
Coupled Cluster Studies in Computational

Chemistry

by

Ole Tobias B. Norli

THESIS

for the degree of

MASTER OF SCIENCE

(Master i Computational Physics)

Faculty of Mathematics and Natural Sciences

University of Oslo

August 2014

Det matematisk- naturvitenskapelige fakultet

Universitetet i Oslo

Abstract

In this thesis we explore the Coupled Cluster method in Quantum Chemistry.
We have implemented an e�ective Coupled Cluster Singles and Doubles code.
We also explore deviations from the true ground state. For this purpose we
have implemented a Coupled Cluster Singles, Doubles and Triples code. Our
results are in agreement with theory that Coupled Cluster converge to the
ground state when including more excitations and improving the basis set.

Our code performance is approaching the level of the best performing
software available. Further continuations of already implemented optimiza-
tions are proposed to help development of more e�ective Coupled Cluster
code.

ii

Acknowledgement

I would like to acknowledge my supervisor Morten H. Jensen. You are the
best supervisor I could ask for, thank you. Also thank you to Diako Darian.

iii

iv

Contents

1 Introduction 1

2 De�nition of Hamiltonian 5

2.1 Hamiltonian . 5

2.2 The Born-Oppenheimer approximation 5

2.3 Comments on the Wavefunction 6

3 Hartree Fock 9

3.1 Introduction . 9

3.2 Slater Determinant . 10

3.3 The Energy Expression . 11

3.4 The Hartree Fock Equations 13

3.5 Restricted Hartree Fock . 16

3.6 Unrestricted Hartree Fock . 19

4 Gaussian Type Orbitals 21

4.1 Contracted GTOs . 21

4.2 Variational Principle . 24

4.3 EMSL . 25

4.4 Product of Gaussians . 30

4.5 Normalization . 33

4.5.1 l = 0 . 34

4.5.2 l = 1 . 34

4.5.3 l = 2 . 34

4.5.4 l = 3 . 35

4.5.5 Final normalization comments 36

4.6 Calculating Integrals for Hartree Fock 36

4.6.1 Overlap . 37

4.6.2 Kinetic Energy . 37

4.6.3 Nuclei-Electron interaction 38

4.6.4 Electron-Electron interaction 42

4.6.5 Calculating Rtuv . 43

4.7 Choosing Basis Set . 44

v

4.7.1 STO-nG . 44

4.7.2 Double Zeta Basis Sets 45

4.7.3 Tripple Zeta Basis Sets 45

4.7.4 Polarized Basis Set . 46

4.7.5 Di�use Basis Set . 46

4.7.6 Reasons for Larger Basis Set 47

4.8 HF Limitations . 48

4.9 DIIS . 49

4.10 Four Index Integral, from AO to MO 51

5 Coupled Cluster Singles and Doubles 53

5.1 Creation and Annihilation operators 53

5.2 CCSD Wavefunction . 54

5.3 Derivation of Equations . 55

5.3.1 Baker-Campbell-Hausdor� formula 56

5.3.2 Normal Order and Contractions 56

5.3.3 Wick's Theorem . 57

5.3.4 Fermi Vacuum and Particle Holes 59

5.3.5 Normal Ordered H . 60

5.3.6 CCSD Hamiltonian . 62

5.3.7 CCSD Energy . 64

5.3.8 tai amplitudes . 68

5.3.9 tabij amplitudes . 70

5.4 Introducing denominators . 73

5.4.1 tai . 74

5.4.2 tabij . 74

5.4.3 Initial guess . 75

5.5 Variational Principle . 75

6 CCSD Factorization 77

6.1 Constructing an algorithm . 78

6.1.1 Inserting denominators 78

6.1.2 [W1] . 79

6.1.3 [W2] . 80

6.1.4 [W3] . 80

6.1.5 [F1] . 82

6.1.6 [F2] . 83

6.1.7 [F3] . 84

6.1.8 [W4] . 85

6.1.9 Inserting intermediates 85

6.1.10 Inserting into tai . 86

6.2 SSLRS . 87

6.2.1 Description of algorithm 87

6.2.2 Scaling . 89

vi

6.3 TCE . 90

7 Comments Prior to Implementation 91

7.1 Armadillo . 91

7.1.1 Armadillo Types . 91

7.1.2 Matrix Operations . 92

7.1.3 Element access . 93

7.2 Parallel Computing and OpenMPI 93

7.2.1 The CPU . 94

7.2.2 The Compiler . 94

7.2.3 Data . 95

7.2.4 Bandwidth . 96

7.2.5 Designing Parallel Algorithms 96

7.2.6 Performance . 96

7.2.7 Overhead . 97

7.2.8 General Parallel Guidelines 98

7.2.9 Optimizing Communication 98

7.2.10 Optimizing Work Distribution 101

7.2.11 Why Parallel . 102

7.3 OpenMP . 103

7.4 External Math Libraries . 103

8 Implementation 105

8.1 Input File . 105

8.2 General Code Overview . 107

8.3 Hartree Fock . 108

8.4 Atomic Orbital to Molecular Orbital 120

8.5 CCSD Serial Implementation 124

8.5.1 Structure . 126

8.5.2 Removing redundant zeroes 126

8.5.3 Pre Iterative Calculations 130

8.5.4 F1, F2 and F3 . 130

8.5.5 W1, W2, W3 and W4 131

8.5.6 New amplitudes . 132

8.5.7 τabij and Energy . 132

8.5.8 Dodging Additional Unnecessary Calculations 132

8.6 CCSD Parallel Implementation 133

8.6.1 Memory Distribution 134

8.6.2 Three Part Parallel . 135

8.6.3 Extra Pre Iterative Procedures 142

vii

9 CCSDT implementation guide 143

9.1 System for Benchmarks . 144

9.2 Theory . 145

9.3 CCSDT-1a . 146

9.4 CCSDT-1b . 147

9.5 CCSDT-2 . 148

9.6 CCSDT-3 . 149

9.7 CCSDT-4 . 150

9.8 Full CCSDT . 151

9.9 Excluded Terms . 152

10 Benchmarks 153

10.1 Small systems . 153

10.2 Hydrogen molecule . 154

10.3 First row Diatomic molecules 156

10.4 C20 Ground State . 157

10.5 Energy as function of number of AOs 160

10.6 Hartree Fock Performance Testing 161

10.6.1 HF performance . 163

10.7 AOtoMO Performance Testing 164

10.8 CCSD Serial Performance . 168

10.9 CCSD Parallel Performance 169

10.10Potential Energy Plots . 174

11 Results 177

11.1 Single Atoms For Future Reference 177

11.2 Methods . 178

11.3 CCSD Performance . 181

12 Conclusion 185

12.1 Performance . 185

12.1.1 HF . 185

12.1.2 AOtoMO . 186

12.1.3 CCSD . 187

12.2 Basis sets and Convergence 188

12.3 CCSDT . 189

13 Future Prospects 191

13.1 Hartree Fock Performance . 191

13.2 CCSD Performance . 192

13.2.1 Work Distribution . 192

13.2.2 Memory Access . 192

13.2.3 All Out Memory Distribution 192

13.2.4 Removing mapping of two electron integrals 196

viii

13.2.5 Removing Four Dimensional Arrays 196
13.2.6 Read From File . 197
13.2.7 Summary . 197

13.3 Further Method Development 198
13.3.1 Natural Orbitals . 198
13.3.2 Frozen Core . 198
13.3.3 Local Coupled Cluster 199
13.3.4 Point Group Symmetry 199
13.3.5 Divide and Conquer 199
13.3.6 Summary . 199

13.4 Other Methods . 200
13.4.1 DFT . 200
13.4.2 Monte Carlo . 200
13.4.3 Perturbation . 200
13.4.4 CCn . 200
13.4.5 Approximate Contributions 200

13.5 Getting Closer to E0 . 201

14 Appendix A 203

14.1 MPI Functions . 203
14.2 MPI Datatypes . 205

ix

Chapter 1

Introduction

Quantum Chemistry is a �eld of research where quantum mechanics is used
to describe the behaviour of atoms and molecules. This can be used to model
for example chemical reactions. A good understanding of chemical reactions
is vitally important in several �elds, from materials science to life science and
medicine, with a huge potential for industrial applications. To develop accu-
rate many-body methods which allow us to reproduce and predict properties
of atoms and molecules is thus extremely important for scienti�c progress in
a wide range of scienti�c �elds, from basic research to industrial applications.

In 2013 Martin Karplus and Michael Levitt were awarded the Nobel Prize
in chemistry for their development of multiscale models for complex chemi-
cal systems. Their work focused on Molecular Dynamics (MD) simulations
of large chemical reactions. An important breakthrough in their work was
combing higher and lower accuracy methods to provide an accurate and com-
putationally e�cient model. The active parts of the molecule were described
with high accuracy, while the inactive parts were described with less accu-
rate methods.

In this thesis we will focus on a high accuracy method in quantum chem-
istry. We will study the Coupled Cluster method. The Coupled Cluster
method is one of the highly successful so-called �rst-principle methods (or ab
initio methods) and was introduced in the late 1950s by Coester and Küm-
mel within the context of nuclear physics. It was introduced in quantum
chemistry in the 1960s by Cizek and Paldus. It is considered to be a highly
accurate many-body method. In the 1980s through 1990s several computa-
tional chemists predicted Coupled Cluster would be the method of choice for
most calculations in quantum chemistry today. However the method applied
in the absolute majority of publications is Density Functional Theory (DFT).

The main reason DFT is so popular is the computational a�ordability.

1

DFT can model much larger systems than Coupled Cluster, and in much
less time. Therefore we will focus much of our attention on implementing an
optimized Coupled Cluster code.

In this thesis we will develop computational chemistry methods based on
quantum mechanics. These are called ab initio quantum chemistry meth-
ods. We will implement Hartree Fock (HF) theory, Coupled Cluster Sin-
gles and Doubles (CCSD) and Coupled Cluster Singles, Doubles and Triples
(CCSDT) from scratch. We will design parallel algorithms for HF and CCSD.
Our algorithms will focus on e�ective memory distribution and high perfor-
mance. Calculations will be performed on the Abel supercomputing cluster
of the University of Oslo. In particular the CCSD implementation will be
greatly optimized. We will also present an extremely optimized algorithm
for transformation of the four index integrals involved in post-HF methods.

We have benchmarked our performance and results against existing soft-
ware. Since our implementation is made from scratch we will also propose
further optimizations in great detail. The proposed optimizations combine
positive features from our implementation and existing software developed
by others. The main purpose will be working towards a more computation-
ally a�ordable CCSD implementation. One that can also run calculations
on larger molecules.

We will not present an optimized CCSDT implementation. CCSDT is
implemented to better study the limitations on accuracy in CCSD. The Cou-
pled Cluster method in theory only contains two errors. These are a limited
basis set and a truncation of excitations included. With CCSDT imple-
mented we will be able to study both these errors.

The thesis is structured for a good presentation of theory, code develop-
ment and results. Chapter 2 describes the basics of the system we will study.
The theoretical derivation of the Hartree Fock method using Gaussian Type
Orbitals is given in chapters 3 and 4.

Chapter 5 contains a derivation of the CCSD method. In Chapter 6 we
provide the factorized and implementation ready CCSD equations.

Chapter 7 contains information about the general programming prin-
ciples we will apply in our implementation. This includes information on
parallel programming and external libraries in use. Chapter 8 discusses our
actual serial and parallel implementation of HF theory and CCSD.

Chapter 9 is an implementation guide to the CCSDT method. We will
not derive the equations for this method. Multiple references are included

2

and the equations are presented in an implementation ready form. Our ac-
tual implementation of CCSDT is plain and simple, as presented in this
chapter.

In chapter 10 we present benchmark calculations to validate our im-
plementation. Chapter 11 presents new results and chapter 12 states our
conclusions. In chapter 13 we propose future prospects.

All code developed is freely available on github. Please see Ref.[92].

3

4

Chapter 2

De�nition of Hamiltonian

In this chapter we present the Hamiltonian, with some basic de�nitions,
for the systems we want to study in this thesis, namely various atoms and
molecules (with an emphasis on molecules) using �rst principle theories. We
are mainly interested in the ground state of atoms and molecules, and we
aim at solving the time-independent Schrödringer equation

H|Ψ〉 = E|Ψ〉, (2.1)

where H is the Hamiltonian of the system, Ψ the given eigenstate function
and E the corresponding eigenenergy or simply energy of the system.

2.1 Hamiltonian

The full Hamiltonian for such atoms and molecules is well de�ned, it reads

H =−
nuc∑
A

1

2mA
∇2
A −

E∑
i

1

2
∇2
i −

nuc∑
A

E∑
i

ZA
|ri −RA|

+
E∑
i>j

1

|ri − rj |
+

nuc∑
A>B

1

|RA −RB|
. (2.2)

The various terms represent the kinetic and potential energy terms for the
electrons and the nucleus (in case of atoms) or nuclei in case of molecules.
Here RA is the position of a given nucleus, ri is the position of electron i,
mA is the mass ratio of a given given nucleus with the electron mass and ZA
is the charge of that speci�c nucleus.

2.2 The Born-Oppenheimer approximation

Throughout this thesis we will employ a Hamiltonian where the Born-Oppenheimer
approximation is used. In this approximation we neglect the nuclear kinetic

5

energy, since the time it takes for a nucleus to move is large compared to
the time it takes for the electrons to obtain their ground state con�guration.
This means we can solve the equations �rst with the nucleus or the nuclei
at �xed positions. When the nucleus (or nuclei in case of molecules) is (are)
at a �xed position the kinetic energy term becomes zero. We neglect also
contributions from nuclear forces since their energy scales are in the giga-
electronvolt domain. We will refer to such a Hamiltonian as the electronic
Hamiltonian, He, and it reads

He = −
E∑
i

1

2
∇2
i −

nuc∑
A

E∑
i

ZA
|ri −RA|

+
E∑
i>j

1

|ri − rj |
+

nuc∑
A>B

1

|RA −RB|
. (2.3)

The term 1
|RA−RB | has no electrons in it, but it is often included in the elec-

tronic Hamiltonian. With nuclei at �xed positions this term reduces to a
constant value. Using the electronic Hamiltonian we can then �nd the po-
tential energy of the nuclei.

In this thesis we will thus only be working with the electronic Hamilto-
nian, and in future chapters we will just call it H.

2.3 Comments on the Wavefunction

In this thesis we will represent the many-particle state function (or just wave-
function, Ψ) by single-particle basis function that solve the Hartree-Fock
equations. These equations will be derived in chapter 3. The Hartree-Fock
method represents an approximation to the solution of the full Schrödinger
equation.

In practical terms, it is an algorithm which allows us to rewrite the above-
mentioned many-particle Schrödinger equation in terms of coupled single-
particle equations. It represents perhaps the simplest approach to the full
many-body problem and provides a so-called self-consistently solved basis of
orthogonal single-particle wavefucntions. We will call these single-particle
states for spin orbitals hereafter. These basis functions are in turn used as
input to so-called post Hartree-Fock methods like coupled-cluster theory.

In the Hartree-Fock approximation we assume that the many-body wave-
function can be written as a function of single electron wavefunctions. Each
electron will occupy its own spin orbital. Since we are aiming at the ground
state, the occupied spin orbitals are the ones with the lowest energy from
the solution of the Hartree-Fock equations.

Figure 2.1 is an illustration of this. The state |Ψ0〉 has six electrons. Two
electrons occupy the lowest orbital in energy, one with spin up and one with

6

Figure 2.1: Illustration of electrons occupying orbitals to construct a wave-
function.

spin down. Two electrons occupy the second lowest orbital in energy, and
the last two electrons occupy the third lowest energy level. This forms then
an ansatz for the ground state. The next wavefunction has a con�guration
where one electron can be excited to a higher energetic orbital. This is la-
beled as |Ψa

i 〉.

We here use a standard quantum chemistry notation, where occupied
spin orbitals are labeled by the letters i, j, k, . . . and unoccupied orbitals are
labeled as a, b, c, The occupied spin orbitals serve to de�ne the ansatz
for the ground state wave function, in our case this will be a so-called Slater
determinant since our particles (the electrons) are fermions and need to obey
the requirement that the total wavefunction is antisymmetric in space. A
generic spin orbital is labeled by the letters p, q, r, Any electron can be
excited to any of the higher orbitals. The state |Ψab

ij 〉 represents two electrons
excited to higher energetic orbitals.

To �nd the true electronic wavefunction we would need a perfect descrip-
tion of the orbitals, and a linear combination of all the di�erent possible
excitations. There is an unlimited number of possible excitations, but some
are more likely than others. In Coupled Cluster theory, to be discussed later,

7

we will include some of these excited states.

8

Chapter 3

Hartree Fock

In this chapter we will discuss the Hartree-Fock (HF) method. We will de-
rive the HF equations. For the most part we will limit ourselves to deal with
a spin restricted HF (RHF) method, with closed shells and a single Slater
determinant, Ref. [90], approximation to the wavefunction. However a spin
unrestricted version has also been implemented and will be discussed brie�y.

Much of the material discussed here is based on a series of summer lec-
tures series from the Sherill Group, see for example Ref. [1], but see also
Ref. [2] for further details. Additional references include the recent Master
of Science theses from the Computational Physics group at the University
of Oslo, see the theses of S. A. Dragly [3], H. M. Eiding [4] and M. H. Mo-
barhan [5]. This chapter is also closely related to the following chapter on an
optimal basis for atoms and molecules, the so-called Gaussian Type Orbitals
(GTO).

3.1 Introduction

Since our main focus is on molecules, in our exposition of the HF method we
will describe how to approximate the Schrödringer equation for an arbitrary
molecule. Our equation in atomic units reads

H|Ψ〉 = E|Ψ|〉, (3.1)

where our electronic Hamiltonian, H, is de�ned

H = −
∑
i

1

2
∇2
i −

∑
iA

ZA
riA

+
∑
i>j

1

rij
+
∑
AB

ZAZB
RAB

. (3.2)

Here ZA is the atomic number of nucleus A (with charge in atomic units)
and riA is the distance from nucleus A to electron i. To simplify notation we
will introduce two new operators, h(i) and v(i, j). These are de�ned by

9

h(i) = −1

2
∇2
i −

∑
A

ZA
riA

, (3.3)

which de�nes the one-body (or single-particle) electron Hamiltonian and

v(i, j) =
1

rij
, (3.4)

which is called the two electron part of our Hamiltonian. The quantity rij
is de�ned as the distance between electron i and electron j. rij = |ri − rj |.
This quantity has the following symmetry rij = rji, and has the constraint
that i 6= j. We also introduce a shorthand notation for the nucleus-nucleus
repulsion, namely,

VNN =
∑
AB

ZAZB
rAB

. (3.5)

This leaves Eq. (3.1) as∑
i

h(i) +
1

2

∑
ij

v(i, j) + VNN

 |Ψ(R)〉 = E|Ψ(R)〉. (3.6)

Here R is a vector of Cartesian coordinates (x, y, z) and spin for the di�erent
electrons. We have also included a factor 1

2 since we removed the constraint
i > j from the sum.

3.2 Slater Determinant

The �rst assumption made in HF theory is that the wavefunction, Ψ(R), can
be written as a single Slater determinant. A Slater determinant is de�ned
as

ΨT (R) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
ψ1(x1) ψ2(x1) ψ3(x1) . . . ψN (x1)
ψ1(x2) ψ2(x2) ψ3(x2) . . . ψN (x2)
ψ1(x3) ψ2(x3) ψ3(x3) . . . ψN (x3)
.

ψ1(xN) ψ2(xN) ψ3(xN) . . . ψN (xN)

∣∣∣∣∣∣∣∣∣∣
. (3.7)

Here N is the number of electron and xi denotes the x, y and z coordinates
for a single electron, i = 1, 2, The subscript T in ΨT indicates that this
is a trial wavefunction, and not the exact one. The factor 1√

N !
is a normal-

ization factor.

An orbital is the wavefunction for a single electron. An atomic orbital is
the wavefunction for a single electron in an atom. A molecular orbital is the

10

wavefunction of a single electron in a molecule.

A spacial orbital is an orbital that describes the position of an electron.
A spin orbital describes the position and the spin of an electron. Each spa-
cial orbital has two spin orbitals, since electrons are fermions with spin up
or spin down. The quantity ψi represents a molecular spin orbital, in case
of molecules.

There are a few properties that make a Slater determinant an attractive
trial wavefunction. First, it is antisymmetric, which means a change in sign
upon interchanging two particles. Second it incorporates the Pauli Exclu-
sion Principle, whose consequence states that two identical fermions cannot
occupy the same state simultaneously.

For our purposes we approximate Ψ with a single Slater determinant. A
single Slater determinant is a so called independent particle approximation.
This will be discussed later in more depth.

Another shorthand notation for ΨT (R) we will use soon is

|ΨT (R)〉 = |ijkl . . . 〉, (3.8)

where index i, j, k, l, . . . refer to a molecular spin orbital.

3.3 The Energy Expression

We will now �nd an expression for the energy with this wavefunction. The
energy can be found by rewriting Eq. (3.1), namely.

EHF = 〈ΨT |H|ΨT 〉

= 〈ΨT |

∑
i

h(i) +
1

2

∑
ij

v(i, j) + VNN

 |ΨT 〉

= 〈ΨT |
∑
i

h(i)|ΨT |〉+
1

2
〈ΨT |

∑
ij

v(i, j)|ΨT 〉+ 〈ΨT |VNN |ΨT 〉. (3.9)

Here we have labeled the energy as EHF in order to stress that it is the
Hartree Fock energy we are aiming at. We also split up the equations into
three parts. The easiest one comes from the nucleus-nucleus repulsion,

〈ΨT |VNN |ΨT 〉 = VNN 〈ΨT |ΨT 〉 =
∑
AB

ZAZB
rAB

. (3.10)

11

This will be a constant number. For the other two terms we use the attributes
of the Slater determinant to simplify. We also insert the alternative notation
noted in Eq. (3.8) and have

〈ΨT |h(i)|ΨT 〉 = 〈ijkl . . . |h(i)|ijkl . . . 〉. (3.11)

The operator h(i) acts only on one orbital at the time, namely orbital i. The
properties of the Slater determinant are such that this simpli�es to

〈ijkl . . . |h(i)|ijkl . . . 〉 = 〈i|h|i〉. (3.12)

The expression for the two-electron operator simpli�es to

〈ijkl . . . |v(i, j)|ijkl . . . 〉 = 〈ij||ij〉. (3.13)

Notice that only two electrons are involved since we only have a two-body
operator at most in our Hamiltonian. Here 〈ij||ij〉 is a shorthand for the
double bar integral, de�ned as

〈ij||ij〉 = 〈ij|ij〉 − 〈ij|ji〉. (3.14)

with xi being the coordinates and spin of electron i. Inserting this into
Eq. (3.9) gives us

EHF = 〈i|h|i〉+
1

2
(〈ij|ij〉 − 〈ij|ji〉) + VNN , (3.15)

with 〈ij|ij〉 being de�ned as

〈ij|ij〉 =

∫
dx1

∫
dx2ψ

∗
i (x1)ψ

∗
j (x2)

1

r12
ψi(x1)ψj(x2). (3.16)

Note that ψ∗i and ψi takes the same electron as input. Another notation
frequently used in quantum chemistry is

〈ij|ij〉 = [ii|jj], (3.17)

or in the case of general spin orbitals p, q, r, s as

〈pq|rs〉 = [pr|qs]. (3.18)

The two-body interaction has several symmetries that we can utilize to im-
prove the performance of our codes. One symmetry is given by the relation

〈pq|rs〉 = 〈qp|sr〉. (3.19)

We will use real orbitals. This provides four more symmetries, namely

〈pq|rs〉 = 〈rq|ps〉 = 〈ps|rq〉 = 〈rs|pq〉. (3.20)

These four symmetries can also be applied to Eq. (3.19) which means we
have in total eight symmetries..

12

3.4 The Hartree Fock Equations

To �nd the lowest possible energy we must �nd the molecular orbitals that
produce this energy. When �nding a minima in such an equation we employ
the method of Lagrangian multipliers. The method is described in detail in
Ref. [56]. Here we will simply present the equations for our system, and give
some brief arguments why these terms are present in the equation

L[{ψi}] = EHF [{ψi}]−
∑
ij

εij (〈i|j〉 − δij) . (3.21)

Here L is a functional of the set of ψi. The aim is to �nd the minimum of
this functional. The set of single-particle orbitals ψi will be varied in order
to �nd this minimum. The condition 〈i|j〉 − δij is a constraint we impose to
ensure the molecular spin orbitals remain orthonormal, even when we vary
them. That is we require

〈i|j〉 = δij . (3.22)

The quantity εij are the undetermined Lagrange multipliers. The variation
in our orbitals can be described as

ψi → ψi + δψi. (3.23)

We want to �nd the minimum of the functional L. This means its derivative
must be equal to zero, that is

δL = δEHF [{ψi}]−
∑
ij

εijδ〈i|j〉 = 0. (3.24)

We then insert Eq. (3.23) into the two terms in this equation, starting with
the �nal term and obtain

δ〈i|j〉 = 〈δi|j〉+ 〈i|δj〉+ 〈δi|δj〉. (3.25)

where δi represent the variation of a single-particle orbital. With

δ〈i|j〉 ≈ 〈δi|j〉+ 〈i|δj〉. (3.26)

we �nd the variation in energy δEHF as

13

δEHF =
∑
i

(〈δi|h|i〉+ 〈i|h|δi〉) +
1

2

∑
ij

(〈δij|ij〉+ 〈iδj|ij〉+ 〈ij|δij〉

+ 〈ij|iδj〉 − 〈δij|ji〉 − 〈iδj|ji〉 − 〈ij|δji〉 − 〈ij|jδi〉)

=
∑
i

(〈δi|h|i〉+ 〈i|h|δi〉)

+
∑
ij

(〈δij|ij〉+ 〈iδj|ij〉 − 〈δij|ji〉 − 〈iδj|ji〉). (3.27)

Here we used the symmetries de�ned in Eq. (3.19). We insert this in Eq.
(3.24) and get

0 =
∑
i

(〈δi|h|i〉+ 〈i|h|δi〉)−
∑
ij

εij(〈δi|j〉) + 〈i|δj〉)

+
∑
ij

(〈δij|ij〉+ 〈iδj|ij〉 − 〈δij|ji〉 − 〈iδj|ji〉). (3.28)

We now examine the term
∑

ij εij〈ψi|δψj〉. We will speci�cally take its com-
plex conjugate twice, resulting in

∑
ij

εij〈i|δj〉 =

∑
ij

ε∗ij (〈i|δj〉)∗
∗ . (3.29)

The complex conjugate of the inner product interchanges the bra and the
ket states. We insert this and then interchange the indeces i and j. We can
make this interchange because we are summing over all possible indices i and
j, resulting in

∑
ij

ε∗ij (〈i|δj〉)∗
∗ =

∑
ij

ε∗ij〈δj|i〉

∗ =

∑
ij

ε∗ji〈δi|j〉

∗ . (3.30)

We will assume εij is part of a hermitian matrix where ε∗ji = εij . We have
then ∑

ij

ε∗ji〈δi|j〉

∗ =

∑
ij

εij〈δi|j〉

∗ . (3.31)

The content inside the parenthesis is the same as the other term involving
εij in Eq. (3.28). We have just shown that the two terms are the complex
conjugate of each other. This will hold true for all terms in Eq. (3.28). One

14

term in the equation is the complex conjugate of another. We will mark
this in our equation as +c.c., where this represents the complex conjugate
of every single term remaining in Eq. (3.28). We have then

0 =
∑
i

〈δi|h|i〉 −
∑
ij

εij〈δi|j〉) +
∑
ij

(〈δij|ij〉 − 〈δij|ji〉) + c.c. (3.32)

This equation can be rewritten using the de�nition of the inner product and
drawing the sum over i and δψ∗i (x1) outside a parenthesis, resulting in

0 =
∑
i

∫
dx1δψ

∗
i (x1)

[
h(x1)ψi(x1) +

∑
j

ψi(x1)

∫
dx2

1

r12
ψ∗j (x2)ψj(x2)

−
∑
j

ψj(x1)

∫
dx2

1

r12
ψ∗j (x2)ψi(x2)−

∑
j

εijψj(x1)
]

+ c.c. (3.33)

We should be able to insert any reasonable set of ψi into this equation and
�nd a minimum of the Lagrangian. This means that the terms inside the
bracket are the ones that should be zero. If the content of the brackets are
zero, then the complex conjugate of this will also be zero. This may not hold
if the content inside the brackets are purely imaginary. However we will not
be dealing with such a situation.

We can thus put the content inside the bracket equal to zero, and set
ψ∗j (x2)ψj(x2) = |ψj(x2)|2, yielding

0 =h(x1)ψi(x1) +
∑
j

ψi(x1)

∫
dx2

1

r12
|ψj(x2)|2

−
∑
j

ψj(x1)

∫
dx2

1

r12
ψ∗j (x2)ψi(x2)−

∑
j

εijψj(x1). (3.34)

We can rewrite the latter as

∑
j

εijψj(x1) =h(x1)ψi(x1) +
∑
j

[∫
dx2

1

r12
|ψj(x2)|2

]
ψi(x1)

−
∑
j

[∫
dx2

1

r12
ψ∗j (x2)ψi(x2)

]
ψj(x1). (3.35)

It is common to de�ne two operators, J and K, to make this equation more
compact. These operators are de�ned as

Jj(x1) ≡
∫
dx2

1

r12
|ψj(x2)|2. (3.36)

15

and

Kj(x1)ψi(x1) ≡
[∫

dx2
1

r12
ψ∗j (x2)ψi(x2)

]
ψj(x1). (3.37)

Using these de�nitions in Eq. (3.35) results in

∑
j

εijψj(x1) =

h(x1) +
∑
j

Jj(x1)−
∑
j

Kj(x1)

ψi(x1). (3.38)

The content of the brackets on the right hand side of the equation will be
de�ned as the Fock operator, namely

F(x1) ≡ h(x1) +
∑
j

Jj(x1)−
∑
j

Kj(x1). (3.39)

Since we require that our single-particle orbitals should be orthonormal, ε is
a diagonal matrix, that is εij = δij × εi. This means we can remove the sum
over j. The only term to survive on the left hand side of Eq. (3.38) is thus
given by i = j,

F(x1)ψi(x1) = εiψi(x1). (3.40)

The term εi becomes the eigenvalues of the Fock operator. This means we
have an eigenvalue problem. The operator F is de�ned in terms of ψi, but
to �nd ψi we need the operator F. This is a circular problem, which can be
solved iteratively.

3.5 Restricted Hartree Fock

The Hartree-Fock-Roothan method, Ref. [91], is one way of solving the HF
equations when the spin is restricted (that is all spin orbitals are occupied,
resulting in a total spin and angular momentum equal to zero). What we
do is to choose a basis set of prede�ned functions that will be our guess for
the atomic orbitals, φµ. These will be discussed in the next chapter. For
the present discussion we simply state that the basis functions we choose
are usually not orthonormal. We want the atomic orbitals to de�ne our
molecular orbitals ψi,

ψi(x1) =

M∑
µ

Ciµφµ(x1). (3.41)

The lefthand side here is a molecular orbital, whereas the righthand side
involves atomic orbitals φ. We have M such atomic orbitals. Inserting these
into the Fock equation, Eq. (3.40), we arrive at

16

F(x1)
M∑
µ

Ciµφµ(x1) = εi

M∑
µ

Ciµφµ(x1). (3.42)

We then multiply by φ∗v(x1) and integrate both sides. We also pull the sum
over µ and Ciµ outside the integral, resulting in

M∑
µ

Ciµ

∫
dx1φ

∗
v(x1)F(x1)φµ(x1) = εi

M∑
µ

Ciµ

∫
dx1φ

∗
v(x1)φµ(x1). (3.43)

The righthand side is again not equal to δvµ since the basis functions are
usually not orthonormal. It can however be represented as a matrix element
CrµSµv, where S is known as the overlap. The integral on the left handside
is equivalent to a matrix element Fµv,

M∑
µ

FµvCµi = εi

M∑
µ

SµvCµi. (3.44)

Here we have de�ned the matrix element Fµv to be equal to

Fµv(x1) =

∫
dx1φ

∗
v(x1)F(x1)φµ(x1), (3.45)

and S is de�ned as

Sµv =

∫
dx1φ

∗
µ(x1)φv(x1). (3.46)

On matrix form the equation becomes

FC = SCε, (3.47)

where ε is a diagonal matrix. This equation is a matrix problem, and matrix
problems are generally well suited to be handled on computers.

We should also mention brie�y that εi physically comes to represent how
much energy is required to remove an electron out of orbital i. The highest
occupied molecular orbital (HOMO) will then be the energy required to re-
move the most loosely bound electron from say an atom. This de�nes the
simplest possible approximation to the ionization energy, according to Koop-
mans Theorem', [6]. Koopmans Theorem' only works for spin restricted HF.

In Eq. (3.45), the quantity S becomes the overlap between basis func-
tions, and does not change during iterations. The quantity C becomes a
coe�cient, and changes in each iteration. This applies to the Fock matrix

17

elements as well.

Now we would like to make use of our spin restriction to simplify things
even further. The quantity F was de�ned as

F(x1) = h(x1) +
N∑
j

Jj(x1)−
N∑
j

Kj(x1), (3.48)

with J and K de�ned in Eqs. (3.36) and (3.37). Our molecular spin orbitals
have two possible spin orientations, either spin up or spin down. We want to
restrict spin so that total spin is zero. We also want speci�cally each spacial
orbital to be occupied by one spin up and one spin down particle. This means
in total that half the electrons will have spin up and the other half spin down.

We will use this spin restriction to simplify our operators J and K. If we
look at the de�nition of J �rst,

Jj(x1) =

∫
dx2

1

r12
|ψj(x2)|2. (3.49)

we notice that J depends only on the spin orbital j. Orbital j obviously has
the same spin orientation as itself. This means we can add a factor 2 in front
of J in Eq. (3.48) and only sum over N

2 , resulting in

Kj(x1)ψi(x1) =

[∫
dx2

1

r12
ψ∗j (x2)ψi(x2)

]
ψj(x1). (3.50)

The quantity K depends however on orbitals i and j. If orbital i has its spin
orientation de�ned, then the integral will be equal to zero whenever orbital
j does not have the same spin orientation. This occurs half the time. We
can still restrict the sum to only go over N

2 and add a factor 2, but must also
add a 1

2 for this reason. These two cancels out, and results in Eq. (3.48) for
the spin restricted case to be equal to

F(x1) = h(x1) + 2

N
2∑
j

Jj(x1)−

N
2∑
j

Kj(x1). (3.51)

We also insert the molecular orbitals as a linear combination of atomic or-
bitals in the matrix element Fµv, giving

Fµv = hµv +

N
2∑
j

M∑
rs

CrjC
∗
sj (2〈µr|vs〉 − 〈µs|vr〉) , (3.52)

with

hµv =

∫
dx1φ

∗
µ(x1)hφv(x1), (3.53)

18

and

〈µv|rs〉 =

∫
dx1

∫
dx2φ

∗
µ(x1)φ

∗
v(x2)

1

r12
φr(x1)φs(x1). (3.54)

The Fock matrix elements are now de�ned by atomic orbitals. To get imple-
mentation ready equations we must de�ne these atomic orbitals, and solve
the integrals using them. This will be done in the next chapter. We note
the sum over N

2 and M , where N is the number of electrons and M is the
number of basis functions.

3.6 Unrestricted Hartree Fock

The Hartree-Fock equations can also be solved without restricting each spin
orbital to be occupied by two electrons. In this section we will derive the
Pople-Sesbet equations, Ref. [2]. These equations achieves exactly this.

In Unrestricted Hartree-Fock (UHF) case we can de�ne two sets of molec-
ular spin orbitals. One set of occupied orbitals with spin up, {ψαi }, and
another set of occupied orbitals with spin down, {ψβi }. The total set of
molecular spin orbitals contains both of these, that is

{ψi} =

{
{ψαj }
{ψβj }

(3.55)

Inserted into Eq. (3.40), we obtain

Fαψαi (x1) = εαi ψ
α
i (x1), (3.56)

and
Fβψβi (x1) = εβi ψ

β
i (x1). (3.57)

We applied the spin restriction in the de�nition of F. This expression will
be di�erent, otherwise our equations remain the same, that is

FαCα = SCαεα, (3.58)

and
F βCβ = SCβεβ. (3.59)

The Fock operator is de�ned in Eq. (3.48) and depends on h, J and K. We
used our spin approximation in the expression for J and K

Jj(x1) =

∫
dx2

1

r12
|ψj(x2)|2. (3.60)

The quantity J integrates over spin orbital j. This orbital can have spin up
or spin down. This will be independent of the spin orientation of orbital i,

19

meaning that we can split this expression in two terms, summing thereby over
the occupied up spin orbitals and the occupied down spin orbitals separately.

The quantity K from Eq. (3.37) on the other hand involved spin orbitals
i and j. This will follow the same argument as for the spin restricted case,
resulting in the expression for the Fock matrix elements to be

Fαµv = hµv+

Nα∑
j

M∑
rs

Cαrj
(
Cαsj
)∗

(〈µr|vs〉−µr|sv〉)+
Nβ∑
j

M∑
rs

Cβrj

(
Cβsj

)∗
〈µr|vs〉.

(3.61)
and

F βµv = hµv+

Nβ∑
j

M∑
rs

Cβrj

(
Cβsj

)∗
(〈µr|vs〉−µr|sv〉)+

Nα∑
j

M∑
rs

Cαrj
(
Cαsj
)∗ 〈µr|vs〉.

(3.62)
As in the restricted Hartree-Fock case we have the Fock matrix de�ned by
atomic orbitals. Now it is time to de�ne the atomic orbitals. This is the aim
of the next chapter.

20

Chapter 4

Gaussian Type Orbitals

In 1950 Boys, [59], proposed the use of Gaussian Type Orbitals (GTOs)
in electronic structure theory. Years after his proposal the use of Gaussian
Type Orbitals are now standard in computational chemistry. In this chapter
we will de�ne what GTOs are and examine in detail how to construct them.
We will also look at the mathematical expressions required for solving the
integrals left open in the previous chapter. In total we will present all the
required programmable equations for calculating energies with Hartree Fock.
The content exposed here follows closely the work of T. Helgaker, P. Jor-
gensen and J. Olsen, [7, 8, 9].

The reader may also �nd additional and useful information in the articles
by McMurcie and Davidson [10] and Pople and Hehre [11].

4.1 Contracted GTOs

Two of the basic ingredients in the formalism exposed here are the so-called
contracted and primitive GTOs. A contracted GTO is used to describe an
atomic orbital and is de�ned as

φ(x, y, z) =
∑
i

Niχi(x, y, z). (4.1)

Here φi represents a contracted GTO, Ni is its normalization constant and
χi is a primitive GTO. A primitive GTO is de�ned as

χi(x, y, z) = cix
mynzoe−αiR

2
, (4.2)

where x, y and z are Cartesian coordinates and R2 = x2 + y2 + z2. These
coordinates represent the distance to a given nucleus, while m, n and o
depend on the angular momentum of the orbital we wish to describe. When
the primitives are de�ned with xmynzo they are called Cartesian Gaussian

21

functions. We will only be dealing with these kind of Gaussians and m, n
and o take only integer values, that is

m+ n+ o = l, (4.3)

where l is the total angular momentum. The parameters αi and ci are vari-
ational parameters.

A contracted GTO is a linear combination of primitive GTOs. The goal
of making contracted GTOs is to mimic the behaviour of a Slater Type
Orbital (STO). An STO is considered to resemble the true atomic orbitals.
We will see later that GTOs allow us to perform calculations much faster.
For this reason we want to use GTOs, but we want the behaviour of an STO.
An STO is de�ned as

Φ(r) = NRme−αR, (4.4)

where N is the normalization constant, R is the distance from the electron to
the nucleus, m depends on angular momentum and α is again a variational
parameter.

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

STO

−4 −2 0 2 4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Primitive GTO

Figure 4.1: Illustration of the shape of a primitive GTO vs a STO

22

Figure 4.1 is an illustration of the shape of a primitive GTO side by side
of an STO. We notice that they behave di�erently. We therefore make a
linear combination of primitive GTOs, as is shown in �gure 4.2.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

Construction of a Contracted GTO from Primitives

Primitive

Primitive

Primitive

Contracted

Figure 4.2: Illustration of the construction of a contracted GTO from three
primitives

The contracted GTO is made up of three primitives. The problem with
GTOs is that they fall o� to quickly for increasing R compared to the STO.
Increasing R is known as a long-range behaviour. Also when R goes to zero
GTO and STO behave di�erently.

The problems of long and short range behaviour are reduced when going
from a single primitive GTO to a contracted GTO of three primitives. In
theory we can describe an STO with increasing accuracy by adding more
primitive GTOs with di�erent αi. The parameters αi control the width of
the primitive GTO.

In �gure 4.3 we have made a comparison of a contracted GTO made up
of three primitives, versus a contracted GTO made up of six primitives. We
see that the more primitives the better our GTO becomes relative to the

23

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

Improving the contracted GTO

6 primitives

3 primitives

Figure 4.3: Illustration of how an increased number of primitives improve
our contracted GTO

original STO it is meant to represent. As mentioned previously, an STO is
considered to behave like a true atomic orbital (AO). We therefore have a
good argument for using GTOs to describe AOs. However, this requires that
we know how to get the right primitives.

4.2 Variational Principle

Constructing good primitives means de�ning αi and ci. These are varia-
tional parameters, and in theory we can use the variational principle. The
variational principle states that

E0 ≤
∫
〈ψT |H|ψT 〉∫
〈ψT |ψT 〉

. (4.5)

This means that we can optimize our variational parameters, by minimizing
the energy as a function of αi and ci. There is a huge computational cost
attached to this, since the number of variational parameters scales quickly
with increasing number of primitives.

24

4.3 EMSL

The software library EMSL [13, 14, 15] provides already calculated α and c.
We will make use of these pre-computed parameters in our calculations.

Figure 4.4: Front page of the EMSL website

When entering the basis set exchange we must select two options. First
what basis set, listed on the left in �gure 4.4. Secondly, which atom(s) we
will study. What the di�erent basis sets represent will be explained later,
but for now let us examine how to read data from EMSL. If we click on the
3-21G basis set and Hydrogen and then "Get Basis Set" we will get the basis
set seen in �gure 4.5.

The �rst line of interest is

BASIS "ao basis" PRINT

which means that this is a basis for atomic orbitals. Two lines down we
see two letters, H and S. H means this is a basis for the hydrogen atom. S
means this is an S orbital, which means that the angular momentum is 0 for
all primitive GTOs that de�ne this orbital. Angular momentum of 0 means
that m, n and o are zero in Eq. (4.2).

The next two lines are �lled with four numbers. Each line contains one
α value (left number) and one c value (right value). Inserting these four
numbers in Eq. (4.2) we obtain our �rst two primitive GTOs

25

Figure 4.5: The 3-21G basis set for Hydrogen

χ1(x, y, z) = 0.1562850× exp(−5.4471780× (r −RH)2), (4.6)

and

χ2(x, y, z) = 0.9046910× exp(−0.8245470× (r −RH)2). (4.7)

These can be combined to a contracted GTO which will represent the �rst
atomic orbital.

φ1(x, y, z) = N1χ1 +N2χ2. (4.8)

26

The next line represents another atomic orbital with angular momentum
zero. However this contains only one primitive GTO,

φ2(x, y, z) = N1 × 0.1562850× exp(−5.4471780× (r −RH)2). (4.9)

It may seem confusing why a hydrogen atom with only one electron would
need two atomic orbitals. This will be explained in a later section. Further
notation from EMSL can be noted in �gure 4.6.

Figure 4.6: The 6-311G basis set for Beryllium

Figure 4.6 contains the data for Be from the 6-311G basis set. The �rst
atomic orbital is an S orbital with angular momentum zero and a contracted

27

GTO of six primitive GTOs. These six primitives together actually construct
the blue line plotted in �gure 4.3.

The next orbital is marked as SP. This is a short notation for one S or-
bital and one P. The notation means that the left column represents the α
values for both orbital S and P. The second column are c values for the S
orbital, whereas the third column are c values for the P orbital. In this basis
set the S and P orbital share α values. This is a common feature. The basis
set is designed like this to allow for a more e�cient implementation.

However, for now our interest is the notation on the EMSL website. The
P orbital represents an angular momentum of 1, which means m+n+o = 1.
This can be achieved by either m = 1, n = 1 or o = 1.

When we make our basis set all of these possibilities must be available.
This means a P orbital is really 3 atomic orbitals, but all 3 orbitals have the
same αi and ci. One of them will have m = 1, n = 0 and o = 0. The second
will have m = 0, n = 1 and o = 0. The third will have m = 0, n = 0 and
o = 1. The 6-311G basis set therefore has a total of 13 orbitals for an atom
like beryllium.

Di�erent letters represent di�erent angular momentum on EMSL. This
means the di�erent letters also represent a di�erent number of atomic or-
bitals, as indicated in table here.

Letter Ang mom Nr of Orbitals

S 0 1
P 1 3
D 2 6
F 3 10
G 4 15
H 5 21

The number of orbitals is increasing because of the di�erent ways to ar-
range m, n and o to achieve the given angular momentum. The general
number of orbitals for an angular momentum l is (l+1)(l+2)

2 . The next table
represent the di�erent ways of organizing m, n and o for the D orbital.

28

m n o

2 0 0
0 2 0
0 0 2
1 0 1
1 1 0
0 1 1

The same method can be applied to F, G, H and higher orbitals.

Figure 4.7: Illustration of another possible EMSL notation

Figure 4.7 shows part of the aug-cc-pCV5Z basis set for carbon. The
interesting part is that we now have three columns but only an S orbital
represented. When this notation occurs it means there are two S orbitals
with identical α values but di�erent c values. Some basis sets lists seven
or eight columns, but the same principle applies. The �rst column stands
for the α values. The next one represents the c values, where each column
contains c values for its own orbital.

29

4.4 Product of Gaussians

In this section we will derive the normalization constant. The normalization
constant is de�ned such that the inner product is equal to 1, that is

|〈φi|φi〉|2 = 1, (4.10)

with

φ(x, y, z) =
∑
i

Niχi(x, y, z), (4.11)

where χi are the primitive GTOs. This means we can calculate the integral
over contracted GTOs by �rst calculating the integral over two primitive
GTOs

χ1 = c1x
i
Ay

j
Az

k
Aexp(−α1r

2
A), (4.12)

and
χ2 = c2x

m
By

n
Bz

o
Bexp(−α2r

2
B). (4.13)

Here rA = r−A and A is the position of nucleus A. The primitive χ1 is part
of a contracted GTO that describes an atomic orbital in nucleus A. Similar
relations apply for rB. The product of χ1 and χ2 is well de�ned,

χ1χ2 = c1c2x
i
Ax

m
By

j
Ay

n
Bz

k
Az

o
Bexp(−(α1r

2
A + α2r

2
B)). (4.14)

A key feature of Gaussian functions is that a product of two is equal to
another Gaussian. This is shown by �nding the "charge center" P

P =
α1A+ α2B

α1 + α2
. (4.15)

De�ning rP = r − P we can rewrite the exponential term as

exp(−(α1r
2
A + α2r

2
B)) = GIJexp(−αprP), (4.16)

where

GIJ = exp(−α1α2α
−1
p |A−B|2), (4.17)

is independent of r. We now realise that the product χ1χ2 can be separated
in its three Cartesian coordinates, x, y and z with rP = (xP , yP , zP). This
results in

χ1χ2 = GIJχXχY χZ , (4.18)

where

χX = xiAx
m
B exp(−αpx2P), (4.19)

30

and similar for χY and χZ . We now de�ne

Λj(xp, αp)exp(−αpx2p) = (
∂

∂Px
)jexp(−αpx2p). (4.20)

This relates to a Hermite polynomial Hj as such

Λj(xp, αp) = αj/2p Hj(α
1/2
p xP). (4.21)

The purpose of this de�nition is to replace xiAx
m
B with derivatives of Px which

can be placed outside an integral.

We wish to expand xiAx
m
B as such:

xiAx
m
B =

i+m∑
N=0

Ei,mN Λ(xP , αp). (4.22)

The �rst 5 Hermite polynomials are (see also [12]):

H0(x) = 1. (4.23)

H1(x) = 2x. (4.24)

H2(x) = 4x2 − 2. (4.25)

H3(x) = 8x3 − 12x. (4.26)

H4(x) = 16x4 − 48x2 + 12. (4.27)

We notice from these that the following recursion relation holds:

HN+1(x) = 2xHN (x)− 2NHN−1(x). (4.28)

The latter results in another recursion relation:

xAΛN (xP , αp) = NΛN−1 + (Px −Ax)ΛN +
1

2αp
ΛN+1. (4.29)

We can combine Eq. (4.22) with Eq. (4.29) and �nd the following recursion
relations for Ei,mN .

Ei+1,m
N =

1

2αp
Ei,mN−1 + (Px −Ax)Ei,mN + (N + 1)Ei,mN+1, (4.30)

31

and

Ei,m+1
N =

1

2αp
Ei,mN−1 + (Px −Bx)Ei,mN + (N + 1)Ei,mN+1, (4.31)

where E0,0
0 = 1 and Ei,mN = 0 for N > i+m and N < 0. We can use similar

recursive relations for yjAy
n
B and zkAz

o
B. We have

yjAy
n
B =

j+n∑
N=0

Ej,nN ΛN (yp, αp), (4.32)

and

zkAz
o
B =

k+o∑
N=0

Ek,oN ΛN (zp, αp). (4.33)

These equations are then used to rewrite Eq. (4.18) as

χ1χ2 = GIJ
∑
N,M,L

Ei,mN Ej,nL Ek,oM ΛN (xP)ΛL(yP)ΛM (zP)exp(−αpr2p). (4.34)

The integral over χ1χ2 can be calculated easily. We will label this integral
S1,2,

S1,2 =

∫
drχ1χ2 =

∫
drGIJχXχY χZ = GIJSi,mSj,nSk,o. (4.35)

A general integral over an Hermitian Gaussian function is given as∫
dxΛN (xP , αp)exp(−αx2P) = δN,0

(
π

αp

)1/2

. (4.36)

Integrating over the x, y and z coordinates separately and placing the deriva-
tives outside the integral results in the following relations

Si,m =

∫
dxφX =

i+m∑
N=0

Ei,mN

∫
ΛN (xp)dx, (4.37)

and

Si,m =

i+m∑
N=0

Ei,mN δN,0

(
π

αp

)1/2

. (4.38)

Here only one term will survive from this sum. When N = 0, we have

Si,m = Ei,m0

(
π

αp

)1/2

. (4.39)

We get similar results for Sj,n and Sk,o, namely

32

S1,2 = GIJE
i,m
0 Ej,n0 Ek,o0

(
π

αp

)3/2

. (4.40)

It is very common to insert GIJ into E0,0
0 . For the x coordinate we will get

E0,0
0 = GIJ,x = exp

(
− α1α2

α1 + α2
|Ax −Bx|2

)
, (4.41)

with similar results for the y and z coordinates. Collecting all our results we
have

S1,2 = Ei,m0 Ej,n0 Ek,o0

(
π

αp

)3/2

, (4.42)

where we to repeat the use of these relations for E:

Ei+1,m
N =

1

2αp
Ei,mN−1 + (Px −Ax)Ei,mN + (N + 1)Ei,mN+1, (4.43)

and

Ei,m+1
N =

1

2αp
Ei,mN−1 + (Px −Bx)Ei,mN + (N + 1)Ei,mN+1. (4.44)

4.5 Normalization

The quantity S is known as the overlap between primitive GTOs. This
means we have to calculate the inner product as

|〈φi|φi〉|2 = 1, (4.45)

with

φi =
∑
j

Njχj . (4.46)

We can now calculate the normalization constants for orbital φi. We have
the same orbital on the bra and ket sides, meaning in this inner product
the coordinates A and B will be identical, as well as ci, αi and the angu-
lar momentum for the primitives. WithA =B we get E0,0

0 = 1 and αp = 2αi.

We can now calculate the normalization constant for 〈χj |χj〉 for di�erent
angular momenta.

33

4.5.1 l = 0

For l = 0 all primitive GTOs are

χj = cjexp(−αjr2). (4.47)

The normalization constant can be calculated as

1 = N2c2S = N2
j c

2
j

(
E0,0

0

)3(π

2αj

)3/2

. (4.48)

This results in

⇒ N0,0,0c =

(
2αj
π

)3/4

. (4.49)

Here the notation N0,0,0 means it is the normalization constant for primitives
with m = 0, n = 0 and o = 0.

4.5.2 l = 1

For l = 1 all primitive GTOs will have one E1,1
0 term and two E0,0

0 = 1

terms. We must now use the recursive relations to �nd the E1,1
0 term. We

have

E1,1
0 = 0 + 0 + E1,0

1 =
1

4αj
, (4.50)

which results in a normalization constant

1 = N2
j c

2
j4αj

(
π

2αj

)3/2

(4.51)

yielding

⇒ N1,0,0cj =

(
2αj
π

)3/4√
4αj . (4.52)

Here the notation N1,0,0 means primitives with (m,n, o) = (1, 0, 0), (0, 1, 0)
or (0, 0, 1).

4.5.3 l = 2

For l = 2 we will have two possibilities. Either Sij = E2,2
0 E0,0

0 E0,0
0

(
π

2αj

)3/2
,

or Sij = E1,1
0 E1,1

0 E0,0
0

(
π

2αj

)3/2
. This results in two di�erent normalization

constants for primitives with l = 2. The �rst case is

34

1 = N2
j c

2
j

(
π

2αj

)3/2

E2,2
0 E0,0

0 E0,0
0 , (4.53)

with E2,2
0

E2,2
0 = E1,2

1 =
1

4αj
E0,0

0 + 2E0,2
2 =

3

4αj
E0,1

1 =
3

16α2
j

(4.54)

giving

⇒ N2,0,0cj =

(
2αj
π

)3/4
√

16α2
j

3
. (4.55)

The second case is

1 = N2
j c

2
j

(
π

2αj

)3/2

E1,1
0 E1,1

0 E0,0
0 . (4.56)

where

E1,1
0 =

1

4αj
(4.57)

with

⇒ N1,1,0cj =

(
2αj
π

)3/4√
16α2

j . (4.58)

4.5.4 l = 3

For l = 3 we have three possibilities, N3,0,0, N2,1,0 and N1,1,1. First,Sij =

E3,3
0 E0,0

0 E0,0
0

(
π

2αj

)3/2
with

E3,3
0 = E2,3

1 =
1

4αj
E1,3

0 + 2E1,3
2 =

3

4αj
E0,3

1 + 4E0,3
2 (4.59)

⇒ E3,3
0 =

3

16α2
j

E0,2
0 +

6

4αj
E0,2

2 +
4

4αj
E0,2

1 (4.60)

⇒ E3,3
0 =

3

16α2
j

E0,1
1 +

6

16α2
j

E0,1
1 +

4

16α2
j

E0,1
0 (4.61)

⇒ E3,3
0 =

9

64α3
j

(4.62)

which gives

35

⇒ N3,0,0cj =

(
2αj
π

)3/4
√

64α3
j

9
. (4.63)

The second case is Sij = E2,2
0 E1,1

0 E0,0
0

(
π

2αj

)3/2
, with

E2,2
0 =

3

16α2
j

. (4.64)

and

E1,1
0 =

1

4αj
. (4.65)

The result is

⇒ N2,1,0cj =

(
2αj
π

)3/4
√

64α3
j

3
(4.66)

Finally, Sij = E1,1
0 E1,1

0 E1,1
0

(
π

2αj

)3/2
with

E1,1
0 =

1

4αj
(4.67)

resulting in

⇒ N1,1,1cj =

(
2αj
π

)3/4√
64α3

j . (4.68)

4.5.5 Final normalization comments

We placed all the normalization constants next to the parameter c, and all
the normalization constants are left as a function of α. This means in prac-
tice we can simply multiply this normalization in with the parameter c, and
combine them.

The derivation of normalization factors for l = 4, 5, . . . are performed
similarly.

4.6 Calculating Integrals for Hartree Fock

There were four integrals left untouched in the previous Hartree Fock chap-
ter. All of these integrals involved AOs, which we will be approximating as
GTOs. In this section we provide the analytical formula for solving these
integrals, using GTOs. The solutions will provide insights into why GTOs
are so popular in quantum chemistry.

36

4.6.1 Overlap

The overlap integrals are already solved during our quest to �nd the normal-
ization constants. They are given as

Spq =

p∑
I

q∑
J

cIcJNINJE
i,m
0 Ej,n0 Ek,o0

(
π

αp

)3/2

, (4.69)

with αp = αI + αJ and the sum over I and J sums over the primitives that
de�ne the contracted GTOs, p and q.

4.6.2 Kinetic Energy

The single-particle operator h, as seen in Eq. (3.3), contained two terms.
The kinetic energy part of this operator is calculated from the integral

− 1

2
〈φp|∇2|φr〉. (4.70)

We again insert the primitives χ, and sum over them later, such that we
need to calculate

− 1

2
〈χa|∇2|χb〉. (4.71)

∇2 acts on the right GTO, which can be split into its x, y and z components.

χb = xmynzoeαbR
2

= χb,xχb,yχb,z, (4.72)

with

χb,x = xmeαbx
2
, (4.73)

and similar for χj,y and χj,z. We also de�ne

χa = xiyjzkeαaR
2
. (4.74)

Here ∇ can also be split into x, y and z components, with the mathemat-
ics of all three components being similar. We therefore just look at the x
component

∇2
xχb,x =∇2

x

[
xmeαbx

2
]

=4α2
bx
m+2e−αbx

2 − 2αb(2m+ 1)xme−αbx
2

+m(m− 1)xm−2e−αbx
2
. (4.75)

Here we have taken the derivative. We notice all the terms have e−αbx
2

present, and a few constant terms. Also there is a change in the power of x.
We can now insert the results from section 4.4, resulting in

37

〈χa,x|∇2
x|χb,x〉 = 4α2

bSi,m+2 − 2αb(2m+ 1)Si,m +m(m− 1)Si,m−2. (4.76)

For the y direction we will have the same result, except the index i will be
replaced by j, and m will be replaced by n. For the z coordinate i will be
replaced by k and m will be replaced by o. We notice the kinetic energy is
simply a linear combination of quantities already calculated in the overlap.
This will be used in the implementation.

4.6.3 Nuclei-Electron interaction

The second piece of the single particle operator, h, was a nuclei-electron
interaction term. The integral to solve here is

〈φp|
∑
A

ZA
riA
|φr〉. (4.77)

The sum over A and ZA may be placed outside the integral. We can also
insert the primitives and solve the integral based on them, and sum over all
primitives later. We rename the distance from the electron to the nuclei rC .
This leaves

〈χa|
1

rC
|χb〉 =

∫
dr1χ

∗
a(r1)

1

rC
χb(r1), (4.78)

where rC = |r1−RA|. We �rst multiply χ∗a with χb to get Ωab. This enables
us to use results from section 4.4. This gives

〈χa|
1

rC
|χb〉 =

∫
dr1

Ωab(r)

rC
. (4.79)

We noted above that Ωab could be split into its x, y and z components

Ωab(r) = Ωim(x)Ωjn(y)Ωko(z), (4.80)

with the results from section 4.4 staying the same, namely

Ωim(x) =

i+m∑
t=0

Ei,mt Λt(xP). (4.81)

Combining the x, y and z directions we can write this as

Ωab(r) =
∑
tuv

EabtuvΛtuv(rp), (4.82)

where Λtuv(rp) is de�ned as

Λtuv(rp) =
∂t+u+v

∂P tx∂P
u
y ∂P

u
z

exp(−αpr2p), (4.83)

38

as de�ned in section 4.4. We insert this into Eq. (4.79) and obtain

〈χa|
1

rC
|χb〉 =

∫
dr1

∑
tuv E

ab
tuvΛtuv(rp)

rC
. (4.84)

We can pull the sum and Eabtuv outside the integral and get

〈χa|
1

rC
|χb〉 =

∑
tuv

Eabtuv

∫
dr1

Λtuv(rp)

rC
. (4.85)

The next step is a substitution. We want to avoid having rC in our integral
and use

1

rC
=

1√
π

∫ ∞
−∞

exp
(
−r2Ct2

)
dt. (4.86)

This is inserted into Eq. (4.85), alongside the de�nition of Λtuv(rp), and
gives us

〈χa|
1

rC
|χb〉 =

1√
π

∑
tuv

Eabtuv
∂t+u+v

∂P tx∂P
u
y ∂P

u
z

∫
dr1exp(−αpr2p)

∫ ∞
−∞

exp
(
−r2Ct2

)
dt.

(4.87)
This is a rather large equation now, and we will focus on the integral part
of it �rst, that is

Vp =

∫
dr1exp(−αpr2p)

∫ ∞
−∞

exp
(
−r2Ct2

)
dt. (4.88)

We �rst multiply together the exponentials, through the Gaussian product
rule.

exp(−αpr2p)exp
(
−r2Ct2

)
= exp

(
− αpt

2

αp + t2
R2
cP

)
exp

(
−(αp + t2)r2s

)
.

(4.89)
We insert this into the integral over r and t and obtain

Vp =

∫
dr

∫ ∞
−∞

dt× exp
(
−(αp + t2)r2s

)
exp

(
− αpt

2

αp + t2
R2
cP

)
. (4.90)

The integral over r can now be solved analytically.∫
exp

(
−(αp + t2)r2s

)
dr =

(
π

αp + t2

)3/2

. (4.91)

This is inserted in Vp and we get

39

Vp =

∫ ∞
−∞

exp

(
− αpt

2

αp + t2
R2
cP

)(
π

αp + t2

)3/2

dt. (4.92)

We now introduce u as

u2 =
t2

αp + t2
. (4.93)

Some rewriting results in

dt =
1

αp

(
t2

u2

)3/2

du. (4.94)

We insert this into Vp and we obtain �nally

Vp =
2π3/2

αp

∫ 1

0
exp(−αpR2

cPu
2)du. (4.95)

Solving this integral is done using the Boys function discussed below.

The Boys Function

For the Boys function we have used additional references [38] and [39]. The
Boys function is de�ned as

Fn(x) =

∫ 1

0
exp(−xt2)t2ndt. (4.96)

This can be solved analytically if x = 0 and gives

Fn(0) =

∫ 1

0
t2ndt =

1

2n+ 1
. (4.97)

If x is small, we can Taylor expand around 0 and get

Fn(x) =
∞∑
k

(−x)k

k!(2n+ 2k + 1)
. (4.98)

We cannot sum to in�nity, so we must de�ne some valueM to make the sum
�nite, where M should be large.

If x is large, the exponential function will �atten out for increasing t, and
will be approximately 0 for t > 1. This means we can make this approxima-
tion

Fn(x) ≈
∫ ∞
0

exp(−xt2)t2n. (4.99)

This can be solved analytically and gives

40

Fn(x) =
(2n+ 1)!!

2n+1

√
π

x2n+1
. (4.100)

Once we have calculated the Boys function for one n, we can use recurrence
relations to �nd the others. These relations are de�ned as

Fn−1(x) =
2xFn(x) + exp(−x)

2n− 1
. (4.101)

There is also an upward recurrence relation,

Fn+1(x) =
(2n+ 1)Fn(x)− exp(−x)

2x
, (4.102)

but this is somewhat numerically unstable.

De�ning Rtuv

The Boys function should be inserted into Eq. (4.95). In the equation we
do not have any t2n term, this is equivalent to having t0, meaning n = 0.

Vp =
2π

αp
F0(αpR

2
cP). (4.103)

This should further be inserted into Eq. (4.87). We also place the constant
2π
αp

outside the derivatives. We get

〈χa|
1

rC
|χb〉 =

1√
π

∑
tuv

Eabtuv
2π

αp

∂t+u+v

∂P tx∂P
u
y ∂P

u
z

F0(αpR
2
cP). (4.104)

We here de�ne Rtuv(αp, RcP).

Rtuv(αp, RcP) =
∂t+u+v

∂P tx∂P
u
y ∂P

u
z

F0(αpR
2
cP). (4.105)

The quantity Rtuv is known as the Hermite Coulomb integrals. How to
evaluate these will be shown in a later section. We now insert this into
Eq. (4.104) and get

〈χa|
1

rC
|χb〉 =

1√
π

∑
tuv

Eabtuv
2π3/2

αp
Rtuv(αp, RcP). (4.106)

We combine terms and rewrite the equation as

〈χa|
1

rC
|χb〉 =

2π

αp

∑
tuv

EabtuvRtuv(αp, RcP). (4.107)

This is a programmable expression once the equations for Rtuv have been
de�ned.

41

4.6.4 Electron-Electron interaction

The �nal integral to solve is 〈ab|cd〉.

〈ab|cd〉 =

∫
dr1

∫
dr2φ

∗
a(r1)φ

∗
b(r2)

1

r12
φc(r1)φd(r2). (4.108)

This a similar situation to that of the nucleus-electron interaction, except
that we now have two particle and thereby (for a three-dimensional case) in
principle a six-dimensional integral. We can combine φ∗a(r1) with φc(r1) and
φ∗b(r2) with φd(r2) and have

〈ab|cd〉 =

∫
dr1

∫
dr2

Ωac(r1)Ωbd(r2)

r12
. (4.109)

Here we can insert Ω as we did in section 4.6.3.

〈ab|cd〉 =
∑
tuv

Eactuv
∑
τµθ

Ebdτµθ

∫
dr1

∫
dr2

Λtuv(r1P)Λτµθ(r2Q)

r12
. (4.110)

We insert the de�nition of Λ as we did in Eq. (4.83).

〈ab|cd〉 =
∑
tuv

Eactuv
∑
τµθ

Ebdτµθ
∂t+u+v

∂P tx∂P
u
y ∂P

v
z

∂τ+µ+θ

∂Qτx∂Q
µ
y∂Qθz

∫
dr1×

∫
dr2

exp(−αpr21P)exp(−αqr22Q)

r12
. (4.111)

The terms inside the integral are similar to what we had for the nucleus-
electron interaction, except we now have r12. Recalling

r12 =
√

(r1 − r2)2. (4.112)

Taking the derivative with respect to r2 will change the sign of the equation.
We will take this derivative τ+µ+θ times. Using the same technique applied
to the nucleus-electron interaction this can be shown to reduce to

〈ab|cd〉 =
2π5/2

αpαq
√
αp + αq

∑
tuv

Eactuv
∑
τµθ

Ebdτµθ (−1)τ+µ+θ Rt+τ,u+µ,v+θ(α,RPQ),

(4.113)
where α without any index is equal to

α =
αpαq
αp + αq

. (4.114)

42

4.6.5 Calculating Rtuv

The quantity Rtuv is in use in both the nucleus-electron interaction and the
electron-electron interaction. Here we will �nd programmable equations for
Rtuv(a,A)

Rtuv(a,A) =
∂t+u+v

∂Atx∂A
u
y∂A

v
z

F0(a×A2). (4.115)

To obtain practical equations we introduce the auxiliary hermite integrals

Rntuv(a,A) = (−2a)n
∂t+u+v

∂Atx∂A
u
y∂A

v
z

Fn(a×A2). (4.116)

We �rst get a starting value when t = u = v = 0,

Rn000(a,A) = (−2a)nFn(a×A2). (4.117)

From this we use the following recurrence relations which has been proven
in [8], namely

Rnt+1,u,v = tRn+1
t−1,u,v +AxR

n+1
tuv , (4.118)

Rnt,u+1,v = uRn+1
t,u−1,v +AyR

n+1
tuv , (4.119)

and

Rnt,u,v+1 = tRn+1
t,u,v−1 +AzR

n+1
tuv . (4.120)

Since we do not have any (−2a)n term in any of our equations for the nucleus-
electron or the electron-electron interactions, we make a small tweak to these
equations when we use the auxiliary hermite integrals,

〈χa|
1

rC
|χb〉 =

2π

αp

∑
tuv

EabtuvR
0
tuv(αp, RcP), (4.121)

and

〈ab|cd〉 =
2π5/2

αpαq
√
αp + αq

∑
tuv

Eactuv
∑
τµθ

Ebdτµθ (−1)τ+µ+θ R0
t+τ,u+µ,v+θ(α,RPQ).

(4.122)

43

4.7 Choosing Basis Set

We now have plenty of programmable equations for solving the HF equa-
tions, and we will pull them all together in the implementation chapter. But
before we can use any of them we must choose some basis functions. We
will use basis sets from EMSL. In this section we will discuss the di�erences
between the di�erent basis sets.

There are several basis sets in EMSL. Some of these are 6-31G, 3-21G,
6-311++G**, STO-3G, cc-pVDZ etc. In general, Pople type basis sets are
the ones with numbers inside the name, such as the 6-31G and 3-21G sets.
The Pople type basis sets use cartesian GTOs, which are the same ones that
we use. We can also work with STO-3G and other versions of this basis set.

It is possible to use basis sets designed for spherical GTOs with a program
that use Cartesian GTOs. In this situation we usually get an energy slightly
lower than if our program did actually use spherical GTOs. Also it is less
e�ective in terms of program performance. For these reasons we will not
make use of basis sets designed for spherical GTOs. These are basis sets
such as cc-pVTZ, aug-cc-pVDZ etc.

4.7.1 STO-nG

First we look at the simplest, smallest basis set, the STO-nG family. These
are single-zeta basis sets. Up till now we have usually talked about con-
tracted GTOs and Atomic Orbitals (AOs) as the same thing, and for our
purposes they are the same.

However, strictly speaking, the terminology of Atomic Orbitals in this
context are the solutions of the HF equations for one atom. In this scenario
we have no molecular orbitals since we have no molecule. An atomic orbital
would then be a linear combination of contracted GTOs. Early on in the
literature the terms atomic orbital meant basis function. The term basis
function was introduced somewhat later where appropriate. This distinction
is more important if we are constructing new basis sets. Since we will be
citing old articles we will, with exception of this section, use the term atomic
orbital as used in the old context.

A single zeta basis set means we have just enough contracted GTOs to
contain the electrons of a neutral charged atom and retain its spherical sym-
metry.

The STO part of the name signi�es that we are trying to mimic an STO,
but we are still using GTOs. An STO-nG basis set will have n primitives for

44

each contracted GTO.

For the hydrogen atom with only one electron, we will only have one
contracted GTO to describe the 1s orbital. For the atoms Li to Ne STO-nG
will have �ve contracted GTOs to describe the orbitals 1s, 2s, 2px 2py and
2pz. All these orbitals need to be described since we want to retain the
spherical symmetry of the atom.

4.7.2 Double Zeta Basis Sets

STO-nG is a small and poor basis set, regardless of the value of n. It should
never be used, unless we are performing program tests. This simpli�es things
further, since we are left with the option of using the Pople style basis sets.
These are the ones named 4-31G, 6-31G and so on.

The smallest Pople style basis sets are known as double zeta. The small-
est of these are 3-21G. This was originally called STO-3-21G, but the STO
part is omitted. 3-21G is a basis set with one contracted GTO for the core
orbitals. This GTO consists of 3 primitives, hence the number 3 in the �rst
position.

The numbers 2 and 1 mean that we have two contracted GTOs to rep-
resent the valence orbitals. These contracted GTOs consist of 2 and 1 prim-
itives, respectively. The name double zeta comes from the fact that the
valence orbitals are now represented by two contracted GTOs.

The set 6-31G is another example of a double zeta Pople basis set. Here
we have six primitives for the contracted GTO describing the core orbitals,
and two contracted GTOs describing the valence orbitals. These have 3 and
1 primitives, respectively.

For Li to Ne the valence orbitals will be 2s, 2px, 2py and 2pz. The
core orbital will be 1s. This makes in total nine contracted GTOs. Figure
4.8 illustrates the two contracted GTOs in the 6-31G basis set that both
illustrate the 2px orbital in the Beryllium atom. Our solver can use both of
these in the linear combination to make the molecular orbitals.

4.7.3 Tripple Zeta Basis Sets

Another Pople basis set is the 6-311G basis set. Here we have three numbers
after the dash, meaning the valence electrons will be represented by three
contracted GTOs.

45

−8 −6 −4 −2 0 2 4 6 8
0

0.5

1

1.5

x

Illustration of 2p
x
 orbital for Be with 6−31G

First contracted

Second contracted

Figure 4.8: 2px Basis Functions for Be with the 6-31G Basis Set

The core orbitals will have one contracted, that consists of six primitives.
The valence electrons will have three contracted GTOs, where each of them
consist of 3, 1 and 1 primitives. Figure 4.9 illustrates the three contracted
GTOs in the 6-311G basis set that share quantum numbers with the 2px
orbital. Our solver can use all these three GTOs in the linear combination
to make the molecular orbitals.

4.7.4 Polarized Basis Set

Polarized basis sets are usually marked by a star. The 6-311G basis set,
with added polarization functions, is called 6-311G*. The di�erence here is
that we add orbitals of higher angular momentum. If an atom has electrons
where the P orbital contains the valence electrons, the P orbital has l = 1.
Adding polarization will mean adding D orbitals, with l = 2.

4.7.5 Di�use Basis Set

We can also choose a di�use basis set. The largest basis sets are always
di�use, and the smaller di�use basis sets are usually marked by a +. For

46

−8 −6 −4 −2 0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

Illustration of 2p
x
 orbital for Be with 6−311G

First contracted

Second contracted

Third contracted

Figure 4.9: 2px Basis Functions for Be with the 6-311G Basis Set

example, adding di�use functions to a 6-311G basis set will make 6-311+G.

Adding di�use functions means that we add another set of contracted
GTOs. If we have a basis set of S and P orbitals, we add one more con-
tracted GTO for the S and P orbitals. If our basis set is also polarized there
are also D orbitals present. However a di�use basis set does not add another
D orbital.

Figure 4.10 illustrates the additional GTOs available for the linear com-
bination. We can combine also di�use and polarized basis functions. If we
add di�use and polarization functions to the 6-311G basis set we get the
6-311+G* basis set.

4.7.6 Reasons for Larger Basis Set

The main reason for a larger basis set is the ability for our HF solver to
respond to a changing molecular environment. The electrons are likely to
behave di�erently in an atom compared to in a larger molecule. We do con-

47

−8 −6 −4 −2 0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

x

Illustration of 2p
x
 orbital for Be with 6−311++G(2d2p)

First contracted

Second contracted

Third contracted

Fourth contracted

Figure 4.10: 2px Basis Functions for Be with the 6-311++G(2d,2p) Basis
Set

struct molecular orbitals as a linear combination of contracted GTOs. Since
we minimize the energy with respect to this linear combination, having more
contracted GTOs should produce a better result.

By adding di�use functions, we make it possible that the electrons are
pulled further away from their positions in a single atom. Double and triple
zeta also helps with this. This is illustrated in �gures 4.8, 4.9 and 4.10.

By introducing polarization functions, we make it possible for electrons
to redistribute themselves in our molecule.

All this helps our HF solver in �nding the best suited wavefunction, for
any system.

4.8 HF Limitations

However if we add too many orbitals, some of them will get coe�cients of
zero in the linear combination. Once this happens we have reached a con-

48

verged basis set. Increasing the size of the basis set at this point will not
improve our results further.

When we have a converged basis set we still do not have the exact wave-
function. This is because we used a single Slater determinant. In a single
Slater determinant the electrons feel a mean interaction with the other elec-
trons. This is an approximation.

We can imagine two electrons in close proximity. Two electrons side by
side will feel a strong and repulsive interaction, possibly even temporarily
pushing both electrons into orbitals previously unoccupied. HF theory does
not account for this at all. As such the energy cannot converge to the exact
ground state energy. It can only converge to the so called Hartree Fock Limit.

Polarized basis sets include orbitals of higher angular momentum than
the electrons occupy in a single atom. With a single Slater determinant,
polarized basis sets are not as e�ective as they could be. If we go back to the
example of the two electrons in close proximity, we stated that it was possible
that they were temporarily excited into orbitals previously unoccupied. To
describe this we need a description of these orbitals that are unoccupied.
This is where the polarized basis sets are important. Coupled cluster theory,
unlike HF theory, accounts for this situation. As such it is likely to see more
basis functions required for the CCSD energy to be converged relative to HF,
since Coupler Cluster can make better use of the polarized basis set.

4.9 DIIS

Direct Inversion of the Iterative Subspace is a method to help the conver-
gence of our HF solution. This method can potentially reduce the number
of iterations required for self consistency dramatically. This content is ex-
plained in detail in Refs. [66, 67, 68].

DIIS is a method to reduce the number of iterations required to solve
any iterative problem. In HF theory this means updating the Fock matrix
elements in between iterations. In our implementation we de�ne an error
given by

∆p = FPS − SPF. (4.123)

The de�nition of the error is somewhat optional. We used the density matrix
P de�ned as

Pij =

N∑
m

CimCjm. (4.124)

49

However the error can also be de�ned di�erently. Another option is simply
using the current and the prior Fock matrix,

∆pk = Fk − Fk−1. (4.125)

In DIIS we want to make a linear combination of Fock matrices in prior
iterations. We want

F =
M∑
k

ckFk. (4.126)

Here we want to have
∑M

k ck = 1. We want to minimize the norm

〈∆p|∆p〉 =
M∑
i

M∑
j

c∗i cj〈∆pi|∆pj〉. (4.127)

We de�ne the overlap of the errors as a matrix B

Bij = 〈∆pi|∆pj〉. (4.128)

This matrix will be symmetric, since ∆p is real. We can then use the method
of Lagrangian multipliers, since we want to minimize the energy with the
constraint that the sum of coe�cients is 1, that is

L = c†Bc− λ

(
1−

M∑
i

ci

)
. (4.129)

We �nd the minimum of this Lagrangian by minimizing the coe�cients c,

∂L
∂ck

= 0. (4.130)

This gives

M∑
i

ciBik +

M∑
j

cjBkj − λ = 0. (4.131)

We can use the symmetry in B to combine the two sums and obtain

2
M∑
i

ciBki − λ = 0. (4.132)

Since λ is a constant, we can place the factor two into λ and get

M∑
i

ciBki − λ = 0. (4.133)

50

This results in Eq. (6) in [67], restated here


B11 B12 . . . B1M −1
B21 B22 . . . B2M −1
.
BM1 BM2 . . . BMM − 1
−1 −1 . . . −1 0




c1
c2
. . .
cM
λ

 =


0
0
. . .
0
−1


4.10 Four Index Integral, from AO to MO

The four index integral 〈ij|kl〉 is de�ned in terms of AOs. However, we want
a procedure to recalculate these in terms of Molecular Orbitals (MOs). The
MOs is de�ned as

ψa =
∑
i

Cai φi. (4.134)

Our integral using MOs is describes as

〈ab|cd〉 =

∫
dr1

∫
dr2ψ

∗
a(r1)ψ

∗
b (r2)|

1

r12
|ψc(r1)ψd(r2). (4.135)

We insert the de�nition of an MO into this equation. We assume the coe�-
cients, Cai , are real

〈ab|cd〉 =
∑
ijkl

∫
dr1

∫
dr2C

a
i φ
∗
i (r1)C

b
jφ
∗
j (r2)|

1

r12
|Cckφk(r1)Cdl φl(r2).

(4.136)
We then pull all the coe�cients outside the integral.

〈ab|cd〉 =
∑
ijkl

Cai C
b
jC

c
kC

d
l

∫
dr1

∫
dr2φ

∗
i (r1)φ

∗
j (r2)|

1

r12
|φk(r1)φl(r2).

(4.137)
This is our two electron or four index integral based on AOs. We insert this
and get

〈ab|cd〉 =
∑
ijkl

Cai C
b
jC

c
kC

d
l 〈ij||kl〉. (4.138)

We will make use of this equation when starting with the coupled cluster
method. In coupled cluster theory the four index integral is the only term
where molecular orbitals are involved. For this reason the four index molec-
ular orbital integrals are usually just called MOs for short. Also, the four
index atomic orbital integrals are named AOs for short in the context of
coupled cluster.

51

52

Chapter 5

Coupled Cluster Singles and

Doubles

The Coupled Cluster method is an important ab initio technique in computa-
tional chemistry. It is considered the most reliable and also computationally
a�ordable method for solving the electronic Schrödinger equation. It was
�rst introduced by Coester and Kümmel, [93, 94], within the context of the
nuclear many-body problem during the late 1950s. Paldus and Cizek in-
troduced the method to quantum chemists in the late 1960s, Ref. [95]. In
this chapter we will look at the derivation of coupled cluster singles and
doubles (CCSD), using the results from our Hartree-Fock calculations. The
latter provides a self-consistent single-particle basis for methods like Coupled
Cluster theory, normally called post Hartree-Fock methods.

This chapter is based on a book by Crawford and Schae�er III, Ref. [16].

5.1 Creation and Annihilation operators

In Coupled Cluster (CC) theory we aim at solving the Schrödinger equation
for the ground state, namely

H|Ψ〉 = E|Ψ〉. (5.1)

From Hartree Fock calculations we have created an approximation to the
true ground state |Ψ〉HF which contains molecular orbitals (MOs) in a Slater
determinant. The Dirac notation provides a simple representation of this.
In the Dirac notation only the diagonal terms in the slater determinant are
listed. If |Ψ0〉 has four electrons, its Dirac notation reads

|Ψ0〉 = |ψi(r1), ψj(r2), ψk(r3), ψl(r4)〉. (5.2)

53

Eq. (5.2) will be used to introduce a few new operators needed. The creation

operator a†m creates a new electron in orbital m

a†m|ψi(r1), ψj(r2), ψk(r3), ψl(r4)〉 = |ψi(r1), ψj(r2), ψk(r3), ψl(r4), ψm(r5)〉.
(5.3)

Also, the annihilation operator an destroys an electron in orbital n,

an|ψi(r1), ψj(r2), ψk(r3), ψl(r4), ψn(r5)〉 = |ψi(r1), ψj(r2), ψk(r3), ψl(r4)〉.
(5.4)

These two operators working together can destroy one electron in orbital n,
and create another in orbital m. The result is that one electron now occupies
a di�erent orbital

a†man|ψi(r1), ψj(r2), ψk(r3), ψn(r4)〉 = |ψi(r1), ψj(r2), ψk(r3), ψm(r4)〉.
(5.5)

These operators have a few interesting features. The annihilation operator
acting on the vacuum state produces 0, that is

an|〉 = 0. (5.6)

Interchanging two rows in the Slater determinant introduces a change in the
sign. Hence we have

a†ma
†
n|〉 = |ψm, ψn〉 = −|ψn, ψm〉 = −a†na†m|〉. (5.7)

This means

a†ma
†
n + a†na

†
m = 0. (5.8)

The same applies to the annihilation operator

aman + anam = 0. (5.9)

These are known as anti commutation relations. It can be shown that the
anti commutation relation when mixing a and a† is

a†man + ana
†
m = δmn. (5.10)

5.2 CCSD Wavefunction

The �rst step in coupled cluster is to rewrite the wavefunction as

|ΨCC〉 ≡ eT|ΨHF 〉. (5.11)

54

Here T is known as the cluster operator. This includes all possible excita-
tions. The operator T can be de�ned in terms of a one-orbital excitation
operator, a two-orbital excitation operator and so on, that is

T ≡ T1 +T2 +T3 +T4 (5.12)

In the Coupled Cluster Singles and Doubles approximations, labeled CCSD,
only single excitations, T1, and double excitations, T2, are included

T = T1 +T2. (5.13)

Other CC approaches include more terms. If T3 is included the method is
called CCSDT and we include all three-particle-three-hole excitations, T3.
With four-particle-four-hole excitations, CCSDTQ, we also include T4.

The one-particle-one-hole excitation operator T1 is de�ned using one
creation and one annihilation operator, because we will have one single elec-
tron excited. Also de�ning T1 is an amplitude tai and a summation over all
possible excitations

T1 ≡
∑
a,i

tai a
†
aai. (5.14)

Similarly, T2 is de�ned by two creation and two annihilation operators and
an amplitude tabij

T2 ≡
1

4

∑
a,b,i,j

tabij a
†
aa
†
baiaj . (5.15)

5.3 Derivation of Equations

This section contains the formal derivation of coupled cluster theory, starting
from Eq. (5.1) and using the CCSD wavefunction as our �rst approximation
to the excitation operator T. We have

HeT|Ψ〉HF = EeT|Ψ〉HF . (5.16)

For this derivation |Ψ〉HF will be shortened to |Ψ0〉. The energy is given by

E = 〈Ψ0|e−THeT|Ψ0〉. (5.17)

We also assume an orthonormal basis, meaning

〈Ψm|e−THeT|Ψ0〉 = 0. (5.18)

55

5.3.1 Baker-Campbell-Hausdor� formula

The Baker-Campbell-Hausdor� formula is used to expand e−THeT

e−THeT = H+ [H,T] +
1

2
[[H,T],T] +

1

6
[[[H,T],T],T]

+
1

24
[[[[H,T],T],T],T]

(5.19)

The operator T is expressed in terms of a† and a. H contains a maximum
of two orbital interactions. It can be shown that H can also be expressed in
terms of these operators

H =
∑
a,i

ha,ia
†
aai +

1

4

∑
a,b,i,j

〈ab||ij〉a†aa
†
baiaj . (5.20)

Here ha,i = 〈ψa|h|ψi〉, with h the one-particle part of H. This is the same
Hamiltonian as before expressed slightly di�erently and will be discussed fur-
ther later on. Equation (5.19) can be simpli�ed using commutators, namely

[a†aai,a
†
baj] = a†aaia

†
baj − a

†
baja

†
aai. (5.21)

Using the anti commutator relations this commutator itself can be simpli�ed
to

[a†aai,a
†
baj] = a†aδibaj − a

†
bδjaai. (5.22)

This simpli�cation reduces the number of indices from four to three, replac-
ing two operators with a Kronecker delta. Each nested commutator in Eq.
(5.19) will reduce the number of indexes by one. The maximum number of
creation/annihilation operators in H was four. This means that Eq. (5.19)
will naturally truncate after exactly four terms, and we can remove the dots

e−THeT = H+ [H,T] +
1

2
[[H,T],T] +

1

6
[[[H, [T],T],T]

+
1

24
[[[[H,T],T],T],T] .

(5.23)

5.3.2 Normal Order and Contractions

When deriving the CCSD equations it is common to introduce a concept
called normal ordering of second quantized operators. This means that all
creation operators are placed to the left and the annihilation operators to the
right. The mathematics of swapping the order of creation and annihilation
operators are well de�ned. To show this we de�ne an example operator O
and use the anti commutator relations

56

O = aia
†
aaja

†
b (5.24)

= δiaaja
†
b − a

†
aaiaja

†
b

= δiaδjb − δiaa†baj − δjba
†
aai + a†aaiaja

†
b

= δiaδjb − δiaa†baj + δiba
†
aaj − δjba†aai − a†aa

†
baiaj . (5.25)

The �nal expression of O is in normal order since all creation operators are
to the left and all annihilation operators to the right. Notice that we now
have �ve terms, four of which have a reduced number of operators compared
to our �rst de�nition of O. Any combination of annihilation and creation
operators can be expressed as a linear combination of normal ordered com-
binations of these operators.

The four terms with reduced number of operators arise from contractions
between operators. A contraction between two operators A and B is de�ned
as

AB ≡ AB− {AB}ν . (5.26)

Here {AB}ν is the normal ordered form ofAB. AB is called the contraction
between A and B. As an example A = ai and B = aj will give a contraction
of

aiaj = aiaj − {aiaj}ν = aiaj − aiaj = 0. (5.27)

From the example above we see that the contraction of all annihilation oper-
ators will be zero since there will be no swapping of operators when creating
the normal ordered form. The same will apply to contractions between op-
erators formed from only creation operators. Also the contraction between
already normal ordered operators will be zero.

However the contraction between di�erent operators not in normal order
will not be zero. The simplest example is one annihilation operator in front
of one creation operator

aia
†
a = aia

†
a −

{
aia
†
a

}
ν

= aia
†
a + a†aai = δia. (5.28)

Here we used Eq. (5.10).

5.3.3 Wick's Theorem

Wick's Theorem provides a schematic way of de�ning any string of anni-
hilation and creation operators in terms of these contractions. A string of

57

annihilation and creation operators can be de�ned as ABC . . .XY Z where
A,B,C,X, Y, Z . . . represent either a creation or an annihilation operator.
Wick's Theorem reads

ABC . . .XYZ = {ABC . . .XYZ}ν (5.29)

+
∑
singles

{ABC . . .XYZ}ν

+
∑

doubles

{ABC . . .XYZ}ν

. . .

The right side of Eq. (5.29) should represent every possible contraction of
ABC . . .XYZ. To specify the notation we apply Wick's theorem as an
example to the operator O de�ned in Eq. (5.24) and repeated here

O = aia
†
aaja

†
b

Applying Wick's Theorem provides

O ={aia†aaja
†
b}ν (5.30)

+ {aia†aaja
†
b}ν (5.31)

+ {aia†aaja
†
b}ν (5.32)

+ {aia†aaja
†
b}ν (5.33)

+ {aia†aaja
†
b}ν (5.34)

+ {aia†aaja
†
b}ν (5.35)

+ {aia†aaja
†
b}ν (5.36)

+ {aia†aaja
†
b}ν . (5.37)

Equation (5.37) stems from the doubles summation. The other terms are
from the singles summation. Equations (5.32), (5.34) and (5.35) are zero
when using rules such as (5.27). This leaves the terms

O ={aia†aaja
†
b}ν + {aia†aaja

†
b}ν + {aia†aaja

†
b}ν

+ {aia†aaja
†
b}ν + {aia†aaja

†
b}ν . (5.38)

These must be evaluated. Using Eq. (5.36) as an example we have

58

{aia†aaja
†
b}ν = −{aia†aa

†
baj}ν = {aia†ba

†
aaj}ν . (5.39)

Remembering that {aia†b}ν = δib then the terms in O reduce to

O = {aia†aaja
†
b}+ δia{aja†b}+ δjb{aia†a}+ δib{a†aaj}+ δiaδib. (5.40)

Using {aa†} = −a†a and {a†a} = a†a we get

O = a†aa
†
baiaj − δiaa

†
baj − δjba

†
aai + δiba

†
aaj + δiaδib, (5.41)

which is identical to Eq. (5.24). The sign rules can sometimes be complicated,
when there is more than one contraction present. Swapping two operators
can ful�l the positioning for two contractions at once, as seen in example
Eq. (5.42). This provides a minus sign which must not be neglected

{aia†aaja
†
b}ν = −{aia†aaja

†
b}. (5.42)

5.3.4 Fermi Vacuum and Particle Holes

When using creation and annihilation operators it is common with a speci�c
vacuum state, |〉. Equation (5.2) would commonly be represented as such

|Ψ0〉 = a
†
ia
†
ja
†
ka
†
l |〉. (5.43)

An excited state |Ψm〉 would for example be noted as the following

|Ψm〉 = a†ma
†
ia
†
ja
†
k|〉. (5.44)

The orbital m is occupied and the orbital l is not occupied. In our CCSD
derivation we will not use this kind of notation. The Fermi Vacuum is intro-
duced and is later de�ned as the Hartree-Fock result. However continuing
this example the Fermi Vacuum could be de�ned as |Ψ0〉, and the excited
state would be

|Ψm〉 = a†mal|Ψ0〉. (5.45)

This creates a "hole state" in orbital l, since an occupied orbital is now un-
occupied. It also creates a "particle state" in orbital m, since this is now
occupied and was unoccupied in the Fermi Vacuum.

This de�nition will bring new features to Wick's theorem. The indices
a, b, c . . . will denote newly occupied orbitals, or particle/virtual states. The
indices i, j, k . . . will denote newly formed hole states, or single-particle states
below the Fermi level. The operator a†i can then be thought of as annihilat-

ing a hole. aa can be thought of annihilating a particle. Likewise a†a and ai

59

can be thought of as creating a particle or creating a hole.

This di�ers from the concept of a† always being a creation operator, since
a
†
i can be thought of as annihilating a hole state. This changes our Wick's
Theorem calculations, since we still have the only terms not zero being those
with one annihilation operator followed by one creation operator. There are
only two possibilities of this happening.

a
†
iaj = a

†
iaj − {a

†
iaj}ν = a

†
iaj + aja

†
i = δij . (5.46)

and

aaa
†
b = aaa

†
b − {aaa

†
b}ν = aaa

†
b + a

†
baa = δab. (5.47)

Any other contraction will be 0 using rules analogous to Eq. (5.27)

5.3.5 Normal Ordered H

As noted in Eq. (5.20) H can be expressed in terms of creation and annihi-
lation operators. This expression is known as the secound-quantized form of
the electronic Hamiltionan and will be repeated here, but the indices will be
changed because a, b, i, j have now been given a new meaning. We have

H =
∑
pq

< p|h|q > a†qap +
1

4

∑
pqrs

〈pq||rs〉a†pa†qasar. (5.48)

We now wish to use Wick's theorem on this operator to simplify. From the
one-electron term we use:

a†paq = {a†paq}+ {a†paq}. (5.49)

Equation(5.46) states that {a†paq} is not equal to zero only if both operators

act on a hole state, then {a†paq} = δpq. This means

∑
pq

{a†paq} =
∑
i

〈i|h|i〉. (5.50)

Inserting this in H we get

H =
∑
pq

< p|h|q > {a†paq}+
∑
i

〈i|h|i〉+
1

4

∑
pqrs

〈pq||rs〉a†pa†qasar. (5.51)

Wick's theorem will also be applied to the two electron part, a†pa
†
qasar. In-

cluded here are only the non-zero terms

60

a†pa
†
qasar ={a†pa†qasar}+ {a†pa†qasar}+ {a†pa†qasar}

+ {a†pa†qasar}+ {a†pa†qasar}+ {a†pa†qasar}

+ {a†pa†qasar}.

These can be simpli�ed using Eq. (5.46) and the rules for index swapping
within a contraction noted in Eq. (5.39), resulting in

a†pa
†
qasar ={a†pa†qasar}+ δpiδps{a†qar}

+ δqiδqs{a†par}+ δpiδpr{a†qas}+ δqiδqr{a†pas}
− δpiδpsδqjδqr + δpiδprδqjδqs. (5.52)

The two electron part can now be replaced, leading to

1

4

∑
pqrs

〈pq||rs〉a†pa†qasar =
1

4

∑
pqrs

〈pq||rs〉{a†pa†qasar}

− 1

4

∑
iqr

〈iq||ri〉{a†qar}

+
1

4

∑
ipr

〈pi||ri〉{a†par}

+
1

4

∑
iqs

〈iq||is〉{a†qas}

− 1

4

∑
ips

〈pi||is〉{a†pas}

− 1

4

∑
ij

〈ij||ji〉

+
1

4

∑
ij

〈ij||ij〉.

From the symmetry in the single bar four index integrals it can be shown
that these symmetries hold for the double bar integrals

〈pq||rs〉 = 〈qp||sr〉 = −〈pq||sr〉 = −〈qp||rs〉, (5.53)

and

〈pq||rs〉 = 〈rs||pq〉, (5.54)

61

giving us an eightfold symmetry. Using Eq. (5.53), reindexing terms and
combining leaves the two electron part as the following

1

4

∑
pqrs

〈pq||rs〉a†pa†qasar =
1

4

∑
pqrs

〈pq||rs〉{a†pa†qasar} (5.55)

+
∑
ipr

〈pi||ri〉{a†par}

+
1

2

∑
ij

〈ij||ij〉.

This can be inserted in Eq. (5.51) to yield

H =
∑
pq

< p|h|q > {a†paq}+
∑
i

〈i|h|i〉+
1

4

∑
pqrs

〈pq||rs〉{a†pa†qasar} (5.56)

+
∑
ipr

〈pi||ri〉{a†par}+
1

2

∑
ij

〈ij||ij〉.

The �rst and fourth term on the right hand side are the normal ordered form
of the Fock operator. If we also include the second term we have the HF
energy

H =
∑
pq

fpq{a†paq}+
1

4

∑
pqrs

〈pq||rs〉{a†pa†qasar}+ 〈ΨHF |H|ΨHF 〉. (5.57)

We rename these terms and write

H = FN +VN + 〈ΨHF |H|ΨHF 〉. (5.58)

The normal ordered Hamiltonian is de�ned from this

HN ≡ H− 〈ΨHF |H|ΨHF 〉 = FN +VN . (5.59)

5.3.6 CCSD Hamiltonian

The CCSD Hamiltonian is now de�ned as

H̄ ≡ e−THNe
T. (5.60)

Using the CCSD cluster operator, T = T1 + T2. This can be inserted in
equation Eq. (5.23) and gives

62

H̄ =HN + [HN ,T1] + [HN ,T2] +
1

2
[[HN ,T1],T1] (5.61)

+
1

2
[[HN ,T1],T2] +

1

2
[[HN ,T2],T1] +

1

2
[[HN ,T2],T2] . . .

The operators T1 and T2 commute and the full H̄ reads

H̄ =HN + [HN ,T1] + [HN ,T2] +
1

2
[[HN ,T1],T1] (5.62)

+ [[HN ,T1],T2] +
1

2
[[HN ,T2],T2]

+
1

6
[[[HN , [T1],T1],T1] +

1

6
[[[HN , [T2],T2],T2]

+
1

2
[[[HN , [T1],T1],T2] +

1

2
[[[HN , [T1],T2],T2]

+
1

24
[[[[HN ,T1],T1],T1],T1] +

1

24
[[[[HN ,T2],T2],T2],T2]

+
1

6
[[[[HN ,T1],T1],T1],T2] +

1

6
[[[[HN ,T1],T1],T2],T2]

+
1

4
[[[[HN ,T1],T2],T2],T2] .

H̄ will still analytically truncate after up to and including four nested com-
mutators. When usingHN it is better to rewrite Eqs. (5.14) and (5.15) using
contractions

T1 ≡
∑
ai

tai a
†
aai =

∑
ai

(
tai {a†aai}+ {a†aai}

)
=
∑
ai

tai {a†aai}. (5.63)

Similarly for T2 we have

T2 =
1

4

∑
abij

{a†aa
†
baiaj}. (5.64)

The commutators can then be calculated, starting with [HN ,T1]

[HN ,T1] = HNT1 −T1HN . (5.65)

Using the de�nition of contractions on both these terms we can simplify this
expression further

[HN ,T1] =

(
{HNT1}+ {HNT1}

)
−
(
{T1HN}+ {T1HN}

)
= {HNT1} − {T1HN}. (5.66)

63

Equations. (5.46) and (5.47) explains the only terms that will not be 0 when

calculating the contractions. {T1HN} will be 0 since T1 does not contain
any creation or annihilation operator that when placed on the left creates
a non-zero contraction when using Wick's Theorem. The same argument
applies to T2

[HN ,T1] = {HNT1} = (HNT1)C , (5.67)

and

[HN ,T2] = {HNT2} = (HNT2)C . (5.68)

It then becomes clear that the only surviving terms when calculating all the
commutators will be terms with HN in the leftmost position.

A new notation is also introduced, ()C . This notations means that each
cluster operator inside the parentheses should have at least one contraction
each toHN when applying Wick's Theorem. This holds for up to four cluster
operators. The �nal form of H̄ becomes

H̄ =
(
HN +HNT1 +HNT2 +

1

2
HNT

2
1 +

1

2
HNT

2
2 +HNT1T2

+
1

6
HNT

3
1 +

1

6
HNT

3
2 +

1

2
HNT

2
1T2 +

1

2
HNT1T

2
2

+
1

24
HNT

4
1 +

1

24
HNT

4
2 +

1

4
HNT

2
1T

2
2 +

1

6
HNT

3
1T2 +

1

6
HNT1T

3
2

)
C
.

(5.69)

5.3.7 CCSD Energy

Using the de�nition of HN , Eq. (5.59), and H̄, Eq. (5.69), we can now
construct a programmable expression for the energy, namely

ECCSD − E0 = 〈Ψ0|H̄|Ψ0〉. (5.70)

The terms in Eq. (5.69) are here calculated separately and we have

〈Ψ0|HN |Ψ0〉 = 0. (5.71)

From the construction of the normal ordered Hamiltonian this term will be
0. Furthermore, we have

〈Ψ0|(HNT1)C |Ψ0〉 = 〈Ψ0| ((FN +VN)T1)C |Ψ0〉
= 〈Ψ0|(FNT1)C |Ψ0〉+ 〈Ψ0|(VNT1)C |Ψ0〉. (5.72)

64

where

(FNT1)C =
∑
pq

∑
ai

fpqt
a
i {a†paq}{a†aai}. (5.73)

Wick's Theorem is applied to simplify the expression. Only non zero terms
are included and we get

{a†paq}{a†aai} = {a†paqa†aai}+ {a†paqa†aai} (5.74)

+{a†paqa†aai}+ {a†paqa†aai}
= {a†paqa†aai}+ δpi{aqa†a}

+δqa{a†pai}+ δpiδqa.

Inserting this gives

(FNT1)C =
∑
pq

∑
ai

fpqt
a
i

(
{a†paqa†aai}+ δpi{aqa†a}+ δqa{a†pai}+ δpiδqa

)
.

(5.75)
When calculating 〈Ψ0|(FNT1)C |Ψ0〉 only terms that solely consists of δ's
will be non 0, since our basis is orthogonal and we have

〈Ψ0|(FNT1)C |Ψ0〉 =
∑
pq

∑
ai

fpqt
a
i δpiδqa =

∑
ai

fait
a
i . (5.76)

〈Ψ0|(VNT1)C |Ψ0〉 must also be calculated, resulting in

(VNT1)C =
1

4

∑
pqrs

∑
ai

〈pq||rs〉tai {a†pa†qasar}{a†aai}, (5.77)

with

{a†pa†qasar}{a†aai} = {a†pa†qasara†aai}+ {a†pa†qasara†aai} (5.78)

+ {a†pa†qasara†aai}+ {a†pa†qasara†aai}

+ {a†pa†qasara†aai}+ {a†pa†qasara†aai}

+ {a†pa†qasara†aai}.

From the derivation of 〈Ψ0|(FNT1)C |Ψ0〉 we noticed that the only term that
survived was the term where every construction/annihilation operator was
linked by a contraction. In this case we have no such terms. Hence the
contribution from 〈Ψ0|(VNT1)C |Ψ0〉 will be 0.

Inserting Eq. (5.76) and 〈Ψ0|(VNT1)C |Ψ0〉 = 0 into Eq. (5.72) gives

65

〈Ψ0|(HNT1)C |Ψ0〉 =
∑
ai

fait
a
i . (5.79)

Here the contribution from 〈Ψ0|(HNT2)C |Ψ0〉 is calculated

〈Ψ0|(FNT2)C |Ψ0〉 =
1

4

∑
pq

∑
abij

fpqt
ab
ij {a†paq}{a†aa

†
baiaj}. (5.80)

This is again a similar situation that will result in a zero contribution. The
reason is that any two operators A and B that contain a di�erent number
of annihilation/creation operators will not create any fully contracted terms
(terms that solely consists of δ's) when applying Wick's Theorem. This
means because of orthogonality the contribution to ECCSD from terms like
this will always be 0.

The term 〈Ψ0|(VNT2)C |Ψ0〉 however has an equal number of operators.
From this we will have a contribution

〈Ψ0|(VNT2)C |Ψ0〉 =
1

16

∑
pqrs

∑
abij

〈pq||rs〉tabij 〈Ψ0|{a†pa†qasar}{a†aa
†
bajai}|Ψ0〉

Only the four terms that are fully contracted and non-zero are listed here

{a†pa†qasar}{a†aa
†
baiaj} = {a†pa†qasara†aa

†
bajai}+ {a†pa†qasara†aa

†
bajai}

{a†pa†qasara†aa
†
bajai}+ {a†pa†qasara†aa

†
bajai}

= δpiδqjδsbδra − δpiδgjδrbδsa + δpjδqiδrbδsa − δpjδqiδraδsb.
(5.81)

Inserting this provides

〈Ψ0|(VNT2)C |Ψ0〉 =
1

16

∑
pqrs

∑
abij

〈pq||rs〉tabij 〈Ψ0|δpiδqjδsbδra − δpiδgjδrbδsa

+ δpjδqiδrbδsa − δpjδqiδraδsb|Ψ0〉

=
1

16

∑
abij

(〈ij||ab〉 − 〈ij||ba〉+ 〈ji||ba〉 − 〈ji||ab〉)tabij

=
1

4

∑
abij

tabij 〈ij||ab〉. (5.82)

66

Here symmetry considerations about double bar integrals were used. This
means that we have

〈Ψ0|(HNT2)C |Ψ0〉 =
1

4

∑
abij

tabij 〈ij||ab〉. (5.83)

Next contribution from 〈Ψ0|(HNT
2
1)C |Ψ0〉. From the expression of H̄ there

is a 1
2 in front of this term,

1

2
〈Ψ0|(HNT

2
1)C |Ψ0〉 =

1

8

∑
pqrs

∑
ai

∑
bj

〈pq||rs〉tai tbj

〈Ψ0|{a†aa
†
baiaj}{a

†
aai}{a

†
baj}|Ψ0〉. (5.84)

Again Wick's Theorem is used. We note that from H̄ there are four cre-
ation/annihilation operators. From each T1 there are two. Since we have
two single excitation operators we have four. This means we will have non-
zero terms, these are listed here

{a†aa
†
baiaj}{a

†
aai}{a

†
baj} ={a†pa†qasara†aaia

†
baj}+ {a†pa†qasara†aaia

†
baj}

{a†pa†qasara†aaia
†
baj}+ {a†pa†qasara†aa

†
bajai}

=δpiδqjδsbδra − δpiδgjδrbδsa + δpjδqiδrbδsa − δpjδqiδraδsb.
(5.85)

This is a result we have seen before in Eq. (5.83), the only di�erence is the
amplitudes and the factor 1

2

〈Ψ0|(HNT
2
1)C |Ψ0〉 =

1

2

∑
abij

tai t
b
j〈ij||ab〉. (5.86)

The next term is 〈Ψ0|(HNT
2
2)C |Ψ0〉. HN still only have four creation/annihi-

lation operators. However now we have 8 in total from the cluster operators.
This means we cannot have fully contracted terms, which means the entire
contribution to ECCSD will be zero.

This argument will hold true for every single remaining term. Meaning
we now have an expression for the energy from Eqs. (5.79), (5.83) and (5.86)

ECCSD = E0 +
∑
ai

fait
a
i +

1

4

∑
abij

〈ij||ab〉tabij +
1

2

∑
abij

〈ij||ab〉tai tbj . (5.87)

Here all factors are known except for tai and t
ab
ij . These must be determined.

67

5.3.8 tai amplitudes

We can �nd expressions for tai by calculating 〈Ψa
i |H̄|Ψ0〉 = 0. The notation

Ψa
i means a state with one hole state and one orbital state. This will be

an excited state and we did assume orthogonality. The mathematics of this
excited state can be described as such

〈Ψa
i | = 〈Ψ0|a†iaa. (5.88)

A creation operator working to the left, on a bra, becomes an annihilation
operator. 〈Ψa

i |H̄|Ψ0〉 = 0 can be solved in the same manner as we did for
the energy. Starting with the �rst term 〈Ψa

i |HN |Ψ0〉.

〈Ψa
i |HN |Ψ0〉

〈Ψa
i |HN |Ψ0〉 =

∑
pq

fpq〈Ψ0|{a†iaa}{a
†
paq}|Ψ0〉

+
1

4

∑
pqrs

〈pq||rs〉〈Ψ0|{a†iaa}{a
†
pa
†
qaras}|Ψ0〉. (5.89)

Here the �rst term is from FN and the second term from VN . The second
term will be zero. Eq. (5.88) is inserted and Wick's Theorem applied.

⇒ 〈Ψa
i |HN |Ψ0〉 =

∑
pq

fpq〈Ψ0|{a†iaa}{a
†
paq}|Ψ0〉

=
∑
pq

fpq〈Ψ0|{a†iaaa
†
paq}|Ψ0〉

=
∑
pq

fpqδiqδap

= fai. (5.90)

〈Ψa
i |HNT1|Ψ0〉

The next term includes (HNT1)c = (FNT1)c + (VNT1)c. The ()c notation
is here applied to specify that there must be at least one contraction reaching
from HN to T1.

68

〈Φa
i |(FNT1)c|Φ0〉 =

∑
pq

∑
jb

fpqt
b
j〈Φ0|{a†iaa}({a

†
paq}{a

†
baj})c|Φ0〉

=
∑
pq

∑
jb

fpqt
b
j

{a†iaaa†paqa†baj}+ {a†iaaa
†
paqa

†
baj}


=
∑
pq

∑
jb

fpqt
b
j (δiqδabδpj + δijδapδqb)

= −
∑
j

fjit
a
j +

∑
b

fabt
b
i , (5.91)

and

〈Φa
i |(VNT1)c|Φ0〉 =

1

4

∑
pqrs

∑
jb

〈pq||rs〉tbj〈Φ0|{a†iaa}({a
†
pa
†
qasar}{a

†
baj})c|Φ0〉

=
1

4

∑
pqrs

∑
jb

〈pq||rs〉tbj({a
†
iaaa

†
pa
†
qasara

†
baj}

+ {a†iaaa
†
pa
†
qasara

†
baj}+ {a†iaaa

†
pa
†
qasara

†
baj}

+ {a†iaaa
†
pa
†
qasara

†
baj})

=
1

4

∑
pqrs

∑
jb

〈pq||rs〉tbj(δpjδqaδrbδsi

+ δpaδqjδriδsb − δpaδqjδrbδsi − δpjδqaδriδsb)

=
∑
jb

〈ja||bi〉tbj . (5.92)

In total the contribution to the amplitudes from 〈Ψa
i |HNT1|Ψ0〉 is

〈Ψa
i |(HNT1)c|Ψ0〉 = −

∑
j

fjit
a
j +

∑
b

fabt
b
i +

∑
jb

〈ja||bi〉tbj .

1
2〈Ψ

a
i |(HNT

2
1)c|Ψ0〉

Still contributions from (FNT
2
1)c and (VNT

2
1)c are calculated individually.

The number of steps in the calculation is now reduced since δij is understood
to be a result of a non zero contraction between indices i and j,

69

1

2
〈Ψa

i |(FNT2
1)c|Ψ0〉 =

1

2

∑
pq

∑
jb

∑
kc

fpqt
b
jt
c
k〈Ψ0|{a†iaa}{a

†
paq}{a

†
baj}{a

†
cak}|Ψ0〉

=
1

2

∑
pq

∑
jb

∑
kc

fpqt
b
jt
c
k (−δpkδqbδijδac − δpjδqcδikδab)

= −
∑
kc

fkct
c
i t
a
k, (5.93)

and

1

2
〈Ψa

i |(VNT
2
1)c|Ψ0〉 =

1

8

∑
pqrs

∑
jb

∑
kc

〈pq||rs〉tbjtck〈Ψ0|{a†iaa}

{a†pa†qasar}{a
†
baj}{a

†
cak}|Ψ0〉

=
1

8

∑
pqrs

∑
jb

∑
kc

〈pq||rs〉tbjtck(δpaδbrδscδqkδij + . . .

=
∑
jbs

〈ja||bc〉tbjtci −
∑
jbk

〈jk||bi〉tbjtak. (5.94)

Total

The remaining terms are calculated similarly. For our purposes we list the
result. A more complete derivation is available in Ref. [26].

0 =fai +
∑
c

fact
c
i −

∑
k

fkit
a
k +

∑
kc

〈ka||ci〉tck +
∑
kc

fkct
ac
ik +

1

2

∑
kcd

〈ka||cd〉tcdki

(5.95)

− 1

2

∑
klc

〈kl||ci〉tcakl −
∑
kc

fkct
c
i t
a
k −

∑
klc

〈kl||ci〉tcktal +
∑
kcd

〈ka||cd〉tcktdi

−
∑
klcd

〈kl||cd〉tcktdi tal +
∑
klcd

〈kl||cd〉tcktdali

− 1

2

∑
klcd

〈kl||cd〉tcdkital −
1

2

∑
klcd

〈kl||cd〉tcakl tdi .

5.3.9 tabij amplitudes

The tabij amplitudes are generated in a similar fashion. These amplitudes are
calculated by solving the equation

〈Ψab
ij |H̄|Ψ0〉 = 0. (5.96)

70

This holds true because of the orthogonality. We can describe the state 〈Ψab
ij |

in terms of creation and annihilation operators as

〈Ψab
ij | = 〈Ψ0|{a†ia

†
jaaab}. (5.97)

We can solve Eq. (5.96) starting with the contribution from HN

〈Ψab
ij |FN +VN |Ψ0〉 = 〈Ψ0|{a†ia

†
jaaab} (FN +VN) |Ψ0〉

=
∑
pq

fpq〈Ψ0|{a†ia
†
jaaab}

(
{a†paq}

)
|Ψ0〉

+
1

4

∑
pqrs

〈pq||rs〉〈Ψ0|{a†ia
†
jaaab}

(
{a†pa†qasar}

)
|Ψ0〉

=
1

4

∑
pqrs

〈pq||rs〉(δpaδqbδriδsj−

δpbδqaδriδsj − δpaδqbδsiδrj + δqaδpbδsiδrj)

=
∑
pqrs

δpbδqaδriδsj

= 〈ab||ij〉. (5.98)

The contribution from FN will be zero. The contribution from HNT1 is
more complicated and we need to evaluate

〈Ψab
ij |(FN +VN)T1|Ψ0〉 = 〈Ψ0|{a†ia

†
jaaab} (FN +VN)T1|Ψ0〉. (5.99)

These will be calculated individually. Here we will only calculate the contri-
bution from VNT1,

71

〈Ψ0|{a†ia
†
jaaab}VNT1|Ψ0〉 =

1

4

∑
pqrs

∑
kc

〈pq||rs〉tck〈Φ0|{a†ia
†
jaaab}(

{a†pa†qasar}{a†cak}
)
c
|Φ0〉

=
1

4

∑
pqrs

∑
kc

〈pq||rs〉tck(δpaδqbδrcδsjδik

− δpaδqbδrcδsiδjk − δpaδqbδrjδscδik + δpaδqbδriδscδjk

+ δpaδqkδrjδsiδbc − δpaδqkδriδsjδbc + δpbδqaδrjδscδik

− δpbδqaδriδscδjk + δpbδqaδrcδsiδjk + δpbδqkδriδsjδac

− δpbδqkδrjδsiδac − δpbδqaδrcδsjδik + δpkδqaδriδsjδbc

− δpkδqbδriδsjδac − δpkδqaδrjδsiδbc + δpkδqbδrjδsiδac)

=
∑
c

(
〈ab||cj〉tci − 〈ab||ci〉tcj

)
+
∑
k

(
〈ij||bk〉tak − 〈ij||ak〉tbk

)
. (5.100)

The rest of Eq. (5.96) can be solved in a similar manner. This is a task test-
ing stamina and determination. Here we will simply state the result, however
there is a more complete derivation using "Feynman Diagrams" available in
Appendix A.

Before we state the �nal result we must de�ne the permutation operator
P

P(ab)f(a, b) = f(a, b)− f(b, a). (5.101)

An example of this would be:

P(ab)
∑
abij

tai t
b
jfai =

∑
abij

(
tai t

b
jfai − tbi tajfbi

)
. (5.102)

Using this de�nition and solving the rest of Eq. (5.96) the expression be-
comes the following:

72

0 =〈ab||ij〉+P(ab)
∑
c

fbct
ac
ij −P(ij)

∑
k

fkjt
ab
ik +

1

2

∑
kl

〈kl||ij〉tabkl (5.103)

+
1

2

∑
cd

〈ab||cd〉tcdij +P(ij)P(ab)
∑
kc

〈kb||cj〉tacik

+P(ij)
∑
c

〈ab||cj〉tci −P(ab)
∑
k

〈kb||ij〉tak

+
1

2
P(ij)P(ab)

∑
klcd

〈kl||cd〉tacik tdblj +
1

4

∑
klcd

〈kl||cd〉tcdij tabkl

− 1

2
P(ab)

∑
klcd

〈kl||cd〉tacij tbdkl −
1

2
P(ij)

∑
klcd

〈kl||cd〉tabik tcdjl

+
1

2
P(ab)

∑
kl

〈kl||ij〉taktbl +
1

2
P(ij)

∑
cd

〈ab||cd〉tci tdj

−P(ij)P(ab)
∑
kc

〈kb||ic〉taktcj +P(ab)
∑
kc

fkct
a
kt
bc
ij

+P(ij)
∑
kc

fkct
c
i t
ab
jk −P(ij)

∑
klc

〈kl||ci〉tcktablj

+P(ab)
∑
kcd

〈ka||cd〉tcktdbij +P(ij)P(ab)
∑
kcd

〈ak||dc〉tdi tbcjk

+P(ij)P(ab)
∑
klc

〈kl||ic〉tal tbcjk +
1

2
P(ij)

∑
klc

〈kl||cj〉tci tabkl

− 1

2
P(ab)

∑
kcd

〈kb||cd〉taktcdij −
1

2
P(ij)P(ab)

∑
kcd

〈kb||cd〉tci taktdj

+
1

2
P(ij)P(ab)

∑
klc

〈kl||cj〉tci taktbl −P(ij)
∑
klcd

〈kl||cd〉tcktdi tablj

−P(ab)
∑
klcd

〈kl||cd〉tcktal tdbij +
1

4
P(ij)

∑
klcd

〈kl||cd〉tci tdj tabkl

+
1

4
P(ab)

∑
klcd

〈kl||cd〉taktbl tcdij +P(ij)P(ab)
∑
klcd

〈kl||cd〉tci tbl tadkj

+
1

4
P(ij)P(ab)

∑
klcd

〈kl||cd〉tci taktdj tbl .

See Ref.[26] for the full derivation.

5.4 Introducing denominators

The expressions for tai and t
ab
ij are complex and it is not easy to understand

how to implement these equations e�ectively. The rest of this chapter and
the next will be dedicated to simplifying Eqs. (5.95) and (5.103).

73

5.4.1 tai

Eq. (5.95) should be rewritten considerably before it is programmable. Start-
ing with a de�nition of Da

i

Da
i ≡ fii − faa, (5.104)

and remembering Eq. (5.95) we know it starts like this

0 = fai +
∑
c

fact
c
i −

∑
k

fkit
a
k +

∑
kc

〈ka||ci〉tck +
∑
kc

fkct
ac
ik + (5.105)

The term
∑

c fact
c
i can be rewritten as∑

c

fact
c
i = faat

a
i +

∑
c

(1− δca)factci . (5.106)

Doing the same with the term
∑

k fkit
a
k and inserting in Eq. (5.105) we get

0 = fai + faat
a
i +

∑
c

(1− δca)factci − fiitai −
∑
k

(1− δki)fkitak + . . .

The two terms faat
a
i and fiit

a
i are combined using the de�nition Eq. (5.104)

faat
a
i − fiitai = −Da

i t
a
i . (5.107)

This is inserted into Eq. (5.95), and moved to the other side of the equation
resulting in

Da
i t
a
i = fai +

∑
c

(1− δca)factci −
∑
k

(1− δki)fkitak + . . . (5.108)

If we perform the same procedure for tabij we can solve this iteratively until
self consistency is reached.

5.4.2 tabij

We also implement a denominator Dab
ij in Eq. (5.103), namely

Dab
ij ≡ fii + fjj − faa − fbb (5.109)

Here we want to create the term Dab
ij t

ab
ij . This is done with the same proce-

dure with the two terms P(ab)
∑

c fbct
ac
ij −P(ij)

∑
k fkjt

ab
ik from Eq. (5.103).

These two terms can be expressed in a di�erent manner

74

P(ab)
∑
c

fbct
ac
ij −P(ij)

∑
k

fkjt
ab
ik =faat

ab
ij + fbbt

ab
ij +P(ab)

∑
c

(1− δbc)fbctacij

−P(ij)
∑
k

(1− δkj)fkjtabik − fiitabij − fjjtabij .

Then the four terms where no sums are present are combined into Dab
ij t

ab
ij

and moved to the other side of the equation. This leaves another problem
which we can solve iteratively, that is

Dab
ij t

ab
ij = 〈ab||ij〉+ +P(ab)

∑
c

(1− δbc)fbctacij − . . .

Here the three dots represent the rest of Eq. (5.103).

5.4.3 Initial guess

The initial guess from where to start the iterative process can be anything.
However it is common to start an initial guess where all the amplitudes on
the right side are 0. This gives us

tai =
fai
Da
i

. (5.110)

and

tabij =
〈ab||ij〉
Dab
ij

. (5.111)

However it is also common to simply guess tai = 0. We will make this initial
guess when benchmarking the number of iterations needed.

The iterative procedure is one where tai and t
ab
ij are updated simultane-

ously, and in theory we have converged once these amplitudes stop changing.
However in practice we de�ne a convergence criteria. This is then compared
to the change in energy each iteration with the newly updated amplitudes.
We then de�ne convergence to when the energy stop changing, which should
for all intents and purposes be an equivalent criteria.

5.5 Variational Principle

The energy expression in CC contains the operator e−THeT, which is not
Hermitian. This means the variational principle no longer applies. It is
possible to use the variational principle with CC theory, but this implies a
huge complication. This also means it is possible with coupled cluster theory
to get energies lower than the true ground state energy.

75

76

Chapter 6

CCSD Factorization

In this chapter we will �nd an algorithm for a serial program to solve these
equations using the RHF basis. A serial program is one which does not run
in parallel. A lot of work has been done to reduce the number of calcula-
tions needed for each iteration. Most of this work involves the de�nition of
intermediate variables that can be calculated separately. We can simplify
the CCSD equations considerably through the use of these intermediates.

The factorization is based on the work of J. F. Stanton and J. Gauss and
is listed in an article by E. Solomonik et al. [17]. However, at the time of this
thesis there where some typos in the factorized equations, so we will repeat
the calculations. Also [19] holds information on factorization. Additional in-
formation on symmetry aspects is found in an article by P. Carsky, [18]. H.
Koch et al. also published a paper on CCSD using AOs in the equation, and
partly avoiding the AO to MO transformation, [20]. This is an alternative
to our solution.

One simpli�cation we have already discussed is the introduction of Da
i

and Dab
ij . These denominators are independent of the amplitudes, hence they

can be calculated and stored outside any iterative procedure.

77

6.1 Constructing an algorithm

When constructing this CCSD serial algorithm we need to keep a few things
in mind. First we wish to minimize the number of �oating point opera-
tions per second (FLOPS). Second we want to utilize external linear algebra
libraries to perform the calculations. Third we want the option to easily
modify the algorithm to work in parallel. This third option brings up a few
new concerns. One of which is that e�ective parallel programs are those that
minimize the communication between nodes, in part by symmetry consider-
ations. This issue will be dealt with in a later chapter in greater detail.

6.1.1 Inserting denominators

tai

First we insert Da
i into Eq. (5.90). We also insert our notation for 〈ab||ij〉

which is

Iabij = 〈ab||ij〉. (6.1)

This gives

Da
i t
a
i =fai +

∑
a6=c

fact
c
i −

∑
i 6=k

fkit
a
k +

∑
kc

Icikat
c
k +

∑
kc

fkct
ac
ik

+
1

2

∑
kcd

Icdkat
cd
ki −

1

2

∑
klc

Iciklt
ca
kl −

∑
kc

fkct
c
i t
a
k −

∑
klc

Iciklt
c
kt
a
l

+
∑
kcd

Icdkat
c
kt
d
i −

∑
klcd

Icdkl t
c
kt
d
i t
a
l +

∑
klcd

Icdkl t
c
kt
da
li

− 1

2

∑
klcd

Icdkl t
cd
kit

a
l −

1

2

∑
klcd

Icdkl t
ca
kl t

d
i . (6.2)

The calculation of tai scales as n
6.

tabij

We repeat the same procedure for the tabij amplitudes. We insert Dab
ij and

combine terms into the same sums and obtain

78

Dab
ij t

ab
ij =Iijab +

1

2

∑
kl

Iijklt
ab
kl +

1

2

∑
cd

Icdab t
cd
ij +

1

4

∑
klcd

Icdkl t
cd
ij t

ab
kl

−
∑
k 6=j

fkjt
ab
ik +

∑
k 6=i

fkit
ab
jk +

∑
c 6=b

fbct
ac
ij −

∑
c 6=a

fact
bc
ij

+P(ab){
∑
kc

fkct
a
kt
bc
ij −

∑
k

Iijkbt
a
k +

1

2

∑
kl

Iijklt
a
kt
b
l

+
∑
kcd

(Icdkat
c
kt
db
ij −

1

2
Icdkbt

a
kt
cd
ij) +

∑
klcd

Icdkl (
1

4
takt

b
l t
cd
ij − tcktal tdbij −

1

2
tacij t

bd
kl)}

+P(ij){
∑
c

Icjabt
c
i +

1

2

∑
cd

Icdab t
c
i t
d
j +

∑
kc

fkct
c
i t
ab
jk

+
∑
klc

(
1

2
Icjkl t

c
i t
ab
kl − Icikltcktablj) +

∑
klcd

Icdkl (
1

4
tci t

d
j t
ab
kl − tcktdi tablj −

1

2
tabik t

cd
jl)}

+P(ab)P(ij){
∑
kc

(Icjkbt
ac
ik − Iickbtaktcj) +

∑
kcd

(Idcakt
d
i t
bc
jk − Icdkbtci taktdj)

+
∑
klc

(
1

2
Icjkl t

c
i t
a
kt
b
l + Iicklt

a
l t
bc
jk) +

∑
klcd

Icdkl (t
c
i t
b
l t
ad
kj +

1

4
tci t

a
kt
d
j t
b
l +

1

2
tacik t

db
lj)}.

(6.3)

Calculating this scales as n8 and can go faster with the de�nition of inter-
mediates. Much of the material presented is based on the work of John F.
Stanton and Jurgen Gauss, Ref. [17].

6.1.2 [W1]

We �rst factor out and rewrite the following terms that as they stand now
are calculated for all a, b, i, j but only change when i or j changes

1

2

∑
kl

Iijklt
ab
kl +

1

2
P(ij)

∑
klc

Icjkl t
c
i t
ab
kl +P(ij)

1

4

∑
klcd

Icdkl t
c
i t
d
j t
ab
kl +

1

4

∑
klcd

Icdkl t
cd
ij t

ab
kl

=
1

2

∑
kl

tabkl

[
Iijkl +

∑
c

(
Icjkl t

c
i − Icikltcj +

1

2

∑
d

Icdkl (t
c
i t
d
j − tcjtdi + tcdij)

)]

=
1

2

∑
kl

tabkl [W1]
kl
ij , (6.4)

resulting in the new intermediate

[W1]
kl
ij = Iijkl +

∑
c

(
Icjkl t

c
i − Icikltcj +

1

2

∑
d

Icdkl (t
c
i t
d
j − tcjtdi + tcdij)

)
. (6.5)

79

The calculation of this intermediate scales as n6. The term [W1] appears once
again in our equations. These terms can also be combined and factorized
and give

P(ab)
1

2

∑
kl

Iijklt
a
kt
b
l +

1

2

∑
klc

P(ij)P(ab)Icjkl t
c
i t
a
kt
b
l

+
1

4
P(ab)P(ij)

∑
klcd

Icdkl t
c
i t
a
kt
d
j t
b
l +P(ab)

∑
klcd

Icdkl
1

4
takt

b
l t
cd
ij

=
1

2

∑
kl

(takt
b
l − tbktal)

[
Iijkl +

∑
c

(
P(ij)Icjkl t

c
i +

1

2

∑
d

Icdkl (t
c
i t
d
j − tcjtdi + tcdij

)]

=
1

2

∑
kl

(takt
b
l − tbktal)[W1]

kl
ij . (6.6)

6.1.3 [W2]

Now we combine these terms

−P(ab)
∑
k

takI
ij
kb −P(ab)

1

2

∑
kcd

Icdkbt
cd
ij t

a
k −P(ab)P(ij)

∑
kc

takI
ic
kbt

c
j

−P(ab)P(ij)
∑
kcd

Icdkbt
c
i t
d
j t
a
k

=−P(ab)
∑
k

tak

[
Iijkb +

∑
c

(
Iickbt

c
j − I

jc
kbt

c
i +

1

2

∑
d

Icdkb(t
cd
ij + tci t

d
j − tcjtdi)

)]
=−P(ab)

∑
k

tak[W2]
kb
ij

=−P(ab)
∑
k

tbk[W2]
ak
ij . (6.7)

We have now de�ned another intermediate.

[W2]
ak
ij = Iijak +

∑
c

(
Iicakt

c
j − I

jc
akt

c
i +

1

2

∑
d

Icdak(t
cd
ij + tci t

d
j − tcjtdi)

)
. (6.8)

This term scales as n6.

6.1.4 [W3]

Our next intermediate is de�ned by these two terms

P(ab)P(ij)
∑
klc

Iicklt
a
l t
bc
jk +P(ab)P(ij)

∑
klcd

Icdkl t
c
i t
b
l t
ad
kj . (6.9)

80

Since c and d are arbitrary indices we can relabel the second term. We can
also use a trick with the permutation operators where

P(ab)P(ij)f(a, b, i, j) = −P(ab)P(ij)f(b, a, i, j), (6.10)

and also the symmetry of I where

Idckl = −Icdkl . (6.11)

We pull the permutation operators outside a parenthesis in Eq. (6.9) and
obtain

= P(ab)P(ij)

(∑
klc

Iicklt
a
l t
bc
jk +

∑
klcd

Icdkl t
c
i t
a
l t
bc
kj

)
. (6.12)

Here we insert some more symmetry considerations to get

= P(ab)P(ij)

[∑
klc

tal

(
−Icikltbcjk −

∑
d

Icdkl t
c
i t
bc
jk

)]
. (6.13)

We factorize out as such

=−P(ab)P(ij)

[∑
klc

tbcjkt
a
l

(
Icikl +

∑
d

Icdkl t
c
i

)]
=−P(ab)P(ij)

∑
klc

tbcjkt
a
l [W3]

kl
ci . (6.14)

We then obtain the new intermediate

[W3]
kl
ci = Icikl +

∑
d

Icdkl t
c
i . (6.15)

This term scales as n5.

81

6.1.5 [F1]

Until now all intermediates have been four dimensional ones. Now we de�ne
our �rst two dimensional intermediate. This is de�ned from the terms

P(ab)
∑
kc

fkct
a
kt
bc
ij −P(ab)

∑
klcd

Icdkl t
c
kt
a
l t
db
ij

=P(ab)
∑
kc

fkct
a
kt
bc
ij +P(ab)

∑
klcd

Icdkl t
d
l t
a
kt
bc
ij

=P(ab)
∑
kc

takt
bc
ij

[
fkc +

∑
ld

Icdkl t
d
l

]
=P(ab)

∑
kc

takt
bc
ij [F1]

c
k. (6.16)

giving

[F1]
c
k = fkc +

∑
ld

Icdkl t
d
l . (6.17)

This intermediate is also repeated when combining the terms

P(ij)
∑
kc

fkct
c
i t
ab
jk −P(ij)

∑
klcd

Icdkl t
c
kt
d
i t
ab
lj

=−P(ij)
∑
kc

fkct
c
i t
ab
kj −P(ij)

∑
klcd

Icdkl t
d
l t
c
i t
ab
kj

=−P(ij)
∑
kc

tci t
ab
kj

[
fkc +

∑
cd

Icdkl t
d
l

]
=−P(ij)

∑
kc

tci t
ab
kj [F1]

c
k. (6.18)

This term scales as n4. Inserting the intermediates de�ned for now into the
equations for tabij results in the following

82

Dab
ij t

ab
ij =Iijab +

1

2

∑
kl

(takt
b
l − tbktal + tabkl)[W1]

kl
ij +

1

2

∑
cd

Icdab t
cd
ij

−
∑
k 6=j

fkjt
ab
ik +

∑
k 6=i

fkit
ab
jk −

∑
c6=b

fbct
ac
ij +

∑
c6=a

fact
bc
ij

+P(ab){−
∑
k

tbk[W2]
ak
ij +

∑
kc

takt
bc
ij [F1]

c
k +

1

2

∑
kl

Iijklt
a
kt
b
l

+
∑
kcd

(Icdkat
c
kt
db
ij) +

∑
klcd

Icdkl (
1

4
takt

b
l t
cd
ij −

1

2
tacij t

bd
kl)}

+P(ij){−
∑
kc

tci t
ab
kj [F1]

c
k +

∑
c

Icjabt
c
i +

1

2

∑
cd

Icdab t
c
i t
d
j

+
∑
klc

(−Icikltcktablj) +
∑
klcd

Icdkl (−
1

2
tabik t

cd
jl)}

+P(ab)P(ij){
∑
kc

(Icjkbt
ac
ik) +

∑
kcd

(Idcakt
d
i t
bc
jk)

+
∑
klc

(
1

2
Icjkl t

c
i t
a
kt
b
l − tbcjktal [W3]

kl
ci) +

∑
klcd

Icdkl (
1

4
tci t

a
kt
d
j t
b
l +

1

2
tacik t

db
lj)}.

(6.19)

6.1.6 [F2]

We will now reuse the [F1] and combine it with a few other terms

∑
k 6=i

fkit
ab
jk −

∑
k 6=j

fkjt
ab
ik −P(ij)

∑
kc

tci t
ab
kj [F1]

c
k

−P(ij)
∑
klcd

Icdkl
1

2
tabik t

cd
jl −P(ij)

∑
klc

Iciklt
c
kt
ab
lj . (6.20)

We notice that the two terms
∑

k 6=i fkit
ab
jk and

∑
k 6=j fkjt

ab
ik can be written in

terms of P(ij) and δki and we get

83

⇒=P(ij)

[∑
k

(1− δki)fkitabjk −
∑
kc

tci t
ab
kj [F1]

c
k −

∑
klcd

Icdkl
1

2
tabik t

cd
jl −

∑
klc

Iciklt
c
kt
ab
lj

]

=P(ij)

[∑
k

(1− δki)fkitabjk +
∑
kc

tci t
ab
jk[F1]

c
k +

∑
klcd

Icdkl
1

2
tabjkt

cd
il +

∑
klc

Iicklt
c
l t
ab
jk

]

=P(ij)
∑
k

tabjk

[
(1− δki)fki +

∑
c

tci [F1]
c
k +

1

2

∑
lcd

Icdkl t
cd
il +

∑
lc

Iicklt
c
l

]
=P(ij)

∑
k

tabjk[F2]
k
i , (6.21)

where [F2] is de�ned as

[F2]
k
i = (1− δki)fki +

∑
c

[
tci [F1]

c
k +

∑
l

(
Iicklt

c
l +

1

2

∑
d

Icdkl t
cd
il

)]
. (6.22)

This term scales as n5.

6.1.7 [F3]

We now combine terms within the P(ab) operator.

−
∑
c 6=b

fbct
ac
ij +

∑
c 6=a

fact
bc
ij −P(ab)

∑
kc

takt
bc
ij [F1]

c
k −P(ab)

∑
klcd

1

2
Icdkl t

ac
ij t

bd
kl

+P(ab)
∑
kcd

Icdkat
c
kt
db
ij

=P(ab)

[
+
∑
c

(1− δca)factbcij −
∑
kc

takt
bc
ij [F1]

c
k −

∑
klcd

1

2
Icdkl t

ac
ij t

bd
kl +

∑
kcd

Icdkat
c
kt
db
ij

]

=P(ab)

[
+
∑
c

(1− δca)factbcij −
∑
kc

takt
bc
ij [F1]

c
k −

∑
klcd

1

2
Icdkl t

bc
ij t

ad
kl +

∑
kcd

Idckat
d
kt
bc
ij

]

=P(ab)
∑
c

tbcij

[
(1− δca)fac +

∑
k

(
−tak[F1]

c
k +

∑
d

(
Idckat

d
k −

∑
l

1

2
Icdkl t

ad
kl

))]
=P(ab)

∑
c

tbcij [F3]
a
c . (6.23)

We de�ne [F3] from these terms as

[F3]
a
c = (1− δca)fac −

∑
k

[
tak[F1]

c
k +

∑
d

(
Icdkat

d
k −

1

2

∑
l

Icdkl t
ad
kl

)]
. (6.24)

This term scales as n5.

84

6.1.8 [W4]

Now we combine the terms inside P(ab)P(ij)

P(ab)P(ij)
∑
kc

Icjkbt
ac
ik +P(ab)P(ij)

∑
kcd

Idcakt
d
i t
bc
jk

−P(ab)P(ij)
∑
klc

tbcjkt
a
l [W3]

kl
ci +P(ab)P(ij)

∑
klcd

Icdkl
1

2
tacik t

db
lj

=P(ab)P(ij)tbcjk

[∑
kc

Icika +
∑
kcd

Idcakt
d
i −

∑
klc

tal [W3]
kl
ci +

1

2

∑
klcd

Icdkl t
db
lj

]

=P(ab)P(ij)
∑
kc

tbcjk

[
Iicak +

∑
d

Idcakt
d
i −

∑
l

tal [W3]
kl
ci +

1

2

∑
ld

Icdkl t
ad
il

]
. (6.25)

These are de�ned as [W4] and is calculated as

[W4]
ak
ic = Iicak +

∑
d

Idcakt
d
i −

∑
l

tal [W3]
kl
ci +

1

2

∑
ld

Icdkl t
ad
il . (6.26)

In this formulation symmetries where used extensively, the term scales as
n6.

6.1.9 Inserting intermediates

Inserting Eqs. (6.17), (6.22), (6.24), (6.8), (6.15), (6.26) and (6.5) then gives
the following equation

Dab
ij t

ab
ij =Iijab +

1

2

∑
kl

(tabkl + takt
b
l − tal tbk)[W1]

kl
ij −P(ab)

∑
k

tbk[W2]
ak
ij

+P(ij)
∑
k

tabjk[F2]
k
i +

1

2

∑
cd

Icdab t
cd
ij +P(ab)

∑
c

tbcij [F3]
a
c

+P(ij)
∑
c

Icjabt
c
i +P(ij)

1

2

∑
cd

Icdab t
c
i t
d
j +P(ab)P(ij)

∑
kc

tbcjk[W4]
ak
ic .

(6.27)

We can also de�ne an intermediate τabij ,

τabij = tabij + tai t
b
j − taj tbi . (6.28)

This will reduce the number of calculations required, but not by any factor
of n. Hence using this is a debate of speed versus memory. With this
intermediate the equation for T2 amplitudes look like this

85

Dab
ij t

ab
ij =Iijab +

1

2

∑
kl

τabkl [W1]
kl
ij −P(ab)

∑
k

tbk[W2]
ak
ij

+P(ij)
∑
k

tabjk[F2]
k
i +

1

2

∑
cd

Icdabτ
cd
ij +P(ab)

∑
c

tbcij [F3]
a
c

+P(ij)
∑
c

Icjabt
c
i +P(ab)P(ij)

∑
kc

tbcjk[W4]
ak
ic . (6.29)

6.1.10 Inserting into tai

If we combine the terms from tai in the following manner

Da
i t
a
i =−

∑
k

tak

[
(1− δki)fki +

∑
c

tcifkc +
∑
lc

Iicklt
c
l +

∑
lcd

Icdkl (
1

2
tcdil + tdl)

]

+ fai +
∑
c 6=a

fact
c
i +

∑
kc

Icikat
c
k −

1

2

∑
klc

tcakl

[
Icikl +

∑
d

Icdkl t
d
i

]

+
∑
kc

tacik

[
fkc +

∑
ld

Icdkl t
d
l

]
+

1

2

∑
kcd

Icdkat
cd
ki +

∑
kcd

Icdkat
c
kt
d
i . (6.30)

They reduce to

Da
i t
a
i =−

∑
k

tak[F2]
k
i + fai +

∑
c 6=a

fact
c
i +

∑
kc

Icikat
c
k −

1

2

∑
klc

tcakl [W3]
ic
kl

+
∑
kc

tacik [F1]
c
k +

1

2

∑
kcd

Icdkat
cd
ki +

∑
kcd

Icdkat
c
kt
d
i . (6.31)

This equation scales as n6. The largest scaling factor throughout our algo-
rithm now is n6 whereas prior to intermediates it was n8. This is signi�cantly
faster, but we do have eight (or seven if τabij is excluded) intermediates which

must be stored. It should be noted that tckt
d
i = 1

2(tckt
d
i − tci tdk). This can be

used to insert τabij in the equations for tai and the energy, resulting in

Da
i t
a
i =−

∑
k

tak[F2]
k
i + fai +

∑
c 6=a

fact
c
i +

∑
kc

Icikat
c
k −

1

2

∑
klc

tcakl [W3]
ic
kl

+
∑
kc

tacik [F1]
c
k +

1

2

∑
kcd

Icdkaτ
cd
ki . (6.32)

86

6.2 SSLRS

The science team of Scuseria, Scheiner, Lee, Rice and Schaefer are usually
refered to as SSLRS. This team has developed some of the most e�cient
algorithms for our purposes, see for example Ref. [65]. They have de�ned
quite di�erent intermediates, and I would like to also present their algorithm
in short for comparison. If the reader wants to develop his/her own CCSD
algorithm this would be a good alternative. See also Ref. [64] for further
details.

6.2.1 Description of algorithm

In the SSLRS algorithm the amplitude equations are de�ned with interme-
diates as follows

−Da
i t
a
i =− fai −

∑
c 6=a

fact
c
i +

∑
k 6=i

fkit
a
k +

∑
kc

fkc(2t
ac
ik − τ caik) +

∑
k

gki t
a
k

(6.33)

−
∑
c

gac t
c
i −

∑
klc

(
2[D1]

ck
li − [D1]

cl
ki

)
tcl t

a
k

−
∑
kc

[2(D2A −D2B) +D2C]kaci − 2
∑
k

[D1]
ak
ik

+
∑
kc

vkaic t
c
k −

∑
klc

vakcl (2tclki − tclik) +
∑
ljc

vjlci(2t
ac
lj − tacjl),

−Dab
ij t

ab
ij = vabij + Jabij + Jbaji + Sabij + Sbaji , (6.34)

and

ECCSD = EHF + 2
∑
ia

fiat
i
a +

∑
abij

vabij (2τabij + τabji). (6.35)

The minus signs on the left side of the equation are present due to the fact
that SSLRS use a di�erent de�nition of the denominators, noted here in the
equations are our de�nitions. Their de�nitions is equal to ours except for
this minus sign.

The term vabij is a short notation used by SSLRS for 〈ab||ij〉. It should
be mentioned that the brackets surrounding for example [D1] is a notation
where the brackets are a part of the variable. The rest of the intermediates
are now de�ned as

87

τabij =tabij + tai t
b
j , (6.36)

Jabij =
∑
c6=a

fcat
cb
ij −

∑
k 6=i

fikt
ab
kj +

∑
kc

fkc(t
cb
ij t

b
k + tabik t

c
j) +

∑
c

gbct
ac
ij −

∑
k

gkj t
ab
ik ,

(6.37)

and

Sabij =
1

2
[B2]

ab
ij − [E∗1]abij + [D2A]ijab + [F12]

ij
ab (6.38)

+
∑
kc

([D2A]cbkj − [D2B]cbkj + 2[F12]
cb
kj − [E∗1]kbcj)(t

ac
ik −

1

2
tacki)

+
∑
kc

(
1

2
[D2C]cbkj − vbckj − [F11]

bc
kj + [E11]

bc
kj)t

ak
ic

+
∑
kc

(
1

2
[D2C]cbki − vbcki − [F11]

bc
ki + [E11]

bc
ki)t

ak
cj

+
∑
cd

(
1

2
[D2]

cd
ij +

1

2
vcdij +

1

2
([E1]

cd
ij + [E1]

dc
ji))τ

ab
cd

+
∑
kc

{([D2C]kbci − vbkci)tcj − ([D2A]kbcj − [D2B]kbcj)t
c
i − ([D1]

bk
ji + [F2]

bk
ji)}tak.

The de�nition of g depends on which index is where. Remembering a is an
index indicating an occupied orbital and i is an index indicating a Fermi
hole.

gai =2
∑
b

[F11]
ab
ib −

∑
b

[F12]
ba
ib −

∑
b

[D2A]baib +
∑
bc

([D1]
ic
bc − 2[D1]

ib
cb)t

a
c (6.39)

gia =
∑
c

{2([E1]
ac
ic + [D2]

ac
ic)− ([E1]

ca
ic + [D2]

ca
ic)}. (6.40)

The rest of the intermediates in the SSLRS algorithm is now de�ned in order
of appearance.

[D1]
ab
ij =

∑
k

vabik t
k
j . (6.41)

[D2A]abij =
∑
kc

vkaci (2tkajc − takjc). (6.42)

[D2B]abij =
∑
kc

vakci t
ka
jc . (6.43)

[D2C]abij =
∑
kc

vakci t
ak
jc . (6.44)

88

[B2]
ab
ij =

∑
kl

vabkl t
kl
ij . (6.45)

[E∗1]abij =
∑
k

vakij t
b
k. (6.46)

[F12]
ab
ij =

∑
c

vabic t
c
j . (6.47)

[F11]
ab
ij =

∑
c

vbaic t
c
j . (6.48)

[E11]
ab
ij

∑
c

vcbij t
a
c . (6.49)

[D2]
ab
ij =

∑
cd

vabcdt
cd
ij . (6.50)

[E1]
ab
ij =

∑
c

vabic t
c
j . (6.51)

[F2]
ab
ij =

∑
cd

vabcdτ
cd
ij . (6.52)

6.2.2 Scaling

Speci�c notice should be paid to [D2A], [D2B], [D2C] and [F2]. These in-
termediates scale as with a factor of n6, where n is the number of orbitals.
However it is not necessary to loop over all orbitals with indices i, j, k re-
ferring to unoccupied orbitals. The indices a, b, c refer to occupied orbitals.
The scaling then reduces to n3vn

3
o. Overall Eqs. (6.33), (6.34) and (6.35) scale

as

1

2
n4vn

2
o + 7n3vn

3
o +

(
1

2
+

1

2

)
n2vn

4
o. (6.53)

It should be noted that SSLRS does propose this algorithm with the purpose
of not only low scaling, but also to avoid storage of a large number of vari-
ables. In their papers they do mention another algorithm with slightly better
scaling, but they do argue the extra needed variable storage this requires is
a worrying aspect. For this reason the SSLRS algorithm is presented like
this in this thesis.

Another positive aspect of this algorithm is the emphasis on matrix op-
erations. All the n6 and n5 scaling parts of the algorithm is designed so
that matrix multiplication libraries can be used. These libraries are often

89

specially designed to be e�cient.

The SSLRS algorithm also scales as n6, but the number of intermediates
are much larger. For this reason we chose the prior algorithm.

6.3 TCE

As we have seen there are more than one way to factorize the CCSD equa-
tions. The best factorization actually depends on the system of interest.
This has prompted the interest in the Tensor Contracted Engine, TCE.

TCE is an automated code generator for computational chemistry meth-
ods. Once the system of interest is known, the TCE aims to construct the
optimal code. We will not go in detail on TCE, but additional information
can be found in Ref.[57].

90

Chapter 7

Comments Prior to

Implementation

In this chapter we discuss a few external libraries used in the implementa-
tion and how they work. Also we will discuss a few guiding principles we
will apply to our implementation later. We will mainly discuss armadillo,
MPI and general parallel programming. We will also mention OpenMP and
external math libraries. The external math library we will use is Intel MKL.
References are provided inside each section.

7.1 Armadillo

Armadillo [30] is a C++ linear algebra library. The library is designed to
be similar to Matlab, Ref. [?], in syntax. It provides good speed relative to
other libraries and makes it easy to utilize matrix or vector multiplications in
an e�cient way. The armadillo documentation is available in [30]. Armadillo
is also available for other programming languages, but we will strictly focus
on the C++ version.

7.1.1 Armadillo Types

Armadillo has its own objects. We will use four objects in armadillo. The
�rst three are vector, matrix and cube. These are simply put one, two and
three dimensional arrays de�ned by standard to contain numerical values of
double precision. The last is a �eld. A �eld in armadillo is a two dimensional
array that can contain other things than numerical values. A �eld can contain
things like strings, vectors, matrices or cubes. Anything that can be used in
combination with the "=" operator and a copy, like memcpy(). A �eld can
be de�ned like this:

1 f i e l d <mat> A;

91

This de�nes a two dimensional �eld of matrices, meaning a four dimensional
array. The �eld is called "A". This can be accessed by �rst two indexes
for the �eld and next two indexes for the matrix. The element A(0,1) for
example is the matrix element with indices 0 and 1 in the �eld. The quan-
tity A(0,1)(2,3) is a double precision number with indices 2,3 in the matrix
located in indices 0,1 in the �eld A.

7.1.2 Matrix Operations

Matrix multiplication is very easy to implement with armadillo. If there are
three matrices de�ned, A, B and C, we can easily call on matrix multiplica-
tion by stating:

1 C = A ∗ B

Other operations available are additions, subtractions, element wise multi-
plications and element wise divisions. These are accessed in order like this:

1 C = A + B;
2 C = A − B;
3 C = A % B;
4 C = A / B;

Element wise multiplications means that an element in matrix C is calculated
as such

C(i, j) = A(i, j)×B(i, j)

There is also a useful function called accu(C). This is an accumulation func-
tion that adds together all the terms in C.

accu(C) =
∑
ij

C(i, j) (7.1)

, where C can be a vector, matrix or a cube. We can combine the
accumulation function with element wise multiplication.

1 D = accu (A % B)

This produce a double precision value. We can use the combination of ele-
ment wise multiplication with accumulation in the term

Dab
ij t

ab
ij ←

∑
cd

Icdabτ
cd
ij . (7.2)

If we store I as a �eld with indexing I(a,b)(c,d) and τ cdij is stored as a �eld
with indexing τ(i,j)(c,d) then we can use element wise multiplication and
accumulation to calculate Eq. (7.2).

92

∑
cd

Icdabτ
cd
ij = accu(I(a, b)%τ(i, j)). (7.3)

Here I(a, b) is a matrix and τ(i, j) is a matrix of same size. A major pos-
itive side of armadillo is that it is possible to link other e�ective external
mathematical libraries to perform the actual matrix operations. We can link
BLAS, MKL, OpenBLAS, [52, 51], and many others. Armadillo initiates
calls to these libraries automatically and e�ectively if installed properly. We
then get the e�ectiveness of the best external mathematical libraries, and
the simplicity of the armadillo syntax.

7.1.3 Element access

An interesting feature when using armadillo is the way we access elements.
In C syntax one usually allocates an array using malloc(). This gives great
control over memory access, as we can have even multidimensional arrays
sequential in memory.

In armadillo we usually allocate a matrix with the statement matA. We
can have a �eld of matrices with field < mat >. However each element in
the �eld must be allocated on its own. Also armadillo has a few checks in
place to ensure a bug free working code. Based on performance and experi-
ence, this is not e�cient. The most e�ective code is one that does not check
for bugs at all.

Other types in armadillo such at mat or vector is quite e�cient. When
using this library it is important to be aware that not all types in armadillo
are as e�cient when it comes to memory access. Usually it is best to stick
with one- or two-dimensional arrays as much as possible, even make tempo-
rary vectors or matrices to avoid accessing a �eld to much. Trial and error is
thus a good tool if we want to use armadillo for high performance computing.
This comment applies to armadillo at the time of this thesis. The armadillo
developers are continuously working to improve the performance.

Another problem we encountered in our implementation is that OpenMPI
does not take armadillo types in its communication functions. Armadillo
does have functions that can help modestly in this regard, like the function
.memptr(). However, we found it was not an optimal combination.

7.2 Parallel Computing and OpenMPI

The Open Source Message Passing Interface, OpenMPI, will be used in our
implementation, Ref. [48]. OpenMPI is a library that makes parallel com-
puting much easier. It removes the need for low level parallel programming.

93

In this section we will discuss brie�y why we need parallel computing and
what it is.

7.2.1 The CPU

The CPU, or the Central Processing Unit, is the brain of the computer. This
unit processes instructions, many of which require transfer from or to the
memory on a computer.

The CPU integrates many components, such as registers, FPUs and
caches. The CPU has a "clock" that synchronizes the logic units within
the CPU each clock cycle to process instructions. Among other things this
clock allows us to accurately measure the time used from one section of the
program to another.

Instructions are put in a pipeline for the CPU to execute. While the
CPU is processing instructions, it also looks down the pipeline, to see what
instructions it will need to perform soon and what values it will need. These
values can then be pre-emptively placed in the cache. In the cache they are
faster to access when they are needed.

If the CPU makes a wrong guess on for example an if test, the pipeline
is �lled with instructions that should not be processed. This also means the
cache is �lled with useless values. We call this a pipeline �ush. This slows
down performance.

A supercomputer consists of nodes. Each node has a number of CPUs.
On the Abel super computing cluster at the University of Oslo, each node
has 16 CPUs.

7.2.2 The Compiler

The compiler allows the CPU to understand easy syntax such as C++. The
compiler takes the code as input and produce the .o �le. In the .o �le there
are instructions for the CPU to process. The CPU only understands the .o
�le, as such we must always compile our code. The compiler also creates the
pipeline. We want the pipeline to be as optimal as possible, for this reason
we need a good compiler.

A normal compiler performs a three step procedure. Step one is to check
the code for syntax errors, include problems and other basics.

Step two is to translate the code into an intermediate language. Here
optimizations are performed. If we wrote a code segment like this

94

1 double A, B, C;
2 A = 50 ;
3 B = 20 ;
4 C = B ∗ B ∗ B;
5
6 // More c a l c u l a t i o n s
7
8 B ∗= A;

The compiler will take note that the variable A is de�ned early on, and
used much later. The quantity A is de�ned, stored into memory, then read
from memory and �nally it takes part in calculations. The compiler can
rearrange our code to optimize this segment

1 double B, C;
2 B = 20 ;
3 C = B ∗ B ∗ B;
4
5 // More c a l c u l a t i o n s
6
7 double A = 50 ;
8 B ∗= A;

Here the variable A is de�ned and used directly. It is de�ned were we
need it and ready in the pipeline for calculations. If the pipeline for some
reason is �lled with wrong instructions, we will not take advantage of opti-
mizations such as this.

Step three is to output the .o �le. Compilers are extremely complex, we
should mention this was a brief and simpli�ed description.

7.2.3 Data

Data is stored in memory as a sequence of 0s and 1s. One 0 or 1 occupies one
bit. 8 bits is one byte. The memory is read as bytes. Even a bool variable
which can either be true or false is one byte. A bool of value true is stored
in memory as 00000001.

Other types of data have di�erent sizes in memory. An int is 4 bytes,
a �oat 4 bytes and a double 8 bytes. Data is usually stored in memory, or
rapid access memory, RAM. Here we can access it faster than from disk.

On a supercomputer, each node has a �xed number of memory available.
The CPUs on the node can share this memory, or we can distribute it into
smaller chunks were each CPU has its own unshared memory.

95

7.2.4 Bandwidth

The bandwidth is a measure of number of bytes transferred per second. The
bandwidth is a feature of the hardware, we will look at it as a constant value.

If we want to send an array of 100 doubles from one computer to another,
this will be 800 bytes. If we sent it as �oats, it would be 400 bytes. If we
assume the bandwidth is same, it would be twice as fast to transfer �oats
than doubles.

However, we will always use double precision values. But also in situa-
tions where we can reduce the size of the array, if it for example is symmetric.
If we reduce the size by half, to 50 doubles or 400 bytes, we have saved much
time in communication.

The communication inside a node is quite fast on a supercomputer. How-
ever when we need to use multiple nodes at once there are challenges. The
nodes are not at the same physical distance to each other, this means we
cannot achieve the same bandwidth between di�erent nodes. The Abel su-
percomputer has nodes stacked in a rack. The nodes inside the same rack
are closer. The bandwidth is usually higher in communication inside a rack,
relative to communication between nodes in di�erent racks.

7.2.5 Designing Parallel Algorithms

When we design a parallel algorithm we look for hotspots. These are compu-
tationally intensive areas, and a parallel implementation should be designed
to work good around such areas.

However we must be careful, as communication can sometimes overtake
computation. This can happen even in computation intensive areas. A
measure known as Granularity is known as the ratio of computation versus
communication.

7.2.6 Performance

A serial algorithm is evaluated by its runtime. The runtime of a parallel pro-
gram depends on input size , number of processors and the communication.
This is a multidimensional problem, and not so easy to measure.

Sometimes we can use two di�erent algorithms to solve the same prob-
lem. One algorithm may be more e�cient in serial, while the other is more
e�cient in parallel.

96

To measure how good performance our parallel algorithm gives, it must
be measured against the best serial algorithm for the given problem. This is
true even if the best serial algorithm is in no way close to the same as the
parallel algorithm.

One could imagine a serial program that solves a problem in 10 seconds,
but is impossible to run in parallel. And we can imagine another algorithm
that solves it in 100 seconds, but runs easily in parallel. If we run the second
algorithm with 5 CPUs, and say this takes 20 seconds. It would still be
better to use the �rst serial algorithm. The parallel performance can only be
described as not good. This is true until you can run the second algorithm
in less time than 10 seconds.

A good model of performance we will use is the Speedup, S, de�ned as

S(p) =
T0
Tp
. (7.4)

With ideal performance S(p) is linear, preferably S(p) = p. As we noted in
section 7.2.1 values needed for calculation are pre-emptively placed in the
catche. If a CPU cannot �t all values needed for calculations in the catche,
the CPU must get these values from main memory. This slows down perfor-
mance considerably.

We consider a large array we want to use in calculations. It is twice as
large as the catche. If we introduce two CPUs, we can split the array in two.
Each CPU can then place half the array in its catche. We will then avoid
the performance loss from memory accessing. This creates the possibility
of super linear scaling. This is a situation where we double the number
of CPUs, and get more than a doubling in performance. Figure 7.1 is an
illustration of di�erent types of scaling.

7.2.7 Overhead

If we try to solve a problem using two processor, it will normally not be
twice as fast as it would be on one processor. This is because of overhead.
Overhead are things like wasted computations, communication and latency.

Wasted computation would be additional computations required for run-
ning the algorithm in parallel. Latency is the time interval required to initiate
a communication, and also to tell the processors that the communication is
completed.

Runtime in a serial program is often denoted as TS . The time from the
�rst processor to start, until the last processor exits, is often noted a parallel

97

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

18
Examples of possible scaling

Processors

S
c
a

lin
g

,
S

Non−linear

Linear

Super Linear

Figure 7.1: Illustration of possible scaling plots. Linear, Super linear and
non linear is plotted.

runtime, TP . The overhead, TO, can then be described as

TO = pTP − TS , (7.5)

where p is the number of processors. Overhead is commonly increased as we
increase the number of processors.

7.2.8 General Parallel Guidelines

For this implementation we will use a few simple guidelines with MPI. First
we want to minimize the number of initiated communications. This is to
reduce latency. When a communication is initiated, processors are synchro-
nized. This means all processors enter into an MPI function at the same
time. If one CPU is faster than another, this CPU will have to be idle and
wait for the others to reach the communication function. Also when exiting a
communication, various CPUs do not exit at the same time. This is another
reason for minimizing the number of synchronizations.

Second we want to minimize the number of bytes to be communicated,
mainly through symmetries. Third we want to use OpenMPI, which has
optimized functions for communication implemented. In Appendix A we list
many of these functions, with a short description of what they do.

7.2.9 Optimizing Communication

We will not go in detail on how the MPI functions are optimized. A good
book on the subject is [49]. We will only entertain a small example.

98

Figure 7.2: Illustration of two scenarios. Scenario one is a naive implemen-
tation of a broadcast. Scenario two is one example on how performance can
be improved.

This example is illustrated in �gure 7.2. Say we have four processors. We
want to broadcast a message from processor 1 to all the others. We distin-
guish the �rst processor by its rank, it is rank 1. If rank 1 sends its message
to rank 2, then rank 3 and then rank 4, there must be three communications
performed by rank 1. One communication must wait for the other to �nish
in this example.

However, if rank 1 sends its message to rank 2. And then rank 1 sends
to rank 3 at the same time as rank 2 sends to rank 4, there has only been
two individual communication procedures by rank 1. This gives a better
performance.

Each vertical line in �gure 7.2 represents one send and recieve with MPI.
A MPI_Send and MPI_Receive scales as

t = ts +mtb. (7.6)

Here ts is the startup time, tb is the bandwidth and m is the number of bytes.
In scenario one we would be performing (P − 1) such send/receives, where
P is the number of MPI processes

T1 = (P − 1)× (ts +mtb). (7.7)

In scenario two we still perform send/recieves, but since they can now be
done simontaniously the number of send/recieves scales as dlog2(P)e.

T2 = dlog2(P)e × (ts +mtb). (7.8)

99

Ideally we do not want the number of sends/recieves performed by one CPU
to increase at all when we increase the number of processors.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

P

N
u

m
b

e
r

o
f

s
e

n
d

s
/r

e
c
ie

v
e

s

Communication of scenario one versus scenario two

Scenario one

Scenario two

Figure 7.3: Illustration of communication in the two scenarios. Plotted are
the number of send/recieves that must be performed.

We also perform performance tests of the actual performance on abel of
the OpenMPI broadcast function. Results are presented in �gure 7.4. We
notice there are indeed optimizations present from the non linear scaling.

0 20 40 60 80 100 120 140
15

20

25

30

35

40

45

50

T
im

e
 [

s
]

CPUs

100 MPI Broadcasts using different number of CPUs

Figure 7.4: Illustration of actual communication with di�erent number of
CPUs. Time is measured for 100 Broadcasts with 8× 704 bytes.

100

7.2.10 Optimizing Work Distribution

Also in parallel programming it is important that all processors get assigned
the same workload. We think of the workload as a series of jobs that can be
executed in parallel.

First we must de�ne what is one job and second we must distribute these
jobs among processors. Imagine running the following calculation in parallel

K =
N∑
ijkl

XijYklZlk. (7.9)

We �rst factorize it as

Z =

N∑
ij

Xij ×
N∑
kl

YklZlk. (7.10)

We will look at two possible de�nitions of one job in this scenario. First, we
de�ne a job by its job ID. This job ID can for example be expressed as a
function of i and j. For example

job_ID = i+ j. (7.11)

If we choose this de�nition we have N ×N jobs to distribute. Alternatively
we can de�ne a job ID as a function of i, j, k and l. For example,

job_ID = i+ j + k + l. (7.12)

We would then have N4 jobs to distribute. If we have N4 jobs, we can use
N4 CPUs at max. If we however chose to prior job de�nition, we could
only use N2 CPUs. In general we want to have as many jobs as possible to
distribute, but sometimes this can lead to additional communication.

Another important feature is to optimize the job distribution. If we chose
one job_ID to be expressed by i and j, we can visualize the job_ID in a
matrix. Each column is a di�erent index i, and each row is an index j. The
matrix elements are the job_IDs. If we use N = 4 and Eq. (7.11) we would
get

0 1 2 3

1 2 3 4

2 3 4 5

3 4 5 6




101

We want all jobs to have a di�erent ID. We rede�ne the job_ID to be

job_ID = i×N + j. (7.13)

Using this de�nition our matrix of job_IDs becomes

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15




Each matrix element represent a job_ID. Here each job has got its unique
ID, and it is easier to distribute. When we distribute work we must use
the MPI rank and total number of MPI processes p. For example we can
de�ne a condition for each processor that must be true if the processors are
to perform the job

1 i f (job_ID % p = rank) {
2 // Perform job
3 }

From the perspective of our CPUs we can use this relation to identify our
job distribution. Noted now in the matrix is what processor performs which
job. We assume we have p = 8.

0 1 2 3

4 5 6 7

0 1 2 3

4 5 6 7




We see the job distribution is optimal, because the amount of work for all
CPUs are identical. If we used the job_ID de�ned in Eq. (7.11) the amount
of work for each processor would not be the same. This is a sub-optimal
work distribution.

7.2.11 Why Parallel

Constructing a parallel program seems like quite the challenging feature.
Every year there are new processors released with improved performance.
However, there is a limit on the CPU. The problem with great performance
CPUs is that their power consumption is generally very high. A CPU with
twice the performance generally needs 3 or 4 times the power, according to
a lecture from Intel on parallel programming, [53]. It is therefore much more

102

feasable to have several CPUs with less performance, than one high perfor-
mance CPU.

So not only does parallel programming enable us to perform calculations
faster and on larger systems, it also requires less power. Power consumption
is the limiting factor in CPU performance today. Parallel programming is
thus very important, and likely to become even more important in the future.
On a sidenote, this is a reason why GPUs have become so popular, GPUs
are optimized for performance per watt. Christo�er Hirth wrote extensively
about this in his thesis, [26]. His principles has not been incorporated in our
implementation, but is a likely source of further performance gains.

7.3 OpenMP

OpenMP is another library for parallel programming. It is developed by
Intel and can be activated in most compilers. OpenMP use shared memory
model. Here the main memory is available on all processors. The key word
here is main memory, as each processor has its own cache. OpenMP is very
easy to get started with. We will not be using it, but more information is
available in Ref. [50].

7.4 External Math Libraries

External Math Libraries are optimized for performance. They have built-in
functions to handle matrix-matrix multiplications, vector-matrix multiplica-
tions, and similar problems. The best libraries are the likes of OpenBLAS,
Ref. [51], and Intel MKL, Ref. [52]. For our implementation we will make use
of MKL on the Abel computing cluster. These libraries often give a huge
performance gain in matrix operations, relative to a naive for-loop imple-
mentation.

We also mention that MKL comes with a parallel version, in where it
makes use of OpenMP. Both these libraries are developed by Intel. For our
purposes we only made use of the serial version.

103

104

Chapter 8

Implementation

In this chapter we will discuss the implementation of all methods discussed
in the previous chapters. We will implement them all in one program. We
want to give our program a few positive features. First, we want people who
know nothing about programming to be able to make use of our program.
A background in chemistry is ideal for making use of quantum chemistry
methods. However, a background in chemistry does not always include pro-
gramming. For this reason, we encourage the chemistry community to look
into the complete package presented in this chapter. Second, we want it to
be e�ective, and go in parallel.

This chapter is divided into six sections. First we look at how a program
user can give input and run the program. Next we examine the general
structure. The following four sections discuss the details of HF, AOtoMO,
serial CCSD and parallel implementation of CCSD. All ideas, code and wise
remarks in this chapter are written from scratch by the author. The im-
plementation is of course not the only one possible, for this reason we also
include some citations to alternative implementations were appropriate.

8.1 Input File

This section will deal with the user friendly part of our program. This means
easy input. We must be able to de�ne what method to use, what atoms and
where they are placed and other input variables. We want these to be de-
�ned in a separate text�le, to ensure the user never needs to recompile or
edit any code. The input �le must be named "INCAR".

An example of an input �le is given in �gure 8.1. This is the only �le
we need in order to change the system or method in use. Our program uses
the standard fstream library to read the text�le. We then go through it
searching for keywords. The keywords are de�ned to be the leftmost word

105

Figure 8.1: Example of input �le for our program

in each line.

Basis_Set is the �rst keyword. Here we can choose from a variety of
basis sets and the program will make use of this. The current options are
STO-3G, 3-21G, 4-31G, 6-31G, 6-311ss, 6-311-2d2p and 6-311-3d3p. Most
of basis sets are implemented for all atoms for which they are available.

The next keyword is Method. Here the choices are HF, CCSD, CCSDT-
1a, CCSDT-1b, CCSDT-2, CCSDT-3, CCSDT-4 and CCSDT. The CCSDT
part will be discussed in the next chapter.

The keyword convergence_criteria is de�ned to be 10n, where n is given
in the text�le. As an example, −8.0 gives a convergence criteria of 10−8.

106

The same convergence criteria is used for all methods.

The variable Relax_Pos is meant to call a relaxation procedure, but this
is not implemented in this version of the program.

The quantity use_angstrom gives the user the option to give atomic co-
ordinates in angstrom, instead of atomic units. The options here are true
or false. If it is set to true the coordinates are transformed to atomic units
inside the program.

print_stu�es is a variable that gives the user the option if we want extra
values printed. If this is set to true there are several interesting numbers
printed during calculations. If this is set to false we only print the �nal en-
ergy. This option is added for a situation where we want to perform several
hundred smaller calculation. Freeze_Core is an option available for CCSD.
This will freeze the core electrons.

The next few lines give the atoms and their positions. The �rst letter is
used to determine the number of electrons and the charge of the nucleus or
nuclei. The program does not deal with ions.

The input �le stops searching for keywords once they are all found. Hence
the user is free to put comments in the input �le, as long as they are not
placed next to keywords or inside the ATOMS section.

8.2 General Code Overview

In this section we describe the general overview of the code. We will present
this as �gures, and �ll inn the blanks throughout the remaining sections.
Each class will be described by its input, output and internal workings.

The �rst class in use is the initializer. This class takes the input from
main and makes sure we use it correctly. If angstroms is used as units, the
coordinates are transformed to atomic units. If we want extra print options,
this is ensured here. We also de�ne a Hartree Fock object in this class, since
all methods in computational chemistry generally start with a HF calcula-
tion.

We then make sure the correct method is called, and pass the HF object.
For this reason we drew an arrow from HF to initializer only in �gure 8.2,
since it is now passed as an object to the other methods.

107

Figure 8.2: Code structure

8.3 Hartree Fock

In this section we discuss the HF implementation in detail. Our Hartree
Fock implementation is grounded in the class hartree_fock_solver. The
main function is called Get_Energy. In this function we will calculate the
HF energy. The main outlay can be seen in �gure 8.3.

108

Figure 8.3: Basic Outlay of HF Implementation. First column is what action
is done, second column is in what class this action takes place

The code is described in the text. We have also included key lines from
the code itself to better illustrate the implementation.

Filling numbers from EMSL

1 // Set Matrix S i z e s
2 matr ix_s ize_setter matset (Z , Basis_Set , n_Nuclei) ;
3 Matrix_Size = matset . Set_Matrix_Size () ;
4
5 // F i l l numbers from EMSL
6 Fil l_Alpha Fy l l (n_Nuclei , Z , Basis_Set ,
7 Matrix_Size , matset . Return_Max_Bas_Func ()) ;
8 alpha = Fy l l . Fyll_Opp_Alpha () ;
9 c = Fy l l . Fyll_Opp_c () ;
10 n_Basis = Fy l l . Fyll_Opp_Nr_Basis_Functions () ;
11 Number_Of_Orbitals = Fy l l . Fyll_Opp_Antall_Orbitaler () ;
12 Potenser = Fy l l . Fyll_Opp_Potenser () ;

109

The �rst procedure performed in this function is to call the matrix_size_setter
class. We make an object of this class and send the basis set in use and which
atoms are in play. This class then returns how large our arrays must be. We
then allocate these arrays.

The next step is going to the �ll_alpha class. This class contains data
from EMSL, and �lls up this data in arrays. The array alpha is �lled with
values for αi, the array c is �lled with values of ci and Potenser is �lled
with the angular momentum. We also make a one dimensional array, Num-
ber_Of_Orbitals, which holds information on how many basis functions are
in use for a speci�c atom. The array n_Basis holds how many primitives
each of these basis functions consist of.

Normalizing GTOs

1 // Normalize c o e f f i c i e n t s from EMSL
2 Normalize_small_c () ;

The next step is to multiply in the normalization constant. This is mul-
tiplied in with the array c, through the function Normalize_small_c. In this
function we have implemented the equations from section 4.5.

Overlap Integrals

The next step is to make an object of the class hartree_integrals. Inside
this class we will eventually calculate all the integrals we need. However the
�rst step is to �ll up an array of Eijt . These values are present in all our
integrals. For this we use Eqs. (4.41), (4.43) and (4.44). The values for Eijt
will be calculated for all combinations of two primitive GTOS. This enables
us to reuse the values in all our integrals, even the electron-electron repulsion.

1 // Pr e ca l c u l a t i on s
2 HartInt . Fi l l_E_ij () ;
3
4 // Overlap
5 O = HartInt . Overlap_Matrix () ;

We then calculate the integrals. The overlap is stored in a matrix S and
is calculated using Eq. (4.42).

110

Kinetic Energy

The two index integrals are stored in a matrix EK. EK consists of our kinetic
energy and the nuclei-electron interaction.

1 // One e l e c t r on opera tor
2 EK = −0.5∗HartInt . Kinetic_Energy ()+
3 − HartInt . Nuc le i_Elect ron_Interact ion () ;

The kinetic energy is calculated using Eq. (4.76).

Hermite Integrals

For the nuclei-electron interaction we need to calculate the Hermite Integrals,
Rtuv

n. We make a new function to calculate these called Set_R_ijk. This
function implements the equations given in Eqs. (4.117), (4.118), (4.119)
and (4.120). We include the implementation of Eqs. (4.117) and (4.118).
We put the values in a global four dimensional array R_ijk.

1 void Hart ree_Integra l s : : Set_R_ijk (double p , int t , int u , int v ,
rowvec R1 , rowvec R2)

2 {
3 int t_max , nn , i , j , k , t t = t , uu = u , vv = v ;
4 t_max = t+u+v ;
5 double Boys_arg ;
6 rowvec Rcp (3) ;
7 Rcp = R1−R2 ;
8 Boys_arg = p∗dot (Rcp , Rcp) ;
9 Boys_arg = Boys (Boys_arg , 0) ;
10
11 // I n i t i a l i z e R^n_0,0 ,0
12 for (nn=0; nn<(t_max+1) ; nn++){
13 R_ijk . at (nn) (0 , 0 , 0) = pow(−2∗p , nn) ∗ F_Boys(nn) ;
14 }
15
16 // F i l l up R^n_i ,0 ,0
17 for (i =0; i<t t ; i++){
18 for (nn=0; nn<(t_max−i) ; nn++){
19 R_ijk . at (nn) (i +1 ,0 ,0) = Rcp (0) ∗ R_ijk . at (nn+1) (i , 0 , 0) ;
20 i f (i > 0) {
21 R_ijk . at (nn) (i +1 ,0 ,0) += i ∗ R_ijk . at (nn+1) (i −1 ,0 ,0)

;
22 }
23 }
24 }
25
26 // Rest o f Set_R_ijk f unc t i on

We here make use of the Boys function.

111

Boys Function

The function that calculates a value for the Boys function is called Boys.
We have two equations we can use, Eq. (4.98) and Eq. (4.100). One works
for small x, the other for large x. We de�ne everything less than x = 50 to
be small, and everything greater or equal to 50 to be large. We include the
implementation of large x.

1 i f (x > 50) {
2 Set_Boys_Start (N) ;
3 F = Boys_Start / pow (2 . 0 , N+1) ∗ s q r t (M_PI/pow(x , 2∗N+1)) ;
4 }

For small x we Taylor expand around zero. We choose M = 100 in Eq. (4.98)
for the Taylor expansion.

1 else {
2 double F=0, sum=0;
3 int M;
4 for (int j =0; j <100; j++){
5 sum = pow(2∗x , j) ;
6 M = 2∗N+1;
7 while (M < (2∗N+2+2∗ j)) {
8 sum /= M;
9 M += 2 ;
10 }
11 F += sum ;
12 }
13 F ∗= exp(−x) ;
14 }

We then use the recursive relation in Eq. (4.101).

1 F_Boys(N) = F;
2 for (int i = N; i > 0 ; i−−){
3 F_Boys(i −1) = (2∗x∗F_Boys(i) + exp(−x)) /(2∗ i −1) ;
4 }

We are left with designing a value to N. N denotes the starting Fn value,
from which we will iterate down to the approximate solution. Popular here is
putting N as some function of angular momentum, like N = 6× l. However
we just put it to 30. In this value we were able to recreate all the benchmark
values in Refs. [38] and [39]. These articles discuss the numerical calculation
of the Boys function. Using N = 30 our results were also in agreement with
the rest of the Computational Physics Group.

Nuclei-Electron Interaction

With these functions we can implement nuclei-electron interaction as given
in Eq. (4.107). We add these into the array EK.

112

Electron-Electron Interaction

The electron-electron repulsion integrals are stored in a four dimensional
�eld, �eld_Q. They are calculated through a function called Calc_Integrals_On_The_Fly.
This function takes the input of four orbitals, i, j, k, l, and returns its value
for 〈ij|kl〉. The function is an implementation of Eq. (4.113), also using Eq.
(4.114).

1 double Calc_Integrals_On_The_Fly (int orb1 , int orb2 , int orb3 ,
int orb4)

2 {
3 int i , j , k ,m;
4
5 // Figure out what atom the AO be l ong s to , need atomic

p o s i t i o n
6 i = Calc_Which_Atom_We_Are_Dealing_With(orb1) ;
7 j = Calc_Which_Atom_We_Are_Dealing_With(orb3) ;
8 k = Calc_Which_Atom_We_Are_Dealing_With(orb2) ;
9 m = Calc_Which_Atom_We_Are_Dealing_With(orb4) ;
10
11 // Here we c a l c u l a t e the two e l e c t r on i n t e g r a l s
12 // We have a l r eady s t o r ed E_ij^ t so we reuse t h e s e
13 // Symmetry con s i d e ra t i on s are app l i e d e l s ewhere .
14
15 int E_counter1 , E_counter2 ; // These ensures we ge t the

r i g h t E_ij^ t
16 int n , p , o , q ; // Index f o r p r im i t i v e GTO
17 double temp = 0 ;
18 E_counter1 = E_index (orb1 , orb2) ;
19 for (n=0; n<n_Basis (orb1) ; n++)
20 {
21 for (p=0; p<n_Basis (orb2) ; p++)
22 {
23 E_counter2 = E_index (orb3 , orb4) ;
24 for (o=0; o<n_Basis (orb3) ; o++)
25 {
26 for (q=0; q<n_Basis (orb4) ; q++)
27 {
28 temp += c (orb1 , n) ∗c (orb2 , p) ∗c (orb3 , o) ∗c (orb4

, q) ∗
29 HartInt .

E lect ron_Electron_Interact ion_Sing le

30 (orb1 , orb3 , orb2 , orb4 ,
31 i , j , k , m, n , o , p ,
32 q , E_counter1 , E_counter2) ;
33
34 // E_t^ i j i s s t o r ed f o r x , y , z d i r e c t i o n
35 // Hence +3 on the counter
36 E_counter2 += 3 ;
37 }
38 }

113

39 E_counter1 += 3 ;
40 }
41 }
42 return temp ; // temp i s the va lue o f < i j | k l>
43 }

We also take advantage of the eighfold symmetries, written our in Eqs.
(3.19) and (3.20). We constructed the code like this originally to have the
option to not store these integrals at all, and instead calculate them as
needed. This would be a game changer in terms of what calculations are
possible, since memory would now be scaling as n2 instead of n4. However we
later decided on a memory distribution model was su�cient for our purposes,
since we want to use coupled cluster. Coupled Cluster use more memory than
HF, so the system size is restricted as is.

Parallel Implementation and Memory Distribution

The hotspot in HF is the two electron integrals. We are not looking to make
an optimized HF solver, but we must run this part of the calculation in par-
allel.

We want the workload of the integrals 〈ij|kl〉 distributed for a given in-
dex i and j. We only calculate one version of each symmetric term.

1 field_Q . s e t_s i z e (Matrix_Size , Matrix_Size) ;
2 for (int i = 0 ; i < Matrix_Size ; i++)
3 {
4 for (int j = 0 ; j < Matrix_Size ; j++)
5 {
6 // Leave par t s o f the f i e l d un− i n i t i a l i z e d
7 // s i z e = number o f MPI procs
8 // rank = my MPI rank
9 i f ((i+j)%s i z e == rank)
10 {
11 field_Q (i , j) = ze ro s (Matrix_Size , Matrix_Size) ;
12 }
13 }
14 }

The two electron integrals are a part of the Fock matrix calculation.
We want to run this also in parallel, so ensure we can keep the integrals
distributed in memory. We remember the Fock matrix was dependant upon

∑
kl

〈ij|kl〉, (8.1)

and

114

∑
kl

〈il|kj〉. (8.2)

Because of this we de�ne �eld_Q to store the integrals as such

field_Q(i, k)(j, l) = 〈ij|kl〉. (8.3)

We place the two indexes to be swapped in the matrix part of our armadillo
�eld. We then store a N3 sized array of temporary values, F_temp(i,j,k).
We then add the terms together in the correct order to produce Fij . Here
we can use functions like MPI_Reduce, or make our own implementation of
this function to produce the same result.

The important feature is that each processor only calculates terms based
on the index i and k. This enables us to leave the indexes not in use in
the �eld unde�ned, thus distributing the N4 memory over all our P MPI
processors in use (MPI procs). Each processor then only stores N4

P doubles.
The amount of bytes for communication scales as N3 doubles.

However we earlier calculated the integrals with a work distribution of
indexes i and j. This work distribution makes it easier to use symmetries
to avoid recalculation of symmetric terms. We therefore also introduce a
communication procedure where we reshu�e the terms in �eld_Q among
the MPI procs. The amount of bytes for communication here is 1

8N
4, and

must be done using MPI_Alltoallw or a similar implementation producing
an identical result. Our HF implementation is not particularly optimized.
Comments on we could optimize this implementation is available in the Fu-
ture Prospects chapter.

Pre Iterative Steps

The equation to solve in HF is the eigenvalue equation from Eq. (3.47). To
do this on a computer we must rewrite it slightly. The equation stands as

FC = SCε. (8.4)

We de�ne a matrix V that satis�es

V †SV = I, (8.5)

where I is the identity matrix. We insert V † to the left on both sides. Also
V V −1 is inserted into the equations. This leaves

V †FV V −1C = V †SV V −1Cε. (8.6)

We also de�ne

115

F ′ = V †FV, (8.7)

and

C ′ = V −1C. (8.8)

We insert Eq. (8.5), F' and C' into Eq. (8.4).

F ′C ′ = C ′ε. (8.9)

This is a true eigenvalue problem, where ε will be the eigenvalues of F' and
C' will be the eigenfunctions.

We also de�ne an intermediate P, which will be the electron density.

Pij =
N∑
k

Cki C
k
j , (8.10)

where N is the number of electrons. We are now ready to begin an iterative
procedure. This procedure will be di�erent for RHF and UHF.

RHF Iterative Procedure

For RHF we initially put the density P to be �lled with zeroes. In RHF we
will have an equal number of electrons with spin up and spin down. This
simpli�es our density matrix to

Pij =

N/2∑
k

Cki C
k
j . (8.11)

We use Eq. (3.52) to �nd the Fock matrix. We �rst insert P into the
equation.

Fij = (EK)ij +
∑
kl

Pkl(2〈ij|kl〉 − 〈il|kj〉). (8.12)

116

We then perform the iterations until we reach self consistency.

while RHF_continue = true do
Calculate F
F ′ = V †FV
Solve F ′C ′ = C ′ε
Compute C = V C ′

Compute P
if RHF = converged then

RHF_continue = false
end

end
Algorithm 1: Psudocode for RHF iterations

After we have reached self consistency we calculate the energy.

1 double Hartree_Fock_Solver : : Calc_Energy ()
2 {
3 // Optimized RHF energy c a l c u l a t i o n s
4 Single_E_Energy = accu (EK % P) ;
5 Two_E_Energy = 0.5∗ accu (Energy_Fock_Matrix % P) − 0 .5∗

Single_E_Energy ;
6 return Single_E_Energy+Two_E_Energy ;
7 }

Using armadillo the energy calculation simpli�es to only two lines of code.

UHF Iterative Procedure

For UHF we de�ne two densities, Pα and P β , which are the densities for
spin up and down.

Pαij =

Nα∑
k

CαikC
α
jk. (8.13)

P βij =

Nβ∑
k

CβikC
β
jk. (8.14)

Here Nα is the number of spin up particles, while Nβ is the number of spin
down particles. These must be de�ned as input as must be equal to the
total number of electrons in the system. We de�ne the starting density to
be random uniform numbers. We ensure the two matrices are not equal to
each other for the �rst iteration. We use Eqs. (3.61) and (3.62) to �nd the
Fock matrices.

117

while UHF_continue = true do
Calculate Fα
Calculate Fβ
F ′α = V †FαV
F ′β = V †FβV
Solve F ′αC

′
α = C ′αεα

Solve F ′βC
′
β = C ′βεβ

Compute Cα = V C ′α
Compute Cβ = V C ′β
Compute Pα
Compute Pβ
if UHF = converged then

UHF_continue = false
end

end
Algorithm 2: Psudocode for UHF iterations

After iterations we again calculate the energy. With armadillo the energy
calculation simpli�es to just two lines of code.

1 double Hartree_Fock_Solver : : Unrestr icted_Energy ()
2 {
3 // Oprimized energy f o r UHF
4 Single_E_Energy = accu ((P_up + P_down) % EK) ;
5 Two_E_Energy = 0 .5 ∗ accu (EnF_up % P_up) + 0 .5 ∗ accu (

EnF_down % P_down) − 0 .5 ∗ Single_E_Energy ;
6 return Single_E_Energy + Two_E_Energy ;
7 }

Helping Convergence

Sometimes our solution has problems converging. This is a numerical prob-
lem and we can introduce a few features to help the convergence along.

Damping is one option. This means updating the density only slightly,
by inserting

P ′new = γPold + (1− γ)Pnew. (8.15)

This reduce the change in density between iterations. We only used this in
UHF.

A better alternative is the DIIS method, discussed in section 4.9. We
implemented this method for RHF. The �rst part of our DIIS implementation
is calculating the error, ∆p.

1 delta_p = F∗P∗O − O∗P∗F;

118

We then store the error and Fock matrices for the last M iterations. M is
de�ned to M = 3 in our implementation. After this we construct the matrix
B.

1 for (int i = 0 ; i < number_elements_DIIS ; i++){
2 for (int j = 0 ; j < number_elements_DIIS ; j++){
3 mat1 = Stored_Error . at (i) ;
4 mat2 = Stored_Error . at (j) ;
5 DIIS_B(i , j) = t ra c e (mat1 . t () ∗ mat2) ;
6 }
7 }

We then �nd the coe�cients c.

1 DIIS_c = so l v e (DIIS_B , DIIS_Z) ;

And �nally we construct the new Fock matrix, as a linear combination
of the previous Fock matrices.

1 F = DIIS_c . at (0) ∗ Stored_F . at (0) ;
2 for (int i = 1 ; i < number_elements_DIIS ; i++){
3 F += DIIS_c . at (i) ∗ Stored_F . at (i) ;
4 }

119

8.4 Atomic Orbital to Molecular Orbital

Atomic Orbital (AO) to Molecular Orbital (MO) is required before we can
do any CCSD calculations. In this section we describe how to implement this
transformation. We are here looking for a highly optimized implementation.
Some background is available in Ref.[35]. However the author found the
algorithms in the literature unsatisfactory. For this reason we will present a
new algorithm. First, the simplest transformation is:

〈ab|cd〉 =
∑
ijkl

Cai C
b
jC

c
kC

d
l 〈ij|kl〉. (8.16)

This scales as n8 and can be factorized.

〈ab|cd〉 =
∑
i

Cai
∑
j

Cbj
∑
k

Cck
∑
l

Cdl 〈ij|kl〉. (8.17)

This is usually split into four quarter transformations.

〈aj|kl〉 =
∑
i

Cai 〈ij|kl〉. (8.18)

〈ab|kl〉 =
∑
j

Cbj 〈aj|kl〉. (8.19)

〈ab|cl〉 =
∑
k

Cck〈ab|kl〉. (8.20)

〈ab|cd〉 =
∑
l

Cdl 〈ab|cl〉. (8.21)

Each of these quarter transformations scale as n5. The implementation of
this must be done in an e�ective way in terms of speed and memory. The
latter is the most important as the memory here scales as N4, where N is
the number of contracted GTOs, for both 〈ij|kl〉, 〈ab|cd〉 and also the inter-
mediates in between each quarter transformation.

120

Data: Psudo Code
Result: Algorithm for parallel AOtoMO transformation
for a=0; a<N do

for k=0; k<N do

for l=0; l<N do

if Grid k and l over threads then

for j=0; j<N do

for i=0; i<N do
QT1(k, l, j)+ = Cai × 〈ij|kl〉

end

end

for j=0; j<N do

for b=0; b<N do

QT2(k, l, b)+ = Cbj ×QT1(k, l, j)

end

end

end

end

end

Communicate QT2(k, l, b)
for b=0; b<N do

for c=0; c<N do

if Grid b and c over threads then

for k=0; k<N do

for l=0; l<N do
QT3(b, c, l) = Cck ×QT2(k, l, b)

end

end

for l=0; l<N do

for d=0; d<N do

QT4(b, c, d) = Cdl ×QT3(b, c, l)
end

end

end

end

end

Communicate QT4(b, c, d)
if Store distributed MOs to given thread then
〈ab|cd〉 = QT4(b, c, d)

end

end
Algorithm 3: Simple Psudocode for parallel AOtoMO transformation.
QT1, QT2, QT3 and QT4 are intermediates

121

Algorithm 3 is a description of how we optimize this implementation.
Further optimizations will come later, but �rst an illustration of the general
idea. We �rst hold index a constant throughout the transformation. This
enables us to use N3 size intermediates.

Second the grid over k and l is chosen because neither of these are in-
volved as an index in C for the �rst two quarter transformations. This makes
sure that the terms of QT2(k, l, b) calculated by each thread is the fully two
quarter transformed term. This avoids the use of MPI_Reduce or similar
operations and means only one thread needs to communicate these two quar-
ter transformed terms with speci�c k and l, minimizing the communication.
The total amount of double precision values communicated in the �rst com-
munication for now is N3 for each a, making it N4 in total for all a.

After the �rst communication each thread has all terms in QT2(k, l, b)
available. We then make a new grid over b and c and continue calculations in
parallel. The grid could be made over a and b, but the prior makes in general
a better work distribution. This is because index a is held �xed. After the
fourth quarter transformation each thread has the fully transformed MOs
available for certain b and c indexes.

At this point we can distribute the MOs in the same grid as for b and
c, and start CCSD calculations. However because we want to have the dis-
tribution optimized for CCSD we implement another communication. This
communication is N3 for each a, making it N4 in total for all a.

After the second communication we simply store the MOs in a memory
distributed manner. It is also possible to write to disk.

QT2 and QT4 must be stored as one dimensional arrays, to minimize
the number of communication procedures initiated, hence minimize latency.
Also all multiplications are written using external math libraries through ar-
madillo. We should also introduce symmetries to optimize our calculations
further. The starting AOs had eight-fold symmetries. So does the resulting
MOs. However these symmetries does not hold at all the quarter transformed
intermediates. This complicates things slightly.

The second quarter transformed four dimensional array, QT2, will have
symmetries in the two untouched indexes, as well as in the two transformed
indexes. We were able to make use of this to reduce communication by 75%,
since symmetric terms need not be communicated twice. This also holds true
at the QT4 level obviously. The algorithm using symmetries and external
math libraries is presented in algorithm 4.

122

Data: Psudo Code
Result: E�ective Algorithm for parallel AOtoMO transformation

using external math libraries
for a=0; a<N do

for k=0; k<N do

for l=0; l<=k do

if Calculate on local thread then
A1(*) = C(a,*) × 〈kl| ∗ ∗〉
A2(0→ a) = C(0→ a, *) × A1
for b=0; b<=a do

QT2(b,k,l) = A2(b)
end

end

end

end

MPI_Allgatherv(QT2)
for b=0; b<=a do

for c=0; c<N do

if Calculate on local thread then
A1(*) = C(c,*) × QT2(b,*,*)
A2(0→ c) = C(0→ c, *) × A1
for d=0; d<=c do

QT4(b,c,d) = A2(d)
end

end

end

end

MPI_Allgatherv(QT4)
if Store distributed MOs to given thread then
〈ab|cd〉 = QT4(b, c, d)
or write to disk

end

end
Algorithm 4: Psudocode for parallel AO to MO transformation using
armadillo. A1 and A2 are one dimensional intermediates

123

The communication is somewhat tricky in this algorithm. Since we have
inserted symmetries, the size of the message to be transmitted changes de-
pendant upon the index a. This also applies to the displacement. We there-
fore store both in two dimensional arrays where a is the outer index, the
inner is the MPI rank.

We run through the algorithm one time in advance to calculate these
variables. We also calculate and store where each processor will start calcu-
lations. This is done to remove any pipeline �ushes, which can be caused by
the CPU wrongly guessing the answer of an if test.

For this reason we de�ne another two dimensional array, this one of size
N times the number of MPI procs. In the �rst two quarter transformation,
each rank here stored at what index l will calculations start for a given index
k. The next l the same rank will perform calculations on will then be

l→ l + p, (8.22)

where p is the number of MPI procs. The exact same procedure is repeated
for quarter transformation 3 and 4.

We have also in the more advanced algorithm inserted one dimensional
arrays A1 and A2. Using these provide more optimize ways of accessing
memory. It may at �rst sight seem like an additional complication to �rst
calculate A2 as a one dimensional array and later store it in QT2, but this
is a more e�cient way when using armadillo.

The algorithm is implemented in the function

1 void Prepear_AOs (int nr_freeze) ;

The argument is how many core orbitals to freeze. The argument is some-
what wasted, since frozen core approximation is not implemented yet.

8.5 CCSD Serial Implementation

Our CCSD implementation is quite large, actually close to 10 000 lines.
However this is small compared to other optimized implementations, which
are usually around 40 000 lines of code. Implementation is important in
CCSD, since it scales quickly for larger systems. Additional information on
on the advancement of CCSD is available in a series of books, Ref.[61]. The
most e�ective implementation to the authors knowledge is the Cyclic Tensor
Framework, see Refs.[62], [63] and [63].

124

In this thesis we will present a simple and e�ective implementation of
CCSD in parallel. First we look at a simple serial implementation. This
section discusses the serial implementation. There are two speci�c goals for
this implementation. First getting the energy in the smallest amount of time,
second being able to run larger systems.

Even more precise we can state that our goals are:
a) Never get zero in a multiplication
b) All multiplication should be done by external math libraries
c) Do not store anything more than needed

We �rst present the general structure of the code. Later we will discuss
a few details about di�erent optimizations we have implemented. These will
be contrasted to what kind of optimizations is commonly implemented in
CCSD. Then, there will be a pros and cons list for our implementation. The
chapter will be quite technical as there are several considerations behind
each optimization, and it all works in combination.

125

8.5.1 Structure

For our serial program we �rst de�ne arrays to store all intermediates, MOs
and amplitudes. Two arrays are de�ned for each amplitude, one for the old
amplitudes and one for the new amplitudes. We de�ne a convergence crite-
ria, which stops iterations once the di�erence of energy from one iteration
to the next is bellow this criteria.

Data: Psudo Code
Result: Structure of CCSD serial program
while CCSD continue = true do

Set Eold = Enew
Calc F1
Calc F2
Calc F3
Calc W1
Calc W2
Calc W3
Calc W4
Calc New t1 amplitudes
Calc New t2 amplitudes
Set t1 = t1new
Set t2 = t2new
Calc τabij
Calc New Energy
if Enew - Eold < Convergence criteria then

CCSD continue = false
end

end
Algorithm 5: Psudocode for our serial CCSD program

Algorithm 5 illustrates the algorithm as psudocode. Each of the terms
behind "Calc" is taken as a separate function to make the code easily read-
able.

8.5.2 Removing redundant zeroes

We now brie�y reconsider the molecular integrals, which were calculated as
such

〈pq|rs〉 =
∑
αβξν

CpαC
q
βC

r
ξC

s
ν〈αβ|ξν〉. (8.23)

Here 〈αβ|ξν〉 are our atomic orbitals (AOs). These come from our RHF cal-
culations. 〈pq|rs〉 are the molecular orbitals (MOs). MOs here are presented
as a linear combination of AOs. The MOs appear in CCSD as a double bar
integral. This is de�ned as such

126

〈pq||rs〉 = 〈pq|rs〉 − 〈pq|sr〉. (8.24)

Due to spin considerations, if we �ll a matrix with 〈pq||rs〉 it will be �lled
with mostly zeroes. However when using an RHF based CCSD it is common
that all even numbered spin orbitals have the same spin orientation. This
means all odd numbered orbitals will also have the same spin orientation.
This results in the zeroes forming pattern that we have identi�ed and utilized.

〈pq||rs〉 are diagonal in total spin projection. In RHF the total spin is
also equal to zero. When we have all odd numbered orbitals with the same
spin orientation, and same with even numbered orbitals, this has a practical
implication. The implication is that the only terms that will not be equal
to zero are those where the sum of the orbital indexes are equal to an even
number.

We will now visualize this. We construct a program that performs the
AO to MO transformation and print 〈pq||rs〉 for a �xed p = 1 and r = 1. In
the span of q and s there is formed a matrix, we have noted the terms that
will be zero and also the terms that will be non-zero with the indexes (q, s).



(0, 0) 0 (0, 2) 0 (0, 4) 0 . . .
0 (1, 1) 0 (1, 3) 0 (1, 5) . . .

(2, 0) 0 (2, 2) 0 (2, 4) 0 . . .
0 (3, 1) 0 (3, 3) 0 (3, 5) . . .

(4, 0) 0 (4, 2) 0 (4, 4) 0 . . .
0 (5, 1) 0 (5, 3) 0 (5, 5) . . .
. .


This array is now stored in our computer as a four dimensional array

that we call I[a][b][c][d]. We on purpose use a di�erent index in the array
than we do for the orbital, even though index a in this example is a referance
to orbital p. We can note which orbitals our array-indexes refers to as such
a = p
b = r
c = q
d = s

This will be an array of size (2N)4, where N is the number of contrac-
tion Gaussian Type Orbitals (GTOs). We now perform a trick. We want
our indexes of I to refer to a di�erent orbital, in practise we want:
a = p
b = r
c = q/2 + (q% 2) N

127

d = s/2 + (s% 2) N

Where % is the binary operator and we use integer division by 2. The
number 2 comes from two spin orbitals per spacial orbital. Now index c is
no longer a referance to orbital q, but a referance to orbital [q/2 + (q % 2)
N]. If we now visualize the same double bar integral with �xed p = 1 and
r = 1 it looks like this

(0, 0) (0, 2) (0, 4) . . . 0 0 0 . . .
(2, 0) (2, 2) (2, 4) . . . 0 0 0 . . .
(4, 0) (4, 2) (4, 4) . . . 0 0 0 . . .
. .

(1, 1) (1, 3) (1, 5) . . . 0 0 0 . . .
(3, 1) (3, 3) (3, 5) . . . 0 0 0 . . .
(5, 1) (5, 3) (5, 5) . . . 0 0 0 . . .
. .


Performing this trick will always result in a matrix that looks something

like this. We can split this matrix into four sub-matrices, one top left, one
top right, one bottom left and one bottom right. Regardless of a and b,
we will always have either the two left sub-matrices, or the two right sub-
matrices always �lled with zeroes. These do not need to be stored. If we
ensure we only perform calculations on orbitals with a non-zero contribution

we can change our array-indexing to:
a = p
b = r
c = q/2 + (q% 2) N
d = s/2

This means for two orbital where s = 2 and s = 3 we will have the same
d value. However one of these orbitals will always be zero, so if we avoid
doing calculations on this there will be no problems. And we also reduce the
size of the array to half. Visualizing now the same array it looks like this.

(0, 0) (0, 2) (0, 4) . . .
(2, 0) (2, 2) (2, 4) . . .
(4, 0) (4, 2) (4, 4) . . .
.

(1, 1) (1, 3) (1, 5) . . .
(3, 1) (3, 3) (3, 5) . . .
(5, 1) (5, 3) (5, 5) . . .
.


And its size will be 1

2(2N)2. This kind of indexing can and should be
performed on all stored integrals, amplitudes and intermediates. This en-
sures all memory is reduced by at least 50 %. Also if a,b,c,d is referencing

128

orbitals in the same manner in all stored arrays we can still use external
math libraries as before. However now we will not be passing any zeroes
into these external math libraries, so calculations can be faster. This change
in indexing keeps all symmetries and also allow easy row and column access.
The row is accessed as usual.

(0, 0) (0, 2) (0, 4) . . .

(2, 0) (2, 2) (2, 4) . . .

(4, 0) (4, 2) (4, 4) . . .
.

(1, 1) (1, 3) (1, 5) . . .

(3, 1) (3, 3) (3, 5) . . .

(5, 1) (5, 3) (5, 5) . . .
.




A column is slightly di�erent, since we only require either the top half or

the bottom half of the matrix.

(0, 0) (0, 2) (0, 4) . . .

(2, 0) (2, 2) (2, 4) . . .

(4, 0) (4, 2) (4, 4) . . .
.

(1, 1) (1, 3) (1, 5) . . .

(3, 1) (3, 3) (3, 5) . . .

(5, 1) (5, 3) (5, 5) . . .
.




This can be speci�ed using the submatrix command in armadillo. The

attributes of the double bar integrals in RHF are such that there will be
some remaining zeroes after removing these. This is because total spin must
be zero. However there will be another pattern formed where all remaining
zeroes are placed in one of two remaining sub-matrices. This can also be ac-
counted for, reducing memory needs by an additional 1

8 . These calculations
can also easily be avoided using submatrix calls in armadillo.

Since we are using an RHF basis some matrix elements become indepen-
dent of spin. This means spin up will have the same value as spin down. This
happens mostly for the two dimensional intermediates, and when we store
in this manner the practical implications of this becomes identical upper
and lower submatrices. In this situation we do not calculate the same term
twice. In the future we will refer to this method as compact storage. This
method removes all zeroes without de�ning additional arrays, as is usually
done today.

129

8.5.3 Pre Iterative Calculations

Before calculations can start we perform a few tricks. We do not store our
MOs in one gigantic array, instead we split it up into several smaller ones.
This is done at the end of the AOtoMO transforamtion. These are variables
such as MO3 and MO4, decleared in the header �le ccsd_memory_optimized.h.

1 f i e l d <mat> MO3, MO4 . . .

This is a very common procedure in CCSD implementation. It is performed
to enable more e�ectively use of external math libraries. The reason it is
more e�ective is because of memory accessing. If we want to send parts
of an array into an external math library, we need �rst to extract which
parts to send. Instead, we can de�ne several smaller arrays like MO3. MO3
is then designed speci�cally to be sent directly into the external math library.

Ref.[19] also ponders this. In fact, this is such an optimization that even
redundant storage of double bar integrals is often used. This means storing
a value twice, just to have it easily available for passing to external math
library.

Originally, we took advantage of this straight forward optimization. How-
ever, in the current implementation we will not be storing redundant values.
Instead, we will be storing the single bar integrals, and have functions to
map these into two dimensional arrays of double bar integrals ready for ex-
ternal math library use. We have surgically designed each and every for loop
such that this mapping is redundant in terms of program e�ciency. It does
reduce memory requirements drastically.

The splitting of the integrals for us then becomes somewhat redundant
in this regard, but as we will see later it is of clinical importance when we
implement memory distribution.

Before iterations can start we also allocate memory for our intermediates
and amplitudes. We use the principles of section 8.5.2 here. In fact every
array to come in contact with an external math library must be stored on
this form.

8.5.4 F1, F2 and F3

We now start the iterative procedure. The �rst three intermediates are two
dimensional and very straight forward to calculate. We use Eqs. (6.17),
(6.22) and (6.24). Our implementation has some additional complications
which will be discussed shortly, but is still equivalent to our initial naive
implementation.

130

1 for (int a = 0 ; a < unocc_orb ; a++){
2 for (int m = 0 ; m < n_Electrons ; m++){
3 F1(a /2 , m/2) = accu (in t eg2 (a ,m) % T_1) ;
4 }
5 }

In this initial naive implementation integ2 is one part of the double bar
integrals we pulled out. Since we want to store only the single bar integrals,
we replace this with a function Fill_integ_2_2D(int a, int m) to �ll up a
global mat integ2_2D. This is then used in external math libraries.

1 for (int a = 0 ; a < unocc_orb ; a++){
2 for (int m = 0 ; m < n_Electrons ; m++){
3 Fill_integ_2_2D (a , m) ;
4 F1(a /2 , m/2) = accu (integ2_2D % T_1) ;
5 }
6 }

[F2] and [F3] are calculated in a similar procedure.

8.5.5 W1, W2, W3 and W4

These intermediates are calculated using Eqs. (6.5), (6.8), (6.15) and (6.26).
We include the initial naive implementation of [W1].

1 for (int i = 0 ; i < n_Electrons ; i++){
2 for (int j = i +1; j < n_Electrons ; j++){
3 Fil l_integ8_2D ;
4 W_1(i , j) (k/2 , l /2) = integ8_2D ;
5 }
6 }
7
8 for (int k = 0 ; k < n_Electrons ; k++) {
9 for (int l = 0 ; l < n_Electrons ; l++){
10 Fil l_integ6_2D (k , l) ;
11 Fil l_integ4_2D (k , l) ;
12 for (int i = 0 ; i < n_Electrons ; i++){
13 for (int j = i +1; j < n_Electrons ; j++){
14 W_1(i , j) (k/2 , l /2) += accu (integ6_2D . c o l (j)
15 % T_1. c o l (i)) ;
16 W_1(i , j) (k/2 , l /2) −= accu (integ6_2D . c o l (i)
17 % T_1. c o l (j)) ;
18 W_1(i , j) (k/2 , l /2) += 0.5∗ accu (integ4_2D
19 % tau3 . at (i , j)) ;
20 }
21 }
22 }
23 }

Here the mapping into two dimensional double bar integrals is still done
as a N4 procedure, whereas the calculation is now an N6 procedure. For
easy external math library use later we store these variables as W1(i,j)(k,l),

131

W2(i,j)(a,m), W3(i,m)(e,n) and W4(a,i)(c,k). We also use symmetries where
they can be applied.

8.5.6 New amplitudes

The T1 amplitudes are calculated using Eq. (6.32). For the T2 amplitudes
we use Eq. (6.29). To make this amplitude most optimal for external math
libraries we store it as

T2(a, i)(b, j). (8.25)

8.5.7 τabij and Energy

τabij is calculated in Eq. (6.28). It is stored in a variable tau3(a,b)(i,j) for
optimal use in external math libraries. The energy can be calculated using
Eq. (5.87). However we can simplify this further by introducing τabij .

ECCSD = E0 +
∑
ai

fait
a
i +

1

4

∑
abij

〈ij||ab〉τabij . (8.26)

Here we have inserted tai t
b
j = 1

2

(
tai t

b
j − taj tbi

)
. Also the term fai will always

be equal to zero when the basis for our CCSD calculations are a diagonalized
Fock matrix.

ECCSD = E0 +
1

4

∑
abij

〈ij||ab〉τabij . (8.27)

8.5.8 Dodging Additional Unnecessary Calculations

In section 8.5.2 we discussed how to avoid multiplication where both terms
are zero. However, for CCSD we originally had several terms to be multiplied,
and we factorized them. This causes another potential optimization, that
we wish to introduce with a simpli�ed example. Consider four terms, A, B,
C and D, that want to multiply together.

F = A×B × C ×D. (8.28)

Imagine factorizing this would speed up our calculations.

F = A× (B × (C ×D)). (8.29)

Let us de�ne intermediate E.

E = B × (C ×D). (8.30)

After we calculated this we are left with

132

F = A× E. (8.31)

At the end of the calculation, it turns out A was equal to zero. This means
the entire calculation was wasted, as F would have been zero anyway. Spin
consideration causes this situation to occur in CCSD. Luckily because this
comes from spin considerations, it is deterministic. We can identify all these
situations and avoid calculations.

This is implemented in our code, and we want to present an example
from the contributions to tabij from [W4].

Dab
ij t

ab
ij ←

∑
kc

tbcjk × [W4]
ak
ic . (8.32)

Index b and j only appear in the T2 amplitudes, while indexes a and i ap-
pear in the intermediate. Imagine now that index b is an odd number, while
index j is an even number.

In the sum over k and c, k and c can themselves be odd or even. We
remember we arranged our MOs so that all odd numbers had same spin
orientation. Inside the sum, whenever now c is an odd number we will be
exciting two electron into spin up orbitals. If j was an even number we also
remove an electron from a spin down orbital.

Regardless of index k this will not result in zero spin in total and the
amplitude must be equal to zero with our spin restriction. In section 8.5.2
we noted a situation where one of the two sub-matrices would be zero. This
is the situation.

Also, the indexes a, b, i and j must themselves result in zero spin in
total, or the amplitude will be zero. This limits the number of possible com-
binations of tbcjk and [W4]

ak
ic to where we can actually avoid calculating some

terms of [W4]
ak
ic that are not equal to zero.

The easiest and most human-time e�ective way of implementing this is
to simply go through the factorization backwards, to identify which multi-
plications we did not need. This has been done.

8.6 CCSD Parallel Implementation

In parallel implementation we will make extensive use of memory distribu-
tion. In CCSD it is quite normal to read some of the MOs from disk. We
will not be doing this, but we will place memory distribution as our number

133

one priority. The code was however originally designed to read from disk, so
this option is left easily available.

8.6.1 Memory Distribution

In a serial implementation of CCSD the leading memory consumer is an
1

16×2n
4
v sized array, 〈ab||cd〉. The 1

16 comes from only storing spacial single
bar MOs, 〈ab|cd〉, with nv being the number of virtual spin orbitals. The fac-
tor 1

2 comes from symmetry. This array is called MO9 in our implementation.

However, the array only appears in the calculation of tabij , as this is the
only place where the double bar integrals has three or more virtual indexes
(which are a, b, c etc). This means we can ensure one processor only re-
quires parts of the array MO9 if we distribute work here correctly. It is also
possible to distribute the double bar integrals themselves, [60] presents such
an algorithm.

1 for (int a = 0 ; a < unocc_orb ; a++){
2 for (int b = a+1; b < unocc_orb ; b++){
3 // D i s t r i b u t e work wi th Work_ID va r i a b l e
4 i f (Work_ID % s i z e == rank) {
5 // Perform c a l c u l a t i o n
6 // Only the proces sor who passes t h i s i f t e s t
7 // w i l l need <ab | | cd> with s p e c i f i c a and b
8 }
9 }
10 }

All the largest parts of the single bar integrals will be distributed in
memory. This leaves the largest un-distributed arrays as our T2 amplitudes
and some intermediates. Speci�cally the old and new tabij , [W4] and τ

ab
ij .

We will be able to distribute [W4], through some quite complex opera-
tions that actually also provides quite good parallel performance.

Because we want to store the old T2 amplitudes as speci�ed in Eq. (8.25)
we are unable to take advantage of symmetries. We are however able take
advantage of one symmetry for τabij and the new T2 amplitudes. Also we
have the storage of section 8.5.2. This means non distributed memory is
scaling as

M(nv, no) =

(
1

2
+

1

4
+

1

16
+

1

16

)
n2vn

2
o ≈ n2vn2o. (8.33)

The factor 1
2 is the old T2 amplitudes. The 1

4 is the intermediate τabij . This
intermediate improves performance only modestly in our factorization, but is
very helpful when optimizing the use of external math libraries. We therefore

134

keep it. The �nal factors 1
16 are parts of the MOs we where unable to dis-

tribute in memory and also the new T2 amplitudes. The new T2 amplitudes
require less memory because we only store one version of each symmetric
term. How to distribute [W4] will be discussed shortly. Contributions from
nvn

3
o is ignored in the non distributed memory scaling.

8.6.2 Three Part Parallel

Our parallel implementation will be quite straight forward. We will split the
iterative procedure in three. Part two is the calculation of [W4]. Part three
is the amplitudes. Part one is everything else. The split is performed to keep
in line with our guiding parallel principles of minimizing communication ini-
tiations. In each part we will also discuss what type of performance we can
expect with increased number of CPUs in use. This is known as scaling.

Part 3

We �rst look at the third parallel part, the amplitudes. Each processor allo-
cates memory for the new T2 amplitudes. At �rst each processor only stores
the terms it performs calculations on itself. That is, the T2 amplitudes are
distributed in memory.

We want Icdab distributed in memory. The numbers for this variable is
stored in MO9. To make the memory distribution easy, we distribute work
for tabij based on indexes a and b. These indexes are symmetric in t

ab
ij . We thus

only need calculations on b > a. Since we stored the single bar spacial MOs,
we must distribute work very delicately if we are to not get to much overhead.

Work is distributed with in a block cyclic manner, with the block always
being of size 2. This block size is identical to the number of spin MOs per
spacial MO. The optimal work distribution with these limitations has the
mathematical formula, with all divisions being integer divisions.

Work_ID =
a

2
× nv

2
+
b

2
−

a∑
n=0

n

2
. (8.34)

The number two is the block size, nv
2 is the size of a column in MO9 and

the sum ensures we get the optimal distribution for b > a. This forumla
distributes work over indexes a/2 and b/2 optimally. The work ID is used
by the processors to �gure out if the calculation is to be performed.

1 // Find new T2 ampl i tudes , f unc t i on
2 for (int a = 0 ; a < unocc_orb ; a++)
3 {
4 sum_a_n += a /2 ;

135

5 A = a /2 ;
6 AA = A∗ Speed_Occ − sum_a_n ;
7
8 // Po t en t i a l to read from f i l e here .
9 // Read in a 3 dimensiona l array o f s i n g l e bar i n t e g r a l s f o r

a
10 // s p e c i f i c index a . Same array i s used f o r a and a+1
11 // Can use f o r example MPI_File_read (. . .)
12
13 // a i s an even number
14 for (int b = a+2; b < unocc_orb ; b++){ // b i s even number
15 B = b/2 ;
16 Work_ID = AA+B;
17 i f (Work_ID % s i z e == rank) {
18 // Load up 2D arrays f o r e x t e r na l math l i b r a r i e s
19 Fill_integ3_2D (a , b) ;
20 Fil l_integ9_2D (a , b) ;
21
22 // Reindexing o f tau f o r e x t e r na l math l i b r a r y use
23 Fill_2D_tau (a , b) ;
24
25 for (int i = 0 ; i < n_Electrons ; i++){ // i i s even

number
26 for (int j = i +2; j < n_Electrons ; j++){ // j i s

even number
27 MY_OWN_MPI[index_counter] =
28 (−MOLeftovers (a /2 , b/2) (j /2 , i /2)
29 + MOLeftovers (a /2 , b/2) (i /2 , j /2)
30 + W_5(a , b) (i /2 , j /2)
31 − W_5(a , b) (j /2 , i /2)
32 − accu (W_2(i , j) (a /2 , span ()) % T_1. row (b/2))
33 + accu (W_2(i , j) (b/2 , span ()) % T_1. row (a /2))
34 + 0.5∗ accu (W_1(i , j) (span (0 , Speed_Elec−1) , span ()) %

tau1 (span (0 , Speed_Elec−1) , span ())) // Hal f matrix =
0 , s k i p t h i s

35 − accu (t2 . at (b , i) (span (0 , Speed_Occ−1) , j /2) % D3 . row (a)
. t ())

36 + accu (t2 . at (a , i) (span (0 , Speed_Occ−1) , j /2) %
D3 . row (b) . t ())

37 + accu (t2 . at (a , j) (b/2 , span ()) % D2 . row (i /2))
38 − accu (t2 . at (a , i) (b/2 , span ()) % D2 . row (j /2))
39 − accu (integ9_2D (span (0 , Speed_Occ−1) , i /2) % T_1(span

(0 , Speed_Occ−1) , j /2))
40 + accu (integ9_2D (span (0 , Speed_Occ−1) , j /2) %

T_1(span (0 , Speed_Occ−1) , i /2))
41 + 0.5∗ accu (integ3_2D (span (0 , Speed_Occ−1) , span ()) %

tau3 (i , j) (span (0 , Speed_Occ−1) , span ()))) // Hal f
matrix = 0 , s k i p t h i s

42
43 / (DEN_AI(a /2 , i /2)+DEN_AI(b/2 , j /2)) ;
44
45 // This i s one new T2 ampl i tude .
46 // Plus one on index counter , and c a l c u l a t e the next
47 index_counter++;

136

48 j++;
49 }
50 i++;
51 }
52 }
53 b++;
54 }
55 }

The code segment above is a part of the function for the new T2 ampli-
tudes. This is how our actual code looks. It is designed for performance. The
outer loop is index a. If we wanted to read from �le, we would be reading in
the single bar integrals for a speci�c index a, into an N3 sized array.

The next loop is index b. Here we �gure out if a local processor is to
perform these calculations. If the processor shall perform calculations, we
�ll up the largest arrays needed for external math library use. The smaller
arrays used in external math libraries are already �lled.

The next loops are i and j. Since spin must be zero, an even number a
and b only allows for even number i and j. The other combinations of odd
b, even a etc are also implemented in our code but not included here.

Inside the four loops we calculate the amplitude tabij . We notice every
term is written using external math libraries, with the accumulation func-
tion. We also skip calculations using the span() function where appropriate,
as noted in the previous section. Finally we divide by the denominator and
store the new amplitude in a one dimensional array for easier MPI function
use.

Once calculations are completed we must gather the results and update
the old T2 amplitudes. The new T2 amplitudes are all stored in a one
dimensional array on each local processor, so we only need to initiate one
communication procedure. The most e�ective would be a collective all-to-all
communication, where we send in the new amplitudes and gather them/write
over the old ones. For this we could use a function like MPI_Allgatherv.
However this does not work with armadillo, since we cannot map values into
an armadillo �eld directly with MPI.

This complicates things slightly. We see two solutions to the problem,
but neither is as e�cient as the before mentioned one.

We can either allocate a new one-dimensional array and perform the
prior solution with a mapping of the new amplitudes into the armadillo
�eld afterwards. Or we can perform P one-to-all broadcasts, where P is

137

the number of MPI procs. Then each processors sends its information to
others, and this is mapped into the armadillo type array. We chose the
prior, but it is slightly less e�ective. There will be a mapping procedure
required. The scaling of the communication will be identical to the scaling
of an MPI_Allgatherv.

1 MPI_Allgatherv (MY_OWN_MPI, WORK_EACH_NODE(rank) , MPI_DOUBLE,
2 SHARED_INFO_MPI, Work_Each_Node_T2_Parallel ,

Displacement_Each_Node_T2_Parallel ,
3 MPI_DOUBLE, MPI_COMM_WORLD) ;

Here my own MY_OWN_MPI holds the information calculated on the
processor. SHARED_INFO_MPI will contain the full new non distributed
T2 amplitudes. The new amplitudes are symmetric, and we only store one
version of each symmetric term. SHARED_INFO_MPI is the array we
counted as non distributed new T2 amplitudes in section 8.6.1. But our al-
gorithm is really designed to distribute the the new T2 amplitudes. However
because we use armadillo with MPI we need this extra variable.

Without the complication arising from armadillo and MPI we could also
skip this mapping of symmetries into the old T2 amplitudes.

1 for (int K = 0 ; K < s i z e ; K++){
2 sum_a_n = 0 ;
3 for (int a = 0 ; a < unocc_orb ; a++){
4 sum_a_n += a /2 ;
5 A = a /2 ;
6 AA = A ∗ Speed_Occ − sum_a_n ;
7
8 for (int b = a+2; b < unocc_orb ; b++){
9 B = b/2 ;
10 INDEX_CHECK = AA+B;
11 i f (INDEX_CHECK % s i z e == K){
12 for (int i = 0 ; i < n_Electrons ; i++){
13 for (int j = i +2; j < n_Electrons ; j++){
14 temp = SHARED_INFO_MPI[index_counter] ;
15
16 // Map out symmetries a f t e r communication
17 t2 (a , i) (b/2 , j /2) = temp ;
18 t2 (b , i) (a /2 , j /2) = −temp ;
19 t2 (a , j) (b/2 , i /2) = −temp ;
20 t2 (b , j) (a /2 , i /2) = temp ;
21
22 index_counter++;
23 j++;
24 }
25 i++;
26 }
27 }
28 b++;
29 }
30 }

138

31 }

Part 2

Next is part two of the parallel implementation, which is the [W4] calcula-
tion. Here we also want to distribute this variable in memory. We want to
store [W4] as described previous to make use of external math libraries most
e�ectively.

W4(a, i)(c, k). (8.35)

Most of the contributions to [W4] are themselves distributed in memory on
the indexes a and k. We therefore perform calculations on a local processor
in a cyclic grid over these two indexes. A local processor thus holds

W4(a, ∗)(∗, k). (8.36)

Here star means all terms in this index. If we temporarily swaps the indexes
i and k we can store W4(a,k)(*,*), and calculate these terms.

1 for (int a = 0 ; a < unocc_orb ; a++){
2 for (int m = Where_To_Start_Part2 (rank , a) ; m < n_Electrons ; m

+=jump) {
3 // F i l l 2D arrays ready f o r e x t e r na l math l i b r a r i e s
4 // These are d i s t r i b u t e d in memory
5 Fil l_integ7_2D (a ,m) ;
6 Fil l_integ5_2D (a ,m) ;
7
8 for (int e = 0 ; e < unocc_orb ; e++){
9 Fill_integ2_2D_even_even (e , m) ;
10 for (int i = 0 ; i < n_Electrons ; i++){
11 W4(a ,m) (e , i) = −integ7_2D (e /2 , i /2)
12 − accu (W_3. at (i ,m) (e /2 , span ()) % T_1. row (a /2))
13 + accu (integ5_2D (span (0 , Speed_Occ−1) , e /2) % T_1

(span (0 , Speed_Occ−1) , i /2))
14 + 0.5∗ accu (integ2_2D % t2 . at (a , i)) ;
15 i++;
16 }
17 e++;
18 }
19 }
20 a++;
21 }

The Where_To_Start_Part2(rank,a) variable will be explained later.
However, when this intermediate contributes to the T2 amplitudes we need
the full matrix that is stored in W4(a, i).

139

Therefore we perform a communication. To pick the correct MPI function
we also need to know what to do with the array after the communication.
Afterwards we want to multiply∑

ck

W4(a, i)(c, k)× t2(b, j)(c, k). (8.37)

This multiplication will run in parallel, with work distributed cyclically over
a and i. The optimal work distribution forumla is

Work_ID = a× no + i. (8.38)

The communication needed to get the correct array needed prior and after is
thus an all-to-all personalized communication. We will use MPI_Alltoallw.
Each processor here sends its own personalized message to the other MPI
procs. The message is reduced to a one dimensional array in MY_OWN_MPI
before communication.

1 MPI_Alltoallw (MY_OWN_MPI, Global_Worksize_2 [rank] ,
Global_Displacement_2 [rank] , mpi_types_array , SHARED_INFO_MPI
, Global_Worksize_2_1 [rank] , Global_Displacement_2_1 [rank] ,
mpi_types_array , MPI_COMM_WORLD) ;

We then perform the multiplication in Eq. (8.37), with work distributed
over a and i. We want this contribution to be added to the new T2 ampli-
tudes, which themselves are work distributed over a and b. This means we
add another MPI_Alltoallw communication to get the correct data to the
correct processor.

We have introduced a temporary memory distributed variableW5(a, b)(i, j)
to store this contribution to tabij . The positive features of this algorithm is
that we indeed get all the variables distributed in memory, and communi-
cation procedures initiated are two All-to-All communications. All-to-All is
generally the most e�ective kind of communication in MPI. We note that the
number of initiated communications is independent of number of processors.
This is exactly in line with our parallel implementation guidelines states ear-
lier. The scaling of this communication will be identical to the scaling of two
MPI_Alltoallw functions. This function is highly optimized. Also the work
distribution is optimal.

Part 1

The �nal part of our parallel implementation consist of everything else. Here
we construct [W1], [W2], W3], [F1], [F2] and [F3]. The contribution from [F1]
to [F2] and [F3] is a n

3 contribution. Thus we do not need to run this part
in parallel. The energy and τabij is also calculated in serial in the current

140

implementation. These are n4 terms, and will be the leading non parallel
calculations.

To perform this part of the parallel implementation we make cyclical
grids of di�erent kinds. We can reuse the array of new T2 amplitudes, since
it is not needed at this step in the calculations. This enables less memory
usage. We �ll the array with all numbers calculated on the processor. Then
perform communication just as in Part 3, and map the correct numbers into
the correct armadillo �elds.

1 MPI_Allgatherv (MY_OWN_MPI, Work_Each_Node_part1_Parallel [rank] ,
MPI_DOUBLE, SHARED_INFO_MPI, Work_Each_Node_part1_Parallel ,
Displacement_Each_Node_part1_Parallel , MPI_DOUBLE,
MPI_COMM_WORLD) ;

We combine all these variables into one communication to maximise the
number of jobs to distribute in accordance to the principles stated in section
7.2.10. Also to minimize the latency by initializing less communication pro-
cedures.

However because we combine several di�erent variables we combine jobs
that are not of the same size. This causes problems in our job distribu-
tion. The job distribution of part one in our parallel implementation is
sub-optimal. In larger calculations some CPUs can get twice the workload
of other CPUs. We have used a few tricks to lessen this performance problem.
These are things like shifting the job distribution.

1 i f ((Work_ID + Sh i f t) % s i z e == rank) {
2 // Perform job
3 }

The results however are not optimal and as such we cannot expect an
optimal performance of this part of the CCSD implementation. Even with
this concern combining all remaining variables into one MPI communication
was still the better solution, compared to performing communications after
each intermediate calculation.

141

8.6.3 Extra Pre Iterative Procedures

Before we start iterating we must map out a few new variables. These are
extra calculations not needed in serial and includes variables such as dis-
placement and size of messages in the communications. They are calculated
in the class
ccsd_non_iterative_part.

1 i f (Work_ID % s i z e == rank)
2 {
3 // Do c a l c u l a t i o n
4 }

We also map out which Work_ID each processor are to perform calcula-
tions on. This is for example the Where_To_Start_Part2(rank,a) variable.
This enables us to remove all if tests like the one above from our iterative
procedure. If tests inside a for loop can be very time consuming if the value
true or false changes often from one index to the next. This is especially
true if we have two processors. In this case, the value would change every
time an index is changed. This means the number of pipeline �ushes could
potentially be large, dependant upon the compiler.

For P processors, the value of the if test changes after (P-1) index changes.
Not having any if tests helps performance somewhat, in particular for a small
number of MPI procs.

142

Chapter 9

CCSDT implementation guide

In this chapter will study Coupled Cluster theory by including up to three-
particle-three-hole correlations. This means that our ground state will in-
clude, in addition to the Hartree-Fock reference state (our vacuum reference
state), one-particle-one-hole, two-particle-two-hole and three-particle-three-
hole correlations to in�nite order in the interactions. This approach to the
full Schrödinger equation is called Coupled Cluster with singles, doubles and
triples, with the acronym CCSDT. CCSDT includes thus so-called triple con-
tributions. We will not derive the equations, the derivation can be looked
up in textbooks like Ref. [24]. This chapter is based on this textbook and
a series of papers, such as [21] and referances therein, by Jozef Noga and
Rodney Bartlett. Also, Refs. [25] and [22], with an erratum in Ref. [23], are
useful and practical reads.

This chapter is written as a guide for implementing CCSDT with sim-
plicity and pertinent benchmarks. CCSDT requires much computation, and
contains complex equations. There are however approximations made to
the CCSDT equations and these have been given their own name, the so-
called CCSDT-n methods. Here n = 1a,1b,2,3,4. This chapter starts with
the CCSD equations and adds CCSDT-n methods one by one, arriving ulti-
mately at the full CCSDT equations.

The CCSDT equations can be quite di�cult to extract from the liter-
ature in an implementation ready form. Each section in this chapter will
start with a description of which new terms are included and supply them
in a factorized form ready for implementation. We will continuously use
equations from [24].

Throughout the chapter we provide also benchmarks for each contribu-
tion added. We hope this chapter will be useful for anyone who wish to
create a working CCSDT code. The additional code needed for systems not

143

based on Hartree-Fock theory will be provided in the �nal section.

9.1 System for Benchmarks

We �rst de�ne our system to be used when benchmarking the various ap-
proaches to CCSDT-n. We must ensure the input is correct if we wish to
recreate the benchmarked energy. The geometries are taken from Ref. [29].
We will study H2O with coordinates

Atom x y z

O 0 0 -0.009
H 1.515263 0 -1.058898
H -1.515263 0 -1.058898

Table 9.1: Equilibrium geometry for H2O with the DZ basis set. Values are
Cartesian coordinates for atom in x, y and z direction in atomic units.

Coordinates are given in atomic units in table 9.1. We use a convergence
criteria 10−7. The basis set is available on EMSL as DZ (Dunning). A
restricted Hartree-Fock (RHF) calculation using this input gives energy in
atomic units (results obtained with the codes developed by us):

ERHF = −76.0098. (9.1)

The CCSD correlation energy to the system is, obtained with our code,

ECCSD = −0.146238. (9.2)

The benchmarks can be veri�ed in [21]. We will also supply an additional
benchmark of the same system outside of equilibrium. The same input is
used except the geometry is given in table 9.2.

Atom x y z

O 0 0 0
H -2.27289 0 1.574847
H 2.27289 0 1.574847

Table 9.2: Geometry for system outside of equilibrium of H2O with the DZ
basis set. Values are Cartesian coordinates for atom in x, y and z direction
in atomic units.

All calculations starts with an initial guess of tabcijk = 0.

144

9.2 Theory

As stated in the introduction to this chapter, CCSDT includes T3 correla-
tions as well, that is three-particle-three-hole correlations, namely

T = T1 +T2 +T3. (9.3)

All the terms from CCSD will also be included in CCSDT. The indices
a, b, c, d, e, f are understood to go over virtual orbitals. The indices i, j, k, l,m, n
go over orbitals occupied in the RHF basis. The amplitude equations are
well de�ned.

〈Ψa
i |HN (1 +T2 +T1T2 +

1

2
T2

1 +
1

6
T3

1 +T3)|Ψ0〉C = 0, (9.4)

with T3 as the new contribution added to the CCSD equations.

〈Ψab
ij |HN (1 +T2 +

1

2
T2

2 +T1 +T1T2 +
1

2
T2

1 +
1

2
T2

1T2

+
1

6
T3

1 +
1

24
T4

1 +T3 +T1T3)|Ψ0〉C = 0, (9.5)

with new contributions from T3 and T1T3. Finally

〈Ψabc
ijk |HN (T2 +T3 +T2T3 +

1

2
T2

2 +T1T2 +T1T3 +
1

2
T2

1T2

+
1

2
T1T

2
2 +

1

2
T2

1T3 +
1

6
T1T2)|Ψ0〉c = 0. (9.6)

All of these are new contributions. The energy expression remains unchanged
from CCSD. CCSDT-n methods include more and more of these new contri-
butions.

For the interested reader who wishes to verify the equations we will soon
present these with those given in [24]. We need to add further functionalities
to the permutation operator, with P(a/bc) de�ned as

P(a/bc)f(a, b, c) = f(a, b, c)− f(b, a, c)− f(c, b, a), (9.7)

to be read as the permutation where a is exchanged by b and a is exchanged
by c. Two of these permutation operators, P(a/bc)P(k/ij), give in total nine
permutations.

Another form of the permutation operator is P(abc). This is de�ned in
terms of the following six permutations

145

P(abc)f(a, b, c) =f(a, b, c)− f(b, a, c)− f(a, c, b)

− f(c, b, a) + f(b, c, a) + f(c, a, b). (9.8)

These two permutation operators can be interchanged if one rewrites Eq. (9.8)
as

P(abc)f(a, b, c) =f(a, b, c)− f(b, a, c)− f(a, c, b)

− f(c, b, a) + f(b, c, a) + f(c, a, b)

= [f(cab)− f(acb)− f(bac)]

− [f(cba)− f(bca)− f(abc)]

= P(c/ab) [f(cab)− f(cba)] . (9.9)

9.3 CCSDT-1a

The simplest inclusion of triples is the CCSDT-1a approximation. This
method includes the contribution from T3 in tai , T3 in tabij and T2 in tabcijk .
This can be expressed as

tabcijkD
abc
ijk = P(a/bc)P(k/ij)

∑
e

Iekbc t
ae
ij −P(c/ab)P(i/jk)

∑
m

Ijkmct
ab
im. (9.10)

Here the denominator is de�ned as the Möller-Plesset denominator.

Dabc
ijk = fii + fjj + fkk − faa − fbb − fcc. (9.11)

To make life simpler in more advanced CCSDT-n algorithms we already
insert intermediates. We de�ne two intermediates

[X1]eiab = Iabe,i, (9.12)

and
[X2]amij = Iijam. (9.13)

This means our equation for tabcijk is now

Dabc
ijk t

abc
ijk =P(a/bc)P(k/ij)

∑
e

[X1]ekbc t
ae
ij (9.14)

−P(c/ab)P(i/jk)
∑
m

[X2]mcjk t
ab
im.

CCSDT-1a makes no changes in the calculation of the energy, however
the T3 contributions are added to tai and parts of the T3 contribution are

146

added to tabij . To indicate that the terms from the original CCSD method
should also be included we use ← and write

Da
i t
a
i ←

1

4

∑
bcjk

Ib,cj,kt
abc
ijkm (9.15)

and

Dab
ij t

ab
ij ←

1

2

∑
kcd

Icdbk t
acd
ijk −

1

2

∑
kcd

Icdakt
bcd
ijk −

1

2

∑
mkc

Ijcmkt
abc
imk +

1

2

∑
mkc

Iicmkt
abc
jmk.

(9.16)

CCSDT-1a actually gives a surprisingly good approximation to the full CCSDT
energy, since the terms between the two usually add and subtract a similar
amount to the energy.

The equations for tai are the same for CCSDT as for CCSDT-1a. Imple-
menting the new equations should give the following result in atomic units
for the system in equilibrium:

ECCSDT−1a = −0.147577. (9.17)

For the system out of equilibrium we should get the energy value

ECCSDT−1a = −0.209537. (9.18)

Our code reproduces excellently both results.

9.4 CCSDT-1b

CCSDT-1b adds the remaining contribution to tabij , namely

Dab
ij t

ab
ij ←

∑
klcd

Icdkl t
abc
ijkt

d
l

1

2

∑
klcd

Icdkl

(
tbcdikj t

a
l − tacdikj tbl + tadbkli t

c
j − tadbklj t

c
i

)
. (9.19)

The energy correction at equilibrium is now:

ECCSDT−1b = −0.147580. (9.20)

The same system out of equilibrium should have a correlation energy of

ECCSDT−1b = −0.209517. (9.21)

Again, our code passes perfectly this benchmark.

147

9.5 CCSDT-2

For CCSDT-2 we add all contributions from T2 that does not include T1 to
tabcijk . This explicitly includes the terms

Dabc
ijk t

abc
ijk ←P(i/jk)P(abc)

∑
lde

Idelb t
ad
il t

ec
jk +P(ijk)P(a/bc)

∑
lmd

Idjlmt
ad
il t

bc
mk

− 1

2
P(i/jk)P(c/ab)

∑
lde

Idelc t
ab
il t

de
jk

+
1

2
P(k/ij)P(a/bc)

∑
lmd

Idklmt
ad
ij t

bc
lm. (9.22)

In our implementation this means changing X1 and X2, since we introduced
these intermediates earlier. It should be noted that since there are currently
no T3 contributions to t

abc
ijk these amplitudes does not need to be stored for

each iteration. This feature applies to CCSDT-n methods up to but not
including CCSDT-4. The new intermediates for CCSDT-2 will be:

[X1]ieab = Iieab +
1

2

∑
mn

tabmnI
ei
mn, (9.23)

and

[X2]amij = Iijma +
1

2

∑
ef

tefij I
ef
ma. (9.24)

We also introduce two new intermediates

[X12]idab =
∑
ld

Iedlb t
ae
il , (9.25)

and

[X13]alij =
∑
md

Idjmlt
ad
im. (9.26)

The expression for tabcijk should be changed accordingly, leaving the contri-
bution from CCSDT-1b untouched. This is indicated by the ← in the next
equation

tabcijk ←
∑
e

P(i/jk)P(abc)[X12]ieabt
ec
jk +

∑
m

P(ijk)P(a/bc)[X13]amij t
bc
mk.

(9.27)

The energy correction should now be, for the equilibrium con�guration,

148

ECCSDT−2 = −0.147459. (9.28)

While outside of equilibrium we get

ECCSDT−2 = −0.208938. (9.29)

Both these results match perfectly with benchmark. The number of iter-
ations can also serve as additional benchmark. The latter calculation was
achieved in our program in 30 iterations.

9.6 CCSDT-3

CCSDT-3 adds all remaining contributions to tabcijk that do not themselves
contain T3 amplitudes. The equations are available in [24]. For our pur-
poses we continue with the implementation ready equations. For CCSDT-3
we must make a tweak in our intermediates, X12 and X13. The terms
from CCSDT-2 remain, but we add some new ones. We also introduce new
intermediates in addition to those we already have, ending with

[X12]ieab ←−
∑
l

Iidal t
b
l −

∑
le

Iedlb t
e
i t
a
l −

∑
lme

Iedlmt
b
mt

ae
il , (9.30)

[X13]amij ←
∑
md

Idjmlt
d
i t
a
m −

∑
d

Iidal t
d
j −

∑
mde

Idemlt
ad
imt

e
j , (9.31)

[X14]idab =
∑
elm

Iedlm

[
+tei t

a
l t
b
m − tel tabim +

1

2
Iedlmt

e
i t
ab
lm

]
+
∑
lm

Iidlmt
a
l t
b
m +

∑
e

Iedab t
e
i , (9.32)

and

[X15]amij =
∑
m

Iijmlt
a
m −

∑
ed

Ideal t
d
i t
e
j +

1

2

∑
med

Idemlτ
de
ij t

a
m. (9.33)

These two intermediates must be included in our tabcijk equation and we obtain

tabcijk ←
∑
e

P(a/bc)P(k/ij)[X14]ieabt
ec
jk +

∑
m

P(c/ab)P(i/jk)[X15]amij t
bc
mk.

(9.34)
Inserting these equations we should now have the following energy correlation
in equilibrium

149

ECCSDT−3 = −0.147450. (9.35)

and out of equilibrium

ECCSDT−3 = −0.208876. (9.36)

Both of these results match perfectly with benchmark. For the reader who
wishes to optimize a CCSDT program, the four intermediates [X12], [X13],
[X14] and [X15] can actually be placed inside [X1] and [X2], using the
permutation operator tricks de�ned in Eq. (9.8).

9.7 CCSDT-4

For CCSDT-4 we will add the terms that are linear in T3. This corresponds
to the terms

Dabc
ijk t

abc
ijk ←

∑
ld

P(i/jk)P(a/bc)Iidal t
dbc
ljk +

1

2

∑
mk

P(k/ij)Iijlmt
abc
lmk

+
1

2

∑
de

P(c/ab)Ideab t
dec
ijk . (9.37)

We will introduce these terms as three new intermediates, because there
are more terms in the full CCSDT approach that can use this factorization.
These are de�ned as

[X3]lmij =
1

2
Iijlm, (9.38)

[X4]deab =
1

2
Ideab , (9.39)

and
[X6]idal = Iidal . (9.40)

Inserting this in the amplitude equation gives

Dabc
ijk t

abc
ijk ←

∑
ld

P(i/jk)P(a/bc)[X6]idalt
dbc
ljk +

∑
mk

P(k/ij)[X3]lmij t
abc
lmk

+
∑
de

P(c/ab)[X4]deabt
dec
ijk . (9.41)

We again perform energy calculations on the same systems as before. At
equilibrium the energy correction is now

ECCSDT−4 = −0.147613. (9.42)

150

And o�-equilibrium we get

ECCSDT−4 = −0.209668. (9.43)

Our code passes both tests again.

9.8 Full CCSDT

For the full CCSDT we introduce all the remaining terms. We will add these
into our existing intermediates, and de�ne a few new ones

[X1]icab ←
∑
lme

1

2
Icelmt

aec
lmi, (9.44)

[X2]amij ←
∑
lde

1

2
Idemlt

dea
ilk , (9.45)

[X3]lmij ←
∑
d

(
Idjlmt

d
i − Idilmtdj

)
+
∑
de

1

2
Idelmτ

de
ij , (9.46)

[X4]deab ←
∑
l

(
Idelb t

a
l − Idela tbl

)
+
∑
ml

1

2
Idelmτ

ab
lm, (9.47)

and

[X6]idal ←
∑
e

Iedal t
e
i −

∑
m

Iidmlt
a
m +

∑
em

Iedmlt
ae
im −

∑
em

Iedmlt
e
i t
a
m. (9.48)

We also introduce two new intermediates [X7] and [X8]

[X7]mi = −
∑
ld

Idilmt
d
l −

1

2

∑
lde

Idelmτ
de
li , (9.49)

and

[X8]ea =
∑
ld

Idela t
d
l −

1

2

∑
dlm

Idelmτ
da
lm. (9.50)

These are added to tabcijk with the following permutation operators in front

Dabc
ijk t

abc
ijk ←

∑
e

P(a/bc)[X8]eat
ebc
ijk +

∑
m

P(i/jk)[X7]mi t
abc
mjk. (9.51)

Implementing all of this, we get the correlation energy in equilibrium to be

ECCSDT = −0.147594. (9.52)

This is identical to the benchmark case mentioned above. Out of equilibrium
we get

151

ECCSDT = −0.2095(20). (9.53)

Here we marked a parenthesis around (20) due to the fact that Bartlett in
his letters gives this energy as

EBartlett = −0.209519. (9.54)

Meaning we have a di�erence of -0.000001 to Bartletts results. We will
assume this is caused by round o� errors.

9.9 Excluded Terms

Some terms are zero when using a HF basis, because the Fock eigenvalues
are diagonalized. If we want to perform CCSDT calculations for anything
other than a HF basis, we must add these terms

[X1]icab ← −
∑
ld

〈l|F |d〉tabli , (9.55)

[X15]alij ← −
∑
md

〈m|F |d〉tadij , (9.56)

[X8]da ← −
∑
l

〈l|F |d〉tal , (9.57)

and

tabcijk ←
∑
d

P(c/ab)(1− δcd)〈c|F |d〉tabdijk −
∑
l

P(k/ij)(1− δkl)〈k|F |l〉tabcijl

−
∑
ld

P(i/jk)〈l|F |d〉tdi t3abcljk . (9.58)

152

Chapter 10

Benchmarks

In this chapter we will benchmark our code. We have already performed
calculations using CCSDT and veri�ed them with benchmark values. The
full CCSDT method took advantage of all our implementations except for
the unrestricted Hartree-Fock (UHF) part. In this chapter we will look at
the performance of our codes and �nd out for sure if they work properly for
other systems. We wish also to point to the strengths and the weaknesses of
our implementations. We will look at all our methods, RHF, UHF, CCSD,
and CCSDT. Also we will test our memory distributed AOtoMO transforma-
tion algorithm to its limits. In general we will benchmark our code against
LSDALTON, Ref.[41], but we will also provide additional benchmarks in
each section. The CCSDT approach is neither available in DALTON nor in
LSDALTON.

We also mention that no special �ags are used to compile. We will supply
plenty of performance results. The �ags used were

1 CFLAGS = −pipe −O2 −Wall −W

10.1 Small systems

We �rst perform some initial testing on small systems like water and the hy-
drogen molecule H2. These will be compared with the LSDALTON package,
aswell as Ref.[40] and Ref.[22].

We use coordinates given in table 10.1 for all tests, except with the DZ
basis set, where we use the coordinates we used throughout chapter 9.

These are in atomic units. The coordinates are taken from Ref.[40].

153

Atom x y z

O 0 0 0
H 0 1.079252144093028 1.474611055780858
H 0 1.079252144093028 -1.474611055780858

Table 10.1: Coordinates for water molecule system. We will perform bench-
mark calculations on this system with di�erent basis sets. These coordinates
are in atomic units. They are not used for the DZ basis set.

Basis Set RHF CCSD Correction Benchmark

STO-3G -74.9627 -0.0501273 [40]
4-31G -75.9081 -0.13668 LSDALTON
6-31G -75.9845 -0.13603 LSDALTON
DZ -76.0098 -0.146238 [22]

Table 10.2: Benchmark calculations for water molecule

Our results are in agreement with the references down to the �nal dec-
imal. We examine the RHF calculations with the STO-3G basis set more
closely, in its components. These results are presented in table 10.3.

One-electron energy = -122.219
Two-electron energy = 38.1615
Repulsion energy = 9.09485

Table 10.3: One particle energy, Two particle energy and Repulsion energy
of RHF calculation on H2O with STO-3G basis set.

This is in perfect agreement with benchmark. With DIIS turned on this
was achieved in 13 iterations with RHF. With DIIS turned o� we needed 21
iterations.

10.2 Hydrogen molecule

Our next calculations will be on the diatomic hydrogen molecule. These
results will be benchmarked against a Full Con�guration Interaction (FCI)
study from 1968, Ref.[31]. Pople and others pioneered the e�ective use of
Gaussian Type Orbitals throughout the 1970s. The FCI calculation used
Slater Type Orbitals. We will plot the energy as a function of R, where R is
the distance between the two nuclei in a.u. The results are available in �gure
10.1. We will use the 6-311++G(2d,2p) basis set for both HF and CCSD

154

calculations, and a convergence criteria of 10−5. Calculations are performed
from R = 0.6 to R = 4.5 with 0.1 a.u. as intervals.

1 1.5 2 2.5 3 3.5 4

−1.15

−1.1

−1.05

−1

−0.95

−0.9

−0.85

−0.8

R [au]

E
n

e
rg

y
 [

a
u

]

Energyplot of the diatomic hydrogen molecule

HF

CCSD

FCI
a

Figure 10.1: Energypotential for H2 Molecule. aFCI results from Ref.[31]

The energy minimum is located at R = 1.4 au with an energy of -1.17086.
This was benchmarked against LSDALTON. We could also perform CCSDT
calculations on this molecule, but we only have two electrons. This means
the answer will be the same as a CCSD calculation, because we do not have
three electrons to excite making all the tabcijk amplitudes 0. This was also
con�rmed by our program.

Also, this is true for all higher versions of coupled cluster, meaning the
only di�erence between these results and the reference value should be a
truncated basis set. We therefore repeat our calculation with the largest
Pople basis set the author is aware of, 6-311++G(3df,3pd). This calculation
is marked with (a). We use R = 1.4011 a.u., which is the equilibrium distance
according to our FCI benchmark. We also try the aug-cc-pVQZ basis set.
This calculations is marked with (b). Our calculations results in an energy
in atomic units

155

ECCSD,(a) = −1.17264. (10.1)

and
ECCSD,(b) = −1.17394. (10.2)

According to the benchmark FCI energy with these nuclei, the equilibrium
position is -1.17447 a.u. We notice with increased size basis set we are get-
ting increasingly closer to the FCI calculation with STOs as we increase the
size of the basis set.

We did benchmark our results against LSDALTON and the two programs
were in agreement for the same basis set. On our energy plot FCI results are
plotted for R ∈ [1.0, 2.0], however, results for R = 1.1 were lacking.

10.3 First row Diatomic molecules

The natural next step is to introduce heavier atoms in our diatomic molecule.
In these systems CCSD no longer includes the full correlation, and we will
have more sources of error than just the basis set truncation. We use a decent
sized basis set, 6-311++G(2d,2p) and a convergence criteria of 10−6. Our
results are benchmarked against a paper with DMC calculation and marked
with a, see Ref.[32]. The results are presented in table 10.4.

Molecule R [au] EHF ECCSD Ea0 EbR
Li2 5.051 -14.8701 -14.9322 -14.995 0.50

Be2 4.63 -29.1321 -29.2646 -29.338 0.64

B2 3.005 -48.8656 -49.1738 -49.415 0.56

C2 2.3481 -75.3973 -75.7703 -75.923 0.71

N2 2.068 -108.979 -109.367 -109.542 0.70

O2 2.282 -149.58 -150.058 -150.326 0.64

F2 2.68 -198.741 -199.272 -199.529 0.67

Table 10.4: First Row diatomic molecule calculations using RHF and CCSD.
We de�ne In this table the molecule is listed to the left. The quantity R is
the distance between the nuclei and EHF and ECCSD is the HF and CCSD
energies for the system. The energy E0 is our benchmark value from Ref.[32]

In this table E0 is our benchmark value, from Ref.[32]. This is the ex-
act, non-relativistic, in�nite nuclei mass energy. We de�ne ER to be the
percentage of correlation recovered using CCSD.

ER =
ECCSD − EHF
E0 − EHF

. (10.3)

156

We notice the recovered energy is largest for C2 and N2.

We also benchmark our results against Henrik Mathias Eidings results
with a restricted Hartree-Fock basis (RHF) and Möller-Plesset perturbation
theory to second (MP2) and third order in the interaction (MP3) for O2, see
Ref.[4] for more details. His results are marked as a. Both Eiding and we
use the larger 6-311++G(3df,3pd) basis set. Results are presented in table
10.5.

Molecule HF MP2a MP3a CCSD

O2 -149.588 -150.142 -150.130 -150.138

Table 10.5: Comparison of spin restricted CCSD with MP2 and MP3 for the
O2 molecule at equilibrium. MP2 and MP3 energies from Ref. [4]

We notice the energy is higher for MP3 than for MP2. Our CCSD cal-
culation is lower than MP3, but higher than MP2.

The molecule O2 is commonly known as an open shell molecule, meaning
our spin restriction is likely to cause problems. We therefore repeat this
calculation using our unrestricted Hartree Fock implementation.

The �rst calculation for O2 is performed with singlet spin orientation,
meaning that the total spin is 0. All other input remains the same. We
obtain then an energy

EUHF,0 = −149.647. (10.4)

The triplet state, where total spin is 1, gives an energy

EUHF,1 = −149.674. (10.5)

These results are in good agreement with Eiding's calculations. The singlet
calculation di�er from his calculations with 0.001 in energy. The number of
iterations needed was about 80.

10.4 C20 Ground State

The molecule C20 is a particularly interesting molecule. Calculations using
di�erent computational methods seem to provide very di�erent answers to
the geometry of the ground state, as noted in Ref. [47]. There are three
structures in considerations. They are ring, bowl and cage. All these struc-
tures are present in experiments, but the ring structure seems to be the most
likely orientation. This is followed by bowl as the second most likely, and

157

cage as the third most likely.

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

x [au]

yÂ
 [a

u]
C20 in ring orientation

Figure 10.2: Orientation for C20 in ring formation.

However, methods considered highly accurate, such as di�usion Monte
Carlo (DMC), do not agree with experiment. Di�erent methods do not even
agree with each other. All this can be seen in Ref.[45]. One theory for the
disagreement is that experiments are not done at 0 Kelvin, while quantum
chemistry ground state calculations are. We will perform RHF and CCSD
calculations on the system.

We will use the 6-31G basis set, with a convergence criteria of 10−4. If
we are to form this molecule we need the energy of the molecule at least to
be lower than 20 times the energy of a single carbon. For a reference we
calculate the ground state energy of a single carbon atom. The energy for
20 single carbon atoms using RHF is

20× EHF = −751.6. (10.6)

CCSD �nds the energy of a 20 single carbon atoms to be

20× ECCSD = −753.0. (10.7)

158

−5
0

5 −5
0

5

−0.5

0

0.5

1

y [au]

C20 in bowl formation

x [au]

z
 [

a
u

]

Figure 10.3: Orientation for C20 in bowl formation.

The ground state geometry is the one with the lowest energy. We have three
orientations from reference, and 20 isolated single carbon atoms is another
possible orientation we include.

We would also like to visualize the three di�erent orientations ring, bowl
and cage. All coordinates are taken from Refs.[45] and [46]. Both these
references use the same coordinates. The geometries for bowl, cage and ring
are illustrated in �gures 10.3, 10.4 and 10.2.

Orientation RHF CCSD

ring -756.454 -758.261

cage -756.122 -758.004

bowl -756.312 -758.195

Table 10.6: C20 Energy calculations using di�erent orientations, ring, cage
and bowl.

Calculations on ring was performed without DIIS in HF, whereas cage

159

−4
−2

0
2

4 −5

0

5

−4

−3

−2

−1

0

1

2

3

4

y [au]

C20 in cage formation

x [au]

z
 [

a
u

]

Figure 10.4: Orientation for C20 in cage formation.

and bowl had DIIS enabled. This was required to achieve convergence. We
see the energy is lower than 20 times the energy of a single carbon for all
three orientations bowl, ring and cage and for both methods. Our results are
in good agreement with Ref.[46] and experimental results. We have indeed
found the ring to be the lowest energy orientation.

To perform this calculation our memory distribution algorithm was re-
quired.

10.5 Energy as function of number of AOs

The size of the basis set has a great impact on our calculations. However
at some point, the basis set is so large that making it even larger will not
provide any noticeable improvement in accuracy. Any increase in basis set
size will however always increase the runtime of our program. For this rea-
son there is great interest in knowing what size basis set gives what level of
accuracy.

To study this we have performed calculations on a single water molecule,

160

H2O. We have performed calculations using the STO-3G, 6-31G, 6-311G**,
6-311++G(2d,2p) and 6-311++G(3df,3pd). These basis sets are listed from
smallest to largest. Results are provided in �g. 10.5.

10 20 30 40 50 60 70 80
−76.4

−76.3

−76.2

−76.1

−76

−75.9

−75.8

−75.7

−75.6

−75.5

Energy of H
2
O as a function of number of AOs

Number of AOs

E
n

e
rg

y
 [

a
u

]

CCSD

HF

Figure 10.5: Energy of H2O as a function of number of AOs

We check the convergence with respect to the number of AOs for both
HF and CCSD. We see the HF energy has better convergence than CCSD.
CCSD is not particularly well converged at all, this was to be expected how-
ever based on our H2 results from earlier.

The largest calculation used approximate 80 AOs. With 80 AOs this
would be no = 10 and nv = 150, meaning nv

no
= 15. When performing CCSD

calculations this fraction is normally expected to be between 5 - 10.

10.6 Hartree Fock Performance Testing

In this section we will test the performance of our Hartree Fock program. We
will �rst look at memory usage, and afterwards discuss the performance of
both RHF and UHF for di�erent systems. We have not spent much time on
optimizing this part of the program, except for the parallel implementation

161

and memory distribution.

100 200 300 400 500 600 700 800
0

500

1000

1500

2000

2500

3000

3500

Number of AOs

M
e

m
o

ry
 R

e
q

u
ir
e

m
e

n
ts

 [
G

B
]

Needed memory for a system compared to available memory for p CPUs

Memory Needs

Avail. mem on 128 CPUs

Avail. mem on 256 CPUs

Avail. mem on 512 CPUs

Avail. mem on 16 CPUs

Figure 10.6: Memory Requirements for HF as a function of N

In �gure 10.6 we have plotted the memory needs for our HF program as
a function N for the serial version. N is the number of AOs. We will per-
form our calculation on the Abel computing cluster, Ref.[69]. This cluster
consist of nodes. Each nodes has 16 CPUs and 64 GB of memory. This
means each CPU has 4 GB of memory, if we discount that a small portion
of the memory is already occupied by processes already running on the node.

On our �gure we have marked the total available memory for a di�erent
number of CPUs. We are able to distribute the absolute dominant memory
consuming array. This means the crossing point between available memory
and needed memory is a good indication of the number of AOs we can run
with this number of CPUs. For example 512 CPUs crosses the blue line at
N = 700. This means we can do approximately 700 AOs with 512 CPUs.

It is possible on abel to ask for more memory for each CPU. There are
also high-memory nodes available. In theory we could ask for all 64 GB of
memory and only use one CPU on the node. This would however leave the

162

other 15 CPUs unusable for other users, since there is no memory left.

10.6.1 HF performance

To test the performance of our HF implementation we perform calculations
on O2 with the 6-311++G(3df,3pd) basis set. We use convergence criteria of
10−8. Only the four index integrals are run in parallel, so there are some serial
calculation involved. The UHF implementation has more communication
than RHF. We plot both performances in the same plot for comparison. The
raw data is included in table 10.7, and the timings involve all calculations in
HF. Results are plotted in �gure 10.7.

P RHF time [s] UHF time [s]

1 675.78 854.31
2 322.16 411.68
4 182.36 324.26
8 129.94 123.69
16 60.79 73.52
32 36.58 49.87
64 27.55 55.32
128 25.02 44.59
256 34.29 49.1

Table 10.7: Performance of Hartree Fock implementation in parallel for O2

molecule with 6-311++G(3df,3pd) the basis set.

163

0 1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

700

800

900

p

T
im

e
 [

s
]

HF timings for 2
p
 processors, not averaged

UHF

RHF

Figure 10.7: Time in seconds for a HF calculation on O2 with the 6-
311++G(3df,3pd) basis set using 2p processors. Both RHF and UHF calcu-
lations included. Results are not averaged over multiple runs.

10.7 AOtoMO Performance Testing

In this section we will test the performance of our AOtoMO transformation
algorithm for the four index integrals, as a function of number of CPUs. The
raw data is included in table 10.8, and we plot the data in �gures 10.8 and
10.9. The quantities of interest are time used in calculation versus time used
in communication. Calculations spread over more CPUs can be performed
faster. However more CPUs will require more communication. Calculations
on 251 and 569 AOs are done on the C12H22O11 molecule, sucrose. We use
the 6-31G and the 6-311++G** basis sets. The 130 AO calculation is done
on an imaginary molecule, simply to measure performance.

We de�ne wall time as the time from the �rst CPU start until the last
CPU �nish. We will use this as a measurement of performance of our algo-
rithm. We will also de�ne the point where wall time increase with increased
number of CPUs as the time communication overtakes computation.

164

p AOs = 130 AOs = 251 AOs = 569

1 123.55 3458 -
2 69.64 1800 -
4 37.73 923 -
8 25.51 618 -
16 17.11 389 21076
32 14.52 297 15556
64 10.35 266 14961
128 10.62 232 11294
256 - - 9413
512 - - 9346

Table 10.8: Parallel performance of AOtoMO transformation for 130, 251
and 569 Basis Functions for di�erent number of CPUs

We should �rst remind ourselves the computational scaling here is N5,
where N is the number of AOs. The communication however scales as N4.
We see from our benchmarks that larger number of AOs scales better with
increased number of CPUs.

We notice especially that the wall time increase from 64 to 128 CPUs for
130 AOs. This does not happen for 251 AOs. Indicating a better scaling for
higher number of AOs, as expected from the algorithm. We also note that
in a less optimized AOtoMO transformation, communication would overtake
computation much quicker.

Our memory distributed model makes us able to run larger systems using
increased number of CPUs. The memory usage of the algorithm is closely
related to that of our Hartree Fock implementation. This is due to the
fact that in our HF program we stored all terms of the four index integrals,
whereas after HF is completed we will delete the terms corresponding to one
symmetry, reducing the memory requirements by 1

2 . The transformed inte-

grals are also stored using this one symmetry, and need N4

2 memory. These
two combined equals the memory needed for HF.

For implementation reasons there will be an additional N3 array needed.
This is because we will need one N3 intermediate for armadillo, and one for
the communication in MPI. This changes memory requirements modestly,
but becomes a problem for approximate 1000 AOs.

For 569 AOs we are unable to perform the calculation in serial. We start
calculations using 16 CPUs. From �gure 10.8 we notice the best scaling is

165

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p

T
/T

0

Scaling of AO to MO transformation using 2
p
 processors

130 Basis Functions

251 Basis Functions

Figure 10.8: AOtoMO transformation scaling for small number of AOs and
up to 128 processors, p. Plotted on y - axis is T/T0, where T0 is the wall
time for the serial version. On the x - axis we have 2p, where p is the number
of CPUs

behind us at this number of CPUs. However we can make an educated guess
that running this sized system in serial would require several days of com-
putations.

Our results for 569 AOs con�rm that the scaling is better with increased
number of AOs. Even from 256 to 512 CPUs we improve overall performance.

We also list a few single calculations for di�erent number of AOs and
CPUs, to see the performance of the transformation for a variety of calcula-
tions. The basis set used for the calculations was 6-311++G(2d,2p). These
results are included in table 10.9.

We see up to 600 AOs is very doable calculations. At 735 AOs the trans-
formation itself takes more than one day. However, these timings are very
good relative to others, Ref.[36]. We have not found anyone beating our
performance. Full AOtoMO transformations are rare in the literature, es-

166

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9
0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

4 Scaling of AO to MO transformation using 2
p
 processors

p

T

569 Basis Functions

Figure 10.9: AOtoMO transformation wall time scaling for 569 AOs and 2p

CPUs. 16 to 512 CPUs used.

Molecule CPUs AOs AOtoMO

CH4 16 69 0.98 s
C2H6 64 118 9.71 s
C2OH6 64 147 19.9 s
(H2O)8 256 392 23 min
C20 256 580 238 min

(H2O)15 512 735 35.8 hour

Table 10.9: Performance of AOtoMO transformation for di�erent systems in
parallel.

pecially for high number of AOs. It is therefore di�cult to make comparisons.

Alternatively, on the benchmark page for ACESIII, Ref.[34], they list the
wall time of a few CCSD calculations. CCSD regularly use the full AOtoMO
transformation, and ACESIII is a very optimized CCSD program. Thus it
is interesting to see if CCSD or AOtoMO would dominate wall time in a
calculation with an optimized CCSD version.

167

An Ar6 calculation with 300 AOs is listed on ACESIII benchmark site
with 128 CPUs as 5.9 min per CCSD iteration. Using our AOtoMO trans-
formation, 251 AOs was performed in 3.8 min.

They also list calculations on sucrose, C12H22O11, using the 546 AOs,
and 23 orbitals frozen. This means 523 unfrozen spin orbitals. They report
29.4 minutes for one iteration of 256 CPUs. Our four index transformation
spent 156 minutes on 569 AOs.

These two results indicate the wall time for our transformation for this
number of AOs lies approximated between 2-4 CCSD iterations, which is
very reasonable. CCSD usually requires 10-20 iterations for convergence in
equilibrium. Most of the benchmarks on the ACESIII site for CCSD with
up to 512 CPUs is between 300 - 600 AOs, all of which is doable with this
algorithm.

It should also be noted that our full AOtoMO transformation only de-
pends upon number of AOs, whereas CCSD depends on the combination
of occupied versus virtual orbitals. In a CCSD calculation with nv >> no
AOtoMO would be more time consuming relative to a CCSD iteration.

10.8 CCSD Serial Performance

In this section we will test the CCSD performance in serial. We will try a
cluster of water molecules, of size (H2O)N . We will use the 6-311++G(2d,2p)
basis set. We also note the serial time of the AOtoMO transformation.
Results are presented in table 10.10.

System AOs no nv CCSD iteration [s] AOtoMO [s]

(H2O) 49 10 88 1.17 0.75
(H2O)2 98 20 176 37 14.41
(H2O)3 147 30 264 632 297
(H2O)4 196 40 352 2255 1454

Table 10.10: Performance of serial CCSD program for di�erent number of
water molecules using the 6-311++G(2d,2p) basis set.

We test the serial implementation against an unoptimized but factor-
ized CCSD program. This implementation is available through "CCSD1" as
method in the input �le. The equations are fully factorized, so the theoretical
scaling of the equations is still N6, where N is the number of AOs. However
we have not implemented the use of external math libraries, compact storage

168

and the other optimizations discussed in section 8.5. These calculations are
not performed on abel. We also use the external math library BLAS. The
performance here on one CPU is generally better than on abel supercom-
puter, but we do not have the high number of CPUs available. Results are
presented in table 10.11.

System no AOs Unoptimized iter [s] Optimized iter [s] Fraction

Ne 10 29 3.5 0.1 35
H2O 10 49 40 0.78 51
C2H4 16 62 670 5.4 124
C2H4 16 98 48

Table 10.11: Comparison between optimized and unoptimized CCSD imple-
mentation

10.9 CCSD Parallel Performance

Our CCSD serial implementation is among the fastest. We want to test its
parallel performance in detail. First we run a small system of H2O with the
6-311++G(3df,3pd) basis set for a di�erent number of processors. We use
up to 64 processors on this system. The raw data is included in table 10.13.
We plot the performance in �gure 10.10 and the Speedup, S, in �gure 10.11

P CCSD iteration time [s]

1 4.44
2 2.35
4 1.30
8 0.88
16 0.48
32 0.27
64 0.18

Table 10.12: Parallel performance of CCSD implementation for H2O with
the 6-311++G(3df,3dp) basis set.

169

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

p

T
im

e
pe

r
ite

ra
tio

nÂ
 [s

]

Time per iteration using 2p processors

Figure 10.10: Time per iteration of a CCSD run on H2O with the 6-
311++G(3df,3pd) basis set using 2p processors.

The iteration time for 64 processors oscillated between 0.17 and 0.18.
0.18 was more frequent. This is an excellent scaling for this system, from
4.44 to 0.18 s. We can not expect linear scaling in CCSD, this has never
been accomplished. In section 7.2.7 we de�ned the overhead.

TO = pTP − TS (10.8)

We can insert the values and calculate the overhead.

P CCSD iteration time [s]

1 -
2 0.26
4 0.76
8 2.60
16 3.24
32 4.20
64 7.08

Table 10.13: Overhead in parallel CCSD calculation for H2O.

The overhead says how much computational resources could be saved in
total if we waited for the results to be calculated in serial. The overhead is
dominated by communication and serial computation. We do not calculate
the energy and τ in parallel, these are N4 calculations. Since these are in-
volved we can never expect the time per iteration to reach exactly zero. S

170

0 10 20 30 40 50 60 70
0

5

10

15

20

25

Processors, P

S
p

e
e

d
u

p
,

S

Speedup versus number of processors

Figure 10.11: The speedup, S, as a function of number of processors for a
CCSD iteration on H2O with the 6-311++G(3df,3pd) basis set.

and TO are closely related. If TO = 0 we will have linear scaling. However
we are happy that we are approaching zero. Communication in CCSD scales
as n2vn

2
o, while calculation scales as n

4
vn

2
o. As we saw for the AOtoMO trans-

formation, we are likely to get an improved scaling for larger system sizes.

We also test a system of two water molecules. We use the same basis
set, to achieve a system of exactly twice the size. We are only interested
in the performance of our program, so we can place the two molecules in
any location. The raw performance data is included in table 10.14. The
performance is plotted in �gure 10.12 and S is plotted in �gure 10.13.

171

P CCSD iteration time [s]

1 300
2 225
4 120
8 59.0
16 30.2
32 15.6
64 8.3
128 4.8

Table 10.14: Measure of parallel performance of CCSD time per iteration
with two water molecules with the 6-311++G(3df,3dp) basis set.

0 1 2 3 4 5 6 7
0

50

100

150

200

250

300

p

T
im

e
 [

s
]

Time per iteration for 2
p
 processors

Figure 10.12: Time per iteration of a CCSD run on (H2O)2 with the 6-
311++G(3df,3pd) basis set using 2p processors.

In �gure 10.12 we see some weird behaviour when going from one to two
CPUs. This is due to the sub-optimal work distribution noted in section
8.6.2. However from four to eight CPUs, and higher, we do not have this
problem. This is because the sub-optimal distribution does not get worse
with an increased number of CPUs, it stays at the same sub-optimal level.

172

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

Processors

S
c
a

lin
g

,
S

Scaling plotted against number of processors

Figure 10.13: The speedup, S, as a function of number of processors for a
CCSD iteration on (H2O)2 with the 6-311++G(3df,3pd) basis set.

We still have a good performance with time per iteration approaching a
value close to zero, but with an optimal work distribution in part 1 of the
implementation we would approach zero even faster. How sub-optimal the
distribution is depends on the system. However distribution of part 2 and 3
is always optimal.

However we do notice that in �gure 10.11 the speedup, S, for 64 CPUs
is approximately 25. That is

S1(P = 64) = 25, (10.9)

whereas S for the larger system we see from �gure 10.13 at P = 64 is

S2(P = 64) = 40 (10.10)

This is interesting because it shows S improves greatly with larger system
size. This means TO decrease, and we have less wasted computational re-
sources. The improvement from a doubling of system size is much higher
here than we saw for AOtoMO, as expected from the larger di�erence in

173

scaling of computation relative to communication.

We also see this increase in S even with the much more sub optimal work
distribution from P = 1 to P = 2 we see in �gure 10.12. This is great news
for further optimizations, and will be noted in chapter Future Prospects.

10.10 Potential Energy Plots

Here we present two potential energy plots for the HF and BH molecules.
We are in agreement with the benchmarked values in Ref.[70]. Plots are
presented in �gures 10.14 and 10.15.

0.5 1 1.5 2 2.5 3 3.5
−25.25

−25.2

−25.15

−25.1

−25.05

−25

−24.95

−24.9

−24.85

−24.8

R [Ã�]

E
ne

rg
y

[a
u]

Energyplot of BH molecule

CCSD
HF

Figure 10.14: Energypotential for BH Molecule, RHF and RHF-CCSD

CCSD generally improve our results. However there are some features
with our CCSD calculations we would like to investigate further. We here
presents plots of the number of iterations as a function of R for the HF
molecule. We also plot the correction to the HF energy, ECCSD, as a func-
tion of R.

174

0.5 1 1.5 2

−100.2

−100

−99.8

−99.6

−99.4

−99.2

E
ne

rg
y

[a
.u

.]

R [Ã�]

Potential Energy Plot of HF Molecule

CCSD
RHF

Figure 10.15: Potential energy of HF Molecule. RHF and RHF-CCSD

We notice the number of iterations required for self consistency increase
when moving away from the equilibrium geometry. If we move to far away
the CCSD correction begin either diverging or oscillating between solutions.
We have plotted the number of iterations required for self consistency in
�gure 10.16. The CCSD correction energy is plotted in �gure 10.17. From
�gure 10.16 we see that CCSD is an equilibrium geometry method. It does
not always work outside of equilibrium. If the molecule is to far away from
equilibrium we can expect a diverging or oscillating CCSD energy.

175

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

20

40

60

80

100

120

140

R [Ã�]

N
r

of
 C

C
S

D
 It

er
at

io
ns

Number of CCSD iterations required for self consistent solution of HF molcule

Figure 10.16: HF Molecule

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.34

−0.33

−0.32

−0.31

−0.3

−0.29

−0.28

−0.27

−0.26

−0.25

−0.24

R [Ã�]

C
C

S
D

 C
or

re
ct

io
nÂ

 [a
.u

.]

CCSD Correction of HF molecule for different R

Figure 10.17: HF Molecule

176

Chapter 11

Results

In this chapter we present our new results. We will experiment with our
code, test its performance against existing software and look into features we
found interesting during development. We will provide a contribution to the
advancement of computational chemistry and speci�cally the Computational
Physics Group at UiO.

11.1 Single Atoms For Future Reference

In this section we do calculations on single atoms. Our hope is that these
results may be used as a benchmark for future calculations, using di�erent
methods. Since Pople basis sets are not available for all atoms, we can only
perform reliable calculations where they are available.

For even number electrons we will use RHF as a referance for CCSD, or
CCSDT. For odd number electrons we will use UHF. In UHF we will assume
we have one extra electron with spin up, relative to the number of spin down.

We will where available provide a reference energy from Jorgen Hober-
get, comparing our results to his DMC calculations, Ref.[88]. Our results are
presented in table 11.1.

We see in this table our results are generally on par with Jorgens DMC
calculations. Generally speaking, his calculations are more accurate than
ours for small systems, whereas for Kr especially we have much better results.
For CCSD calculations on any of these atoms we only use one CPU, and do
not need much computational resources.

177

Z Atom Basis Set Method Energy DMC

1 H 6-311++G(3df,3pd) UHF -0.499818
2 He 6-311G** RHF-CCSD -2.89057 -2.9036(2)

3 Li 6-311++G(2d,2p) UHF -7.4321
4 Be 6-311++G(2d,2p) RHF-CCSDT -14.6341 -14.657(2)
5 B 6-311++G(2d,2p) UHF -24.5313
6 C 6-311++G(2d,2p) RHF-CCSDT -37.7383
7 N 6-311++G(2d,2p) UHF -54.3402
8 O 6-311++G(2d,2p) RHF-CCSD -74.884
9 F 6-311++G(2d,2p) UHF -99.4014
10 Ne 6-311++G(2d,2p) RHF-CCSDT -128.798 128.765(4)

11 Na 6-311++G(2d,2p) UHF -161.847
12 Mg 6-311++G(2d,2p) RHF-CCSDT -199.774 -199.904(8)
13 Al 6-311++G(2d,2p) UHF -241.874
14 Si 6-311++G(2d,2p) RHF-CCSD -289.014
15 P 6-311++G(2d,2p) UHF -340.68
16 S 6-311++G(2d,2p) RHF-CCSD -397.692
17 Cl 6-311++G(2d,2p) UHF -459.476
18 Ar 6-311++G(2d,2p) RHF-CCSD -527.056 -527.30(4)

19 K 6-311++G(2d,2p) UHF -559.15
20 Ca 6-311++G(2d,2p) RHF-CCSD -677.096

32 Ge 6-311G** RHF-CCSD -2075.66
33 As 6-311G** UHF -2234.12
34 Se 6-311G** RHF-CCSD -2400.17
35 Br 6-311G** UHF -2572.36
36 Kr 6-311G** RHF-CCSD -2752.44 -2749.9(2)

Table 11.1: Single atom energy calculations for future reference, using a vari-
ety of methods and basis sets. We de�ne Z as the charge of the atom, Energy
as the energy of the given method and DMC as Jorgens DMC calculations
from Ref. [88]

11.2 Methods

In our coupled cluster machinery there are two main approximations, a trun-
cated basis set and the limitation of how many excitations are included. In
the benchmark chapter we looked into convergence with respect to the basis
set. Now we also want to check convergence when we include higher order
excitations.

We start with the LiH molecule. We will use the largest Pople type basis
set, 6-311++G(3dp,3df). We will use Ref.[85] as a reference. The equilib-

178

rium distance given in this paper is R = 3.015 a.u.

The LiH molecule contains four electrons. Here two can be considered
core electrons and two valence electrons.

Method Correction Energy

HF - -7.986 376 7
CCSD -0.053 444 1 -8.039 820 8
CCSDT-1a -0.053 536 7 -8.039 913 4
CCSDT-1b -0.053 536 9 -8.039 913 6
CCSDT-2 -0.053 537 0 -8.039 913 7
CCSDT-3 -0.053 537 4 -8.039 914 1
CCSDT-4 -0.053 557 3 -8.039 934 0
CCSDT -0.053 555 5 -8.039 932 2
[85], est E0 - -8.070 548 0

Table 11.2: Various CCSDT-n method results for the LiH molecule at equi-
librium geometry

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5
−25.25

−25.2

−25.15

−25.1

R

E
n

e
rg

y

Minimum of Potential Energy Curve of BH Molecule

HF

MP2

CCSD

CCSDT

Figure 11.1: BH Potential Energy Minimum plot. Methods in use RHF,
MP2, CCSD and CCSDT. Distances in Angstrom.

We notice the energy does not change much. The change is in the fourth

179

decimal. However we suspect this is because we only have two valence elec-
trons.

We also perform calculations on the BH molecule using all our methods.
We are interested in a small area around the equilibrium distance found
previously in �gure 10.14. We will compare RHF, CCSD, CCSDT-1a and
CCSDT. We also include MP2 calculations performed with LSDALTON for
comparison. Results are available in �gures 11.1 and 11.2.

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5
−25.245

−25.24

−25.235

−25.23

−25.225

−25.22

−25.215

−25.21

−25.205

R

E
n

e
rg

y

Minimum of Potential Energy Curve of BH Molecule with CC Methods

CCSD

CCSDT−1a

CCSDT

Figure 11.2: BH Potential Energy Minimum plot. Methods in use CCSD,
CCSDT-1a and CCSDT. Distances in Angstrom.

We have performed calculations with a resolution of 0.05 Angstrom.
Around the minimum the resolution is increased to 0.01 Angstrom. For
this system we see di�erent methods provide di�erent results.

180

The improvement from HF to MP2 is larger than from MP2 to CCSD.
Also we see the improvement from MP2 to CCSD is larger than the im-
provement from CCSD to CCSDT. We see a convergence of the energy with
respect to the contributions included. This is illustrated in �gure 11.3.

HF MP2 CCSD CCSDT−1a CCSDT
−25.26

−25.24

−25.22

−25.2

−25.18

−25.16

−25.14

−25.12

−25.1

E
n

e
rg

y

Convergence of Energy Minimum of BH with respect to Method

Figure 11.3: BH Energy minimum with respect to Method plot. Methods in
use HF, MP2, CCSD, CCSDT-1a and CCSDT. MP2 results from LSDAL-
TON.

We also notice that for HF and MP2 the energy minimum is R = 1.22
Angstrom. For CCSD and CCSDT the minimum is shifted to 1.23 Angstrom.

11.3 CCSD Performance

In this section we will test our CCSD performance against ACESIII. There
are a few challenges when making this test, especially that we do not have
implemented frozen core in our optimized AOtoMO transformation. We can-
not perform the AOtoMO calculation with the unoptimized algorithm for the
systems available on the ACESIII benchmark site. They are simply to large.
We need the optimized AOtoMO algorithm, and as such we cannot perform
frozen core calculations. The benchmarked values on ACESIII benchmark
site are with frozen core.

181

However since CCSD calculations depend on no and nv, we will create
a system of the same size and compare performance. We will benchmark
against a C20 calculation with ACESIII from 2009, [34]. We are interested
in program performance. Their calculations are performed with the system
speci�cs described in table 11.3.

System 1 C20

Electrons 120
Basis Set cc-pVDZ
Contracted GTOs 280
Frozen Orbitals 20 core
no for CCSD 80
nv for CCSD 440

Table 11.3: System input for use in ACESIII

The hardware in use here is the Kraken supercomputer, [74]. In 2009
Kraken was the most powerful supercomputer in the world managed by an
academia. Each node on Kraken has the hardware speci�cations described
in table 11.4.

Two 2.6 GHz six-core AMD Opteron processors (Istanbul)
12 cores
16 GB of memory
Connection via Cray SeaStar2+ router

Table 11.4: Hardware in use for ACESIII calculation

We will use a slightly di�erent system, but we have ensured nv and no is
approximately the same as for the prior system. Our system is described in
details in table 11.5.

System 2 C13H2

Electrons 80
Basis Set 6-311G**
Contracted GTOs 259
Frozen Orbitals 0
no for CCSD 80
nv for CCSD 438

Table 11.5: System input for use in our program

We perform our calculations on the abel computing cluster, [69]. Both
ACESIII and our calculations are performed with 200 CPUs. We note our

182

system has two virtual orbitals less.

Code Time per Iteration [min]
ACESIII 1.6
Our Results 4.17 (250 s)

Table 11.6: Performance results of large parallel CCSD calculation

The AOtoMO transformation took 140 seconds. This is less than one
iteration in our program, and close to one iteration in ACESIII.

Compiler �ags can optimized our code further. Compiler �ags allows
the compiler to perform further optimizations, and can sometimes a�ect the
resulting energy. We want the performance to be a realistic measure of how
fast our program can produce real results. For this reason we did not use any
�ags in the compiler until now, but we will try this calculation once more
using the �ags recommended by abel.

1 CFLAGS = −pipe −O2 −xAVX −mavx −fomit−frame−po in t e r −fno−a l i a s −
Wall −W

These compiler settings produce a runtime per iteration of TP = 230 s (3.8
m).

183

184

Chapter 12

Conclusion

We have developed a complicated many-particle code which can perform ab

initio calculations of atoms and molecules using the most sophisticated basis
functions available. The code includes several methods, with a Hartree-
Fock solver used to generate an optimal single-particle basis. This basis
serves then as an input to Coupled Cluster theory. Here we have developed
an extremely e�cient and parallel implementation of both Coupled Cluster
with singles and doubles and excitations as well as a serial program of the
more complicated triples correlations. Our code produces results in excellent
agreement with the existing literature and can also be used to study systems
that heretofore have not been investigated using coupled cluster theory. We
have performed some calculations, like the convergence of energy with re-
spect to method, we have not seen elsewhere. Our code opens up for many
interesting applications. The aim of this chapter is to review our results and
benchmarks. We will review each part of our code and draw conclusions of
positive and negative features of our implementation, and also review other
results.

12.1 Performance

12.1.1 HF

Our Hartree-Fock (HF) code was not particularly optimized. But since we
wish to run a Coupled Cluster calculation afterwards, we do not need an
extremely fast HF code.

The parallel performance plot, see �gure 10.7, exhibits some strange be-
haviour. We double the number of processors and more than double per-
formance. This seems like super linear scaling, but it is not the case. In
HF we distributed the jobs of calculating 〈ij|kl〉. These are calculated in
a sequence, and if we have more than one CPU each CPU gets its own se-
quence of integrals to calculate. However the amount of memory needed for

185

each integral remains constant. Our implementation excludes super linear
scaling, as each individual integral should be calculated in the same amount
of time.

We did not average our results over multiple runs, and the same CPU
does not always produce the same performance even for the same exact code.
This likely explains the situation.

Even though we did not spend as much time optimizing the performance
of our restricted Hartree-Fock (RHF) part, it is currently good enough for
the largest CCSD calculations we have available. We did not make much use
of unrestricted Hartree-Fock part (UHF).

DIIS was implemented and used, but mostly to achieve convergence when
needed. If we were to calculate two electron integrals on the �y, DIIS would
be much more important. In this situation if we reduced the number of
iterations required to a half, we would also reduce the runtime of our program
to a half.

12.1.2 AOtoMO

Our AOtoMO performance is good. We have been unable to �nd anyone
beating this performance. The scienti�c literature from the authors point
of view lacks high performance full AOtoMO transformation algorithms and
performance results.

Reference [36] lists some results. They do calculations on ethylene (C2H4)
with cc-pVTZ basis set. This is 114 orbitals. We will compare their results
to our results for 130 AOs, listed in section 10.7. We take the best results
from Ref.[36]. We also list how much faster our algorithm runs, relative to
theirs.

CPUs [36], 114 AOs [s] Our, 130 AOs [s] Fraction

1 699.30 123.55 5.7
2 382.10 69.64 5.5
4 210.90 37.73 5.6
8 132.50 25.51 5.2
16 99.4 17.11 5.8
32 - 14.52 -

Table 12.1: AOtoMO performance measured against existing results.

The AOtoMO transformation comes to dominate calculations in Ref.[36].

186

With this new algorithm this can be avoided. Ref.[36] is a paper about fur-
ther developments of the Tensor Contraction Engine, discussed previously.
These are leading scientists in computational chemistry. It is very likely their
transformation performs quite well relative to others.

The article also mentions the use of point group symmetry, which will be
discussed later. This makes coupled cluster calculations faster, and can po-
tentially speed up the AOtoMO transformation also. No mention was made
if they applied it in the transformation. The di�erence in number of AOs
is also signi�cant. We did perform calculations for 118 AOs in section 10.7.
With 64 CPUs the runtime was half that of 130 AOs with 64 CPUs. With
this in mind the outperformance is likely much higher than the fractions
listed here.

The key feature of our algorithm is memory distribution. The non dis-
tributed memory scales as N3. However when the number of AOs become
so large that N3 does not �t in memory, we can introduce an additional
intermediate after two quarter transformatinos. This would be of size N4

and distributed in memory. Then we would have non distributed memory
scaling as N2, and would only need a large amount of CPUs. The amount of
CPUs in use for the largest CCSD calculations make our algorithm for the
full AOtoMO transformation feasible, in most cases.

However not all post HF methods require the full AOtoMO transfor-
mation. Much work has been done to avoid the transformation partially or
entirely. If performing for example MP2 calculations only a partial AOtoMO
can be performed with good results. See Refs.[71], [72] and [73]. In general,
CCSD without approximations is one of the faster post-HF method that do
require the full AOtoMO transformation. For these reasons we conclude that
our AOtoMO transformation is extremely e�ective. For most calculations
the transformation become insigni�cant in terms of runtime.

12.1.3 CCSD

The CCSD implementation is quite large, and performs very well. Our re-
sults are approximate 2.5 times slower than ACESIII for the benchmarked
system. However CCSD scales as N6, and 2.5 times slower for this sized sys-
tem is not bad. We also have several obvious further optimizations available.
This will be discussed in detail in the chapter Future Prospects. ACES has
been optimized over more than 20 years. This is the �rst implementation
of CCSD in quantum chemistry on the computational physics group. We
do conclude that it is very possible to beat ACESIII, [34], and other high
performance software in performance.

187

The parallel performance is sub optimal. Especially when going from 1
to 2 CPUs, as seen in �gure 10.12. The scaling from 4 to 8 CPUs and so
on is much better. This is because the work distribution stays at the same
sub-optimal level once a given number of CPUs are in use. The sub-optimal
distribution is discussed in section 8.6.2, and a solution is proposed in chap-
ter Future Prospects.

The serial algorithm is extremely fast. Serial performance for CCSD is
not as interesting because whatever the performance is, we will need multi-
ple CPUs for large systems when using our memory distributed model. We
wanted to make comparisons of performance with LSDALTON, but LSDAL-
TON applies approximations to enable faster calculations on larger systems.
For this reason we could only benchmark smaller systems down to the �nal
decimal. Also we were unable to print time per iteration in LSDALTON. .

In section 10.8 we also noticed a better performance on the o�ce com-
puter relative to abel. This may be caused by armadillo having problems
working with Intel MKL. This can be a problem because armadillo does not
return error if the linking is not correct, it only returns suboptimal perfor-
mance. Also we did not use any special compiler settings in the make�le to
optimize performance.

However a single CPU on abel is not expected to outperform signi�cantly.
The great thing with supercomputers is the massive number of CPUs avail-
able. As such we cannot expect any huge performance gain if this is a
problem. This situation remains slightly unclear.

In section 10.8 we also see how our optimized implementation compares
to the unoptimized, but factorized, implementation. We see the scaling of
performance is improved dramatically. Small optimizations for small systems
turn into huge performance gains when the system size increase.

12.2 Basis sets and Convergence

We notice the CCSD energy was not converged in �gure 10.5. Similar re-
sults are noted in Refs.[81] and [4]. We expected HF to converge faster than
CCSD based on the discussion in section 4.8. The CCSD energy for H2O
decreased with approximately 0.1 a.u. from the second largest to the largest
Pople type basis set. The HF energy is much better converged.

We also note that the CCSD calculation scales with the number of vir-
tual and occupied orbitals. The hotspot in HF is the two electron integrals,
which are based on the number of primitive GTOs. This is a fundamental

188

di�erence. Pople type basis sets use Cartesian GTOs. For l = 2 we then have
6 orbitals. Spherical GTOs only have 5 orbitals for l = 2. Since the values
for αi are shared for these orbitals with l = 2, it would not make much of a
di�erence in an optimized HF code. It does however make a huge di�erence
in CCSD, as more orbitals results in more time consuming calculations.

For these reasons we conclude that Spherical GTOs are better suited
for CCSD. The basis sets that should be used are of the type cc-pVDZ, cc-
pVTZ, aug-cc-pVDZ etc. The implementation of spherical GTOs is a bit
more complicated according to the literature.

12.3 CCSDT

Our implementation of CCSDT is not optimized and as such we can only
run smaller systems.

For LiH we noticed the energy did not change much from CCSD to any
of the CCSDT-n methods. This system only has two valence electrons. This
means any triple excitation involves excitation of a core electron. For this
system the error from the limited basis set is dominating.

For the BH molecule we noticed a larger contribution from triple exci-
tations. Since our CCSDT implementation is not optimized we are limited
to smaller system sizes. CCSDT calculations for the BH molecule potential
energy curve took one day on abel.

In �gure 10.5 we see the energy as a function of basis set size. In �gure
11.3 we see the energy as a function of method in use. These are the sources
of errors in coupled cluster theory. Both of them are converging towards
some value. The Coupled Cluster method is in theory exact if we do not
truncate and have an in�nite large basis set. Our results are in agreement.
From the two �gures we conclude the largest errors for the systems we have
studied come from the limited basis set, since this plot shows a worse con-
vergence.

We also noticed the equilibrium distance between the atoms changed
with di�erent methods. We conclude that not only the energy is converging,
but also other physical properties.

Also interesting is how good the CCSDT-1a model recovers the triple
excitation contribution for the BH molecule. This method is much faster
with lower scaling. Also the new T3 amplitudes in CCSDT-1a does not
depend on the old T3 amplitudes. This means we do not need to store them,

189

since they are not reused.

190

Chapter 13

Future Prospects

In this chapter we discuss future prospect for all parts of our implementation.
We will give our answer on how to enable larger and faster calculations. Our
main focus will be on the CCSD part of our implementation, but most or all
of the discussion will apply also to CCSDT.

13.1 Hartree Fock Performance

Our implementation of HF is not optimized. There are several obvious op-
timizations available to enable larger molecules in calculations. The most
obvious is making use of αi values.

Several orbitals share αi values. As such the two electron integrals over
primitives can be reused. In our implementation we have included a few com-
ments on which values are changed and which are constant when the only
change from one orbital to another is the value of ci and the composition
of angular momentum, m, n and o. The comments are included throughout
the code, but mainly in the function Electron_Electron_Interaction_Single
in the Hartree_Integrals class.

The way our implementation make use of symmetries and especially our
parallel implementation made it di�cult to make use of this optimization for
now.

Also a huge performance gain is available through integral screening.
Integral screening is described in detail in Refs. [8] and [9]. These references
also describe other HF optimizations.

191

13.2 CCSD Performance

The CCSD implementation is quite large and is constructed from scratch.
We had no prior experience with coupled cluster. For this reason we are left
with several potential optimizations. These will be discussed here.

13.2.1 Work Distribution

The �rst is the work distribution of part 1. This is suboptimal, but the only
reason it is was time constraints. The work distribution should be optimized
further, by using the shifts already introduced.

In our program we �rst distribute the jobs of calculating terms in [W1].
When this is complete, the CPU that got the last job with this array is noted.
When we start distributing jobs for [W2], the �rst job will go to the next
CPU after the one that got the last job in [W1]. This should be continued,
so that any irregularities in job distribution is removed as much as possible.

We implemented this shift on one of the arrays in part 1 of parallel CCSD
implementation. From �gure 10.12 we see the terrible scaling from 1 to 2
CPUs. This is normally were we expect the best scaling. Close to 100% speed
up is not uncommon in CCSD from 1 to 2 CPUs. If this work distribution
is �xed we will likely see a fantastic increase in performance.

13.2.2 Memory Access

The next optimization we did not have time to implement is the problem
with �eld in armadillo. Armadillo �eld is ine�cient. When we removed �elds
and implemented one dimensional vectors as intermediates in our AOtoMO
transformation we experienced a signi�cant performance gain. Most resent
armadillo patches contains some optimizations on �elds. The code will likely
improve in performance if armadillo is simply patched.

However even matrix and vector are not as e�cient as normal C mal-
loc() syntax. If we want the fastest CCSD program in the world armadillo
should be removed and replaced with normal arrays of doubles. This would
also remove the additional mapping and reduce the number of lines in our
implementation. This would not only make it faster, but also more readable.

13.2.3 All Out Memory Distribution

Also the memory distribution can be improved. If we were to activate
OpenMP in our implementation, and hold the largest arrays as shared in
memory over 16 CPUs, we would have 64 GB of memory available. This
is enough to perform almost all the benchmark calculations from ACESIII

192

and NWChem, [34], [33]. However we did not experience any performance
gain using OpenMP. Also a shared memory model is limited to the number
of CPUs on a node. We want a memory distribution algorithm where the
systems that �t in memory are arbitrarily large for an in�nite number of
CPUs.

This can only be achieved if we either read everything from disk or dis-
tribute both arrays in all matrix multiplications. We will illustrate with an
example on the term

tabij ←
∑
cd

Icdabτ
cd
ij . (13.1)

In our current implementation we hold τ cdij in memory on all CPUs, and

distribute Icdab among P CPUs. The memory of these two terms scales as

M =
n2v
P
× n2v + n2vn

2
o. (13.2)

We want to de�ne communication groups. We will split the P CPUs in U
communication groups, where each group consists of O CPUs.

P = U ×O. (13.3)

We want O CPUs to distribute τ cdij among themselves, and we want to

distribute Icdab among the U communication groups. The memory in this
situation would scale as

M =
n2v
U
× n2v +

n2o
O
× n2v. (13.4)

If memory scales as Eq. (13.2) n2vn
2
o is the limiting factor, and we still have

highly limited available system size. However if memory scales as Eq. (13.4)
we can optimize U and O to �t any system in memory, if P → ∞. The
limitation will be n2v.

This turns into an optimization problem with two variational parameters
U and O. We also have the constraint that P = U × O. We want to opti-
mize the distribution of O and U based on performance, and ensure that the
system �ts in memory.

Using communication groups we cannot use the same communication
model as is implemented now. We will still need all new amplitudes tabij in
all communication groups. To achieve this there must be a second commu-
nication group implemented. This group will hold all processors that will
store the same value of the new T2 amplitudes. This will be U number
of CPUs. We can then use a all-to-all personalized communication, like

193

MPI_Alltoallw. In this communication one CPU from each of the second
communication groups will take part. Then each of the second communica-
tion group must perform a one-to-all broadcast of this information.

Figure 13.1: Illustration of parallel model. CPUs in row A share common
communication rank. CPUs in column B share common calculation rank.
One CPU has a unique set of the two.

After the one-to-all broadcast, each of the �rst de�ned communication
groups will have complete access to the new T2 amplitudes. As such they
will be ready for the new iteration. This complication is necessary because
we assumed we could not store the full new T2 amplitudes on one CPU.
For this reason we cannot use the same communication group as de�ned in
the calculations, because this would require �rst an all-to-all broadcast of

194

the full new amplitudes followed by a personalized one-to-all scatter. This
would exceed memory limits.

This algorithm sounds like a good idea, but it is complicated. Also we
initialize more communications. However, we would like to propose a simple
and straight forward way to implement this. First we should de�ne two new
variables on each processor. These will be dependant upon its rank, and will
be unique to each CPU. This is illustrated in �gure 13.1.

1 Calculation_Rank = (int) rank / P;
2 Communication_Rank = rank % (P + 1) ;

These integer division ensure multiple CPUs will get the same value for Cal-
culation_Rank. The modulus with (P+1) ensures all CPUs with the same
Calculation_Rank get unique values for Communication_Rank. We want
all CPUs with the same Communication_Rank to store the same values for
tabij . This can be achieved by giving the same displacement and number of
bytes to recieve in MPI_Alltoallw, which is an all-to-all scatter function
used in our implementation earlier. The displacement should then depend
upon the new variable Communication_Rank, and not the normal MPI rank.

Also the additional work distribution can be achieved from adding addi-
tional if tests.

1 // Psudocode f o r opt imal work d i s t r i b u t i o n
2 // in new proposed implementat ion
3 for (int a = 0 ; a < unocc_orb ; a++){
4 for (int b = 0 ; b < unocc_orb ; b++){
5 Work_ID1 = F(a , b) ; // Some func t i on o f a , b
6 i f (Work_ID1 % P == Calculation_Rank) {
7 // A l l CPUs with common
8 // c a l c u l a t i o n rank enter here
9
10 for (int i = 0 ; i < n_Electrons ; i++){
11 for (int j = 0 ; j < n_Electrons ; j++){
12 Work_ID2 = F(i , j) ; // Some func t i on o f i , j
13 i f (Work_ID2 % U == Calculation_Rank) {
14 // Perform c a l c u l a t i o n . Only one CPU w i l l have
15 // unique s e t o f
16 // c a l c u l a t i o n and communication rank .
17 }
18 }
19 }
20 }
21 }
22 }

In other word the implementation does not really need communication groups
to work. The proposed algorithm here will also likely improve performance,
in accordance to the principles stated in section 7.2.10. If we distribute work

195

based on four indexes we have a greater number of smaller jobs to distribute.
More jobs is easier to distribute evenly, as such the scaling will likely im-
prove. We also avoid broadcasting information, and instead scatter.

Since a scattering of information can be achieved ine�ectively by a broad-
cast, it is safe to assume a scatter is more e�ectively implemented in MPI.

13.2.4 Removing mapping of two electron integrals

Also the additional mapping introduced to only store the single bar integrals
can be removed. This was implemented early on. At this point the author
did not believe a full parallel distributed CCSD algorithm was achievable
in one master thesis. This will increase performance slightly. However if
the points noted in section 13.2.3 is implemented, only storing single bar
integrals is preferred from a memory perspective.

13.2.5 Removing Four Dimensional Arrays

In CCSD it is quite normal to contract two and two indexes. The term tabij is
often not stored as a four dimensional array. It is stored as two dimensional.
Often indexes a and b are contracted into an index e, where e can be de�ned
as

e = a× nv + b. (13.5)

Also i and j can be contracted into an index k, where k can be de�ned as

k = i× no + j. (13.6)

Using these de�nitions tabij can be calculated directly as a matrix-matrix mul-
tiplication. This is way more e�cient in terms of memory accessing. We have
not jet taken advantage of this optimization, but we have not excluded it.

Implementing this will be slightly more complex when we use the memory
distributed model. If we go back to the prior example

tabij ← Icdabτ
cd
ij . (13.7)

The standard implementation is to de�ne this as a matrix-matrix multipli-
cation where the matrices are of size n2v × n2v and n2o × n2v. This will result
in a matrix of size n2o × n2v. We distribute work based on a and b. This
will mean if we contracted the indexes we would distribute work based on
the index e. Each processor would perform a matrix-matrix multiplication

where the matrices are of size n2
v
P × n

2
v and n

2
v × n2o. This would result in a

matrix of size n2
v
P × n

2
o.

196

If the communication groups in section 13.2.3 is used the matrices for

matrix-matrix multiplication would be of size n2
v
U × n

2
v and

n2
o
O × n

2
v. The re-

sulting matrix would be of size n2
v
U ×

n2
o
O . Using matrix-matrix multiplications

directly will likely cause a fantastic performance gain, and also enable better
use of OpenMP. OpenMP was ine�ective because the arrays are to small. In
a real matrix-matrix multiplication the arrays will be larger.

Also in our current implementation the number of calls to external math
libraries scales as N4. If we implemented two dimensional arrays the number
of calls to external math libraries would be constant. This would likely
improve the scaling of performance with respect to system size.

13.2.6 Read From File

Another solution to memory concerns is to read the largest array from �le.
We go back to the previous example

tabij ← Icdabτ
cd
ij . (13.8)

The variable to read from �le is Icdab . This was previously distributed in
memory and with a large number of CPUs it did not take up much space.
However, if we read it from �le and have it available on all CPUs we can
distribute τ cdij in memory. This enables much larger calculations.

13.2.7 Summary

Several further optimizations has been proposed for our already highly op-
timized CCSD code. Most of the optimizations require much work. With
the exception of section 13.2.6 and maybe section 13.2.3, all proposed op-
timizations will likely increase performance further. The author believes it
is highly likely that a better performance than ACESIII is achievable with
only these proposed optimizations.

To the authors knowledge this would be the �rst time a highly optimized
CCSD program is constructed using only a few collective OpenMPI function
calls. It is much more popular to use algorithms such as Cannons Algorithm,
Refs.[75], [49], or 2.5D communication which has become increasingly popu-
lar in recent years, Refs.[63] and [89].

Another popular optimization in recent years is chunksize. Please see
Ref.[36] and references therein.

197

13.3 Further Method Development

We have developed most of our methods with a spin restriction. Removing
this spin restriction is of course possible, and required for certain situations.
For CCSDT a good article is Ref.[76]. CCSD unrestricted spin can be found
in references therein. The CCSDTQ method is described in detail in Ref.[58].

Also possible is merging the code presented here with Henriks, Ref.[4].
This would create a more complete package of quantum chemistry meth-
ods. We would have available RHF, UHF, RMP2, UMP2, RMP3, UMP3,
RCCSD, RCCSDT and RCCSDT-n methods. R and U signi�es restricted
and unrestricted spin. In this section we will focus mainly on new approx-
imations that can enable much larger CCSD calculations. We have not ex-
amined these approximations in detail, but we will list a few approximations
we found interesting.

13.3.1 Natural Orbitals

The largest CCSD calculations performed today take advantage of natural
orbitals, Ref.[77]. Simply put, natural orbitals involve dividing orbitals into
three segments. Occupied, active and unoccupied. The occupied orbitals are
the core orbitals. We can assume these are always occupied. This limits the
size of the occupied space, or in other words reduce no, since we do not need
to include them in CCSD calculations.

Unoccupied orbitals in this context are orbitals so highly excited they are
rarely occupied. This is approximated to never occupied, and the orbitals
are ignored when performing CCSD. This limits the virtual space, or in other
words reduce nv.

We are left with the active orbitals. These are the valence orbitals and
a few orbitals close to the same energy level. However natural orbitals are
not as straight forward. Please see Ref.[78]. The performance gain here is
high because we limit both nv and no. CCSD scales as n2on

4
v, so we will have

much better performance.

13.3.2 Frozen Core

The Frozen Core approximation in quantum chemistry is not the exact same
as one would assume. To freeze the core means to ignore the lowest energetic
molecular orbitals. If we want to freeze six core orbitals, we ignore the �rst
six molecular orbitals. The hope is that these will correspond to the core
orbitals, and in most cases they do.

198

13.3.3 Local Coupled Cluster

Natural Orbitals can be combined with Local Coupled Cluster, to make
Local-Natural-Orbitals Coupled Cluster. Local Coupled Cluster takes ad-
vantage of the density as an approximation to achieve performance gains,
Ref.[79]. The performance gains available here is in magnitudes of n.

13.3.4 Point Group Symmetry

Points Group Symmetry is especially impressive. These are speci�ed as C1,
D1, D2 etc. They reference a certain symmetry. If this symmetry exist in
the molecule we can give it as input to our program and take advantage of
it, Ref.[80].

Dependant upon the extent of the symmetry, this can provide good per-
formance gains, Refs.[18], [19]. The performance gain available here is not
in a magnitude of n, but as a fraction.

13.3.5 Divide and Conquer

Also divide and conquer is a popular approximation. This is relevant to
matrix-matrix multiplications. A large matrix-matrix multiplication can be
divided into smaller matrices. Each of the smaller matrices can be calculated
in parallel, Ref.[82].

Combining all four approximations would give huge performance gains,
but they are approximations. Limiting nv, no, reducing the scaling and
also adding a fraction in front of wall time, makes large calculations possi-
ble for CCSD. The largest the author is aware of is approximately 2000 AOs.

13.3.6 Summary

Most of these approximations can be implemented without changing the
CCSD implementation itself. Natural orbitals is an optimization on the ba-
sis from HF. Optimizing the basis from HF is practically reducing nv and
no. It is not uncommon to see nv reduced by 50-80%. This reduction is
made after a HF calculation and makes the much larger CCSD calculations
possible. If we reduce 2000 AOs by 80% we only have (no + nv) = 800 in
CCSD. 2000 AOs with a decent sized basis set can be a molecule of 60-70
atoms.

Natural Orbitals is a way of improving the basis. Preliminary estimates
are made on how likely a virtual orbital is to be occupied, and a cut o� is

199

de�ned where all orbitals beneath this value is ignored. This means 200 Nat-
ural Orbitals will likely give much better results than 200 Atomic Orbitals.

We can combine these approximations with the already fast CCSD im-
plementation presented in this thesis.

13.4 Other Methods

Also other methods can be of interest.

13.4.1 DFT

Density Functional Theory (DFT) is the most commonly used method in
quantum chemistry. The cost is similar to that of HF and the results are
generally more accurate. DFT performs particularly well for metals. We had
no Pople type basis sets available for metals. Ref.[83].

13.4.2 Monte Carlo

Monte Carlo (MC) has been applied with a HF and even CCSD probability
distribution. Ref.[84].

13.4.3 Perturbation

Möller Plesset calculations provide a slightly less accurate energy correction
than CCSD. However it can potentially be calculated much faster. These
methods are named MP2, MP3 and so on, dependant on what terms are
included. Ref.[4] describes the details.

13.4.4 CCn

The center for computational and theoretical chemistry (CCTC) group at
the university of Oslo has developed its own coupled cluster methods. One
method, CC2, is closely related to CCSD. CC3 is closely related to CCSDT
and so on. Ref.[86]. These are iterative methods.

13.4.5 Approximate Contributions

CCSD(t) is considered the gold standard in quantum chemistry, Ref.[87].
CCSD(t) contains CCSD plus an approximation to higher order amplitudes.
Also CCSD[T], formerly known as T(CCSD), is an approximation of triples
excitation. Any excitation can be approximated. This is methods like
CCSDT(Q), CCSD(TQ) and so on.

200

13.5 Getting Closer to E0

We concluded that the largest source of error is now the limited basis set.
This was due to the fact that larger Pople basis sets does not exist on the
EMSL website. Although it is possible to perform calculations using Carte-
sian GTOs with basis sets designed for spherical GTOs, it is not optimal.
Future work should be implementing spherical GTOs, rather than including
higher order excitations.

Since the largest error currently is the basis set we need a larger basis
set to get more accurate results. A larger basis set does require more calcu-
lations. However a more accurate method generally require higher scaling.
Both of these options are evils in terms of computational resources, but a
larger basis set is the lesser of the two. This means the outlook for quickly
achieving more accurate results is very bright.

201

202

Chapter 14

Appendix A

Listed here are some useful MPI functions that deals with communication.
Their input can be found on google. This list can be used to �gure out what
functions exist, and a few basics of what they do.

14.1 MPI Functions

MPI_Bcast()
One to all operation. Broadcasts information from one node to all nodes.

MPI_Reduce()
All to one operation. Gathers information from all nodes onto one node.

MPI_Scatter()
One to all operation. Sends unique information of same size to each node,
including self.

MPI_Gather()
All to one operation. Gathers unique information of same size from each
node, including self, exact opposite of scatter.

MPI_Scatterv()
One to all operation. Sends unique information of optionally di�erent size
to each node, including self.

MPI_Gatherv()
All to one operation. Gathers unique information of optionally di�erent size
from all nodes onto one node.

MPI_Recv()
One to one operation. Receives information. Use with MPI_Send.

203

MPI_Send()
One to one operation. Sends information. Use with MPI_Recv.

MPI_Isend()
One to one operation. Same as MPI_Send but this stores information in a
bu�er and continues with operations. Then sends the bu�er once link with
MPI_Irecv has been established.

MPI_Irecv()
One to one operation. Receive information, use with MPI_Isend.

MPI_Get_Count()
Returns precise count of data items received.

MPI_Sendrecv()
One to one operation. Sends and receives information between two nodes.
This is faster than initiating two sends and two receives.

MPI_Sendrecv_replace()
One to one operations. Sends and receives information between two nodes,
and replaces information. This is faster than initiating two sends and two
receives.

MPI_Barrier()
Synchronizes all nodes.

MPI_Allgather()
All to all operation. Gathers information from all nodes like MPI_Gather,
but then spreads information to all nodes. Faster than MPI_Gather fol-
lowed by MPI_Bcast, but same results.

MPI_Alltoall()
All to all operation, broadcasts information from all nodes to all nodes.
Faster than MPI_Bcast from all nodes individually, but same result.

MPI_Alltoallv()
All to all operation, like MPI_Alltoall but more freedom.

MPI_Alltoallw()
All to all operation. Each node can have di�erent size of bu�er for broadcast,
very general function.

MPI_Comm_Split()

204

Creates a new communication group (communicator). The all in "All to
all operation" refer to all nodes in a selected communication group, like
MPI_COMM_WORLD. Using this function, "all" can be limited to certain
nodes, reducing the number of nodes that take part and increasing speed.

MPI_Comm_size()
Returns how many nodes are a part of a communicator.

14.2 MPI Datatypes

Here are a few basic types in MPI, that is used in the communication and
mostly not listed in the function descriptions.

MPI_CHAR , signed char

MPI_SHORT , signed short int

MPI_INT , signed int

MPI_LONG , signed long int

MPI_UNSIGNED_CHAR , unsigned char

MPI_UNSIGNED_CHAR , unsigned short int

MPI_UNSIGNED , unsigned int

MPI_UNSIGNED_LONG , unsigned long int

MPI_FLOAT , �oat

MPI_DOUBLE , double

MPI_LONG_DOUBLE , long double

MPI_PACKED

MPI_BYTE

205

206

Bibliography

[1] Lecture series as part of the Georgia Tech's Summer Lectures Series in
Theoretical Chemistry. Available for free online at this url:
http://vergil.chemistry.gatech.edu/opp/summer-lectures.html

[2] Modern Quantum Chemistry.

Introduction to Advanced Electronic Structure Theory

Attila Szabo, Neil. S. Ostlund

[3] MA Thesis University of Oslo 2014.
Bridging Quantum Mechanics and Molecular Dynamics with Arti�cial

Neural Networks.
S. A. Dragly.

[4] MA Thesis University of Oslo 2014.
Ab Initio Studies of Molecules

H. M. Eiding.

[5] MA Thesis University of Oslo 2014.
From Quantum to Molecular, A Review of Gaussian Basis Sets in Ab Initio

Molecular Dynamics.
M. H. Mobarhan.

[6] Koopmans Theorem.
http://www.youtube.com/watch?v=5T_HyShi9W0

[7] Molecular electronic-structure theory. Wiley, 2013

T. Helgaer, P. Jorgensen and J. Olsen.

[8] Quantum Chemistry and Molecular Properties: Molecular Integral Eval-

uation. 2006.
T. Helgaker.
http://folk.uio.no/helgaker/talks/SostrupIntegrals_06.pdf

[9] Molecular Integral Evaluation. 2010.
T. Helgaker.
http://folk.uio.no/helgaker/talks/SostrupIntegrals_10.pdf

207

http://vergil.chemistry.gatech.edu/opp/summer-lectures.html
http://www.youtube.com/watch?v=5T_HyShi9W0
http://folk.uio.no/helgaker/talks/SostrupIntegrals_06.pdf
http://folk.uio.no/helgaker/talks/SostrupIntegrals_10.pdf

[10] Larry E. McMurchie and Ernest R. Davidson. Journal of Computational
Physics. Volume 26, Issue 2, February 1978, Pages 218-231.

[11] John A. Pople and Warren J. Hehre.
Journal of Computational Physics. Volume 27, Issue 2, May 1978, Pages
161-168.

[12] The Hermite Polynomials from wikipedia.
http://en.wikipedia.org/wiki/Hermite_polynomials

[13] Feller, D., J. Comp. Chem., 17(13), 1571-1586, 1996.

[14] Schuchardt, K.L., Didier, B.T., Elsethagen, T., Sun, L., Gurumoorthi,
V., Chase, J., Li, J., and Windus, T.L.
J. Chem. Inf. Model., 47(3), 1045-1052, 2007

[15] The EMSL Basis Set Exchange website:
https://bse.pnl.gov/bse/portal

[16] An Introduction to Coupled Cluster Theory for Computational Chemists.
T. Daniel Crawford and Henry S. Schae�er III.

[17] Edgar Solomonik, Devin Matthews, Je� Hammond, James Demmel.
DOI 10.1109/IPDPS.2013.112
URL:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=

6569864

[18] P. Carsky, L. J. Schaad, B. A. Hess, M. Urban, and J. Noga. J. Chem.
Phys. 87,411 (1987).

[19] John F. Stanton, Jürgen Gauss, John D. Watts, and Rodney J. Bartlett.
Chem. Phys. 94 (6), 15 March 1991.

[20] Henrik Koch, Ove Christiansen, Rika Kobayashi, Poul Jorgensen ,
Trygve Helgaker. Chemical Physics Letters 228 (1994) 233-238

[21] Jozef Noga and Rodney J. Barlett. Chemical Physics Letters. Volume
134, Issue 2, 20 February 1987, Pages 126-132.

[22] Jozef Noga, Rodney J. Bartlett The Journal of Chemical Physics 86,
7041 (1987).

[23] Erratium: J. Noga and R. J. Bartlett. The Journal of Chemical Physics
86, 7041 (1987).

[24] Meny Body Methods in Chemistry and Physics: MBPT and Coupled

Cluster Theory (Cambridge Molecular Science)

Isaiah Shavitt and Rodney J. Bartlett

208

http://en.wikipedia.org/wiki/Hermite_polynomials
https://bse.pnl.gov/bse/portal
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6569864
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6569864

[25] Gustavo E. Scuseria and Timothy J. Lee. The Journal of Chemical
Physics 93, 5851 (1990)

[26] MA Thesis University of Oslo 2012.
Studies of quantum dots: Ab initio coupled-cluster analysis using opencl

and gpu programming.
Christo�er Hirth.

[27] C. C. J. Roothaan. Rev. Mod. Phys., 23:69, 1951.

[28] J. A. Pople and R. K. Nesbet. J. Chem. Phys., 22:571, 1954

[29] Paul Saxe, Henry F Shaefer III. Chemical Physics Letters Volume 79
Issue 2, 15 April 1981 Pages 202-204

[30] Armadillo source:
http://arma.sourceforge.net/

[31] W. Kolos and L. Wolniewicz. The Journal of Chemical Physics 49, 404
(1968)

[32] Claudia Filippi and C. J. Umrigar, J. Chem. Phys, 105, 213, 1996.

[33] NWChem Benchmarks Website:
http://www.nwchem-sw.org/index.php/Benchmarks

[34] ACESIII Benchmarks Website:
http://www.qtp.ufl.edu/PCCworkshop/PCCbenchmarks.html

[35] Kazuto Nakata, Tadashi Murase, Toshihiro Sakuma and Toshikazu
Takada. Journal of Computational and Applied Mathematics 149 (2002)
351 - 357

[36] Automatic Code Generator for Many-Body Electronic Structure
Methods: The Tensor Contraction Engine.
Alexander A. Auer, Gerald Baumgartner, David E. Bernholdt, Alina
Bibireata, Venkatesh Choppella, Daniel Cociorv, Xiao yang Gao, Robert
Harrison, Sriram Krishnamoorth, Sandh ya Krishnan, Chi-Chung Lam,
Qingda Lu, Marcel Nooijen, Russell Pitzer, J. Ramanujam, P. Sadayap-
pan and Alexander Sibiryak.
http://www.csc.lsu.edu/~gb/TCE/Publications/

Bartlett-MolPhys06.pdf

Submitted to Molecular Physics, R. J. Bartlett Festschrift Special Issue

[37] Jonathan L. Bentz, RyanM.Olson, Mark S. Gordon, Michael W.
Schmidt,Ricky A. Kendall. Computer Physics Communications 176 (2007)
589-600

209

http://arma.sourceforge.net/
http://www.nwchem-sw.org/index.php/Benchmarks
http://www.qtp.ufl.edu/PCCworkshop/PCCbenchmarks.html
http://www.csc.lsu.edu/~gb/TCE/Publications/Bartlett-MolPhys06.pdf
http://www.csc.lsu.edu/~gb/TCE/Publications/Bartlett-MolPhys06.pdf

[38] I. I. Guseinov, B. A. Mamedov. Journal of Mathematical Chemistry,
Vol. 40, No. 2, August 2006.

[39] B. A. Mamedov. Journal of Mathematical Chemistry Vol. 36, No 3, July
2004.

[40] http://institute.loni.org/NWChem2012/documents/tce-session.
pdf

[41] LSDALTON Program.
K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast, L. Boman, O. Chris-
tiansen, R. Cimiraglia, S. Coriani, P. Dahle, e. K. Dalskov, U. Ekström,
T. Enevoldsen, J. J. Eriksen, P. Ettenhuber, B. Fernàndez, L. Ferrighi,
H. Fliegl, L. Frediani, K. Hald, A. Halkier, C. Hättig, H. Heiberg, T. Hel-
gaker, A. C. Hennum, H. Hettema, E. Hjertnes, S. Host, I. M. Hoyvik, M.
F. Iozzi, B. Jansik, H. J. Aa. Jensen, D. Jonsson, P. Jorgensen, J. Kauc-
zor, S. Kirpekar, T. Kjergaard, W. Klopper, S. Knecht, R. Kobayashi, H.
Koch, J. Kongsted, A. Krapp, K. Kristensen, A. Ligabue, O. B. Lutnes,
J. I. Melo, K. V. Mikkelsen, R. H. Myhre, C. Neiss, C. B. Nielsen, P.
Norman, J. Olsen, J. M. H. Olsen, A. Osted, M. J. Packer, F. Pawlowski,
T. B. Pedersen, P. F. Provasi, S. Reine, Z. Rinkevicius, T. A. Ruden, K.
Ruud, V. Rybkin, P. Salek, C. C. M. Samson, A. Sanchez de Meras, T.
Saue, S. P. A. Sauer, B. Schimmelpfennig, K. Sneskov, A. H. Steindal, K.
O. Sylvester-Hvid, P. R. Taylor, A. M. Teale, E. I. Tellgren, D. P. Tew, A.
J. Thorvaldsen, L. Thogersen, O. Vahtras, M. A. Watson, D. J. D. Wilson,
M. Ziolkowski and H. Aagren.
The Dalton quantum chemistry program system.
WIREs Comput. Mol. Sci. (doi: 10.1002/wcms.1172).
Dalton, a molecular electronic structure program, Release DALTON2013
(2013), see http://daltonprogram.org.
lsDalton, a linear scaling molecular electronic structure program, Release
DALTON2013 (2013), see http://daltonprogram.org.
URL:
http://daltonprogram.org

[42] Simplewick, Contractions for Latex:
http://www.fzu.cz/~kolorenc/tex/simplewick/

[43] Algorithm2e, Algorithms in Latex:
http://mlg.ulb.ac.be/files/algorithm2e.pdf

[44] Latex Package: tikz, Matrix Representation in Latex.

[45] Krishnan Raghavachari, D. L. Strout, G. K. Odom, G. E. Scuseria, J.
A. Pople, B. G. Johnson and P. M. W. Gill. Chemical Physics Letters,
Volume 214, Issues 3-4, 5 November 1993, Pages 357-361.

210

http://institute.loni.org/NWChem2012/documents/tce-session.pdf
http://institute.loni.org/NWChem2012/documents/tce-session.pdf
http://daltonprogram.org
http://www.fzu.cz/~kolorenc/tex/simplewick/
http://mlg.ulb.ac.be/files/algorithm2e.pdf

[46] http://altair.physics.ncsu.edu/projects/c20/c20.html

[47] Wei An, Yi Gao, Satya Bulusu and Xiao Cheng Zeng.
Article from the Published Research - Derpartment of Chemistry at Dig-
italCommons@University of Nabraska.
http://digitalcommons.unl.edu/chemzeng/20/

[48] OpenMPI Website:
http://www.open-mpi.org/

[49] Introduction to Parallel Computing, Second Edition.
Ananth Grama, Anshul Gupta, George Karypis and Vipin Kumar.

[50] OpenMP Website. http://openmp.org/wp/

[51] OpenBLAS Website. http://www.openblas.net/

[52] Intel MKL Website. https://software.intel.com/en-us/intel-mkl

[53] Youtube Video Lectures: http://www.youtube.com/watch?v=

cMWGeJyrc9w

[54] G. E. Scuseria, T. J. Lee, H. F. Schaefer III. Chemical Physics Letters,
Volume 130, Number 3, 3 October 1986.

[55] Antara Dutta and C. David Sherrill. Journal of Chemical Physics, Vol-
ume 118, Number 4, 22 January 2003.

[56] M.L. Boas. Mathematical Methods in the Physical Sciences. Wiley, 2005

[57] So Hirata. J. Phys. Chem. A. 2003, 107, 9887 - 9897.

[58] A multi-reference coupled-cluster method using a single-reference for-
malism.
PhD Thesis University of Arizona (1991).
Nevin Oliphant.

[59] Boys S F 1950 Proc. R. Soc. A 200 54

[60] Jonathan L. Bentz, Ryan M. Olson, Mark S. Gordon, Michael W.
Schmidt, Ricky A. Kendall.Computer Physics Communications 176 (2007)
589-600.

[61] Recent Progress in Coupled Cluster Methods volume 11.
Theory and Applications.
J. Leszczynski.
P. Carsky, J. Paldus, J. Pittner.

211

http://altair.physics.ncsu.edu/projects/c20/c20.html
http://digitalcommons.unl.edu/chemzeng/20/
http://www.open-mpi.org/
http://openmp.org/wp/
http://www.openblas.net/
https://software.intel.com/en-us/intel-mkl
http://www.youtube.com/watch?v=cMWGeJyrc9w
http://www.youtube.com/watch?v=cMWGeJyrc9w

[62] 2.5D Communication in CCSD, 2012 seminar free available on youtube.
Edgar Solomonik.
https://www.youtube.com/watch?v=MCl5fGvVaLU

[63] 2.5D Communication in CCSD, 2013 slides.
Edgar Solomonik.
http://www.eecs.berkeley.edu/~solomon/talks/

matrix-seminar-2013.pdf

[63] 2.5D Communication in CCSD, 2014 slides.
Edgar Solomonik.
http://www.eecs.berkeley.edu/~solomon/talks/

ctf-ExMatEx-mar-2014.pdf

[64] Gustavo E. Scuseria, Curtis L. Janssen, Henry F. Schaefer III. Journal
of Chemical Physics 89, 7382 (1988).

[65] Gustavo E. Scuseria, Andrew C. Scheiner, Timothy J. Lee, Julia E. Rice
and Henry F. Schaefer III. Journal of Chemical Physics 86, 2881 (1987).

[66] P. Pulay. Journal of Computational Chemistry, Vol 3. No 4, 556-560
(1982).

[67] P. Pulay. Chemical Physics Letters. Volume 73, number 2. 15 July 1980.

[68] The Mathematics of DIIS.
http://vergil.chemistry.gatech.edu/notes/diis/node2.html

[69] We want to acknowledge the help received from the Department for
Research Computing at USIT, the University of Oslo IT-department.

[70] Arteum D. Bochevarov and C. David Sherrill. The Journal of Chemical
Physics, 122, 234110, (2005).

[71] Mauro Del Ben, Jürg Hutter, and Joost VandeVondele. Journal of
Chemical Theory and Computation, 8(11):4177-4188,

[72] Joost VandeVondele, Matthias Krack, Fawzi Mohamed, Michele Par-
rinello, Thomas Chassaing, Jürg Hutter. Computer Physics Communica-
tions 167 (2005) 103-128

[73] Martin Schutz and Frederick R. Manby. Phys. Chem. Chem. Phys.,
2003, 5, 3349-3358

[74] Kraken Cray Supercomputer.
http://www.nics.tennessee.edu/computing-resources/kraken

[75] Cannon Algorithm Explained, youtube lecture.
http://www.youtube.com/watch?v=sB-Dh4DsOy0

212

https://www.youtube.com/watch?v=MCl5fGvVaLU
http://www.eecs.berkeley.edu/~solomon/talks/matrix-seminar-2013.pdf
http://www.eecs.berkeley.edu/~solomon/talks/matrix-seminar-2013.pdf
http://www.eecs.berkeley.edu/~solomon/talks/ctf-ExMatEx-mar-2014.pdf
http://www.eecs.berkeley.edu/~solomon/talks/ctf-ExMatEx-mar-2014.pdf
http://vergil.chemistry.gatech.edu/notes/diis/node2.html
http://www.nics.tennessee.edu/computing-resources/kraken
http://www.youtube.com/watch?v=sB-Dh4DsOy0

[76] The Journal of Chemical Physics 93, 6104 (1990)

[77] Josep M. Bo�ll and Peter Pulay. J. Chem. Phys. 90, 3637 (1989).

[78] Christoph Riplinger and Frank Neese. The Journal of Chemical Physics
138, 034106 (2013)

[79] Journal of Chemical Physics; Sep2013, Vol. 139 Issue 9, p094105.

[80] Point Group Symmetry Tutorial.
http://symmetry.otterbein.edu/tutorial/pointgroups.html

[81] Igor Ying Zhang, Yi Luo and Xin Xu. The Journal of Chemical Physics,
133, 104105, (2010).

[82] Divide and Conquer PDF From Berkeley University.
Lester Mackey, Ameet Talwalkar, Michael I. Jordan.
http://www.cs.berkeley.edu/~ameet/dfc.pdf

[83] http://www.uio.no/studier/emner/matnat/fys/FYS-MENA4111/

[84] Alessandro Roggero, Abhishek Muherjee and Francesco Pederiva. Phys
Rev B 88, 115138 (2013).

[85] Wei-Cheng Tung1, Michele Pavanello and Ludwik Adamowicz. J. Chem.
Phys 134, 06117 (2011)

[86] Henrik Koch et al. J. Chem. Phys. 106 (5), 1 February 1997

[87] Krishnan Raghavachari, Gary W. Trucks, John A. Pople and Martin
Head-Gordon Chem. Phys. Lett. 157, 479. 1989.

[88] Quantum Monte-Carlo Studies of Generalized Many-Body Systems.
MA Thesis.
Jorgen Hoberget.
June 2013.

[89] Electrical Engineering and Computer sciences.
University of California at Berkeley.
August 2, 2014.
Technical Report No. UCB/EECS-2014-143.
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/

EECS-2014-143.pdf

[90] http://vergil.chemistry.gatech.edu/notes/hf-intro/node4.
html

[91] http://www.phys.sinica.edu.tw/TIGP-NANO/Course/2011_Spring/
classnotes/CMS_20110511.pdf

213

http://symmetry.otterbein.edu/tutorial/pointgroups.html
http://www.cs.berkeley.edu/~ameet/dfc.pdf
http://www.uio.no/studier/emner/matnat/fys/FYS-MENA4111/
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-143.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-143.pdf
http://vergil.chemistry.gatech.edu/notes/hf-intro/node4.html
http://vergil.chemistry.gatech.edu/notes/hf-intro/node4.html
http://www.phys.sinica.edu.tw/TIGP-NANO/Course/2011_Spring/classnotes/CMS_20110511.pdf
http://www.phys.sinica.edu.tw/TIGP-NANO/Course/2011_Spring/classnotes/CMS_20110511.pdf

[92] Code developed during master thesis:
https://github.com/otnorli/CCSD_PARALLEL

[93] F. Coester. Nucl. Phys. 7, 421 (1958).

[94] F. Coester and H. Kümmel, Nucl. Phys. 17, 477 (1960).

[95] Paldus, J. (2005). "The beginnings of coupled-cluster theory: an eyewit-
ness account". In Dykstra, C. Theory and Applications of Computational
Chemistry: The First Forty Years. Elsivier B.V. p. 115.

[96] http://www.mathworks.se/programs/nrd/matlab-trial-request.
html?ref=ggl&s_eid=ppc_6415

214

https://github.com/otnorli/CCSD_PARALLEL
http://www.mathworks.se/programs/nrd/matlab-trial-request.html?ref=ggl&s_eid=ppc_6415
http://www.mathworks.se/programs/nrd/matlab-trial-request.html?ref=ggl&s_eid=ppc_6415

	Introduction
	Definition of Hamiltonian
	Hamiltonian
	The Born-Oppenheimer approximation
	Comments on the Wavefunction

	Hartree Fock
	Introduction
	Slater Determinant
	The Energy Expression
	The Hartree Fock Equations
	Restricted Hartree Fock
	Unrestricted Hartree Fock

	Gaussian Type Orbitals
	Contracted GTOs
	Variational Principle
	EMSL
	Product of Gaussians
	Normalization
	l = 0
	l = 1
	l = 2
	l = 3
	Final normalization comments

	Calculating Integrals for Hartree Fock
	Overlap
	Kinetic Energy
	Nuclei-Electron interaction
	Electron-Electron interaction
	Calculating Rtuv

	Choosing Basis Set
	STO-nG
	Double Zeta Basis Sets
	Tripple Zeta Basis Sets
	Polarized Basis Set
	Diffuse Basis Set
	Reasons for Larger Basis Set

	HF Limitations
	DIIS
	Four Index Integral, from AO to MO

	Coupled Cluster Singles and Doubles
	Creation and Annihilation operators
	CCSD Wavefunction
	Derivation of Equations
	Baker-Campbell-Hausdorff formula
	Normal Order and Contractions
	Wick's Theorem
	Fermi Vacuum and Particle Holes
	Normal Ordered H
	CCSD Hamiltonian
	CCSD Energy
	tia amplitudes
	tijab amplitudes

	Introducing denominators
	tia
	tijab
	Initial guess

	Variational Principle

	CCSD Factorization
	Constructing an algorithm
	Inserting denominators
	[W1]
	[W2]
	[W3]
	[F1]
	[F2]
	[F3]
	[W4]
	Inserting intermediates
	Inserting into tia

	SSLRS
	Description of algorithm
	Scaling

	TCE

	Comments Prior to Implementation
	Armadillo
	Armadillo Types
	Matrix Operations
	Element access

	Parallel Computing and OpenMPI
	The CPU
	The Compiler
	Data
	Bandwidth
	Designing Parallel Algorithms
	Performance
	Overhead
	General Parallel Guidelines
	Optimizing Communication
	Optimizing Work Distribution
	Why Parallel

	OpenMP
	External Math Libraries

	Implementation
	Input File
	General Code Overview
	Hartree Fock
	Atomic Orbital to Molecular Orbital
	CCSD Serial Implementation
	Structure
	Removing redundant zeroes
	Pre Iterative Calculations
	F1, F2 and F3
	W1, W2, W3 and W4
	New amplitudes
	ijab and Energy
	Dodging Additional Unnecessary Calculations

	CCSD Parallel Implementation
	Memory Distribution
	Three Part Parallel
	Extra Pre Iterative Procedures

	CCSDT implementation guide
	System for Benchmarks
	Theory
	CCSDT-1a
	CCSDT-1b
	CCSDT-2
	CCSDT-3
	CCSDT-4
	Full CCSDT
	Excluded Terms

	Benchmarks
	Small systems
	Hydrogen molecule
	First row Diatomic molecules
	C20 Ground State
	Energy as function of number of AOs
	Hartree Fock Performance Testing
	HF performance

	AOtoMO Performance Testing
	CCSD Serial Performance
	CCSD Parallel Performance
	Potential Energy Plots

	Results
	Single Atoms For Future Reference
	Methods
	CCSD Performance

	Conclusion
	Performance
	HF
	AOtoMO
	CCSD

	Basis sets and Convergence
	CCSDT

	Future Prospects
	Hartree Fock Performance
	CCSD Performance
	Work Distribution
	Memory Access
	All Out Memory Distribution
	Removing mapping of two electron integrals
	Removing Four Dimensional Arrays
	Read From File
	Summary

	Further Method Development
	Natural Orbitals
	Frozen Core
	Local Coupled Cluster
	Point Group Symmetry
	Divide and Conquer
	Summary

	Other Methods
	DFT
	Monte Carlo
	Perturbation
	CCn
	Approximate Contributions

	Getting Closer to E0

	Appendix A
	MPI Functions
	MPI Datatypes

