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THE PRESSURE EQUATION FOR FLUID FLOW
IN A STOCHASTIC MEDIUM

H. Holden? T. Lindstrgm?, B. @ksendal®, J. Ubge?, T.-S. Zhang?)

Abstract

An equation modelling the pressure p(z) = p(z,w) at z € D C R? of an incompressible fluid in
a heterogeneous, isotropic medium with a stochastic permeability k(z,w) > 0 is the stochastic partial
differential equation

{div(k(z) w) on(z,w)) = _f(z) 1T € D
p(sz)=0 ;x€0D

where f is the given source rate of the fluid, o denotes Wick product.

We represent k as the positive noise given by the Wick exponential of white noise, and we find an explicit
formula for the (unique) solution p(z,w), which is proved to belong to the space (8)™! of generalized white
noise distributions.

§1. INTRODUCTION

If fluid is injected into a region D C R? at the density rate f(z) at the point z € R, then the pressure
p(z) of the fluid at z will satisfy the following partial differential equation:

(1.1) div(k(z) - Vp(z))=—f(z) ; z€D

where k(z) > 0 is the permeability of the medium at z. (We assume that the fluid is incompressible and
that the medium is isotropic. In the anisotropic case k(z) must be replaced by a symmetric, non-negative
definite d x d matrix K(z)). (See e.g. [L@OU 3], [M@] for more details). In addition, let us for simplicity
assume that the pressure is kept equal to 0 at the boundary 0D of D:

(1.2) p(z)=0 ; z€dD

In many important applications, e.g. oil flow in porous rocks, the permeability is a rapidly fluctuating,
irregular function. Therefore it is natural to represent k(z) as a generalized stochastic process k(z, w);w € ,
where (2, F, P) is a suitable probability space.

It is usually assumed that such a stochastic permeability process should have, at least approximately,
the following properties:

(1.3) (Independence) If z; # z then k(z:1,-) and k(z3, -) are independent
(1.4) (Lognormality) For each z the random variable k(z, -) is lognormal

(1.5) (Stationarity) For all z;,---,zn € R4 and h € R4 the random variable

Y= (k(xl + h, ), -+, k(zn +h,-))
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has a distribution which is independent of h.
A natural (almost canonical) generalized process k(z,w) satisfying (1.3) - (1.5) is

(16) k(z,w) = a ExplbW;(w)]

where @ > 0,b > 0 are constants, W(w) denotes d-parameter white noise and Exp denotes the Wick
exponential (see §2). The process k(z,w) given by (1.6) belongs to the space of Hida distributions, (S)*,
which again is a subset of a certain space (S )~! of generalized white noise functionals (see §2). In this space
(8)7! there is a natural product, called the Wick product and denoted by o. If we use this product, our
interpretation of (1.1) becomes

1.7 div(a ExppW;] 0 Vp(z,")) = —f(z); €D

regarded as an equation in (S)7!.

Using the Wick product in (1.7) corresponds to adopting the Ito approach to the stochastic partial
differential equation. (See §2).

If the permeability process k(z,w) is represented by a more regular stochastic process than in (1.6),
then one can also consider the Stratonovich interpretation of the equation, obtained by using the ordinary
pointwise product instead of the Wick product in 1.7):

(1.8) div(k(a:,c\u) -Vp(z,w)) =—f(z); z€D

In the case when k(z,w) is bounded and bounded away from O this Stratonovich equation has been studied
by Dikow and Hornung [DH], who prove the existence and uniqueness of a weak solution p(z,w) as an
element of a suitable Sobolov space of functions with values in L?(£, u). Note that k given by (1.6) is neither

bounded nor bounded away from 0.
The model (1.6) for the stochastic permeability was suggested in [L@U 3] and there the explicit solution

p(z, ) of the corresponding (Ito) stochastic boundary value problem

(1.9) {diV(Exsz o Vp(z,-)) =—f(z) z€D
) p(z,-)=0 iz €D
was given (formula (7.3) p.170 in [L@U 3]), but without proof. The result has subsequently been announced
by one of us (B. @ksendal) in several conferences, including the Seminar on Stochastic Analysis, Random
Fields and Applications in Monte Veritd, Ascona, June 1993. There the proof was also presented. More
precisely, the lecture gave a proof that the formula solves the equation in a weak (generalized Hermite
transform) sense.

The purpose of this paper is to give a complete proof that formula (7.3) in [LOU 3] solves equation (1.9)
in the space of generalized white noise distributions, (8)™!, which was recently constructed by [AKS]. See
Theorem 3.1. Moreover, with applications in mind we give interpretations of this solution concept.

§2. SOME PRELIMINARIES IN WHITE NOISE CALCULUS

Here we briefly recall some of the basic definitions and results from white noise calculus. For more

information the reader is referred to [HKPS].
In the following we fix the parameter dimension d and let S = & (R?) denote the Schwartz space of rapidly

decreasing smooth (C*) functions on R?. The dual &' = &' (R?) is the space of tempered distributions. By
the Bochner-Minlos theorem [GV] there exists a probability measure x on the Borel subsets B of 8§’ with the

property that

(2.1) / P du(w) = e‘%"‘#"’;\w €S
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where (w, ¢) denotes the action of w € S’ on ¢ € S and ||¢||> = [ |¢(z)[’dz. The triple (S',B, u) is called
R4

the white noise probability space.
The white noise process is the map W : § x &' — R defined by

(22) W(¢’ w) = W¢(w) = <w’ ¢>1 wE€ Sla peS

Expressed in terms of Ito integrals with respect to d-parameter Brownian motion B we have

23) Ww) = [$@)dBw) ; ses.
R‘

The Hermite polynomials are defined by
a2
(24) hn(z) = (-1)"e¥ —(¥); n=0,1,2,-:
and the Hermite functions are defined by
(2.5) ta(@) =7 (= 1)) Fe Thay(vV2z) ; n2>1
In the following we let {e;, €3, -} C S denote a fixed orthonormal basis for L?(R¢). For most purposes the

basis can be arbitrary, but it is sometimes convenient to assume that the e,’s are obtained by taking tensor
products of &(z). Define

(2.6) 0;(w) == We, (w) = / e;(2)dBaw) ; j=1,2,-
Re
If a = (a1, -+, o) is a multi-index of non-negative integers we put
m
(2.7) Ha(w) =[] ha; (65)
i=1

The Wiener-Ito chaos expansion theorem says that any X € L%(u) can be (uniquely) written

(28)  X@) =Y calla(w)
Moreover,
(2.9) X122y = _ald where ol =ailag!:--am!

The Hida test function space (S) and the Hida distribution space (S)* can be given the following character-
ization, due to T.-S. Zhang [Z]:

THEOREM 2.1 ([Z])
Part a): A function f = Y coH, € L?(u) belongs to (S) if and only if

(2.10) sup Zol(2N)** < 0o Vk < o0
a
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where

(2.11) @N)* = [ (262 - - BN ifa= (a1, ,0m)
j=1

Here gY) = (ﬂl(j),-- -,ﬁg)) is multi-index nr. j in the fixed ordering of all d-dimensional multi-indices
B = (B, -, Pa), related to the basis {e;} by

(2.12) €= EﬂP ®---® Epi,j.

Part b): A formal series F = }_ ba Hq belongs to (S)* if and only if
a
(2.13) sup b2a!(2N)™® < co for some ¢ < oo
a
The action of F = )_byH, € (§)* on f =) caH, € (S) is given by
a a

(2.14) | (F,f)=)_olbaca

a

EXAMPLE The pointwise (or singular) white noise W; is defined by

(2.15) We(w) =Y ex(z)He(w) = ) _ ex()ha(6k)
k=1

=1
where ¢; = (0,0, - -,0,1) with 1 on k’th place.

In this case
ba = b, = ex(x) if a = € for some k
by =0if a # ¢ for all k

Moreover, if a = ¢, we have

(@2N)* = 246 ... g

So in this case we get
sup b2a!(2N)™*? = sup ei(z)(2dﬁ§k) .- -ﬁg‘))"" < oo
a k

for all ¢ > 0, since

sup [£(8)| = O(k~#) ([HP])

We conclude that W (w) € (8)*.
Note that if 1 < p < oo we have

(2.16) (8) c LF(w) c (8)°
However,
(2.17) L'(u) ¢ (S)* (see e.g. [HLOUZ 1))

For our purposes it turns out to be convenient to work with spaces (5)! and (S)~! which are related to (S)
and (S)* as follows: '

(2.18) St c(S)c(S) c((s™
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The spaces (S) and (S)~! have recently been constructed by Albeverio, Kondratiev and Streit [AKS]. (Related
spaces, denoted by M and M?*, are constructed in [CY].) We recall here their basic properties, stated in
forms which are convenient for our purposes. For details and proofs we refer to [AKS].

DEFINITION 2.2 [AKS]

Part a): For 0 < p <1 let (S) consist of all

f= Zc.,Ha € L*(u) such that
a
(2.19) ||f||2,k = Zcﬁ(a!)””(ZN)“" <oo forallk < oo
a

Part b): The space (S)~” consists of all formal expansions
F=) byHa
a

such that
(2.20) Zbﬁ(a!)l"’@N)‘“" < oo for some g < o0

The family of seminorms | f ||%_k : k=1,2,-- - gives rise to a topology on (S)” and we can then regard (S)~*
as the dual of (S)” by the action

(2:21) (F,f) = _ bacaa!
if F = buHa € (S) and f = Y caHa € (S)°.

REMARKS.
1) Regarding (2.21), note that

3 lbacalat = 3 Pacal(a) ¥ (@) ¥ - (2N) ¥ (2N) "%
< [} Bty N) = - [30 (el HHEN)
< oo for k large enough.
2) Putting p = 0 we see by comparing (2.19), (2.20) with (2.10), (2.13) that (S) = (8)® and (S)* = (8)7°.
So for general p € [0,1] we have
(2.22) S)lc@rcE)=@®cE)r=6)"cE®)*c®™
(Observe that with this notation (S)° and (§)~° are different spaces).

DEFINITION 2.3
The Wick product F ¢ G of two elements
F=Y baHa,G=)  agHpin (5)™" is defined by
(2.23) - g

FoG= Z a,,pra.Hg
af




From Def. 2.2 we get

LEMMA 2.4

() FGe(S)'=FoGe (85!
(ii) f,9€(S)' = foge (8!

The Hermite transform [L@U 1-3] has a natural extension to (S 7

DEFINITION 2.5 If F = Y_b,H, € (S)™! then the Hermite transform of F, HF = F, is defined by
a
(2.24) ‘ F(2) =HF(2) = Z baz® (whenever convergent)

where z = (21,2, --) and
22 =22 o ifa= (a1, -, am)-

Note that if F € (8)” for p < 1 then (HF)(z1,2,---) converges for all finite sequences (21, 2m) of
complex numbers. To see this we write

3 fBallz®l = 3 Ibal(a) 7 (a) T |27 - (2N) ¥ - (2N)

(2:25) < [Z bz(a!)l—p(zN)-ﬂ'ﬂ]% . [Z |.::‘°'|2(Ot!)p_1 (2N)aq]%

Now if z = (21, -+, zm) With |z;] < M then
3 2P @N) <y M (at)P 124l Nl < oo
a a
where N = sup{ﬁ,g); 1<k <d,1<j<m}. Soif qis large enough, then by (2.20) the expression (2.25) is

finite.
If F € (S)™1, however, we can only obtain convergence of HF(21,2,---) in a neighbourhood of the

origin: We have
3 Jballz®] < | S B@N)9E - [3 272 (2N)]3,
a a a

where the first factor on the right hand side converges for q large enough. For such a value of ¢ we have
convergence of the second factor if z = (21, -, 2m) With

2] < (2°N)™® for all j.
The next result is an immediate consequence of Def. 2.3 and Def. 2.5:
LEMMA 2.6 If F,G € (S)! then
H(F o G)(z) = HF(2) - HG(2)

for all z such that HF(z) and HG(z) exist.
The topology on (S)~! can conveniently be expressed in terms of Hermite transforms as follows:

LEMMA 2.7 [AKS]

The following are equivalent
(i) X, = X in (5)!




(ii) 36 > 0,9 < 00, M < oo such that

HX,(z) > HX(z) asn — oo for z € By(0,5)

and

[HXa(2)] <M foralln=1,2,---;2 € By(0,9)
where
(2:26) B,(6) = {¢ = (¢1, G -+*) € CF; Y_ IC°P(2N)™ < 6}

a#0

LEMMA 2.8 [AKS]

Suppose g(z1, 22, - - -) is a bounded analytic function on B,(6) for some § > 0, g < co. Then there exists

X € (S)7! such that
HX =g

From this we deduce the following useful result:

LEMMA 2.9

Suppose g = HX for some X € (S)~!. Let f be an analytic function in a neighbourhood of (s = EX]=
g(0) in C. Then there exists Y € (§)~ such that

HY =fog

Proof. Let r > 0 be such that f is bounded analytic on {¢ € C;|¢ —{o| < r}. Then choose § > 0 and g < oo
such that the function z — g(2) is bounded analytic on B,(6) and such that |g(z) — (o| < 7 for z € By(6).
Then f o g is bounded analytic in By(6), so the result follows from Lemma 2.8.

EXAMPLE 2.10

a) Let X € (§)"!. Then X o X = X°? € (S)~! and more generally X°* € (5)™" for all natural numbers
n. Define the Wick exponential of X, Exp X, by

1
Exp X = E —|X°"
n=0n'

Then by Lemma 2.9 Exp X € (5)7! also.

b) In particular, if we choose X = W, (the singular white noise) then Ko := ExpW, is in fact in (8)*. As
suggested in [L@U 3] the process Ko(z,w) is a natural model for the stochastic permeability k(z,-)
discussed in §1. The reason for this is the following:

Choose a test function ¢ € S. Define the z-shifts ¢z(-) of ¢ by
(2.27) ¢:(y) = ¢(y — =)
and consider the smoothed version of Kjp:

(2.28) , K(z,w) := Exp Wy_(w)

Since for general ¢ € L? we have
1
(2.2) Bxp Wy = exp( [ 9B - 71417),
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we see that K(z,w) does indeed satisfy the 3 requirements (1.3)-(1.5) to a stochastic permeability,
except that the independence requirement (1.3) is weakened to

(Independence in a weak sense). If supp ¢z, (-) N supp ¢z,(-) =0,

2.30
(2:30) then K(z1,-) and K(z2, ) are independent.

The test function ¢ is more than just a technical convenience to avoid too singular mathematical
objects, it also has an important physical interpretation: ¢, represents the macroscopic average (or
window) that is used when the value of the permeability at the point z is measured. Typically ¢ will
be chosen such that supp ¢ corresponds to what is called a representative elementary volume, which
is large compared to the pores of the medium but small compared to the macroscopic properties of
the flow.

c) If we choose A € R and put X = Wy, = AH,, (Where ¢, is the first basis element for L%(R?)), then
Y = ExpWy,, € (S)! for || small enough. To see this we note that the expansion of Y is

[~
Y =3 N Hoy =Y ol
n=0 a

so that ‘ o
3 R (a2 @N)™ = Y (AR () - (20 )
a n=0

o]
<D PPN <00

n=0
if M2 < (2¢N)9, with N = max{|6{"|%1 < j < d}.
Since we are free to choose e; € S with ||e;|| = 1 we conclude that
Exp Whs = Exp(-, A¢) € (5)!
for all ¢ € 8 if || is small enough (depending on ¢).

d) Other useful applications of Lemma 2.9 include the Wick logarithm Y = Log X, which is defined (in
(8)™) for all X € (S)~! with E[X] # 0. For such X we have

Exp(Log X) =X

and for all Z € (S)™! we have
Log(Exp Z)=Z

e) Similarly we note that the Wick-inverse X*~1) exists in (S5)~! for all X € (S)" with E[X] # 0. This

is useful in the discussion of the 1-dimensional pressure equation (see §3).

DEFINITION 2.11. The last observation enables us to extend the concept of S-transform from (S)* to
(8)7! as follows:

For F € (S)~! define the S-transform of F, SF, by

(2.31) (SF)(A¢) = (F,Exp(-, A¢))

for XA € U, a small neighbourhood of 0 in R.

The argument above shows that the function
A= (SF) (M) ; AeU
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extends to an analytic function
z — (SF)(29)

defined in a neighbourhood of 0 in C.
If F =Y caH, and |2| is small enough, we have

[o 0]

1
(SF)(zkex) = (F,Exp(-, zkex)) = ,,Z; —%(F, (- en)™)
o0 1 n oo e
= Z:O Ezk(F" Hml—)n! = Zocﬂsz k= HF(O: 07 b 'szk)

Hence we see that the connection between the S- and H- transform is

(2.32) HF (21,22, 2m) = (SF)(z161 + -+ + Zmem)

REMARK. It is important to note that (2.31) actually allows us to define what we could call generalized
expectation of an arbitrary F € (S)~!, in spite of the fact that such an F need not even be in LY(p): If
Fy € LP(u) for p > 1 then the action of Fy on an element ¢ € (S)! is given by

(2.33) (Fo, %) = E[Foy] = / Folw)$(@)dp(w),
SI

so if 1 = 1 then (Fy,v) = (Fy, 1) gives us the expectation of Fy. Similarly, choosing A =0in (2.31) we get
(SF)(0) = (F,1)

as a generalized expectation of an arbitrary F € (5)7".
More generally, expanding (2.31) in a power series in 2z we see that the S-transform (and the Hermite

transform) gives us all the actions
(F, (&)™)

of F € (S§)~! on (-,¢)°" € (S)'. Therefore, although F need not exist as a random variable, it exists
as a stochastic distribution: Given a stochastic test function it computes its associated average. See the
concluding remarks in the end of §3.

§3. SOLUTION OF THE STOCHASTIC PRESSURE EQUATION

We now proceed to solve the stochastic pressure equation (1.9). As explained in §2 there are both
physical and mathematical reasons for interpreting the equation in the smoothed out sense, i.e. we choose a
test function (window) ¢ and represent the stochastic permeability by K (z,w) = Exp W4, (w). The resulting
solution p(z,w) will be a function of ¢ also, p = p(¢, z,w). Such processes are called functional processes in

[HLOUZ 1).

THEOREM 3.1. Let D be a bounded domain in R¢ and let f be a Hélder continuous (deterministic)
function on D (i.e. |f(z) — f(y)| < c|lz —y|° for all z,y € D;6 > 0,¢ < oo constants). Then for all €S
there is a unique solution p(z, -) € (S)™! of the stochastic pressure equation

(3.1) div(ExpWy,(-) o Vp(z,")) = —f(z) ;z€D

(3.2) p(z,)=0 ;ze€dD
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The solution is given by

) = § Bxp(~ 3 W () o B [ 700 Exp{~5 Wi, ()
(3.3) 0

- 5 [ OWa) )+ AW, @] o)
0

where (b(®), P*) is a (1-parameter) standard Brownian motion in R? (independent of B;), E* denotes
expectation with respect to P* and

(34) r = 7(&) = inf{t > 0;b, ¢ D}

(As before all differentiations are taken w.r.t. ). We have used the “vector-Wick product” notation

d
X)?=XoX=) XioX; if X=Xy X)) €S x(8) T xx(8)7

i=1

REMARK Since we have no smoothness conditions on D, the requirement (3.2) must be interpreted in
the weak sense

(3.2) :IEILI,I’ p(z,-)=0 forall ye€drD,

xeD

where 8zD is the set of points y € 8D which are regular for the classical Dirichlet problem in D.

Proof of Theorem 3.1
Note that in (3.1) the derivatives are taken wr.t. z in (S)~1. For example, by saying that g}k exists

and is equal to G(z,-) € (S)™! we mean that

li_r‘ré p(x+ ewne') - p(z,") = G(z,-) (limit in (8)_1)

where uy, is the k’th unit vector in R®. From Lemma 2.7 this is equivalent to saying that 36 > 0,q < oo
such that

lim p(z + €ug, z) - P((C, 2) — é(m’ z)

e—0 €
pointwise boundedly for z € B,(6), where as before ~ denotes the Hermite transform. In other words, the
statement

35) (@) = Cla,) € (5)

is equivalent to 36 > 0, g < oo such that

(3.6) 535;(3:, z) = G(z, 2)

as elements of the space of functions R — A,(B,(6)), where Ay(By(6)) is the space of all bounded analytic
functions on B,(6) with the topology of pointwise, bounded convergence on B,(6).

Therefore, to solve (3.1), (3.2) it suffices to find § > 0,¢ < oo and u(z,)(= B(z,")) € As(B,(6)) such
that

(3.7 div(exp Wy, (2) - Vu(z, 2)) = —f(z); z € D, z € By(6)
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and

(3.8) :lzl_r}}’ u(z,z) =0 forall ye€drD,z € By(f)
z€D
Put

(7, 2) = W, (2) = 3 (62, €6) 2.
k

Then we can rewrite (3.7) as

(3.9) L@u(z,2) == %Au(z, z)+ %V'y(z, 2) - Vu(z,z) = —F(z,2z); z€D
where
(3.10) Pz, ) = /(&) op(-57(@,2).

Now assume that z; = & € R for all k. Since the operator L® defined by (3.9) is uniformly elliptic in D, we
know that equations (3.9), (3.8) have a unique solution u(-,§) € C?(D) (the twice continuously differentiable
functions on D) for each £ € RY'.

Let (z: = sz) (@), P*) be the solution of the (ordinary) Ito stochastic differential equation

(3.11) dr; = %V'y(:ct,g)dt +db; zo=2x

where (b;(&), P¥) is the d-dimensional Brownian motion described below (3.3). Then the generator of zgf) is

L®, so by Dynkin’s formula we have, for z € U CC D,
u’s

(312) Flu(en,6)) = u(z,§) + 57 [ LOu(z,, )d
0

where E* denotes expectation w.r.t. Pz and
Fy = 7y(@) = inf{t > 0;z,(®) ¢ U}

is the first exit time from U for z;. By the Cameron-Martin-Girsanov formula this can be expressed in terms
of the probability law PZ of b; as follows:

(3.13) E¥fu(br, 6(r,6)] = u(z,§) + 571 | LOulbu, O£, O,
0
where
(3.14) £(t,2) = exply / Vr(ba, )b, — / (V7)*(bs, 2)ds},
0 0

E* denotes expectation w.r.t. P~ and
7, = (@) = inf{t > 0;b,(&) ¢ U}
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Letting U T D we get from (3.13), (3.9) and (3.8)

(s15) a9 = B[ P Ot
0
By Ito’s formula we have
t i
(3.16) 1008 =100.6)+ [ 91060 OB+ [ B 6)ds
0 0
or
1 f 1 1 1 f

(317) 3 [ I br b = 57000 ) = 500, ©) — 7 [ 1870, )l

0 0

Substituting (3.17) and (3.10) in (3.15) we get
319 u(z6) = Sew(—2rw ) B[ 100 ow{-570u0) - 7 [15(T0760 &)+ Br(bn s}
0 0

for all £ € RYY.
Since v(z,£) = Y.(¢z, ex)ék; & € R has an obvious analytic extension to z; € C given by v(z,2) =
k

$(@z, ex)z and similarly with
k
VA(z,2) = Z V(9z(+), ex)zk, Ay(z,2) = Z Az(6:(), ex) 2k,
k k

we see that £ — u(z, £); £ € R} given by (3.18) has an analytic extension given by

1 1 - r 1 1 f 1
(3.19) w(z,2) = 5 exp(=57(z,2)) - 7 0/ f(be) -exp{—57(bs;2) — ¢ 0/ [5(7)*(s:2)

+ Ary(bs, 2)|ds}dt]

provided the expression converges. If z € By(6) then

(e, 2)I* = |Z(¢5z(-), e) el < [ (6=0), €] D ol
k k k

<lIl?- " |22 P(2N) < 82||¢|° for all ¢ >0,
a

and similarly with |Vy(z, 2)| and |Ay(z, 2)|.
This gives

(wla, 2l < Crexp(lel) - £71[ (el + TG ITEOIP + 1S ODe}
0

where C] is a constant. Since D is bounded there exists p > 0 such that
E*[exp(pr)] < 0.
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Therefore, if we choose § > 0 such that

%(%uwz(-)u? + 6186 0) <

we obtain that w(z, z) is bounded for z € B,(9).
Therefore w(z,-) € Ay(Bg(6)).

It remains to verify that w(-, z) satisfies the equations (3.7), (3.8). From (3.18) we know that this is the
case when z = £ € RN. Moreover, the solution u(z,§) is real analytic in a neighbourhood of £ = 0, so we

can write
u(z,€) = ) cal®)6”
a
Similarly we may write F(z,z) = ) aa (a:)z° and we have

Vy(z,2) = Z V(¢z, €x)2k.
k

Substituted in (3.9) this gives

(3:20) 3 3B + Y Vb er) - Vepla) €01 = 3 aa()e”.
o Bk o
ie.
(3.21) Z[%Ac.,(z) + Y V() Ves@)e? = 3 aala) - €
a p,lia a

Since this holds for all £ small enough, we conclude that

(322 8@ + Y V(s er) Vep(a) = aa(2)
Bk

Bteg=a

for all multi-indices a. But then (3.21), and hence (3.20), also hold when £ is replaced by small enough
z € CN. In other words, the analytic extension w(z, z) of u(z,£) does indeed solve (3.9).

The proof that w(z, z) satisfies (3.8) follows standard arguments from stochastic potential theory and
is omitted. (See e.g. [@, Th. 9.16]).

Finally, to complete the proof of Theorem 3.1 we note that formula (3.3) follows directly from formula
(3.19) by means of Lemma 2.6 and the fact that

H(ExpX) = exp(HX) for all X € (S)7".

THE 1-DIMENSIONAL CASE
When d =1 it is possible to solve equations (3.1), (3.2) directly, using Wick calculus:

THEOREM 3.2 La a,b € R,a < b and assume that f € L'[a,}] is a deterministic function. Then for all
$ € S the unique solution p(z,-) € (S)~! of the 1-dimensional pressure equation

(3.23) (Exp Wy, (-) o p'(z,7)) = —f(z) ; z€(ab)

(3.24) _ p(a, ) = p(b,-) =0
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is given by

z z t
(3.25) ple) = Ao [ Bxp(-Wa()ikt— [([ 1(a)s)Bxp(-Wa ()t
where
b b t
(3.26) A= Aw) = [ Exp(-Wa ) [ [ 1ds)Exp(-Wa, )t € (5

Proof. Integrating (3.23) we get

Exp Wy, () op/(z,) = A— j f)ydt ; z € (a,b),
where A = A(w) does not depend on z. Since Exp(—X)oExp(X)=1forall X € (S)™! we can write this as
(3:27) P(z,) = Ao Exp(~Wp, () - j £(5)ds - Exp(~W, ().

Using the condition p(a, -) = 0 we deduce from (3.27) that

(3.28) pa) = Ao [Bxp(-Wa (Nt = [ ([ s rp(—Wa ().
It remains to determine A. The condition p(b,-) = 0 leads to
b b t
(3:29) Ao [Exp(-Wa (it = [ ([ fede)Brp(-Wa, ()
Put
b
(3.30) Y= / Exp(~Wi,())de.

We have Y € (S)~! and E[Y] = b — a # 0. Therefore Y°(-1) € (S)! exists by Example 2.9 e). So

bt

A=YoDo / ( / £(s)ds)Exp(~ Wi (-))dt € (8)™

a

and with this choice of A in (3.28) we see that p(z, -) given by (3.28) solves (3.23), (3.24).

CONCLUDING REMARKS.

We emphasize that although the solution p(z,-) lies in the abstract space (S )! of generalized white
noise distributions, it does have a physical interpretation. For example, as explained in the end of §2 we can
associate to p(z, -) a generalized expected value E[p(z,-)] defined by

E[P(-’B, )] =< p(I, ')’ 1>= ﬁ(zv 0)
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Putting z = 0 in (3.7) we sce that the (generalized) expected value p(z) := E[p(z, -)] satisfies the equation
Ap(z) =—f(z) ;z€D,
i.e. the equation obtained by replacing the stochastic permeability K (z,w) = Exp W, (w) by its average
K(z) := E[K(z,")] =1,
which corresponds to a completely homogeneous medium.

We may regard p(x) = E[p(z,-)] as the best w-constant approximation to p(z,w). This w-constant
coincides with the 0-order term co(z) of the generalized Wiener-Ito expansion for p(z,w),

(3.31) p(z,w) =) _ ca(@)Ha(w)

Having found p(z) = co(z), we may proceed to find the best Gaussian approximation p (z,w) to p(z,w).
This coincides with the sum of the first order terms:

(3'32) pi(z, w) = Z ca(z)H&(w) = Co(z) + Z Ce; (:B) <w,e >
lal<| j=1

From (3.22) we can find ¢ (z) when co(z) is known:

(3:34) 1 B (&) + V(8a,69) - Vo(o) = ~(2) - (1))

which gives

(3.35) oo () = B[ {1(@) - (b 05) + V(s 5) - Vool ]
0

Similarly one can proceed by induction to find higher order approximations of p(z,w).
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