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Abstract

We present a mathematical model for a Black-Scholes market driven
by fractional Brownian motion By (t) with Hurst parameter H €
(%, 1). The interpretation of the integrals with respect to By (t) is
in the sense of It6 (Skorohod-Wick), not pathwise (which are known
to lead to arbitrage).

We find explicitly the optimal consumption rate and the optimal
portfolio in such a market for an agent with utility functions of power
type. When H — %—F the results converge to the corresponding
(known) results for standard Brownian motion.

1 Introduction

Let H € (0,1) be a fixed constant. The fractional Brownian motion with
Hurst parameter H is the Gaussian process Bg(t) = By (t,w); t > 0, w €
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with mean E[Bg (t)] = 0 for all ¢ > 0 and covariance
1
E[By (t)Bu(s)] = i(tzH + 82—t —s|*); 5,6 >0 (1.1)

where E = E,,,, denotes the expectation with respect to the law ppy for By (-).
We assume that uy is defined on the o-algebra FH) of subsets of Q) generated
by the random variables {Bg(t, ) }1>0. We also assume that By (0) = 0.

If H = ; then By(t) coincides with the standard Brownian motion B(%),
which has independent increments. If A > % then By (t) has a long memory
or strong aftereffect, in the sense that the covariance function pg(n) satisfies

pa(n) =E[By(1) (Bg(n+1) — Bg(n))] = % {(n + 127 — o 4 (n — 1)2H} >0
(1.2)

[e0]
for all n > 1 and ZpH(n) = 0.
n=1
On the other hand, if 0 < I < %, then pg(n) < 0 and Bg(t) is anti-
persistent: positive values of an increment is usually followed by negative
ones and conversely.

Yo

The strong aftereffect is often observed in the logarithmic returns log 7
for financial quantities Y, while the anti-persistence appears in turbulence
and in the behavior of volatilities in finance. We refer to [19, 20, 26] for more
information.

For all H € (0,1) the process By(t) is self-similar, in the sense that
Bpg(at) has the same law as of By (t), for all a > 0.

These properties make By (t) an interesting tool for many applications. In
this paper we will concentrate on applications to finance and we will assume
that

1
5 < H <1 (1.3)

We consider the classical Merton problem of finding the optimal consump-
tion rate and the optimal portfolio in a Black-Scholes market, but now driven
by fractional Brownian motion By (t) rather than classical Brownian motion
B(t) (see Section 2 and problem (3.2)). We solve this problem explicitly in
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Section 3 (see Theorem 3.1 and Theorem 3.2). Our solution is obtained by
proving that the martingale method for classical Brownian motion (see e.g.
Chapter 3 in [14]) can be adapted to work for fractional Brownian motion as
well.

We now describe our approach in detail:

For H # % the process By (t) is not a semi-martingale, so we cannot use
the well-developed theory of stochastic analysis of semimartingales to define
stochastic integration with respect to Bg(t). However, for H > % the paths
of By(t) are smoother than the paths of classical Brownian motion B(t)
and a direct pathwise integration theory can be developed. To illustrate this
pathwise (or w-wise) definition we note that if

Zfz W)Xti 0y (1) With 0 <ty <ty <+ <y (1.4)

is a step function, with f;(-) bounded and measurable with respect to the
o-algebra J:t(iH) generated by {By(s); s < t;}, then the pathwise integral of
f with respect to By (t) is defined by

/ftdeH Zfz - (By(tiy1) — Bu(t)). (1.5)

(see e.g. [2], [17].)
However, it was discovered [24] that if we use this integration theory in
finance, the corresponding markets may have arbitrage opportunities (see
also [4] and [25]). e

A different integration theory with respect to By (t) was developed in [3]
and extended to a white noise setting in [11]. When applied to the integrand
f(t,w) in (1.4) this integral, denoted by [, f(t,w)dBg(t), is defined by

N

/1; F(t0)dBa(t) = Y () o (Baltinr) - But))w)  (L6)

i=1
where o denotes the Wick product (see below). This integral is then extended
to the class L1*(R) of all (¢, w)-measurable processes f(t) = f(t,w) satisfying

the condition
2
1122y = E / F(s)f(@)o(s, t)dsdt + (/ Df f(s ) } <oo. (1.7)




Here
(s, t) = H(2H — 1)|s — t|2H*2 (1.8)
and

DYF = / (s, ) D,Fdt, (1.9)
R

D, F being the (fractional) Malliavin derivative at ¢ (see Def. 3.1 in [3], Def.
4.1 and (3.42) in [11}).

Note that if f(t) is deterministic then
ey = | MO0l Odsde = 11

The following isometry may be regarded as a fractional version of the
classical It6 isometry:

EﬂH [(/Rf(t,W)dBH(t)> :l - ”fllflé,’Q(R) : f c ‘Cglp’Q(R) (110)

(see Theorem 3.7 in [3]).

Note that the only difference between (1.5) and (1.6) is that the ordinary,
w-wise product in (1.5) is replaced by the (generally non-local) Wick product
o in (1.6). In the standard case H = % these two definitions give the same
result, because of the strong independence of f;(:) and B(t;+1) — B(t;) (see
e.g. [8], p. 100). Thus

/R F(t,w)3Bu(t) = /R (1, )dBa() for H = (1.11)

and from this point of view the definition based on (1.6) is just as natural
as an extension of the It6 integral to H > 1 as (1.5). Moreover, (1.6) has
some tractable It6-integral-like features which (1.5) misses. Therefore we call
Jg fdBy the fractional Ité integral and refer to [, f0Bg(t) as the fractional
pathwise integral.

Here are some examples of properties of the fractional It6 integral:




a) Zero mean
E,., [/Rf(t,w)dBH(t)} =0; feLP(R). (1.12)

b) Chaos expansion (Theorem 6.7 in [3]).
Let F' € L*(uy) be .F}H)—measurable for some 1" € (0,00]. Then there
exist f, € ﬁfo([O,T]”) :n=0,1,2,... such that

Flw)= Z/ fadB$" (convergence in L*(uy)) (1.13)
n=0 [OIT]H
where
/ [ndBE" = n!/ fu(s1, .., 8,)dBg(sy) - dBg(s,) (1.14)
[0,7]" 0<s1< < <T
is the iterated It6 fractional integral. Here ﬁi( [0,7") is the set of symmetric
functions f(z1,...,2,) on [0,7]" such that
190 oy = | Flun, ) Flon )i )
Lo 0,77 x [0, 7] (1.15)

o (U, U )dug - dugduy - du, < 00,

If f € L2([0,T]") and g € L2([0,T)™), we define the Wick product o of
their iterated fractional It6 integrals as follows

< / de;?;n) o < / de§m> = / (f&g)dBE™™  (1.16)
[0, T} [0,T])m [0,T"x[0, 7)™

where f®g is the symmetric tensor product of f and g. This definition is
then extended by linearity to sums of such integrals and then to the space
(8)y D L*(ug) of fractional Hida distributions (Definition 3.7 in [11]). The
Wick product o : (8)% x (8)5 — (8)% is a commutative and associative
binary operation, distributive over addition. In particular, if X € (S)3 we
can define the n-th Wick power

X":=XoXo - 0X (n factors)




and
=1
exp®(X) == Z HXOTL’
n=0
provided the sum converges in (S)}.

As an example we note that if f € L*(R) is deterministic then

e ([ 10aBu) =exo ([ r0amu - 5I2). @10

See [11], example 3.10.

We remark that this fractional It6 integral may be regarded as a Skorohod
integral with respect to the Gaussian process By (t), in the sense of Skorohod
[27].

¢) Quasi-conditional expectation and quasi-martingales We say that
a formal expansion F' of the form

F@ =Y [ hdBEs fue (0TP) (115)
n=0 [O,T}”
belongs to the space G*(juy) if there exists ¢ € N such that
I'Fné—q = Zn!an”%s%([QT}n)e—Qqn < 0. (119)
n=0

With this definition we have
L*(prr) € G" (1) € (S)i-

If FF € G*(up) has the expansion (1.18) we define its quasi-conditional
expectation by

By [FIFD] =30 [ paang (1.20)
n=0 [O’t]n .
It can be proved that
E,. [F | ]:t(H)} = Fas. & Fis F{' measurable (1.21)




but in general E,,, {F | ft(H)J # E,, [F | }"t(H)} (see section 4 in [11]) and
the references therein.

We say that a (£, w)-measurable ffH)—‘adapted process M(t) = M(t,w); t >
0 is a quasi-martingale if M(t) € G*(ug) for all t and

B, [M(@) | FS(H)J = M(s) for all t > s. (1.22)

Using the definition of the fractional It6 integral one can now prove (we omit
the proof)

Lemma 1.1 Let f € L;*(R). Then

t
M(t) ::/ f(s,w)dBy(s); t>0
0
18 a quasi-martingale. In particular,
E,, [M(t)] =E,,[M(0)] =0 for all t > 0.

This result enables us to carry over to H > % many of the useful mar-
tingale methods valid for H = %, if we replace conditional expectation by
quasi-conditional expectation.

Example 1.2 Let f € L,*(R) be deterministic. Then

E(t) = exp® (/Ot f(s)dBH(S)> = exp </Otf<5)dBH(S) — %'f(t)'i>

is a quasi-martingale, where f®(s) = f(s) - xp4(s). In particular,
Elpg (E(t)] =1 for all t.

Proor. By Example 3.14 in [11] we have
dE(t) = f()E(t)dBu(t).

Since £(0) = 1 the statements follow from Lemma 1.1, O




d) A fractional Girsanov theorem. We also recall the following result,
which is Theorem 3.18 in [11]:

Theorem 1.3 [11]
Let T > 0 and let w: [0,7] — R be continuous. Suppose K : [0,7] — R
satisfies the equation

/T K(s)o(s,)ds = u(t) ; 0 <t <T (123)

and extend K to R by putting K(s) = 0 outside [0,T]. Define the probability

measure [y on }}(FH) by
djisy () = exp {— /OT K(s)dB (s) — %]K@} i (). (1.24)
Then
By(t) = /Otu(s)ds+BH(t) (1.25)

s @ fractional Brownian motion with respect to [ip.

e) A fractional Clark-Haussmann-Ocone (CHO) theorem Finally
we review a fractional version of the Clark-Haussmann-Ocone (CHO) repre-
sentation theorem obtained in Theorem 4.5 in [11]. See also Theorem 3.11
in [1].

Theorem 1.4 [11]
Let G(w) € L*(ug) be FS -measurable. Define

b(t,w) = B, [D,G | FH). (1.26)
Then
W€ LA(R) (1.27)
and |
G(w) = E,,[G] + /0 W(t,w)dBy(t). (1.28)

Here DG = %C(t,w) is the stochastic gradient (Malliavin derivative) of
G at t, which exists for a.a. t € [0,T] as an element of G*(jy). We refer to
Section 4 in [11], for details.




2 The fractional Black and Scholes market

Suppose we have the following two investment possibilities:

1. A bank account or a bond, where the price A(¢) at time ¢ > 0 is given
by

dA(t) = rA(t)dt ; A0) =1 (i.e., A(t) =€) (2.1)
where r > 0 is a constant ; 0 < ¢ < T (constant).
2. A stock, where the price S(¢) at time ¢t > 0 is given by
dS(t) = aS(t)dt + oS(t)dBg(t) ; S(0) =s>0 (2.2)
where a > r > 0 and o # 0 are constants, 0 <t < 7T.

Here the differential dBg(t) is the Ito type fractional Brownian motion
differential used in [11].

Suppose an investor chooses a portfolio 0(t) = («(t), B(t)) giving the
number of units «(t), 5(¢) held at time ¢ of bonds and stocks, respectively.
We assume that a(t), 8(t) are F\)-adapted processes, where FI s the
o-algebra generated by {Bp(s)}o<s<t, and that (t,w) — «oft,w), B(t,w) are
measurable with respect to B[0, T]x FH), where B[0, T is the Borel o-algebra
on [0,7] and FH) is the o-algebra generated by {B(s)}s>o-

Suppose the investor is also free to choose a (t,w)-measurable, adapted

consumption process c(t,w) > 0. The wealth process Z(t) = Z%%(t) associated
to a given assumption rate ¢ and portfolio § = (¢, 8) is defined by

Z(t) = a(t)A(t) + B(t)S(1). (2.3)
We say that 0 is self-financing with respect to ¢ if
dZ(t) = a(t)dA(t) + B(t)dS(t) — c(t)dt. O (24)
From (2.3) we get
a(t) = AT (OZ(t) - BH)S(1)] (2.5)

which substituted into (2.4) gives, using (2.1),
dZ(t) = rZ(t)dt + (a — r)B(t)S(t)dt + o(t)S(t)dBu(t) — c(t)dt  (2.6)




or

de ™ Z(t)) + e "e(t)dt = oe " B(t)S(1) [a (t)] : (2.7)

Define the measure iy on féH) by
diiy ’ Lo !
——~ = exp <~/ K(s)dBg(s) — —|K|<p> ;= exp® <~/ K(s)dBH(s)> =:n(T)
dpm 0 2 0

(2.8)
where ¢ is defined by (1.8),

(a = 1)(Ts = %) "xp0m(s)
2011 - T(2H) -T2 — 2H) cos(n(H — 1))’

K2 = //K (s, t)dsdt,

where I' is the gamma function.
Then by the fractional Girsanov formula (Theorem 1.2), the process

K(s) =

and

Bu(t) =2 - Lt By(y) (2.10)

is a fractional Brownian motion (with Hurst parameter H) with respect to
L. In terms of By(t), we can write (2.7) as follows

¢ t
eI + / e~ e(w)du = Z(0) + / e B(u)S(w)dBu(u).  (2.11)
0 0
If Z(0) = z > 0, we write Z%%(¢) for the corresponding wealth process Z(t)
given by (2.11).

We say that (c, 8) is admissible with respect to z and write (c,8) € A(z) if
= 0(t) = (a(t), B(t)) with «(t) satisfying (2.5) and S(t) = B(t,w) satisfying
the condition

B()S() € LAR) (2.12)
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and in addition 6 is self-financing with respect to ¢ and Z¢%(T) > 0 a.s.
Note that it follows from (2.12) and Lemma 1.1 that

M(t) = /t ol B(w)S(u)dBy(u); 0<t < T
0

is a quasi-martingale with respect to jig.
In particular, Eg, [M(T")] = 0. Therefore, from (2.11) we get the budget
constraint

E, {e—v‘Tz;ﬂ(T) + /O Te_”‘c(u)du} =2, (2.13)

valid for all (¢, 8) € A(z).
Conversely, suppose ¢(u) > 0 is a given consumption rate and F(w) is a
given }"}H)—measurable random variable such that E;, [G?] < oo, where

G(w) = e F(w) —}—/0 e "e(u, w)du. (2.14)

Then by the fractional CHO theorem (Theorem 1.3) applied to (Bg(-), fig)
we get

6) = B30+ [ bit, B (2.15)
where
W(t,w) = By, [D,G | FM) (2.16)
satisfies
P(-) € LPR). (2.17)

Therefore, if E;, [G] = z and we define
B(t) == oe ST (t)(t) (2.18)

then fB(t) satisfies (2.12) and with 6 = («, ) with o as in (2.5) we have by
comparing (2.11) and (2.15)

Z9T) = F as. (2.19)

We have proved
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Lemma 2.1 Let c¢(t) > 0 be a given consumption rate and let F' be a given
f}H)-measumble random variable such that the random variable

, T
G(w) == e "TF(w) + / e "e(u,w)du (2.20)
0
satisfies
Esp, [G?] < o0. (2.21)
Then the following, (2.22) and (2.23), are equivalent:

There exists a portfolio 0 such that (c,0) € A(x) and Z°°(T) = F a.s.
(2.22)

3 Optimal consumption and portfolio

Let Dy > 0,D5 > 0,7 > 0 and v € (—o00,1)\{0} be given constants. Con-
sider the following quantity

D Dy
sy =k, [ [ Dowas Zavay] e
o 7 v
where (c,0) € A(z) and we interpret Z7 as —oco if Z < 0. We may re-

gard J9%(z) as the total expected utility obtained from the consumption

rate ¢(t) > 0 and the terminal wealth Z%(T"). We now seek V(z) and
(c*,0%) € A(z) such that
V(z) = sup JOO(2)=J"(2): 2 > 0. (3.2)
(c,0)eA(z)

By Lemma 2.1 we see that this problem is equivalent to the constrained
optimization problem

D D
V(z) = sup {]EM [/ L (b)dt + —QF'Y} ; given that
¢, F>0 o 7 7

T
Ez, [/ e "e(u)du + e“"TF} = z} ,
0

12

(3.3)




where the supremum is taken over all consumption rates c¢(t,w) > 0 and
f}H)—measurable F({w) > 0 such that

T
/ e e(u)du+ eI € L (). (3.4)
0

Consider for each A > 0 the following related unconstrained optimization
problem (with E =E,, )

Vi(z) = sup {]E [/0 21-07( t)dt + PEFW} — B, VOT “rhe(t)dt + "’TF]}

c¢,F>0 Y Y
(3.5)

Suppose that for each A > 0 we can find V(z) and corresponding c, (¢, w) >
0, F\ > 0. Moreover, suppose that there exists A* > 0 such that cy«, F)« sat-
isfies the constraint in (3.3):

T
E;, [/ e Moy (u)du + e“TTF)\*J =z (3.6)
0

Then, cy«, F» actually solves the constrained problem (3.3), because if ¢ >
0, F' > 0 is another pair satisfying the constraint then

™D D
E [ LoV (t)dt + ——EFV}
0

Y v
[ [T D D r :
= / L (t)dt + —QFW] — N'Eg, {/ e "e(u)du + et F] + Az
Y 0
D D, T :
< lE —lc:y\ )dt + —FVJ - XNEpy, [/ e ey (u)du + eﬂTF)\*J + Az
Y 0
D
~F / =1 ()dt+—2F1].
LJo 7 Y

Finally, to solve the original problem (3.1) we use Lemma 2.1 to find 6*
such that (cy«, 0%) € A(z) and

7 (T) = Fy as..
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Then c¢y-, 0* are optimal for (3.1) and

V(z)=Va(2) = F [/0 %c}*( )dt+€ (Zo0 (1) } : (3.7)

In view of the above we now proceed to solve the unconstrained optimiza-
tion problem (3.5). Note that with

n(t —exp< / K(3)dBr(s ) (3.8)

as in (2.8), we can write

Vi(z) = sup E { /0 <P—1c7( ) - A?](T)e””c(t)> di+ %F” _ /\n(T)e‘TTF}

e, F>0 Y

- s E| / (e = e e )+ 2257 = x|

¢,F>0 Y Y
(3.9)

where
p(t) =E [n(1) | 7] .
In the above formula we have used that

E[n(1)e(t)] = EE[(T)c(t) | FV)) = Ele()ERT) | 7]
= Elc(t)p(t)] .

The problem (3.9) can be solved by simply maximizing pointwise (for
each t,w) the two functions

D
g(c) = ;307 — Ap(t,w)e e ¢ >0 (3.10)
D2 —rT
hMEYy=—F"—M(T,w)e ™ F; F>0 (3.11)
v

for each t € [0,7] and w € Q.
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We have ¢'(c) = 0 for

1 . 1
¢ = cx(t,w) = e p(t, w)] 7 (3.12)
Dy :

and by concavity this is the maximum point of g.
Similarly

1 } 1

F = F\(w) = N [Ae™" (T, w)] 7 (3.13)
2

is the maximum point of A.

We now seek A\* such that (3.6) holds, i.e.

B| [ e ol 5 Deol0] T di @) e (T | = 5

(3.14)
or X
AT=TN = 2,
where
E 1 g 1
N=E / —eT=7 p(t)1dt + —eT=v (1)1 | > 0. (3.15)
o Dh D,
Hence
z\771
= () 3.16
: (3.10)
Substituted into (3.12), (3.13) this gives
O (1) = e p(t,0) 7T (3.17)
and
Fy(w) = DQNeﬁTn(T,w)vlTl. (3.18)

This is the optimal ¢, F' for the constrained problem (3.3) and we conclude
that the solution of the original problem is

D D
‘/(Z) = V:\* (Z) =K |:/ ~’—ch}\* (t)dt + ‘:)/-Q'F;/* . (319)
0

15




To find V(z) we need to compute E [p(t)?%f] For ¢t = T, this was done in
((2.19)-(2.27) in [12]).
Define K = K - xj04. From (3.6) and (3.8) of [10], we obtain

p(t) = E [n(T) | ft(m]
= exp {/OtC(S)dBH(S) - %Kli} ;

where ( is determined by the following equation

(QA)'(H—I/Q)QQS) — ”(MA)—(H—1/Q)K(T)(S) 0<s<t

C(s)=0 s<0 or s>t (3.20)

By (6.2) of [10], we have

1 [t d [*
(o) = _KHSI/QAHCZL/ dww ™ (w — S)WﬂH—/O dz2 P2 (w — )V g(2),

s dw
(3.21)
where g(z) = —(—A)"H-V2KT)(3) and
P 2MHI=2, /7' (~1/2)
T D1 = H)%(3/2 — H) cos(n(H — 1/2))
Hence
e 04 ¢ ’)/
]Eptl—'Y:IEe_m/CSdB 5) — (|2
292~y
= e (3.22)
In the special case t = T we see that ( = K1) = K . X[o,r], Where
T a—r
/ K(s)p(s, t)ds = for 0 <t <T. (3.23)
0
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Thus

T
T |2 g _a—r
IKD?2 = K2 = - /O K(t)dt

2 T
_ (a=1) / (Tt — #) s
20°H -T(2H) - T'(2 — 2H) cos(m(H — 1)) Jo
— ((L —ZT)QAH . TQ—QH’
o
(3.24)
where
G - H
Ay = (3 ) . (3.25)
20 -(2—-2H)-T(2H) -T'(2 — 2H) cos(m(H — 3))
Substituting (3.22) and (3.24) into (3.15), we get
1 /T < ry 29* —y 2>
N=— exp t+ hlo ) dt
Dl 0 1- v 2(1 - ’Y)QI |<,0 (326)
1 ™ v(a—7)*An, o on
—— ex T T
", P (1 T g, e
and (3.19) gives
g T - 92 _
Viz) = = {Di*w—v/ exp ( At i [h[i) dt

e Ty Y(a—71)?Am, 9 on
DYy "N ex T T .
T op (1—7 T

We have proved :

Theorem 3.1 The walue function V(z) of the optimal consumption and
portfolio problem (3.1) is given by (3.26)-(3.27). The corresponding optimal
consumption cy- 1s gien by (3.17) and the corresponding optimal terminal

wealth Z2™ = Fy. is given by (3.18).

Remark. It is an interesting question how the value function V(z) =
VU (z) of problem (3.1) depends on the Hurst parameter H € (1,1). We
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will not pursue this question here, but simply note that since Ay, = 1 we
have

lim V@ (z) = vE)(2) (3.28)

Ho it

where V(3)(2) is the (well known) value function in the standard Brownian
motion case.

It remains to find the optimal portfolio 6* = (a*, §*) for problem (3.1).
For this we use the fractional CHO theorem (Theorem 1.4) with

7
G(w) =e " F)(w) +/ e ey (u, w)du
0

as in (2.14). Then by (2.18)
B (t) = o€ ST W)E,, [D:G | FI). (3.29)

To compute this we first note that by (3.8), (1.17) and (2.10) we have

p(1) 7T = exp {1—11_—7/0 K(5)aBu(s) + 55 1_ . 'K(t)lfo}

= e { o [ K@) - S [ K+ k0

S B S L SRS ST I RN ST T
Pl | KBa6) — gt OB+ O
_a—r [ $Vds 1 02
0(1—7)/0 Kls)d +2(1~7)|K ""}
—ew* {1 [ K@)Bato) ) R0
(3.30)
where
R(t):exp{ﬁlf((t)\i-ﬁ/o K(s)ds}. (3.31)
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Hence, by (3.18)

E., [iﬁt(e—“Tﬁx*)|.f§H’]

2 ; ~ 1
-D Ne mel_”EuH [Dt <77(T)7‘1> ‘Ft(H)}
2
z T\ ~ K(t) 1
= E; —p(T)=
D,N P <1“’Y> e [1—7 1)
z ryT \ K(t) ~ l
= —=R(TE;
z ryT Y\ K(t) O{
= —=R(T) ex
D2Ne\p<1—7>1—7 () exp
z ryT K(t) {
~ , R(T) - e
DzNe}\p <1"’Y> ) 1 -y o
¢
_ 2K (1) exp{ ryT N 1 i
DoN(1 =) L=y 1=7J
2 — 1
) Gl a— (A
Faa e T T
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Similarly, by (3.17) and (3.32),
Ei, {ﬁt (/T e~Tic,. (’U)du> \ft(H)}
0 , :
- D%N@% { /OF B, (€77 pu)77) du | th)J
B DlzN /OT exp <17qu7> Eg, | Do (p(w)7) | A du

2—x 2 1 2
e |
+2(1_7)2]h{¢ 1_7| I(p} du

zh(t) { 1 /t 1
= —— 2 _expl—— | K(s)dBy(s) — ——|KY?
NG =) S\ T ), (s)dBp(s) 1~—7' |
r YU 2 -7 a—r unt
: exp -+ K32 / K(s ds} du.
/0 {1-7 2(1~7)Zf o o(l—-7) J, (5)

(3.33)
Adding (3.32) and (3.33) and using (3.29) we get

Theorem 3.2 The optimal portfolio 0*(t) = (a*(t), f*(t)) for problem (3.1)
18 given by
B (t) = ae" STHt) (Y1 + Vo),
where B N
Vi =By, [Di (e | A7)

is gwen by (3.32) and

" N T
Y, = By, [Dt ( / e""”c»(u)du> ift“”}
0

is given by (3.33), and

with
¢ t
e T Zx(t) +/ e ey (u)du = z +/ o e B (u)S (u)dBy (u)
0 0

and cy-(u) given by (3.17).
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