Rational Curves of higher degree on a complete
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In this note we study rational curves of degree higher than 3 on Tian-Yau’s CICY
(Complete Intersection Calabi-Yau) threefold in P3 x P3. Tian-Yau’s manifold,
which is a quotient of Tian-Yau’s CICY by a group acting without fixed points, gives
the easiest known example of a manifold that corresponds to a three generational
superstring model ([1], [6]). We prove the existence of positive dimensional families
of curves of every degree greater than 3 on Tian-Yau’s CICY, and, more generally,
for a generic choice of defining equations for the CICY.

1. Preliminaries.

Tian-Yau’s CICY is defined by the following:

X = 203 o8, o, Y 0) CFE x B

It is defined by three polynomials of bidegrees (3,0), (1,1) and (0,3). When we
speak of a generic Tian-Yau’s CICY, we shall mean a generic choice of polynomials
of these bidegrees. By a rational curve we shall mean a nonsingular rational curve.
We introduce the following notation: F; (resp. F3) is the cubic surface in P} (resp.
P3) defined by the polynomial of degree (3,0) (resp. (0,3)). The incidence variety
G is defined by a polynomial of bidegree (1,1). In other words:

X=F1><F20G

On this biprojective space we have a natural notion of degree of a rational curve,
by defining it to be the degree of its image in P!® via the Segre embedding. Every
rational curve of degree n has a bidegree (4,j) with 7 + 7 = n. The Hilbert scheme
Hilb’_}g"’l parametrising subschemes of Hilbert polynomial p(t) = nt + 1. It has a

natural partition in open-closed disjoint subschemes Hilbgé’j P ith i+ j = n. Let
G = Z(Z aij:zz,;yj) C P? X IP’%.
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Definition 1.1. ‘
Let L be a line in P} (resp. P3). Define V(L) in P} (resp. P3) to be the unique
linear subspace of maximal dimension such that V x L (resp. L X V) is contained

in G.
The following lemma assures that the definition above makes sense.

Lemma 1.2.
Let G = Z(Y aijzsy;) C P2 x P3. For any given line L in Py (resp. P}), V(L) has

dimension at least one, and it is unique.

Proof. It is enough to prove the assertion in the case where the line L is in P},
the other case follows by symmetry. Choose coordinates s.t. L is parametrised by
(Y0,Y1,0,0). G becomes with respect to these new coordinates Z( a%ja:iyj). Let

G = G|psxr, then G is defined by the following equation:

(Z aio®i)yo + (Z ajzi)yr = 0

Z(3Y ajpzi, >, oy z;) is obviously both maximal and unique, we get

V(L) =Z() aowi, Y iy i)

&

Remark 1.3.
In fact we proved more: Every point a € P} with the property that a x L C G, is
contained in V().

Remark 1.4.
dimV = 1,2,3 all occur.

The general case is clearly dimV = 1. The definition of V' depends on L as
well as on G. We are primarily interested in the case when we are in the general
situation for all L C P} 4 =1,2. We make the following definition:

Definition 1.5.
G is niceif dimV (L) =1foral LC P}, i=1,2.

When G is nice, we have maps:
Grass(P5) — Grass(P}) and Grass(P}) — Grass(P})

defined by sending L to V(L). These maps are obviously bijective since V(V (L)) =
L by definition. When G is nice, we write (L) for V(L) to signify that it is a line.
We have a sufficient condition for when G is nice:

Lemma 1.6.
Let G = Z(>] asjz;y;). If the matrix [oy;] is of maximal rank, then G is nice.




Proof.
Write Y a;jz;y; = ¢ Ay®, where z = (z9,...,23) (likewise for y) and
&0 Qo3
A= .
Q30 Q33

Assume that A is of maximal rank. We have to prove that for every line L in
P3, V(L) is of minimal dimension. Consider first the special case where I =
(v0,91,0,0). This gives the following V(L):

Z(Z ailwi,Zaiowi) x L - ]P’i X ]P’g

Assume that V(L) is not of minimal dimension, i.e. dimZ(} a1, ) as;) > 2,
then there are two different possibilities: 1. Y ajiz; = 0 or > apz; = 0. In
this case ajp or a;; is zero for all :, which contradicts that A is of maximal rank.
2. Z(X anzi) = Z(3 apz;). This implies that Y a;z; = A) ajpz;, giving
;1 = Aajg. In other words the first two rows are proportional, which contradicts
that A is of maximal rank.

The final step is to reduce the general situation to the special case considered
above. This is done in the following way: Choose a general L in P5. It is pos-
sible to change the coordinates on the second factor, such that L is parametrised
by (v5,91,0,0). Call this coordinate change matrix P (i.e., (y},---,y3)" = P -
(y1,---,¥3)%). We make the following change of coordinates on the first factor:

a:'t — (A—l)t(P_l)tAt:Bt
This gives G = Z(_ a;jz;y}) with respect to the new coordinates, since

Z aijziy; = Ayt = (2 APATN) (AP Y'Y = 2" Ay = Zaijm;y;.

The result now follows from the special case considered above.

&

Proposition 1.7,
Let G be nice, and let G = Gpsx 1.
Then G is isomorphic to the blowing-up of P} in I(L).

Proof. We can without loss of generality assume that G is defined by
Z(mly2 - 1’2:'/1) g ]P3((130,. o ,:133) X ]Pl(ylayZ)

(by change of coordinates). In this situation /(L) is defined by ®; = z, = 0. It is
enough to check the statement locally, take for instance zo = 1. Then we have

Z(z1y2 — zay1) C A® x P,

This is in fact the blowing-up of A® with center Z(z1,z2) ([3] IL.7.12.1).
&

We have the following important corollary:




Corollary 1.8.
Let G be nice, and let G = G|uxL, where H is a hyperplane and L is a line. Denote
the blow-up map G — P3 by .

Then @ is isomorphic to m~*(H). In the case I(L) ¢ H then G is isomorphic to
H blown up in the point H NI(L).

&

2. Curves of higher degree on a generic Tian-Yau’s CICY.

Let C be a rational curve in P2 x P3. Let f be a parametrisation:

f
Pt —— P3 xP3

|

P
Definition 2.1.

A rational curve in P? x P3 is of type (7, 7), if the image of the first (resp. second)
projection is of degree m (resp. n).

Recall that a generic Tian-Yau CICY was defined to be a complete intersection:
X = Fl X Fz NG

where Fy (resp. F,) is defined by a generic polynomial of bidegree (3,0) (resp.
(0,3)), and the incidence variety G is defined by a generic polynomial of bidegree
(1,1). :

Proposition 2.2.

Let L be a line in P}, and let C; be a rational curve of degree m in IP}. Fur-
thermore let G = Z(3" aijz:y;) C P? x Py be nice, and denote Glpexr by G. Let
C be the unique component of V.= C; x L N G such that m;(C) = Cy, where m is
the projection map on the first factor. Let ¢ = Ig(C1 NI(L)). Then C is a rational
curve of bidegree (m,m — i) and of type (m,1).

Proof. G is isomorphic to the blow up of P? with center (L), so C is by definition
the strict transform of C;. Moreover, V. = C U E; U ---U E;, where the E; are the

exceptional fibers corresponding to the intersection points p1,...,p; in Cq NI(L).
C is rational ( [3] V.3.7). The bidegree is easily determined [5]. (The degree on the
second factor drops by one for each intersection point counted with multiplicity.)

&

Our main result in this section is the following theorem:

Theorem 2.3.
Let X be a generic Tian-Yau CICY. For every n, n > 4, there exists a nonisolated

rational curve of degree n.

Our aim is to prove the theorem using the criterion above. We need a result
concerning certain linear systems in P2.




Proposition 2.4.

Fix a point p in P? and let d > 3. The linear system of curves of degree d, with a
point of order (d—1) at p is of dimension 2d, and a generic member is an irreducible
rational curve.

Proof. Assume that it is nonempty. The dimension of the linear system of curves
of degree d is (d-;-z) — 1. The condition that a curve has a multiple point p of order
(d — 1), is equivalent to the vanishing of the (d — 1) first partial derivatives at p.
This gives 1 + --- + (d — 1) conditions on the coefficients, and the first statement
follows. To prove prove the second statement it suffices to show that there exists
an irreducible rational curve in the linear system. One can construct one in the
following way: Let
f:P — p?
f(u,v) = (udau(d_l)v, T ,vd)

Let C = f(P') C P%. Choose (d — 1) points on C. These span a linear subspace
L of dimension (d — 2). Let 7 : P? — P? be the linear projection from a linear
subspace L' of L with the following properties: dimL' = (d —3) and L' N C = 0.
Let C = w(C), then C is a curve with the desired features.

&

Proposition 2.5.
Let F' be a nonsingular cubic surface in P3. For every natural number m, m > 3,
there exists a a two dimensional family of nonsingular rational curves of degree m

on F.

Proof. F'isisomorphic to P? blown up in six points pg,- -+ ,ps. Consider the linear
system o of curves of degree d, d > 3 and with a multiple point of order (d — 1)
at po in P2. We denote a generic curve of ¢° by Co. The strict transform of Cy
is a rational curve C; of degree 2d + 1. Since the dimensions of the linear systems
considered down on P? is at least 6 by the preceding proposition, the statement
is proved for degrees 7,9,---. For even degrees we take a sublinear system ot of
0, by demanding the curve to pass through p; once. The strict transform of a
generic curve is a rational curve of degree 2d. The dimensions of these families of
curves are at least 5. In the same manner we can take curves that in addition to
the requirements above also pass though p, and so on. In each case the dimension
drops by no more than one. Hence, we have inclusions ¢* D o' D...0* D :-- D o®
This gives the desired results for the remaining degrees 3,4,5. In the case m = 3
(corresponding to d = 3 and ¢t = 4) the dimension is at least equal to 2.

&

Now we give a constructive proof of the theorem.

Proof of the theorem. Let L be one of the 27 lines on F,. Consider G = (P} x L)NG.
G is nice, since we are considering a generic Tian-Yau CICY. G is the blow up of
IP3 in I(L). Denote the intersection points of F1 NI(L) by a1, az,as. (Note there are
always three of them, when we consider a generic Tian-Yau CICY, because there
are only 27 lines I(L) in ]P’i with L C F,. These are not tangents to the surface Fi,
generically.) Fix a blowing down of a set of exceptional divisors (E1,--- , Es) :

r: B, — P?
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and let ¢; = a; for 1 € {1,2,3}. Let C; be a curve of degree m on F; C P3. By
Proposition 2.2, there is a uniquely determined rational curve C C C1 X LNG C X
of bidegree (m,m —1), where 7 is the number of intersection points between C; and
I(L).

Consider the linear system of curves of degree m constructed in the proof of
the preceding proposition, denote it by 7,. A general member of 7%, does not pass
through any of the ¢;’s, giving that the strict transform of this curve up on the cubic
F; does not pass through any of the a;’s. This gives a curve of degree m+m = 2m by
Proposition 2.2. Furthermore by proposition 2.4 the curves constructed in this way
are members of a family of dimension at least 2. Consider the linear subsystem 72,
of 72, defined by the additional requirement that the curves should pass through g¢;.
This of course gives a linear system of dimension one less than the one considered
above. Hence this is at least one dimensional. The generic member of this linear
system then gives rise to a rational curve of degree 2m — 1 by Proposition 2.2, since
passing through ¢; for the curve Cy is equivalent to that the strict transform of
this curve C; in F; pass through a;. This gives at families of dimension at least
1 of curves of degrees 5,7,---. Now only degree 4 remains. First fix a line L' on
F;. The planes in P} containing L' is a 1-dimensional family. Denote by Hp(t)
the pencil of planes in P} containing L'. Fy N Hr/(t) = L' U Crs(t) where Cr(2) is
nonsingular conic for almost all ¢.

Furthermore, fix a line L in F5. Let

-DL’,L = CLl(t) x LNGC HLI(t) xLNG ﬁHL:(t)

where HLAI (t) denotes the inverse of Hr/(t) in G. Let = : HL: (t) — Hyp(t) de-
note the restriction of the blowing down map. Dy r, is of dimension 1 since it is
isomorphic to 771(Cr/) and Cr/(t) € I(L). If Cr/(¢t) N I(L) = 0, then Dy r(t) is
irreducible. Since {(L) N Cy; = 0, D is isomorphic to the strict transform of C;. In
this case D = C. The map my|c : C — L is 2:1, which implies that the degree on
the second factor is 2. The curve C has bidegree (2,2). It remains to prove that
for almost all ¢, Cr:(¢) N I{(L) = @. Assume the opposite, i.e. Cr:(t) NI(L) # O for
almost all . Then Dy r(t) contains a rational curve of bidegree (2,1) or (2,0) for
almost all ¢, by Proposition 2.2. The (2,0) curves only arise when {(L) C Hp(?).
This is possible for only finitely many ¢. Hence, we must have a (2,1) curve Cr/ 1 (t)
in D+ r(t) for almost all ¢. This implies that there are infinitely many curves of
degree less than 4. This is not possible on a generic Tian-Yau CICY [5]. We have
established our desired contradiction, and we have a positive dimensional family of
curves of degree 4.

s

Theorem 2.6.
Let X be Tian-Yau’s CICY. For every n, n > 4, there exists a nonisolated
rational curve of degree n.

Proof. This is a corollary of the proof of theorem 2.3. The construction of curves
relied on the use of Proposition 2.2, in other words that G = Z(3_,. z;y;) is nice.
G = Z(Y, z;y;) for Tian-Yau’s CICY, which is obviously nice. The last necessary
ingredient in the proof is that none of the [(L) where L is one of the 27 lines of
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F, are tangent to the surface F». This is easily checked for Tian-Yau’s CICY. The
rest of the proof is identical to the proof of theorem 2.3.

&

3. Existence of curves of various bidegrees.
The technique developed above has several applications. We want to determine
the possible bidegrees for rational curves on Tian-Yau’s CICY.

Proposition 3.1.
Let G = (Z(Y; aijziy;)) C P2 x P3 be nice. Then there are no nonsingular rational
curves of bidegree (m,0), m > 3, on G.

Proof. Assume for contradiction that C is a nonsingular rational curve of bidegree
(m,0) on G, i.e., C = Cy X p, where C; is a nonsingular rational curve in P? and p
is a point in P%. Fix a line L in P} passing through p. By Proposition 2.2 /(L) has
to be an m-secant to the curve C;. This is impossible since a nonsingular rational
curve of degree m has at most an (m — 1) secant.

&

Corollary 3.2.
There are no rational curves of bidegree (m,0) or (0,m) on a generic Tian-Yau’s
CICY or Tian-Yau’s CICY.

&

Proposition 3.4.
Let d > 3 and let t € {0,1,2,3,4,5} There exist Tian-Yau CICYs with positive
dimensional families of rational curves of bidegree (2d + 1 —t,d + 2 — t).

Proof.

In Proposition 2.4 and Proposition 2.5 we constructed the linear systems of
curves o?. The strict transforms of these curves have a d — 1-secant, Ey, the excep-
tional divisor corresponding to py. Furthermore, the degree of the strict transform
of a general member of o! is 2d + 1 — t. If F; is a nonsingular cubic surface in P?,
denote by L¥, i € {1,...,27}, the 27 lines on F;. Now choose a pair of cubic
surfaces Fy, F; and a nice G with the property that there exists a pair of lines L{
and L} such that [(L}) = L?. Using Proposition 2.2 gives the desired result.

]

Remark 3.5.
All of these curves are of type (,1), except for the case d = 3,¢ = 5 which gives
a bidegree (2,0) curve.

Theorem 3.6.

Let X be a generic Tian-Yau CICY.

Let m > 3 be an integer, and 1 € {0,1,2,3}. Then there exist positive dimensional
families of rational curves of bidegree (m m —1).

If m = 3, then there exist positive dimensional families of rat1ona1 curves of bide-
grees (3, 3),(3, 2).




Proof.

Let X = F; x F, be a generic Tian-Yau CICY, and let L be one of the 27 lines on
F,. Let ¢1,q2,gs be the intersection points of /(L) N Fy. Furthermore, fix a blowing
down of the exceptional divisors 7 : F; — P?, and let §; = m(g;) for ¢ = 1,2,3.
We will use the linear systems of curves in P? considered in Prop. 2.4 and in Prop.
2.5.

Consider first m > 3 and 7 = 0. By Prop. 2.5 we have linear systems o; with ¢
basepoints p; ...p;. A general member of this linear system does not pass through
any of the g;, i.e. it gives rise to a rational curve of bidegree (m,m) on X by
Proposition 2.2. Since these linear systems are all positive dimensional, we get
positive dimensional families of of bidegree (m,m) for m > 2 on X.

In order to prove the statement in the case m > 3 and ¢ = 1, we take sublinear
systems o}, of the o* considered above, by assigning the basepoint ¢;. The dimension
of o is dim o? — 1. Proposition 2.5 then gives dim ¢ > 1, and the result follows.
For i = 2 we take sublinear systems of ¢%, by assigning g» as an additional base-
point. By the same reasoning as above this gives positive dimensional families,
using Prop 2.2, Prop. 2.4 and Prop. 2.5 for m > 3.

Finally, the case 1 = 3 is treated analogously by considering sublinear systems of
ot by assigning §i,42,ds as basepoints. Using Prop. 2.2, Prop. 2.4 and Prop. 2.5
obtain positive dimensional families of bidegree (m, m — 3) curves for m > 3.

&

Theorem 3.7.
For a generic Tian-Yau CICY there are no rational curves of bidegree (m,m — 1)

and of type (m,1) form > 1 > 4.
Proof.
An i secant of a curve when ¢ > 4 has to be contained in F; by Bezout’s theorem.

In other words it has to be one of the 27 lines, but for a generic Tian-Yau CICY
none of the 27 [(L)’s are among the 27 lines on Fj.
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