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Abstract

In this thesis we will investigate the seismic wave equation in different layers
by using the finite element method in space and the finite difference method in
time. The performance of the programming will be done by comparisons with
analytical solutions by using test-solution methods, and convergence tests will
be used for error control.
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1 Introduction

Elastic waves in the earth are commonly described as seismic waves, and are
produced by earthquakes, explosions and similar events. The study of these
waves are important in their own right for warning and detection purposes, but
the mathematical theory can also be used in other applications of science. It is
common to use potential theory when studying seismic waves and seismology,
but in this here we will concentrate on more direct solutions of the seismic wave
equation. Numerical experiments will be done by using the finite difference
method in time, and the finite element method in space. The finite element
method is chosen because of it’s ability to handle natural boundary conditions,
but also because of it’s ability to handle more complex geometries. The im-
plementation is done in python using the FEniCS software, as it contains a
scripting enviornment and syntax close to the mathematical formalism in the
finite element method. In the numerical testing, we will also introduce a con-



cept called test-solutions for simplifying analytic solutions. The overall goal of
the thesis is to examine how FEniCS handles an implementation of the seismic
wave equation with one and two layers of material. The work is divided into four
seperate projects examining the different aspects of the method, and each with
their own separate conclusions. We have also included a fifth section, where the
mathematics for a further problem is discussed.

2 Theory

In this thesis, we will work with 2D functions in the x-z plane with the y axis
pointing inward. We will use dyadic notation where boldface characters indicate
vector quantities.

2.1 Governing equations

The scalar wave equation with a variable wave velocity and a damping term can

be expressed by:

0%u ou

where u = u(x, z,t) is the displacement, b(x, z) is the damping term, and c¢(z, 2)
is the variable wave velocity. Under the continuum assumption as explained by
Kundu and Cohen [2008, see pp. 4-5] the momentum equation for small particle
displacements can be found from the momentum equation, as done by Stein and
Wysession [2009], and is given by:

9%u

where u = u(z, z,t) is the velocity, p = p(z, 2) is the density, o is the stress
tensor and f = f(z, z,t) denotes the body forces. Equation (2) can also be called
the navieres primitive equation of motion. By studying the strain of a material
in 3 dimensions as done by Stein and Wysession [2009, pp. 49-51], we can find
the stress tensor

o= ANV )+ p(Vu+ vul) (3)

where we assume the material to be linear elastic, isotropic and that the stresses
are symmetric. ¢ is the stress tensor, u is the displacement vector, I is the
identity matrix, A is lameés first constant, and p is the shear modulus. Inserting
equation (3) into equation (2), we get

A
wy = (“Lp“)V(V-u)+ %V2u+f (4)

which is the seismic wave equation.



2.2 The finite difference method

The classic definitions for discretizing derivatives can be found in multiple text-
books and multiple websites. Tveito and Winther [2005, pp. 46] gives a good
derivation by using taylor series. We invoke the notation v" = u(z,y, 2,t),
u" ! = u(z,y,2,t — At) and vt = u(x,y,2,t + At). We approximate first
derivatives by using the midpoint rule:

un+1 _ un—l

SAL + O(A?) (5)

Uy =

and second derivatives by the central difference formula:

un+1 — " 4 unfl
At?

+ O(At?) (6)

Ut =

where we notice that both approximations have an second order error in time.

2.3 The finite element method

The finite element method is a vast collection of mathematical principals and
ideas put together in a comprehensive framework for solving differential equa-
tions and boundary value problems. The full detail of the method is beyond the
scope of this thesis, but we review the basic idea as given by Anders Logg [2012,
pp. 77-94]. We divide the domain into triangles for two dimensional domains,
and tetrahedrons for three dimensional domains and call these subdomains for
elements. We then seek polynomial approximations to the unknown in each
element and then assemble all the parts together to find the global system. We
assume that our function can be approximated by the sum:

N

u(x) =Y ¢;th5(x) (7)

=0

where ¢; are unknown constants, x denotes the spatial coordinates and 1, are
given functions of an arbitrary degree. The functions % ; are commonly refered
to as basis functions or weight functions. Suppose our problem is to approximate
our solution u with a function f. This gives the simple solution:

u(z,y) = f(z,y) (8)
And the difference between these two give a residual:

The point is now to minimize this residual as much as possible, and this can be
done by methods including the interpolation, least squares or weighted residuals
method as explained by Langtangen [1999, see pp. 142-144]. We will focus on



the latter method, as this is used by the FEniCS software. We define a function
space that is spanned by the basis functions:

V= span{t; }

And seek weight functions: R
veV

such that the inner product of the residual and the test function is zero:
/ R(z,y)vdQ2 =0 Yo eV (10)
Q

Inserting the expression for R from equation (9) into the inner product in equa-
tion (10) we get the equation:

/qudQ:/vadQ (11)

Equation (11) is the variational form of the problem, and constitutes a linear
system of equations. The point of the finite element method is to solve this
system using one of many integration methods, including LU solvers and krylov
solvers. We end the review of the finite element method here, and interested
readers can read the fenics book Anders Logg [2012] or many other good publi-
cations on the topic. The rest of this thesis will focus on the variational forms
while FEniCS handles the rest.

2.4 Discretizing the wave equation

We first apply the finite difference scheme for time using equations (5) and (6)
for the time derivatives in equation (1) and get the explicit formula in time:

un+1 — 2" + un—l un-i—l _ un—l

A +0b SA =V(cVu") + " (12)

By further introducing the help functions:

_ 1
- bAt
1+5

B=-"_1
2

We get the explicit formula for the time stepping:
u"t = 240" + ABu" T + AV - (V™) + AAL " (13)

The space variables are then solved by using the finite element method. Using
the chain rule for the laplace term:

V- (eVu™) =V - (eVu™)v + ecVu"" Vo

10



and applying green’s theorem, as done by Tveito and Winther [2005, see]:
/ V- (eVu"0)dQ = / n - cVu"vd§)
Q r
The variational form of equations (13) is:
/ u" T lodQ = 2/ Au"vdQ —|—/ ABu" tpdQ)
Q Q Q
- / cAVu"Vud) + / An - Vu"vdl (14)
Q r

+ A / AfrodQ
Q

2.5 Discretizing the momentum equation

The momentum equation is vector valued, and has components in the x,y, and
z directions. The weight functions must therefore also have components in the
x,y,z direction. In our two dimentional description, we get the velocity vector

u = ui+ wk (15)

In all the projects, we will work with the same nodes for v and v. we use local
form functions N; where I is the global node number, and we use the local
weight functions w; = Nj. the vector weight function has the form:

w = a,Nji+ a,Nrk (16)
where a, = 1 and a, = 0 gives the x-component of the variational form, and

a, = 0 and a, = 1 gives the z-component. Using the chain rule on the stress
tensor as we did for the wave equation, we get

V-(fo-w)=(V-0) - wto:Vw

And applying green’s theorem

/V~(J~w)dQ:/n~a~wdF
Q r

we get the variational form of equation (2)

/ pu" . wdQ = 2/ pu” - wdf) — / pu" 1 wdQ
Q Q Q

+At2/n-a"~de‘—At2/ o™ VwdQ (17)
T Q

+At2/f"-wdQ
Q

11



2.6 Boundary conditions

In this thesis, we will give 4 different boundary conditions that are valid for
seismic waves and their interactions between solids, liquids and air.

Fixed boundary

At the fixed boundary, the velocity or displacement is known at the boundary
node I. wy is not used and the variational form in equation (17) is not solved.
Instead, A value is directly inserted into the node points at the boundary:

u=U(z,z1) (18)

where U is a given boundary function.

Free boundary

The free boundary condition gives a known stress at the boundary, making the
boundary integral term in (17) solvable.

n-o=o, (19)

Where o is the stress tensor, n is the normal vector and o, is a given function
for the stress at the boundary. o, is often set to zero to model free surface
boundary conditions..

Internal solid-solid boundary

The solid solid boundary condition describes a type of interaction between two
solid media, like the Moho discontinuity discussed by Stein and Wysession [2009,
see pp. 122] at the crust-mantle boundary. In the solid-solid interface, all
velocity component and tractions must be continuous.

o) — 5@

(20)
u = u®

where u” and u® are the velocity vectors in layers 1 and 2, and o) and
o2 are the shear stresses in layers 1 and 2. In the finite element method, the
solid-solid boundary gives duplicate nodes at the boundary, and are assembled
into the global system.

Internal solid-liquid boundary

The solid-liquid boundary condition describes the interactions between solid and
liquid media, like the sea floor and ocean. Due to the vanishing shear stress,
the normal tractions and displacements need to be continuous. The shear stress

12



in the solid vanishes at the boundary, and there is no restriction on the shear
displacements.

e = @

o’ =0 1)
ul®) = u®

uf!) £ ul?

where o, denotes the normal stress, o is the shear stress, u,, is the normal dis-
placements, and u, denotes the shear displacements. The solid-liquid boundary
produces duplicate nodes at the boundary as for the solid-solid boundary, and
are assembled into the global system.

2.7 Sponge layers

In the finite element method, boundaries are forced on the domain. If no bound-
ary is specified as a essential boundary condition, the natural boundary condi-
tions are applied. This gives difficulties if one wants the solution to flow out of
the domain. One solution to this is by using sponge layers. The sponge layer
is a type of damping layer often used to curb solutions to rest. We present
two types of sponge layers: The damping function and the input method. The
damping function can be implemented by inserting:
Ou

d=1b 5 (22)
into the differential equation. This causes natural damping where
b = b(x; a1, ..., alphay) is the damping function. the values aq, ...,y are con-
stants that depend on the problem and domain. Large values of b cause a larger
damp effect. The damping function is easily applied to simple geometries, but
finding a function b(z) in more complex boundaries can be difficult. In the input
method we force the solution to be reduced by setting

u=pu (23)

for every time step in the domain considered. p € (0,1) gives the damping,
where 0 is absolute damping and 1 is no damping effect. The input method is
easily applied to more complex geometries, but the method itself can produce
large discontinuities in the domain, giving total reflections instead of dampings.

2.8 Error control, stability and convergence

The combination of the finite difference and finite element method gives a ex-
plicit set of equations to be solved at each time step, and by this method we also
impose stability conditions on the numerical scheme. Although important, the
mathematics is involved, and left for further analysis, yet we will keep in mind
the existence of stability in our programming. Another important property of

13



the numerical scheme is the existense of numerical dispersion. For waves with
an angular frequency w, the numerical scheme produces a numerical frequency
w where w # @. Such an analysis is also quite involved in the finite element
method, and is also left for further study, yet Langtangen [1999, see pp. 656]
gives a nice review of the method for a finite difference scheme. In the numerical
testing, we will have analytic solutions to compare our simulations with, and we
put an emphasis on investigation of errors. The L2 norm error can be defined
as

Epy = M (24)

where Es is the L2 norm error, u. is the exact solution, u is the numerical
solution and N is the number of nodes. For P1 elements we get a second order
error in the spatial coordinates. Combined with the second order errors in the
finite difference schemes for the time discretization, we get the error in the
scheme

By = Ay (Az)* + A(A2)? + Ay (At)?

where we notice that halving this error gives

Az Az At
By = An(5-) + A5 + A(5)?
2 2 2
and that the ratio between the errors are
Ey
— =0.25
E,

This shows that the error is reduced by a factor 4 when halving spatial and time
steps. We will call the number 0.25 the error reduction rate. The spatial and
time steps can be collected into a common parameter h, such that the error is
given by

E=Ch? (25)

where E is the error, C is some constant and h = h(Az, Az, At) is a common
parameter for the spatial and time steps. The exponent is commonly referred
to as the convergence rate.

3 Waves on a sponge layer

In this first project, the performance of a sponge layer will be tested for a
simple wave problem on a rectangular domain. Waves are sent into the sponge
layer, and it’s ability to damp out the motion will be analyzed. We assume a
rectangular domain 2 with length L and height H. The domain is divided into
two sub domains 2, and 5 divided by a vertical line at the point x = x5, We
give the first and second domain the lengths L, and L, respectively, and the
height of both domains are H. the subscripts p and s are short for p-wave and
sponge layer. The problem is shown in figure 1. Each domain is divided into
np X m and ng X m elements respectively.

14



Fluid Sponge

du __
5. =0

Figure 1: The problem where waves travel with horizontal incidence into a sponge layer

3.1 An analytic solution

In the fluid layer we have no damping and a constant wave velocity c¢;. In the
sponge layer we apply a damping coefficient only dependent on x and a constant
wave velocity co. Equation (1) then reduces to:

6211,1

= AV2u z € (0,L,) (26)
02us Oug 2
6t2 + b(x) 78(4]. = C2V’U, €T e (Lp7 LS) (27)

For the fluid and sponge respectivly. u; is the displacement in the fluid layer,
and us is the displacement in the sponge layer. The boundary value problem is
subject to 4 boundary conditions in the domain. At the top y = H we assume
no displacements. At the bottom y = 0 and at the right x = L, we assume
Neumann boundary conditions. At the left hand boundary x = 0 we have an
inflow condition. All four boundary conditions are stated as

15



ui(x,H,t) =0 (28)

Ouy(z,0,t)

us(L, z,t)

=0 (30)
u1(0,z,t) =U(z,t) (31)

This boundary value problem has an analytical solution by solving equation

(26) by separation of variables. The calculations are not done in this thesis, but
the solution can be on the form

ui(x, z,t) = Asin(wt — kz) cos(lz) (32)

provided the dispersion relation is satisfied.

2 w?

¢t = Pie (33)

equation (31) needs to satisfy equations (26), (28) and (29), and a reasonable
ansatz is a solution on the same form as equation (32). We assume

U(0,z,t) = Asin(wt) cos(I(z + B)) (34)

where A is the amplitude of the incoming waves, and [ and B are determined
by the boundary conditions. By inserting equation (34) into equation (29), it is
shown that B = 0 for non trivial solutions. By applying equation (34) into (28)
the constants from equation (33) get the values:

™
k=5 (1+F)

where k takes the integer values 0,1,2,.. The resulting inflow condition is:

U(z,t) = Asin(wt) cos(%(l +k)) (35)

3.2 Simulations and results

For the convergence tests, we run three simulations with a total simulation time
of T=10s, and with equally spaced time and spatial resolutions. We use pl
elements, and the implementation is given in section 9.1. the time and spatial
values specified as

o At=0.01, Az =1/24, Az =1/24
o At=0.005, Az =1/48, Az =1/48
o At =0.0025, Az =1/96, Az =1/96

16



Run L =z b(x) Ax Az At FEmaz Eipn  Chmag Clon
1 2 1 Yy 1/24  1/24 0.01  0.06645 0.02588 - -
2 2 1 b 1/48 1/48 0.005 0.02225 0.00970 0.335 0.375
3 2 1 Yy 1/96 1/96 0.0025 0.01647 0.00662 0.740 0.682
1 3 1 Yy 1/24  1/24 0.01  0.06350 0.02390 - -
2 3 1 b 1/48 1/48 0.005 0.01614 0.00594 0.254  0.250
3 3 1 Yy 1/96 1/96 0.0025 0.0093  0.00301 0.575  0.520
1 3 1 by 1/24  1/24 0.01 0.07274 0.02659 - -
2 3 1 by 1/48 1/48 0.005 0.02215 0.00793 0.304 0.298
3 3 1 by 1/96 1/96 0.0025 0.0093  0.00354 0.419 0.447

Table 1: Table of numerical results for 3 different simulations. L is the total length of the
domain, xs is the x coordinate of the boundary between fluid and sponge. b; and by denotes
the linear and quadratic damping functions used. Az and Az are the element spacings in the
x and z-directions, and At is the time step. Eyqz and Ejo, are the maximum and L2 norm
errors in the simulations, and Cyrqz and Cjs, are the error reduction rates for the maximum
and L2 norm errors with the respect to the previous simulation

We test the sponge by using a linear and a quadratic function each given by
bi(z; Ly) = 10(x — L) (36)
by(x; Lp) = 10(2® — 2L,x + L) (37)

The linear function is continuous in the point L,, and the quadratic function
has the function value and the first derivative continous at L,. The values & = 0
and w = 10 are chosen, so that the constants [, and ki get the forms:

ko 4] o — =
0 c2  4h?

The three simulations are run with the following domains and damping func-
tions.

e L =2 and L, =1 with the damping coefficient in equation (36).
e L =3 and L, = 1 with the damping coefficient in equation (36).
e L =3 and L, = 1 with the damping coefficient in equation (37).

The results from the simulations are given in figure 2, 3, 4 and table 1.

3.3 Conclusion

An analysis of the scheme shows that when halving the time steps and spatial
steps, the maximum error and the L2 norm error from equation (25) should
have an error reduction factor around 0.25. Table 1 shows a reduction of the L2
norm and maximum errors, but not with the correct factor. The second simula-
tion with a larger sponge layer gives a slightly better result. The L2 norm and
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Errors for a coa

Error
0.0103

. 0,00358

-0,00311
-0,00979

-0,0165

Figure 2: Figure of the errors in the fluid domain for the run with L = 2, 25 = 1 and a
linear damping in the sponge layer. (a) shows the errors for the coarse mesh, (b) shows the
errors for the finer mesh, and (c) shows the errors for the finest mesh

maximum error is reduced by almost a factor of 0.25 between simulation 1 and
2, but is only reduced by a factor 0.5 between simulations 2 and 3. The errors
in with the quadratic damping function are worse than for the linear damping
function for the same length of the sponge, The convergence is also worse be-
tween the first and second run, but is slightly better between the second and
third run. In all cases, it seems that the errors from the sponge become more
dominant for better resolutions. figures 2, 3 and 4 show a periodic behaviour
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Errors for o codadrse mesh
Error
0,0635

.0,0349

0,00622
-0,0224

-0,0510

Errars for a fine mesh

100 T———
I

Figure 3: Figure of the errors in the fluid domain for L = 3, s = 1 and a linear damping in
the sponge layer. (a) shows the errors for the coarse mesh, (b) shows the errors for the finer
mesh, and (c) shows the errors for the finest mesh

of the error, indicating that the sponge layer is producing reflected waves with
a certain amplitude. In table 2 we have approximated values of the amplitudes
from the reflected waves by subtracing the largest and smallest errors in fig-
ures and taking the square root2, 3 and 4. The amplitdes are large for poor
resolutions, but are reduced with finer resolutions.
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Errors for a coa

Figure 4: Figure of the errors in the fluid domain with L = 3, s = 1 and a quadratic
damping function in the sponge layer. (a) shows the errors for the coarse mesh, (b) shows the
errors for the finer mesh, and (c) shows the errors for the finest mesh

4 The Seismic Wave Equation with Test Solu-
tions

In this project, an implementation of the momentum equation will be tested by
simple analytic solutions, and the boundary value problem will be simplified by
a technique we call test solutions. Assume a rectangular domain 2 of length L
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Run b(x) Ay

L s
1 2 1 Yy 0.245
2 2 1 b 0.144
3 2 1 b 0.116
1 3 1 b 0.239
2 3 1 b 0.120
3 3 1 b 0.074
1 3 1 by 0.244
2 3 1 by 0.128
3 3 1 by 0.075

Table 2: Table of the calculated amplitudes of the reflected waves from the sponge layer in all
3 simulations. L denotes the length of the domain, x5 the coordinate of the boundary between
fluid and sponge, and b; and by the linear and quadratic damping functions respectivley.

L
Figure 5: The rectanguar domain used in the problem
and height H, as given in figure 5. The domain is divided into n x m elements in

the x and z directions respectively. We assume no body forces in this problem,
so equations (2) and (3) reduce to

0%u :
PoE = V.o in Q (38)
o =XV -u)I+ u(Vu+ vVu?) in Q (39)

in the domain. We consider the problem at the times t = tg,%1,...,%,, and
assume that we have an analytic soluion u. on the whole domain for all t. In
the test solution method, w. is applied as initial and boundary conditions. we
then have

u(z, z,t) = ue(z, 2, 1) at t =t (40)
u(z, z,t) = ue(z, 2,t) at t =1t (41)
u(z, z,t) = ue(z, 2,t) onT (42)

By using this method, the need to find more complex solutions by separation of
variables or other teqniques are eliminated, and the programs ability to maintain
an analytic solution for a given time is tested.
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4.1 P and S wave analytic solutions

Known simple solutions of the seismic wave equation are compression and shear
waves, denoted as P an S waves. P and S-waves can be divided into further
categories as done in Stein and Wysession [2009], but we will concentrate on
the coupled P-SV waves in our 2d analysis. A P-wave in the x-z plane can be
defined as:

u, = Ane!tFnr—wt) (43)

where A is the amplitude of the wave, k is the wave number, w is the angular
frequency, t is the time, and r is the spatial coordinate vector,

r=uxi+zk
and n is the unit normal vector of the wave, given by:
n=ng;i+n.k

satisfying
In| =1

An S-wave in the x-z plane can be defined by:
us = B(n x j)e!knr—wt) (44)

where j is the direction along the positive y-axis. The real part of equation (43)
is on the form:

u = A(ngi+ n k) cos(knzx + knyz — wt) (45)
And this is a valid solution of equation 4 provided

w? = (A+2p) 5
= (46)

is satisfied. The real part of the S wave from equation (44) is
u = A(n.i— n.k)cos(kn,z + kn,z — wt) (47)

and is a solution of equation (4) provided

2 _ Mo
w* ==k 48
p (48)

is satisfied.

4.2 Simulations and results

The program is run with the P and S wave test solutions from equations (45)
and (47). The variational form of the problem is given in (17) and we use pl
elements. The implementation is given in section 9.2. For both test solutions,
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P 0 Az Az At E]\,jaz EL2 Cmam CL2 Ar
1 0 1/24  1/24 0.0075 1.71le-7  6.56e-8 - - 0.0003
2 0 1/48  1/48 0.00375  4.07e-8 1.64e-8  0.238 0.250  0.0001
3 0 1/96 1/96 0.001875 9.94e-9 4.09¢-9  0.244 0.249 6e-5
1 2657 1/24 1/24 0.0075  5.41e-7  2.14e-7 - - 0.0005
2 26.57 1/48 1/48 0.00375  1.30e-7  5.41e-8  0.240 0.252  0.0002
3 2657 1/96 1/96 0.001875 3.19e-8 1.35e-8  0.246 0.250 0.0001
1 7157 1/24 1/24 0.0075  7.65e-7  2.96e-7 - - 0.0005
2 7157 1/48 1/48 0.00375  1.83e-7  7.44e-8  0.239 0.251  0.0003
3 7157 1/96 1/96 0.001875 4.48e-8 1.86e-8 0.245 0.250 0.0001
1 90 1/24  1/24 0.0075 1.71le-7  6.56e-8 - - 0.0003
2 90 1/48 1/48 0.00375  4.07e-8  1.64e-8 0.238  0.250  0.0001
3 90 1/96 1/96 0.001875 9.94e-9 4.09¢-9  0.244  0.249 6e-5

Table 3: Table containing the numerical results of the simulations of the seismic wave
equation with a P wave test solution. The angle 0 gives the angle of propagation with the
x-axis, Az and Az give the element spacings in the x and y direction. At is the time step.
FEmaz and Epo denotes the maximum and L2 norm errors respectvely. Cpaz and Cpo are
the error reduction rates for the maximum and L2 norm errors with respect to the previous
simulation. A, are the estimated amplitudes from the reflected waves

the length L = 1, height H = 1 and a total simulation time of T" = 5 are chosen.
For the material, the constants A = 1, p = 1 and p = 1 are used. The wave
parameters are A = 1 and w = 0.5. A convergence test is made by running
3 different simulations for both test solutions with the time and spatial steps
evenly distributed

o At =0.0075, Az =1/24, Az =1/24
o At =0.00375, Az = 1/48, Az = 1/48
o At =0.001875, Az = 1/96, Az = 1/96

Some results of the simulations are given in tables 3 and 4. the component errors
for the p-wave simulation with a propagation angle of = 71.57° with the x-axis
is given in figure 6. The component errors for an S-wave with a propagation
angle of § = 71.57° with the x-axis is given in figure 7.

4.3 Conclusion

Tables 3 and 4 show the different simulations for different propagation angles
for the P and S-wave test solutions. In all cases the error reduction rates are
slightly better than 0.25 which we found in equation (25). From figure 6 we
see that the errors in x-displacements are larger in the center of the mesh and
close to the corner points, and kept to machine precision at the boundaries. The
errors in z-displacements are largest at the center of the mesh, and decreases
towards the boundaries, where the error is kept to machine precision. In figure
7, all displacements have their maximum error in the center of the mesh, and
decrease towards the boundaries where the errors are kept to machine precision.
In all cases, the errors are kept small, even for the coarsest time and element
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Errors in x-displacement for a coarse mesh
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Errors in y-displacement for a coarse mesh
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Errors in x-displacement for a fine mesh
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Errors in y-displacement for a fine mesh
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-4,48e-08

(d)

Figure 6: Errors for the x and z-components of displacement for a P-wave with an angle
of 71.57% with the x-axis. (a) and (b) show the x and z-displacements for a 24x24 mesh
respectively, and a time step of 0.0075. figures (c) and (d) show the x and z-displacements for
a 96x96 mesh respectivley, and a time step of 0.001875.
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Errors in x-displacement for a coarse mesh
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Errors in y-displacement for a coarse mesh
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Errors in x-displacement for a fine mesh
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Figure 7: Errors for the x and z-components of displacement for an S-wave with an angle
of 71.57% with the x-axis. (a) and (b) show the x and z-displacements for a 24x24 mesh
respectively, and a time step of 0.0075. figures (c) and (d) show the x and z-displacements for
a 96x96 mesh respectivley, and a time step of 0.001875.
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S 0 Az Az At El\laa: EL2 Cmaz CL2 AT
1 0 1/24  1/24 0.0075  4.48e-7  1.7le-7 - - 0.0004
2 0 1/48 1/48 0.00375  1.07e-7  4.28e-8  0.238  0.250  0.0002
3 0 1/96 1/96 0.001875 2.65e-8 1.07e-8  0.248 0.250  0.0001
1 2657 1/24 1/24 0.0075  2.81e-6  1.43e-6 - - 0.0012
2 26.57 1/48 1/48 0.00375  6.47e-7  3.49e-7  0.230 0.244  0.0006
3 26.57 1/96 1/96 0.001875 1.60e-7 8.67e-8  0.247 0.249  0.0003
1 7157 1/24 1/24 0.0075  3.02e-6  1.44e-6 - - 0.0012
2 7157 1/48 1/48 0.00375  6.98e-7  3.53e-7  0.231 0.245 0.0006
3 7157 1/96 1/96 0.001875 1.73e-7 8.77e-8  0.248 0.249  0.0003
1 90 1/24  1/24 0.0075  4.48e-7  1.7le-7 - - 0.0004
2 90 1/48 1/48 0.00375  1.07e-7  4.28e-8 0.238  0.250  0.0002
3 90 1/96 1/96 0.001875 2.65e-8 1.07e-8  0.248 0.250  0.0001

Table 4: Table containing the numerical results of the simulations of the seismic wave
equation with an S wave test solution. The angle 6 gives the angle of propagation with the
x-axis, Az and Az give the element spacings in the x and z-direction. At is the time step.
FEmaz and Eps denotes the maximum and L2 norm errors respectivley. Crqe and Cpro are
the error reduction rates for the maximum and L2 norm errors with respect to the previous
simulation. A, are the estimated amplitudes of the reflected waves

Ly
Iq

Ty
'y

L

Figure 8: The problem with test solutions for dirichlet boundary conditions and a given
surface stress

spacing. By looking at the tables equation 3, 4, the convergence formula (25)
and our choices for Az, Az and At, we see that the constant C in equation
(25) must be smaller than one for the simulations. We also keep in mind that
a numerical dispersion analysis has not been made, implying that C could be
even smaller. In our simulations, we see that the error has a periodic behaviour,
implying that the boundaries are producing reflected waves into the domain.
The amplitudes are estimated by taking the square of the L2 norm errors in
tables 3 and 4, and we see that the amplitudes decrease for better resolutions
of the mesh.

5 Seismic test solutions with a given stress
In this project, we aim at implementing the seismic wave equation with test

solutions, as we did for the previous project, however in this project we apply a
given stress to one of the boundaries instead of a given displacement. This gives
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insight as to how FEniCS handles boundary integrals and natural boundary
conditions. We assume a rectangular domain, as given in figure 8, with the
length L and height H. The domain is divided into I x m elements in the x and
z-directions respectivley. As for the previous project, we neglect body forces for
this implementation, giving the the equations of motion and stress:

0%u .
PoE = V.o in Q (49)
o =MV -u)I+ u(Vu+ vu?) in (50)

Again, we assume an analytic solution u., and solve the problem for the times
t =to,t1,...,t,. We apply our analytic solution as boundary and initial condi-
tions so that

u(z, z,t9) = ue(z, 2, to) on (51)
u(z, z,t1) = ue(x, 2,to) on 2 (52)
u(z, z,t) = ue(z, 2,t) on Ty (53)
o(u) = o(u) on I'y (54)

5.1 P and S-wave analytic solutions

As for the previous project, the P and S-waves from equations (45) and (47)
are solutions of the momentum equation provided the dispersion relations from
equations (46) and (48) are satisfied respectivley. These solutions are applied
as boundary conditions on I'y. On I'y, we apply the given surface stress.

o,=n-0
=k (04il + 0.1k + 0., ki + 0., kk)
=01+ 0.k (55)

The components of stress are found from equation (3)

)\(@ + 87'11)) +2 aﬂ
0= = Nes T8 T

For the P-wave, the components of stress at I's are:
0. = —AAk(n? 4+ n?) sin(kn,x + kn.z — wt)
- 2,uAkn§ sin(knzx + kn,z — wt) (57)
Oy = —2uAkngn, sin(kngx + kn,z — wt)
And for the S-wave, the components of stress at I'y are:

Oue = Ak(NZ — n?)sin(kngya + kn.z — wt)

. (58)
022 = —2uAkngn, sin(kn,x + kn,z — wt)
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P 0 Az Az At E]\,jaz EL2 Cmam CL2 Ar
1 0 1/24  1/24 0.0075  1.60e-6  2.77e-7 - - 0.0005
2 0 1/48  1/48 0.00375  3.95e-7  6.61e-8  0.248 0.239  0.0003
3 0 1/96 1/96 0.001875 9.89e-8 1.62e-8  0.249 0.245 0.0001
1 2657 1/24 1/24 0.0075  4.87e-6  8.49e-7 - - 0.0009
2 26.57 1/48 1/48 0.00375  1.20e-6  2.01le-7  0.246 0.237  0.0004
3 2643 1/96 1/96 0.001875 2.97e-7 4.91e-8 0.248 0.244  0.0002
1 7157 1/24 1/24 0.0075 1.11le-6  2.25e-7 - - 0.0005
2 7157 1/48 1/48 0.00375  2.79e-7  5.66e-8  0.253  0.251  0.0002
3 7157 1/96 1/96 0.001875 6.93e-8 1.41e-8 0.248 0.250 0.0001
1 90 1/24  1/24 0.0075  5.50e-7  1.81e-7 - - 0.0004
2 90 1/48 1/48 0.00375 1.4le-7  4.68e-8 0.257  0.258  0.0002
3 90 1/96 1/96 0.001875 3.53e-8 1.18e-8  0.250 0.252  0.0001

Table 5: Table containing the numerical results of the simulations of the seismic wave
equation with P-wave test solutions. The angle 0 gives the angle of propagation with respect
to the x-axis, Az and Az give the element spacings in the x and z direction. At is the time
step. Emaz and Ero denotes the maximum and L2 norm errors. Ciqz and Cpo are the error
reduction rates with respect to the previous simulation. A, are the estimated amplitudes of
the reflected waves

5.2 Simulations and results

The variational form is given in equation (17) and we use pl elements. The
implementation is given in section 9.3. We run 3 simulations for both the P
wave and the S wave test solutions with the length L = 1, height A = 1 and
a total simulation time of 7" = 5. For the material, we choose the constants
A=1, p=1and p=1. We also choose the parameters A = 1 and w = 0.5.
The convergence tests are made by varying the evenly distributed element and
time spacings

o At =0.0075, Az =1/24, Az =1/24
o At =0.00375, Az = 1/48, Az = 1/48
o At =0.001875, Az = 1/96, Az = 1/96

The results for the simulations are given in tables 5 and 6. The component
errors for the simulations with an angle of § = 71.57° with the x-axis are given
in figures 9 and 10.

5.3 Conclusion

Tables 5 and 6 show that the error reduction rates for both the P and S-wave
test solutions are close to the values estimated from equation (25), yet they
are slightly worse than for the previous project for some of the simulations.
Figure 9 shows the x and z-component errors for a wave propagating with an
angle of # = 71.57° with the x-axis. from the figure, 4we see that the larger
errors are found at I'y. Local error maximums are also found in parts of the
inner domain, while the errors at I'; are kept to machine precision. Figure 10
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Errors in x-displacerments for a codrse mesh
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Figure 9: Figures of the displacement errors for a P-wave propagating with an angle of
6 = 71.57% with respect to the x-axis. (a) and (b) show the x and z-displacements for a 24x24

mesh with a time step of 0.0075. (c) and (d) show the x and z-displacement errors for a 96x96
mesh with time step 0.0001875
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Errors in x-displacerments for a codrse mesh
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Figure 10: Figures of the displacement errors for an S-wave propagating with an angle of
6 = 71.57% with respect to the x-axis. (a) and (b) show the x and z-displacements for a 24x24

mesh with a time step of 0.0075. (c) and (d) show the x and z-displacement errors for a 96x96
mesh with time step 0.0001875
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S 0 Az Az At El\lam EL2 Cmaz CL2 AT
1 0 1/24  1/24 0.0075  2.12e-6  5.26e-7 - - 0.0007
2 0 1/48 1/48 0.00375  5.32e-7  1.33e-7  0.250 0.253  0.0004
3 0 1/96 1/96 0.001875 1.35e-7 3.36e-8  0.254 0.252  0.0002
1 2657 1/24 1/24 0.0075  3.36e-5 1.07e-5 - - 0.0033
2 26.57 1/48 1/48 0.00375  8.53e-6  2.70e-6  0.254 0.253 0.0016
3 26.57 1/96 1/96 0.001875 2.17e-6 6.78¢-7  0.255 0.251  0.0008
1 7157 1/24 1/24 0.0075  1.45e-5 4.74e-6 - - 0.0022
2 7157 1/48 1/48 0.00375  3.89e-6  1.20e-6  0.269  0.252  0.0011
3 7157 1/96 1/96 0.001875 1.0le-6 3.00e-7  0.259 0.251 0.0005
1 90 1/24  1/24 0.0075  1.83e-7  6.35e-8 - - 0.0003
2 90 1/48 1/48 0.00375  4.81e-8  1.59e-8 0.263  0.251  0.0001
3 90 1/96 1/96 0.001875 1.15e-8 4.03e-9  0.239  0.253 6e-5

Table 6: Table containing the numerical results of the simulations of the seismic wave
equation with S-wave test solutions. The angle 6 gives the angle of propagation with respect
to the x-axis, Az and Az give the element spacings in the x and z direction. At is the time
step. Emaz and Fro denotes the maximum and L2 norm errors. Cy,qz and Cpo are the error
reduction rates with respect to the previous simulation. A, are the estimated amplitudes of
the reflected waves

shows the x and z-component errors for a wave propagating with an angle of
6 = 71.57° with the x-axis. The larger errors are in this case also found at
I't. For the x-displacements, local maxima of the errors are also found in parts
of the interior domain, while the errors in z-displacement decrease towards the
boundary I'y. For both the x and z-displacement, the errors at I'y are kept
to machine precision. By looking at the errors in tables 5, 6, the convergence
formula (25) and our choices for Az, Az, and At, we see that the constant
C from equation (25) is smaller than 1 for our simulations as for the previous
project. We also keep in mind that a numerical dispersion relation analysis is
not made, and this implies that the constant C could be even better. In the
simulations we see a periodic behaviour of the error that is larger at the free
surface and smaller at the bottom. As for the previous project, this implies
that the boundaries are producing reflected waves. The calculated amplitudes
are given in tables 5 and 6, and in all cases, the amplitudes decrease for better
resolutions.

6 A Two layer model with vertical incidence

In this project, the performance of the finite element method in two domains
with different material properties will be tested by the test solution process.
Assume a rectangular domain 2 divided into the two subdomains €y and Q9
as shown in figure 11. ; has a length L and a height h. Q9 has a length L
and the height H. The domains are divided into I x m; and [ x mo elements
respectivley, and are separated by the horizontal line z = 0. In €21, we have the
physical parameters A1, 1 and pp, and in Qg, we have Ag, o and po. All waves
are assumed to have the same angular frequencies w. The stress tensors in the
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Figure 11: A two layer model for waves traveling at vertical incidence with the boundaries

] i
Figure 12: A two layer model for P-waves traveling at vertical incidence with an internal
boundary and a free surface

two domains are then

o1 =M (V-u)I+ iy (Vuy + Vul) in O (59)
o2 = Xa(V - u2)I + p2(Vug + Vul) in (60)
and are inserted into equation (17) to get the variational forms for each layer

respectivley.

6.1 P-wave analytic solutions

For the two layer problem from figure 12, an incoming wave from below produces
a reflected and a transmitted wave. At the free boundary, the transmitted wave
produces another reflected wave. The possible analytical wave solutions for the
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problem are
u; = Ie!Wt=Fk2k
up = Re'@Witkiz)y
ur = Tetwi—k22)k

up = Fei(thrkgz)k

(61)

where I denotes the incoming P-wave, R the reflected wave, T' the transmitted
wave and F' the reflected wave from the free boundary. Theese waves are valid
solutions of the seismic wave equation provided

2
o = (g
1
(62)
2
W2 = ()\2 + H2)kg
P2

for the two layers respectively. From the boundary condition (20) we must have
continuity of displacements at z = 0. Inserting the wave solutions from equation
(61) we get

Ie(iwt) + Re(iwt) _ Te(iwt) + Fe(iwt) (63)
Giving a relation between amplitudes:
I+R=T+F (64)

From equation (20) we must have continuity of stress at z = 0, and inserting
the wave solutions from equation (61) into the boundary condition we get

(A1 + 2u1)k1ie™ @D (R — I) = (A + 2ug)kpie’ @) (F — T) (65)

Giving:
kv +2um)
kQ(}\Q + 2,[142)

at z = H we have a free boundary condition given from equation (19), and
inserting the wave solutions from equation (61) into this condition gives:

—T(Ag + 2p0)koie” @ =F2H) L P(\g + 2p10)kgie’ @itk i) — (67)

(R—I)=F-T (66)

Giving the relation between the transmitted and reflected wave from the free
surface as: _

T = Fe*k=H (68)
Equations (64), (66) and (68) give a system of equations that can be solved for R,
T and F assuming I is known, and doing so produces the following amplitudes:

. (1+0)
R=-Ia—¢)
I (1+0C)
T= (1+r—1)<1_ (1—0)) (69)
T (1+0)
= (1—1—7‘)(1_(1—0))
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Where we have defined:
o R a4 2m)
k'g ()\2 —+ 2[1,2)

r = g2k (70)
R
=y

for simplicity of notation. The two layer problem is a closed system, and this
physically forces the incoming and reflected waves to have the same magnitude
of amplitudes. Also, the transmitted and second reflected wave must also have
the same amplitudes.

11| = |R|
IT| = |F|
To simplify our calculations a bit more, we show that C' from equation 70 is a
pure imaginary number C' = ci. By using some complex theory we get:
1 4 e2ikaH
1 _ e2itk2H
(1 + eQisz)(l + ef2ik2H)
(1 — e2ikaH) (1 4 ¢ 2ik2H)
9 e2ikaH | o—2ikoH
o—2ikoH _ ,2ikzH
_ QZCOS(ZIQH) +2
—2isin(2ko H)
cos(2keH) + 1
" sin(2ko H)

C=«

=«

=

Taking the absolute value of the amplitude of the reflected wave from equation
(69) gives:

(1+ ci)

Bl =|-1

1—ci|

( )
_ \/12 (1+ ci)(1 — ci)
(1— ci)(1 + ci)

= |1

From equation (68), we get the relation:
(7] = |pear|
= \/F2(cos(2ikyH) + i sin(2iky H))(cos(2iko H) — isin(2ikyH))

= \/F2(COSZ(2ik2H) + sin? (2iko H)
= |F]
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]uls

Figure 13: A two layer model for S-waves traveling at vertical incidence with an internal
boundary and a free surface

We notice that the analytical solution provided is valid for general solid-solid
and solid-fluid boundaries.

6.2 S-wave analytic solutions

For the S-waves, the solutions have a similar form as for the P-waves. The incom-
ing S-wave produces a reflected and transmitted wave at the internal boundary
for solid-solid boundaries, and the transmitted wave produces a new reflected
wave at the free surface. The S-wave solutions are on the form

s = Isei(wtfklz)i
Ups = Rsez(wt+k1z)i

Urs = Tsez(wtfkgz)i

wt+k2z)i

71
72
73

(
(
(
(74

)
)
)
Ups = Fsei( )
where Is denotes the incoming wave, Rs the reflected wave, T's the transmitted

wave and F's the reflected wave from the free surface. Theese equations are
solutions of the seismic wave equation provided

w? = (B

s (75)
w? = (E2)k3

P2

Are satisfied for layer 1 and 2 respectively. Continuity of displacement at z = 0
from equation (20) gives
Is + Rs = Te + E@ (76)

Continuty of stress from equation (20) at z = 0 gives

k1 pa
k‘2M2

(Rs = Is) = Fy = T (77)
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At the free boundary z = H, the free surface condition from equation (19) gives
T = Fe?k2H (78)

Equations (76), (77) and (78) gives a system of equations as for the P-wave
solutions, and solving for the amplitudes gives:

m:—48+%§ (79)

(1+Cy)
Ts =1 { _’_17”71) (1 N (1 i— Cs))

1 (14 Cy)
E:”%1+m(“’u_cg> (81)

where we have defined the help constants

(80)

_ k1

koo
= eZikall (82)
(1+7)
(1—r)
We notice that all the constants are similar to what we had for the P-wave
solutions, and following the same procedures as for the previous section, we see
that energy is conserved. We notice that for us = 0, o3 = 0, giving ups = 0
and ups = 0. We therefore need to apply the solid-liquid boundary condition
from equation (21). In this case, the only remaining boundary condition is
the vanishing stress at z = 0 from equation (21), giving R = I. So for the
solid-liquid case, the amplitudes have the values

S

Cs = as,

R=1 (83)
T=0 (84)
F=0 (85)

6.3 Simulations and results

The version of FEniCS used in this thesis does not handle complex numbers, so
our analytic solutions are computed in python numpy arrays in scipy. Interested
readers can read the scipy documentation by Jones et al.. This requires mesh
information to be extracted from FEniCS, used in python numpy, and then
ported back into FEniCS. This is done in the two layer code in section 9.4.
We run 2 simulations for the P-wave test solutions, one with the solid-solid
boundary, and another with the solid-liquid boundary. We do the same for the
S-wave test solutions. We run the simulations on the domain with L =1, h =1
and H = 1. We choose the physical parameters p; =4, po =3, uy =2, A\ = 3,
A2 = 1, and the wave parameters w = 1 and I = 1. We run the two simulations
with ps = 1 and ps = 0 for the P and S-waves, and run convergence tests with
equally spaced time and spatial steps
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Az Az At ENIaz ELZ Chnaz C’L2 Ar

1/12  1/12 0.005 0.00083  0.00023 - - 0.015
1/24 1/24 0.0025 0.00023  6.63e-5  0.279 0.289  0.008
1/48 1/48 0.00125  5.90e-5 1.73e-5 0.255 0.261  0.004

SO R Rav)

Table 7: Results for P-waves vertically incident on a solid-solid boundary and a free surface.

Ax Az At Enrrax Ero  Chae CrLa Ay

/12 1/12 0.005 8.50e-5  3.04e-5 - - 0.006
1/24  1/24 00025 24e5 7.63e-6 0.283 0.251 0.003
1/48 1/48 0.00125  55e-6 1.95e-6 0.229 0.256 0.001

w N =

Table 8: Results for S-waves vertically incident on a solid-solid boundary and a free surface.

o At =0.005 Az =1/12, Az =1/12
o At =0.0025 Az =1/24, Az =1/24
o At =0.00125, Az = 1/48, Az = 1/48

The results of the simulations are given in tables 7, 8, 9 and 10. The x and
z-displacement errors are given in figures 15, 14, 17, and 16.

6.4 Conclusion

tables 7 and 9 show the results of the simulations for a P-wave on a solid-solid
and solid-liquid boundary respectively. The tabes show a clear convergence of
the error, yet the error in the solid-liquid case is much worse than for the solid-
solid case. The component errors for the P-wave simulations are given in figures
14 and 15. We notice that though the model only has displacements in the
z-direction for P-waves, some x-displacements are produced by the numerical
scheme. For the solid-solid case, the larger errors for the x and z-componets are
found at the free surface, and the smallest errors are found at the boundaries. In
the simulations, the x and z errors have a periodic behaviour, showing that the
scheme is producing standing waves at the boundaries. In the solid-liquid case,
the errors in x and z-components are smaller in the solid layer, and larger in
the fluid layer. In the simulations, the errors in the x-components are chaotic,
starting at the internal boundary and spreading into the rest of the domain.
the z-component error has a semi periodic behaviour spreading from the free
surface and into the whole domain. In the fluid domain, large errors are found
just inside the boundaries at the two sides of the domain.

Az Az At E]y[az EL2 Cmaz C1L2 A’V‘

1/12  1/12 0.005 0.05694  0.01306 - - 0114
1/24 1/24 0.0025 0.01500 0.00331  0.263 0.253 0.058
1/48 1/48 0.00125 0.00387 0.00083  0.258 0.252 0.029

w N~ |

Table 9: Results for P-waves vertically incident on a solid-ligid boundary and a free surface.
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Errars in x-displacements for a codrse mesh

rea

Errars in y-displacements for a coarse mesh
100

(b)
Errors in x-displacements for a fine mesh

1.00 — Error
1,48e-05

. 1,11e-05
7. 41e-06
3,70e-06

0,00

Errors in y-displacements for a fine mesh
rog |

Error
5,90e-05

.4.439-05
2,95e-05
1,48e-05

0,00

(d)

Figure 14: Errors in the x and z components for P-waves hitting a solid-solid boundary.
Figure (a) and (b) shows the x and z-component errors for a 12x24 mesh respectively. Figures
(c) and (d) shows the x and z-component errors for a 48x96 mesh respectively
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Errars in x-displacements for a codrse mesh

1.00 Error
4 0,0038%9

. 0,00292

0,00195

0,000973

0,00

Errars in y-displacements for a coarse mesh
100

(b)
Errors in x-displacements for a fine mesh

1.00 7 Error
0,000157

. 0,000118
7,86e-05
3,93e-05

0,00

Errors in y-displacements for a fine mesh

100 Iy Error
' ' 0,00387

. 0,00290

0,00193
0,000967

0,00

(d)

Figure 15: Errors in the x and z components for P-waves hitting a solid-liquid boundary.
Figure (a) and (b) shows the x and y-component errors for a 12x24 mesh respectively. Figures
(c) and (d) shows the x and z-component errors for a 48x96 mesh respectively
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Errars in x-displacements for a codrse mesh

100 )| Error
8,50e-05

.6.379-05

4,25e-05

2,12e-05

0,00

Errars in y-displacements for a coarse mesh

100 7 Error
. 4,03e-05

.3.029-&5
2,01e-05
1.01e-05

0,00

(b)
Errors in x-displacements for a fine mesh

1.00 7 Error
5,53e-06

. 4, 14e-06
2,76e-06
1,38e-06

0,00

Errors in y-displacements for a fine mesh

1,00 Error
c 4,45¢-06

. 3,34e-06

2,23e-056
1.11e-06

0,00

(d)

Figure 16: Errors in the x and z components for S-waves hitting a solid-solid boundary.
Figure (a) and (b) shows the x and z-component errors for a 12x24 mesh respectively. Figures
(c) and (d) shows the x and z-component errors for a 48x96 mesh respectively
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Errars in x-displacements for a codrse mesh

rea

Errars in y-displacements for a coarse mesh

1901 s Error
0,208

. 0,156
0,104
0,0521

0,00

(b)
Errors in x-displacements for a fine mesh

1.00 Error
0,373

. 0,279
0,186
0,0932

0,00

Errors in y-displacements for a fine mesh

1,00 Error
00,0573

. 0,0430

0,0287
0,0143

0,00

(d)

Figure 17: Errors in the x and z components for S-waves hitting a solid-liquid boundary.
Figure (a) and (b) shows the x and z-component errors for a 12x24 mesh respectively. Figures
(c) and (d) shows the x and z-component errors for a 48x96 mesh respectively
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Az Az At EJWCLI EL2 Cmaz CL2 A’l‘

1/12  1/12 0.005 0.37459  0.07808 - - 0.279
1/24 1/24 0.0025 0.36459 0.05934  0.973 0.760 0.244
1/48 1/48 0.00125 0.37266  0.04476 1.022 0.754 0.212

W N = |

Table 10: Results for S-waves vertically incident on a solid-ligid boundary and a free surface.

Tables 8 and 10 show the results of the simulations for an S-wave on a solid-
solid and solid-liquid boundary respectively. In the solid-solid case, we see error
reduction rates close to 0.25. For the solid-liquid case, the error reduction rates
for the maximum error are irregular, and the L2 norm has an error reduction
rate close to 0.75. From figures 16 and 17 we see that the numerical scheme
produces z-displacements, even though the S-waves only have x-displacements.
At the solid-solid boundary, the errors are kept to machine precision at the
test solution boundaries, and are larger in the interior domain. The errors in
x-displacements are periodic, and largest at the free surface and fluid layer. The
errors in z-displacements are periodic in the whole boundary. the For the solid-
liquid boundary, we see that the errors in the solid are small, but figure 17 shows
that displacements propagate into the fluid layer. Although displacements are
expected to propagate into the fluid domain as a result of numerical dispersion,
we see no clear convergence or periodicity of the displacement errors in the fluid
layer. In the solid layer, we have a periodic behaviour of both the x and z-errors
displacements of the error.

In almost all cases, it seems that the interactions with the boundaries are
producing additional reflected and transmited waves. These waves have an
amplitude that can be approximated by taking the square root of the L2 norm
errors in each simulation. This is done in tables 7, 9, 8 and 10. For the case of
the S-wave on a solid-liquid boundary, the errors need to be investigated and
the programming reviewed.

7 A two layer model with an oblique angle

In the previous project, P and S waves were sent with a vertical incidence
towards a the boundary between two layers, and the interactions were examined.
In that project, we found a numerical problem in the solid-liquid boundary
for S-waves. Due to that problem, it is unwise to continue with a numerical
analysis of waves sent with an oblique angle. However, in this project we set
up the mathematical model for the solid-liquid boundary problem for future
references. Assume the rectangular domain 2 divided into the two subdomains
Q1 and s for the solid and fluid layer respectivly, as given in figure 18. 7 is
divided into [ x ms elements, and €, is divided into [ x ms elements. The stress
tensor from equation (3) for each layer is given as:

g1 = )\(V . 111)1 + /J(Vlll + VulT) (86)
09 = K)(V . u1) (87)
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Figure 18: The two layer domain for waves sent with an oblique angle

and inserted into the momentum equation. The variational form from equation
(17) is then solved in each sub domain.

7.1 An Analytic solution with an incoming P-wave

The different waves and their directions are found from simple geometric con-
siderations. The closed system consists of 5 waves interacting with each other
given in equation (88), and the problem is given in figure 19. In the figure we
have made the assumption that the P-wave velocity in the solid is larger than
the S-wave velocity in the solid, and that the S-wave velocity in the solid is
larger than the P-wave velocity in the fluid. Stein and Wysession [2009, see pp.
203] gives a table showing that this is correct for the ocean-crust model. An
incoming P-wave always produces a reflected P-wave, and a reflected S-wave.
The fluid layer does not support S-wave motion, so only a P-wave is transmitted
through the fluid. The free surface then produces a reflected P-wave.

u; = I(sin(&;)i + COS(HI)k>ei(klacsin(91)+klzcos(91)—wt)
_ (SIH(QR i— COS(@R)k)ei(klm sin(0r)—k1z cos(0r)—wt)

)i

(COS 95’)1+Sin(95) ) i(kszsin(fs)—ksz cos(0)—wt) (88)
) Je
)i

| |
)

(
T(SIH(QT 1+COS(9 ) i(kox sin(01)+koz cos(0r)—wt)
(sin(

sin eF 1— COS(HF)k) i(kezsin(0p)—kaz cos(0p)—wt)

"11 ’ﬂ
o
|

We set the boundary between media at z = 0 and the free surface at z = H.
We make the physical observation, also mathematically explained by Stein and
Wiysession [2009, pp. 71-72] that the angles:

Or =01

89
bp — 0p (89)
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Fluid

Solid

Figure 19: The problem for a P-wave hitting the boundary between solid and fluid

We set u) = u; +up + ug and u® = up + ug. The free surface boundary
condition (19) states that traction on the surface should be zero as in the pre-
vious project, and because the fluid does not support shear motion, only the
normal traction needs to be considered. This gives the relation

U;Q) (IvHv t) = *MEQ)(I,H, t) (90)
Inserting equation (88) into (90) and doing some mathematics gives the relation
T = _Fe—Qikg cos O (91)

At the internal solid-liquid boundary we have three boundary conditions. The
normal displacement and normal traction must be continuous, and that the
tangential tractions in the solid vanish. This is after some simplifications stated
as:

wM (z,0,t) = w®(z,0,t) (92)
uM(z,0,t) = —wM (z,0,1) (93)
.00 + 0 ,0.0) =X, 0,0 +ul@0n)
+ 2pw (2,0, 1)
From equation (92) we have:
T cos Opeik2sindre) — [ oog g ilkesindra) | 1 oog g, eilkrsindre) -

— Rcos fre'k15in012) 4 Ggin g geilkssinb:2)

From this equation we make an important physical observation. Because both
sides of the equation have to be constant and equal for all x, we must demand
that

kisinf; = kysinf, = kysinfOp (96)
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Figure 20: The problem for an S-wave hitting the boundary between solid and fluid

which is a form of snell§ law. Inserted into the rest of the boundary conditions,
the system of equations determining the amplitudes are found, and given in
equation (97):
F = _TeQikchos(GT)
cos(07)(I — R) + sin(0s)S = cos(07)(T — F)
k1 sin(20;)(I — R) = ks cos(26,)S
Spikssin(205) = k(X + 2ucos?(07))(I + R) — kko(T + F)

(97)

Notice that when 6; = 0, the system of equations reduces to the results in
equations (64), (66) and (68) from the previous project. The system (97) is
complicated, and the hand calculations are not done in this thesis. However,
numerical methods can be used to solve for the amplitudes by using the complex
linear system solver in the scipy module for python, explained by the documen-
tation by Jones et al.. To verify the results for the closed system, conservation
of energy can be examined by

|Ey| = | Er (98)
where 1 denotes layer 1 and 2 deotes layer 2. In the numerical solver, this
equality must be correct to machine precision.

7.2 An analytic solution from an incoming S-wave

The problem with an incoming S-wave is almost equal to the case with the
incoming P-wave. The S-wave produces a reflected S-wave, a reflected P-wave
and a transmitted P-wave. The transmited P-wave then produces a reflected
P-wave at the free surface. The 5 interacting waves are given as. Again we have

45



assumed that ¢, > ¢, > ¢y where ¢, is the P-wave velocity in the solid, ¢, is the
S-wave velocity in the solid, and ¢y is the P-wave velocity in the fluid.

urs = I;(— cos(0r5)i + sin(frs )k)ei(k1$51“(9’5)+k12COS(H’S)_M)
ups = Rs(cos(0rs)i+ sin(Ogs)
= Ps(sin(fps)i — cos(ﬁps)k)el kpz sin(0ps)—kpz cos(0ps)—wt) (99)
urs = Ts(sin(07s)i + cos(Ors)k
(

k)ez (k1zsin(0rs)—k1z cos(Ors)—wt)

)62(k2:r sin(0rs)+kaz cos(0rs)—wt)

(
(Sl (er)i — COS 9F ) ) i(kox sin(0ps)—kozcos(O0ps)—wt)

Again, by physical observations it is known that ; = r and 6p = 6. The
free surface boundary condition is in this problem also equal to the case with
an incoming P-wave, and given from equation (91). Continuity of vertical dis-
placement at the internal boundary again forces the angles to follow the type
of snell$ law:

k’l sin(@ls) = k‘ps sin(Hps) = ]CQ sin(GTs) (100)

The set of equations determining the amplitude ratios are found from the bound-
ary conditions (92), (93) and (94) and gives the system of equations determining
the amplitude ratios provided I is known in equation (101).

F,=-T eQikchos(GT)
= s

sin(frs)(Is + Rs) = (Ts — Fs) cos(Ors) + Ps cos(fps)
k1 cos(2015)(Is + Rs) = —Psky, sin(20p5)
kowk(Ty + F,) = Pkp(A + 2pcos®(0ps)) + (Is — Ry)kypusin(267,)

(101)

Notice that for §; = 0, the system is unsolvable because no waves are transmit-
ted into the fluid, and instead we use the results from the previous project with
Ts =0, F;, =0, P, =0 and R; = I,. We also notice that in this case we have a
critical angle at

ky

k1

where no reflected P-wave is produced at the internal boundary. The equations
in (101) are then solved with P = 0. The system is solved in the same manner
as for the P-wave solution. Again, the closed system is verified by conservation
of energy, giving

0, =

|Er| = | B (102)

for layer 1 and 2 respectively, and these need to be correct to machine precision
when solved numerically.

8 Discussion

At the beginning of this thesis, the goal was to build a model to to solve an
earthquake problem and the following P-SV wave propagations in the sea floor,
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Figure 21: The earthquake model for future study. The model includes the ocean, crust
and continent, where the earthquake has its source between the crust and continent.

continent and sea. The projects in this thesis where originally intended to be
exercises to test the different parts of the software before a final implementation
was attempted. However problems occured in the two-layer model. We have
seen that FEniCS handles single domains in a sufficient way by the test solution
process. The free surface imposes more errors, but convergence is still main-
tained. More difficulties are seen with multiple layers. The sponge layer model
has a nice convergence at more coarse resolutions, but this is lost as the reso-
lutions improve as the errors from the reflected waves become more dominant.
In The two layer model with vertical incidence, we have nice convergence rates
for the P-waves on the solid-solid and solid-liquid problems, but larger errors
are found in the solid-liquid boundary. The S-waves have a nice convergence
in the solid-solid problem, but we lose convergence for incoming S-waves in a
solid-liquid boundary, as large chaotic displacement errors are found in the the
fluid domain. In all cases, except the latter, we see a periodic behaviour of the
errors, and this shows that the single and multiple layer test-solution process
produces small reflected waves at the boundaries. In future researh, a numeri-
cal dispersion analysis of the model should be performed to better understand
the behaviour of the different simulations. The sponge layer we have used is
easily implemented for simple geometries and boundaries found in this thesis,
but finding a function b for more complex domains can be very difficult. We
discussed another way of implementing the sponge that should be attempted in
the future. The two layer model with an incoming S-wave also needs attention,
as this does not work with the current implementation. A finite element analysis
should be made in FEniCS to better understand the behaviour of the discon-
tinuities in the solid-liquid boundary, so the problems can be handled. After
such an analysis is made, the problem in section 7 should be implemented and
tested. Further research can be made by inverstigating the P-SV wave system
in more complex domains. A reasonable goal is then the earthquake model in
figure 21, examining the propagation of seismic waves in a realistic problem, and
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investigating the full tsunami story that follows. In the end, we would like to
remark that although the methods in this work are directed toward seismology,
the general theory of the multilayer approach can also be implemented in other
aspects of science.

9 Appendix

Below are listings of the codes used in the thesis. The codes are written in
python version 2.7.6, and the FEniCS version 1.3. In total, 4 codes have been
used. The wave project, the two seismic test solution projects and the project
with two layers.

9.1 Code for the sponge layer project

from dolfin import =
import math as mt

def solver (L,h,xel,yel,xs,dt,T,omega,vel ,k,damp, viz ,save):

# Starting time

t = 0

# elements per length

1 = Lxxel

m = hxyel

# Define functionspace

mesh = RectangleMesh (0,0,L,h,1,m)
V = FunctionSpace (mesh, , 1)
u = TrialFunction (V)

v = TestFunction (V)

Define subdomains

class Fluid (SubDomain):

def inside(self ,x,on_boundary):
return (between(x[0], (0,xs)))

3

class Sponge(SubDomain):
def inside(self ,x,on_boundary):

return (between(x[0], (xs,L)))
fluid = Fluid ()
sponge = Sponge ()
domains = CellFunction ( , mesh)

domains.set_all (0)
fluid . mark (domains, 0)
sponge . mark (domains, 1)

# Create submesh from fluid domain

submesh = SubMesh (mesh, fluid)
Vf = FunctionSpace (submesh, , 1)

48




62

63 # Variable expressions

64 ce = Constant(vel)

65

66 # Set the damping to lin or quad

67 if damp=="1in"

68 be = Expression("x[0] < xs 7 0 : 10+(

69 elif damp=="quad” :

70 be = BExpression ("x[0] < %= 7 0 : 10+ xs , 2 R
71 xs=xs)

72 else :

73 print “Insert lin or quad”

74 exit ()

75

76 # Define important constants

77 step2 = Constant (1/dt=x2)

78 step3 = Constant (1/(2+dt))

79

80 # Initial conditions

81 Ixy = Constant (0)

82 Vxy = Constant (0)

83

84 # Essential boundary conditions

85 inflow = Expression (" <in (omegaxt)scos(piex|[1]) Y« (1 + k)7,
86 omega=omega , h=h , k=k , t=t )

87 free = Constant (0)

88 def surface(x, ob): return ob and abs(x[1]—h) < DOLFIN_EPS
89 def leftfun (x, ob): return ob and abs(x[0]) < DOLFIN_EPS
90

91 left = DirichletBC (V, inflow , leftfun)

92 topp = DirichletBC (V, free, surface)

93 bes = [left , topp]

94

95 # Set all functions into domain

96 ¢ = interpolate (ce, V)

97 b interpolate (be, V)

98 ul = interpolate (Ixy, V)

99 u2 = interpolate (Vxy, V)

100

101 # Variational forms

102 F = step2inner (u,v)*dx — 2xstep2xinner (ul,v)xdx 4+ step2*inner (u2,v)sdx +\
103 bsstep3*inner (u,v)*dx — bxstep3xinner (u2,v)xdx +\
104 cxinner (nabla_grad(ul), nabla_grad (v))=dx
105

106 A = assemble (lhs (F))

107 u = Function (V)

108 = 2xdt

109

110 while t <= T 4 2xdt 4+ DOLFIN_EPS:

111 # Plot if viz=True

112 if viz==True:

113 plot (u2, range_max=1.0, range_-min=—1.0, title="Numerical =olution”)
114 inflow .t = t

115 begin (” Computing at time level t = %g” %t)
116 LL = assemble (rhs (F))

117 [be.apply (A,LL) for bc in becs]

118 solve (A, u.vector (), LL)

119 end ()

120

121 u2.assign (ul)

122 ul.assign (u)

123

124 t 4= dt

125

126 # Exact solution

127 Ik = mt.pi*(1 + k)/(2.%h)

128 kk = mt.sqrt (omega**2/vel #%2 — lkx#2)

129 ue = Expression (”sin (omegaxt — kksx[0])* cos (lksx[1])
130 omega=omega , kk=kk , lk=lk , t=t —2xdt)
131

132 # Interpolate into fluid domain

133 u2e = interpolate (ue, Vf)

134 u2s = interpolate (u2, Vf)

135

136 diff = TrialFunction (Vf)

137 vf = TestFunction (Vf)

138 left = inner (diff, vf)=dx

139 righ = inner (u2e, vf)xdx — inner (u2s, vf)sdx

140 lass = assemble(left)

141 rass = assemble(righ)

142 d = Function (Vf)

143 solve (lass , d.vector (), rass)

144

145 # Save error to file

146 if save==True:

147 filel = File ("~ d—%s —L—%s —h—%s —x el —%s —y el —%s —xs—%s —dt —%s —T—%s . pvd” \
148 % (damp,L,h,xel ,yel ,xs,dt,T))
149

150 filel << d

151

152 # Return the absolute value of the error

49




153 error = abs(d.vector ().array ())

154 return error

155

156

157 def run_simulation ():

158

159 Test program for running an experiment showing the
160 plot on screen with given values and returning the
161 error. The maximum and L2 norm errors

162 are printed at terminal

163 v

164

165

166 24

167 24

168

169 0.01

170

171 = 10.

172 1.

173

174 lin

175 True

176 False

177 = solver (L,h,xel ,yel ,xs,dt,T,omega, vel ,k,damp, viz ,save)
178 error-max = error.max()

179 error-12n = mt.sqrt (sum(error**2/len(error)))

180

181 print “Maximum error: 7, error-max

182 print "L2 norm error: 7, error-12n

test_convergence ():

Program for running a convergence test with given physical
values. The time and spatial steps are halved to test that
convergence is reached. Component errors are then saved to VTK

xs = 1

T = 10

vel = 1.
omega = 10.
k=0

damp = " quad”

viz=False
save=True

# Lists to store error values

E_max [
E_12n = []
# Lists with dt, dx and dy values
timestep = [0.01, 0.005, 0.0025]
xelement = [24, 48, 96]
yvelement = [24, 48, 96]
for i in range(len(timestep)):
dt = timestep [i]
xel = xelement [i]
yel = yelement [i]
error = solver (L,h, xel ,yel ,xs,dt,T,omega,vel ,k,damp, viz , save)

error-max error .max ()
error_12n = mt.sqrt (sum(error=*2/len(error)))

E_max.append (error-max)
E_12n .append(error_12n)

# Check convergence

C_max =

C.12n = []

for i in range(len (E.max)—1):
C_max.append (E_.max[i+1]/E_max[i])
C.12n .append (E_12n[i+1]/E_12n[i])

print 40% ——

print 'MAXIMUM ERROR

print E_max

print 40%

print L2 NORM’

print E_I2n

print 40x

print 'CONVERGENCE MAXIMUM ERROR’
print C_max

print 40% ——

print 'CONVERGENCE L2 NORM’
print C.I2n

print 40% ——
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244
245
246
247
248
249
250
251
252
253
254

10

12

46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68

def main ():
run-simulation ()
#test_convergence ()

if __nmame__.==__main__ :
main ()

9.2 Code for the seismic test solution with dirichlet con-
ditions

from dolfin import x*
import math as mt

def solver (L,h,xel,yel,dt,T,lamda,mu,rho ,A,omega,nx,ny,wavetype, viz ,savefile):

Function for solving the seismic wave equation on a rectangular
domain with with inhomogeneous dirichlet becs on all sides. The solver
is tested with either a p wave or s—wave solution .

INPUT:

L : Length of domain

h : Height of domain

xel : Number of elements per unit length in x direction

vel : Number of elements per unit length in y direction

dt : Time step

T : Total simulation time

lamda : lamees first parameter

mu : shear modulus

rho : density of material

A : Amplitude of test solution

omega : angular frequency of test solution

nx : component of normal vector of test solution in x direction
ny : component of normal vector of test solution in y direction
wavetype: Choose the wave type "P” or »S”

viz : Vizualize results if true

savefile: Save plotfiles if true

OUTPU"

Returns the absolute value of the error in all node points

# Set solver and plotter
solver = LUSolver (" mumps")

# Compute number of elements in x and y direction
1 = Lxxel
m = hxyel

# Function space and functions
mesh = RectangleMesh (0,0,L,h,1 ,m)

V = VectorFunctionSpace (mesh, , 1)
u = TrialFunction (V)
v = TestFunction (V)
# Constants
stepr = Constant (dt*+2/rho)
# Test Wave type
if wavetype == "PP7": # Pressure wave
Au Axnx
Av = Axny
vel = mt.sqrt ((lamda + 2+mu)/rhox*(nx*x*x24+ny=**2)) # Wave velocity
k = omega/vel # Dispersion relation

elif wavetype == # Shear wave

Au = Axny
Av —Axnx
vel = mt.sqrt (mu/rho*(nx*%2 + ny*%2)) # Wave velocity
k = omega/vel # Dispersion relation
t =0
# Initial conditions
Ixy = Expression (("Auxcos (kxnx=x[0] + ksnysx[1] omegaxt)” ,
»Avscos (k*nx*x [0] + ksnysx[1] omegaxt)”),
Au=Au, Av=Av, nx=nx , ny=ny , k=k , omega=omega , t=t )
Vxy = Expression ((” s (k*nx*x[0] + k*ny*xx[1] — omegaxt)”,

(kxnx*x[0] + kxnysx[1] — omegaxt ,
Au=Au, Av=Av,nx=nx,ny=ny , k=k , omega=omega , t=t+dt)
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160

u2 interpolate (Ixy , V)
ul = interpolate (Vxy, V)

# Boundary condition
def boundary(x, on_boundary): return on_boundary
bec = DirichletBC (V, Ixy, boundary)

# Stress tensor
def sigma(u, lamda, mu):
return lamdaxdiv(u)*Identity (2) + mux*(grad(u) + grad(u).T)

# Variational form
F = inner(u, v)*dx — 2xinner (ul, v)*dx 4 inner (u2, v)*xdx +\

steprxinner (sigma(ul, lamda, mu), grad(v))s*dx

A = assemble(lhs(F)) # Assemble left hand side

u Function (V)
t = 2xdt
dxy = Function (V)

dxx = dxy.sub (0)

dyy = dxy.sub (1)

ue = Function (V)

while t <= T + DOLFIN.EPS:
# Update time dependent bc functions
Ixy.t =t
ue.assign (interpolate (Ixy , V))

# Solve

begin(” Solving at time step
b = assemble (rhs(F))
be.apply (A, b)
solver.solve (A, u.vector (), b)

end ()
# Plot solution
i i True :
plot (u, range-max = 1.0, range_-min = —1.0,
title=" Numerical solution”)
elif viz == ’'xerror ' :
dxy.vector ()[:] = ue.vector().array() — u.vector ().array ()
plot (dxx, range.max=le—6, range_min=—1le—6, mode=" color )
elif viz == ‘yerror :
dxy.vector ()[:] = ue.vector ().array () — u.vector ().array ()
plot (dyy, range-max=le—6, range_-min=—1le—6, mode="color ")

u2.assign (ul)
ul.assign (u)

t 4= dt
# Exact solution
Ixy.t = t—dt
uexact = interpolate (Ixy, V)
# Compute component differences
dxy [:] = uexact.vector ().array () — u.vector ().array ()
if savefile == True:
# Save component errors in simulation

%s _nx_%s_ny _%s .pvd”

filel = File(”dbc_x_-%s_wave._xel_%:
% (wavetype, xel, yel, dt, nx, ny))
filel << dxx

ts-wave-xel %s_yel Y%s_dt -%s-nx_-%s-ny-%s.pvd

file2 = File (" dbe_y
% (wavetype, xel, yel, dt, nx, ny))

file2 << dyy

s-yel_Y%s_dt_%s_

file3 = File("dbec_u Y%s_wave_xel
% (wavetype, xel, yel, dt, nx,

file3 << u

# return the error
error = abs(uexact.vector ().array () — u.vector ().array ())
return error

test_convergence ():

L =1

h =1

T =5

lamda = 1
mu = 1

rho = 1

A =1
omega = 0.5
nx = 0

ny = 1
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161 wavetype =

dtlist = [0.0075, 0.00375, 0.001875]
164 xelist = [24, 48, 96]
165 yelist = [24, 48, 96]
166
167 # Compute errors
errorlist = []
normlist = []
for k in range(len(dtlist)):
dt = dtlist [k]
xel = xelist [k]
yel = yelist [k]
error = solver (L,h,xel,yel ,dt,T,
lamda ,mu, rho ,A,omega ,nx,ny, wavetype , viz=False ,
savefile = True)

# Compute 12 norm

norm = mt.sqrt (sum((error)*%2/(len (error))))
normlist .append (norm)

errorlist .append (error .max())

# Check convergence

cmax = []

cl2n = []

for i in range(len(errorlist)—1):
cmax.append (errorlist [i+1]/errorlist [i])
cl2n.append (normlist [i+1]/normlist [i])

print 40x

print 'MAXIMUM ERROR’

print errorlist

print 40%°

print L2 NORM

print nmormlist

print 40% ——

print CONVERGENCE MAXIMUM ERROR

print cmax

print 40’

print 'CONVERGENCE L2 NORM’

print cl2n

print 40%

run-simulation ():

L =1
h =1
xel = 24
yel = 24
dt = 0.001
T = 5.0
lamda = 1.
mu = 1.
rho = 1.
A= 1.
omega = 0.5
nx
ny = 1
wavetype = S
viz = ‘xerror
savefile = False
error = solver (L,h,xel ,yel ,dt,T,
lamda ,mu, rho ,A,omega,nx,ny, wavetype , viz ,
savefile)
2
2 norm = mt.sqrt (sum(error*%2/len(error)))

N

print 20% ——

print MAXIMUM ERROR
print error .max()
print 20

print L2 NORM

print norm

print 20’

NN

def main ():
run-simulation ()
#test_convergence ()

if __name_-. == ~__main
main ()

9.3 Code for the seismic test solutions with given surface
stress
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1| from dolfin import =

2| import mayavi as ma

3| import math as mt

4

5| def solver (L,h,xel,yel,dt,T,lamda ,mu,rho,A,omega,nx,ny,wavetype,viz ,savefile):
6 .

7 Function for solving the seismic wave equation on a rectangular
8 domain with with inhomogeneous dirichlet bcs on 3 sides and with
9 a given stress on the top. The solver

10 is tested with either a p wave or s—wave solution .

11 INPUT :

12 L . Length of domain

13 h : Height of domain

14 xel : Number of elements per unit length in x direction

15 vel : Number of elements per unit length in y direction

16 dt : Time step

17 T : Total simulation time

18 lamda : lamees first parameter

19 mu : shear modulus

20 rho : density of material

21 A : Amplitude of test solution

22 omega . angular frequency of test solution

23 nx : component of normal vector of test solution in x direction
24 ny : component of normal vector of test solution in y direction
25 wavetype: Choose the wave type "P” or ”S”

26 viz : Vizualize results if true

27 savefile: Save plotfiles if true

28

29 OUTPUT:

30 Returns the absolute value of the error in all node points

31

32 # Set solver parameters

33 solver = LUSolver (" mumps")

34

35 Compute number of elements in x and y direction

36 = L=xxel

hxyel
0

« B~

# Function space and functions

mesh = RectangleMesh (0,0,L,h,1 ,m)

V = VectorFunctionSpace (mesh, "CG", 1)
v ]

u

v

f = FunctionSpace (mesh, "CG7", 1)
TrialFunction (V)
= TestFunction (V)

# Constants

stepr = Constant(dt*x2/rho)
# Wave type
if wavetype == "I’ :
Au = Axnx
Av Axny
vel = (lamda 4+ 2xmu)/rho*(nx**24ny**2)
55 k = omega/mt.sqrt (vel)
56 g = Expression ((” —2xmuxAsk*nx*ny*sin (k*nx*x[0]+k*ny*x[1] —omegaxt)”,
57 »»7 _lamdaxAxksnxsnx#sin (k«nx#x[0]+k#ny*x[1] —omegaxt)
58 —lamdaxAxk*ny*ny*sin (k«nx*x[0]+k*ny*x[1] —omegaxt)
59 —2smuxAsk*nysny*sin (ksnx*x[0]+k*ny*x[1] —omegaxt)”””),
60 mu=mu, A=A, k=k , nx=nx ,ny=ny , omega=omega , lamda=lamda ,
61 t=t)
62
63
64 elif wavetype == 757
65 u Axny
66 Av —Axnx
67 vel = mu/rhox(nx**2+4nyx*2)
68 k = omega/mt.sqrt (vel)
69 g = Expression ((7” " muxAsxk*nx*nx*sin (k*(nx*x[0]+ny*x[1]) —omegax*t
70 —mu*Axk*ny*ny=*sin (k*(nx*x[0]+ny=*x[1]) —omegax*xt)””” ,
71 » 2xmusAxk*nx*nyxsin (k*(nxx*x[0]+ny*x[1]) —omega*t)”),
72 mu=mu, A=A, k=k , nx=nx ,ny=ny , omega=omega , lamda=lamda ,
73 t=t)
74
75 # Initial conditions
76 Ixy = Expression (("Auxcos (kxnx=x[0] + ksnyxx[1] — omega=t)”,
7T "Avscos (kxnx*x [0] + kxnys*x[1] omegaxt)” ),
78 Au=Au, Av=Av,nx=nx ,ny=ny , k=k , omega—omega , t=t )
79
80 Vxy = Expression ((7Auxcos (kxnx*x[0] + ksxnys*x[1] — omegaxt)”,
81 " Avscos (k*nx*x [0] + kxnyxx[1] — omegaxt)”),
82 Au=Au, Av=Av,nx=nx,ny=ny , k=k , omega=omega , t=t+dt)
83
84 u2 = interpolate (Ixy, V)
85 ul = interpolate (Vxy, V)
86
87 # Set Dirichlet boundary conditions
88 def left (x, on_b): return on_b and abs(x[0]) < DOLFIN_EPS
89 def bott(x, on-b): return on-b and abs(x[1]) < DOLFIN_EPS
90 def righ(x, on._b): return on_b and abs(x[0] — L) < DOLFIN_EPS
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# Set dirichlet values
lbc = DirichletBC (V, Ixy, left)
bbc = DirichletBC(V, Ixy, bott)
rbc = DirichletBC(V, Ixy, righ)
# List of dirichlet conditions
bcs = [rbc, bbc, lbc]
# Stress tensor
def sigma(v):
return lamdaxdiv(v)=*Identity (2) + \
mux (grad(v) + grad(v).T)
# Variational forms
F = inner(u, v)*dx — 2xinner (ul, v)=xdx +

steprxinner (sigma (ul),

A = assemble (lhs (F))
u = Function (V)

t = 2xdt

ue = Function (V)

d = Function (V)

dxx = d.sub (0)

grad (v))sdx —

inner (u2,
steprxdot (g,

vysdx 4\

v)xds

dyy = d.sub (1)
# Main loop
while t <= T + DOLFIN_EPS:
# Update time dependent bc functions
t
g.t = t—dt
ue.assign (interpolate (Ixy, V))
# Solve
begin (” Solving at time t=%g” %t)
b = assemble(rhs (F))
[be.apply (A, b) for bc in becs]
solver .solve (A, u.vector (), b)
end ()
# Plot solution
if viz==True:
plot (u, range_max = 1.0, range_min = —1.0,
title=" Numerical solution”)
if viz == ‘xerror
d.vector ()[:] = ue.vector ().array () — u.vector ().array ()
plot (dxx, range_-min=—le—6, range_-max=1le—6, mode="color ")
if viz == 'yerron
d.vector ()[:] = ue.vector ().array() — u.vector ().array ()
plot (dyy, range.min=—le—6, range.max=le—6, mode=color )
u2.assign (ul)
ul.assign (u)
t += dt
# Exact solution
Ixy.t = t—dt
uexact = interpolate (Ixy, V)
# Error at time T
d.vector ()[:] = uexact.vector ().array () — u.vector ().array ()
if savefile == True:
filel = File( " str_u_%s_wave_xel Y %os -nx -%s -ny -%s
% (wavetype, xel, yel, dt, nx, ny))
filel << uexact
file2 = File(”str_x_%s_wave_xel %s_yel_%s_dt_-%s_-nx_%s_ny_%s
% (wavetype, xel, yel, dt, nx, ny))
file2 << dxx
file3 = File("str_-y-%s_-wave_xel %s_-yel_%s_dt_-%s_-nx_-%s_-ny_-%s
% (wavetype, xel, yel, dt, nx, ny))
filed << dyy
error = abs(uexact.vector ().array() — u.vector ().array ())
return error

test_convergence ():
L =

h =1

T =5

lamda = 1.

mu = 1.
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rho = 1.

A= 1.
omega = 0.5
nx = 0
ny = 1
wavetype = 757
dtlist = [0.0075, 0.00375, 0.001875]
xelist = [24, 48, 96]
yelist = [24, 48, 96]
# Compute errors
errorlist = []
12normlist = [
for k in range(len(dtlist)):
dt = dtlist [k]
xel = xelist [k]
yel = yelist [k]

error

= solver (L,h,xel,yel ,dt,T,\
lamda ,mu, rho ,A,omega,nx,ny, wavetype , viz=False ,\
savefile=True)

# Compute 12 norm

12 = mt.sqrt (sum(error**2/len (error)))
I12normlist .append (12)

errorlist .append(error .max())

# Check convergence
cmax
cl2n
for i in range(len(errorlist)—1):
cmax.append (errorlist [i+1]/errorlist [i])
cl2n .append(12normlist [i+1]/12normlist [i])

print 40%
print MAXIMUM ERROR

print errorlist

print 40’ ’

print L2 NORM’

print 12normlist

print 40%

print 'CONVERGENCE MAXIMUM ERROR’
print cmax
print 40%°
print ’'CONVERGENCE L2 NORM'’
print cl2n

print 40% ——

run_simulation ():

L =1

h =1

xel = 24

yvel = 24

dt = 0.0075

T =5

lamda = 1.

mu = 1

rho = 1.

A= 1.

omega = 0.5

nx = 1

ny = 0

wavetype = D7
viz = ‘xerror’
savefile = False
error = solver (L,h,xel,yel,dt,T,\

lamda ,mu, rho ,A,omega,nx,ny, wavetype , viz ,\
savefile)

norm = mt.sqrt (sum(error**2/len (error)))

print 20 ’

print 'MAXIMUM ERROR’

print error.max()

print 20%

print L2 NORM’

print norm

print 20 ——°

main () :
run_-simulation ()
#test_convergence ()

——name__. == ' __main__~
main ()

56



9.4 Code for the seismic waves on multiple layers

1| from dolfin import =*

2| import scitools.std as sc

3| import os

4

5| def solver(l,h,L,H,xel,yel,dt,endt,ys,rhol,\

6 rho2 ,mul,mu2,lamdal ,lamda2 ,wtype, part ,w,I1,viz ,saveerror ,animate):
7

8 Function for solving the elastic wave equation in a two—layer system

9 consisting of rectangular domains by using known boundary conditions at

the sides and bottom and a free boundary at the surface. The implementation
is verified by a known analytic solution .

INPUT

1 : Start of domain in x—direction

h : Start of domain in y—direction

L : End of domain in x—direction

H : End of domain in y—direction

xel : Number of elements in x—direction per unit length
yel : Number of elements in y—direction per unit length
dt Time step

endt : End time

ys : Horisontal line that separates media

rhol : Mas density in layer 1

rho 2 : Mass density in layer 2

mul : Shear modulus in layer 1

mu2 : Shear modulus in layer 2

lamdal : Lames constant in layer 1

lamda2 : Lames constant in layer 2

wtype : P for P wave, for shear wave

part : Runs simulation with imaginary or real parts of waves
w : Angular velocity of waves

I : Amplitude of incoming waves

viz : Choose vizualization ’solution’, ’error’ or ’'none’
saveerror: Save the component errors at time T if true
animate : Save the solution in VTK files

OUTPUT:

Plots numerical solution

# Create new directory for save files

43 # Create animation file in directory
if animate == True:
sol = File ("%s s s os —%os —os —%os —=%s —%s —%s . pvd” % \
(viz ,wtype,yel ,dt,endt,rhol ,rho2 ,mul,mu2,lamdal ,lamda2,w))
if saveerror == True:
xer = File (7 xer—"s s Tos —%os —Tos —Tos —%os —%s—%s . pvd” %

Tos —9 & \
(part ,wtype, yel ,dt,endt ,rhol ,rho2,mul,mu2,lamdal,lamda2 ,w))
yer = File (7 yer—%s—%s—9 —%s — % —%s —%s —%s —%s—%s . pvd” %
(part ,wtype,yel ,dt ,endt ,rhol ,rho2 ,mul,mu2,lamdal,lamda2 ,w))

# Define the solver method

solver = LUSolver (7 mumps™)
56 n = xelx(L — 1)
57 m = yelx(H — h)
58
59 # Dispersion relations and amplitudes
60 # depending on the incoming wave
61 if wtype == ‘I :
62 vell = sc.sqrt ((lamdal + 2xmul)/rhol)
63 vel2 = sc.sqrt ((lamda2 + 2xmu2)/rho2)
64 k1l = w/vell
65 k2 = w/vel2
66
67 # Useful expressions
68 al = k1/k2x(lamdal + 2xmul)/(lamda2 + 2xmu2)
69 r sc.cos(2xk2xH) 4+ 1j*sc.sin (2xk2xH)
70 C = alx(sc.cos(2+k2xH) + 1)/sc.sin (2xk2+H)x1j
71
72 # Amplitudes
73 R=—-1Ix(1. +C)/(1. — C)
74 F=1/(1. 4 r)*=(1. — (1. +C)/(1. — C))
75 T =1/(1. 4+ 1./r)*(1. — (1. +C)/(1. — C))
76
77 elif wtype == 'S :
78 vell = sc.sqrt(mul/rhol)
79 vel2 sc.sqrt(mu2/rho2)
80 k1l = w/vell
81 if mu2 == 0:
82 k2
83 R
84 F
85 T
86 else:
87 k2 = w/vel2
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88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

al = klsmul/(k2*mu2)

r = sc.cos(2xk2xH) + 1j*sc.sin (2xk2xH)

C = alx(sc.cos(2+«k2xH) + 1)/sc.sin(2xk2xH)x1j

# Amplitudes

R=—-Ix(1. +C)/(1. — C)

F=1/(1. 4 r)*=(1. — (1. +C)/(1. — QC))

T = 1/(1. 4 1./1)%(1. — (1. + C)/(1. = C))
# Domain and sub domains
mesh = RectangleMesh (1 ,h,L,H,n,m)
solidmesh = AutoSubDomain(lambda x: x[1] < 0 + DOLFIN_EPS)
fluidmesh = AutoSubDomain(lambda x: x[1] > 0 — DOLFIN_EPS)
cf = CellFunction(” size_t7, mesh, 0)

fluidmesh . mark (cf ,1)

solid = SubMesh (mesh, cf, 0)

fluid = SubMesh(mesh, cf, 1)

# Functionspace and functions

V = VectorFunctionSpace (mesh, "CG7, 1)

D = FunctionSpace (mesh, "DG’, 0)

u = TrialFunction (V)

v = TestFunction (V)

u2 = Function(V) # First initial condition u(0)
ul = Function(V) # Second initial condition u(dt)
us = Function (V) # Solution Function u(t)

ue = Function (V) # Exact solution u-e(t)

ud = Function(V) # Error function u_e(t) — u(t)
udx = ud.sub (0) # x—component of the error
udy = ud.sub (1) # y—component of the error

# Extract dofs from sub meshes
sdofx , sdofy = submesh_dofs(mesh, solid , V)
fdofx , fdofy = submesh_dofs(mesh, fluid , V)

# Convert coordinates to python syntax
gdim = mesh.geometry ().dim ()
X

x = X[:,0]
y = X[:,1]

# Vector coordinates in solid layer

XxXs, Xys x[sdofx], y[sdofx]
yxs, yys = x[sdofy], y[sdofy]
# Vector oordinates in fluid layer

c
xxf, xyf = x[fdofx], y[fdofx]
yxf, yyf = x[fdofy], y[fdofy]

# Define subfunctions
rhof = Expression("x[1] > ve 7 rho2 : rhol”,

ys=ys, rhol=rhol, rho2=rho2)
muf = Expression ("x[1 > ys 7 mu2 : mul’,

ys=ys, mul=mul, mu2=mu2)
lamdaf = Expression(’x[1] > ys 7 lamda2 : lamdal”,

ys=ys, lamdal=lamdal, lamda2=lamda2)

rho = interpolate (rhof, D)
mu = interpolate (muf, D)
lamda = interpolate (lamdaf, D)

# Stress tensor
def sigma(u, lamda, mu):
return lamdasdiv(u)*Identity (2) + mux(grad(u) + grad(u).T)

# First Initial condition

t =0

fxs, fys = u-solid (xxs, xys, yxs, yys, part, wtype, w, t, ki1,
fxf, fyf = u_fluid (xxf, xyf, yxf, yyf, part, wtype, w, t, k2,
u2.vector ()[fdofx] = fxf

u2.vector ()[fdofy] = fyf

u2.vector ()[sdofx] = fxs

u2.vector ()[sdofy] = fys

# Second initial condition

t = dt

fxs, fys = u-solid (xxs, xys, yxs, yys, part, wtype, w, t, ki1,
fxf, fyf = u_fluid (xxf, xyf, yxf, yyf, part, wtype, w, t, k2,
ul.vector ()[fdofx] = fxf

ul.vector ()[fdofy] = fyf

ul.vector ()[sdofx] = fxs

ul.vector ()[sdofy] = fys

# Essential boundary conditions
def bottom(x, on.b): return on_b and abs(x[1] —h) < DOLFIN_EPS
def left (x, on.b): return on_b and abs(x[0]) < DOLFIN_EPS
def right(x, on-b): return on-b and abs(x[0] —L) < DOLFIN_EPS
leftbec = DirichletBC (V, ue, left)

righbc = DirichletBC (V, ue, right)

bottbc = DirichletBC (V, ue, bottom)
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bes = [leftbe , righbc, bottbc]

# Variational form
Form = inner (rho%u,v)*xdx — 2xinner(rhoxul,v)xdx 4 inner (rho*u2,v)*dx + \
dt**2xinner (sigma (ul,lamda ,mu),grad (v))*dx

t = 2xdt
leftside = assemble (lhs (Form))
while t <= endt + DOLFIN_EPS:
# Update exact solution and boundary conditions
fxs, fys = u_solid (xxs, xys, yxs, yys, part, wtype, w, t, k1, I, R)
fxf, fyf = u_fluid (xxf, xyf, yxf, yyf, part, wtype, w, t, k2, T, F)
ue.vector ()[fdofx] = fxf
ue.vector ()[fdofy] fyf
ue.vector ()[sdofx] fxs
ue.vector ()[sdofy] fys

# Solve for u
begin (” Solving at time step t=%g” % t)
rightside = assemble (rhs (Form))

[bc.apply (leftside , rightside) for bc in bcs]
solver.solve (leftside , us.vector (), rightside)

ud.vector ()[:] = abs(ue.vector ().array () — us.vector ().array ())

# Plot solution
if viz == ’'solution
plot (us, range_-min=-—1.5, range_-max=1.5,
title='Numerical solution ’)
if animate == True:
sol << us

elif viz == ‘crror’
plot (ud, range_min = —1.0, range_-max = 1.0, mode= color ',
title='Error at time t=%g’ % t)
if animate == True:
sol << ud

elif viz == “xerro:
plot (udx, range.min = —0.01, range-max = 0.01, mode='color
title="Error in x—component at time ;
if animate = True:
sol << udx

elif viz == ‘yerror :
plot (udy, range-min = —0.01, range-max = 0.01,mode="color ',
title='Error in y—component at time t=%g’ % t)
if animate == True:
sol << udy

elif viz == ‘exact :
plot (ue, range_min = —2.5, range_max = 2.5,
title=’Exact solution’)
end ()

# Update for next time step
u2.assign (ul)

ul.assign (us)

t 4= dt

# Compte component differences at time T
ud.vector ()[:] = abs(ue.vector ().array () — us.vector ().array())
udx, udy = ud.split (deepcopy=True)
if saveerror == True:
xer << udx
yer << udy

# Find error
return abs(ue.vector ().array () — us.vector ().array ())

submesh_dofs (mesh, submesh, V):

Function for extracting dofs from subdomains, and
returning two lists of x and y components of
the dofs in the subdomain

tdim = mesh.topology ().dim ()
dofmap = V.dofmap ()

xdof = V.sub (0).dofmap ()
ydof = V.sub (1).dofmap ()

submesh_dofx = set ()
submesh_dofy = sect ()

parent_cell_indices = submesh.data ().array ( parent_cell_indices ,tdim)
for i in range(submesh.num-_cells ()):
cell = parent_cell_indices[i]
[submesh_dofx.add(dof) for dof in xdof.cell_-dofs (cell)]
[submesh_dofy .add(dof) for dof in ydof.cell_dofs (cell)]
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dofx
dofy

sc.
sc

return dofx, dofy

array (list (submesh_dofx))
.array (list (submesh_dofy))

u-solid (xx, xy, yx, yy, part, wtype, w, t, k, I, R):

Function for evaluating the
the solid layer

P or S wave test solution

solution in by

analy
either

tic

if wtype == 'I’:
usx = (0 + 0j)*sc.cos(xy)
usy = Ix(sc.cos(wkt—k*yy) 4+ 1ljxsc.sin(wxt—kxyy)) —+\
Rx(sc.cos(wkt+kxyy) + 1jxsc.sin (wxt+ks*yy))
elif wtype == 'S :
usx = Ix(sc.cos(wkt—k*xy) + 1ljxsc.sin(wxt—kxxy)) +\
R#(sc.cos (wxt+ksxy) + 1j*sc.sin (wktf+kxxy))
usy = (0 + 0j)*sc.cos(yy)
if part == ‘real’
usx sc.ascontiguousarray (sc.real (usx))
usy = sc.ascontiguousarray (sc.real(usy))
if part == ’imag’ :
usx sc.ascontiguousarray (sc.imag(usx))
usy = sc.ascontiguousarray (sc.imag(usy))
return usx, usy
u_fluid (xx, xy, yx, yy, part, wtype, w, t, k, T, F):
Function for evaluating the analytic
solution in the fluid layer by either a
P or S wave test solution
if wtype == P :
ufx = (0 + 0j)*sc.cos(xy)
ufy = Tx(sc.cos(wkt—kxyy) + Lj*sc.sin(wkt—kxyy)) +\
Fx(sc.cos (wkt+kxyy) + 1j*sc.sin (wkt+kxryy))
elif wtype 'S
ufx = Tx(sc.cos(wkt—kxxy) + 1jxsc.sin(wxt—k*xy)) +\
Fx(sc.cos(wktt+k*xy) + 1ljxsc.sin(wxt+kxxy))
ufy = (0 + 0j)*sc.cos(yy)
if part ‘real’
ufx = sc.ascontiguousarray (sc.real(ufx))
ufy = sc.ascontiguousarray (sc.real (ufy))
if part Yimag ' :
ufx = sc.ascontiguousarray (sc.imag(ufx))
ufy = sc.ascontiguousarray (sc.imag(ufy))

return ufx, ufy

run_simulation ():

Function for running a single
INPUT:
Nothing , values are changed

ouTPUT

ints the maximum error and the

dt
endt
ys
rhol
rho2
mul
mu2
lamdal
lamda?2
wtype
part

w
1 =
viz

= 3

2.
= 0.

D= w

‘real’

1.
1.
= ’yerror

simulation

directly

with given values

in the function

12 norm error in the terminal
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saveerror = False
animate = False

error = solver (1,h,L,H, xel,yel,dt,endt,\
ys,rhol ,rho2 ,mul,mu2,lamdal , lamda2,wtype, part,
w,I,viz ,saveerror ,animate)

# Find max and norm errors
errormax = error .max ()
errornor = sc.sqrt (sum(errorx+2/len (error)))

# Print errors on screen
print 30 ——°

print 'MAXIMUM ERROR
print errormax

print 30% ——

print ‘L2 NORM ERROR’
print errornor

print 30% !

test_convergence ():

Function for running 3 simulations with a finer time and
spatial spacing and testing that the error converges

NPUT:
Values are changed directly in function

OUTPUT:
returns :
Prints maximum error in each simulation
— prints convergence rates for maximum error
the L2 norm error in each simulation
the convergence rates for the L2 norm errors

— prin

— print

# Constants
0

’none’
saveerror = True
animate = False

# Convergence values

dtlist = [0.01, 0.005, 0.0025]
xelist [24, 48, 96]
yelist = [24, 48, 96]
# Brrors
errorlist = []
normlist = []
for k in range(len(dtlist)):
dt = dtlist [k]
xel = xelist [k]
yel = yelist [k]
error = solver (l,h,L,H, xel,yel,dt,endt,ys,rhol,\

rho2 ,mul,mu2,lamdal ,lamda2 ,wtype, part ,
w,I,viz ,saveerror ,animate)

norm = sc.sqrt(sum((error)*%2/(len(error))))
normlist .append (norm)
errorlist .append (error .max())

# Check convergence
cmax
[]

cl2n

for i in range(len(errorlist)—1)
cmax.append (errorlist [i+1]/errorlist [i])
cl2n .append(normlist [i4+1]/normlist [i])

print 40x°

print 'MAXIMUM ERROR’

print errorlist

print 40

print L2 NORM’

print normlist

print 40% ——

print 'CONVERGENCE MAXIMUM ERROR’

61




BB R
L G n o Ot n

print cmax
print 40%

print
print cl2n
print 40=%

def main ():
run_simulation ()
#test_convergence ()

2| if __name__==

main ()
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