
A numerical analysis of the seismic wave

equation in different layers by the finite

element method using fenics

by

DANIEL JAMES TARPLETT

THESIS

for the degree of

MASTER OF SCIENCE

(Master i anvendt matematikk og mekanikk)

Faculty of Mathematics and Natural Sciences
University of Oslo

December 2014

Det matematisk- naturvitenskapelige fakultet

Universitetet i Oslo

Abstract

In this thesis we will investigate the seismic wave equation in different layers
by using the finite element method in space and the finite difference method in
time. The performance of the programming will be done by comparisons with
analytical solutions by using test-solution methods, and convergence tests will
be used for error control.

2

Acknowledgements

Firstly, I would like to thank Geir K. Pedersen and Mikael Mortensen for all
their advice and support in the process of writing, and for the help in both the
mathematics and programming. I would like to thank Miroslav Kuchta for all
the help he has given in the FEniCS Q&A forum and in person. I would also
like to thank Finn Løvholt and Valerie Maupin for their role as supervisors. I
would like to thank my fellow students for their friendship, and the faculty staff
for all the help they have given. Lastly, I would like to thank my friends and
family for their continuous support during the process of writing.

3

Contents

1 Introduction 7

2 Theory 8

2.1 Governing equations . 8
2.2 The finite difference method . 9
2.3 The finite element method . 9
2.4 Discretizing the wave equation 10
2.5 Discretizing the momentum equation 11
2.6 Boundary conditions . 12
2.7 Sponge layers . 13
2.8 Error control, stability and convergence 13

3 Waves on a sponge layer 14

3.1 An analytic solution . 15
3.2 Simulations and results . 16
3.3 Conclusion . 17

4 The Seismic Wave Equation with Test Solutions 20

4.1 P and S wave analytic solutions 22
4.2 Simulations and results . 22
4.3 Conclusion . 23

5 Seismic test solutions with a given stress 26

5.1 P and S-wave analytic solutions 27
5.2 Simulations and results . 28
5.3 Conclusion . 28

6 A Two layer model with vertical incidence 31

6.1 P-wave analytic solutions . 32
6.2 S-wave analytic solutions . 35
6.3 Simulations and results . 36
6.4 Conclusion . 37

7 A two layer model with an oblique angle 42

7.1 An Analytic solution with an incoming P-wave 43
7.2 An analytic solution from an incoming S-wave 45

8 Discussion 46

9 Appendix 48

9.1 Code for the sponge layer project 48
9.2 Code for the seismic test solution with dirichlet conditions 51
9.3 Code for the seismic test solutions with given surface stress . . . 53
9.4 Code for the seismic waves on multiple layers 57

4

List of Figures

1 The problem where waves travel with horizontal incidence into a sponge layer 15
2 Figure of the errors in the fluid domain for the run with L = 2, xs = 1 and

a linear damping in the sponge layer. (a) shows the errors for the coarse

mesh, (b) shows the errors for the finer mesh, and (c) shows the errors for

the finest mesh . 18
3 Figure of the errors in the fluid domain for L = 3, xs = 1 and a linear

damping in the sponge layer. (a) shows the errors for the coarse mesh, (b)

shows the errors for the finer mesh, and (c) shows the errors for the finest mesh 19
4 Figure of the errors in the fluid domain with L = 3, xs = 1 and a quadratic

damping function in the sponge layer. (a) shows the errors for the coarse

mesh, (b) shows the errors for the finer mesh, and (c) shows the errors for

the finest mesh . 20
5 The rectanguar domain used in the problem 21
6 Errors for the x and z-components of displacement for a P-wave with an

angle of 71.570 with the x-axis. (a) and (b) show the x and z-displacements

for a 24x24 mesh respectively, and a time step of 0.0075. figures (c) and (d)

show the x and z-displacements for a 96x96 mesh respectivley, and a time

step of 0.001875. 24
7 Errors for the x and z-components of displacement for an S-wave with an

angle of 71.570 with the x-axis. (a) and (b) show the x and z-displacements

for a 24x24 mesh respectively, and a time step of 0.0075. figures (c) and (d)

show the x and z-displacements for a 96x96 mesh respectivley, and a time

step of 0.001875. 25
8 The problem with test solutions for dirichlet boundary conditions and a given

surface stress . 26
9 Figures of the displacement errors for a P-wave propagating with an angle

of θ = 71.570 with respect to the x-axis. (a) and (b) show the x and z-

displacements for a 24x24 mesh with a time step of 0.0075. (c) and (d) show

the x and z-displacement errors for a 96x96 mesh with time step 0.0001875 . 29
10 Figures of the displacement errors for an S-wave propagating with an angle

of θ = 71.570 with respect to the x-axis. (a) and (b) show the x and z-

displacements for a 24x24 mesh with a time step of 0.0075. (c) and (d) show

the x and z-displacement errors for a 96x96 mesh with time step 0.0001875 . 30
11 A two layer model for waves traveling at vertical incidence with the boundaries 32
12 A two layer model for P-waves traveling at vertical incidence with an internal

boundary and a free surface . 32
13 A two layer model for S-waves traveling at vertical incidence with an internal

boundary and a free surface . 35
14 Errors in the x and z components for P-waves hitting a solid-solid boundary.

Figure (a) and (b) shows the x and z-component errors for a 12x24 mesh

respectively. Figures (c) and (d) shows the x and z-component errors for a

48x96 mesh respectively . 38

5

15 Errors in the x and z components for P-waves hitting a solid-liquid boundary.

Figure (a) and (b) shows the x and y-component errors for a 12x24 mesh

respectively. Figures (c) and (d) shows the x and z-component errors for a

48x96 mesh respectively . 39
16 Errors in the x and z components for S-waves hitting a solid-solid boundary.

Figure (a) and (b) shows the x and z-component errors for a 12x24 mesh

respectively. Figures (c) and (d) shows the x and z-component errors for a

48x96 mesh respectively . 40
17 Errors in the x and z components for S-waves hitting a solid-liquid boundary.

Figure (a) and (b) shows the x and z-component errors for a 12x24 mesh

respectively. Figures (c) and (d) shows the x and z-component errors for a

48x96 mesh respectively . 41
18 The two layer domain for waves sent with an oblique angle 43
19 The problem for a P-wave hitting the boundary between solid and fluid . . 44
20 The problem for an S-wave hitting the boundary between solid and fluid . . 45
21 The earthquake model for future study. The model includes the ocean, crust

and continent, where the earthquake has itś source between the crust and

continent. 47

List of Tables

1 Table of numerical results for 3 different simulations. L is the total length

of the domain, xs is the x coordinate of the boundary between fluid and

sponge. bl and bq denotes the linear and quadratic damping functions used.

∆x and ∆z are the element spacings in the x and z-directions, and ∆t is

the time step. Emax and El2n are the maximum and L2 norm errors in

the simulations, and Cmax and Cl2n are the error reduction rates for the

maximum and L2 norm errors with the respect to the previous simulation . 17
2 Table of the calculated amplitudes of the reflected waves from the sponge

layer in all 3 simulations. L denotes the length of the domain, xs the coor-

dinate of the boundary between fluid and sponge, and bl and bq the linear

and quadratic damping functions respectivley. 21
3 Table containing the numerical results of the simulations of the seismic wave

equation with a P wave test solution. The angle θ gives the angle of prop-

agation with the x-axis, ∆x and ∆z give the element spacings in the x and

y direction. ∆t is the time step. Emax and EL2 denotes the maximum and

L2 norm errors respectvely. Cmax and CL2 are the error reduction rates for

the maximum and L2 norm errors with respect to the previous simulation.

Ar are the estimated amplitudes from the reflected waves 23

6

4 Table containing the numerical results of the simulations of the seismic wave

equation with an S wave test solution. The angle θ gives the angle of prop-

agation with the x-axis, ∆x and ∆z give the element spacings in the x and

z-direction. ∆t is the time step. Emax and EL2 denotes the maximum and

L2 norm errors respectivley. Cmax and CL2 are the error reduction rates for

the maximum and L2 norm errors with respect to the previous simulation.

Ar are the estimated amplitudes of the reflected waves 26
5 Table containing the numerical results of the simulations of the seismic wave

equation with P-wave test solutions. The angle θ gives the angle of prop-

agation with respect to the x-axis, ∆x and ∆z give the element spacings

in the x and z direction. ∆t is the time step. Emax and EL2 denotes the

maximum and L2 norm errors. Cmax and CL2 are the error reduction rates

with respect to the previous simulation. Ar are the estimated amplitudes of

the reflected waves . 28
6 Table containing the numerical results of the simulations of the seismic wave

equation with S-wave test solutions. The angle θ gives the angle of prop-

agation with respect to the x-axis, ∆x and ∆z give the element spacings

in the x and z direction. ∆t is the time step. Emax and EL2 denotes the

maximum and L2 norm errors. Cmax and CL2 are the error reduction rates

with respect to the previous simulation. Ar are the estimated amplitudes of

the reflected waves . 31
7 Results for P-waves vertically incident on a solid-solid boundary and a free

surface. 37
8 Results for S-waves vertically incident on a solid-solid boundary and a free

surface. 37
9 Results for P-waves vertically incident on a solid-liqid boundary and a free

surface. 37
10 Results for S-waves vertically incident on a solid-liqid boundary and a free

surface. 42

1 Introduction

Elastic waves in the earth are commonly described as seismic waves, and are
produced by earthquakes, explosions and similar events. The study of these
waves are important in their own right for warning and detection purposes, but
the mathematical theory can also be used in other applications of science. It is
common to use potential theory when studying seismic waves and seismology,
but in this here we will concentrate on more direct solutions of the seismic wave
equation. Numerical experiments will be done by using the finite difference
method in time, and the finite element method in space. The finite element
method is chosen because of it’s ability to handle natural boundary conditions,
but also because of it’s ability to handle more complex geometries. The im-
plementation is done in python using the FEniCS software, as it contains a
scripting enviornment and syntax close to the mathematical formalism in the
finite element method. In the numerical testing, we will also introduce a con-

7

cept called test-solutions for simplifying analytic solutions. The overall goal of
the thesis is to examine how FEniCS handles an implementation of the seismic
wave equation with one and two layers of material. The work is divided into four
seperate projects examining the different aspects of the method, and each with
their own separate conclusions. We have also included a fifth section, where the
mathematics for a further problem is discussed.

2 Theory

In this thesis, we will work with 2D functions in the x-z plane with the y axis
pointing inward. We will use dyadic notation where boldface characters indicate
vector quantities.

2.1 Governing equations

The scalar wave equation with a variable wave velocity and a damping term can
be expressed by:

∂2u

∂t2
+ b

∂u

∂t
= ∇(c∇u) (1)

where u = u(x, z, t) is the displacement, b(x, z) is the damping term, and c(x, z)
is the variable wave velocity. Under the continuum assumption as explained by
Kundu and Cohen [2008, see pp. 4-5] the momentum equation for small particle
displacements can be found from the momentum equation, as done by Stein and
Wysession [2009], and is given by:

ρ
∂2u

∂t2
= ∇ · σ + f (2)

where u = u(x, z, t) is the velocity, ρ = ρ(x, z) is the density, σ is the stress
tensor and f = f(x, z, t) denotes the body forces. Equation (2) can also be called
the navieres primitive equation of motion. By studying the strain of a material
in 3 dimensions as done by Stein and Wysession [2009, pp. 49-51], we can find
the stress tensor

σ = λ(∇ · u)I+ µ(∇u+∇uT) (3)

where we assume the material to be linear elastic, isotropic and that the stresses
are symmetric. σ is the stress tensor, u is the displacement vector, I is the
identity matrix, λ is lameés first constant, and µ is the shear modulus. Inserting
equation (3) into equation (2), we get

utt =
(λ+ µ)

ρ
∇(∇ · u) +

µ

ρ
∇2u+ f (4)

which is the seismic wave equation.

8

2.2 The finite difference method

The classic definitions for discretizing derivatives can be found in multiple text-
books and multiple websites. Tveito and Winther [2005, pp. 46] gives a good
derivation by using taylor series. We invoke the notation un = u(x, y, z, t),
un−1 = u(x, y, z, t − ∆t) and un+1 = u(x, y, z, t + ∆t). We approximate first
derivatives by using the midpoint rule:

ut ≈
un+1 − un−1

2∆t
+O(∆t2) (5)

and second derivatives by the central difference formula:

utt ≈
un+1 − 2un + un−1

∆t2
+O(∆t2) (6)

where we notice that both approximations have an second order error in time.

2.3 The finite element method

The finite element method is a vast collection of mathematical principals and
ideas put together in a comprehensive framework for solving differential equa-
tions and boundary value problems. The full detail of the method is beyond the
scope of this thesis, but we review the basic idea as given by Anders Logg [2012,
pp. 77-94]. We divide the domain into triangles for two dimensional domains,
and tetrahedrons for three dimensional domains and call these subdomains for
elements. We then seek polynomial approximations to the unknown in each
element and then assemble all the parts together to find the global system. We
assume that our function can be approximated by the sum:

u(x) =

N
∑

j=0

cjψj(x) (7)

where cj are unknown constants, x denotes the spatial coordinates and ψj are
given functions of an arbitrary degree. The functions ψj are commonly refered
to as basis functions or weight functions. Suppose our problem is to approximate
our solution u with a function f. This gives the simple solution:

u(x, y) ≈ f(x, y) (8)

And the difference between these two give a residual:

R(x, y) = f(x, y)− u(x, y) (9)

The point is now to minimize this residual as much as possible, and this can be
done by methods including the interpolation, least squares or weighted residuals
method as explained by Langtangen [1999, see pp. 142-144]. We will focus on

9

the latter method, as this is used by the FEniCS software. We define a function
space that is spanned by the basis functions:

V̂ = span{ψj}

And seek weight functions:
v ∈ V̂

such that the inner product of the residual and the test function is zero:
∫

Ω

R(x, y)vdΩ = 0 ∀v ∈ V̂ (10)

Inserting the expression for R from equation (9) into the inner product in equa-
tion (10) we get the equation:

∫

Ω

uvdΩ =

∫

Ω

fvdΩ (11)

Equation (11) is the variational form of the problem, and constitutes a linear
system of equations. The point of the finite element method is to solve this
system using one of many integration methods, including LU solvers and krylov
solvers. We end the review of the finite element method here, and interested
readers can read the fenics book Anders Logg [2012] or many other good publi-
cations on the topic. The rest of this thesis will focus on the variational forms
while FEniCS handles the rest.

2.4 Discretizing the wave equation

We first apply the finite difference scheme for time using equations (5) and (6)
for the time derivatives in equation (1) and get the explicit formula in time:

un+1 − 2un + un−1

∆t2
+ b

un+1 − un−1

2∆t
= ∇(c∇un) + fn (12)

By further introducing the help functions:

A =
1

1 + b∆t
2

B =
b∆t

2
− 1

We get the explicit formula for the time stepping:

un+1 = 2Aun +ABun−1 +A∇ · (c∇un) +A∆t2fn (13)

The space variables are then solved by using the finite element method. Using
the chain rule for the laplace term:

∇ · (c∇unv) = ∇ · (c∇un)v + c∇un∇v

10

and applying green’s theorem, as done by Tveito and Winther [2005, see]:

∫

Ω

∇ · (c∇unv)dΩ =

∫

Γ

n · c∇unvdΩ

The variational form of equations (13) is:

∫

Ω

un+1vdΩ = 2

∫

Ω

AunvdΩ+

∫

Ω

ABun−1vdΩ

−

∫

Ω

cA∇un∇vdΩ+

∫

Γ

An · ∇unvdΓ

+∆t2
∫

Ω

AfnvdΩ

(14)

2.5 Discretizing the momentum equation

The momentum equation is vector valued, and has components in the x,y, and
z directions. The weight functions must therefore also have components in the
x,y,z direction. In our two dimentional description, we get the velocity vector

u = ui+ wk (15)

In all the projects, we will work with the same nodes for u and v. we use local
form functions NI where I is the global node number, and we use the local
weight functions wI = NI . the vector weight function has the form:

w = axNI i+ azNIk (16)

where ax = 1 and az = 0 gives the x-component of the variational form, and
ax = 0 and az = 1 gives the z-component. Using the chain rule on the stress
tensor as we did for the wave equation, we get

∇ · (σ ·w) = (∇ · σ) ·w+ σ : ∇w

And applying green’s theorem

∫

Ω

∇ · (σ ·w)dΩ =

∫

Γ

n · σ ·wdΓ

we get the variational form of equation (2)

∫

Ω

ρun+1 ·wdΩ = 2

∫

Ω

ρun ·wdΩ−

∫

Ω

ρun−1 ·wdΩ

+∆t2
∫

Γ

n · σn ·wdΓ−∆t2
∫

Ω

σn : ∇wdΩ

+∆t2
∫

Ω

fn ·wdΩ

(17)

11

2.6 Boundary conditions

In this thesis, we will give 4 different boundary conditions that are valid for
seismic waves and their interactions between solids, liquids and air.

Fixed boundary

At the fixed boundary, the velocity or displacement is known at the boundary
node I. wI is not used and the variational form in equation (17) is not solved.
Instead, A value is directly inserted into the node points at the boundary:

u = U(x, z, t) (18)

where U is a given boundary function.

Free boundary

The free boundary condition gives a known stress at the boundary, making the
boundary integral term in (17) solvable.

n · σ = σn (19)

Where σ is the stress tensor, n is the normal vector and σn is a given function
for the stress at the boundary. σn is often set to zero to model free surface
boundary conditions..

Internal solid-solid boundary

The solid solid boundary condition describes a type of interaction between two
solid media, like the Moho discontinuity discussed by Stein and Wysession [2009,
see pp. 122] at the crust-mantle boundary. In the solid-solid interface, all
velocity component and tractions must be continuous.

σ(1) = σ(2)

u(1) = u(2)
(20)

where u(1) and u(2) are the velocity vectors in layers 1 and 2, and σ(1) and
σ(2) are the shear stresses in layers 1 and 2. In the finite element method, the
solid-solid boundary gives duplicate nodes at the boundary, and are assembled
into the global system.

Internal solid-liquid boundary

The solid-liquid boundary condition describes the interactions between solid and
liquid media, like the sea floor and ocean. Due to the vanishing shear stress,
the normal tractions and displacements need to be continuous. The shear stress

12

in the solid vanishes at the boundary, and there is no restriction on the shear
displacements.

σ(1)
n = σ(2)

n

σ(1)
s = 0

u(1)
n = u(2)

n

u(1)
s 6= u(2)

s

(21)

where σn denotes the normal stress, σs is the shear stress, un is the normal dis-
placements, and us denotes the shear displacements. The solid-liquid boundary
produces duplicate nodes at the boundary as for the solid-solid boundary, and
are assembled into the global system.

2.7 Sponge layers

In the finite element method, boundaries are forced on the domain. If no bound-
ary is specified as a essential boundary condition, the natural boundary condi-
tions are applied. This gives difficulties if one wants the solution to flow out of
the domain. One solution to this is by using sponge layers. The sponge layer
is a type of damping layer often used to curb solutions to rest. We present
two types of sponge layers: The damping function and the input method. The
damping function can be implemented by inserting:

d = b
∂u

∂t
(22)

into the differential equation. This causes natural damping where
b = b(x;α1, ..., alphaN) is the damping function. the values α1, ..., αN are con-
stants that depend on the problem and domain. Large values of b cause a larger
damp effect. The damping function is easily applied to simple geometries, but
finding a function b(x) in more complex boundaries can be difficult. In the input
method we force the solution to be reduced by setting

u = µu (23)

for every time step in the domain considered. µ ∈ (0, 1) gives the damping,
where 0 is absolute damping and 1 is no damping effect. The input method is
easily applied to more complex geometries, but the method itself can produce
large discontinuities in the domain, giving total reflections instead of dampings.

2.8 Error control, stability and convergence

The combination of the finite difference and finite element method gives a ex-
plicit set of equations to be solved at each time step, and by this method we also
impose stability conditions on the numerical scheme. Although important, the
mathematics is involved, and left for further analysis, yet we will keep in mind
the existence of stability in our programming. Another important property of

13

the numerical scheme is the existense of numerical dispersion. For waves with
an angular frequency ω, the numerical scheme produces a numerical frequency
ω̂ where ω 6= ω̂. Such an analysis is also quite involved in the finite element
method, and is also left for further study, yet Langtangen [1999, see pp. 656]
gives a nice review of the method for a finite difference scheme. In the numerical
testing, we will have analytic solutions to compare our simulations with, and we
put an emphasis on investigation of errors. The L2 norm error can be defined
as

EL2 =

√

∑N
i=0(ue − u)2

N
(24)

where EL2 is the L2 norm error, ue is the exact solution, u is the numerical
solution and N is the number of nodes. For P1 elements we get a second order
error in the spatial coordinates. Combined with the second order errors in the
finite difference schemes for the time discretization, we get the error in the
scheme

E1 = Ax(∆x)2 +Az(∆z)2 +At(∆t)2

where we notice that halving this error gives

E2 = Ax(
∆x

2
)2 +Az(

∆z

2
)2 +At(

∆t

2
)2

and that the ratio between the errors are

E2

E1
= 0.25

This shows that the error is reduced by a factor 4 when halving spatial and time
steps. We will call the number 0.25 the error reduction rate. The spatial and
time steps can be collected into a common parameter h, such that the error is
given by

E = Ch2 (25)

where E is the error, C is some constant and h = h(∆x,∆z,∆t) is a common
parameter for the spatial and time steps. The exponent is commonly referred
to as the convergence rate.

3 Waves on a sponge layer

In this first project, the performance of a sponge layer will be tested for a
simple wave problem on a rectangular domain. Waves are sent into the sponge
layer, and it’s ability to damp out the motion will be analyzed. We assume a
rectangular domain Ω with length L and height H. The domain is divided into
two sub domains Ω1 and Ω2 divided by a vertical line at the point x = xS , We
give the first and second domain the lengths Lp and Ls respectively, and the
height of both domains are H. the subscripts p and s are short for p-wave and
sponge layer. The problem is shown in figure 1. Each domain is divided into
np ×m and ns ×m elements respectively.

14

u = U(z, t)

u = 0

∂u
∂z

= 0

∂u
∂x

= 0b = 0 b = b(x)

Fluid Sponge

Figure 1: The problem where waves travel with horizontal incidence into a sponge layer

3.1 An analytic solution

In the fluid layer we have no damping and a constant wave velocity c1. In the
sponge layer we apply a damping coefficient only dependent on x and a constant
wave velocity c2. Equation (1) then reduces to:

∂2u1

∂t2
= c21∇

2u x ∈ (0, Lp) (26)

∂2u2

∂t2
+ b(x)

∂u2

∂t
= c22∇u x ∈ (Lp, Ls) (27)

For the fluid and sponge respectivly. u1 is the displacement in the fluid layer,
and u2 is the displacement in the sponge layer. The boundary value problem is
subject to 4 boundary conditions in the domain. At the top y = H we assume
no displacements. At the bottom y = 0 and at the right x = Ls we assume
Neumann boundary conditions. At the left hand boundary x = 0 we have an
inflow condition. All four boundary conditions are stated as

15

u1(x,H, t) = 0 (28)

∂u1(x, 0, t)

∂z
= 0 (29)

u2(L, z, t)

∂x
= 0 (30)

u1(0, z, t) = U(z, t) (31)

This boundary value problem has an analytical solution by solving equation
(26) by separation of variables. The calculations are not done in this thesis, but
the solution can be on the form

u1(x, z, t) = A sin(ωt− kx) cos(lz) (32)

provided the dispersion relation is satisfied.

c2 =
ω2

k2 + l2
(33)

equation (31) needs to satisfy equations (26), (28) and (29), and a reasonable
ansatz is a solution on the same form as equation (32). We assume

U(0, z, t) = A sin(ωt) cos(l(z +B)) (34)

where A is the amplitude of the incoming waves, and l and B are determined
by the boundary conditions. By inserting equation (34) into equation (29), it is
shown that B = 0 for non trivial solutions. By applying equation (34) into (28)
the constants from equation (33) get the values:

lk =
π

2h
(1 + k)

where k takes the integer values 0,1,2,.. The resulting inflow condition is:

U(z, t) = A sin(ωt) cos(
πz

2h
(1 + k)) (35)

3.2 Simulations and results

For the convergence tests, we run three simulations with a total simulation time
of T=10s, and with equally spaced time and spatial resolutions. We use p1
elements, and the implementation is given in section 9.1. the time and spatial
values specified as

• ∆t = 0.01, ∆x = 1/24, ∆z = 1/24

• ∆t = 0.005, ∆x = 1/48, ∆z = 1/48

• ∆t = 0.0025, ∆x = 1/96, ∆z = 1/96

16

Run L xs b(x) ∆x ∆z ∆t Emax El2n Cmax Cl2n

1 2 1 bl 1/24 1/24 0.01 0.06645 0.02588 - -
2 2 1 bl 1/48 1/48 0.005 0.02225 0.00970 0.335 0.375
3 2 1 bl 1/96 1/96 0.0025 0.01647 0.00662 0.740 0.682
1 3 1 bl 1/24 1/24 0.01 0.06350 0.02390 - -
2 3 1 bl 1/48 1/48 0.005 0.01614 0.00594 0.254 0.250
3 3 1 bl 1/96 1/96 0.0025 0.0093 0.00301 0.575 0.520
1 3 1 bq 1/24 1/24 0.01 0.07274 0.02659 - -
2 3 1 bq 1/48 1/48 0.005 0.02215 0.00793 0.304 0.298
3 3 1 bq 1/96 1/96 0.0025 0.0093 0.00354 0.419 0.447

Table 1: Table of numerical results for 3 different simulations. L is the total length of the
domain, xs is the x coordinate of the boundary between fluid and sponge. bl and bq denotes
the linear and quadratic damping functions used. ∆x and ∆z are the element spacings in the
x and z-directions, and ∆t is the time step. Emax and El2n are the maximum and L2 norm
errors in the simulations, and Cmax and Cl2n are the error reduction rates for the maximum
and L2 norm errors with the respect to the previous simulation

We test the sponge by using a linear and a quadratic function each given by

bl(x;Lp) = 10(x− Lp) (36)

bq(x;Lp) = 10(x2 − 2Lpx+ L2
p) (37)

The linear function is continuous in the point Lp, and the quadratic function
has the function value and the first derivative continous at Lp. The values k = 0
and ω = 10 are chosen, so that the constants lk and kk get the forms:

l0 =
π

2h

k0 ±

√

ω2

c2
−

π2

4h2

The three simulations are run with the following domains and damping func-
tions.

• L = 2 and Lp = 1 with the damping coefficient in equation (36).

• L = 3 and Lp = 1 with the damping coefficient in equation (36).

• L = 3 and Lp = 1 with the damping coefficient in equation (37).

The results from the simulations are given in figure 2, 3, 4 and table 1.

3.3 Conclusion

An analysis of the scheme shows that when halving the time steps and spatial
steps, the maximum error and the L2 norm error from equation (25) should
have an error reduction factor around 0.25. Table 1 shows a reduction of the L2
norm and maximum errors, but not with the correct factor. The second simula-
tion with a larger sponge layer gives a slightly better result. The L2 norm and

17

(a)

(b)

(c)

Figure 2: Figure of the errors in the fluid domain for the run with L = 2, xs = 1 and a
linear damping in the sponge layer. (a) shows the errors for the coarse mesh, (b) shows the
errors for the finer mesh, and (c) shows the errors for the finest mesh

maximum error is reduced by almost a factor of 0.25 between simulation 1 and
2, but is only reduced by a factor 0.5 between simulations 2 and 3. The errors
in with the quadratic damping function are worse than for the linear damping
function for the same length of the sponge, The convergence is also worse be-
tween the first and second run, but is slightly better between the second and
third run. In all cases, it seems that the errors from the sponge become more
dominant for better resolutions. figures 2, 3 and 4 show a periodic behaviour

18

(a)

(b)

(c)

Figure 3: Figure of the errors in the fluid domain for L = 3, xs = 1 and a linear damping in
the sponge layer. (a) shows the errors for the coarse mesh, (b) shows the errors for the finer
mesh, and (c) shows the errors for the finest mesh

of the error, indicating that the sponge layer is producing reflected waves with
a certain amplitude. In table 2 we have approximated values of the amplitudes
from the reflected waves by subtracing the largest and smallest errors in fig-
ures and taking the square root2, 3 and 4. The amplitdes are large for poor
resolutions, but are reduced with finer resolutions.

19

(a)

(b)

(c)

Figure 4: Figure of the errors in the fluid domain with L = 3, xs = 1 and a quadratic
damping function in the sponge layer. (a) shows the errors for the coarse mesh, (b) shows the
errors for the finer mesh, and (c) shows the errors for the finest mesh

4 The Seismic Wave Equation with Test Solu-

tions

In this project, an implementation of the momentum equation will be tested by
simple analytic solutions, and the boundary value problem will be simplified by
a technique we call test solutions. Assume a rectangular domain Ω of length L

20

Run L xs b(x) Ar

1 2 1 bl 0.245
2 2 1 bl 0.144
3 2 1 bl 0.116
1 3 1 bl 0.239
2 3 1 bl 0.120
3 3 1 bl 0.074
1 3 1 bq 0.244
2 3 1 bq 0.128
3 3 1 bq 0.075

Table 2: Table of the calculated amplitudes of the reflected waves from the sponge layer in all
3 simulations. L denotes the length of the domain, xs the coordinate of the boundary between
fluid and sponge, and bl and bq the linear and quadratic damping functions respectivley.

H

L

Figure 5: The rectanguar domain used in the problem

and height H, as given in figure 5. The domain is divided into n×m elements in
the x and z directions respectively. We assume no body forces in this problem,
so equations (2) and (3) reduce to

ρ
∂2u

∂t2
= ∇ · σ in Ω (38)

σ = λ(∇ · u)I+ µ(∇u+∇uT) in Ω (39)

in the domain. We consider the problem at the times t = t0, t1, ..., tn, and
assume that we have an analytic soluion ue on the whole domain for all t. In
the test solution method, ue is applied as initial and boundary conditions. we
then have

u(x, z, t) = ue(x, z, t) at t = t0 (40)

u(x, z, t) = ue(x, z, t) at t = t1 (41)

u(x, z, t) = ue(x, z, t) on Γ (42)

By using this method, the need to find more complex solutions by separation of
variables or other teqniques are eliminated, and the programs ability to maintain
an analytic solution for a given time is tested.

21

4.1 P and S wave analytic solutions

Known simple solutions of the seismic wave equation are compression and shear
waves, denoted as P an S waves. P and S-waves can be divided into further
categories as done in Stein and Wysession [2009], but we will concentrate on
the coupled P-SV waves in our 2d analysis. A P-wave in the x-z plane can be
defined as:

up = Anei(kn·r−ωt) (43)

where A is the amplitude of the wave, k is the wave number, ω is the angular
frequency, t is the time, and r is the spatial coordinate vector,

r = xi+ zk

and n is the unit normal vector of the wave, given by:

n = nxi+ nzk

satisfying
|n| = 1

An S-wave in the x-z plane can be defined by:

us = B(n× j)ei(kn·r−ωt) (44)

where j is the direction along the positive y-axis. The real part of equation (43)
is on the form:

u = A(nxi+ nzk) cos(knxx+ knzz − ωt) (45)

And this is a valid solution of equation 4 provided

ω2 =
(λ+ 2µ)

ρ
k2 (46)

is satisfied. The real part of the S wave from equation (44) is

u = A(nzi− nxk) cos(knxx+ knzz − ωt) (47)

and is a solution of equation (4) provided

ω2 =
µ

ρ
k2 (48)

is satisfied.

4.2 Simulations and results

The program is run with the P and S wave test solutions from equations (45)
and (47). The variational form of the problem is given in (17) and we use p1
elements. The implementation is given in section 9.2. For both test solutions,

22

P θ ∆x ∆z ∆t EMax EL2 Cmax CL2 Ar

1 0 1/24 1/24 0.0075 1.71e-7 6.56e-8 - - 0.0003
2 0 1/48 1/48 0.00375 4.07e-8 1.64e-8 0.238 0.250 0.0001
3 0 1/96 1/96 0.001875 9.94e-9 4.09e-9 0.244 0.249 6e-5
1 26.57 1/24 1/24 0.0075 5.41e-7 2.14e-7 - - 0.0005
2 26.57 1/48 1/48 0.00375 1.30e-7 5.41e-8 0.240 0.252 0.0002
3 26.57 1/96 1/96 0.001875 3.19e-8 1.35e-8 0.246 0.250 0.0001
1 71.57 1/24 1/24 0.0075 7.65e-7 2.96e-7 - - 0.0005
2 71.57 1/48 1/48 0.00375 1.83e-7 7.44e-8 0.239 0.251 0.0003
3 71.57 1/96 1/96 0.001875 4.48e-8 1.86e-8 0.245 0.250 0.0001
1 90 1/24 1/24 0.0075 1.71e-7 6.56e-8 - - 0.0003
2 90 1/48 1/48 0.00375 4.07e-8 1.64e-8 0.238 0.250 0.0001
3 90 1/96 1/96 0.001875 9.94e-9 4.09e-9 0.244 0.249 6e-5

Table 3: Table containing the numerical results of the simulations of the seismic wave
equation with a P wave test solution. The angle θ gives the angle of propagation with the
x-axis, ∆x and ∆z give the element spacings in the x and y direction. ∆t is the time step.
Emax and EL2 denotes the maximum and L2 norm errors respectvely. Cmax and CL2 are
the error reduction rates for the maximum and L2 norm errors with respect to the previous
simulation. Ar are the estimated amplitudes from the reflected waves

the length L = 1, height H = 1 and a total simulation time of T = 5 are chosen.
For the material, the constants λ = 1, µ = 1 and ρ = 1 are used. The wave
parameters are A = 1 and ω = 0.5. A convergence test is made by running
3 different simulations for both test solutions with the time and spatial steps
evenly distributed

• ∆t = 0.0075, ∆x = 1/24, ∆z = 1/24

• ∆t = 0.00375, ∆x = 1/48, ∆z = 1/48

• ∆t = 0.001875, ∆x = 1/96, ∆z = 1/96

Some results of the simulations are given in tables 3 and 4. the component errors
for the p-wave simulation with a propagation angle of θ = 71.570 with the x-axis
is given in figure 6. The component errors for an S-wave with a propagation
angle of θ = 71.570 with the x-axis is given in figure 7.

4.3 Conclusion

Tables 3 and 4 show the different simulations for different propagation angles
for the P and S-wave test solutions. In all cases the error reduction rates are
slightly better than 0.25 which we found in equation (25). From figure 6 we
see that the errors in x-displacements are larger in the center of the mesh and
close to the corner points, and kept to machine precision at the boundaries. The
errors in z-displacements are largest at the center of the mesh, and decreases
towards the boundaries, where the error is kept to machine precision. In figure
7, all displacements have their maximum error in the center of the mesh, and
decrease towards the boundaries where the errors are kept to machine precision.
In all cases, the errors are kept small, even for the coarsest time and element

23

(a)

(b)

(c)

(d)

Figure 6: Errors for the x and z-components of displacement for a P-wave with an angle
of 71.570 with the x-axis. (a) and (b) show the x and z-displacements for a 24x24 mesh
respectively, and a time step of 0.0075. figures (c) and (d) show the x and z-displacements for
a 96x96 mesh respectivley, and a time step of 0.001875.

24

(a)

(b)

(c)

(d)

Figure 7: Errors for the x and z-components of displacement for an S-wave with an angle
of 71.570 with the x-axis. (a) and (b) show the x and z-displacements for a 24x24 mesh
respectively, and a time step of 0.0075. figures (c) and (d) show the x and z-displacements for
a 96x96 mesh respectivley, and a time step of 0.001875.

25

S θ ∆x ∆z ∆t EMax EL2 Cmax CL2 Ar

1 0 1/24 1/24 0.0075 4.48e-7 1.71e-7 - - 0.0004
2 0 1/48 1/48 0.00375 1.07e-7 4.28e-8 0.238 0.250 0.0002
3 0 1/96 1/96 0.001875 2.65e-8 1.07e-8 0.248 0.250 0.0001
1 26.57 1/24 1/24 0.0075 2.81e-6 1.43e-6 - - 0.0012
2 26.57 1/48 1/48 0.00375 6.47e-7 3.49e-7 0.230 0.244 0.0006
3 26.57 1/96 1/96 0.001875 1.60e-7 8.67e-8 0.247 0.249 0.0003
1 71.57 1/24 1/24 0.0075 3.02e-6 1.44e-6 - - 0.0012
2 71.57 1/48 1/48 0.00375 6.98e-7 3.53e-7 0.231 0.245 0.0006
3 71.57 1/96 1/96 0.001875 1.73e-7 8.77e-8 0.248 0.249 0.0003
1 90 1/24 1/24 0.0075 4.48e-7 1.71e-7 - - 0.0004
2 90 1/48 1/48 0.00375 1.07e-7 4.28e-8 0.238 0.250 0.0002
3 90 1/96 1/96 0.001875 2.65e-8 1.07e-8 0.248 0.250 0.0001

Table 4: Table containing the numerical results of the simulations of the seismic wave
equation with an S wave test solution. The angle θ gives the angle of propagation with the
x-axis, ∆x and ∆z give the element spacings in the x and z-direction. ∆t is the time step.
Emax and EL2 denotes the maximum and L2 norm errors respectivley. Cmax and CL2 are
the error reduction rates for the maximum and L2 norm errors with respect to the previous
simulation. Ar are the estimated amplitudes of the reflected waves

Γf

Γd

Γd

Γd

H

L

Figure 8: The problem with test solutions for dirichlet boundary conditions and a given
surface stress

spacing. By looking at the tables equation 3, 4, the convergence formula (25)
and our choices for ∆x, ∆z and ∆t, we see that the constant C in equation
(25) must be smaller than one for the simulations. We also keep in mind that
a numerical dispersion analysis has not been made, implying that C could be
even smaller. In our simulations, we see that the error has a periodic behaviour,
implying that the boundaries are producing reflected waves into the domain.
The amplitudes are estimated by taking the square of the L2 norm errors in
tables 3 and 4, and we see that the amplitudes decrease for better resolutions
of the mesh.

5 Seismic test solutions with a given stress

In this project, we aim at implementing the seismic wave equation with test
solutions, as we did for the previous project, however in this project we apply a
given stress to one of the boundaries instead of a given displacement. This gives

26

insight as to how FEniCS handles boundary integrals and natural boundary
conditions. We assume a rectangular domain, as given in figure 8, with the
length L and height H. The domain is divided into l×m elements in the x and
z-directions respectivley. As for the previous project, we neglect body forces for
this implementation, giving the the equations of motion and stress:

ρ
∂2u

∂t2
= ∇ · σ in Ω (49)

σ = λ(∇ · u)I+ µ(∇u+∇uT) in Ω (50)

Again, we assume an analytic solution ue, and solve the problem for the times
t = t0, t1, ..., tn. We apply our analytic solution as boundary and initial condi-
tions so that

u(x, z, t0) = ue(x, z, t0) on Ω (51)

u(x, z, t1) = ue(x, z, t0) on Ω (52)

u(x, z, t) = ue(x, z, t) on Γd (53)

σ(u) = σ(ue) on Γf (54)

5.1 P and S-wave analytic solutions

As for the previous project, the P and S-waves from equations (45) and (47)
are solutions of the momentum equation provided the dispersion relations from
equations (46) and (48) are satisfied respectivley. These solutions are applied
as boundary conditions on Γd. On Γs, we apply the given surface stress.

σn = n · σ

= k · (σxxii+ σxzik+ σzxki+ σzzkk)

= σzxi+ σzzk (55)

The components of stress are found from equation (3)

σzx = µ(
∂w

∂x
+

∂u

∂z
)

σzz = λ(
∂u

∂x
+

∂w

∂z
) + 2µ

∂w

∂z

(56)

For the P-wave, the components of stress at Γf are:

σzz = −λAk(n2
x + n2

z) sin(knxx+ knzz − ωt)

− 2µAkn2
y sin(knxx+ knzz − ωt)

σzx = −2µAknxnz sin(knxx+ knzz − ωt)

(57)

And for the S-wave, the components of stress at Γf are:

σzx = µAk(n2
x − n2

z) sin(knxx+ knzz − ωt)

σzz = −2µAknxnz sin(knxx+ knzz − ωt)
(58)

27

P θ ∆x ∆z ∆t EMax EL2 Cmax CL2 Ar

1 0 1/24 1/24 0.0075 1.60e-6 2.77e-7 - - 0.0005
2 0 1/48 1/48 0.00375 3.95e-7 6.61e-8 0.248 0.239 0.0003
3 0 1/96 1/96 0.001875 9.89e-8 1.62e-8 0.249 0.245 0.0001
1 26.57 1/24 1/24 0.0075 4.87e-6 8.49e-7 - - 0.0009
2 26.57 1/48 1/48 0.00375 1.20e-6 2.01e-7 0.246 0.237 0.0004
3 26.43 1/96 1/96 0.001875 2.97e-7 4.91e-8 0.248 0.244 0.0002
1 71.57 1/24 1/24 0.0075 1.11e-6 2.25e-7 - - 0.0005
2 71.57 1/48 1/48 0.00375 2.79e-7 5.66e-8 0.253 0.251 0.0002
3 71.57 1/96 1/96 0.001875 6.93e-8 1.41e-8 0.248 0.250 0.0001
1 90 1/24 1/24 0.0075 5.50e-7 1.81e-7 - - 0.0004
2 90 1/48 1/48 0.00375 1.41e-7 4.68e-8 0.257 0.258 0.0002
3 90 1/96 1/96 0.001875 3.53e-8 1.18e-8 0.250 0.252 0.0001

Table 5: Table containing the numerical results of the simulations of the seismic wave
equation with P-wave test solutions. The angle θ gives the angle of propagation with respect
to the x-axis, ∆x and ∆z give the element spacings in the x and z direction. ∆t is the time
step. Emax and EL2 denotes the maximum and L2 norm errors. Cmax and CL2 are the error
reduction rates with respect to the previous simulation. Ar are the estimated amplitudes of
the reflected waves

5.2 Simulations and results

The variational form is given in equation (17) and we use p1 elements. The
implementation is given in section 9.3. We run 3 simulations for both the P
wave and the S wave test solutions with the length L = 1, height h = 1 and
a total simulation time of T = 5. For the material, we choose the constants
λ = 1, µ = 1 and ρ = 1. We also choose the parameters A = 1 and ω = 0.5.
The convergence tests are made by varying the evenly distributed element and
time spacings

• ∆t = 0.0075, ∆x = 1/24, ∆z = 1/24

• ∆t = 0.00375, ∆x = 1/48, ∆z = 1/48

• ∆t = 0.001875, ∆x = 1/96, ∆z = 1/96

The results for the simulations are given in tables 5 and 6. The component
errors for the simulations with an angle of θ = 71.570 with the x-axis are given
in figures 9 and 10.

5.3 Conclusion

Tables 5 and 6 show that the error reduction rates for both the P and S-wave
test solutions are close to the values estimated from equation (25), yet they
are slightly worse than for the previous project for some of the simulations.
Figure 9 shows the x and z-component errors for a wave propagating with an
angle of θ = 71.570 with the x-axis. from the figure, 4we see that the larger
errors are found at Γf . Local error maximums are also found in parts of the
inner domain, while the errors at Γd are kept to machine precision. Figure 10

28

(a)

(b)

(c)

(d)

Figure 9: Figures of the displacement errors for a P-wave propagating with an angle of
θ = 71.570 with respect to the x-axis. (a) and (b) show the x and z-displacements for a 24x24
mesh with a time step of 0.0075. (c) and (d) show the x and z-displacement errors for a 96x96
mesh with time step 0.0001875

29

(a)

(b)

(c)

(d)

Figure 10: Figures of the displacement errors for an S-wave propagating with an angle of
θ = 71.570 with respect to the x-axis. (a) and (b) show the x and z-displacements for a 24x24
mesh with a time step of 0.0075. (c) and (d) show the x and z-displacement errors for a 96x96
mesh with time step 0.0001875

30

S θ ∆x ∆z ∆t EMax EL2 Cmax CL2 Ar

1 0 1/24 1/24 0.0075 2.12e-6 5.26e-7 - - 0.0007
2 0 1/48 1/48 0.00375 5.32e-7 1.33e-7 0.250 0.253 0.0004
3 0 1/96 1/96 0.001875 1.35e-7 3.36e-8 0.254 0.252 0.0002
1 26.57 1/24 1/24 0.0075 3.36e-5 1.07e-5 - - 0.0033
2 26.57 1/48 1/48 0.00375 8.53e-6 2.70e-6 0.254 0.253 0.0016
3 26.57 1/96 1/96 0.001875 2.17e-6 6.78e-7 0.255 0.251 0.0008
1 71.57 1/24 1/24 0.0075 1.45e-5 4.74e-6 - - 0.0022
2 71.57 1/48 1/48 0.00375 3.89e-6 1.20e-6 0.269 0.252 0.0011
3 71.57 1/96 1/96 0.001875 1.01e-6 3.00e-7 0.259 0.251 0.0005
1 90 1/24 1/24 0.0075 1.83e-7 6.35e-8 - - 0.0003
2 90 1/48 1/48 0.00375 4.81e-8 1.59e-8 0.263 0.251 0.0001
3 90 1/96 1/96 0.001875 1.15e-8 4.03e-9 0.239 0.253 6e-5

Table 6: Table containing the numerical results of the simulations of the seismic wave
equation with S-wave test solutions. The angle θ gives the angle of propagation with respect
to the x-axis, ∆x and ∆z give the element spacings in the x and z direction. ∆t is the time
step. Emax and EL2 denotes the maximum and L2 norm errors. Cmax and CL2 are the error
reduction rates with respect to the previous simulation. Ar are the estimated amplitudes of
the reflected waves

shows the x and z-component errors for a wave propagating with an angle of
θ = 71.570 with the x-axis. The larger errors are in this case also found at
Γf . For the x-displacements, local maxima of the errors are also found in parts
of the interior domain, while the errors in z-displacement decrease towards the
boundary Γd. For both the x and z-displacement, the errors at Γd are kept
to machine precision. By looking at the errors in tables 5, 6, the convergence
formula (25) and our choices for ∆x, ∆z, and ∆t, we see that the constant
C from equation (25) is smaller than 1 for our simulations as for the previous
project. We also keep in mind that a numerical dispersion relation analysis is
not made, and this implies that the constant C could be even better. In the
simulations we see a periodic behaviour of the error that is larger at the free
surface and smaller at the bottom. As for the previous project, this implies
that the boundaries are producing reflected waves. The calculated amplitudes
are given in tables 5 and 6, and in all cases, the amplitudes decrease for better
resolutions.

6 A Two layer model with vertical incidence

In this project, the performance of the finite element method in two domains
with different material properties will be tested by the test solution process.
Assume a rectangular domain Ω divided into the two subdomains Ω1 and Ω2

as shown in figure 11. Ω1 has a length L and a height h. Ω2 has a length L
and the height H. The domains are divided into l × m1 and l × m2 elements
respectivley, and are separated by the horizontal line z = 0. In Ω1, we have the
physical parameters λ1, µ1 and ρ1, and in Ω2, we have λ2, µ2 and ρ2. All waves
are assumed to have the same angular frequencies ω. The stress tensors in the

31

Ω1

Ω2

x = 0 x = L
z = −h

z = H

z = 0

Figure 11: A two layer model for waves traveling at vertical incidence with the boundaries

uI uR

uTuF

Figure 12: A two layer model for P-waves traveling at vertical incidence with an internal
boundary and a free surface

two domains are then

σ1 = λ1(∇ · u1)I+ µ1(∇u1 +∇uT
1) in Ω1 (59)

σ2 = λ2(∇ · u2)I+ µ2(∇u2 +∇uT
2) in Ω2 (60)

and are inserted into equation (17) to get the variational forms for each layer
respectivley.

6.1 P-wave analytic solutions

For the two layer problem from figure 12, an incoming wave from below produces
a reflected and a transmitted wave. At the free boundary, the transmitted wave
produces another reflected wave. The possible analytical wave solutions for the

32

problem are

uI = Iei(ωt−k1z)k

uR = Rei(ωt+k1z)k

uT = Tei(ωt−k2z)k

uF = Fei(ωt+k2z)k

(61)

where I denotes the incoming P-wave, R the reflected wave, T the transmitted
wave and F the reflected wave from the free boundary. Theese waves are valid
solutions of the seismic wave equation provided

ω2 = (
λ1 + 2µ1

ρ1
)k21

ω2 = (
λ2 + 2µ2

ρ2
)k22

(62)

for the two layers respectively. From the boundary condition (20) we must have
continuity of displacements at z = 0. Inserting the wave solutions from equation
(61) we get

Ie(iωt) +Re(iωt) = Te(iωt) + Fe(iωt) (63)

Giving a relation between amplitudes:

I +R = T + F (64)

From equation (20) we must have continuity of stress at z = 0, and inserting
the wave solutions from equation (61) into the boundary condition we get

(λ1 + 2µ1)k1ie
i(ωt)(R− I) = (λ2 + 2µ2)k2ie

i(ωt)(F − T) (65)

Giving:
k1(λ1 + 2µ1)

k2(λ2 + 2µ2)
(R− I) = F − T (66)

at z = H we have a free boundary condition given from equation (19), and
inserting the wave solutions from equation (61) into this condition gives:

−T (λ2 + 2µ2)k2ie
i(ωt−k2H) + F (λ2 + 2µ2)k2ie

i(ωt+k2H) = 0 (67)

Giving the relation between the transmitted and reflected wave from the free
surface as:

T = Fe2ik2H (68)

Equations (64), (66) and (68) give a system of equations that can be solved for R,
T and F assuming I is known, and doing so produces the following amplitudes:

R = −I
(1 + C)

(1− C)

T =
I

(1 + r−1)

(

1−
(1 + C)

(1− C)

)

F =
I

(1 + r)

(

1−
(1 + C)

(1− C)

)

(69)

33

Where we have defined:

α =
k1
k2

(λ1 + 2µ1)

(λ2 + 2µ2)

r = e2ik2H

C = α
(1 + r)

(1− r)

(70)

for simplicity of notation. The two layer problem is a closed system, and this
physically forces the incoming and reflected waves to have the same magnitude
of amplitudes. Also, the transmitted and second reflected wave must also have
the same amplitudes.

|I| = |R|

|T | = |F |

To simplify our calculations a bit more, we show that C from equation 70 is a
pure imaginary number C = ci. By using some complex theory we get:

C = α
1 + e2ik2H

1− e2ik2H

= α
(1 + e2ik2H)(1 + e−2ik2H)

(1− e2ik2H)(1 + e−2ik2H)

= α
2 + e2ik2H + e−2ik2H

e−2ik2H − e2ik2H

= α
2 cos(2k2H) + 2

−2i sin(2k2H)

= αi
cos(2k2H) + 1

sin(2k2H)

= ci

Taking the absolute value of the amplitude of the reflected wave from equation
(69) gives:

|R| = | − I
(1 + ci)

(1− ci)
|

=

√

I2
(1 + ci)(1− ci)

(1− ci)(1 + ci)

= |I|

From equation (68), we get the relation:

|T | = |Fe2ik2H |

=
√

F 2(cos(2ik2H) + i sin(2ik2H))(cos(2ik2H)− i sin(2ik2H))

=

√

F 2(cos2(2ik2H) + sin2(2ik2H)

= |F |

34

uIs uRs

uTsuFs

Figure 13: A two layer model for S-waves traveling at vertical incidence with an internal
boundary and a free surface

We notice that the analytical solution provided is valid for general solid-solid
and solid-fluid boundaries.

6.2 S-wave analytic solutions

For the S-waves, the solutions have a similar form as for the P-waves. The incom-
ing S-wave produces a reflected and transmitted wave at the internal boundary
for solid-solid boundaries, and the transmitted wave produces a new reflected
wave at the free surface. The S-wave solutions are on the form

uIs = Ise
i(ωt−k1z)i (71)

uRs = Rse
i(ωt+k1z)i (72)

uTs = Tse
i(ωt−k2z)i (73)

uFs = Fse
i(ωt+k2z)i (74)

where Is denotes the incoming wave, Rs the reflected wave, Ts the transmitted
wave and Fs the reflected wave from the free surface. Theese equations are
solutions of the seismic wave equation provided

ω2 = (
µ1

ρ1
)k21

ω2 = (
µ2

ρ2
)k22

(75)

Are satisfied for layer 1 and 2 respectively. Continuity of displacement at z = 0
from equation (20) gives

Is +Rs = Ts + Fs (76)

Continuty of stress from equation (20) at z = 0 gives

k1µ1

k2µ2
(Rs − Is) = Fs − Ts (77)

35

At the free boundary z = H, the free surface condition from equation (19) gives

T = Fe2ik2H (78)

Equations (76), (77) and (78) gives a system of equations as for the P-wave
solutions, and solving for the amplitudes gives:

Rs = −Is
(1 + Cs)

(1− Cs)
(79)

Ts = Is
1

(1 + r−1)

(

1−
(1 + Cs)

(1− Cs)

)

(80)

Fs = Is
1

(1 + r)

(

1−
(1 + Cs)

(1− Cs)

)

(81)

where we have defined the help constants

αs =
k1µ1

k2µ2

r = e2ik2H

Cs = αs

(1 + r)

(1− r)

(82)

We notice that all the constants are similar to what we had for the P-wave
solutions, and following the same procedures as for the previous section, we see
that energy is conserved. We notice that for µ2 = 0, σ2 = 0, giving uTs = 0
and uFs = 0. We therefore need to apply the solid-liquid boundary condition
from equation (21). In this case, the only remaining boundary condition is
the vanishing stress at z = 0 from equation (21), giving R = I. So for the
solid-liquid case, the amplitudes have the values

R = I (83)

T = 0 (84)

F = 0 (85)

6.3 Simulations and results

The version of FEniCS used in this thesis does not handle complex numbers, so
our analytic solutions are computed in python numpy arrays in scipy. Interested
readers can read the scipy documentation by Jones et al.. This requires mesh
information to be extracted from FEniCS, used in python numpy, and then
ported back into FEniCS. This is done in the two layer code in section 9.4.
We run 2 simulations for the P-wave test solutions, one with the solid-solid
boundary, and another with the solid-liquid boundary. We do the same for the
S-wave test solutions. We run the simulations on the domain with L = 1, h = 1
and H = 1. We choose the physical parameters ρ1 = 4, ρ2 = 3, µ1 = 2, λ1 = 3,
λ2 = 1, and the wave parameters ω = 1 and I = 1. We run the two simulations
with µ2 = 1 and µ2 = 0 for the P and S-waves, and run convergence tests with
equally spaced time and spatial steps

36

P ∆x ∆z ∆t EMax EL2 Cmax CL2 Ar

1 1/12 1/12 0.005 0.00083 0.00023 - - 0.015
2 1/24 1/24 0.0025 0.00023 6.63e-5 0.279 0.289 0.008
3 1/48 1/48 0.00125 5.90e-5 1.73e-5 0.255 0.261 0.004

Table 7: Results for P-waves vertically incident on a solid-solid boundary and a free surface.

S ∆x ∆z ∆t EMax EL2 Cmax CL2 Ar

1 1/12 1/12 0.005 8.50e-5 3.04e-5 - - 0.006
2 1/24 1/24 0.0025 2.4e-5 7.63e-6 0.283 0.251 0.003
3 1/48 1/48 0.00125 5.5e-6 1.95e-6 0.229 0.256 0.001

Table 8: Results for S-waves vertically incident on a solid-solid boundary and a free surface.

• ∆t = 0.005, ∆x = 1/12, ∆z = 1/12

• ∆t = 0.0025, ∆x = 1/24, ∆z = 1/24

• ∆t = 0.00125, ∆x = 1/48, ∆z = 1/48

The results of the simulations are given in tables 7, 8, 9 and 10. The x and
z-displacement errors are given in figures 15, 14, 17, and 16.

6.4 Conclusion

tables 7 and 9 show the results of the simulations for a P-wave on a solid-solid
and solid-liquid boundary respectively. The tabes show a clear convergence of
the error, yet the error in the solid-liquid case is much worse than for the solid-
solid case. The component errors for the P-wave simulations are given in figures
14 and 15. We notice that though the model only has displacements in the
z-direction for P-waves, some x-displacements are produced by the numerical
scheme. For the solid-solid case, the larger errors for the x and z-componets are
found at the free surface, and the smallest errors are found at the boundaries. In
the simulations, the x and z errors have a periodic behaviour, showing that the
scheme is producing standing waves at the boundaries. In the solid-liquid case,
the errors in x and z-components are smaller in the solid layer, and larger in
the fluid layer. In the simulations, the errors in the x-components are chaotic,
starting at the internal boundary and spreading into the rest of the domain.
the z-component error has a semi periodic behaviour spreading from the free
surface and into the whole domain. In the fluid domain, large errors are found
just inside the boundaries at the two sides of the domain.

P ∆x ∆z ∆t EMax EL2 Cmax CL2 Ar

1 1/12 1/12 0.005 0.05694 0.01306 - - 0.114
2 1/24 1/24 0.0025 0.01500 0.00331 0.263 0.253 0.058
3 1/48 1/48 0.00125 0.00387 0.00083 0.258 0.252 0.029

Table 9: Results for P-waves vertically incident on a solid-liqid boundary and a free surface.

37

(a)

(b)

(c)

(d)

Figure 14: Errors in the x and z components for P-waves hitting a solid-solid boundary.
Figure (a) and (b) shows the x and z-component errors for a 12x24 mesh respectively. Figures
(c) and (d) shows the x and z-component errors for a 48x96 mesh respectively

38

(a)

(b)

(c)

(d)

Figure 15: Errors in the x and z components for P-waves hitting a solid-liquid boundary.
Figure (a) and (b) shows the x and y-component errors for a 12x24 mesh respectively. Figures
(c) and (d) shows the x and z-component errors for a 48x96 mesh respectively

39

(a)

(b)

(c)

(d)

Figure 16: Errors in the x and z components for S-waves hitting a solid-solid boundary.
Figure (a) and (b) shows the x and z-component errors for a 12x24 mesh respectively. Figures
(c) and (d) shows the x and z-component errors for a 48x96 mesh respectively

40

(a)

(b)

(c)

(d)

Figure 17: Errors in the x and z components for S-waves hitting a solid-liquid boundary.
Figure (a) and (b) shows the x and z-component errors for a 12x24 mesh respectively. Figures
(c) and (d) shows the x and z-component errors for a 48x96 mesh respectively

41

S ∆x ∆z ∆t EMax EL2 Cmax CL2 Ar

1 1/12 1/12 0.005 0.37459 0.07808 - - 0.279
2 1/24 1/24 0.0025 0.36459 0.05934 0.973 0.760 0.244
3 1/48 1/48 0.00125 0.37266 0.04476 1.022 0.754 0.212

Table 10: Results for S-waves vertically incident on a solid-liqid boundary and a free surface.

Tables 8 and 10 show the results of the simulations for an S-wave on a solid-
solid and solid-liquid boundary respectively. In the solid-solid case, we see error
reduction rates close to 0.25. For the solid-liquid case, the error reduction rates
for the maximum error are irregular, and the L2 norm has an error reduction
rate close to 0.75. From figures 16 and 17 we see that the numerical scheme
produces z-displacements, even though the S-waves only have x-displacements.
At the solid-solid boundary, the errors are kept to machine precision at the
test solution boundaries, and are larger in the interior domain. The errors in
x-displacements are periodic, and largest at the free surface and fluid layer. The
errors in z-displacements are periodic in the whole boundary. the For the solid-
liquid boundary, we see that the errors in the solid are small, but figure 17 shows
that displacements propagate into the fluid layer. Although displacements are
expected to propagate into the fluid domain as a result of numerical dispersion,
we see no clear convergence or periodicity of the displacement errors in the fluid
layer. In the solid layer, we have a periodic behaviour of both the x and z-errors
displacements of the error.

In almost all cases, it seems that the interactions with the boundaries are
producing additional reflected and transmited waves. These waves have an
amplitude that can be approximated by taking the square root of the L2 norm
errors in each simulation. This is done in tables 7, 9, 8 and 10. For the case of
the S-wave on a solid-liquid boundary, the errors need to be investigated and
the programming reviewed.

7 A two layer model with an oblique angle

In the previous project, P and S waves were sent with a vertical incidence
towards a the boundary between two layers, and the interactions were examined.
In that project, we found a numerical problem in the solid-liquid boundary
for S-waves. Due to that problem, it is unwise to continue with a numerical
analysis of waves sent with an oblique angle. However, in this project we set
up the mathematical model for the solid-liquid boundary problem for future
references. Assume the rectangular domain Ω divided into the two subdomains
Ω1 and Ω2 for the solid and fluid layer respectivly, as given in figure 18. Ω1 is
divided into l×ms elements, and Ω2 is divided into l×mf elements. The stress
tensor from equation (3) for each layer is given as:

σ1 = λ(∇ · u1)I+ µ(∇u1 +∇uT
1) (86)

σ2 = κ(∇ · u1) (87)

42

Γ1

Γ2

Γ3

Γ4

Ω1

Ω2

Figure 18: The two layer domain for waves sent with an oblique angle

and inserted into the momentum equation. The variational form from equation
(17) is then solved in each sub domain.

7.1 An Analytic solution with an incoming P-wave

The different waves and their directions are found from simple geometric con-
siderations. The closed system consists of 5 waves interacting with each other
given in equation (88), and the problem is given in figure 19. In the figure we
have made the assumption that the P-wave velocity in the solid is larger than
the S-wave velocity in the solid, and that the S-wave velocity in the solid is
larger than the P-wave velocity in the fluid. Stein and Wysession [2009, see pp.
203] gives a table showing that this is correct for the ocean-crust model. An
incoming P-wave always produces a reflected P-wave, and a reflected S-wave.
The fluid layer does not support S-wave motion, so only a P-wave is transmitted
through the fluid. The free surface then produces a reflected P-wave.

uI = I(sin(θI)i+ cos(θI)k)e
i(k1x sin(θI)+k1z cos(θI)−ωt)

uR = R(sin(θR)i− cos(θR)k)e
i(k1x sin(θR)−k1z cos(θR)−ωt)

uS = S(cos(θS)i+ sin(θS)k)e
i(ksx sin(θs)−ksz cos(θs)−ωt)

uT = T (sin(θT)i+ cos(θT)k)e
i(k2x sin(θT)+k2z cos(θT)−ωt)

uF = F (sin(θF)i− cos(θF)k)e
i(k2x sin(θF)−k2z cos(θF)−ωt)

(88)

We set the boundary between media at z = 0 and the free surface at z = H.
We make the physical observation, also mathematically explained by Stein and
Wysession [2009, pp. 71-72] that the angles:

θR = θI

θT = θF
(89)

43

uI uS uR

uT

uF

θI

θS

θR

θT

θT θF

Fluid

Solid

Figure 19: The problem for a P-wave hitting the boundary between solid and fluid

We set u(1) = uI + uR + uS and u(2) = uT + uR. The free surface boundary
condition (19) states that traction on the surface should be zero as in the pre-
vious project, and because the fluid does not support shear motion, only the
normal traction needs to be considered. This gives the relation

u(2)
x (x,H, t) = −w(2)

z (x,H, t) (90)

Inserting equation (88) into (90) and doing some mathematics gives the relation

T = −Fe−2ik2 cos θT (91)

At the internal solid-liquid boundary we have three boundary conditions. The
normal displacement and normal traction must be continuous, and that the
tangential tractions in the solid vanish. This is after some simplifications stated
as:

w(1)(x, 0, t) = w(2)(x, 0, t) (92)

u(1)
z (x, 0, t) = −w(1)

x (x, 0, t) (93)

κ(u(2)
x (x, 0, t) + w(2)

z (x, 0, t)) = λ(u(1)
x (x, 0, t) + w(1)

z (x, 0, t))

+ 2µw(1)
z (x, 0, t)

(94)

From equation (92) we have:

T cos θT e
i(k2 sin θT x) = F cos θT e

i(k2 sin θT x) + I cos θIe
i(k1 sin θIx)

−R cos θIe
i(k1 sin θIx) + S sin θSe

i(ks sin θsx)
(95)

From this equation we make an important physical observation. Because both
sides of the equation have to be constant and equal for all x, we must demand
that

k1 sin θI = ks sin θs = k2 sin θT (96)

44

uI

uR

uP

uT uF

θI θR

θP

θT

θT θF

Fluid

Solid

Figure 20: The problem for an S-wave hitting the boundary between solid and fluid

which is a form of snelĺs law. Inserted into the rest of the boundary conditions,
the system of equations determining the amplitudes are found, and given in
equation (97):

F = −Te2ik2H cos(θT)

cos(θI)(I −R) + sin(θs)S = cos(θT)(T − F)

k1 sin(2θI)(I −R) = ks cos(2θs)S

Sµks sin(2θs) = k1(λ+ 2µ cos2(θI))(I +R)− κk2(T + F)

(97)

Notice that when θI = 0, the system of equations reduces to the results in
equations (64), (66) and (68) from the previous project. The system (97) is
complicated, and the hand calculations are not done in this thesis. However,
numerical methods can be used to solve for the amplitudes by using the complex
linear system solver in the scipy module for python, explained by the documen-
tation by Jones et al.. To verify the results for the closed system, conservation
of energy can be examined by

|E1| = |E1| (98)

where 1 denotes layer 1 and 2 deotes layer 2. In the numerical solver, this
equality must be correct to machine precision.

7.2 An analytic solution from an incoming S-wave

The problem with an incoming S-wave is almost equal to the case with the
incoming P-wave. The S-wave produces a reflected S-wave, a reflected P-wave
and a transmitted P-wave. The transmited P-wave then produces a reflected
P-wave at the free surface. The 5 interacting waves are given as. Again we have

45

assumed that cp > cs > cf where cp is the P-wave velocity in the solid, cs is the
S-wave velocity in the solid, and cf is the P-wave velocity in the fluid.

uIs = Is(− cos(θIs)i+ sin(θIs)k)e
i(k1x sin(θIs)+k1z cos(θIs)−ωt)

uRs = Rs(cos(θRs)i+ sin(θRs)k)e
i(k1x sin(θRs)−k1z cos(θRs)−ωt)

uPs = Ps(sin(θPs)i− cos(θPs)k)e
i(kpx sin(θPs)−kpz cos(θPs)−ωt)

uTs = Ts(sin(θTs)i+ cos(θTs)k)e
i(k2x sin(θTs)+k2z cos(θTs)−ωt)

uFs = Fs(sin(θFs)i− cos(θFs)k)e
i(k2x sin(θFs)−k2z cos(θFs)−ωt)

(99)

Again, by physical observations it is known that θI = θR and θT = θF . The
free surface boundary condition is in this problem also equal to the case with
an incoming P-wave, and given from equation (91). Continuity of vertical dis-
placement at the internal boundary again forces the angles to follow the type
of snelĺs law:

k1 sin(θIs) = kPs sin(θPs) = k2 sin(θTs) (100)

The set of equations determining the amplitude ratios are found from the bound-
ary conditions (92), (93) and (94) and gives the system of equations determining
the amplitude ratios provided I is known in equation (101).

Fs = −Tse
2ik2H cos(θT)

sin(θIs)(Is +Rs) = (Ts − Fs) cos(θTs) + Ps cos(θPs)

k1 cos(2θIs)(Is +Rs) = −Pskp sin(2θPs)

k2κ(Ts + Fs) = PskP (λ+ 2µ cos2(θPs)) + (Is −Rs)k1µ sin(2θIs)

(101)

Notice that for θI = 0, the system is unsolvable because no waves are transmit-
ted into the fluid, and instead we use the results from the previous project with
Ts = 0, Fs = 0, Ps = 0 and Rs = Is. We also notice that in this case we have a
critical angle at

θ1 =
kp
k1

where no reflected P-wave is produced at the internal boundary. The equations
in (101) are then solved with P = 0. The system is solved in the same manner
as for the P-wave solution. Again, the closed system is verified by conservation
of energy, giving

|E1| = |E2| (102)

for layer 1 and 2 respectively, and these need to be correct to machine precision
when solved numerically.

8 Discussion

At the beginning of this thesis, the goal was to build a model to to solve an
earthquake problem and the following P-SV wave propagations in the sea floor,

46

Ocean

Continet

Crust

Source

Figure 21: The earthquake model for future study. The model includes the ocean, crust
and continent, where the earthquake has itś source between the crust and continent.

continent and sea. The projects in this thesis where originally intended to be
exercises to test the different parts of the software before a final implementation
was attempted. However problems occured in the two-layer model. We have
seen that FEniCS handles single domains in a sufficient way by the test solution
process. The free surface imposes more errors, but convergence is still main-
tained. More difficulties are seen with multiple layers. The sponge layer model
has a nice convergence at more coarse resolutions, but this is lost as the reso-
lutions improve as the errors from the reflected waves become more dominant.
In The two layer model with vertical incidence, we have nice convergence rates
for the P-waves on the solid-solid and solid-liquid problems, but larger errors
are found in the solid-liquid boundary. The S-waves have a nice convergence
in the solid-solid problem, but we lose convergence for incoming S-waves in a
solid-liquid boundary, as large chaotic displacement errors are found in the the
fluid domain. In all cases, except the latter, we see a periodic behaviour of the
errors, and this shows that the single and multiple layer test-solution process
produces small reflected waves at the boundaries. In future researh, a numeri-
cal dispersion analysis of the model should be performed to better understand
the behaviour of the different simulations. The sponge layer we have used is
easily implemented for simple geometries and boundaries found in this thesis,
but finding a function b for more complex domains can be very difficult. We
discussed another way of implementing the sponge that should be attempted in
the future. The two layer model with an incoming S-wave also needs attention,
as this does not work with the current implementation. A finite element analysis
should be made in FEniCS to better understand the behaviour of the discon-
tinuities in the solid-liquid boundary, so the problems can be handled. After
such an analysis is made, the problem in section 7 should be implemented and
tested. Further research can be made by inverstigating the P-SV wave system
in more complex domains. A reasonable goal is then the earthquake model in
figure 21, examining the propagation of seismic waves in a realistic problem, and

47

investigating the full tsunami story that follows. In the end, we would like to
remark that although the methods in this work are directed toward seismology,
the general theory of the multilayer approach can also be implemented in other
aspects of science.

9 Appendix

Below are listings of the codes used in the thesis. The codes are written in
python version 2.7.6, and the FEniCS version 1.3. In total, 4 codes have been
used. The wave project, the two seismic test solution projects and the project
with two layers.

9.1 Code for the sponge layer project

1 from do l f i n import ∗
2 import math as mt
3
4 def s o l v e r (L , h , xel , yel , xs , dt ,T, omega , vel , k , damp , viz , save) :
5 ”””
6 Function f o r s o l v i ng the s c a l a r wave equat ion in a
7 r e c tangu la r domain with given boundary and i n i t i a l
8 cond i t i on s
9 −−−

10 INPUT:
11 L : Length o f domain
12 h : Height o f domain
13 xe l : Number o f e lements per uni t l ength in the x−d i r e c t i o n
14 ye l : Number o f e lements per uni t l ength in the y−d i r e c t i o n
15 xs : Coordinate o f the v e r t i c a l l i n e s epe ra t i ng f l u i d and sponge
16 dt : Time step
17 T: Total s imulat ion time
18 omega : Angular f requency
19 ve l : Ve loc i ty o f waves
20 k : Constant determinging the
21 damp : l i n f o r l i n ea r , and quad f o r quadrat i c damping
22 v i z : True f o r showing s imulat ion p lo t
23 save : True f o r sav ing e r r o r s at time T
24 −−
25 OUTPUT:
26 Returns the e r r o r between ana l y t i c and exact
27 s o l u t i on in the f l u i d l aye r
28 Saves p l o t s o f the component e r r o r s i f save=True
29 ”””
30 # Star t ing time
31 t = 0
32
33 # elements per l ength
34 l = L∗ xe l
35 m = h∗ ye l
36
37 # Def ine funct i onspace
38 mesh = RectangleMesh (0 ,0 ,L , h , l ,m)
39 V = FunctionSpace (mesh , ”CG” , 1)
40 u = Tria lFunct ion (V)
41 v = TestFunction (V)
42
43 # Def ine subdomains
44 c l a s s Fluid (SubDomain) :
45 def i n s i d e (s e l f , x , on boundary) :
46 return (between (x [0] , (0 , xs)))
47
48 c l a s s Sponge (SubDomain) :
49 def i n s i d e (s e l f , x , on boundary) :
50 return (between (x [0] , (xs , L)))
51
52 f l u i d = Fluid ()
53 sponge = Sponge ()
54 domains = Cel lFunct ion (” s i z e t ” , mesh)
55 domains . s e t a l l (0)
56 f l u i d . mark (domains , 0)
57 sponge . mark(domains , 1)
58
59 # Create submesh from f l u i d domain
60 submesh = SubMesh (mesh , f l u i d)
61 Vf = FunctionSpace (submesh , ”CG” , 1)

48

62
63 # Var iab le exp r e s s i on s
64 ce = Constant (ve l)
65
66 # Set the damping to l i n or quad
67 i f damp==” l i n ” :
68 be = Express ion (”x [0] < xs ? 0 : 10∗(x [0]− xs) ” , xs=xs)
69 e l i f damp==”quad” :
70 be = Express ion (”x [0] < xs ? 0 : 10∗(pow(x [0] ,2) −2∗ xs∗x [0]+pow(xs , 2)) ” ,
71 xs=xs)
72 e l s e :
73 pr in t ” I n s e r t l i n or quad”
74 ex i t ()
75
76 # Def ine important constants
77 step2 = Constant (1/ dt ∗∗2)
78 step3 = Constant (1/(2∗ dt))
79
80 # I n i t i a l c ond i t i on s
81 Ixy = Constant (0)
82 Vxy = Constant (0)
83
84 # Es s en t i a l boundary cond i t i on s
85 in f l ow = Express ion (” s i n (omega∗ t)∗ cos (p i∗x [1] / (2∗ h)∗(1 + k)) ” ,
86 omega=omega , h=h , k=k , t=t)
87 f r e e = Constant (0)
88 def su r f a c e (x , ob) : return ob and abs (x [1]−h) < DOLFIN EPS
89 def l e f t f u n (x , ob) : return ob and abs (x [0]) < DOLFIN EPS
90
91 l e f t = Dir ichletBC (V, inf low , l e f t f u n)
92 topp = Dir ichletBC (V, f r e e , s u r f a c e)
93 bcs = [l e f t , topp]
94
95 # Set a l l f unc t i on s in to domain
96 c = i n t e r p o l a t e (ce , V)
97 b = in t e r p o l a t e (be , V)
98 u1 = in t e r p o l a t e (Ixy , V)
99 u2 = in t e r p o l a t e (Vxy , V)

100
101 # Var i a t i ona l forms
102 F = step2∗ inner (u , v)∗dx − 2∗ step2∗ inner (u1 , v)∗dx + step2∗ inner (u2 , v)∗dx +\
103 b∗ step3∗ inner (u , v)∗dx − b∗ step3∗ inner (u2 , v)∗dx +\
104 c∗ inner (nabla grad (u1) , nabla grad (v))∗dx
105
106 A = assemble (l h s (F))
107 u = Function (V)
108 t = 2∗dt
109
110 whi le t <= T + 2∗dt + DOLFIN EPS :
111 # Plot i f v i z=True
112 i f v i z==True :
113 p lo t (u2 , range max=1.0 , range min=−1.0, t i t l e=”Numerical s o l u t i on ”)
114 in f l ow . t = t
115 begin (”Computing at time l e v e l t = %g” %t)
116 LL = assemble (rhs (F))
117 [bc . apply (A,LL) f o r bc in bcs]
118 so l v e (A, u . vector () , LL)
119 end ()
120
121 u2 . a s s i gn (u1)
122 u1 . a s s i gn (u)
123
124 t += dt
125
126 # Exact s o l u t i on
127 lk = mt . p i ∗(1 + k)/ (2 .∗h)
128 kk = mt . sq r t (omega∗∗2/ ve l ∗∗2 − l k ∗∗2)
129 ue = Express ion (” s i n (omega∗ t − kk∗x [0]) ∗ cos (lk∗x [1]) ” ,
130 omega=omega , kk=kk , lk=lk , t=t−2∗dt)
131
132 # In t e r po l a t e in to f l u i d domain
133 u2e = i n t e r p o l a t e (ue , Vf)
134 u2s = i n t e r p o l a t e (u2 , Vf)
135
136 d i f f = Tria lFunct ion (Vf)
137 vf = TestFunction (Vf)
138 l e f t = inner (d i f f , v f)∗dx
139 r i gh = inner (u2e , v f)∗dx − inner (u2s , v f)∗dx
140 l a s s = assemble (l e f t)
141 ra s s = assemble (r i gh)
142 d = Function (Vf)
143 so l v e (l a s s , d . vector () , r a s s)
144
145 # Save e r r o r to f i l e
146 i f save==True :
147 f i l e 1 = F i l e (”e−d−%s−L−%s−h−%s−xel−%s−yel−%s−xs−%s−dt−%s−T−%s . pvd” \
148 % (damp ,L , h , xel , yel , xs , dt ,T))
149
150 f i l e 1 << d
151
152 # Return the abso lute value o f the e r r o r

49

153 e r r o r = abs (d . vector () . array ())
154 return e r r o r
155
156
157 def run s imula t i on () :
158 ”””
159 Test program fo r running an experiment showing the
160 p lo t on sc reen with given va lues and re turn ing the
161 e r r o r . The maximum and L2 norm e r r o r s
162 are pr inted at termina l
163 ”””
164 L = 3
165 h = 1
166 xe l = 24
167 ye l = 24
168 xs = 1
169 dt = 0.01
170 T = 10
171 omega = 10 .
172 ve l = 1 .
173 k = 0
174 damp=” l i n ”
175 v i z = True
176 save = False
177 e r r o r = so l v e r (L , h , xel , yel , xs , dt ,T, omega , vel , k , damp , viz , save)
178 error max = e r r o r .max()
179 e r r o r l 2 n = mt . sq r t (sum(e r r o r ∗∗2/ len (e r r o r)))
180
181 pr in t ”Maximum er r o r : ” , error max
182 pr in t ”L2 norm e r r o r : ” , e r r o r l 2 n
183
184 def t e s t conve rgence () :
185 ”””
186 Program fo r running a convergence t e s t with given phys i ca l
187 va lues . The time and s p a t i a l s t eps are halved to t e s t that
188 convergence i s reached . Component e r r o r s are then saved to VTK
189 f i l e s .
190 ”””
191 L = 3
192 h = 1
193 xs = 1
194 T = 10
195 ve l = 1 .
196 omega = 10 .
197 k = 0
198 damp = ”quad”
199 v i z=False
200 save=True
201
202 # L i s t s to s t o r e e r r o r va lues
203 E max = []
204 E l2n = []
205
206 # L i s t s with dt , dx and dy va lues
207 t imestep = [0 . 0 1 , 0 .005 , 0 . 0025]
208 xelement = [24 , 48 , 96]
209 yelement = [24 , 48 , 96]
210
211 f o r i in range (l en (t imestep)) :
212 dt = timestep [i]
213 xe l = xelement [i]
214 ye l = yelement [i]
215 e r r o r = so l v e r (L , h , xel , yel , xs , dt ,T, omega , vel , k , damp , viz , save)
216
217 error max = e r r o r .max()
218 e r r o r l 2 n = mt . sq r t (sum(e r r o r ∗∗2/ len (e r r o r)))
219
220 E max . append (error max)
221 E l2n . append (e r r o r l 2 n)
222
223
224 # Check convergence
225 C max = []
226 C l2n = []
227 f o r i in range (l en (E max)−1):
228 C max . append (E max [i +1]/E max [i])
229 C l2n . append (E l2n [i +1]/ E l2n [i])
230
231 pr in t 40∗ ’−− ’
232 pr in t ’MAXIMUM ERROR’
233 pr in t E max
234 pr in t 40∗ ’−− ’
235 pr in t ’L2 NORM’
236 pr in t E l2n
237 pr in t 40∗ ’−− ’
238 pr in t ’CONVERGENCE MAXIMUM ERROR’
239 pr in t C max
240 pr in t 40∗ ’−− ’
241 pr in t ’CONVERGENCE L2 NORM’
242 pr in t C l2n
243 pr in t 40∗ ’−− ’

50

244
245
246
247
248
249 def main () :
250 run s imula t i on ()
251 #te s t conve rgence ()
252
253 i f name ==’ ma in ’ :
254 main ()

9.2 Code for the seismic test solution with dirichlet con-

ditions

1 from do l f i n import ∗
2 import math as mt
3
4 def s o l v e r (L , h , xel , yel , dt ,T, lamda ,mu, rho ,A, omega , nx , ny , wavetype , viz , s a v e f i l e) :
5 ”””
6 Function f o r s o l v i ng the s e i sm i c wave equat ion on a rec tangu la r
7 domain with with inhomogeneous d i r i c h l e t bcs on a l l s i d e s . The s o l v e r
8 i s t e s t ed with e i t h e r a p wave or s−wave s o l u t i on .
9 INPUT:

10 L : Length o f domain
11 h : Height o f domain
12 xe l : Number o f e lements per uni t l ength in x d i r e c t i o n
13 ye l : Number o f e lements per uni t l ength in y d i r e c t i o n
14 dt : Time step
15 T : Total s imulat ion time
16 lamda : lamees f i r s t parameter
17 mu : shear modulus
18 rho : dens i ty o f mater ia l
19 A : Amplitude o f t e s t s o l u t i on
20 omega : angular f requency o f t e s t s o l u t i on
21 nx : component o f normal vector o f t e s t s o l u t i on in x d i r e c t i o n
22 ny : component o f normal vector o f t e s t s o l u t i on in y d i r e c t i o n
23 wavetype : Choose the wave type ”P” or ”S”
24 v i z : V i zua l i z e r e s u l t s i f t rue
25 s a v e f i l e : Save p l o t f i l e s i f t rue
26
27 OUTPUT:
28 Returns the abso lute value o f the e r r o r in a l l node po int s
29 ”””
30 # Set s o l v e r and p l o t t e r
31 s o l v e r = LUSolver (”mumps”)
32
33 # Compute number o f e lements in x and y d i r e c t i o n
34 l = L∗ xe l
35 m = h∗ ye l
36
37 # Function space and func t i on s
38 mesh = RectangleMesh (0 ,0 ,L , h , l ,m)
39 V = VectorFunctionSpace (mesh , ”CG” , 1)
40 u = Tria lFunct ion (V)
41 v = TestFunction (V)
42
43 # Constants
44 s t ep r = Constant (dt∗∗2/ rho)
45
46 # Test Wave type
47 i f wavetype == ”P” : # Pressure wave
48 Au = A∗nx
49 Av = A∗ny
50 ve l = mt . sq r t ((lamda + 2∗mu)/ rho ∗(nx∗∗2+ny∗∗2)) # Wave v e l o c i t y
51 k = omega/ ve l # Disper s i on r e l a t i o n
52
53 e l i f wavetype == ”S” : # Shear wave
54 Au = A∗ny
55 Av = −A∗nx
56 ve l = mt . sq r t (mu/rho ∗(nx∗∗2 + ny∗∗2)) # Wave v e l o c i t y
57 k = omega/ ve l # Disper s i on r e l a t i o n
58
59
60 t = 0
61 # I n i t i a l c ond i t i on s
62 Ixy = Express ion ((”Au∗ cos (k∗nx∗x [0] + k∗ny∗x [1] − omega∗ t) ” ,
63 ”Av∗ cos (k∗nx∗x [0] + k∗ny∗x [1] − omega∗ t) ”) ,
64 Au=Au,Av=Av, nx=nx , ny=ny , k=k , omega=omega , t=t)
65
66
67 Vxy = Express ion ((”Au∗ cos (k∗nx∗x [0] + k∗ny∗x [1] − omega∗ t) ” ,
68 ”Av∗ cos (k∗nx∗x [0] + k∗ny∗x [1] − omega∗ t) ”) ,
69 Au=Au,Av=Av, nx=nx , ny=ny , k=k , omega=omega , t=t+dt)

51

70
71 u2 = in t e r p o l a t e (Ixy , V)
72 u1 = in t e r p o l a t e (Vxy , V)
73
74 # Boundary cond i t i on
75 def boundary (x , on boundary) : return on boundary
76 bc = Dir ichletBC (V, Ixy , boundary)
77
78 # St r e s s t ensor
79 def sigma (u , lamda , mu) :
80 return lamda∗div (u)∗ I d en t i t y (2) + mu∗(grad (u) + grad (u) .T)
81
82 # Var i a t i ona l form
83 F = inner (u , v)∗dx − 2∗ inner (u1 , v)∗dx + inner (u2 , v)∗dx +\
84 s t ep r ∗ inner (sigma (u1 , lamda , mu) , grad (v))∗dx
85
86 A = assemble (l h s (F)) # Assemble l e f t hand s i d e
87 u = Function (V)
88 t = 2∗dt
89 dxy = Function (V)
90 dxx = dxy . sub (0)
91 dyy = dxy . sub (1)
92 ue = Function (V)
93 whi le t <= T + DOLFIN EPS :
94 # Update time dependent bc func t i on s
95 Ixy . t = t
96 ue . a s s i gn (i n t e r p o l a t e (Ixy , V))
97
98 # Solve
99 begin (” So lv ing at time step t=%g” % t)

100 b = assemble (rhs (F))
101 bc . apply (A, b)
102 s o l v e r . s o l v e (A, u . vector () , b)
103 end ()
104
105 # Plot s o l u t i on
106 i f v i z==True :
107 p lo t (u , range max = 1 .0 , range min = −1.0 ,
108 t i t l e=”Numerical s o l u t i on ”)
109
110 e l i f v i z == ’ xe r ro r ’ :
111 dxy . vector () [:] = ue . vector () . array () − u . vector () . array ()
112 p lo t (dxx , range max=1e−6, range min=−1e−6, mode=’ co l o r ’)
113
114 e l i f v i z == ’ ye r ro r ’ :
115 dxy . vector () [:] = ue . vector () . array () − u . vector () . array ()
116 p lo t (dyy , range max=1e−6, range min=−1e−6, mode=’ co l o r ’)
117
118 u2 . a s s i gn (u1)
119 u1 . a s s i gn (u)
120
121 t += dt
122
123 # Exact s o l u t i on
124 Ixy . t = t−dt
125 uexact = i n t e r p o l a t e (Ixy , V)
126
127 # Compute component d i f f e r e n c e s
128 dxy [:] = uexact . vector () . array () − u . vector () . array ()
129
130 i f s a v e f i l e == True :
131 # Save component e r r o r s in s imulat ion
132 f i l e 1 = F i l e (” dbc x %s wave xe l %s y e l %s d t %s nx %s ny %s . pvd” \
133 % (wavetype , xel , yel , dt , nx , ny))
134 f i l e 1 << dxx
135
136 f i l e 2 = F i l e (” dbc y %s wave xe l %s y e l %s d t %s nx %s ny %s . pvd” \
137 % (wavetype , xel , yel , dt , nx , ny))
138 f i l e 2 << dyy
139
140 f i l e 3 = F i l e (” dbc u %s wave xe l %s y e l %s d t %s nx %s ny %s . pvd” \
141 % (wavetype , xel , yel , dt , nx , ny))
142 f i l e 3 << u
143
144
145 # return the e r r o r
146 e r r o r = abs (uexact . vector () . array () − u . vector () . array ())
147 return e r r o r
148
149
150 def t e s t conve rgence () :
151 L = 1
152 h = 1
153 T = 5
154 lamda = 1 .
155 mu = 1 .
156 rho = 1 .
157 A = 1 .
158 omega = 0.5
159 nx = 0
160 ny = 1

52

161 wavetype = ”S”
162
163 d t l i s t = [0 . 0 075 , 0 .00375 , 0 . 001875]
164 x e l i s t = [24 , 48 , 96]
165 y e l i s t = [24 , 48 , 96]
166
167 # Compute e r r o r s
168 e r r o r l i s t = []
169 norml i s t = []
170 f o r k in range (l en (d t l i s t)) :
171 dt = d t l i s t [k]
172 xe l = x e l i s t [k]
173 ye l = y e l i s t [k]
174 e r r o r = so l v e r (L , h , xel , yel , dt ,T,
175 lamda ,mu, rho ,A, omega , nx , ny , wavetype , v i z=False ,
176 s a v e f i l e = True)
177
178 # Compute l 2 norm
179 norm = mt . sq r t (sum((e r r o r)∗∗2/(l en (e r r o r))))
180 norml i s t . append (norm)
181 e r r o r l i s t . append (e r r o r .max ())
182
183
184 # Check convergence
185 cmax = []
186 c l2n = []
187 f o r i in range (l en (e r r o r l i s t)−1):
188 cmax . append (e r r o r l i s t [i +1]/ e r r o r l i s t [i])
189 c l2n . append (norml i s t [i +1]/ norml i s t [i])
190
191 pr in t 40∗ ’−− ’
192 pr in t ’MAXIMUM ERROR’
193 pr in t e r r o r l i s t
194 pr in t 40∗ ’−− ’
195 pr in t ’L2 NORM’
196 pr in t norml i s t
197 pr in t 40∗ ’−− ’
198 pr in t ’CONVERGENCE MAXIMUM ERROR’
199 pr in t cmax
200 pr in t 40∗ ’−− ’
201 pr in t ’CONVERGENCE L2 NORM’
202 pr in t c l2n
203 pr in t 40∗ ’−− ’
204
205 def run s imula t i on () :
206 L = 1
207 h = 1
208 xe l = 24
209 ye l = 24
210 dt = 0.001
211 T = 5.0
212 lamda = 1 .
213 mu = 1 .
214 rho = 1 .
215 A = 1 .
216 omega = 0.5
217 nx = 2
218 ny = 1
219 wavetype = ”S”
220 v i z = ’ xe r ro r ’
221 s a v e f i l e = False
222 e r r o r = so l v e r (L , h , xel , yel , dt ,T,
223 lamda ,mu, rho ,A, omega , nx , ny , wavetype , viz ,
224 s a v e f i l e)
225
226 norm = mt . sq r t (sum(e r r o r ∗∗2/ len (e r r o r)))
227 pr in t 20∗ ’−− ’
228 pr in t ’MAXIMUM ERROR’
229 pr in t e r r o r .max()
230 pr in t 20∗ ’−− ’
231 pr in t ’L2 NORM’
232 pr in t norm
233 pr in t 20∗ ’−− ’
234
235
236
237 def main () :
238 run s imula t i on ()
239 #te s t conve rgence ()
240
241 i f name == ’ ma in ’ :
242 main ()

9.3 Code for the seismic test solutions with given surface

stress

53

1 from do l f i n import ∗
2 import mayavi as ma
3 import math as mt
4
5 def s o l v e r (L , h , xel , yel , dt ,T, lamda ,mu, rho ,A, omega , nx , ny , wavetype , viz , s a v e f i l e) :
6 ”””
7 Function f o r s o l v i ng the s e i sm i c wave equat ion on a rec tangu la r
8 domain with with inhomogeneous d i r i c h l e t bcs on 3 s ides , and with
9 a given s t r e s s on the top . The s o l v e r

10 i s t e s t ed with e i t h e r a p wave or s−wave s o l u t i on .
11 INPUT:
12 L : Length o f domain
13 h : Height o f domain
14 xe l : Number o f e lements per uni t l ength in x d i r e c t i o n
15 ye l : Number o f e lements per uni t l ength in y d i r e c t i o n
16 dt : Time step
17 T : Total s imulat ion time
18 lamda : lamees f i r s t parameter
19 mu : shear modulus
20 rho : dens i ty o f mater ia l
21 A : Amplitude o f t e s t s o l u t i on
22 omega : angular f requency o f t e s t s o l u t i on
23 nx : component o f normal vector o f t e s t s o l u t i on in x d i r e c t i o n
24 ny : component o f normal vector o f t e s t s o l u t i on in y d i r e c t i o n
25 wavetype : Choose the wave type ”P” or ”S”
26 v i z : V i zua l i z e r e s u l t s i f t rue
27 s a v e f i l e : Save p l o t f i l e s i f t rue
28
29 OUTPUT:
30 Returns the abso lute value o f the e r r o r in a l l node po int s
31 ”””
32 # Set s o l v e r parameters
33 s o l v e r = LUSolver (”mumps”)
34
35 # Compute number o f e lements in x and y d i r e c t i o n
36 l = L∗ xe l
37 m = h∗ ye l
38 t = 0
39
40 # Function space and func t i on s
41 mesh = RectangleMesh (0 ,0 ,L , h , l ,m)
42 V = VectorFunctionSpace (mesh , ”CG” , 1)
43 Vf = FunctionSpace (mesh , ”CG” , 1)
44 u = Tria lFunct ion (V)
45 v = TestFunction (V)
46
47 # Constants
48 s t ep r = Constant (dt∗∗2/ rho)
49
50 # Wave type
51 i f wavetype == ”P” :
52 Au = A∗nx
53 Av = A∗ny
54 ve l = (lamda + 2∗mu)/ rho ∗(nx∗∗2+ny∗∗2)
55 k = omega/mt . sq r t (ve l)
56 g = Express ion ((”−2∗mu∗A∗k∗nx∗ny∗ s i n (k∗nx∗x [0]+k∗ny∗x[1]−omega∗ t) ” ,
57 ”””−lamda∗A∗k∗nx∗nx∗ s i n (k∗nx∗x [0]+k∗ny∗x[1]−omega∗ t)
58 −lamda∗A∗k∗ny∗ny∗ s i n (k∗nx∗x [0]+k∗ny∗x[1]−omega∗ t)
59 −2∗mu∗A∗k∗ny∗ny∗ s i n (k∗nx∗x [0]+k∗ny∗x[1]−omega∗ t) ”””) ,
60 mu=mu,A=A, k=k , nx=nx , ny=ny , omega=omega , lamda=lamda ,
61 t=t)
62
63
64 e l i f wavetype == ”S” :
65 Au = A∗ny
66 Av = −A∗nx
67 ve l = mu/rho ∗(nx∗∗2+ny∗∗2)
68 k = omega/mt . sq r t (ve l)
69 g = Express ion ((”””mu∗A∗k∗nx∗nx∗ s i n (k∗(nx∗x [0]+ny∗x [1]) −omega∗ t)
70 −mu∗A∗k∗ny∗ny∗ s i n (k∗(nx∗x [0]+ny∗x [1]) −omega∗ t) ””” ,
71 ”2∗mu∗A∗k∗nx∗ny∗ s i n (k∗(nx∗x [0]+ny∗x [1]) −omega∗ t) ”) ,
72 mu=mu,A=A, k=k , nx=nx , ny=ny , omega=omega , lamda=lamda ,
73 t=t)
74
75 # I n i t i a l c ond i t i on s
76 Ixy = Express ion ((”Au∗ cos (k∗nx∗x [0] + k∗ny∗x [1] − omega∗ t) ” ,
77 ”Av∗ cos (k∗nx∗x [0] + k∗ny∗x [1] − omega∗ t) ”) ,
78 Au=Au,Av=Av, nx=nx , ny=ny , k=k , omega=omega , t=t)
79
80 Vxy = Express ion ((”Au∗ cos (k∗nx∗x [0] + k∗ny∗x [1] − omega∗ t) ” ,
81 ”Av∗ cos (k∗nx∗x [0] + k∗ny∗x [1] − omega∗ t) ”) ,
82 Au=Au,Av=Av, nx=nx , ny=ny , k=k , omega=omega , t=t+dt)
83
84 u2 = in t e r p o l a t e (Ixy , V)
85 u1 = in t e r p o l a t e (Vxy , V)
86
87 # Set D i r i c h l e t boundary cond i t i on s
88 def l e f t (x , on b) : return on b and abs (x [0]) < DOLFIN EPS
89 def bott (x , on b) : return on b and abs (x [1]) < DOLFIN EPS
90 def r i gh (x , on b) : return on b and abs (x [0] − L) < DOLFIN EPS

54

91
92 # Set d i r i c h l e t va lues
93 lbc = Dir ichletBC (V, Ixy , l e f t)
94 bbc = Dir ichletBC (V, Ixy , bott)
95 rbc = Dir ichletBC (V, Ixy , r i gh)
96
97 # L i s t o f d i r i c h l e t cond i t i on s
98 bcs = [rbc , bbc , lbc]
99

100 # St r e s s t ensor
101 def sigma (v) :
102 return lamda∗div (v)∗ I d en t i t y (2) + \
103 mu∗(grad (v) + grad (v) .T)
104
105 # Var i a t i ona l forms
106 F = inner (u , v)∗dx − 2∗ inner (u1 , v)∗dx + inner (u2 , v)∗dx +\
107 s t ep r ∗ inner (sigma (u1) , grad (v))∗dx − s t ep r ∗dot (g , v)∗ ds
108
109 A = assemble (l h s (F))
110 u = Function (V)
111 t = 2∗dt
112 ue = Function (V)
113 d = Function (V)
114 dxx = d . sub (0)
115 dyy = d . sub (1)
116
117 # Main loop
118 whi le t <= T + DOLFIN EPS :
119 # Update time dependent bc func t i on s
120 Ixy . t = t
121 g . t = t−dt
122 ue . a s s i gn (i n t e r p o l a t e (Ixy , V))
123
124 # Solve
125 begin (” So lv ing at time t=%g” %t)
126 b = assemble (rhs (F))
127 [bc . apply (A, b) f o r bc in bcs]
128 s o l v e r . s o l v e (A, u . vector () , b)
129 end ()
130
131 # Plot s o l u t i on
132 i f v i z==True :
133 p lo t (u , range max = 1 .0 , range min = −1.0 ,
134 t i t l e=”Numerical s o l u t i on ”)
135
136 i f v i z == ’ xe r ro r ’ :
137 d . vector () [:] = ue . vector () . array () − u . vector () . array ()
138 p lo t (dxx , range min=−1e−6, range max=1e−6, mode=’ co l o r ’)
139
140 i f v i z == ’ ye r ro r ’ :
141 d . vector () [:] = ue . vector () . array () − u . vector () . array ()
142 p lo t (dyy , range min=−1e−6, range max=1e−6, mode=’ co l o r ’)
143
144
145 u2 . a s s i gn (u1)
146 u1 . a s s i gn (u)
147
148 t += dt
149
150 # Exact s o l u t i on
151 Ixy . t = t−dt
152 uexact = i n t e r p o l a t e (Ixy , V)
153
154 # Error at time T
155 d . vector () [:] = uexact . vector () . array () − u . vector () . array ()
156
157
158 i f s a v e f i l e == True :
159 f i l e 1 = F i l e (” s t r u %s wave xe l %s y e l %s d t %s nx %s ny %s . pvd”\
160 % (wavetype , xel , yel , dt , nx , ny))
161 f i l e 1 << uexact
162
163 f i l e 2 = F i l e (” s t r x %s wave xe l %s y e l %s d t %s nx %s ny %s . pvd”\
164 % (wavetype , xel , yel , dt , nx , ny))
165 f i l e 2 << dxx
166
167 f i l e 3 = F i l e (” s t r y %s wave xe l %s y e l %s d t %s nx %s ny %s . pvd”\
168 % (wavetype , xel , yel , dt , nx , ny))
169 f i l e 3 << dyy
170
171
172 e r r o r = abs (uexact . vector () . array () − u . vector () . array ())
173 return e r r o r
174
175
176 def t e s t conve rgence () :
177 L = 1
178 h = 1
179 T = 5
180 lamda = 1 .
181 mu = 1 .

55

182 rho = 1 .
183 A = 1 .
184 omega = 0.5
185 nx = 0
186 ny = 1
187 wavetype = ”S”
188
189 d t l i s t = [0 . 0 075 , 0 .00375 , 0 . 001875]
190 x e l i s t = [24 , 48 , 96]
191 y e l i s t = [24 , 48 , 96]
192
193 # Compute e r r o r s
194 e r r o r l i s t = []
195 l 2no rm l i s t = []
196 f o r k in range (l en (d t l i s t)) :
197 dt = d t l i s t [k]
198 xe l = x e l i s t [k]
199 ye l = y e l i s t [k]
200 e r r o r = so l v e r (L , h , xel , yel , dt ,T,\
201 lamda ,mu, rho ,A, omega , nx , ny , wavetype , v i z=False ,\
202 s a v e f i l e=True)
203
204 # Compute l 2 norm
205 l2 = mt . sq r t (sum(e r r o r ∗∗2/ len (e r r o r)))
206 l 2no rm l i s t . append (l 2)
207 e r r o r l i s t . append (e r r o r .max ())
208
209
210 # Check convergence
211 cmax = []
212 c l2n = []
213 f o r i in range (l en (e r r o r l i s t)−1):
214 cmax . append (e r r o r l i s t [i +1]/ e r r o r l i s t [i])
215 c l2n . append (l 2no rm l i s t [i +1]/ l 2no rm l i s t [i])
216
217 pr in t 40∗ ’−− ’
218 pr in t ’MAXIMUM ERROR’
219 pr in t e r r o r l i s t
220 pr in t 40∗ ’−− ’
221 pr in t ’L2 NORM’
222 pr in t l 2no rm l i s t
223 pr in t 40∗ ’−− ’
224 pr in t ’CONVERGENCE MAXIMUM ERROR’
225 pr in t cmax
226 pr in t 40∗ ’−− ’
227 pr in t ’CONVERGENCE L2 NORM’
228 pr in t c l2n
229 pr in t 40∗ ’−− ’
230
231 def run s imula t i on () :
232 L = 1
233 h = 1
234 xe l = 24
235 ye l = 24
236 dt = 0.0075
237 T = 5
238 lamda = 1 .
239 mu = 1 .
240 rho = 1 .
241 A = 1 .
242 omega = 0.5
243 nx = 1
244 ny = 0
245 wavetype = ”P”
246 v i z = ’ xe r ro r ’
247 s a v e f i l e = False
248 e r r o r = so l v e r (L , h , xel , yel , dt ,T,\
249 lamda ,mu, rho ,A, omega , nx , ny , wavetype , viz ,\
250 s a v e f i l e)
251 norm = mt . sq r t (sum(e r r o r ∗∗2/ len (e r r o r)))
252 pr in t 20∗ ’−− ’
253 pr in t ’MAXIMUM ERROR’
254 pr in t e r r o r .max()
255 pr in t 20∗ ’−− ’
256 pr in t ’L2 NORM’
257 pr in t norm
258 pr in t 20∗ ’−− ’
259
260
261
262 def main () :
263 run s imula t i on ()
264 #te s t conve rgence ()
265
266 i f name == ’ ma in ’ :
267 main ()

56

9.4 Code for the seismic waves on multiple layers

1 from do l f i n import ∗
2 import s c i t o o l s . std as sc
3 import os
4
5 def s o l v e r (l , h , L ,H, xel , yel , dt , endt , ys , rho1 ,\
6 rho2 ,mu1 ,mu2 , lamda1 , lamda2 , wtype , part ,w, I , viz , saveer ror , animate) :
7 ”””
8 Function f o r s o l v i ng the e l a s t i c wave equat ion in a two−l a y e r system
9 c on s i s t i n g o f r e c tangu la r domains by us ing known boundary cond i t i on s at

10 the s i d e s and bottom and a f r e e boundary at the su r f a c e . The implementation
11 i s v e r i f i e d by a known ana l y t i c s o l u t i on .
12
13 INPUT:
14 −−
15 l : Star t o f domain in x−d i r e c t i o n
16 h : Star t o f domain in y−d i r e c t i o n
17 L : End of domain in x−d i r e c t i o n
18 H : End of domain in y−d i r e c t i o n
19 xe l : Number o f e lements in x−d i r e c t i o n per uni t l ength
20 ye l : Number o f e lements in y−d i r e c t i o n per uni t l ength
21 dt : Time step
22 endt : End time
23 ys : Hor i sonta l l i n e that s epa ra t e s media
24 rho1 : Mass dens i ty in l aye r 1
25 rho 2 : Mass dens i ty in l aye r 2
26 mu1 : Shear modulus in l aye r 1
27 mu2 : Shear modulus in l aye r 2
28 lamda1 : Lames constant in l aye r 1
29 lamda2 : Lames constant in l aye r 2
30 wtype : ”P” f o r P wave , ”S” f o r shear wave
31 part : Runs s imulat ion with imaginary or r e a l part s o f waves
32 w : Angular v e l o c i t y o f waves
33 I : Amplitude o f incoming waves
34 v i z : Choose v i z u a l i z a t i o n ’ s o l u t i on ’ , ’ e r r o r ’ or ’ none ’
35 savee r r o r : Save the component e r r o r s at time T i f t rue
36 animate : Save the s o l u t i on in VTK f i l e s
37
38 OUTPUT:
39 −−
40 Plots numerical s o l u t i on
41 ”””
42 # Create new d i r e c t o r y f o r save f i l e s
43 # Create animation f i l e in d i r e c t o r y
44 i f animate == True :
45 s o l = F i l e (”%s−%s−%s−%s−%s−%s−%s−%s−%s−%s−%s−%s . pvd” % \
46 (viz , wtype , yel , dt , endt , rho1 , rho2 ,mu1 ,mu2 , lamda1 , lamda2 ,w))
47
48 i f s ave e r r o r == True :
49 xer = F i l e (”xer−%s−%s−%s−%s−%s−%s−%s−%s−%s−%s−%s−%s . pvd” % \
50 (part , wtype , yel , dt , endt , rho1 , rho2 ,mu1 ,mu2 , lamda1 , lamda2 ,w))
51 yer = F i l e (”yer−%s−%s−%s−%s−%s−%s−%s−%s−%s−%s−%s−%s . pvd” % \
52 (part , wtype , yel , dt , endt , rho1 , rho2 ,mu1 ,mu2 , lamda1 , lamda2 ,w))
53
54 # Def ine the s o l v e r method
55 s o l v e r = LUSolver (”mumps”)
56 n = xe l ∗(L − l)
57 m = ye l ∗(H − h)
58
59 # Disper s i on r e l a t i o n s and amplitudes
60 # depending on the incoming wave
61 i f wtype == ’P ’ :
62 ve l1 = sc . sq r t ((lamda1 + 2∗mu1)/ rho1)
63 ve l2 = sc . sq r t ((lamda2 + 2∗mu2)/ rho2)
64 k1 = w/ ve l1
65 k2 = w/ ve l2
66
67 # Use fu l exp r e s s i on s
68 a l = k1/k2∗(lamda1 + 2∗mu1)/(lamda2 + 2∗mu2)
69 r = sc . cos (2∗k2∗H) + 1 j ∗ sc . s i n (2∗k2∗H)
70 C = a l ∗(sc . cos (2∗k2∗H) + 1)/ sc . s i n (2∗k2∗H)∗1 j
71
72 # Amplitudes
73 R = −I ∗ (1 . + C)/ (1 . − C)
74 F = I / (1 . + r)∗ (1 . − (1 . + C)/ (1 . − C))
75 T = I / (1 . + 1 ./ r)∗ (1 . − (1 . + C)/ (1 . − C))
76
77 e l i f wtype == ’S ’ :
78 ve l1 = sc . sq r t (mu1/ rho1)
79 ve l2 = sc . sq r t (mu2/ rho2)
80 k1 = w/ ve l1
81 i f mu2 == 0 :
82 k2 = 0
83 R = I
84 F = 0
85 T = 0
86 e l s e :
87 k2 = w/ ve l2

57

88 a l = k1∗mu1/(k2∗mu2)
89 r = sc . cos (2∗k2∗H) + 1 j ∗ sc . s i n (2∗k2∗H)
90 C = a l ∗(sc . cos (2∗k2∗H) + 1)/ sc . s i n (2∗k2∗H)∗1 j
91
92 # Amplitudes
93 R = −I ∗ (1 . + C)/ (1 . − C)
94 F = I / (1 . + r)∗ (1 . − (1 . + C)/ (1 . − C))
95 T = I / (1 . + 1 ./ r)∗ (1 . − (1 . + C)/ (1 . − C))
96
97 # Domain and sub domains
98 mesh = RectangleMesh (l , h , L ,H, n ,m)
99 sol idmesh = AutoSubDomain (lambda x : x [1] < 0 + DOLFIN EPS)

100 f lu idmesh = AutoSubDomain (lambda x : x [1] > 0 − DOLFIN EPS)
101 c f = Cel lFunct ion (” s i z e t ” , mesh , 0)
102 f lu idmesh . mark(cf , 1)
103 s o l i d = SubMesh (mesh , cf , 0)
104 f l u i d = SubMesh (mesh , cf , 1)
105
106 # Functionspace and func t i on s
107 V = VectorFunctionSpace (mesh , ”CG” , 1)
108 D = FunctionSpace (mesh , ”DG” , 0)
109 u = Tria lFunct ion (V)
110 v = TestFunction (V)
111 u2 = Function (V) # F i r s t i n i t i a l cond i t i on u (0)
112 u1 = Function (V) # Second i n i t i a l cond i t i on u(dt)
113 us = Function (V) # So lut ion Function u(t)
114 ue = Function (V) # Exact s o l u t i on u e (t)
115 ud = Function (V) # Error funct i on u e (t) − u(t)
116 udx = ud . sub (0) # x−component o f the e r r o r
117 udy = ud . sub (1) # y−component o f the e r r o r
118
119 # Extract do f s from sub meshes
120 sdofx , sdofy = submesh dofs (mesh , s o l i d , V)
121 fdofx , fdo fy = submesh dofs (mesh , f l u i d , V)
122
123 # Convert coo rd ina te s to python syntax
124 gdim = mesh . geometry () . dim ()
125 X = V. dofmap () . t a b u l a t e a l l c o o r d i n a t e s (mesh) . reshape ((−1 , gdim))
126 x = X[: , 0]
127 y = X[: , 1]
128
129 # Vector coo rd ina te s in s o l i d l aye r
130 xxs , xys = x [sdofx] , y [sdofx]
131 yxs , yys = x [sdofy] , y [sdofy]
132
133 # Vector coo rd ina te s in f l u i d l aye r
134 xxf , xyf = x [fdo fx] , y [fdo fx]
135 yxf , yyf = x [fdo fy] , y [fdo fy]
136
137 # Def ine sub funct ions
138 rho f = Express ion (”x [1] > ys ? rho2 : rho1” ,
139 ys=ys , rho1=rho1 , rho2=rho2)
140 muf = Express ion (”x [1] > ys ? mu2 : mu1” ,
141 ys=ys , mu1=mu1 , mu2=mu2)
142 lamdaf = Express ion (”x [1] > ys ? lamda2 : lamda1” ,
143 ys=ys , lamda1=lamda1 , lamda2=lamda2)
144
145 rho = i n t e r p o l a t e (rhof , D)
146 mu = in t e r p o l a t e (muf , D)
147 lamda = in t e r p o l a t e (lamdaf , D)
148
149 # St r e s s t ensor
150 def sigma (u , lamda , mu) :
151 return lamda∗div (u)∗ I d en t i t y (2) + mu∗(grad (u) + grad (u) .T)
152
153 # F i r s t I n i t i a l cond i t i on
154 t = 0
155 fxs , f y s = u s o l i d (xxs , xys , yxs , yys , part , wtype , w, t , k1 , I , R)
156 fx f , f y f = u f l u i d (xxf , xyf , yxf , yyf , part , wtype , w, t , k2 , T, F)
157 u2 . vector () [fdo fx] = f x f
158 u2 . vector () [fdo fy] = f y f
159 u2 . vector () [sdofx] = fx s
160 u2 . vector () [sdofy] = fy s
161
162 # Second i n i t i a l cond i t i on
163 t = dt
164 fxs , f y s = u s o l i d (xxs , xys , yxs , yys , part , wtype , w, t , k1 , I , R)
165 fx f , f y f = u f l u i d (xxf , xyf , yxf , yyf , part , wtype , w, t , k2 , T, F)
166 u1 . vector () [fdo fx] = f x f
167 u1 . vector () [fdo fy] = f y f
168 u1 . vector () [sdofx] = fx s
169 u1 . vector () [sdofy] = fy s
170
171
172 # Es s en t i a l boundary cond i t i on s
173 def bottom (x , on b) : return on b and abs (x [1]−h) < DOLFIN EPS
174 def l e f t (x , on b) : return on b and abs (x [0]) < DOLFIN EPS
175 def r i gh t (x , on b) : return on b and abs (x [0]−L) < DOLFIN EPS
176 l e f t b c = Dir ichletBC (V, ue , l e f t)
177 r ighbc = Dir ichletBC (V, ue , r i gh t)
178 bottbc = Dir ichletBC (V, ue , bottom)

58

179 bcs = [l e f t b c , r ighbc , bottbc]
180
181 # Var i a t i ona l form
182 Form = inner (rho∗u , v)∗dx − 2∗ inner (rho∗u1 , v)∗dx + inner (rho∗u2 , v)∗dx + \
183 dt∗∗2∗ inner (sigma (u1 , lamda ,mu) , grad (v))∗dx
184
185 t = 2∗dt
186 l e f t s i d e = assemble (l h s (Form))
187 whi le t <= endt + DOLFIN EPS :
188 # Update exact s o l u t i on and boundary cond i t i on s
189 fxs , f y s = u s o l i d (xxs , xys , yxs , yys , part , wtype , w, t , k1 , I , R)
190 fx f , f y f = u f l u i d (xxf , xyf , yxf , yyf , part , wtype , w, t , k2 , T, F)
191 ue . vector () [fdo fx] = f x f
192 ue . vector () [fdo fy] = f y f
193 ue . vector () [sdofx] = fx s
194 ue . vector () [sdofy] = fy s
195
196 # Solve f o r u
197 begin (” So lv ing at time step t=%g” % t)
198 r i g h t s i d e = assemble (rhs (Form))
199 [bc . apply (l e f t s i d e , r i g h t s i d e) f o r bc in bcs]
200 s o l v e r . s o l v e (l e f t s i d e , us . vector () , r i g h t s i d e)
201
202 ud . vector () [:] = abs (ue . vector () . array () − us . vector () . array ())
203
204 # Plot s o l u t i on
205 i f v i z == ’ s o l u t i on ’ :
206 p lo t (us , range min=−1.5, range max=1.5 ,
207 t i t l e=’ Numerical s o l u t i on ’)
208 i f animate == True :
209 s o l << us
210
211 e l i f v i z == ’ e r r o r ’ :
212 p lo t (ud , range min = −1.0 , range max = 1 .0 , mode=’ co l o r ’ ,
213 t i t l e=’ Error at time t=%g ’ % t)
214 i f animate == True :
215 s o l << ud
216
217 e l i f v i z == ’ xe r ro r ’ :
218 p lo t (udx , range min = −0.01 , range max = 0.01 , mode=’ co l o r ’ ,
219 t i t l e=’ Error in x−component at time t=%g ’ % t)
220 i f animate == True :
221 s o l << udx
222
223 e l i f v i z == ’ ye r ro r ’ :
224 p lo t (udy , range min = −0.01 , range max = 0.01 ,mode=’ co l o r ’ ,
225 t i t l e=’ Error in y−component at time t=%g ’ % t)
226 i f animate == True :
227 s o l << udy
228
229
230 e l i f v i z == ’ exact ’ :
231 p lo t (ue , range min = −2.5 , range max = 2 .5 ,
232 t i t l e=’ Exact s o l u t i on ’)
233 end ()
234
235 # Update f o r next time step
236 u2 . a s s i gn (u1)
237 u1 . a s s i gn (us)
238 t += dt
239
240 # Compte component d i f f e r e n c e s at time T
241 ud . vector () [:] = abs (ue . vector () . array () − us . vector () . array ())
242 udx , udy = ud . s p l i t (deepcopy=True)
243 i f s ave e r r o r == True :
244 xer << udx
245 yer << udy
246
247 # Find e r r o r
248 return abs (ue . vector () . array () − us . vector () . array ())
249
250
251 def submesh dofs (mesh , submesh , V) :
252 ”””
253 Function f o r ex t r a c t i ng do f s from subdomains , and
254 re turn ing two l i s t s o f x and y components o f
255 the do f s in the subdomain
256 ”””
257 tdim = mesh . topology () . dim ()
258 dofmap = V. dofmap ()
259 xdof = V. sub (0) . dofmap ()
260 ydof = V. sub (1) . dofmap ()
261
262 submesh dofx = se t ()
263 submesh dofy = se t ()
264
265 p a r e n t c e l l i n d i c e s = submesh . data () . array (’ p a r e n t c e l l i n d i c e s ’ , tdim)
266 f o r i in range (submesh . num ce l l s ()) :
267 c e l l = p a r e n t c e l l i n d i c e s [i]
268 [submesh dofx . add (dof) f o r dof in xdof . c e l l d o f s (c e l l)]
269 [submesh dofy . add (dof) f o r dof in ydof . c e l l d o f s (c e l l)]

59

270
271 dofx = sc . array (l i s t (submesh dofx))
272 dofy = sc . array (l i s t (submesh dofy))
273
274 return dofx , dofy
275
276
277 def u s o l i d (xx , xy , yx , yy , part , wtype , w, t , k , I , R) :
278 ”””
279 Function f o r eva luat ing the ana l y t i c
280 s o l u t i on in the s o l i d l aye r by e i t h e r a
281 P or S wave t e s t s o l u t i on
282 ”””
283 i f wtype == ’P ’ :
284 usx = (0 + 0 j)∗ sc . cos (xy)
285 usy = I ∗(sc . cos (w∗t−k∗yy) + 1 j ∗ sc . s i n (w∗t−k∗yy)) +\
286 R∗(sc . cos (w∗ t+k∗yy) + 1 j ∗ sc . s i n (w∗ t+k∗yy))
287
288 e l i f wtype == ’S ’ :
289 usx = I ∗(sc . cos (w∗t−k∗xy) + 1 j ∗ sc . s i n (w∗t−k∗xy)) +\
290 R∗(sc . cos (w∗ t+k∗xy) + 1 j ∗ sc . s i n (w∗ t+k∗xy))
291 usy = (0 + 0 j)∗ sc . cos (yy)
292
293 i f part == ’ r e a l ’ :
294 usx = sc . ascont iguousar ray (sc . r e a l (usx))
295 usy = sc . ascont iguousar ray (sc . r e a l (usy))
296
297 i f part == ’ imag ’ :
298 usx = sc . ascont iguousar ray (sc . imag (usx))
299 usy = sc . ascont iguousar ray (sc . imag (usy))
300
301 return usx , usy
302
303 def u f l u i d (xx , xy , yx , yy , part , wtype , w, t , k , T, F) :
304 ”””
305 Function f o r eva luat ing the ana l y t i c
306 s o l u t i on in the f l u i d l aye r by e i t h e r a
307 P or S wave t e s t s o l u t i on
308 ”””
309 i f wtype == ’P ’ :
310 ufx = (0 + 0 j)∗ sc . cos (xy)
311 ufy = T∗(sc . cos (w∗t−k∗yy) + 1 j ∗ sc . s i n (w∗t−k∗yy)) +\
312 F∗(sc . cos (w∗ t+k∗yy) + 1 j ∗ sc . s i n (w∗ t+k∗yy))
313
314 e l i f wtype ==’S ’ :
315 ufx = T∗(sc . cos (w∗t−k∗xy) + 1 j ∗ sc . s i n (w∗t−k∗xy)) +\
316 F∗(sc . cos (w∗ t+k∗xy) + 1 j ∗ sc . s i n (w∗ t+k∗xy))
317 ufy = (0 + 0 j)∗ sc . cos (yy)
318
319
320 i f part == ’ r e a l ’ :
321 ufx = sc . a scont iguousar ray (sc . r e a l (ufx))
322 ufy = sc . a scont iguousar ray (sc . r e a l (ufy))
323
324 i f part == ’ imag ’ :
325 ufx = sc . a scont iguousar ray (sc . imag (ufx))
326 ufy = sc . a scont iguousar ray (sc . imag (ufy))
327
328 return ufx , ufy
329
330
331 def run s imula t i on () :
332 ”””
333 Function f o r running a s i n g l e s imulat ion with given va lues
334 INPUT:
335 Nothing , va lues are changed d i r e c t l y in the func t i on
336
337 OUTPUT:
338 Pr int s the maximum er r o r and the l 2 norm e r r o r in the termina l
339 ”””
340 # Constants
341 l = 0
342 h = −1
343 L = 1
344 H = 1
345 xe l = 24
346 ye l = 24
347 dt = 0.01
348 endt = 10
349 ys = 0
350 rho1 = 4 .
351 rho2 = 3 .
352 mu1 = 2 .
353 mu2 = 0 .
354 lamda1 = 3 .
355 lamda2 = 1 .
356 wtype = ’S ’
357 part = ’ r e a l ’
358 w = 1 .
359 I = 1 .
360 v i z = ’ ye r ro r ’

60

361 savee r r o r = False
362 animate = False
363
364 e r r o r = so l v e r (l , h , L ,H, xel , yel , dt , endt ,\
365 ys , rho1 , rho2 ,mu1 ,mu2 , lamda1 , lamda2 , wtype , part ,
366 w, I , viz , saveer ror , animate)
367
368 # Find max and norm e r r o r s
369 errormax = e r r o r .max()
370 e r ro rnor = sc . sq r t (sum(e r r o r ∗∗2/ len (e r r o r)))
371
372 # Print e r r o r s on sc reen
373 pr in t 30∗ ’−− ’
374 pr in t ’MAXIMUM ERROR’
375 pr in t errormax
376 pr in t 30∗ ’−− ’
377 pr in t ’L2 NORM ERROR’
378 pr in t e r ro rno r
379 pr in t 30∗ ’−− ’
380
381 def t e s t conve rgence () :
382 ”””
383 Function f o r running 3 s imu la t i ons with a f i n e r time and
384 s p a t i a l spac ing and t e s t i n g that the e r r o r converges .
385
386 INPUT:
387 Values are changed d i r e c t l y in funct i on
388
389 OUTPUT:
390 re turns :
391 − Pr int s maximum er r o r in each s imulat ion
392 − p r i n t s convergence r a t e s f o r maximum er r o r
393 − p r i n t s the L2 norm e r r o r in each s imulat ion
394 − p r i n t s the convergence r a t e s f o r the L2 norm e r r o r s
395 ”””
396 # Constants
397 l = 0
398 h = −1
399 L = 1
400 H = 1
401 endt = 10
402 ys = 0
403 rho1 = 4 .
404 rho2 = 3 .
405 mu1 = 2 .
406 mu2 = 0 .
407 lamda1 = 3 .
408 lamda2 = 1 .
409 wtype = ’P ’
410 part = ’ r e a l ’
411 w = 1 .
412 I = 1 .
413 v i z = ’ none ’
414 savee r r o r = True
415 animate = False
416
417 # Convergence va lues
418 d t l i s t = [0 . 0 1 , 0 .005 , 0 . 0025]
419 x e l i s t = [24 , 48 , 96]
420 y e l i s t = [24 , 48 , 96]
421
422 # Errors
423 e r r o r l i s t = []
424 norml i s t = []
425 f o r k in range (l en (d t l i s t)) :
426 dt = d t l i s t [k]
427 xe l = x e l i s t [k]
428 ye l = y e l i s t [k]
429 e r r o r = so l v e r (l , h , L ,H, xel , yel , dt , endt , ys , rho1 ,\
430 rho2 ,mu1 ,mu2 , lamda1 , lamda2 , wtype , part ,
431 w, I , viz , saveer ror , animate)
432
433 norm = sc . sq r t (sum((e r r o r)∗∗2/(l en (e r r o r))))
434 norml i s t . append (norm)
435 e r r o r l i s t . append (e r r o r .max ())
436
437 # Check convergence
438 cmax = []
439 c l2n = []
440 f o r i in range (l en (e r r o r l i s t)−1):
441 cmax . append (e r r o r l i s t [i +1]/ e r r o r l i s t [i])
442 c l2n . append (norml i s t [i +1]/ norml i s t [i])
443
444 pr in t 40∗ ’−− ’
445 pr in t ’MAXIMUM ERROR’
446 pr in t e r r o r l i s t
447 pr in t 40∗ ’−− ’
448 pr in t ’L2 NORM’
449 pr in t norml i s t
450 pr in t 40∗ ’−− ’
451 pr in t ’CONVERGENCE MAXIMUM ERROR’

61

452 pr in t cmax
453 pr in t 40∗ ’−− ’
454 pr in t ’CONVERGENCE L2 NORM’
455 pr in t c l2n
456 pr in t 40∗ ’−− ’
457
458 def main () :
459 run s imula t i on ()
460 #te s t conve rgence ()
461
462 i f name ==’ ma in ’ :
463 main ()

References

Garth N. Wells Anders Logg, Kent-Andre Mardal. Automated solutions to dif-

ferential equations by the finite element method. Springer, Berlin, Germany,
2012.

Eric Jones, Travis Oliphant, Pearu Peterson, et al. Scipy documentation. URL
http://docs.scipy.org/doc/scipy/reference/. Last accessed in october
2014.

Spencer Kimball, Peter Mattis, Michael Natterer, Sven Neumann, et al. Gimp:
Gnu image manipulation program. URL URL www.gimp.org. Last accessed
in may 2014.

Pijush K Kundu and Ira M Cohen. Fluid mechanics. 4th, 2008.

Hans Petter Langtangen. Computational partial differential equations: numer-

ical methods and diffpack programming, 2nd. Springer Verlag, 1999.

Kitware personell. Paraview:. URL www.paraview.org. Last accessed in october
2014.

Prabhu Ramachandran and Gaël Varoquaux. The mayavi data visualizer. URL
URL http://mayavi. sourceforge. net. Last accessed in june 2014.

Seth Stein and Michael Wysession. An introduction to seismology, earthquakes,

and earth structure. John Wiley & Sons, 2009.

Aslak Tveito and Ragnar Winther. Introduction to partial differential equations:

a computational approach, volume 29. Springer, 2005.

62

