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In the theory of isometric immersions of submanifolds there are fundamental results
of John Nash for the C*® case and Burstin-Cartan-Janet-Schlifly for the analytic case
(also see Robert Greene (2) for the case of local isometric immersions). However, these
theorems require a large codimension and are of practically no help in considering concrete
questions in low codimensions.

An obvious way of producing large varieties of isometrically immersed homogeneous
submanifolds is to take the orbits of Lie group actions. In low codimensions the following
result should often be true:

Let the compact, connected Lie group G act on the connected manifold /N with princi-
pal orbit type M = G/H. Then, among all the G-homogeneous metrics on G /H the only
ones which allow an isometric immersions into N are the ones which are already realized
as the orbit metrics of this action.

Obviously this is true for the geodesic spheres S*~!(r) of R* under the standard
action of SO(n). With a little work it is also easy to prove for the larger classes of metrics
invariant under the unitary or symplectic groups. A somewhat more challenging example
is to prove this for the second Stiefel manifold SO(n)/SO(n—1) of R** under the diagonal
embedding SO(n) — SO(n) x SO(n) acting on R*".

In this paper we obtain far reaching generalizations of those results. First, we wish
to consider isometric immersions into other homogeneous spaces than Euclidean (and
spherical or hyperbolic) spaces. Secondly, we wish to include all dimensions. It is clear
that the low dimensions are going to be considerably harder, since the main technique for
using the Gauss equation fails in the lowest dimensions. We work out here the concrete
case of isometric immersions of spheres S?*~! = U(n)/U(n — 1) into N = CP(n). The
techniques developed here should be quite useful in many other homogeneous spaces,
also. In particular, quite analogous results hold true for complex hyperbolic space and
quaternionic projective and hyperbolic spaces, and will be published soon.

We also note that our results have a bearing on the fundamental theorem for hyper-
surfaces. This theorem states that for Euclidean (or spherical/hyperbolic) spaces N, any
codimension one manifold M with given candidates for first and second fundamental forms
allow a local isometric immersion into NN if and only if those forms satisfy the Gauss and
Codazzi equations; moreover, this immersion is unique up to deformation by an isometry
of N. Now for isometric embeddings of S® into CP(2) we get far more solutions to the
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Gauss equation than those which actually come from submanifolds. Most of those solu-
tions are ruled out by the Codazzi edquations, but some are not. Hence, the fundamental
theorem cannot be generalized that simply to CP(n). One also need a condition that
the curvature tensor of the total space N is parallell. Also see Eschenburg-Tribuzy ([E])
about this question.

§1 These theorems follow from a careful study of the Gauss equation: (R(X ANY)Z, W) =
B(X,W)B(Y, Z)—B(X, Z)B(Y, W) where R is the curvature operator of the submanifold
M and B is the second fundamental form (for the case of a Euclidean surrounding.space).
In the case of a non-Euclidean surrounding space, however, the Gauss equation reads:
(R{X AY)Z,W) = B(X,Z)B(Y,W) — B(X,W)B(Y, Z) where R* = R — R, R' is the
part of the curvature operator T of N tangential to M. This will vary with M’s position
in N, so in this case the left hand side of the above equation is also unknown when M, its
first and second fundamental forms are specified. We are not aware of much study of this
situation in the literature; however, we present here the complete solution of the probably
most basic question in isometic immersions in the case of non-classical geometries.

Let N = CP(n) with the metric normalized such that the sectional curvatures are in
[1,4]. Let the metric of the geodesic sphere S**~1(r) = U(n)/U(n — 1) be v, r € (0, ).
The isotropy representation of U(n — 1) on T,N|S*1 =R + R*"~2 = R+ C*! is given
by 6 + p,_1 where @ is the trivial representation and p,_; is the standard representation.
Consequently, the inner product at p of any U(n)-invariant metric is given by two real,
positive scalars a and b (by Schur’s lemma). For S**~!(r) we have a = sinrcosr and
b = sinr; hence 3 — b—4 =1.

Pr0p051t10n 1 SQ" Yr) = U(n)/U(n — 1) is isometric to a geodesic sphere S**~1(r) in
CP(n) iff 3 — b—4 =1, in R iff 5 — ‘;—: = 0 and in complex hyperbolz'c space CH (n) with
metric normalized such that sectional curvatures lie in [—1, —4] iff A 3 b4 = -1.

PROOF. Let b% — b4 =1, then 0 < b < 1, and we set b = sinr, r € (0, %), the result
then follows from the above observation. In the second case we have that a = b, hence
this is the Euclidean case. In the third case we have ‘;—j > 1; hence, setting 5z = cothr;
then b = sinhr, i.e. @ = sinhr coshr. This is exactly the geodesic spheres in CH (n) with
metric normalized as above. q.e.d.

Remark. If biz - b4 =t > 0, this corresponds to a geodesic sphere in a CP(n) with a
homothetic metric, similarly for 7 b—j = —t < 0, this corresponds to a geodesic sphere

in a CH(n) with a homothetic metric.

We now have an interpretation of all the U(n)-invariant metrics on S. We note that
in CP(n) and CH(n) the geodesic spheres S?*~1(r) for different r determine distinct
homothety classes of metrics, whereas in R?" all such metrics are homothetic.

Our main result, here proved for CP(n), is the following:

Theorem 2 The Berger metrics vy, are the only U(n)-invariant metrics on S*~(r)
which allow an isometric immersion into CP(n).




Remark. We only need to prove: b% — b4 = 1. Obviously, homothetic metrics admit
an isometric immersion into CP(n) with a homothetic metric. Thus, the set of U(n)-
homogeneous metrics admitting an isometric immersion into a given CP(n), is a one-

dimensional subset of the two-dimensinal variety of all U(n)-homogeneous metrics.

§2 Let V be an inner product space. Let R be the linear space of all curvature-like
4-tensors on V; i.e. R € R iff R(X,Y,Z,W) = —R(Y,X,Z, W) = —R(X,Y, W, Z);
R(X,Y,Z,W)+R(Y,Z,X,W)+R(Z,X,Y,W) = 0 (it then follows that R(X,Y, Z, W)=
R(Z,W, X,Y)). Let B be a symmetric 2-tensor on V/, then the 4-tensor BAB on V defined
by BAB(X,Y,Z W)= B(X,Z)B(Y,W) — B(X,W)B(Y, Z) is a curvature-like tensor.
Also, note that B(X,Y,Z, W)= (BAB(X AY),Z AW), with B defined as follows:

Let B be the symmetric linear operator on V defined by B(X,Y) = (B(X ), Y) (the
shape operator corresponding to B). Let the 2-tensor BAB be defined by BAB(XAY) =
B(X)AB(Y). .

Proposition 3 (BAB(X AY),ZAW) = B(X,Z)(B(Y,W) - B(X,W)B(Y, Z).

PROOF.  (BAB(XAY),ZAW)=(B(X)AB(Y),ZAW)=(B 3(X), ZWB(Y), W) —
(B(X),WNB(Y),Z) = B(X, Z)B(Y,W) - B(X,W)B(Y, 2). q.e.d.
Now, for a point p € 52" ! ¢ CP(n) let R' be the orthogonal projection of the
curvature operator of CP(n) restricted to TpSi’}, ! and let R be the curvature opera-
tor of Sffl‘,_l. The Gauss equation,R!(X,Y, Z, W) = R{(X,Y,Z,W) — R(X,Y,Z,W) =
B(X,Z)N(Y,W) - B(X,W)B(Y, Z), may then be written R/(XAY) = (BAB)(X AY),
where B is the second fundamental form. The fact that Rt = B A B has surprisingly

strong consequences. It is already sufficient to prove Theorem 2 for n > 4, which we do
in §4. This is based on the following result:

Proposition 4 (see also Agaoka (1)) R(X AY)AR(X AZ)=0 forall X,Y,Z €
Tp(Sap -

PROOF.  R{XAY)AR(XAZ)=(BAB)(XAY)AN(BAB)(XAZ)= B(X) A
B(Y)AB(X)AB(Z)=0. g.e.d.

Remark. For one case of n = 3 we also need to use the Codazzi-Mainardi equation,
this is done in §5. For n = 2, R{(X AY) A RY(X A Z) will always be a 4-vector in T,S3 ;,
hence it is automatically zero and gives.no information. This is by far the most difficult
case, and the proof is given in §6-§8.

§3 For CP(n) we have the standard results:
(31) (6 /\GJ) 6¢A€j—J€iAJ€j

(e N Jej) = —e; AN Je; + Je; Aej (i # )

(Je; N Jej) =—Je; NJej —e; Nej

( A .]61) = 2(60 A JCO +e A J€1 + -t ep_t A Jen_l) — 2(61' A Jei)

’;UI o (i o Tl o
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Here J denotes the almost complex structure of CP(n), eg, €1, ... , €,—1 is & complex basis
for T, CP(n). Also we use the convention R(X A Y)Z VxVyvZ —=VyVxZ — V[X v]Z.
For n > 4 we only need similar formulas for R(Y; A'Y;), R(Y; A J'Y;) etc. However,
since we need much more detailed information in the remaining cases, we outline the
whole computation of the curvature operator for S(f”,‘,"l.
We have: G = U(n+1), H=Un)xU(1) CUn+1), g ="hbodp with p =
{ (~{~) ‘d € C* (column matrlx)} Here *d means the transpose of d.
We have (see KNII): Let X,Y etc. also denote the Killing fields determined by X,Y €
T,(S2y™"). Then .

(3.2) R(X AY) = [Ap(X), Ap(Y)] = Ap([X, Y]p) — ad([X, Y]p) .

Here Ap(X)Y = 3[X,Y], +U(X,Y) where U is the symmetric bilinear map from p X p to
p determined by 2(U(X,Y), Z) = ([Z, X];,Y) + (X, [Z,Y],). Also, here [, | denotes the
extension of the Lie bracket [, ], to A*(T,S2}™") given by [X AY,Z AW] = (X, Z)Y A
W+ Y WYXANZ (Y, Z)X N\W — (X, W)Y AZ. It is routine to check that this satisfies
the necessary linearily properties as well as antisymmetry and the Jacobi-identity, such
that A%(T,S52}~") becomes a Lie algebra.

0---0 0 0 « 0 0 - 0
1] : 1 E; 1 1 i
Let Yo=21:. ., o], Yi=2[0~ o JY; = ¢lo - 0 be an
i —tEj 0 ’itEJ‘ 0

0.0
orthonormal basis for p. (j #0). E; = ¥(0,...,1,...0) is the j-th basis vector, and i is
0O - 0
the imaginary unit. We compute: [Yp,Y;] = Z(¥Y; — V;¥p) = & (0 w0 J) =
—‘itEj 0

—%J’Yj. Similarly, [Yo, J'Y;] = 1Y}. Now, let j,k # 0. We then have: [V}, Yi] = (YY) —
Y;Y;) = 5 (—Ejk + Ex;) where Ey; is the matrix whose only non-zero component is
(Ejk)jlc =1 Similarly: [Y}, J'Yk] = (Y}J’Yh - J /kl/]) = b%(ZEk] + iEkj) - i—géjkYo and:
[J'Y;, J'Yy] = JY; 'Y, — JY,J'Y; = b%(—Ejk + Ey;).

Hence we have

[Yo, Yilp = —¢J'Y;,  [%,Y]y =0

[Yo, 'Yl = Y5, [Yo,J'Yjly =0

[Y;, Vil = 0, [Y;,Yaly = (= Ejx + Ei;)

Y, J'Yels = =303 Yo, Y5, J'Yily = g2 (Eji + Eij)
[

JY;, IV, =0, [J'Y;, J'Viy = i (—Ejk + Exj)

Here j,k # 0.
We have 2(U(¥, o), 2) = ({2, Yo, Yo) + (Yo, 2, Ylp). For Z = ¥ this s 0, for Z =
it is 2(J'Y;,Y,) = 0, and for Z = J'Y} it is —2(Y;, Yp) = 0. It follows that U(Yg,Ys) = 0.
We have 2(U(Y,,Y;),2Z) = ([Z, Yo]p, D+ (Y, [2,Y]p). For Z =Y, and Z = Y,
this is easily seen to be zero, but for Z = J'Y;, we get 20U(Y,Y;),J'Ys) = —X(¥,, Y)) +
(Yo, 86;Y0) = 0;x(3% —1). Hence U(Y,,Y;) = (& —55)J'Y;. Similarly U(Yp, J'Y;) = s
37)Y;. Furthermore, for j,k # 0 we have U(Y],Yk) Uy;, J'Yy) = U(J'Y;, J’Yk) 0.




From (KNII) we know that the covariant derivative VxY = A (X)Y = 3[X,Y], +
U(X,Y). Hence we compute Vy, Yy = 3[¥p, Yo], + U(Y0, Yp) = 0. Furthermore: Vy,Y; =
1Y, Y, + U(Yo,Y)) = —32J'Y; + (% — )J'Y; = (% — £)J'Y;. Similar computations
give Vo d'Y; = (2 = )Y, Vy, Yo = &Y, and V., Yo = —&Y;. -

For j, k # 0 we now have: Vy, Y = [V, Yil, +U(Y;, Yz) = 0, Vy, J'Y; = 3[¥;, J'Yil, +
UY;, J'Y;) = — &85, Vo, Ye = 37V, Vi +U(J'Y;, Yi) = &6Yo, and Vo, J'Y =
Hence we have: ,

n—1 -
Vve = M(Yo) = (7 — 3) )_Yi AT
For j # 0:
Vi, = () = §Yo A TY;
Vioy, = A (J'Y;) = —5Yo NY;
Furthermore,
Ap([Yo, Yily) = Ap(—3J'Y) = 5 Yo A Y;
Ap([Yo, J'Yilp) = Ap(3Y5) = Yo A J'Y;
n—1
Ap([Y5, J'Yelp) = Ap(—228;1Y0) = 20, (5 — )Y YinJ'Y,
=1

We also have: [A,(Y), A, (Y;)] = [(&—1) S0l ViAS 'Yy, 2YoAJ'Y;] = (%—%)Z YA
2 “

JYi, YoANJY)] = (—j — )Y; AY, and similarly: [Ay(Ys), Ap(J'Y))] = (f7 — 7)Y A Yy,

[Ap(Y;), Ap(Ya)] = &Y A 'Y,
[Ap(Y5), Ap(J'Yi)] = SV, A J'Y;
[Ap(J'Y;), Bp(J'Ye)] = HY; A Y.

Finally: ad(|Yg, Y;]g) = ad([Yo, J'Yj]y) =0

ad([Y], Yk]b) = b%ad(—Ejk + Ekj) Y ANY, + J’Y ANJ'Y,
ad([Y;, J'Yaly) = 'zad(E i+ Exj) = 1 Y /‘\ J'Y), + 7Y N J'Y;
(notice that % wad(E ]k + Ey;)Y; = szk #J'Yy, etc.)

2d([J'Y;, JVi]y) = bad(—Ey + Ey) = 5Y; AYi + 2JV; A 'Y,

We are now ready to compute the curvature operators R(X A'Y) according to the
formula (3.2) R(X A Y) = [Ap(X), Ap(¥)] = Ap([X, Y];) — ad([X, V).
The results are:

(3.3) RmAmﬁwﬁ—anA%—Mhywww
= (& - YA+ L(-5YoAY)) = b4Y0/‘\Y




Similarly: R(Yy A JY;) = —SYy A J'Y, ROY; A Ys) = (% — )Y ATV — Y5 A Y,
For 4,k # 0 we have:
R(Y; AJ'Ys) = SV A J'Y; — Ap(— 226, Y0)
LG ATY + Y AJY;) = (;;-2 — 5 AJY;

—b%Yj/\JIYk—i—(SJk - ZYZ/\JIY
RU'Y A JY) = (5 — 5 A Ye— bi?J'Yj AJ'Y .

§4 Let S’Q" 1 = M be locally isometrically immersed into CP(n) around the point p.
Let N = —Jeo be the unit normal to M at p, then JN = ey € T,M. When M is the
geodesic sphere, eg is the structural vector Yy of M at p. We first show that this is always
the case (for n > 3).

Theorem 5 Forn > 3 we may choose Yy = ey.

PROOF. We set Yy = cos ey + sinpJe; and Y] = e; (normal to ey and Jey, hence to
Yy). We have: RY Y AY)) = R¥(cospegAey+sinpe; Aer)—R(YoAY1) = — cos peg Aey +
Sin(p(4€1/\J61+262/\J62+ +2€n 1/\J6n_1)+(z—j—1)Y0/\)/1 = (Z‘j?'_l) cos weg Aep +

sin @[(4 — )61 AJer +2eq A Jeg + -+ -+ 2e,_1 A Je,_1] according to (3.1) and (3.4). We
have: R"'(YO/\Yl)/\Rt(K)/\Yl) = 4(b—4 -1) smtpcosgoeo/‘\el/\eg/\Jeg +4(4- )sm el A
Jei Aes A Jes + 8sin? pey A Jey Aeg A Jes + -+ = 0 according to Proposmon 4, In case

n > 4 it follows immediately from the ey A Jes A ez A Jez term that sing = 0. For the
case n = 3 we have from the two first terms: (‘;—j — 1)sinpcosp = (4 — ';—:) sin? ¢ = 0.
Hence either (A): sinp = 0 or (B): ‘;—: = 4, cosp = 0. In case (A) we are done, in
case (B) we may choose Yy = Je;. Let Yo = ey where J'Y; = cosyeg + singpJes, (V2
is orthonormal to Y, Y, ] and J'Y7). Then: R{(YoAYy) = Ri(Jey Aey) —R(Yo AN Y,) =
—JeiNes+erANJex+5r LY, AY, = (& —1)J61/\62+61/\J62 =3Je; Aeg+e A Jey. But
then R{ (Yo AY2) A Rt(Yo NYy) = 6J€1 Aey Aer AJey # 0, which contradicts Proposition 4.
Hence (B) is impossible. g.e.d.

We now wish to prove our main result (Theorem 2) b% — ’;—Z = 1; this means that the
metric of M is the metric of S>*~!(r) for some 7 € (0,%) (Proposition 1). We start with
the easier case, n > 4.

Theorem 6 Forn > 4 we have 3 — %; =1.

PROOF. We have Yy = eg, Y1 = ey, let J'Y] = cosypJe; + sin ey, Yo = —sinpJe; +
cos 1ep (orthonormal to Yy, Y) and J'Y)) and J'Y; = coséJeq + sinfes. We have




R (Y, AY)) = (%; — 1)eg A eg as above.

R(Y; AY,) = Riey A (—sinipJe; + costhes)) — R(Yi A Ya)
=siny(de; A Je; + 2ea A Jeg + -+ + 2en1 A Jen_1) — costpe; A eg
—cospJe; A Jes — (&% — )T YI AJYa+ V1A Y,
= - (%i— — —)[cos¢cos§Jel A Jey + coswsm{;‘Jel A e3
+sincoséey A Jeg +8in ¢_81n feg A es] — b2 sin e, A Jey + b% cos e; A ey
= (& — )coswel/\eQ—[(%;—b%)cosﬁ-{—l]costel/\Jeg

b2
—(‘;—2 sz) sin g sin £eg A eg—(‘g—f — ) cospsinéJe; Aeg+(4— ) sinve; A Jey
n—1
[2 - (‘;—Z - %) cos €] sinpes A Jey + ZSlnd)Zek AJey, .
k=3
We have '
R(YoAY)) AR(YIAY:) = (% — L)eg Aer A RH(YL A Y))
= —(‘;—Z -1+ (%—: — ) cos] costheg Aer A Jer A Jey
+(%<j— - 1)(bl2 b—,,) sinysinfeg Aep Aes A eg
—(Z—: - 1)(‘;—; — ) cosysinéeq Aey A Jer Aes
-i—(’;—: -2 - (f‘b; b%) cos&]sinyey Aer Aex A Jey
n—1
—I—2(b‘1 )smd)eo/‘\el/\Zek/\Jek
k=3
There are two possibilities:
2
(A) z=1
(B) % # 1,501 = 0, (F - %)cosé=1,sin¢ =0
(% — %) must be different from ze1o)

In case (B) we then have cos§ = 1, 5 — %:— = cos& = %1, and we only need to show
that cos{ = —1 is impossible.

Consider now case (B). We have R(Y; AYs) = (F — 1) costbe; Aea. RI(Y1 A J'Y1)
Rt(el /\costel) R(YiAJ'Y)) = — costp(dey A Jey +2€2/\J€2 421 AJen 1)
& VY ATY - 2% - 5) YT, Y ATY = —(4+ 3% — )coswel/‘\Jel—Q[l—i-(

)cosf]cosxpeg/\JeQ—2cos¢Z] s ejAJej— (b‘1 —bz)zn L Y;NJ'Y; = —(4—3cosE—
)cosv,/)el/\Jel—Zcost y eJ/‘\JeJ+2 COSEZ" ! Y;AJ'Y;. Hence RY Yy AY)ARY(Y1A
J'Yl) = —2(——1) cosegAer A iy ej/\JeJ+2(b4 — )cos&eo/\el/\zz;ng/\J'Yj =0

Hence, for {5 76 1 we have:

~—~

n—1

(4.1) costeJAJeJ—cos§ZY ANJY; .

=3




Similarly

R'Y(Yy A Y,) = R'(eg A cos weg) R(l AY3)
= —costpeg N ey + §r LYy A 1/2:(“—4~—1)cos¢eo/\ez
RY(Ys A J'Ys) = Rt (cos ey A cos€Jes) — R(Ya A J'Ys)

= —coscosé(2e; A Je; +4eg ANJey+ -+ 2en1 A Jen_1)
n—1
—(3% — LV ATYs = 2% - DIIATY - 2(E - 5) ) Y ATY,
7=3
= —2cosy(cos€ + (‘g—j — 3))er A Jey — cosycos (4 + 3‘;—: — z)ea A Jeg

n—1 n—1
—20081/)(:08{2@/\ Jej —2(% — b%)ZYj/\J'Y}

=—cosa,bcos§(4 3cosé — zz)ea A Jey

n—1 n—1
—2coswcos§Zej A Je; +2cos£ZYj NJ'Y;.

Hence R{ (Yo AY2) AR (YA J'Y,) = — (‘5—4— 1) coséeg Aer A [ Z e; NJej —cosy ZY A

J’Yj] = 0. Hence, for —‘;—42 # 1 we have 23 e;j A\ Je; = cosy 23 Y; A J'Y;. Comparing with
j= j=
(4.1) this gives cos¢ =1 in case (B).
Now consider (A), —fo = 1. We have

RY Y1 A J'Y,) = Rl(ey A (cosEJey +sinfeg)) — R(YL A J'Y,)
= —cosée; N Jey +coséJe; Aey —sinée; Aeg —sinéde; A Jes
(b4 — )Yz/\J’Y1+ =Yi N J'Y,
= - cos&el ANJey +coséJe ANey —sinée; Aez —sinéde; A Jeg
—(1— g)ea A Jey + grer AcosEJep + prer Asinées
= (37 — 1) cos€e; A Jep + (cos€ + 1 — ) Jer Aeg
+(i2 1)sinfe; Aes —sinéJe; A Jes .

R (YL AJ'Y2) AR (Y1 AN J'Ys) = 2(35 — 1)(cos€ + 1 — g5) coser A Jea A Jeg Aeg
—2(i2 — 1)sinécosfe; A Jeg A Jey A Jes
+2(cos +1—5)(r — 1)sinéJe; Aea Aey Aes

2(b—2—1)sm ey NesANJey NJe3=0.

From the last term we see: either (C) ¥* = 1 or (D) siné = 0. If ¥ # 1, sin€ = 0
and RY(Y; /\ J'Y2) A R(YL A J'Y) = 2(F — 1)(cosé + 1 — sz)coser A Jeg A Jey /\ es,

hence 1 — 172 = —cos&. This does not hold for cosé = —1, hence cosé =1 and 1 — b—2 =
@ — L =1 (b =1). This finishes (D). Assume b = 1, & =1, i.e. a=>b=1. Then

R{(YIAYS) = —costel/\Jeg+381n¢el/\Jel+2sm7,beg/\Jeg—|—231n7,ZJZ,c 3ek/‘\Jek




Setting RY(Y1 A Yz) A RH (Y1 AY,) = 0 we get singy = 0.
RY Yy A J'Y;) = RHey AcospJer) — R(Yy A J'Y;)
= —cosy(de; A Jey +2ea ANJeg + -+ 2ep_1 A Jen_1)

n—1
—(3% — SV ATV~ 2% - F)) VATV
k=3
n—1
= —3cosye; A Jep — 2.cossze;c A Jeg .
k=2
RI YV AJY)AR(YIAJY)) =12e; AJey AegAJeg+- -+ #0, which excludes this case.

g.e.d.

§5 We now deal with the case n = 3. We know already (Theorem 3) that Yy = ey,
Y: = ey, J'Ys = cosypJe; +sinyes, Yo = —sintpJe; + cos ey, J'Yy = cos€Jey (= £Jey).
The formulas (3.1) and (3.2) specify to:

(5.1) | R(ejAey) = —ej New — Jej A Jep = R(Jej A Je)
2
R(ej NJep) = —ej NJep+ Jej Aep — 2(5ij63 A Jep
and =0
(5.2) R(YyAY;) = —%Y, A Y
R(Yy AJ'Y;) = ~SYo A J'Y;
RY;AY) = (5 — F) Y ATYe = 5Y A Y (56 #0)
RJY; NTYy) = (% - 5)Y; AY = FTY; A TY
RY;ATY) = (% — &5)Ye ANJY) - Y A T'Y
+2(% — £)0 (Vi ATV + Y2 A J'Y,)
(5.3) R(YyAYy) = R(es Ney) — R(Yo A YY)

2

= —egNejp — Jeo/\Jel+EZeo/‘\el (%Z 1)60/\61—J60/\J61

(5.4) R(Y; AYs) = R(ey A (—singpJe; + costpes)) — R(Yi A Ya)
= sin(2eg A Jeg + dey A Jey + 2e3 A Jeg) — costpe; A e
—cosper AJeg — (% — )T YIATYa+ HFYIA Y,
= (ﬁ - —)(costel + sines) A coséJes + b261 A (—sinpJe; + cos1pey)
= 2sineg A Jeg + (4 — b%)sind)el A Jer
+(2 — ('ZT — &) cos)sin ey A Jeg + (3 — 1) costher Aes
—(1+ (% — ) cos&) cospJer A Jeg .
fﬂnAnwuu AYa) = (% — D)2~ (& — ) cos)sintpeg A ey Aeg A Jey
—(1+ ("—4 — &) cos€) cosipeg Aer AJer AJes] =0
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Hence, either (A) %:— =1or (2— (%j— — bz)cosf)smw (1+ (“—4 — pz)cosé)cosyp = 0. In

the second case sin 9 or cos® must = 0, and (— — b—z) cosé = 2 or —1. In addition to (A)
we have the two possiblities: (B) cosy = 0 and (%; — z)cosé =2 or (C) siny) = 0 and
(‘g—: — )cosé = —1.

Now, R(Y1 ANJ'Yy) = R(el A coséJey) — R(Yl A J'Ys) = —cose; A Jes + cosEde; A
er— (% — DV AJYi+ EVIATY, = —coséer A Jey +cosEJer Ay = (% — L)ea A Jer +
5z cos ey /\ Jey = (35 — 1) coséer A Jey + (( — ) +cos€)Je Aey

RYY; A J'Ys) A Rt(y1 A J'YQ) =2(% — 1)[(;;—3 — &) +cos€]cose; A Jey A Jer Ae.
Hence either 1% = 1 or (& — &) + cosé = 0.

First check (A): bz = 1. If¥» = 1 we have a = b = 1. In this case we have:
RY(YLAY;) = 3sin ge; AJe; +2sin e AJeg—cos e Ades and RH(YIAY,) AR (YIAY,) =
12sin24e; A Jeg A ey A Jeg = 0, hence siny = 0.

(5.5) R(Y; A J'Y) = R(ey A (cospJe; +sinvpey)) — R(Yy A J'Y7)
= —cosy(2eq A Jeg + ey A Jey + 2es A Jeg) — sintpe; A eg
—siniJe; A Jey — (3% — B)WI ATV —2(% — 5o AT, =
— (3% — £)e1 A (cosJe; + sin vey)

—2(‘5—; — 3z) cosé(— Sian€1 + coses) A Jey

= —2cos ey A Jeg — (4 + 3 — &) cosper A Je
—2(1 + (ﬁ — 57) cos &) cos ey A Jez
—(1+ 3— — &) singe Aex + (2( — z)cosé — 1)singpJe; A Je .

In the case under investigation (a = b = 1) this reduces to R*(Y) A J'Y1) = —3cospe; A
Je, — 2cosyes A Jey. Hence RU YL A J'YY) AR YL A J'Y)) = 12cos? ey A Jey Aeg A Jes,
which is a contradiction since cosy = *1.
It follows that in case (A) we must have: (‘;—j — %) =- cosf Flor (‘;—4 ) cosé =
~1. 1 — 77 = 1 is impossible, hence we have: 1 — 5 = -1 5 =2,0=3 d°
5 - b—4 = 1, which corresponds to the solution 83( )
Now we consider case (B): (& — &) cos¢ = 2, cos¢ = 0. From R{(Y; AJ'Y3) ARY Y1 A
J'Yy) = Z(b—2 — 1)[(‘;—: — b—2) cosé+ 1lley AJeg AJdeg Aeg = 6(bi2 —1DerAJea AJey Aey =0,
we conclude that b = 1, R{Y; A J'Y;) = 3coséJe; Aep. R Yy AYY) /\ R (Y1 ANJ'Y,) =
3(‘;—: ~1)coseg Aey AJey Aey # 0 (in case (B) we may assume that & > = 1). Hence this

contradicts Proposition 4 and (B) cannot occur.

We now consider case (C): siny = 0 and (§& @ _ %) cosé = —1. If cos€ = 1, this says
517 — b4 = 1, which is exactly what we wish to prove Hence it is sufficient to show that
cosé = —1 is impossible

Assume cosé = —1, we now have: Yy = ey, Y1 = €1, J'Y; = cosypJey, Yo = cospes,
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J'Yy = —Jey, where cost) = +1, & b4 — 3z = 1. Now:

1
R(Y()/\Y)—b—Qeg/\el Jeo/\Jel

R(Yo A J'Y,) = R(eg A cospJer) — R(Y, /\ J'Y7)

= —costeg A Je; +cospJeg Aer + b4YO AJ'Y;
a2
= (b—4 — 1) cospeg A Jey + cospdeg Aey

1
= b—2cos¢eo A Jep +cospdey A eg

R(Y; A J'Y)) = —2cospeg A Jeg — (7T — b%) coser N\ Jéy
(from (5.5)).
From Gauss’ equation we compute:
Gl (R{(Yo AY:)Yy, Vi) =boobu — 0 = — 1= &
G2. (RY(YyAY1),Y, J'Y1) = boobii — bo1ber =0
G3. (RYYo AY1)Y1,J'Y1) = boyba1 — boibiy = 0
G4 (Rt(YO A Jl}/l) JI}/1> = bOObll b b2 COS ’(,[)((60 A Jel)eo, COS ’l/)J€1> b%
(R'(}
(R

G5. (R{(YyAJ' Y)Y, J'Y)) = bmbu—bmbu = 75 cosp((eoAJer)er, cosPJer) =0
G6. (R(Yi A J'Y)Y:, J'V1) = bybyr — b2
= (—(7 — 3) costp(er A Jel)el,costel) =T

boo bo1 boi
We have: 0 = 200 201 zoi = (bo1b11 — boib11)boo — (boob11 — bgi)bm + (boob11 — bo1bo1 ) bo1 =
o1 Y11 911
— g1 according to G2, G4 and G5, hence by = 0.
o boo bo1 bpi 1 . .
Similarly: 0 = | ba zu 211 = pbo1 (developing after the first line), hence bor = 0
boo bo1 bot
boo bo1 bo1 1
0 = |bor bu by5 | = 350,71, hence b1 = 0.
bo1 b11 byi
The remaining equations are now: bgby = boobri = 35, bubir = 3 — 7. Hence

biy = by = (& — Y2, boo = 32 (g — 7) 72

To deduce a contradiction from this we need to apply the Codazzi-Mainardi equations.
We first observe that (C) must hold at all points, hence sin = 0 and cos{ = —1. Hence
the above values for b;; must also be globally true, in particular Y;(b;;) = J'Yi(bi;) = 0.
The Codazzi-Mainardi equation states: (R(XAY)Z, —Jeg) =Y (B(X,Z))—B(X,VyZ)—
X(B(Y,Z2))+B(Y,VxZ)+ B([X,Y], Z), where B is the second fundamental form w.r.t.
the normal —Jeg of M at p; i.e. VxY =VxY — B(X,Y)(—Jey) = VxY + B(X,Y)Jeg.
Weset X =Yy, Y =Yy, Z = JY and get: (R(Yy A Y1)J'Y1,—Jeg) = cos Y{R(ey A
e1)Jey, —Jeg) = cos{(—eg A ey — Jeg A Jer)Jey, —Jeg) = costp(Jeq, —Jeg) = —cosy =
Yi(bo1) — B(Yo, Vi J'Y1) — Yo(bor) + B(Y1, Vi, J'Y1) +B([Y0,Y1], J'Y1) =0+ fboo + (2 —
l%)bu - %bﬁ = :Fl Here, b% = ll;'-b and boo - bll =2 (— — 7) 1/2 _ (b% — 7)1/2 = 7b(1 -
76%)712, So (R(Yo A Y1) J'Yh, —Jeg) = T(1+0%)Y2(1 - 7b2) 2 = 1. 49(1+%) = 1-TH%
This is a contradition. g.e.d.
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§6 We now embark upon the study of homogeneous 3-spheres isometrically immersed
int CP(2). The first point is that in this case it is important to note that the isometry
group is U(2) rather than SU(2) (which acts simply transitively on S$°). This was not
so in higher dimensions, since the isotropy group for SU(n) is SU(n — 1), with isotropy
representation equal to p,_; @ 6 on R**~%2 @ R. Consequently, for n > 2 an invariant
inner product is the standard inner product stretched by a factor a on R and by a factor
b on R**~2, For n = 2, SU(1) = {1}, and we do not have this limitation. Let CP(2)

be coordinatized around §] by -[%ﬁ}, z1,22 € C. Let X = (_81 § é), and consider the
. 0 cost O sint 0 sint | | tant .. . ;o
geodesic exp(tX) [?] (_somt(l)coost) [(1)} [cogt] = [ 0 ] Similarly, with E; =
00 —i
<0 0 01>, El = (§ 0 g) and J'E| =

000 o 8_—21’) we have: (exptEj}) [?] = [ zttl)ant],
(exptE]) [g] = [ta%t], and (exp tJ' EY) [%] =
in local coordinates: (3'),(9),(%)).

We prove that Ej, E;, J'E, correspond to Ey = (§ %), B1 = (%4), J'E1 = (9§)
respectively under the map J(r) : su(2) = TexprzS(r) defined by J(r)(Z) = the Killing
field of Z at the point exp(rX)SU(2), r € (0,%) (see Proposition 3 in Tomter [T]). To
do this it is sufficient to see that [X, Ey] = Ej, [X,E1] = Ej and [X,J'Ey] = J'E].

_(901Y (500N (i000\ (0 0INT N0 0N Ty g _
o= (R84) (358) - (858) (448) = (817) = 5 smieny (.5 =
El, [X,J' F\] = J'E;. To check the isotropy subgroup of U(2) on [(Tl)] we need only check

the isotropy of the standard representation of U(2) on (§), and that is (5 %) = U(1).

This acts trivially on (#) and by the standard representation on (J) = C. Hence, by
Schur’s lemma an invariant inner product is given by the standard inner product on R?® =
Sp(Ey, Ey1, J'E}), stretched by a factor a on RE, and a factor b on R? = Sp(Ey, J'Ey). We
denote the sphere with this metric 52,. Since S2, is smoothly diffeomorphic to SU(2),
Ey, B and J'E; now constitute a basis of left invariant vector fields, and we wish to take
advantage of that. We have [Ey, E1| = 2J'E\, [Ey, J'E1] = —2E4, [Ey, J'Ey] = 2E,. Here
Ey defines the distinguished direction. Let Yy = %, Y, = -b;—l, J'Y, = ll—bE—l be unit vectors.
Then [Yp, V1] = 2J'Y,, (Yo, J'V1] = —% 1, (Y, J'Y) = i—;’YO. Koszul's formula says that
UVxY,Z) = XY, 2)+Y(X,Z)—-Z(X, V) +([X,Y], Z)—([Y, Z], X)+([Z, X],Y). By left
invariance the three first terms vanish, hence 2(Vy, Y1, Yp) = ([Yo, Y1), Yo) — ([¥1, Yo, Yo) +
([Yo, Yol Y1) = 2(2J'Y},Y) = 0. Similarly 2(Vy,Y;,Y1) = 0 and 2(Vy, Y1, J'V1) = 2(2 -
). Then VyY; = (% — )J'Y1. By corresponding computations Vo J'Y1 = (37 — %)Yl,
VY, = —5J'Y1, Vi J'Y = 5V, Vo Yo = 51, VonYi = —5Y and VYo =
VY1 = VuyJ'Y; = 0. By left invariance these formulas hold at all p € Sg)bQ Then
we get for the curvature tensors: R(Yo AY)Yy = Vy, Vi Yo — Vv Vi Yo — Vo Yo =
Vyo(—J'Y1) — 0 — %VJIYIYO = —m(E — %)Yl — %(b%—Yl) = —‘;—le. By corresponding
computations R(Yp A Y1)V = §Y; and R(Ys A Y2)J'Y; = 0. It follows that R(Yo A Y;) =
— Yy AYy. Similarly R(YoAJ'Y:) = — LYo AJ'Y; and R(VIAJ'Y) = (3% — 51 ATV,
We also have:

R(eo A 61) = —eyNe — Je() AN J61

R(eo/\ Jel) = —eg A .]61 +J€0 N eq

R(ey A Jey) = —2eg A Jeg — deg A Jey.

N
oo

it 2

—
[=)

-itlan t] (corresponding to tangent vectors
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Now choose —Jeg to be the unit normal to S3, C CP(2), then J(—Jey) = e is
a tangent vector field to S2,. (e1, Je1) is an orthonormal frame field in the orthogonal
complement of the line bundle defined by e on S} ,. We define it such that Yy = cos peo -+
sin pJe;.

Let J'Y; = —sin peg + cos pJe; (orthonormal to Yy), then Y; = £e;. We compute:
R(Yo AY)) = R(Yy AY)) — R(Yo A Y:) = £R((cos peq + sinpJer) A er) + b4Yb AY) =
Tcosypey A ey F cospleg A Jey £ sing(2eq A Jeg + 4eq A Jey) + b4YZ) AY:. We have:
€g = COS Yy — sin cth, e, = Y1, Je; = sinpYy + cospJ'Y;. Substituting this we
get: R(Yy AY)) = —cos? oYy AY) F cospJeg A (sin Yy + cos pJ'Y1) + 2sin cp(cos pYy —
sin pJ'Y;) A Jeg + 4sin oY) A (sin oYy + cos pJ'Y1) — sinpcos oY1 A J'Yy + 42 CY,AY, =
(5;;—1—3sin2 ©)YyAY1 +3sinpcosp¥i AJ'Y1 FJeg A(3sinpcos oYy +(1— 3sin? ) J'Y1).
By similar computations we get the result :

(5.6) R(Yo A YY) = ( —1—3sin? )Yy A Y] + 3sinpcosp¥; A J'Y;
TJeg A (3sinpcos Yy + (1 — 3sin® p)J'Y7)
R(YoANJ'Y) = (b—4— DYoAJY1+Jeg A Y,
R(Y1 AJ'Y}) = 3sinpcospYo AY; — (4 + 3‘;—: - 547 —3sin? @)Y, AJ'Y;
FJeg A ((—2+ 3sin® @)Yy + 3sinpcos pJ'Y)) .
We are now in a position to consider the Gauss equations:

Gl. (RY(Y, AY1)Yp,Ya) = & — 1 — 3sin® ¢ = boobys — b3,

G2. (RY(Yo A Y1), Y0, J'Yy) = 0 = boobii — borbor

G3. (RY(Yo AY1)Y1,J'Y1) = 3sinpcos ¢ = boibi1 — birbos

G4. (RYo A J'Y) Yy, J'VA) = % — 1 = boobir — b

G5 <R (}/E) A JI}/l) JI)/> = 0 = b01b11 - b01b11
G6. (RM(YAANJY)),JY) = 55— 35 — 4+ 3sin? ¢ = by by — b3
bOO b01 bo1

= 0 = (borbri — boib11)boo — (boobi1 — bgi)bm + (boob11 —

boo bo1 boi
bog by bi1

bo1bo1)bo1 = 0 + (1 — %5 )bor + 0 according to G5, G4 and G2.

D1: Hence (1 ~ %)bg = 0 (and for a2 # b* : byy = 0).

Now consider:

boo bo1 bo1
Similarly by considering | bo b1 b11 | = 0 we obtain:
boo bo1 bo1
D2: 3 sin ¢ cos @by + (‘g4 — 1 —3sin? p)bg = 0.
bo1 b11 b11 .
bo1 b1 b7 | = 0 grves:
boi b11 bi1
2 . .
D3: (& — 3% — 4+ 3sin® )by + 3sin ¢ cos by = 0
boo bo1 boy .
bor b11 b3 | =0  gives:
bOO bll bu
D4: 3sin ¢ cos by + (— —1-3sin )by =0
bOl bll bll
bor b11 b7 | =0 glves:
bOl bll bll
D5: (5 39-—-4+3sin2 ©)bo1 + 3sin ¢ cos by = 0
boo bo1 b01 .
and | bt byi b1 | =0 gives:
bot b11 bit
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aZ
D6: (1 — % )by = 0.
We first deal with the case a? # b*. Then, by D1 and D6: by; = b;1 = 0. Furthermore

boo 0 bgi
D?: detB = 0 b11 0

bo1 0 bi1

3 sin ¢ cos pbgi + (‘;—j — 1 — 3sin? )b

= (% — ——4+3sm ©)boo + 3 sin ¢ cos by = (b4 —1byy =

Proposition 7 For a? # b* we have det B # 0.

PROOF. If det B = 0, it follows from D7 that b3 = 0, from G3 that sin ¢ cosp = 0,

and from G1 that 3 —2 — 1 —3sin®¢ = 0, hence sinp # 0 and cosp = 0. We then have

4_4 FromGGweget O—— 12 — 4+ 3, ie. b42—13 b2=13,a2=%. We

w1sh to apply the Codazzi- Ma1nard1 equations, these say that (R(X AY)Z,—Jey) =
Y(B(X,Z)) - B(X,VyZ) - X(B(Y, 2)) + B(Y,VxZ) + B([X,Y), Z).

First, set X = Y,, Y =Yi, Z = Y,. This gives: (R(YyAY1)Yy, —Jeg) = £(R(sin pJe; A
e1)sinpJey, —Jeg) = £(2e0 A Jeg + der A Jey)Jey, —Jeg) = 0. Notice that cosp = 0 at
all points of S3,, hence ¢ is constant and Yy(by) = Yi(b;;) = J'Yi(by) = 0. Then
(R(Yo AY1)Ys, —Jeq) = Yi(boo) — B(Ys, Vv, Yo) — Yo(bo1) + B(Y1, Vi, Yo) + B([¥o, Y1), Yo) =
0+ 3zbo1 — 0+0—|—2b01 = 2bpi+ 3b01 = 0. Hence by; = 0. Furthermore, set X =Y;,Y =Y,
Z = J'Y;. We get: (R(Yy AY1)J'Yy, —Jeo) = Fsin® p(R(Jer A e1)eg, —Jeg) = F{(2eq A
Jeg+4es AJer)ey, —Jeg) = £2 = —B(Yy, Vy, J'Y1) + B(Y1, Vy, J'Y1) + B([Yo, V1], J'Y1) =
—Lboo + (% — 2)bi1 + 2b11. So:

13
(5.7) —2bgo + Zbii =32.

Finally we set X = Y, Y = JV,, Z = Yy, We get: (R(Yy A JY1)Y1,—Jep) =
:F<R(J€1 A 60)61, —J60> = :F<(€0 A J€1 - Jeo A 61)61, —J€0> = =41 = —B(YE), VJ’Yl}/l) +
B(J'Yy, VY1) + B([Yo, Y1), Y1) = &boo + (2 — &)bi1 = 2bgo + J011.

Hence 2bgy + 'bu = +1. Add this to (5.7), we get: %bii = %3, b1 = :l:%. Hence
2bgp = 1 F 2.2 = 1 F 2 = +1, by = £15. boobii = 75, but this violates G4 since
boi = 0. Hence, for a? # b* we have detB #£0 q.e.d.

Now

3 bi1biz—b3;  boibyz—bo1bii borbyi—borbnr
(det B) = (det B) boibi1—boibii  boobii—bpi  bo1bo1 —boobi1
bo1by1—borb11 borbor—boobys  boobi1—b3,
2
b—42——3Z—4-+3sin2 p—4 0 3sinycosp
2

=det B 0 a1 0
3sin @ cos 0 “2—1—35in2<p
2 4 2 2
(de’cB)(b4 —1)[(b2 3b—4+331n 0 — 4)(b—4—1—3sin2<p)—98in2cpcosch]
CL2 a2 4 12 0,4 2 2 2
:(F—l)[4b—6—5§— 7 sin® ¢ — 3b_8+3—+9(l:_48m <p+3b4 sin® ¢
a2
— 3sin? p — 9sint p — 4b4 + 4+ 12sin® ¢ — 9sin® p + 9sin? ¢]
a? a? _a* a® 4 a? 1. .
= (b4 1)[4?)3 —3b—8 T b—+4—|— 12(b_4_ b—z-)stgo]detB :
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We cancel det B and obtain (det B)? = (% —1)[4% — 3% — Q-3 4 +a+12(% — &) sin® ).
Now we substitute (‘;—4 — 1 — 3sin? ¢)byi = —3sin @ cos pbgy (D2) into D7 to obtain:

(5.8) (%; —1—3sin*p)det B
= (%; —1—3sin®p)(3 — 3“ — 4 + 3sin® )bgo
+3 sincpcos go( 3 sin ¢ cos )
[4 - b—: - b—4— b—2+4—|— 12(“—‘1 — &) sin® ¢lboo -

Similarly, by substituting for by; from D5 into D7 we obtain:

(5.9) (% - 3Z—j — 4+ 3sin?p)det B = [4‘;—: —3G -G — A +4+12(E - o) sin® @by
and

(5.10) det B = (& — 1)b,y

Proposition 8 We have sin ¢ 1s constant on S3, (i.e. @ is constant) in the case a? # bt
PROOF. Consider the Codazzi-Mainardi equation

(R(}/()/\lel)yl, '—J€0> = i(R(eo A J€1)61, ——J€0>
= :i:((—e() A J€1 + Jeo A 61)61, —J60> = =1
= ']Ilfl(b()l) - B(Yb) VJ’Y1}/1) - YO(bli) + B(JIYh VY0Y1) + B([YO, JIYI])K) .

Since b01 = bll = 0 we have Jq/ (b()l) Yb(bli) =0and (C5) I%boo—gbu‘F(z—;z )bﬁ = =+1.

Multiply both sides by (b4 —1)[4 - b—: —‘;—Z— ,f—2+4+12(‘;—j— L) sin? ]. We obtain:
57( )(%T— — 3sin? @)detB——[b—:—3Z—;—%;——%+4
+12 (“—4—-51—)sm (p]detB-}-( )(‘;Z —1)(1;%—3“ — 4 + 3sin® p) det B
(e -3 - - f+ 441205 - st

We wish to keep track of the terms involving sin ¢. On the RHS (right hand side) this is
simply 12(;:3 — 1)(‘;; — &) sin® . On the LHS we have (R(a,b) sin® ¢ + Ra(a, b))detB
where R, (a b) and Ry(a,b) are rational functions in a and b. Assume first that {7 > £ 1 oh
Then sin? ¢ does occur with nonzero coefficient both in RHS and in det B. Assume first
that Ry(a,b) # 0. Then on squaring both sides of the equation we get on the LHS:
12R, (a, b)? (— — 1)( b2) sin® o, hence the coefficient of sin® ¢ is nonzero. On the RHS
we only have terms of sin? ¢ and sin? . We now have a polynomial of degree 3 in sin? ¢
equal to zero. We conclude that sin ¢ is constant Next assume that R;(a,b) = 0. Then,
on the RHS we have 144(‘;—: — 1)2(‘;2 — %)% sin* o+ lower order terms, on the LHS we only
have sin? ¢-terms. Hence, since the coefficient of sin® ¢ is nonzero, we again have that
sin ¢ is constant. This finishes the case ‘;—Z #* biz

Now assume & = %, i.e. @ = b. There are no sin p-terms in RHS or in det B. We
compute Ri(a,b) = 3( — 1)(—3) + 33(zz — 1) = 0, hence there are no y-terms at all in
this case. For the remaining terms we obtam.

b= 1P 2= &+ 0+ 3 - D - 9detB= (b 1~ F+9).
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$(L —1)det B = (& — 1)(% — & +4). Since ig; =1 for b = 1, this is impossible, hence

we get 3, /(& -1 —-3+4) :b—lg—b%+4 By Proposition 7 3 — 5 + 4 # 0, hence

5\ \p2 BT T b2
S =D~ f+ 9= (b~ + 42 and S =1 = (k= F+4) = G = Dk — ).
So 2 = b2 —4,i.e b% = —4 but this is a contradlctmn Hence this case cannot occur.

g.e.d.

Proposition 9 In the case a® # b* we have sin ¢ cosp = 0.

PROOF. By Proposition 8 ¢ is constant. By (C1)

(R(Yy A Y1)Yo, —Jeg) = £{R((cos pey + sinpJer) A e1)(cos ey + sin pJe;), —Jeg)

= +((— cos peg A e; — cospJeg A Jey + 28in ey A Jeg

+ 4 sin pe; A Jeq)(cos ey + sin pJeg), —Jeg)
= +(2sin @ cos pJeg + sin p cos pJeg, —Jeg) = F3sin pcos g
= Y1(boo) - B(Yo, VnYo) — Yo(bor) + B(Y1, Vi, Yo) + B([Yo, Y1), Yo)
a 2
= 5 501 + b01 (b-"- )bo1

Similarly, (C9)

(R(Y) AN J'Y))J'Y,, —Jeg)
= +(R(e; A (—sin ey + cos pJe;))(— sin pegy + cos pJe; ), —Jeg)
= +((—sin ey A e; — sinpJeg A Jeg — 2cos ey A Jegy
— 4cos ey A Jey)(— sin ey + cos pJey), —Jeg)
= +(sin ¢ cos pJey + 2sin ¢ cos pJeg, —Jep)
= F3sin @ cos ¢ = J'Yi(byr) — B(Ys, Vo J'V2) — Vi (br)
2a 3a

b01 + b —boj

—i—B(JIYl,Vle’Yl)+B([3/1,JIY1]7Jl)/1) bz b?

b2

We subtract C1 from C9 and get: ( )bm = 0. Hence by; = 0 unless 2 7= %, ie. a=b.
But a = b was proved not to occur at the end of the proof of Proposition. Hence by = 0
and sin ¢ cos ¢ = 0. q.e.d.

§7 We continue with the case a? # b, and we only need to check sin ¢ = 0 and cos ¢ = 0.

Theorem 10 For a? # b* and siny = 0 and cos p = 0 we have: b2 — b4 =1.

PROOF. By D1, D2 and D6 we have bg; = by; = bj1 = 0. Furthermore we may choose
Yo = e, Y1 e, J'Y] = Je;. From G1, G4 and G6 we have: ‘;4 1 = boob11 = boobii,

& —3% —4 = by bry. From this by = by = =1/ % — 3% — 4 and by = (% —1) (5 —3% —

4)~4/2, From the Codazzi-Mainardi equation (e.g. C3) we easily compute by — by = :t%,
and we could substitute the above values for bgg and b;; to obtain the desired relation
between a and b. However, we now apply a more efficient and complete method. Both the
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curvature tensor R and the complex structure J of CP(2) are parallell. Hence VxJ =0
for any X. Consider fex. Vy, J'Y) = VyJ'Y; + biiJey = wYo +0 = Y. On the
other hand, writing C for contraction, we have: Vy, J'Y; = Vy,Je; = Vy, (C(J ® €1)) =
C(?yl(;]@el)) = C(vylj®61 +J®vy1€1) = 0+J(vy161) = iJ(vlel) = :i:J(Vylyl‘*‘
biiJeg) = 0% byy (J%e) = Fbireo = Fb11Yo. So by = bry = Fyz. Substituting into G6 we

2

obtain: & = 5 — 3‘;—3 — 4. Hence 4(3 — %;) = 4, and the result follows. q.e.d.

Proposition 11 For a? # b* we cannot have cos ¢ = 0 except possibly fora = /3, b= 1.

PROOF.  In this case we have: Yy = Jey, Y1 = e1,.J'Y; = —eq, as well as by; = b7 = 0.
It is easy to see that by; = 0 also: From D2 we have (%; — 4)by; = 0, hence the result is
true for a® # 4b*. Assume a? = 4b%, then D5 gives (5 — 13)bo1 = 0, hence the result is
true for b? # &, a® # &L, By subtracting C1 from C9 we get (% — 2)by; = 0 at the end
of the proof of Proposition 9. But ‘;—Z —-1= %, hence by; = 0 always.

We have Vy, Yy = Vy, Yo + booJeo = bpoJeg, and also: VYo = Vy,C(J Q@ e;) =
CVy(J@e) = +C(J @ Vy Y1) = £(& — 2)Jeo. So boo = (% — 2). Similarly Vy, ¥, =
VY1Y0 + b01J60 = _b%_JIYI = 1%60 and also @YIYE) = vyl (C’(J®el)) = :f:C(J@ ﬁYlyl) =
+J(Vy, Y + b Jeg) = Fbueo. Hence by = F&. From G1 we have boobyy = & — 4

—& (% — 2y, 50 t;_j =% +2,a® =0+ 2b*. We have:

B2, = a2 _ boobiibiibiy _ (a2
11 — - -

be boobii bt

a® a -
—E-F-DE-D7

So ‘;—j(‘;—:—l):(%;—@(%—?’—b‘%g——l). Fromthisweget‘;—:—kl;%:‘;—:-i-sb—“f-—i-l, and

substituting a® = b + 2b* we get b=1, a = /3. g.e.d.

It is easily seen that this solution, with by = i%, by = FV/3, b = £2v/3 satisfies
all Gauss equations, Codazzi-Mainardi equations, and also the requirement that J be
parallell. Since the principlal curvatures b;; are constant, Sg)b is a Hopf hypersurface.
Kimura ([Ki]) proved that any such hypersurface is an open subset of a submanifold
which is homogeneous under a subgroup of the isometry group U(3) of CP(2). Such
submanifolds are classified in Takagi ([Tal]). For the case n = 2 we only have the
geodesic spheres and tubes over an RP(2) (or a complex quadric). We show that one of
those tubes is similar, but not equal to our possibility.

We find the factors a and b by computing the lengths of Killing-Jacobi fields along the
geodesic exp(t.X)p, starting at a point p € S5, (recall X = (_81 § é)). Consider the field

J(t) = f(t)eo.

Since the sectional curvature of sp(eg, Jeg) is 4, we have, by the Jacobi equation
L;TZZJ = —4J(t). Hence f"(t) = —4f(t). Since RP(2) is real, its tangent space must
equal sp(eg, e1), hence the Jacobi field start out at its maximum length for ¢ = 0. So
f(t) = cos2t. By a similar argument the field K(t) = g(t)e; must satisfy ¢"(t) = —g(%).
Here we assumed e; was chosen such that T, RP(2) = sp(eg,e1), (unproblematic when
Yy = ey). Hence g(t) = cost. Finally, for L(t) = h(t)Je; we also get h”(t) = —h(t), this
time, however, Je; is orthogonal to T, RP(2), and h(t) = sint. For precisely one ¢t € (0, )
two of these are equal: cos(2- %) =sin ¥ = ;. By the formulas of Cecil and Ryan ([CR],
p. 494) the principal curvatures are 2tan2t, tant, —cott. For ¢t = % we get 2v/3, —15,
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and —v/3, coninciding with the values (albeit in a different order) we had computed for

S\a/gl. From Takagi’s list ([Ta2]) it follows easily that for n = 2 only geodesic spheres (A1)

and real projective planes (B) can occur, hence, by Kimura's theorem, this is the only
possibility. It is not an S® with the given U(2)-action.

§8 We finish with discussing the case a? = b*. We have
D2: 3 sin @ cos by — 3sin? pbyi = 0
D7a: (3 — 7+ 3sin® ¢)bgg + 3sin ¢ cos pby; = 0
D3 and D4 are linear equations exactly like this with by; substituted for bgy-and by for
boi. D5 and D7 are again the same with this time by; substituted for byy and bi1 for boi.
The determinant of this system equals 12(% — 1) sin® . If this is not zero, we must have
boo = bo; = 0 and similarly by; = b;7 = 0 and by = b;7 = 0. Hence, in this case only b1y
could be nonzero. From G1 it follows that sin ¢ = 0.
We would then have V iy, Y] = Vv, Y1 + bizJeg = —Yp, but on the other hand:
Vi Y1 ==V C(J ® JY;) = ~C(J @ Vv, JYi) = FJ(Vym Jer)
= FJ (Vi J'Y1) = Fbi1(J (Jeo)) = Lbrreo = £b11Yo .
But b33 = 0, hence this gives a contradition and cannot occur.
Now either: (a) b=1andsing#0  or (b) sinp =0.
First consider b = 1 (= a). From D2 we have by; = cot by, similarly b3 = cot bg; and
bri = cot wbot = cot? wbgo. In addition to this G1 gives bygby; — b3, = —3sin? ¢ (the rest
of G2-G6 are easily seen to depend on these 4 equations).
We compute:
Vy,Jeo = J[Vy,(cos Yy — sin pJ'Y;)]
= J[—sin Y;(p) Yo + cos pbyo Jeo — cos pYo(p) J'Y1 — sin pVy, J'Y:
— sin @by Jep)
= J[-Yo(p)Jey + sin pY1] + (sin pby1 — cos pbgo)eo
= Yo(p)e; £sinpJe; + (sin pbyr — cos @by )eg -
On the other hand (Vy,Jeg, Yo) = —{Jeo, Vy,Yo) = —(Jeg, booJeo) = —bgo. Similarly
<vy0(]69, Y1) = —(Jey, Vy, Y1) = —bo1 and (Vy,Jeg, J'V1) = —(Jeo, VygJ'Y1) = —bor.
Hence Vy,Jeg = —booYp — bo1 Y1 — b1 J'Y1 = (— cos pbgo + sin pbyi )eo F borer — (boo sin ¢ +
boi cos p)Je1. Hence we have: by sin ¢ + bgi cos ¢ = Fsin . Substituting by; = cot pbgo
into this we get: bgosin® ¢ + bggcos? ¢ = byg = Fsin®¢. Also byy = Fsinpcosp and
bi1 = cot? pbyy = F cos? .
Now we also have:
Vy,Jeo = J[Vy, (cos oYy — sin oJ'Y;) + cos pbg, Jeg — sin wby1Jep)
= J[— sin Y} (p) Yy + cos oV, Yy — cos Y (p)J'Y) — sin ¢ Vy, J'Y]
+ sin pb;1e9 — €oS Wby e
= J[-Y1(p)Je; — cos pJ'Y; — sin pYy] + sin pbi1eg — cos pboreg
=Yi(p)er — J(Jer) + (sin b1 — cos wbor e
= Yi(p)er + e + (sin b1 — cos pbor)ep -
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Also <vy1J€0,YE)> = —<J€0,vyl)/0> = —b01, <‘_7Y]J60,Y1> = —(Jeo,vlel) = _blla and
<vy1J€0, .]I)/1> = — Jeo, vleI}/O = _bli' Hence: Y_7y1JeO = —b01}/0 - bnYl - bﬁ.]l),l =
(by1 sin @ — b1 cos p)eg F brrey — (boy sin p + by cos p)Jer. So we have: by sin ¢ + b1 cose
= 0. We also have from D4: by cosyp — bigsing = 0 and the determinant of this
homogeneous system is 1. The only solution is by; = b7 = 0. From G1 we have
boob1n = Fsin? pby; = —3sin? ¢, hence by; = +3.

Consider the Codazzi-Mainardi equation C5:

(R(Yo A J'Y))Y), — Jeg) = £{(Jeg AY1)Y1, —Jeg)
= F1 = J'Yi(bo1) — B(Yo, Vo, Y1) — Yo (b11)
+ B(J'Y, Vi Ya) + B([Ye, Vi), Ya) = boo + br — 2bus
= Fsin? ¢ F cos® p — 2(£3)) = F7.
But this is a contradiction, hence b = 1 and sin ¢ # 0 does not occur.

Next, consider (b): sin¢ = 0. Then we may choose Yy = eg, Y1 = €1, J'Y1 = Je;. We
have

?lel = ley'l - b11J60 = buJeO = —Vle(J® Jel) = —C(J® vleI}/l)
= —J(VynJ'Y1 +biiJeo) = —J (Yo + biiJeo) = —35Jeo + biteo

then b;71 = 0 and by; = —1. Similarly

prlJ'Yl =0+ bﬁJeO = bﬁJeo = —?JIYIC(J & J(Jel))
=C(J VY1) = J(VinYi +biiJe) = —FJeg — bizeg .
Hence b;; = —1. Furthermore:
Vy,J'Y: = Vy, J'Y] + byrJeg = (& — %)Yl + bg1Jeg
= (1 — %)61 + bOTJe() = ——ﬁyOC’(J@) J(Jli/l)) - ——C(J@ vyo(J(Jel))) = J(vonl)
= J(Vyo)/l + b01J€0) = (% — 1)](]61) — b0160 = (1 — %)61 — boleo ,
i.e. bpy = bp; = 0. Hence we have now proved that by; = bg; = b3 =0, b1y = b = —1. It

follows from G4 that oo = 0 also. From G6: 5z — 7 =1, b* = 1, a® = 1. Hence we have
proved:

Theorem 12 For a* = b* the only possibility for S3, is fora = 3, b = % Hence
hogot
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