dn(2)*1), umformly in t. By integration in ¢ we obtain I(glwl —w)y | =

o(dar(2)*~ ) Setting f F 0 g1, we see that f is a O-flat CF-extension of f, Df =Df on
M, and I(f*w —w),| = o(dm(z )’” 1), Thus f satisfies lemma 6.1.

It remains to construct the vector field X,;. Applying lemma 6.3 to w — w; we obtain
a (p—1,0)-form v near M with |dv — (w —w1)| = o(dh ') and v =0 on M. We decompose
wy as wh +w!, where w} is the (p, 0)-component of wy. Then w) = w+t(w] —w), and w; =w
on M for each t. Hence the map ¢: Z — Z |wj, taking the (1,0)-vectors Z € T En 4o
AP=1.0)T*C" is an isomorphism for z near M and ¢ € [0,1]. Hence the equation Z; |w; = v
uniquely defines a time-dependent (1,0) vector field Z; on C™ near M.

With respect to the basis ai e a for (1,0)-vectors and the basis dz[1],- -, dz[n]
(respectively dz,---,dz,) for the (p — 1, ,0)-covectors, the map ¢ is replesented by an
(n x n)-matrix valued function A(t,z) = Ao + tB(z), where Ag is constant and invert-
ible, and the entries of B(z) are 0-flat C*~*-functions that vanish on M. It follows that
the entries of A(t,2)”! are rational functions b(t,z) in t, with coeflicients that are 0-
flat Ck—1 functlons From the properties of v, as given by lemma 6.3, it follows that

Z; = Z] LG Yo r mik(t, 2)0/ 0z, where (1,---,(n are C*-functions that vanish on M
and are 0-flat on M, and each r;k is a rational function in ¢ with coefficients that are O-flat
CF~!-functions Wlth rik(t,z) =0 for z € M.

We next apply the rough multiplication lemma to the pairs (¢;(2),rji(t, 2)) with
respect to the compact subset M x [0,1] in C™ x R and obtain C*-functions ai(z,t),
1 <1< n, Oflat on M with respect to z, such that |E;V:1 Ciri(t, ) —ai(t, )| = o(dky),
uniformly in ¢. (Remark : Use of the parametrized version of rough multiplication gives a
smooth family of C¥-functions, but we do not need that.)

We set Zy = > 5, ai(t,2)0/0z and Xy = Z; + 7. Writing a; = u; + vy, with u;
and vy real, we have Xy = > 1 wi(z, t)@/(%l +vi(z,t)0/y;. If we consider X; as a map
To — C™, thlS means that X; = (a1(¢,2), -, an(¢,2)) and is O0-flat on M. Furthermore,
since C](z) and rj;(t,2) both vanish when z € M, we see that X; vanish to the second
order on M.
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Finally, we must show that (3) is satisfied. Writing X; = 7t + (Z¢ — Z}) + Z{, we see
that
d(X¢|wy) +wr —w = d(Z]w!) + d((Z — Z}) |wy) + (dv 4wy —w).

The first term on the right hand side is o(d%;) since w{ vanishes to order k — 1 and 7,
vanishes to the second order on M. Furthermore, Z; — Z; vanishes to the k-th order, so
the second term is o(d%;!), and the third term is |dv 4+ w; — w| = o(dh; ). Thus (3) holds,
uniformly in t, since the derivatives are continuous in (z,1). [ )

Proof of theorem 1.5 in the real-analytic case. By assumption there is a continuous
map Po: Mg — SL(n,C) (resp. ¢o: My — SP(n,C)) such that o . agrees with d,f on
T,My for each z € My. By Remark 1 following the proof of theorem 1.2 (sect. 4) g
may be approxlmated by a holomorphic map 11 from a neighborhood of My to GL(n,C)

with ¢, = d f on T ]\/fg for each 2z € ]V[o Since ¢0 ow = w for z € My and since ¢y
apprommates o on My, it follows that the form 1[)1 2w = (det 1, )w is close to w for all

z € ]\/Io sufficiently near Mp.

We may think of 9; as a holomorphlc automorphism of the trivial bundle ]\/IO x C" —
]\/[0 We claim that there is another holomorphic automorphism ¢ of Mo % C™ such that

q| i =1 d and g*fw = w. In the unimodular case we let g act as the identity on T M,
¢]

and as multiplication by (det 1)~/ (»=™) on 7 (the holomorphic extension of the complex
normal bundle 14 to .7\/[0) the root is well-defined since the function det; . is close to
1. In the symplectic case g is a reduction to symplectic normal form with holomorphic
dependence on z € Mp. In both cases the map ¢ = 11 0g is an automorphism of the trivial
bundle My x C™ satisfying ¢*w = w.

Let Fy be a biholomorphic extension of j constructed from 9 = 9; o g as in Remark 1
(sec. 4), satisfying d,Fy = ¢, at points z € My. Thus Ff'w = w at points of My. Applying
Moser’s method as above we can construct a biholomorphism G in a tubular neighborhood
of My which equals the identity on My and satisfies G*(Fyfw) =w. Then F' = F oG is a
biholomorphic map near My which extends f and satisfies F*w = w. 7 [ )

&%7. Proof of theorems 1.7 and 1.8.

We will have to consider maps which have different degree of smoothness with respect
to the time variable and the space variable, and we shall use the following terminology.

Definition 4. Let U be an open subset of [0,1] x R™. A mapping f:U — R" is called
a C'-family of C*-maps if 8] (02 f) is continuous in U for 0 < j < [ and || < k. There
is an obvious extension of this notion to maps f:[0,1] x M — N where M and N are C*
manifolds. If in addition f; = f(¢-) is a diffeomorphism (of its domain onto its image) for

each t € [0,1], we call f = {f;} a C'-family of C*-diffeomorphisms.

Thus a C'-family of C*-diffeomorphisms is the same as a C¥-isotopy (or a C¥-flow) in
the sense of definition 1 in sect. 1. We remark that if f; is a C!-family of diffeomorphisms
on domains U; C R™ for ¢ € [0,1], the family of inverses f; ' are not necessarily a C'-family
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if | > 0, the reason being that the ¢-derivatives of the (derivatives of the) inverse map will
involve higher order z-derivatives of the original map.

_ In the situation in theorem 1.7 we shall say that a time-dependent family of C*-forms
on submanifolds M; C C", a; = El”:l’ o:I’tdzI with ar ¢ € C*(My), is a continuous family
of C*-forms if ar ¢ 0 f; is a continuous family of C k_functions on M for all multiindices 1.
Recall that 75 = TsM is the open tube of radius ¢ around a submanifold M C C™,

The main step in the proof of Theorem 1.7 is the following result.

7.1 Theorem. Let fiM = My — M, C C" (t € [0,1]) be a C'-family of C*-
diffeomorphisms between compact, totally real, C*-submanifolds of C*, with fo the identity
on M. By iy: M; < C™ we denote the inclusion map. Let oy (t € [0,1]) be a continuous
family of (p, 0)-forms of class C * on My such that i} oy is closed on My for eacht. Then there
exists an extension of oy to a continuous family &y of (p, 0)-forms of class C k¥ on a neighbor-

hood of M = UtE[O,l]{t} x My in [0,1] x C™ such that for all sufficiently small 6 > 0 there
exists a continuous family of closed holomorphic p-forms u‘tS on Us = UtE[O,l] {t} x TsM;

satisfying .
Cr(Ts M) — 0(5 _1)7 0<r< k:

g — G|
¢

uniformly in t € [0,1). If ity is exact on My for each t € [0, 1], we may choose uj exact
)

for every t; in this case u$ can be chosen to be entire if each My is polynomially convex.
In the simplest case when M; = M and a; = « for all t € [0, 1], the main steps in the
proof of theorem 7.1 are as follows (we write 75 = TsM):

(i) We construct a (p,0)-form @ on a neighborhood of M such that da is flat on M. In
particular, @ is 0-flat on M

- (ii) we approximate the coefficients of @ by holomorphic functions to obtain a holomorphic

- pform ' in Ts with ||du’||pee(75) = o(8*71);

(iii) we solve dv = du’, with v holomorphic and ||v||ze (7; = 0(6%), and set u = u' — v;

(iv) if i* o is exact, the norm of the de Rham cohomology class of 1*u is o(d %), and this class
may be represented by a holomorphic p-form ug on 75 of size o(§ k). Then u; = u — ug
is exact and it approximates « to the right order on M.

In the parametric case we perform these steps such that the solutions are continuous
with respect to the parameter ¢. Before giving the proof of theorem 7.1 we summarize
(slight extensions of) certain well known results that we shall need.

We begin by considering the parameter dependence in Whitney’s extension theorem.
Instead of a general compact subset I C R™ (or I C C™ we consider the case when K is
a compact C!-submanifold, with or without boundary. This is a so-called 1-regular set, so
we have the following more precise results (see [T], chapter IV, sec. 1 and 2, in particular
p. 76):

(i) Let A = {a € Z%:]a| < k}. The collections F' = (fa)aca € C(K)*, satisfying
the Whitney condition, form a closed subspace E¥(K) of C(K)# with respect to the
sup-norm; we shall call such collections Whitney functions.
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(ii) The Whitney extension operator W: E¥(K) — C§(K'), where K’ C R™ is a closed
neighborhood of I, is linear and norm-continuous. Thus 0°W(F) = f, on K for
each o € A and

IW(E)lex(rry < Csup{|| fallzeo(xy: o] <k}

(iii) There exists a constant C' > 0 such that Cw is a modulus of continuity for d*W(F),
|a] = k, whenever w is a modulus of continuity for all f,, |a| = k. '

From this it follows immediately that if fo:, o € A, are C!-families of continuous
functions on I{ and if Fy = (fa,t)aca is a Whitney function for each t € [0, 1], then their
Whitney extensions W(F;) are a C'-family of C*- functlons and we may bound the ¢ and
@ derivatives of W(F}) in terms of Fj. '

Using the above results, the proof of lemma 2.5 (sec. 2) gives the following:

7.2 Lemma. (Parameter-dependent rough multiplication.) Let I C R™ be a compact
C'-submanifold, with or without boundary. Let f; be a C'-family of C*-functions and g; a
C!-family of C*~-functions on a neighborhood of K in R™ such that f; = 0 on K for each

€ [0,1]. Then there exists a C'-family of C*-functions h; on a neighborhood of I such
that |hy — figi| = o(d%,), uniformly int € [0,1]. If K C C™ and if f, g, are 0-flat on K,
then so 1s h;.

We next prove an extension lemma.

7.3 Lemma. Let M C C" be a compact, totally real, C*-submanifold. For any C'-family
of C¥-maps fi: M — CN (¢ € [0,1]) there exist an open set U C C™ containing M and a
C!-family of CF-maps ]A”; U — C¥ such that each ff is 0-flat on M and it restricts to f; on
M. If N =n and fp: M — My = fy(M) C C™ is a diffeomorphism for each t € [0,1], we

~

can choose f, as above to be a C'-family of C*-diffeomorphisms on U.

Proof of Lemma 7.8. Let m = dimgrM < n. We consider first the case when M. =V
is a smoothly bounded compact domain in R™ C C™ C C". Write z; = x; +1y; with
zj,y; € R. Given f € C'”(V ), we consider the followmg Whltney function on V for the
real coordinates 1,...,Zm,Y1,-..,Ym 11 C™: :

F f(a’,a”) — ila”| agl—l_a”(f), a/,a// c ZZ}, |a/| + !a//| < k.

From the Cauchy-Riemann equations aa—;’, = zaal (1 < j < m) for a function ¢ in a
J

neighborhood of V in C™ it follows that the Whitney extension f = W(F) of F to C™
is 0-flat on V. If m < n, we extend W(F) trivially in the variables 241, +, 2, to get a
Whitney extension on C". Moreover, if {f;:t € [0,1]} is a C*-family of C*-functions on V
and we define F; as above, the VVhltney extensions W(F;) are a C'-family of C*-functions
which are 8-flat on V.

Next we consider a local C*-parametrization ¢:U — M around a point wg € M,
where U is an open set in R™. Let z5 = ¢ 1(wp) € U. Choose a smoothly bounded
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domain V cC U containing zo and set W = ¢(V) C M. Let EE be an extension of ¢ to C™
constructed above which is 9-flat on V. If m < n, we also choose a basis vy, - vn m of
the complex normal space (T M)* to M at wo. The map &(z) = o(z) + EJ 1 Zm4jV;
is then a C*-diffeomorphism in a neighborhood of zp which is O-flat on V; hence its inverse
&~ is well defined in a neighborhood W C C" of wo and is J-flat on W N W C M.

The first part of the proof also provides an extension ¥ of the map f;o¢: v — C"toa
neighborhood of ¥V in C" such that 1, is d-flat on V. The composition ¢ o &1 W — Cn
is a Ck-extension of the map f; which is 0-flat on WNW C M.

This gives us a local 9-flat C*-extension of f; in a neighborhood of each point wy € M.
We can patch these local extensions by a O-flat partition of unity along M as in lemma
2.6 to obtain a desired C'-family f; satisfying lemma 7.3.

It remains to consider the case when fi: M — My is a diffeomorphism for each ¢ €
[0,1]. Let M = Usepo,nftt x My € [0,1] x C", and let F:[0,1] x M — M be the map
f( ,z) = (t, fi(2)). Let v denote the complex normal bundle of M and v* the complex
normal bundle of M; in C"®. Then v = Ute[o,l] {t} x v! is, in an obvious way, a vector
bundle over M, and [0,1] x v is a vector bundle over [0,1] x M. By standard bundle
theory (see Lemma 1.4.5 of [Ati]) there exists a bundle equivalence :[0,1] x v — ¥ over
f. Thus we have continuously varying isomorphisms v, — ﬁ}t( 2) (z € M, t €[0,1]) which
we extend to a continuous map A’:[0,1] x M — Endc(C™). Then we approximate A’ by
a Cl-family of C*-maps A:[0,1] x M — Endc(C™) so that A(t, z)v, is a supplementary
subspace to (Df:),(TC M) for each (¢,2) € [0,1] x M. Let L(t,z) equal (D fy)S on TS M
and A(t,z) on v,. Since T,C" = TEM @& v,, L(t,z) belongs to GL(n,C), and it is not
“hard to check that L, = L(t,-): M — GL(n,C) is a C'-family of C*¥~*-maps extending
Df,. Using Lemma 7.2 it is easy to see that lemma 2.6 has a parameter-dependent version
which gives the desired conclusion. [

Proof of Theorem 7.1. Set M = My and ¢ = 1g: M — C". We first apply Lemma
7.3 to get a neighborhood U C C™ of M and a continuous famlly/\of C*-diffeomorphisms
ft U — U; C C" which are 0-flat on M. The family of inverses (ft) U — U 1is then a

continuous family of C*-diffeomorphisms on U= Ute[o 1 {t} x U; which are 9-flat on M,
and which extend f;: M; — M.
Let oy = ZIII —p O, «dz! be as in theorem 7.1, with ay ¢ € Ck¥(M;). Our assumption is

that a0 f; (t € [0,1]) is a continuous family of C*-functions for each I. Applying lemma
7.3 we can extend it to a continuous family af , of C*-functions on [0,1] x U which are

O-flat on M. Set ar; = aI’t (ft) and a; = Z|I|=P aI,tdz : this is a continuous family
of C* (p,0)-forms on ﬁ and a; is O-flat on M;.

The next step is to modify @, so as to make its differential flat on M;. We observe
that both ft ag and By = dft ay = ft (d@;) are continuous families of C¥~1-forms on U. By
assumption, difoy = 0, hence ¢*§; = 0.

It is clear that the proof of lemma 6.3 produces a C'-family of solutions v; for any
Cl-family u; satisfying the assumptions in that lemma. Applying this to the forms u; = 8,
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constructed above, we obtain a continuous family of (p,0)-forms v, = Z;\rzl Gvie (T €

[0,1]) such that dvj — B¢ is (k — 1)-flat on M, where (y,--+,(y are O-flat gk—functions
vanishing on M and +; , are continuous families of C k=1 (p,0)-forms that are d-flat on M .

Then (ﬁ—l)*'y},t = 2 \|=p ajr4dzl + )\ where aj 1 are continuous families of C*~1-
functions that are 0-flat on M; and A;; = o(dﬁ,[—t 1) uniformly in t. Applying parameter

dependent rough multiplication (lemma 7.2) to {; and aj,1¢ 0 7?; gives continuous families
b1, of C*-functions near M which are 0-flat on M. Setting v, = ZIII pz (b0

ﬁ_l)dzI and a; = oy — Y, we get ay |y, = oy, t € [0,1], and |day| = o(dﬁ,[t ) uniformly in

The next step is to approximate ﬁ well by biholomorphic maps in tubular neighbor-
hoods 75 of M. f; maps M onto M; and is a diffeomorphism from a neighborhood U of
M on a neighborhood U; of My, with estimates on derivatives valid for all ¢ € [0,1]. It
follows that for some @ > 0 and all sufficiently small § > 0 we have ft( 25 M ) C TsM; and
Fr (TasMy) C TsM for all t € [0, 1].

If we apply the solution operator of theorem 3.1 to the equation OR! = 5]5 in Ts =
TsM and set ht ft R?, we obtain a continuous family of holomorphic maps ht on Ts
satisfying ||h$ — ftHCJ(%M) = o(6%¥7) for 5 < k, where & > 2. Tt follows that for small

§ > 0 the map h¢ is a biholomorphism of 75 onto its image, and ¢} := ft ohlis a
C*-diffeomorphism of the tube Ts onto a small perturbation of 7. '
Since h¢ is close to ﬁ, it is not hard to see, using the argument in the proof of
theorem 1.2, that if 0 < a < @ and ¢ > 0 are given then for 6 > 0 sufficiently small
(depending on a and €) we have the inclusions ht(fsz M) D 7}5:1\/& for 6 < §" < 6§ and
(h&)™Y(Ts: My) D Taer M for €8 < &' < ad. We also have Ty oM C gf(To M) C Taar M for
ed < §' <4, for all t.
The next step is to approximate & by a continuous family of holomorphic p-forms u}(=
u/®) on tubes TsM;. Suppose that a; = ZIIIZI) at,jdzf. For small § > 0, hf/a(fg/al\/f) )

TsM; for t € [0,1]. Let uy; be holomorphic approximations to @y s o hf/a, constructed
as Fs in section 4. Set w; ; = uj; o (ht/a) 1. Then the p-form u} = 2o\|=p u;,IdzI is
holomorphic in 75M; and satisfies ||u} — Qillci(73,) = 0(6%77), uniformly in ¢t. We also
see that ||dujl| e (7300,) = o(6F 1), and if we set vo; = i} (u} — &) then dvo,; = i} duj.

We wish to prove the existence of a continuous family of holomorphic (p — 1)-forms
vi(= v9) on Tps M; for some b > 0, with lvellpes (Tosna,) = o(6%), uniformly in ¢, and solving
dvy = du!! Then u¢ = u! — v, would be a continuous family of closed holomorphic p-forms
with ||uelas, — oelleiar) = o(6¥77), uniformly in ¢, as required.

A parameter-dependent version of theorem 5.1 for the family M, would give that result.
The following argument will give this for a small b > 0, but we shall restrict oulselve% to
the special case we need. Choose a < @ and € = a/2. For § > 0 small, w, = f; (dul?)
are C*~1-forms on TgsM with ||wi||peo(7z,m) = 0(5" 1) and ”wt“CS(T;JM) = o(§k=1-9),
uniformly in ¢.

Furthermore, with v , = ffvo:, we have dvy , = 1wy on M, with |lvg ||z = o(6%)
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and ||vg 4lles = o(6%7¢), uniformly in ¢. Then the first part of the proof of theorem 5.1
and the remarks on continuous t-dependence give a continuous family of C k=1 forms w}
on TasM solving dw) = wl, with ||w!|[re = 0(6%) and |[wi]lc: = o(6*7*), uniformly in 4.
Then wy = (¢¢)*w; are defined on Tgzs/2M and satisfy the same kind of estimates, and
dwy = (h?)*(f;l)*w; = (h$)*du} is holomorphic. Since a < @, the second part of the
proof of theorem 5.1 gives the existence of a continuous family of holomorphic p-forms
vy on Tos/2 M satisfying dv; = (h9)*du}, and |vill oo (To5,000) = o(6%), uniformly in ¢. By
assumption ]1?(7;5/2 M) D Ty25/2 My for each t, and v) = (hd)~1*v} is a continuous family
of holomorphic p-forms on Ty25/9 M with dv? = du} on Tazs/2 My and |v]|zee = o(6%)
uniformly in £. ‘

We now show that if i} oy is exact for every ¢, the holomorphic forms u$ as above may

be chosen to be exact. We recall that the de Rham cohomology group H? (M, C) is finite
dimensional and f;: H?(M;, C) — HP?(M, C) is an isomorphism for every ¢. We have that
H?(M,C) = {a € C)(M) : da = 0}/(exact forms), where derivatives are taken in the
weak sense, and we may equip H?(M, C) with the quotient norm.

For each to € [0,1] there exist closed holomorphic p-forms #,---,Uy on an open
neighborhood U of My, such that [} @;], 1 < j < N, is a basis for HP(My,,C). Then
t — [fFul] is a continuous map [0,1] — HP(M,C), and t — [f{uj] is continuous for ¢
neat to and 1 < j < N. It follows that {[f;%;]:7 < N} is a basis for H?(M,C) for ¢ in
a neighborhood J C [0,1] of o, and that we may write [fFul] = Z;V:1 c?(t)[ £ u;] with c‘]s-
continuous on J. Each form ffay is exact on M, so ||[ffulll] < || £ (ud) — Q)| e (any =
o(6%). This means that for J; CC J we have maxe |c‘;(t)‘ = o(8%) for all j < N. For
§ > 0 small and ¢t € J; we have TsM; C U, u?‘s = ug — Zjvzl c‘;-(t)ﬁj is exact on TsM;
(since [i;‘u?‘s = 0), and it approximates a; well enough. We can now patch these together

with a partition of unity in ¢ to obtain a solution u® for t € [0,1] satisfying theorem 7.1.

Finally, assume M; is polynomially convex for all ¢t € [0,1] and let u? be the exact
solution on Us. For § > 0 sufficiently small we may also assume that 7sM; is Runge in C™
for all ¢. Given a < o’ < 1 and € > 0, there exist t; € [0,1], j = 1,-+, N, and (relatively)
open intervals I; C [0,1], t; € I;, such that U,s C Ujvzl I; X TasMy; C Us, and for all
for t € I; we have ||ud — 'Ufchk(’T(‘l,é_]\/[tj) < e and ||a% — afjnckm,aMtj) < e. Let §; be a
holomorphic (p — 1)-form on TsMy; such that df; = ufj. By Oka’s theorem there is an
entire (p — 1)-form v; such that ||3; — vj|lpeo(73m,,) < € The Cauchy estimates imply

J
85 — ijcr(Ta,thj) = eo(d™"), and hence ||va — dvj”CT(Ta:,;M;j) = 60(5_(T+1)). Choosing
¢ = o(8% 1), we obtain ||dv;—&%||cr(Tos a1y = 0(6F ") whenever ¢ € I;. If x;(¢) is a partition
of unity on [0, 1] subordinate to the covering {I;} and we define v; = Zjvzl X;j(t)v;(z), then
uy = dvg is an entire form for each ¢t which satisfies theorem 7.1.

Proof of Theorem 1.7. By assumption fi: M — M, is C'-family of Ck-diffeomorphisms
and w is one of the forms (1.4), (1.5). Let X; be the infinitesimal generator of f, i.e.,
O1fi(2) = X¢(fi(2)) for z € M and ¢ € [0,1]. Then oy = X¢]w is a continuous family of
(p,0)-forms on My, with p = n — 1 when w is the volume form (1.4)) and p = 1 when w
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is the symplectic form (1.5). Since f; is an w-flow, ¢fay is closed on M, for each ¢, by the
remark after definition 2.

By theorem 7.1 there exists an extension of a; to a continuous family @; of (p,0)-

forms of class C* on a neighborhood of M = Ute[o,l]{t} x M such that for all sufficiently

small § > 0 there exists a continuous family of closed holomorphic p-forms ué on Us =

Ute o 1]{t} x Ts My with ||u? M) = o(8%~T), uniformly in ¢, for 0 < r < k.

The equation u¢ = Y} |w uniquely defines a time-dependent holomorphic vector field
Y on Us. Since u? is closed, the flow FY of Y is a holomorphic w-flow wherever it
is defined (see definition 2). If we let X; denote the extension of Xy to Us defined by
ar = X¢|w, then ||V — Xiller(73m,) = 0(6F77), uniformly in t. We may apply lemma 4.1
of [FL] to see that for small § > 0 the flow F?(z) exists for all ¢ € [0,1] and z € Ts Mo,
and ||F? — filler (73 0) = 04 k=), uniformly in ¢. In fact, it follows from the proof of this
lemma (see section 4 and [FL]) that the same approximation also holds for the flow from
time ¢ to time s; if we let fi o = fs 0 ft_lz’ﬁ;]\/ft — C" denote the flow of X; from ¢ to s
and Fy, = F8o(FS)~! the flow of Y from ¢t to s, then for small § > 0 the flow F;S,s exists
for all s,¢ € [0,1], and we have HFt‘fs — fs

f7' = fio, the second estimate in theorem 1.7 follows.

m,) = o(8%~7), uniformly in s and t. Since

Finally, if f; is an exact w-flow, i.e., tJa; is exact on My for each ¢, and if each M;
is also polynomially convex, then by (the proof of) theorem 7.1 above we may choose
ud(z) = Zj\rzl X;s-(t)dvj(z), where v;(z) are entire (p — 1)-forms on C" and X§ (1<j7<N)
are C* functions with compact support in R which form a partition of unity on [0, 1].
We may even assume that v; are (p — 1)-forms with polynomial coefficients. This means
that the polynomial vector fields X; on C", uniquely defined by the equation dv; = X |w
are divergence free (1 esp. Hamiltonian) By proposition 4.1 in [F4] these can be written
as finite sums X;( Zk 1 X ), where X; are complete divergence free (resp.
Hamiltonian) polynomlal vector ﬁelds on C" (in fact they are shear fields). Completeness
means that the fields X;; may be integrated in time for all ¢ € C (and initial points
z € C"). Then Yji(t,2z):= X‘]s-(t)Xjk(z) is also a complete vector field whose integral
curves are reparametrizations of the integral curves of X;;. Hence we may write Ve =
2ok Yik(t,2), Le., Y2 is the sum of complete, divergence free (resp. Hamiltonian), time-
dependent, polynomial (in z € C™) vector fields. For the rest of this proof it is more
convenient to write this sum as Zfil Yi(t, z), where each Y is one of the Yj; above.

Let G! 45 be the flow of Y(#, 2) from time ¢ to time ¢+ s. This means that G.lt7t(z) =z
and LG}, (2) =Yi(t+s,G} 1 o(2)). Define G p15(2) = (G 500G 1) (2). We can
1ega1d this as the ﬂow of a time-dependent vector field X,/ B8 defined for times t' between
t and t+s; for ¢ + Its < ' < ¢+ 45 we define Xhte(z) = ]{,Yj(t—#N(t' — j%s),z). If we
reparametrize time such that the joints are passed at zero speed, we may even assume that
X Z’,’HS is smooth and vanishes near the endpoints. We denote this smooth flow by G H'S(z).
By definition, Gy t4.s(2) = Ci_ﬁs(z) Since the vector fields Y; are complete chvelgence
free (resp. Hamiltonian) entire vector fields, it follows that Gi}”s is a holomorphic w-flow,
fe, (G 'w=w when t <t <t +s.
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For each m € N we define the concatenations F{"(z) = (G;_1 ;0-+-0Gy 1 )(2). Then

by supplement 4.1.A of [AMR] we have limy, ;o Fi"(2) = F3(2), uniformly for z € Ts M.

As above, we can view F{™(z) as the time-one map of the flow of the vector field X defined
i=1 j

by X; =X, ™ " for ¢ € [%, #L 1 <j <m. Let F{"(z) be the flow of this vector field.
It is easy to see that we can arrange that limm, e Fy® = F?, uniformly in [0,1] x T5Mo,
and the Cauchy estimates imply || F}™ — Ft5‘|ck( o) < € for all t € [0,1] and all sufficiently
large m € N. Similarly, (F/®)~! is a concatenation and hence limp, o0 (Fy™) ™ = (F}) ™
uniformly on TsMji; it follows that limm_)oo(Ft”")_1 = (Ft‘s)“:l on M;, hence the result
follows by the Cauchy estimates. [

Proof of Theorem 1.8. We shall see that in all cases except (iil) and (vi) the pull-back
if oy of the form a; = Xy |w to M is exact for each t; hence f; is an exact w-flow and the
result follows from the second part of theorem 1.7.

In case (i) we have i} a; = 0 by degree reason. In cases (ii), (iv), (v) and (vii) we first
see that the form 7} oy is closed on Mj, either by degree reasons or by the comment after
definition 2 in sect. 1; hence the cohomological assumptions imply in each of these cases
that 27y is exact on M.

For the two remaining cases (iii) and (vi) it is shown on pages 439 and 441 of [F3]
that the initial family f; may be altered to an exact, totally real and polynomially convex
w-flow, without changing the maps fo = Id and f1; hence the result again follows from
theorem 1.7, A
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