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Abstract

This master thesis is about interaction models for baryonic matter, dark
matter and dark energy. We will work with the components as perfect fluids,
and set up interaction models as exchange in energy. Then the thesis will be
divided into three parts. In the first part, I will study the interaction models
when the universe is described by the Friedmann-Robertson-Walker metric.
I will study analytical solutions and the stability of these. In the second part,
I will use observational data from supernovae Ia, baryon acoustic oscillations
and the cosmic microwave background to see if I can put some contranits
on the strength of the interactions, and thereby see if the interaction models
can fit into the universe we live in. In the third part, I will study how the
interaction models affects the structure formation in the universe, by adding
small inhomogeneities to the metric.

I concluded that there are always possible to find stable solutions when
the interactions are active, provided that we put limitations on the strength
of the interactions. The observational constraints did not conclude the one
way or the other, there were no statistical evidence for the presence of my
interactions, but also no statistical evidence that ruled our the interactinon
models. The different observational data sets gave me different constraints,
with the cosmic microwave background giving me the strongest constraints.
In the third part, I made the interaction quite strong, and I saw that the
structure formation was affected in various ways depending on the sings of
the interaction parameters. These then only became hypothetical universe,
but they were quite interesting non the less.
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Introduction

Cosmology is the study of the universe as a whole. Questions cosmologists
work with are often related to how the universe started and what will happen
to it in the future, if it has an end or not. Cosmologists are also interested in
what the universe contains and how much, and how the content behaves and
affects the evolution of the universe. This is also what this thesis is related
to: how different components of the universe may interact.

We will divide the content of the universe into three different compo-
nents: baryons, dark matter and dark energy. The baryons, or baryonic
matter, which is a better term for our case, is matter that is made up of
massive particles that we know: quarks and leptons in three generations
with antiparticles, and the particles they combine to make. Almost every-
thing of this is protons, neutrons and electrons, which are from the first
generation. Some of the more exotic stuff from the two other generations
will not be studied here. In fact, the definition of a baryon is a particle made
out of three quarks/anti-quarks, but in cosmology, it is common to address
matter made up of protons and neutrons as baryons (we usually neglect the
electrons because the electron mass is much smaller than the proton/neutron
mass), and we will rarely mention protons, neutrons and electrons again. In
the best models we have for the universe today, baryonic matter only makes
up around 4 % of the whole universe, in terms of the energy.

Dark matter is something that we have a lot of different strong evidences
for its existence, but we do not know exactly what it is. We just know that
it is there, and we know that whatever it is, it should interact very weakly
with baryonic matter and photons. This means that we can not see dark
matter (one of the reasons for the word dark), and it will be collisionless
- dark matter particles (if it is made up by particles) may pass straight
through you as you read this without you knowing. The only thing we know
is that the dark matter is affected by gravity according to the equivalence
principle. This is often used as a definition of dark matter: something that
is not affected by the electromagnetic force, but is affected by gravity. It
was this way that dark matter was first “discovered”, through studies of the
rotations of galaxies. If they were to rotate the way they are, they should be
way more massive than the mass that are in the stars we see in them, and
so there must be a lot of mass there that we can not see. A lot of the work
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in particle physics today is related to finding particles that can make up the
dark matter we “see” in the universe today. There are a lot of theories, but
all dark matter is still not accounted for by particles that we know. Today,
dark matter makes up around 22 % of the energy in the universe.

Dark energy is one of the greatest mysteries of cosmology. Observations
of galaxies that are far away from us show that they in average are moving
away from us, and the greater the distance, the faster they move. The
observations are based on the Doppler effect, and we use them to compute
distances to objects that are very far away. The fact that galaxies moves
faster away from us the greater the distance to them are is called Hubble’s
law. But why do galaxies move faster away from us the further they are
from us? The answer is that the universe itself is expanding, and the space
between the galaxies grow. The movement we then see is just the galaxies
following the expansion of space, and we call it the Hubble flow. A universe
that is dominated by matter is expected to expand, but the observations
tell us that the expansion is accelerating. This is where the dark energy
enters: dark energy is what makes the expansion of the universe accelerate.
We know that the dominant force on long distances is the force of gravity
(which is not really a force in Einsteins general theory of relativity, which
will enter this thesis early), and so there must be something out there in
order to counter gravity and actually expand the universe, like a repulsive
gravity. This is what we call dark energy. Like the dark matter, no one
knows what the dark energy really is, we only know that it is there. Dark
matter seems to make up around 74 % of the universe today.

At last, radiation, in terms of photons and neutrinos, are also out there,
and they do not fit into the three previous components (neutrinos may be
treated as baryonic matter if we treat them as massive, but we will not touch
the neutrinos at all). We will not focus on radiation either, but it was the
dominating component in the early universe, and it will come into play when
it plays an important role.

So for this thesis: interacting baryons, dark matter and dark energy. As
the title suggests, we will study a universes where these three components
interact with each other. Is our universe such a universe? Maybe, we will
look at this at some point. But first, what do we mean by interactions,
and how will we be working with interactions in this thesis? The second
question is actually spot on here: we know that the components interact
through gravity, so each of the components feel the two others. But we will
not think like that, we will study more direct interactions, where one of the
components in some way may become one of the two others. We will treat
the three components as perfect fluids, and we will look at the interactions
as exchange in energy. So if we have interactions, the energy of one of the
components may decrease, while the energy of one of the other components
may increase.

To begin with, I will give a short introduction to cosmology. I will start
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with the assumption of a homogeneous and isotropic universe, and then set
up a metric tensor that let us compute distances in our universe. Then I will
fill our universe with our components, and use a set of well known equations
to see how our universe works, including inhomogeneous perturbations in
the components that will give us formation of structures. Next, I will look
at some useful quantities in astronomy that we will need later. After that,
I will set up a specific model for our interactions, and we will be ready to
start our thesis.

From that point, the thesis will be divided into three parts. In the
first part, I will study what is usually called the background universe. This
is a universe where we still have the metric that I will introduce in the
first chapter. I will see how the interaction models looks like in such a
universe, and how the evolution of the different components will be, in terms
of analytical solutions and stability analysis.

In the second part, I will use observational data to see if our interaction
model actually can be used to describe the universe we live in. I will use
observations from supernovae type Ia, baryon acoustic oscillations and the
cosmic microwave background to see how strong the interactions can be.

In the third part, I will study how the interaction models will affect the
formation of structures in the universe. In this part, I will set up a new met-
ric, which is the old one with small inhomogeneities added. The interesting
part will then be the evolution of these inhomogeneities on different time
and lengthscales.

In the last pages, I will sum up the thesis, and write some words about the
road ahead, since there will be more to do with the interaction models. After
that follows two appendixes, where I will write some pages about the general
theory of relativity, which is very important when studying cosmology, and
I will describe some of the mathematical, numerical and statistical methods
that I will use through the thesis.
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Chapter 1

Cosmology, astrophysics and
observations

We begin with a short introduction to cosmology, where we will use the
general theory of relativity to find equations that describes how our universe
evolves with a given content, and we will see how inhomogeneities in the
universe evolve, which is what gives rise to structure formations. Then we
will look at some useful quantities that we will need later on, when we are
working with observational data.

1.1 Cosmology

In this section, I will give a short introduction in cosmology, which is the
geometry of our universe and its content. The geometry and the content of
the universe are related through the Einstein equation, Equation A.15. We
start with the geometry, which leads us to the left hand side of the Einstein
equation, the Einstein tensor.

1.1.1 The Friedmann-Robertson-Walker metric

To find out more about the geometry of our universe, we need a method
of measuring distances. We start with some assumptions. We will first
assume that our universe is spatially flat. We could have started without
assuming this, worked out the general case and then looked at different cases
of curvature, but since different curvatures is not a topic in this thesis, I will
start with a spatial flat universe right away.

Our second assumption is the usual assumption that our universe is ho-
mogeneous and isotropic at large scales, meaning that it looks the same
everywhere, and it looks the same in every direction an observer would look
- at large scales. This is obviously not true at small scales, as we know from
studies of stars and galaxies, and we will actually come back to this later.
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The third assumption is that the universe is expanding. The expansion
will come in through a scale factor, which will be introduced below.

From Einsteins general theory of relativity, we use what we call the met-
ric tensor, gµν , to measure distances. The definition is made through an
infinitesimal line element in the four-dimensional space time. Let dxµ be an
infinitesimal change in position in space-time, where we have used a specific
set of basis vectors eµ. The line element ds2 is then defined as

ds2 = gµνdx
µdxν ,

where Einsteins summing convention is used. The quantity ds2 is what we
call invariant, which means that it is independent of our choice of basis. So
to measure distances, one needs to know the metric tensor gµν ..

We want to study a homogeneous, isotropic, spatially flat universe which
is expanding. First we need to specify a basis. For time, we choose what we
call cosmic time, labeled by t. This is the time measured by an observer that
follows the expansion of the universe. We already now need the isotropy of
the universe to be able to define such a global time coordinate. For spatial
coordinates, we use Cartesian coordinates x, y and z. Now we must place the
origin of this coordinate system somewhere, so let us choose the center of the
Earth. Time t = 0 corresponds to the big bang. The coordinates x, y and z is
what we call a coomoving coordinate. An observer that follows the expansion
of the universe has constant coomoving coordinates. Since the universe is
expanding, this means for instance that the radial comoving distance r =√
x2 + y2 + z2 does not correspond to the physical distance between the

earth and the observer. Since the vectors in our basis are orthogonal, the
metric tensor will only have elements on the diagonal - so gµν ∝ δµν .

Next, we must get the expansion of the universe into the metric. Imag-
ine an object in space, with infinitesimal, coomoving spatial distance dr =√
dx2 + dy2 + dz2 from us. We measure the distance at the same cosmic

time, so the time interval dt is zero, and so we have ds2 = gxxdx
2 + gyydy

2 +
gzzdz

2 for the invariant, infinitesimal distance to the object. Now, if the
physical distance is supposed to grow with time, we need a scale factor a(t)
(which may depend on cosmic time, but not on space, due to homogeneity)
to account for the expansion, to make the line element invariant: ds = adr.
Squaring and factoring, we get gxx = gyy = gzz = a2. Now we have every
component of the metric. Written as a matrix, it reads

g = (gµν) =


−1 0 0 0
0 a2(t) 0 0
0 0 a2(t) 0
0 0 0 a2(t)

 .

The notation may appear strange, so to be clear: g refers to the whole matrix,
while gµν refers to a specific element of the matrix. But, even though g does
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not have indices on it, the form of the matrix is basis dependent, and we need
to separate it from its’ inverse gµν . Also note that we use units so that the
speed of light c is equal to one. Written out, the line element then becomes

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2). (1.1)

This is called the Friedmann-Robertson-Walker (FRW) line element.
Now that we have the metric, we can find the connection coefficients -

which, since we use a coordinate basis, reduce to the Christoffel symbols.
In terms of the metric, the Christoffel symbols are given by Equation A.5.
When we compute them, we divide the indices into time and spatial indices,
so we can compute more of them at once. With our metric tensor, there are
only two combinations of indices that give non-zero Christoffel symbols:

Γ0
ij = δija

da

dt
= Hgij ,

Γi0j = Γij0 = δij
1
a

da

dt
= δijH,

where the Hubble parameter H also has been defined. Now we can find the
Ricci tensor, Equation A.9. These are the non-zero components:

R00 = −Γi0i,0 − Γij0Γj0i = −3
1
a

d2a

dt2
,

Rij = δij

(
1
a

d2a

dt2
+ 2

(
da

dt

)2
)
.

Contracting gives us the Ricci scalar:

R = gµνRµν = 6

(
1
a

d2a

dt2
+
(

1
a

da

dt

)2
)
.

Now we can find the Einstein tensor, Equation A.11:

E00 = R00 −
1
2
g00R = 3

(
1
a

da

dt

)2

,

Eij = Rij −
1
2
gijR = −δij

(
2

1
a

d2a

dt2
−
(
da

dt

)2
)
,

This is to be compared with the energy-momentum tensor through the Ein-
stein equation. When working with the Einstein equation, it is easier to
work with Tµν than with Tµν , and so we also need Eµν = gµαEαν . Raising
one index gives

E0
0 = g0αEα0 = −3

(
1
a

da

dt

)2

,
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Eij = giαEαj = −δij

(
2

1
a

d2a

dt2
+
(

1
a

da

dt

)2
)
. (1.2)

Now we have the Einstein tensor, the left hand side of the Einstein equation.
This is to be compared with the energy-momentum tensor, which is the topic
for the next section.

1.1.2 Cosmic fluids

Now we turn to the content of the universe. We will divide the content
of the universe into four kinds: baryonic matter, dark matter, dark energy
and radiation. For each component, we have an energy-momentum tensor.
We start with the general energy-momentum tensor, which we compare with
the Einstein tensor through the Einstein equation, and leave the different
components for later.

We will assume that each of the components behave as perfect fluids. This
means that there is no viscosity and no thermal conduction present. While
this is not true, it is a very good approximation. The energy-momentum
tensor is then given by Equation A.13. With one index upstairs and one
downstairs, we have

Tµν = (ρ+ p)uµuν + pgµν .

The energy-density ρ is what we will work with onwards, so that will be our
parameter to use. The pressure p is related to the energy-density ρ through
the equation of state, and depends on the component. We need the four
velocity, given by Equation A.2:

uµ =
dxµ

dτ
.

When particles of each component follow the expansion of the universe, they
have constant coomoving coordinates, so dxi = 0. By the four velocity
identity, we find u0u0 = −1, so we choose u0 = 1 and u0 = −1. Now we can
compute the energy-momentum tensor. We get

T 0
0 = (ρ+ p) · (−1) + p = −ρ, T i0 = T 0

j = 0, T ij = δijp. (1.3)

Now we have the general energy-momentum tensor, we can look at some
of the components, which each has its own equation of state. We assume
that they all have this same simple form:

p = wρ

where w ∈ R is the equation of state parameter. Baryonic matter and dark
matter are pressureless, so w = p = 0. For dark energy, w can be −1 when
dark energy is modeled by the cosmological constant, but we will leave w as
a parameter in our theoretical work, and set it to −1 when we do numerical
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simulations. For radiation, the trace of the energy-momentum tensor is zero.
From Equation 1.3, we get

Tr(Tµν ) = Tµµ = −ρ+ 3p = 0⇒ p =
ρ

3
⇒ w =

1
3
. (1.4)

Now we can find out how the different components evolve with time, by using
the conservation equation for the Energy-momentum tensor, Equation A.14.
Writing this equation by the partial derivative and the Christoffel symbols,
Equation A.7, we have

∇µTµν = Tµν,µ + ΓµσµT
σ
ν − ΓσνµT

µ
σ .

This equation is valid for ν ∈ {0, 1, 2, 3}. First we look at the case when
ν = 0, and inserting the non-zero Christoffel symbols:

∇µTµ0 = Tµ0,µ + Γi0iT
0
0 − Γj0iT

i
j = −∂ρ

∂t
− 3

1
a

da

dt
ρ(1 + w) = 0,

∂ρ

∂t
+ 3Hρ(1 + w) = 0. (1.5)

This is the continuity equation for a cosmic fluid. We see that the energy-
density of the different components will change as the universe expands, if
w 6= −1. As mentioned, we will set w = −1 for dark energy when we do
numerical simulations. This is one of the strange things about dark energy:
the energy-density is contant in time, even when the universe expands, if
modeled by w = −1.

Setting ν to a spatial index in the energy-momentum conservation equa-
tion just gives 0 = 0. While this is true, it does not give us anything useful.

1.1.3 Relating geometry and cosmic fluids: The Friedmann
equations

Now that we have both sides of the Einstein equation, let us use it and see
how a is related to ρ. We start with the time-component, µ = ν = 0:

E0
0 = 8πGT 0

0 ⇒ −3
(

1
a2

da

dt

)2

= −8πGρ⇒
(

1
a

da

dt

)2

=
8πG

3
ρ. (1.6)

This is the first Friedmann equation. Next, we look at the space component
of the Einstein equation:

Eii = 8πGT ii ⇒ −2
1
2
d2a

dt2
−
(

1
a

da

dt

)2

= 8πGρ

Inserting the first Friedmann equation and moving the terms around, we get

1
a

d2a

dt2
= −4πG

3
ρ(1 + 3w). (1.7)
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This is the second Friedmann equation. If we now choose what components
we want to have in our universe and how much of each, we have ρ(t) by Equa-
tion 1.5, which gives us ρ(t). This can then be inserted into the Friedmann
equation, which gives us a(t), and we have the evolution of the universe.
Note that this equation is not independent of the first Friedmann equation,
they are related by the Bianchi identities.

1.1.4 The redshift

Redshift z is a time variable that is very much used in cosmology, and is
related to the Doppler shift of distant objects. We start with the definition,
using the scale factor a(t), where a0 = a(t0) = 1 as usual:

a(t) =
1

1 + z
. (1.8)

We see that big bang (a = 0) has infinite redshift. Recombination, an era
in the early universe where neural atoms were formed, is around redshift
z = 1100. When we are going to work with observational data, we will
always use redshift as a time variable.

1.1.5 The comoving distance

Now that we have the line element, the next thing we will do is to compute
the comoving distance r to an object. To do this, we look at a photon
that travels from the object to us. A photon moves along what we call
null-geodesics, which means that ds = 0 for a photon. ds is related to the
infinitesimal spatial distance dr =

√
dx2 + dy2 + dz2 by

ds2 = −c2dt2 + a2(t)dr2 = 0⇒ cdt = a(t)dr ⇒ r =
∫ o

r
dr′ =

∫ t0

t

c

a
dt′.

Notice that we follow the photon in this integration, which is why r and t
are the lower integration limits, and 0 and t0 the upper limits. Now we make
some substitutions:

1
a

da

dt
= H ⇒ dt =

da

aH
a =

1
1 + z

⇒ da

dz
= − 1

(1 + z)2
⇒ da = − dz

(1 + z)2
.

Here, the redshift z has come into the picture. In terms of the redshift, our
integral becomes

r = −c
∫ t

t0

dt

a
= −c

∫ a

1

da′

(a′)2H
= c

∫ z

0

1
H
dz′. (1.9)

Note that when t decreases, z increases. So now we have the comoving
distance, if we know the redshift z and the Hubble parameter H as a function
of redshift z.
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1.1.6 The conformal time

Up to this point, we have used cosmic time t as our time variable. While
cosmic time suits very well as a starting point and in a lot of situations later,
there is another time variable that will be more useful in some situations.
This time variable is called the conformal time, labeled η, and is defined as

dη =
dt

a
. (1.10)

1.2 Perturbation theory and the formation of struc-
tures

In this section, I will give a background in Newtonian perturbation theory.
Here we will look at general perturbations in a non-relativistic fluid, which
will do as a background later when we come to baryon acoustic oscillations,
where need to look at a specific case of evolution of perturbations. I am here
following the lecture notes of Øystein Elgarøy for the Cosmology I course at
the University of Oslo [1]. Then I will write some words about the Boltzmann
equation, which we will use when we will use later. Using the Boltzmann
equation is more advanced than the Newtonian approach, but the Newtonian
approach is not good enough when we are looking at photons,which will enter
the picture at some places.

1.2.1 Inhomogeneities

One of the first things we do in cosmology is to assume that the universe is
homogeneous and isotropic on large scales. This turns out to be a very good
approximation on very large scales, but on smaller scales, we know that this
can not be true. In the universe today we can see planets, start, cluster of
stars, galaxies, clusters of galaxies and superclusters. This means that the
universe is not homogeneous at smaller scales, since if the universe was truly
homogeneous at all scales at some time, it would stay homogeneous forever.
And from that we can say that the inhomogeneities we see today started out
sometime.

This starting point was inflation. Quantum fluctuations in the inflation
field set up inhomogeneities in the very early universe, which over time have
formed the structures we see today. To study how inhomogeneities evolve,
we define what we call the density contrast, ∆(x, t):

∆(x, t) =
ρ(x, t)− ρ̄(t)

ρ̄(t)
. (1.11)

Here, ρ(x, t) is the energy density of some component of the universe at
position x and time t, and ρ̄(t) is the space-average energy density at time t
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of the same component. Now, if |∆| < 1, we say that the inhomogeneities are
in the linear regime, and we can use linear perturbation theory. If |∆| > 1,
we are in the non-linear regime, and non-linear methods must be used. We
will only look at the first case. Also, we will only look at scales that are
smaller than the particle horizon, and at velocities smaller than the speed of
light. We may then use Newtonian perturbation theory, we do not have to
deal with Einsteins general theory of relativity.

1.2.2 Perturbation theory for a non-relativistic fluid

Now we are going to do perturbation theory using fluid mechanics, which
is good enough for a purpose later. We start with three equations for a
fluid that sets up a gravitational field by its own presence, using the Euler
description:

∂ρ

∂t
+∇ · (ρv) = 0,

∂v
∂t

+ (v · ∇)v = −∇p
ρ
−∇φ,

∇2φ = 4πGρ.

Here, ρ is the mass density of the fluid, v is the velocity field, p is the pressure
and φ is the gravitational potential. The first equation is the continuity
equation, expressing conservation of mass. The second equation is the Euler
equation, the equation of motion for a particle in the fluid, which we get by
applying Newtons second law to a particle in the fluid. The forces on the
right hand side are then the pressure forces and gravity. The third equation
is Poisson’s equation, which relates the gravitational potential at a point to
the mass density in the same point.

First of all we see that if we have a uniform, stationary state, that is,
ρ and p are constant in space and v = 0, there exist only one solution
to the system, and that is ρ = 0, completely empty space. Now, we are,
as usual, going to look at an expanding universe, and then we know that
v 6= 0. Then we can have a solution to start with, which is a matter-
dominated, expanding universe. Now we can set up perturbations. We label
the background solutions (hereby called the unperturbed solutions) by ρ̄, v̄, p̄
and φ̄. Then we add small perturbations to them, like this:

ρ = ρ̄+ δρ,

v = v̄ + δv,

p = p̄+ δp,

φ = φ̄+ δφ.

Now, we assume that the unperturbed pressure is homogeneous, so ∇p̄ = 0.
We have four unknowns in our three equations, and we need a fourth equation
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in order to close the system. We then assume that our perturbations are
adiabatic, and so the speed of sound in the medium, cs, is a simple relation
between the pressure and the density perturbations:

δp = c2
sδρ.

We will use comoving coordinates r, defined with the scale factor: x =
a(t)r, where x is are the physical coordinates. Using this, we can rewrite the
expression for the velocity field:

v = v̄ + δv = Hx + a(t)u.

Here, u is called the peculiar velocity, and describes the deviation from the
Hubble flow. H is, as usual, the Hubble parameter. We also have the
comoving version of ∇, labeled ∇c, and defined as

∇c = a∇.

Now, starting with the equation for ρ and manipulating, using the other
equations, we end up with this equation:

d

dt

(
δρ

ρ̄

)
=
d∆
dt

= −∇ · δv. (1.12)

For the velocity field v, using the sound speed relation and comoving coor-
dinates, we end up with

du
dt

+
2
a

da

dt
= − c2

s

ρ̄a2
∇cδρ−

∇cδφ
a2

. (1.13)

And for the gravitational potential, we get

∇2
cδφ

a2
= 4πGδρ.

Now, we are interested in solving for the density ρ. To get an equation where
this is the only involved unknown, we take the divergence of Equation 1.13,
and combine with the above equation, which gives

∇c · u̇ + 2
ȧ

a
∇cu = − c2

s

ρ̄a2
∇cδρ− 4πGδρ.

Using Equation 1.12 and the relation

d2∆
dt2

= −∇c · u̇,

we end up with

d2∆
dt2

+ 2
ȧ

a

d∆
dt

=
c2
s

ρ̄a2
∇2
cδρ+ 4πGδρ. (1.14)
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Now we have a partial differential equation. What we do now is to write ∆
as a Fourier series:

∆(r, t) =
∑
k

∆k(t)eikc·r.

Since this is a linear differential equation, Fourier modes ∆k for different
values of the wavenumber k will evolve independently. Equation 1.14 can
now be written as

d2∆k

dt2
+ 2

ȧ

a

d∆k

dt
= ∆k(4πGρ̄− k2c2

s). (1.15)

Now we have a set of ordinary differential equations, one for each wavenum-
ber k, instead of a partial differential equation. Each equation then describes
the time evolution of a perturbation on a lengthscale d = 1/k.

Equation 1.15 has the same form as the equation for a damped oscillation
or an exponential growth, depending on the sign of the term on the right
hand side. The term 4πGρ̄ on the right hand side is gravity, which makes
perturbations grow. The term k2c2

s is pressure, which make perturbations
fall until the pressure is to weak, when gravity will take over again. On the
left hand side, the term ȧ/a = H is some sort of friction: the expansion of
the universe slows the growth of perturbations. Now, if a perturbation grows
or not is determined by the sign of the right hand side, or in other words, if
gravity is larger than the pressure or not. Since k is a constant, we can look
at a limiting k where the term switches sign. This wavenumber is known as
the Jeans wavenumber :

kJ = a(t)
√

4πGρ0

cs
. (1.16)

So if k > kJ , the pressure term is largest, and we will have oscillations. If
k < kJ , gravity is the largest term, and we will have collapse. Note the factor
of a(t) in front - this wavenumber is then the comoving Jeans wavenumber.
Without the factor a(t), we get the physical Jeans wavenumber. We will use
the comoving version later on.

1.2.3 The Boltzmann equation

The Boltzmann equation, which is the correct approach when we are going
to use the general theory of relativity to study the structure formation, tells
us how the distribution function f for some component evolves with time.
The distribution function tells us how many particles of some type we have
near a position ~r moving with momentum close to ~p at a time t. Since we
will use a general relativistic formulation, we will use xµ and pµ in stead of
~r,~v and t, but this will come into play afterwords. For now, f(~r,~v, t) lives
in an extended phase space that includes time.

As we know, components of the universe will interact with each other,
and so we will introduce a collision term, C[f ], which takes all these kinds
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of interactions (collisions) into account. With this, we can write down the
Boltzmann equation, which looks very simple at first glance:

df

dt
= C[f ]. (1.17)

What we will do is to write out the left hand side into several terms and
compute each term separately. The collision term must also be computed.

We start with a useful, general way to write out the left-hand side. We
first divide the momentum ~p into two parts, one absolute value p and one
direction p̂. The last one is still a vector (with length one), and the first one
is a scalar. We then write the left-hand side of the Boltzmann equation like
this:

df

dt
=
∂f

∂t
+
∂f

∂xi
dxi

dt
+
∂f

∂p

dp

dt
+
∂f

∂p̂i
dp̂i

dt
. (1.18)

The strategy later will be to look at each term separately, working with all
terms with ordinary derivatives to write them using the quantities that we
will work with.

1.3 Observations

An important part of this report is the use of observations to put constraints
on the model. In this section, I will define some quantities that we will use
when working with observations.

1.3.1 The distance modulus and the luminosity distance

The magnitude scale is an old scale used in astronomy. The idea is very
simple: a light-emitting object is assigned a numerical value based on how
bright it looks. We still use a very old system here, giving the brightest star
on the night sky the value 1 (so we say that a bright star has magnitude 1),
and the faintest star have magnitude 6. Now, the human eyes response to
brightness is logarithmic, so a magnitude 2 star, for example, has 10 times
the intensity of a magnitude 3 star. This magnitude is labeled m. As we
know, the intensity of a star, and therefore its magnitude m, depends on the
distance to the star. We therefore introduce what we call the absolute mag-
nitude of a star, which we define as the apparent magnitude if the distance to
the star is ten parsecs. The absolute magnitude is therefore independent of
distance, and can be computed based on the luminosity of the star. So if one
can compute the absolute magnitude, and observe the apparent magnitude,
one can compute the (luminosity) distance DL to the star. The distance is
given through this equation:

µ = m−M = 2.5 log
(

DL

10[pc]

)
, (1.19)
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where we use logarithm base 10. µ is known as the distance modulus.
In our case, we are going to use cosmological principles to compute the

theoretical luminosity distance to an object, so we can compare with the
observed luminosity distance. If we lived in a flat, static universe with Eu-
clidean geometry, the energy flux we receive from a light-emitting astronom-
ical object would be

F =
L

4πr2
,

where L is the luminosity of the object. If we know the luminosity of the
object, we can solve for the distance r, which we now call the luminosity
distance dL:

dL =

√
L

4πF
.

An object of known luminosity is called a standard candle. An example of
a standard (or standardizable) candle is supernova type Ia, which we will
work with in this thesis.

Now, we do not live in a static universe, but an expanding universe. Due
to the expansion, the photons that leave the star will have their wavelengths
stretched by the time they reach us. Written in terms of redshift z and the
comoving distance r, the flux we receive is

F =
L

4πr2

1
(1 + z)2

.

With this expression for the flux, the luminosity distance becomes

dL = r(1 + z). (1.20)

1.3.2 The angular diameter distance

In the above section, we computed the luminosity distance, which is the
distance to an object which we compute based on the energy flux we receive
from a source. Now, we are going to look at the angular diameter distance.
If we have an object of known size, we can compare this to the angular size
of the object which we observe, and thereby we can compute the distance
to this object. Let the size of the object be D, and assume that it covers
an angle ∆θ of the sky. We will assume that the distance d from us to the
object is much larger than the diameter D of the object. We then use the
small angle approximation, and define the angular diameter distance dA to
the distance d like this:

dA =
D

∆θ
.

Now we use the RW line element, Equation 1.1. The object we observe has
comoving distance r and diameter D, and we measure the angular diameter
∆θ at cosmic time t. We then get

ds2 = r2a2(t)(∆θ)2 = D2,
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which gives

D = a(t)r∆θ ⇒ dA =
D

∆θ
= a(t)r.

Or, with redshift z as the variable,

dA =
r

1 + z
, (1.21)

where we, as usual, have set a(t0) = 1. Objects which have a known diam-
eter are known as standard rulers. Also, by combining Equation 1.21 with
Equation 1.20, we get this simple relation between the luminosity distance
and the angular diameter distance of an object at redshift z:

dL
dA

= (1 + z)2.

1.3.3 The galaxy correlation function

Now I will introduce the galaxy correlation function, which we will run into at
some point. I follow the notes of Øystein Elgarøy for the course in cosmology
and extragalactic astronomy at the University of Oslo [2].

The galaxy correlation function is a function that tells how galaxies are
distributed in space. As we know, galaxies are not randomly distributed in
space, the form structures such as groups, clusters and voids. To define the
galaxy correlation function ξg(r), where r is a separation vector, we start by
choosing two small volumes ∆V1 and ∆V2, and one large volume V . The
large volume V contains N galaxies, and we assume that the volume V is
so large that the Copernican principle applies to this volume, so that it
will contain the same number of galaxies no matter where in the universe
the volume V is placed. Then we let n = N/V be the average number of
galaxies in a volume V . Now, if galaxies were truly distributed randomly in
space, n could also represent the number density of galaxies in the volumes
∆V1 and ∆V2. The probability of finding a galaxy in the volume ∆V1 would
then be

n∆V1

N
=
n∆V1

nV
=

∆V1

V
,

and the probability of finding a galaxy in the volume ∆V1 and and another
galaxy in the volume ∆V2 would be

∆P =
∆V1

V
· ∆V2

V
.

Now, as mentioned, galaxies are not uniformly distributed in space, and the
probability of finding a galaxy in ∆V1 and another in ∆V2 then differs from
this value. The galaxy correlation function is then defined as a meassure of
this deviation from uniform distribution, like this:

∆P = (1 + ξg(r))
∆V1

V

∆V2

V
. (1.22)
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Here, the variable r is the separation, going from the galaxy in the volume
∆V1 to the point where we evaluate the function. This means that if galaxies
cluster, ξg(r) would be positive, since the probability of finding two galaxies
separated by r is larger than the corresponding probability in a uniform
distribution of galaxies. If galaxies avoids each other, ξg(r) will be negative.

If we make the Fourier transform of the galaxy correlation function, we
get the power spectrum of the galaxy correlation function:

Pg(k) =
∫
V
ξg(r)e−ik·rd3r. (1.23)

Here, the variable k is a wave vector.
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Chapter 2

A universe with interacting
components

2.1 Introducing interactions

In this thesis, we want to study interactions between baryonic matter, dark
matter and dark energy. We will look at interactions simply as an exchange in
energy and momentum: if there are interactions present, we will have trans-
fer of energy and/or momentum between the three components. This means
that the conservation equation for the energy-momentum tensor of each com-
ponent is modified by interaction terms on the right hand side. Since these
interactions must contain both energy and momentum transfer, they will be
rank one tensors Qν . We let Qν(b,DM) be the energy-momentum exchange
between baryons and dark matter, Qν(b,DE) be the energy exchange be-
tween baryons and dark energy, and Qν(DM,DE) be the energy exchange
between dark matter and dark energy. The energy-momentum conservation
equations of the three components can then be set up like this:

∇µTµν (b) = Qν(b,DM) +Qν(b,DE), (2.1)
∇µTµν (DM) = −Qν(b,DM) +Qν(DM, DE), (2.2)
∇µTµν (DE) = −Qν(b,DE)−Qν(DM, DE). (2.3)

Note the signs on the right hand side, this makes sure that the total energy-
momentum tensor Tµν = Tµν (b) +Tµν (DM)+Tµν (DE) is still conserved, Tµν;µ =
0, and the Einstein equations are the same as before. (This is actually
only true at the background level. If we have interactions that alters the
dark energy density, this may also set up non-zero perturbations in the dark
energy density, which will enter the Einstein equations as well. More about
this in later chapters.)
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2.2 Setting up an interaction model

From the conservation equations of the energy momentum tensors, one sim-
ple question sets up a huge job: find the Qs. In some sense, it is not possible
to compute the Qs directly, so I will set up a specific model for the Qs, and
then study that model as a dynamical system of interacting fluids. In my
model, the interaction terms will contain dimensionless interaction parame-
ters that directly gives the strength of the interaction. I will use α for the
interaction strength between baryons and dark matter, β for baryons and
dark energy, and γ for dark matter and dark energy. Linear combinations
of the energy-momentum tensors involved will enter, so more or less of some
component will give more or less interactions. The expansion rate of the
universe ∇µuµ will also enter, this will slow down the interactions. At last
we have a four-vector s, which is a combination of the four velocities of the
two components - how the components move will of course affect the inter-
actions. There are multiple ways of setting up s, and I will use the average
four velocity of the two interacting components x and y (and so s depends
on which two components that are interacting):

sν(x, y) =
uν(x) + uν(y)

2
.

With these starting points (we leave the four velocity as s), we have these
forms of the three interaction terms:

Qν(b,DM) = α∇µsµ(Tσρuσuρ(b) + Tσρu
σuρ(DM))sν ,

Qν(b,DE) = β∇µsµ(Tσρuσuρ(b) + Tσρu
σuρ(DE))sν ,

Qν(DM,DE) = γ∇µsµ(Tσρuσuρ(DM) + Tσρu
σuρ(DE))sν .

As mentioned earlier, we are assuming that all the components behave as
perfect fluids. Then we can use this relation:

Tµνu
µuν = ρ,

and so the equations simplify:

Qν(b,DM) = α∇µsµ(b,DM)(ρb + ρDM)sν(b,DM),
Qν(b,DE) = β∇µsµ(b,DE)(ρb + ρDE)sν(b,DE),

Qν(DM, DE) = γ∇µsµ(DM, DE)(ρDM + ρDE)sν(DM, DE).

2.3 Interactions for the FRW metric

Our equations are written in covariate form so far. For the first part of the
thesis, we will work with the background universe, using the FRW metric,
with line element given by Equation 1.1. We then have the four velocities:
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u0 = 1, u0 = −1 and ui = ui = 0 for all components. From this we see
that Qi = 0 for all interactions - there is no momentum exchange in in the
background universe. For Q0, we first find the factor ∇µuµ from Equation
A.6:

∇µuµ = uµ,µ + Γµαµu
α =

3
a

da

dt
= 3H.

Q0 then reads
Q0(b,DM) = 3Hα(ρb + ρDM),

Q0(b,DE) = 3Hβ(ρb + ρDE),

Q0(DM,DE) = 3Hγ(ρDM + ρDE).

The left hand side of the conservation equations, Equation 2.3, is given by
Equation 1.5. Putting together, the interaction equations with the FRW
metric takes this form:

∂ρb
∂t

+ 3Hρb = 3H(α(ρb + ρDM) + β(ρb + ρDE)), (2.4)

∂ρDM

∂t
+ 3HρDM = 3H(−α(ρb + ρDM) + γ(ρDM + ρDE)), (2.5)

∂ρDE

∂t
+ 3HρDE(1 + w) = 3H(−β(ρb + ρDE)− γ(ρDM + ρDE). (2.6)

2.4 The interaction models in different clothings

The interaction models in Equation 2.6 is only one way of writing the equa-
tions for the energy-densities. Through the thesis, we will need a lot of other
ways of writing them, and I will present these varieties here.

2.4.1 Equations for the background universe

In the upcoming chapters, we will work with the background equations,
finding analytical solutions to the equations and studying the stability of the
solutions. It is often useful to write the equations using only dimensionless
quantities, so we introduce the density parameters Ωi, i ∈ {b,DM, DE}:

Ωi =
8πG
3H2

ρi.

For the time variable, we will use the number of e-foldings N , so that dN =
Hdt. There also is another “problem”: the equation of state parameter w
for the dark energy. From now on, we will assume it is a constant. Then I
will redefine the density parameters: α̃ = α/(−w), and the same for β and
γ. The e-fold number is also rescaled: Ñ = −wN . Now we have this set of
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equations:

1
3
dΩb

dÑ
= (−ΩDE + α̃+ β̃)Ωb + α̃ΩDM + β̃ΩDE,

1
3
dΩDM

dÑ
= (−ΩDE − α̃+ γ̃)ΩDM − α̃Ωb + γ̃ΩDE,

1
3
dΩDE

dÑ
= (−ΩDE + 1− β̃ − γ̃)ΩDE − β̃Ωb − γ̃ΩDM.

Now, since we are looking at a flat universe (by that I mean that the 3-space
is flat), we have the Friedman constraint:

Ωb + ΩDM + ΩDE = 1. (2.7)

Using this, we can write one of the variables in terms of the two others.
We will choose to eliminate Ωb, so we have Ωb = 1 − ΩDM − ΩDE. This
means that we now have three equations with only two variables. But, both
Einstein equations have actually been used to make these three equations,
and the two Einstein equations are not independent. Therefore, only two of
the equations are independent. In the following, we will use the equations for
ΩDM and ΩDE as our independent equations. Rewriting, we get this system
of equations:

1
3
dΩDM

dÑ
= (γ̃ − ΩDE)ΩDM + α̃(ΩDE − 1) + γ̃ΩDE, (2.8)

1
3
dΩDE

dÑ
= (1− γ̃ − ΩDE)ΩDE + β̃(ΩDM − 1)− γ̃ΩDM. (2.9)

Writing the equations in terms of the density parameters Ω(b,DM, DE)
and the number of e-foldings N is very useful when we are going to study
the stability of our system. However, we are also interested in finding the
analytical expression of the actual density parameters. The easiest way is
then to work with the equations in this form:

dρb
dN

+ 3ρb = 3(α(ρb + ρDM) + β(ρb + ρDE)), (2.10)
ρDM

dN
+ 3ρDM = 3(−α(ρb + ρDM) + γ(ρDE)), (2.11)

ρDE

dN
+ 3(1 + w)ρDE = 3(−β(ρb + ρDE)− γ(ρDM + ρDE)). (2.12)

Here, we have gone back to the actual energy-densities, but kept the number
of e-foldings, so that H does not enter the equations directly.

2.4.2 Comparing with observations

In the second part of this thesis, I will compare the universe models I get
with the interaction models with observational data, to see if the interaction
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models can actually describe our own universe. In the observational data
that I will work with, the redshift z defined in Equation 1.8 is used as a
time variable, and we then need to rewrite our equations so we get them
in terms of z. Also, when we are working with Baryon acoustic oscillations
and the cosmic microwave background, I will need a universe model that
goes (almost) all the way back to big bang. There are a lot of physics,
like inflation and such, that I will not have time to include, and it will not
be included, but it is one thing that must be taken into account: the fact
that the early universe is dominated by radiation. We then introduce the
density parameter for radiation, Ωr, and since interaction with radiation is
not taken into account in this part, we can just use the radiation equation of
state, Equation 1.4, and we simply see that the energy-density of radiation
evolves like ρr(z) = ρr0(1 + z)4.

When changing variable from t to z in our equations, the substitution
goes like this:

dt = − 1
1 + z

dz, (2.13)

and so our system of equations becomes

dΩb

dz
=
−3

1 + z

((
wΩDE + α+ β +

Ωr

3

)
Ωb + αΩDM + βΩDE

)
,

dΩDM

dz
=
−3

1 + z

((
wΩDE − α+ γ +

Ωr

3

)
ΩDM − αΩb + γΩDE

)
,

dΩDE

dz
=
−3

1 + z

((
wΩDE − w − β − γ +

Ωr

3

)
ΩDE − βΩb − γΩDM

)
.

(2.14)
We also need to find the Hubble parameter as a function of redshift, so we
rewrite the second Einstein equation, Equation 1.7. This equation becomes

dH

dz
=

3H
2(1 + z)

(
1 + wΩDE +

Ωr

3

)
. (2.15)

2.4.3 With both w and N

When I will work with inhomogeneous perturbations in the third part of the
thesis, I will actually write my equations using the e-fold number N as the
time variable, and I will keep the dark energy equation of state parameter
w in my equations. Contribution from redshift will also be included. The
interaction equations then takes this form:

dΩb

dN
= 3

((
wΩDE +

Ωr

3
+ α+ β

)
Ωb + αΩDM + βΩDE

)
,

dΩDM

dN
= 3

((
wΩDE +

Ωr

3
− α+ γ

)
ΩDM − αΩb + γΩDE

)
,
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dΩDE

dN
= 3

((
wΩDE +

Ωr

3
− w − β − γ

)
ΩDE − βΩb − γΩDM

)
,

Ωr = 1− Ωb − ΩDM − ΩDE. (2.16)

The Hubble parameter H is given by this equation:

dH

dN
=

3H
2

(
1 + wΩDE +

Ωr

3

)
. (2.17)

2.5 Fixed points

As mentioned, we are interested in the stability of our dynamical system. To
analyze the stability, we will find the critical points. These are the points
(ΩDM,ΩDE) where the derivatives are zero. When we have such a point, we
can study the stability of that point. The stability tells us how the system
behaves close to the critical points.

When we study the critical points, we will work with the equations writ-
ten in terms of the energy-density parameters, Ω(b,DM, DE), Equation 2.9.
Finding the fixed points is simple, one sets the derivatives to zero:

(γ̃ − ΩDE)ΩDM + α̃(ΩDE − 1) + γ̃ΩDE = 0, (2.18)
(1− γ̃ − ΩDE)ΩDE + β̃(ΩDM − 1)− γ̃ΩDM = 0. (2.19)

Now that we know how to find the fixed points, we will analyze the stability.
We use the stability matrixM defined in Equation B.5. In our case, we have
two equations, our quantities are ΩDM and ΩDE, and N is our parameter
that does not explicitly enter the equations on the right hand sides. So our
matrix M becomes

M =
(
γ̃ − ΩDE α̃+ γ̃ − ΩDM
β̃ − γ̃ 1− γ̃ − 2ΩDE

)
. (2.20)

In the theoretical parts of this thesis, the study of the stability of the fixed
points will be crucial, as it tells us a lot, no matter how complex the analytical
solutions look like.
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Chapter 3

One interaction

In this chapter, we will look at models where we only have one interaction.
This simply means that we will set two of the interaction parameters from
Equation 2.9 to zero. This then gives three different models, one for each
interaction.

3.1 Dark matter and dark energy

If we set α̃ = β̃ = 0, the only interaction present is between dark matter
and dark energy. The baryons are then decoupled in this model. In this and
the upcoming chapter studying one and two interaction models, I will divide
each section in two parts: one with critical point and stability analysis, and
one where I find the analytical solutions. For this case, I will start with the
critical points and stability.

3.1.1 Critical points and stability analysis

Using Equation 2.19 with α̃ = β̃ = 0, we get this set of equations for the
fixed points:

ΩDE(1− ΩDM − ΩDE) = 0,
(γ̃ − ΩDE)ΩDM + γ̃ΩDE = 0.

One solution to this set of equations is the trivial solution ΩDM = ΩDE =
0, which by the Friedmann constraint gives Ωb = 1, a universe totally dom-
inated by baryonic matter. With α̃ = β̃ = 0 and ΩDM = ΩDE = 0, our
stability matrix M from Equation 2.20 now becomes

M =
(

γ̃ γ̃
−γ̃ 1− γ̃

)
.

The stability of this critical point is determined by the signs of the eigenvalues
of M . We get the eigenvalues by the determinant in Equation B.3, which
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gives us the characteristic polynomial:∣∣∣∣ γ̃ − u γ̃
−γ̃ 1− γ̃ − u

∣∣∣∣ = (γ̃ − u)(1− γ̃ − u) + γ̃2 = u2 + u+ γ̃ = 0.

⇒ u =
1
2

(1±
√

1− 4γ̃).

From this, we see that if γ̃ > 1
4 , the eigenvalues are complex with a positive

real part, and we get an unstable spiral. If γ̃ ≤ 1
4 , the eigenvalues are real.

Further we see that if γ̃ > 0, both eigenvalues are positive, while if γ̃ < 0,
one of the eigenvalues (the one with the minus sign) will be negative, the
other will be positive, and we have a saddle point. So:

• γ̃ < 0: Saddle point.

• γ̃ = 0: No interaction at all.

• γ̃ ∈ (0, 1
4 ]: Unstable point.

• γ̃ > 1
4 : Unstable spiral.

For the second solution to the equation set, we can see that we need
(1−ΩDM−ΩDE) = Ωb = 0 in the first equation. This gives ΩDM = 1−ΩDE.
Inserting this into the second equation gives

(γ̃ − ΩDE)(1− ΩDE) + γ̃ΩDE = 0 (3.1)

⇒ ΩDE =
1
2

(
1±

√
1− 4γ̃

)
. (3.2)

Since ΩDE must be a real number, we see that we must have γ̃ ≤ 1
4 . Further,

since ΩDE ≤ 1, we must have γ̃ ≥ 0. So, γ̃ ∈ [0, 1
4 ]. This condition is valid

for both values of ΩDE (notice the ± in the expression for ΩDE).
Now we look at the eigenvalues u of the stability matrixM from Equation

2.20. Again we use Equation B.3, which in this case gives this determinant,
which again gives us the characteristic polynomial:

0 =
∣∣∣∣ γ̃ − ΩDE − u γ̃ − 1 + ΩDE

−γ̃ 1− γ̃ − 2ΩDE − u

∣∣∣∣
= (γ̃ − ΩDE − u)(1− γ̃ − 2ΩDE − u) + γ̃(γ̃ − 1 + ΩDE)

= u2 + (3ΩDE − 1)u+ 2Ω2
DE − ΩDE = 0.

⇒ u =
1
2

(
1− 3ΩDE ±

√
9Ω2

DE − 6ΩDE + 1− 8Ω2
DE + 4ΩDE

)
=

1
2

(
1− 3ΩDE ±

√
Ω2

DE − 2ΩDE + 1
)
.
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Now we insert for ΩDE. Since we have two values for ΩDE which each gives
two values for u, we get four eigenvalues in total. If we use the plus-sign in
the expression for ΩDE, we get these two eigenvalues:

u1 = −1
4

(
1 + 3

√
1− 4γ̃ +

√
2(1− 2γ̃ −

√
1− 4γ̃)

)
,

u2 = −1
4

(
1 + 3

√
1− 4γ̃ −

√
2(1− 2γ̃ −

√
1− 4γ̃)

)
.

Since both u1 and u2 are negative when γ̃ ∈ [0, 1
4 ], this critical point is stable.

Using the minus-sign in the expression for ΩDE, we get these two eigen-
values:

u1 = −1
4

(
1− 3

√
1− 4γ̃ +

√
2(1− 2γ̃ +

√
1− 4γ̃)

)
,

u2 = −1
4

(
1− 3

√
1− 4γ̃ −

√
2(1− 2γ̃ +

√
1− 4γ̃)

)
.

Here, if γ̃ < 0, we have an unstable point, but this is excluded because
ΩDE ≤ 1, as discussed earlier. When γ̃ ∈ [0, 1

4 ], one of the eigenvalues is
positive while the other is negative, so we have a saddle point.

3.1.2 The analytical solution

The next job is to find the analytical solution to our equations. With α =
β = 0, Equation 2.12 looks like this:

ρ′b + 3ρb = 0, (3.3)
ρ′DM + 3ρDM = 3γ(ρDM + ρDE), (3.4)

ρ′DE + 3(1 + w)ρDE = −3γ(ρDM + ρDE). (3.5)

Here, the prime denotes derivative with respect to the e-fold number N . As
mentioned, the baryons are decoupled from the other two components in this
model, and the right hand side of the equation for the baryon energy density
is zero, The baryons will then follow the usual evolution ρb = ρb0(1 + z)3.
The other two equations are coupeled to each other. We rewrite them using
the quantities ρD = ρDM + ρDE (a common energy density for the dark
components) and R = ρDE/ρD, a ratio of how much of the dark components
that are in the form of dark energy. If we then add the two equations for
the dark components, we get

ρ′D + 3ρD + 3wρDE = ρ′D + 3ρD + 3wRρD = 0. (3.6)

As we expect, the fact that we can not neglect the pressure of the dark
energy brings R into the picture. Solving for R gives

R = − 1
3w

(
3 +

ρ′D
ρD

)
= − 1

3w
(
3 + (ln ρD)′

)
.
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To proceed, we must assume that the equation of state parameter w for the
dark energy is a constant. We take the derivative of Equation 3.6:

ρ′′D + 3ρ′D + 3w(R′ρD +Rρ′D) = 0.

We need the derivative of R:

R′ =
ρ′DEρD − ρDEρ

′
D

ρ2
D

=
1
ρ2
D

(
−3γρD − 3(1 + w)RρD −RρDρ

′
D
)

= −3γ − 3(1 + w)R−R
ρ′D
ρD
.

Inserting this, we get

ρ′′D + 3ρ′D − 9wγρD − 9w(1 + w)RρD − 3wRρ′D − ρ′D
(

3 +
ρ′D
ρD

)
= 0,

ρ′′D +3ρ′D−9wγρD +3(1+w)
(
3ρD + ρ′D

)
+3ρ′D +

(ρ′D)2

ρD
−ρ′D

(
3 +

ρ′D
ρD

)
= 0,

ρ′′D + 3(2 + w)ρ′D + 9(1 + w − γw)ρD = 0.

This is an ordinary linear second order homogeneous differential equation
with constant coefficients, and the solution is straight forward: we set up
the characteristic polynomial,

r2 + 3(2 + w)r + 9(1 + w − γw),

and find the roots of this polynomial:

r =
1
2

(
−3(2 + w)±

√
9(2 + w)2 − 36(1 + w − γw)

)
= −3

2
(2 + w)± 3

2

√
w(w + 4γ) = p± q,

with
p = −3

2
(2 + w) q =

3
2

√
w(w + 4γ).

And the solution of the differential equation is

ρD = ρ
(0)
D ep(N−N0) cosh(q(N −N0)). (3.7)

Here, ρ(0)
D is the value of ρD at N = N0. Computing ρ′D:

ρ′D = ρ
(0)
D

(
pep(N−N0) cosh(q(N −N0)) + ep(N−N0)q sinh(q(N −N0))

)
,

we can now compute the ratio R:

R = − 1
3w

(
3 +

ρ′D
ρD

)
= − 1

3w
(3 + p+ q tanh(q(N −N0))) . (3.8)
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Now let us compare the analytical solution to the stability analysis. For
simplicity, we set w = −1. We know that

lim
x→∞

tanhx = 1

and so we have

lim
N→∞

R = 1 +
p+ q

3
=

1
2

(
1 +

√
1− 4γ

)
, (3.9)

which is the stable critical point we found earlier. The ratio R and the ratio
ρD/ρD0 are plotted on Figure 3.1, with γ = 0.1. We see that R approaches a
value around 0.88, which is what we get if we set γ = 0.1 into equation 3.9.
This might seem strange since this interaction gives more dark matter and
less dark energy when γ > 0, but at late time, the expansion of the universe
have become so large that the abundance of dark matter will be very small,
and the interaction will die out.

In [3], different models for interactions between dark matter and dark
energy is used, one which is proportional to the Hubble parameter, as our
model is. We see that we obtain the same results, that dark matter dominates
in early times and dark energy dominates at late times.
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Figure 3.1: The ratio R(N) and the energy-density ρD(N)/ρD0(N).

3.2 Baryons and dark matter

If we set β̃ = γ̃ = 0, the only interaction present is between baryons and
dark matter. The dark energy is then decoupled.

3.2.1 Critical points and stability analysis

In this case, Equation 2.19 for the fixed points becomes

α̃(1− ΩDE) + ΩDEΩDM = 0,
(1− ΩDE)ΩDE = 0.
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From these equations we can see that for a critical point, we must have ΩDE ∈
{0, 1}. If ΩDE = 0, we also get α̃ = 0. This gives no interactions at all. So
to have a model with an interaction, we must have ΩDE = 1. But this means
that Ωb = ΩDM = 0, and the dark energy is totally dominating, independent
of the strength of the interaction between the other two components, baryons
and dark matter.

For the eigenvalues of the stability matrixM , we get a very easy equation
for the eigenvalues u:∣∣∣∣ −1− u α̃

0 −1− u

∣∣∣∣ = (−1− u)2 = 0⇒ u = −1.

This is then a double root, and we can have a term proportional to t in our
solution if we have linear independent eigenvectors. Now, since the root is
negative, such a solution would die anyway, since

lim
t→∞

te−t = 0.

I have plotted a phase map based on Equation 2.19 in Figure 3.2 with α =
0.1, and as we see, we indeed have a stable critical point, when both ΩM and
ΩDE have initial values in the interval [0, 1].
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Figure 3.2: A phase map of the interaction model with α being active, α is here set
to 0.1.

3.2.2 The analytical solution

Now it is time to look at the analytical solution. Equation 2.12 with β =
γ = 0 looks like this (prime denotes derivative with respect to N):

ρ′b + 3ρb = 3α(ρb + ρDM),
ρ′DM + 3ρDM = −3α(ρb + ρDM ),

ρ′DE + 3(1 + w)ρDE = 0.
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Similar to the previous case, we introduce the combined energy density for
matter, ρM = ρb + ρDM, and the ratio S = ρDM/ρM. Now, since the two
components we are working with are pressure less, the equation for the com-
bined matter energy density ρM will be independent of α, and we will have
the usual, decoupled evolution of the matter energy density:

ρM = ρ
(0)
M (1 + z)3, (3.10)

where ρ(0)
M is the initial matter energy density. For the ratio S, we get this

simple equation with solution:

dS

dN
= 3α⇒ S = 3αN + S0, (3.11)

where S0 is the present value of S.
I have plotted these two solutions in Figure 3.3, with α = 0.1. As ex-

pected, the interaction goes from dark matter to dark energy, and S decreases
linearly. Now, remember that the critical point has ΩDE = 1 when α 6= 0,
so the dark energy is dominating this universe. The initial value for S is
S0 = 0.8, which is the value for the ΛCDM model.
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Figure 3.3: The ratio S(N) and the energy-density ρM(N)/ρM0(N).

3.3 Baryons and dark energy

In this case, we have α = γ = 0. Now, since the equations for ρb and
ρDM have the exact same form, this case will be the same as the case with
interacting dark matter and dark energy, with ΩDM replaced by Ωb and β
replaced by γ. This regards both the critical points (location and stability)
and the analytical solutions. So if we set up ρbDE = ρb + ρDE and the ratio
U = ρDE/ρbDE, and the two parameters

r = −3
2

(2 + w) s =
3
2

√
w(w + 4β).
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We have these two solutions:

ρbDE = ρ
(0)
bDEe

r(N−N0) cosh(s(N −N0)), (3.12)

U = − 1
3w

(3 + r + s tanh(q(N −N0))) . (3.13)

While the solutions are the same as in the dark matter - dark energy case, the
physical meanings will be different, of course. I have plotted the evolutions
on Figure 3.4, where β is 0.2. As we see, the ratio U approaches a lower
value than R did in Figure 3.1 on page 41, which we expect when we increase
γ in Equation 3.9: the limit now is around 0.72 when N goes to infinity.
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Figure 3.4: The ratio U and the energy-density ρbDE(N)/ρbDE0(N).
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Chapter 4

Two interactions

Now we will look at a model where we have two interactions (or, one inter-
action turned off). Again, we have three models, one for each interaction
turned off. We will study each of the models in two steps: first, we will find
the analytical solution. This is pretty straight forward linear algebra, where
we will use Mathematica [4] to find eigenvalues and eigenvectors, finding the
general solutions for the systems. Now, it can be difficult to understand
what will happen just by looking at the analytical solutions, because these
will be rather complex, so we will make some plots showing how the two
parameters affect the solution in terms of existence of critical points, and
what the stability the critical points have. We will also make phase plots
for some specific values of the interaction parameters, which will give us the
best information of how the solution of the equations are.

4.1 Dark energy - Dark matter and Dark energy -
baryons

First, we will study a model where dark energy interacts with both baryons
and dark matter, but there is no interaction between baryons and dark mat-
ter. This corresponds to setting α to zero. We start with the analytical
solution.

4.1.1 Analytical solution

With α = 0, our system of equations looks like this:

ρ′b + 3ρb = 3β(ρb + ρDE),
ρ′DM + 3ρDM = 3γ(ρDM + ρDE),

ρ′DE + 3(1 + w)ρDE = −3(β(ρb + ρDE) + γ(ρDM + ρDE)).

where the prime denotes derivative with respect to the e-fold number N .
This is a system of linear, first order differential equations with constant
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Table 4.1: The coefficients of the characteristic polynomial, in the case where α = 0.

Term Coefficient
Constant 27(1− γβ + w(1− γ − β + γβ))

u 27 + 18w − 9(w(β + γ)− βγ)
u2 9 + 3w
u3 1

coefficients. To solve it, we write it in matrix form: ρ′ = Aρ, where the
matrix A contains all the coefficients. Writing this out, we can see how A
looks like: ρ′b

ρ′DM
ρ′DE

 =

 3(β − 1) 0 3β
0 3(γ − 1) 3γ
−3β −3γ −3(1 + w + β + γ)

 ρb
ρDM
ρDE

 .

The solution of this set of equations is given by

ρ =
3∑
i=1

civieuiN ,

where ci are integration constants (to be determined by initial conditions), ui
are the eigenvalues of the matrix A, and vi are the corresponding eigenvec-
tors. So we have an eigenvalue problem, which we solve using linear algebra.
First, we need the eigenvalues. We start by computing this determinant:∣∣∣∣∣∣

3(β − 1)− u 0 3β
0 3(γ − 1)− u 3γ
−3β −3γ −3(1 + w + β + γ)− u

∣∣∣∣∣∣ .
This determinant is a cubic polynomial. Then we set the determinant to
zero and solve for u. We use Mathematica to compute the polynomial. The
coefficients are summarized in Table 4.1. And so we have three eigenvalues,
one for each root of this polynomial. Again using Mathematica, I get these
three eigenvectors, labeled by i, so i ∈ {1, 2, 3}, with ui the corresponding
eigenvalues:

vi =


3γ2

β(3γ−3−ui) −
3(1+w+β+γ)+ui

3β

− 3γ
3(γ−1)−ui

1

 .

Written out, the three energy densities evolves like this:

ρb(N) =
3∑
i=1

ci

(
3γ2

β(3γ − 3− ui)
− 3(1 + w + β + γ) + ui

3β

)
euiN ,
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ρDM(N) =
3∑
i=1

ci

(
−3γ

3(γ − 1)− ui

)
euiN ,

ρDE(N) =
3∑
i=1

cie
uiN .

4.1.2 Critical points analysis

Now we will look more qualitatively on the analytical solution for the inter-
action model with α = 0, an analysis of the critical points. Equation 2.19
takes this form:

ΩDEΩDM − γ̃(ΩDE + ΩDM) = 0, (4.1)
(1− ΩDE)ΩDE − β̃(1− ΩDM)− γ̃(ΩDE + ΩDM) = 0. (4.2)

First, solving for ΩDM gives this expression:

ΩDM =
γ̃ΩDE

ΩDE − γ̃
.

Now we get this equation for ΩDE determining the critical points:

Ω3
DE − Ω2

DE + (β̃ + γ̃ − β̃γ̃)ΩDE − β̃γ̃ = 0. (4.3)

We will now analyze these equations by region plots and a phase map, shown
on Figure 4.1 on the following page. As we know, a cubic polynomial always
have 3 complex roots (some of them can appear twice, of course). One of the
roots is always real, and in some cases, depending on the coefficients (β̃ and
γ̃ in this case) all three roots can be real. We use Mathematica to make
region plots, showing if a root is real or not when we set values for β and
γ. A root being real is marked with a dashed contour in the region plots.
If the root is real, we make a new area showing where also the Friedman
constraint, Equation 2.7 applies. This area is marked with a solid line. Also,
when we have a real root, we also compute the eigenvalues of the matrix
M in Equation 2.20, and look at the signs of the two eigenvalues. For the
stability, only the real part of the eigenvalues are interesting, so I will set the
eigenvalues to the real parts of the eigenvalues, so I can easily compare them.
If both of the eigenvalues are negative (I check if the product is positive and
one of the eigenvalues are negative), we have a stable critical point. These are
the blue areas in the region plots. If both eigenvalues are positive (I check
if the product is positive and one of the values are positive), we have an
unstable critical point. These are the green areas in the region plots. If one
eigenvalue is negative and one positive (I check if the product is negative),
we have a saddle point. This are the red areas in the region plots. The white
areas are when root of the polynomial is complex, and the corresponding

47



critical point do not exist. The phase map in the figure shows the evolution
for the dynamical system. One set of initial conditions corresponds to one
trajectory. In this particular phase map, β = 0.2 and γ = 0.1. As we can
see from the region plots, we then have three critical points, one of each kind
of stability, which we can recognize in the phase map. This confirms our
stability analysis for this specific case.
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Figure 4.1: Three region plots (one for each root in a cubic polynomial) and a phase
map with β = 0.2 and γ = 0.1. This is the case with α = 0.

4.2 Baryons - dark matter and dark matter - dark
energy

Now we go to the case where we have interactions between baryons and dark
matter, and dark matter and dark energy. There is no direct interaction
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Table 4.2: The coefficients for the characteristic polynomial, in the case β = 0.

Term Coefficient
Constant 27(1 + αγ + w(αγ − γ + 1))

u 9(αγ − γw + 2w + 3)
u2 9 + 3w
u3 1

between baryons and dark energy in this model, so β = 0. As in the previous
case, we will first find the analytical solution using linear algebra, then we
will analyze the stability of the solution by having a look at the critical
points.

4.2.1 Analytical solution

With γ = 0, our system of equations looks like this:

ρ′b + 3ρb = 3α(ρb + ρDM), (4.4)
ρ′DM + 3ρDM = 3(−α(ρb + ρDM) + γ(ρDM + ρDE)), (4.5)

ρ′DE + 3(1 + w)ρDE = −3γ(ρDM + ρDE), (4.6)

where the prime denotes derivative with respect to the e-fold number N . We
write this as a matrix equation ρ′ = Aρ. Written out, it looks like this: ρ′b

ρ′DM
ρ′DE

 =

 3(α− 1) 3α 0
−3α 3(γ − α− 1) 3γ

0 −3γ −3(1 + w + γ)

 ρb
ρDM
ρDE

 .

The solution is determined by the eigenvalues u and eigenvectors v of the
matrix A. The eigenvalues are found through the characteristic polynomial,
which we find using Mathematica. It is given by this determinant:∣∣∣∣∣∣

3(α− 1)− u 3α 0
−3α 3(γ − α− 1)− u 3γ

0 −3γ −3(1 + w + γ)− u

∣∣∣∣∣∣ .
The coefficients are given in Table 4.3 on page 52. The eigenvalues ui are now
the three roots of the characteristic polynomial. Next we find the eigenvec-
tors, also using Mathematica. Labeling with i ∈ {1, 2, 3}, the eigenvectors
are

vi =

 γ
α −

1
9αγ (3(γ − α− 1)− ui) (3(γ + w + 1) + ui)

−1
3γ (3(γ + w + 1) + ui)

1

 .

And so our analytical solutions are

ρb(N) =
3∑
i=1

ci

(
γ

α
− 1

9αγ
(3(γ − α− 1)− ui) (3(γ + w + 1) + ui)

)
euiN ,
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ρDM(N) =
3∑
i=1

ci

(
−1
3γ

(3(γ + w + 1) + ui)
)
euiN ,

ρDE(N) =
3∑
i=1

cie
uiN .

4.2.2 Critical point analysis

Now to the analysis of the critical points. The equations for the critical
points, Equation 2.19, now looks like this:

(γ − ΩDE)ΩDM + α(ΩDE − 1) + γΩDE = 0, (4.7)
(1− γ − ΩDE)ΩDE − γΩDM = 0. (4.8)

Solving for ΩDM gives

ΩDM =
1− γ − ΩDE

γ
ΩDE.

Inserting this, we get this third-degree equation for ΩDE:

Ω3
DE − Ω2

DE + γ(1 + α)ΩDE − αγ = 0.

This equation has three complex roots. There is always one root that is real,
and sometimes, all three roots are real. So we make three region plots, one
for each root, and mark with a dashed line where that root is real, when α
and γ varies in the interval [−1, 1]. We see that for any value for α and γ, one
of the roots is real, but it does not have to be the same root always. Further,
the Friedman constraint sets up smaller areas, these are marked with a solid
line. At last, we look at the eigenvalues of the stability matrix in Equation
2.20. If both eigenvalues have positive real part, we have an unstable critical
point. These are the green areas in the region plots. If both the real parts of
the eigenvalues are negative, we have a stable critical point. These are the
blue areas in the region plots. If the real part of one of the eigenvalues is
positive, and the other is negative, we have a saddle point. This is the red
area in the region plots. Finlay, we make a phase plot for specific values of
α and γ. We set α to 0.05 and γ to 0.2. As expected, we get three critical
points, one of each type. The region plots and the phase map are displayed
on Figure 4.2 on the facing page.

4.3 Baryons - dark matter and baryons - dark en-
ergy

At last, we will study the cased where baryons interact with both dark matter
and dark energy, but there is no interaction between the dark components,
so γ = 0. As before, we will first find the analytical solution using linear
algebra, then we will analyze the stability by studying the critical points.
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Figure 4.2: Three region plots (one for each root in a cubic polynomial) and a phase
map with α = 0.05 and γ = 0.2. This is the case for β = 0.
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Table 4.3: The coefficients of the characteristic polynomial, in the case where γ = 0.

Term Coefficient
Constant 27(w(1− β − αβ)− αβ − 1)

u 9(2w − β − αβ + 3)
u2 9 + 3w
u3 1

4.3.1 Analytical solution

The set of equations now looks like this:

ρ′b + 3ρb = 3α(ρb + ρDM) + 3β(ρb + ρDE),
ρ′DM + 3ρDM = −3α(ρb + ρDM),

ρ′DE + 3(1 + w)ρDE = −3β(ρb + ρDE).

In matrix form, we again have ρ′ = Aρ. Written out, we can see the layout
of the matrix A: ρ′b

ρ′DM
ρ′DE

 =

 3(α+ β − 1) 3α 3β
−3α −3(α+ 1) 0
−3β 0 −3(β + w + 1)

 ρb
ρDM
ρDE

 .

As usual, the solutions are determined by the eigenvalues u and eigenvectors
v of A. The eigenvalues u are the roots of the characteristic polynomial,
which we get from this determinant:∣∣∣∣∣∣

3(α+ β − 1)− u 3α 3β
−3α −3(α+ 1)− u 0
−3β 0 −3(β + w + 1)− u

∣∣∣∣∣∣ .
This is computed using Mathematica. The polynomial is summarized in
Table 4.3. The eigenvectors vi are

vi =

 −1
3β (3(1 + β + w) + ui)

1
9αβ

(
−9β2 − (3(β − α− 1)− ui)(−3(1 + β + w)− ui)

)
1

 ,

and so the three solutions are

ρb(N) =
3∑
i=1

−ci
(

1
3β

(3(1 + β + w)− ui)
)
euiN ,

ρDM(N) =
3∑
i=1

ci

(
−9β2 − (3(β − α− 1)− ui)(−3(1 + β + w)− ui)

)
9αβ

euiN ,

ρDE(N) =
3∑
i=1

cie
uiN .
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4.3.2 Critical points analysis

We use Equation 2.19 to analyze the critical points. The equation set looks
like this:

ΩDEΩDM + αΩDE = 0, (4.9)
(1− ΩDE)ΩDE + βΩDM − β = 0. (4.10)

Solving for ΩDM gives

ΩDM = 1 +
ΩDE − 1

β
ΩDE,

and we get this third-degree polynomial for ΩDE:

Ω3
DE − Ω2

DE + β(1− α)ΩDE + αβ = 0.

We now use Mathematica to find the critical points (the roots of this cubic
equation), and to analyze them. This is done with three region plots, one
for each root, where α and β now are the varying parameters. A root is a
critical point if the root is real. This is marked by the dashed lines on the
region plots (and so the critical points exists where the area is not white).
The Friedman constraint sets up a sub-region, this is marked by the solid
lines. Then we can insert the roots into the stability matrix in Equation
2.20 to analyze the stability of the critical points, which is determined by
the signs of the eigenvalues of the stability matrix. The blue areas marks a
stable critical point, green is an unstable critical point, and red is a saddle
point. I have also made a phase map, where I have set α = −0.05 and
β = 0.2. We see that we have three critical points, one of each type, as
expected from the region plots. The three region plots and the phase map
is shown on Figure 4.3 on the following page.
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Figure 4.3: Three region plots (one for each root in a cubic polynomial) and a phase
map with α = −0.05 and β = 0.2. γ = 0 in this case.
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Chapter 5

Supernovae type Ia

5.1 A white dwarfs rebirth

A supernova is an exploding star, and in such an explosion, the star emits
a lot of energy. A typical supernova can have a luminosity greater than a
whole galaxy. Supernovae are divided into classes according to the physical
mechanisms involved, and we are going to look closer at type Ia supernovae.
Type I supernovae are supernovae that do not exhibit hydrogen lines in their
spectra. As we know, hydrogen is the most abundant element in the uni-
verse, and this suggests that there is something unusual in type I supernovae
compared to other types of supernovae. A supernova of type Ia is a type
I supernova that have a strong Sn II line in its spectrum. Other type I
supernovae shows other, or lack of other, elements in their spectral lines.

Supernovae type Ia occurs in binary star systems, where one of the stars
is a white dwarf star. In such a binary star system, the white dwarf may
steal mass from its partner, and get heavier. However, due to the white dwarf
being made up of degenerate gas, it will actually get smaller when it gets
heavier. The degeneracy pressure will then increase to prevent the star from
collapsing. There is a limit for when the degeneracy pressure fails to hold
the white dwarf stable. In terms of mass, this limit is known as the Chan-
drasekhar mass, after the Indian physicist Subrahmanyan Chandrasekhar.
The limit is around 1.4 solar masses, and when this limit is reached, the
white dwarf explodes, and we have a type Ia supernova. Since the physical
conditions in the type Ia supernovae are very similar, they will have the
same absolute magnitude. By observing their apparent magnitude, we can
compute the distance to them. Since supernovae shine so bright, we can
see them far across the universe, allowing us to work with models over a
large range of distances. The absolute magnitude of a type Ia supernova is
around −19.3. Now, there are some factors that may affect the lightcurve
(magnitude versus time) of a supernova Ia, extinction and the host galaxy,
for example. This means that a supernova Ia is not really a standard candle.
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But they are standardizable, which means that by the use of different meth-
ods, like SALT2 [5] and MLCS2k2 [6], it is possible to reduce the systematic
error that affects the light curves. This is done for our data set, and so we
can treat the supernovae Ia as standard candles.

5.2 Observational constraints from
supernovae type Ia

I will use the union 2 data set, which consists of 557 type Ia supernovae
[7]. In the data set we have name, redshift and distance modulus with
uncertainties based on the luminosity distance for the supernovae. What we
want to do is to make a model of the universe, based on the FRW metric
and the interaction models for the components in the universe. We have
already looked at such kind of models, so it only comes down to choosing
a set of values for the interaction parameters. Then we can compute the
distance modulus based on the luminosity distance for a given redshift. This
can then be compared with the measured distance modulus in the data set.
We use the χ2 estimator from Equation B.15 to choose the combination of
interaction parameters that fits the model best.

First, it is necessary to our equations in terms of redshift. This is done in
Equation 2.14 for the density parameters, and Equation 2.15 for the Hubble
parameter. We will neglect contribution from radiation, since we will work
with redshifts below 1.5. The equations I want to solve then take this form:

dΩb

dz
=
−3

1 + z
((wΩDE + α+ β) Ωb + αΩDM + βΩDE) ,

dΩDM

dz
=
−3

1 + z
((wΩDE − α+ γ) ΩDM − αΩb + γΩDE) ,

dΩDE

dz
=
−3

1 + z
((wΩDE − w − β − γ) ΩDE − βΩb − γΩDM) ,

dH

dz
=

3H
2(1 + z)

(1 + wΩDE) .

Now, these equations have varying coefficients, so we choose to solve them
numerically. We also need initial conditions for the equations. I have chosen
to set Ωb,0 to 0.046, which is the best fit value for a ΛCDM universe model
with no interactions. When I work with only one active interaction, I let
ΩDM,0 be a free parameter, and when I work with two active interactions, I
set ΩDM,0 to 0.224, which is the best fit value in the ΛCDM model. ΩDE,0
is then 1 − Ωb,0 − ΩDM,0 in all cases, since we neglect contribution from
radiation, and we assume that our universe is spatially flat (Ωk = 0). Now,
H0 should also be a free parameter, but it is actually impossible to determine
H0 based on supernovae type Ia data. We will divide our equations by H0,
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and work with E = H/H0, which then has initial condition E(z = 0) = 1
by definition. We will come back to H0 later.

Now that we have initial conditions, we are ready to solve the equations.
Since we are going to constrain values of the interaction parameters, we will
run through some combinations of them, solving the equations to get a uni-
verse model for each combination. Using the universe model, we can compute
the distance modulus to an object at redshift z, using linear interpolation
(Equation B.13) to interpolate to the redshift given in the data set, based on
our set grid of redshifts. To find which combination of parameters that is the
best, we compute the χ2 estimator, Equation B.15, for each combination of
interaction parameters. The combination giving the smallest value for χ2 is
the best value. We will also study the 1, 2 and 3σ confidence regions, which
are determined by the value of χ2 being within a certain distance from the
best fit value. These distances are defined in Table B.1 on page 164.

In our case, the χ2 estimator is given by

χ2 =
N∑
i=1

(µ(zi)− µi)2

σ2
i

,

where µ(zi) is the distance modulus to an object of redshift zi, based on our
universe model, and µi is the measured distance modulus to the object of
redshift zi, which is given in the data set. N is the number of supernovae
we have in our data set (557).

Note that this expression for the χ2 estimator assumes that all the data
are uncorrelated. This is actually not true, the data are correlated. In order
to account for this, we would have to set up a 557 × 557 matrix with all
the correlations. With this, the computations will take much longer, and
therefore, we will not take the correlations into account. This will make
our confidence regions a bit smaller than they should be, but the order of
magnitude of the constraints will be correct. See the data paper [7] for
details.

Since we use the energy flux from the object to determine the distance,
we are using the luminosity distance. The distance modulus according to
our model is then

µ(zi) = 5 logDL − 5 logH0 + µ0 DL = H0dL dL =
∫ z

0

1
H(z′)

dz′.

(5.1)
Our goal is to minimize χ2, and we can only do this through µ(zi). In our
program, we solve an equation which gives usH(z), but we go not getH0 and
µ0, since we have a degeneracy between them. We are also not interested
in these quantities, so for each univsere model (in our case given by the
interaction parameters, and ΩDM,0 when we work with only one interaction),
we can just choose the values for these parameters that minimizes χ2. Now,
we can not solve for each of these parameters, so we put them together to
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M̃ = 5 logH0 + µ0, and solve for the whole combination M̃ . In terms of M̃ ,
we get this expression for χ2:

χ2 =
N∑
i=1

(5 log dL(zi)− µi + M̃)2

σ2
i

. (5.2)

Finding the value of M̃ that minimized this corresponds to differentiating
χ2 with respect to M̃ , and setting this to zero. Doing this, I get

∂χ2

∂M̃
= 0⇔ M̃ =

−1
2Σ

N∑
i=1

10 log(dL(zi))− 2µi
σ2
i

,

where

Σ =
N∑
i=1

1
σ2
i

.

Now we have everything we need. We use a C++ program to compute
the χ2 estimator in a 20 by 20 grid. When I do one active interaction, the
grid consists of the active interaction parameter varying between -0.2 and
0.2, and ΩDM,0 varying between 0.15 and 0.35. When I do two interactions,
the grid consists of the interaction parameters, both varying between -0.2
an 0.2. ΩDM,0 is fixed to 0.224 in this case. Ωb0 is fixed to 0.046 in both
cases. In the program, we solve differential equations using the Runge Kutta
4 method, Equation B.12, we use linear interpolation for interpolating, using
Equation B.13, and I use the trapezoidal rule, Equation B.14 for evaluating
the integral for the luminosity distance in Equation 5.1.

5.3 Results

5.3.1 One interaction

In this case, we set two of the interaction parameters to zero. ΩDM,0 is
then as a free parameter. We use matlab to make contour plots of the χ2

estimator. On Figure 5.1 on the facing page, we have the contour plot for the
case where α is non-zero, on Figure 5.2, β is non-zero, and the contour plot
for the case when γ is non-zero is displayed on Figure 5.3 on page 60. As we
can see, we do not get any constraints on α, but we do get some constraints
on β and γ. We also get constraints on ΩDM,0.

5.3.2 Two interactions

In this case, we set only one of the interaction parameters to zero, ans we set
ΩDM,0 to 0.224, the best-fit value in the ΛCDM model. Again, we run our
program, computing the χ2 estimator for all the combinations of interaction
parameters in our interval. Then we use matlab to make contour plots.
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Figure 5.1: The 1, 2 and 3σ confidence regions for the χ2 estimator, α and ΩDM,0

being the free parameters.

Figure 5.2: The 1, 2 and 3σ confidence regions for the χ2 estimator, β and ΩDM,0

being the free parameters.
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Figure 5.3: The 1, 2 and 3σ confidence regions for the χ2 estimator, γ and ΩDM,0

being the free parameters.

When α and β are the active interaction parameters, and γ is zero, I get the
plot on Figure 5.4. Having α and γ as the two active parameters gives the
plot on Figure 5.4, and on Figure 5.6 is the contourplot for the case with β
and γ being active parameters. In this case, we get almost no constraints on
α, but some constraints on β and γ.

5.4 Discussion

5.4.1 One interaction

When one of the interaction parameters is active, we have left ΩDM,0 as a
free parameter. From the model where α is active, we see that ΩDM,0 should
be greater than 0.15 and less than 0.3, all three σ regions are inside this
interval. The best value seems to be around 0.22, the ΛCDM value. For
the two other cases (β and γ being active), the constraints on ΩDM,0 are
weaker, and a higher value of the interaction parameter shifts the value of
ΩDM towards higher values. This is logical - larger β or γ will give less dark
energy, and then there is room for more dark matter. This is also related to
the fact that we do not get any constraints on α: since baryonic matter and
dark matter affect the expansion of the universe in the same way, we can
not use observational data based on a standard candle from redshifts after
recombination to constrain α, and so α does not affect ΩDM.

Comparing to the ΛCDM model, we see that this point (the point where
the interaction parameter is zero and ΩDM = 0.226) is inside the 1σ region.
This means that we do not have any statistical evidence that the interactions
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Figure 5.4: The 1, 2 and 3σ confidence regions for the χ2 estimator, α and β being
free parameters.

Figure 5.5: The 1, 2 and 3σ confidence regions for the χ2 estimator, α and γ being
free parameters.
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Figure 5.6: The 1, 2 and 3σ confidence regions for the χ2 estimator, β and γ being
free parameters.

are present, maybe they are all zero. On the other hand, since the area of
the 1σ region is non-zero, there is also a possibility that the interactions are
present, we can not exclude them totally.

5.4.2 Two interactions

Starting with α, we do get some weak constraints on it this time. As men-
tioned earlier, baryonic matter and dark matter affects the expansion of the
universe in the same way, but when two interactions are active, we must also
remember that the abundance of baryonic and dark matter is affected by
α, which affects how much energy that can go to dark energy. So there is
an indirect effect on the expansion of the universe when α is active together
with one of the other interaction parameters.

For β and γ, however, we do get stronger constraints: β should have
a magnitude less than 0.2, and γ should have a magnitude less than 0.15.
When both β and γ are active, we see that one of them can be large if the
other is small, so in total, the energy-density of dark energy is balanced.
Again, we see that the ΛCDM model is within the 1σ region in all cases, and
so there is no statistical evidence for the presence of interactions.

Overall, Supernovae Ia data gives quite weak constraints on the inter-
action parameters and ΩDM,0, since we can get both β and γ to have a
magnitude of 0.15 in some of the 1σ regions, and that are actually quite
strong interactions, having huge impacts on the universe.
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Chapter 6

Baryon acoustic oscillations

6.1 Baryonic matter structure formations

Baryon acoustic oscillations are small oscillations that are seen in the galaxy
correlation function, and comes from the evolution of perturbations of the
baryonic matter density with wavenumber larger than the Jeans wavenumber
(corresponding to smaller lengthscales) in the early universe. We start with
the Fourier transformed differential equation for the evolution of density
perturbations, Equation 1.15. Then we will follow a set of lecture notes of
Øystein Elgarøy for the course in Comology and Extragalactic Cosmology at
the University of Oslo [8]. As mentioned, the wavenumber k we work with
now is larger than the Jeans wavenumber kJ defined in Equation 1.16. We
will be working with the times when the universe were matter dominated,
so the density perturbations δρ have two components: baryonic matter δρb
and dark matter δρDM. Dark matter is pressureless and does not interact
with photons, so it will only contribute with gravitational potentials for
the baryons to fall into. We also assume that this is the only source of
gravitational potentials, since the unperturbed density of dark matter is
much larger than the unperturbed density of baryonic matter. Baryonic
matter, however, is coupeled with the photons at the times we are studying,
and will therefore have non-zero pressure.

We will start with Equation 1.15, which in our case takes this form:

d2δρb
dt2

+ 2H
dδρb
dt

= 4πGρ̄DMδρDM −
k2c2

s

a2
δρb. (6.1)

Now, we know that the dark matter perturbation δρDM satisfies this equa-
tion:

d2δρDM

dt2
+ 2H

dδρDM

dt
= 4πGρ̄DMδρDM.

Inserting this into Equation 6.1, we get

d2δρb
dt2

+ 2H
dδρb
dt

=
d2δρDM

dt2
+ 2H

dδρDM

dt
− k2c2

s

a2
δρb.
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Now we change to conformal time η, defined as dt = a(t)dη. Our differential
operator then takes this form:

d

dt
=

1
a

d

dη

d2

dt2
= − a

′

a3

d

dη
+

1
a2

d2

dη2
,

where I have introduced the notation a′ = da/dη to save some writing. In
a matter dominated universe, we have a ∝ t2/3, which by integration gives
η ∝ a1/2, or a ∝ η2. We can actually choose units and constants to make
this an equality, so we set a = η2 in the following. Also, note that

da

dt
=
a′

a2
⇒ H =

1
a

da

dt
=
a′

a3
.

The equation for δρb now becomes

a(δρb)′′ + a′(δρb)′ = a(δρDM)′′ + a′(δρDM)′ − k2c2
saδρb,

where we have multiplied with a3. Using the product rule for differentiation,
we have

(a(δρb)′)′ = (a(δρDM)′)′ − k2c2
saδρb.

Since the dark matter is pressure less, we know how it evolves: δρDM ∝ a ∝
η2, and we can also here choose constants and units to make this an equality.
Doing so gives (a(δρDM)′)′ = 6a. We also have

d

dη

(
a
dδρb
dη

)
= 2η(δρb)′ + η2(δρb)′′,

and our equation is

η2dδρb
dη2

− 2η
dδρb
dη

= a(6− k2c2
sδρb). (6.2)

To go on, we need the sound speed. We must then divide into two
regimes, before and after recombination. We start with before recombina-
tion. The baryons are then tightly coupeled to the photons, and then the
sound speed is constant, and approximated by cs ≈ c/

√
3. We then see that

δρb =
6

k2c2
s

makes the right hand side of Equation 6.2 zero. Since it is independent of η,
it also makes the left hand side zero, and hence it is a particular solution of
the equation. To find the general solution, we must find the general solution
to the homogeneous equation

η2d
2δρb
dη2

− 2η
dδρb
dη

+ k2c2
sη

2δρb = 0,
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and then add the particular solution we found above. To solve this equation,
we construct

p(η) = e
−

R
1
η
dη = e− ln η =

1
η
,

and then we substitute v = δρb/p. We then get

(δρb)′ =
v′

η
− v

η2
(δρb)′′ =

v′′

η
− 2v
η2

+
2v
η3
,

and we have
v′′ + k2c2

sv = 0,

with general solution v = A sin(kcsη) + B cos(kcsη), where A and B are
integration constants. We must set B = 0 to avoid δρb going towards infinity
at η = 0. We then set A = 1/(kcs), and fit it afterwards. Returning to δρb,
our general solution to Equation 6.2 reads

δρb(η) =
6

k2c2
s

+
sin(kcsη)
kcsη

=
6
ω2

+
sin(ωη)
ωη

, (6.3)

where, since we will study oscillation, I have introduced the frequency ω =
kcs. The constant term 6/ω2 does not vary with time, and can be absorbed
in the background density.

Now for the time after recombination. The baryons are then decoupled
from the photons, and the sound speed drops. A good assumption is that
it drops instantaneously to zero. After recombination, the baryonic density
perturbation evolves according to

δρb(η) = Cη2 +
D

η
, η > η∗,

where C and D are integration constants, and η∗ is the conformal time at
recombination. Now, for η = η∗, our two solutions should be equal (or in
other words, δρb should be continuous at η = η∗). This gives

δρb,0
sin(ωη∗)
ωη∗

= Cη2
∗ +

D

η∗
,

where δρb,0 is an integration constant. Also, (δρb)′ should be continuous at
η = η∗. This gives

δρb,0
ω cos(ωη∗)ωη∗ − ω sin(ωη∗)

ω2η2
∗

= 2Aη∗ −
B

η2
∗

⇒ A =
δρb,0

3
cos(ωη∗)

η2
∗

,

and so we see that the amplitude of the perturbation after recombination
depends on the phase of the oscillating wave at recombination. Since C ∝
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cos(ωη∗) and δρb(η < η∗) ∝ sin(ωη), C takes its largest value when δρb = 0.
For the wavenumber k, we then get

k =
nπ

csη∗
, n ∈ N.

The quantity in the denominator is known as the sound horizon at recombi-
nation, and is given by

csη∗ = cs

∫ t∗

0

dt

a(t)
. (6.4)

This determines the maximal amplitude of the density perturbations after
recombination. The sound horizon at recombination is then a characteristic
scale length, or a standard ruler, which is imprinted in the baryonic density
perturbations. This is the effect we call baryon acoustic oscillations (BAO).

6.2 Observations of BAO

6.2.1 Observational quantities

Now we know what makes baryon acoustic oscillations, and the next ques-
tion is, how do we make observations of them? Well, for a starting point,
we imagine a volume of the universe. In the line of sight direction, we use
redshift z as the distance variable. In the transverse direction, we just se-
lect an area of the sky (a solid angle). We then map out all the galaxies in
this volume, measure their redshifts and the distances between them. Now
we can compute the galaxy correlation function, defined in Equation 1.22.
In the galaxy correlation function, there will be a peak corresponding to
baryon acoustic oscillations (which then will be oscillations in the power
spectrum of the galaxy correlation function). We can then read of the quan-
tity dz = rs(z∗)/DV (zd) from the galaxy correlation function. Here, zd is our
observed redshift, which is the average redshift of the galaxies in the volume
we have worked with. The quantity rs(z∗) is the comoving sound horizon at
recombination, which has redshift z∗ (more precisely, this redshift is the red-
shift of the baryon drag epoch, but we will use the redshift at recombination
as an approximation, which we set to z∗ = 1089). We get it by rewriting
Equation 6.4 in terms of redshift z. Including the redshift dependence in the
sound speed cs(z), we get this expression for the comoving sound horizon:

rs(z∗) = − c

H0

∫ ∞
z∗

cs(z)
E(z)

dz, (6.5)

where E(z) = H(z)/H0. The quantity DV is a spherically averaged distance
measure (due to the shape of the volume we work with, and that we use
redshift as distance measure along the line of sight), and is given by

DV (zd) =
(

(1 + z)2D2
A(zd)

czd
H(zd)

) 1
3

. (6.6)
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Where DA(zd) is the angular diameter distance to an object of redshift zd,
given by Equation 1.21. At last, the sound speed cs(z) is given by

cs(z) =
(

3
(

1 +
R̄b

1 + z

))− 1
2

, (6.7)

where R̄b is the baryon-to-photon-energy-density-ratio, given by

R̄b =
3ρb
4ρr

= 31500Ωbh
2

(
TCMB

2.7[K]

)−4

. (6.8)

For more details on the geometry and method for connecting geometry with
BAO data, see [9].

6.2.2 The BAO data

We have BAO data from three different surveys. In this section, I will write
some lines about each of the data, report the data points with errors, and
report the correlations between them. A summary of the data is given in
Table 6.1 on the following page, and the inverse covariance matrix for the
data, which we need when we compare the data to our interaction models,
is given in Table 6.2 on the next page.

The 6-degree Field Galaxy Survey

We have one data point from the 6-degree Field Galaxy Survey (6dFGS).
This data set were obtained using the 6-degree Field multi-fibre instrument
at the U.K. Schmidt Telescope between 2001 and 2006. The data set consists
of redshifts and peculiar velocity of 75 117 galaxies distributed over almost
the entire southern sky, an area around 17000 square-degrees. The sample
covered an effective volume of 0.08 h−3 Gpc3, and the effective redshift was
z = 0.106. Our quantity dz = d0.106 was measured to 0.336 ± 0.015. We
assume no correlation between this data point and the others. The error
enters with the coefficient 4444 into the diagonal in the inverse covariance
matrix. See [10] for more details.

The Solan Digital Sky Survey Luminous Red Galaxy sample

The Solan Digital Sky Survey (SDSS) used a 2.5m telescope to obtain imag-
ing data in five passbands. From the photometric component of SDSS, the
Luminous Red Galaxy (LRG) sample were selected. These galaxies are as-
sociated with massive dark matter halos, and are therefore good tracers of
matter. We use the DR7-full sample, which corresponds to all LRGs in the
redshift interval from 0.16 to 0.44, and absolute magnitude interval from
−23.2 to −21.2. The sample is from an effective volume of 1.2h−3 Gpc3,
and consists of 89 791 LRGs. The galaxies are split into two nodes, one with
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Table 6.1: The baryon acoustic oscillations data set

Sample Redshift z dz = rs/DV (z) dz error
6dFGS 0.106 0.336 0.015
SDSS 0.2 0.1905 0.0061
SDSS 0.35 0.1097 0.0036

WiggleZ 0.44 0.0916 0.0071
WiggleZ 0.60 0.0726 0.0034
WiggleZ 0.73 0.0592 0.0032

Table 6.2: The coefficients of the inverse covariance matrix for the BAO data.

4444 0 0 0 0 0
0 30318 −17312 0 0 0
0 −17312 87046 0 0 0
0 0 0 23857 −22747 10586
0 0 0 −22747 128729 −59907
0 0 0 10586 −59907 125536

redshift z = 0.2, where we have d0.2 is 0.1905±0.0061, and one with redshift
z = 0.35, with d0.35 = 0.1097 ± 0.0036. The errors enters with coefficients
30318 and 87046 on the diagonal of the inverse covariance matrix. These two
data points are correlated, with coefficient -17312, which then enters into the
inverse covariance matrix as well. These data are from the article [10] about
the SDSS data set, where more details can be found.

The WiggleZ Dark Energy Survey

The WiggleZ Dark Energy Survey consists of a sample of 158 741 bright
emission line galaxies in the redshift range from 0.2 to 1.0. The survey was
carried out at the Anglo-Australian Telescope between 2006 and 2011, us-
ing the AAOmega spectrograph. In this data set, three overlapping redshift
intervals were used: (0.2, 0.6), (0.4, 0.8) and (0.6, 1.0). The reported redshift
data is then the weighted mean redshift of the galaxy pairs in the reparation
interval (100, 110)H−1 Mpc. The three redshift data points are 0.44, 0.60 and
0.73, and the corresponding dz data points are d0.44 = 0.0916±0.0071, d0.60 =
0.0726 ± 0.0034, and d0.73 = 0.0592 ± 0.0032. The errors enters with coef-
ficients 23857, 128729 and 125536 on the diagonal of the inverse covariance
matrix. For the correlation between the data points, we get the coefficients
-22747, 10586 and -59907 into the covariance matrix as well, see Table 6.2.
See the article [11] about the WiggleZ data set for more details.
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6.3 Observational constraints from BAO

Now it is time to use the data to constrain my interaction models. We start
by setting values for the interaction parameters. We expect smaller confi-
dence regions here compared to the supernovae Ia case, so I use values for
the interaction parameters between −1.5 and 1.5. As for the supernovae Ia
case, I will let ΩDM,0 be a free parameter when we are doing one interaction,
and fix ΩDM,0 to 0.224 when we are doing two interactions. I set up initial
conditions, and solve my differential equations. Now, as we see from Equa-
tion 6.5, I need in principle to know the value of the Hubble at Big Bang.
While I can not go all the way back to big bang, I can set a cutoff value at
redshift z = 106, which I find after trial and error. As we know, z grows
faster at early times than at late times, so I will use a logarithmic grid in
z. I also need to include contribution from radiation, which dominates the
universe at early times.. The set of differential equations I will solve are then
given in Equation 2.14 and Equation 2.15. I use the Runge Kutta 4 method,
Equation B.12, to solve the equations numerically. Next, we compute the
quantity dz based on the data redshift and our universe model, using the
comoving distance is defined in Equation 1.9, and the comoving sound hori-
zon at recombination, rs(z∗), defined in Equation 6.5, where z∗ = 1089 is
the redshift of recombination. We use the trapezoidal formula, Equation
B.14, as our numerical approximation to the integral, and we use the linear
interpolation formula from Equation B.13 to interpolate between our preset
redshift grid and the redshifts in our integration grid. Then we use Equation
6.6 to find the spherically averaged distanceDV (z), and by dividing rs(z∗) by
DV (z), we get dz. Here, z refers to the redshifts in our data set. When this
is done for all the points in our data set (six in total), we compute the χ2

estimator. Now, our data are correlated through the correlation matrix, and
so the expression for the χ2 estimator is a little bit more complicated. What
we do is to set up a vector X, where each entry is the computed value for
dz minus the value for dz given in the data: Xi = rs/DV (zi) − dz. With C
being our covariance matrix, whose inverse is given in Table 6.2, we can use
the expression in Equation B.16 for the χ2 estimator:

χ2 = XC−1XT =
∑
i,j

XiC
−1
ij Xj ,

where we have a double sum, one over i and one over j. When we have the
χ2 estimator, we can plot the 1, 2 and 3σ confidence regions, which are given
in Table B.1 on page 164.

As we see from Equation 6.8, the value we compute for dz depends on
the energy-density of the baryons ρb, and so our results are sensitive to Ωb0

as well. We therefore marginalize over Ωb0 in our program, letting it vary
between 0.035 and 0.092, which together with the fact that Ωb0h

2 = 0.023 is
a observational value we will use, means that h varies between 0.5 and 0.8.
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6.4 Results

6.4.1 One interaction

Running the program and using a matlab script, I get contour plots. When α
is the varying interaction parameter, and β and γ are zero, I get the contour
plot in Figure 6.1. When β is active, I get the contour plot displayed in
Figure 6.2 on the next page, and in Figure 6.3 on the facing page, one can
see the contour plot I get when γ is the active interaction parameter.

Figure 6.1: Contour plot when α is the non-zero interaction parameter.

6.4.2 Two interactions

When we now open up for two interactions to be present, I would have to
make three-dimensional contour plots if ΩDM,0 (or ΩM,0) were free parame-
ters. Therefore, I have chosen to fix both Ωb,0 and ΩDM,0 to 0.046 and 0.224,
which is the best values for these parameters in the ΛCDM model. So now I
make contour plots where I have two interaction parameters as free variables.
When α and β are active, and γ is zero, I get the contour plot on Figure 6.4.
If I let α and γ vary, I get the countours on Figure 6.5, and if β and γ are
active, I get the contours on Figure 6.6.

6.5 Discussion

6.5.1 One interaction

For all the contour plots, we can see that the ΛCDM model, with all the
interaction parameters equal to zero, is inside the 1σ contour. This means
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Figure 6.2: Contour plot when β is the non-zero interaction parameter.

Figure 6.3: Contour plot when γ is the non-zero interaction parameter.
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Figure 6.4: Contours when α and β are active interaction parameters.

Figure 6.5: Contours when α and γ are active interaction parameters.
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Figure 6.6: Contours when β and γ are active interaction parameters.

that there is no statistical evidence for interactions between any of the three
components. On the other hand, the non-zero values are not excluded, and
our interaction models are still possible.

For the case with α being the active interaction parameter, we study
interactions between baryonic matter and dark matter. We get no constraints
on α when we work with BAO. This is because the expansion rate of the
universe after recombination is not affected differently by baryonic matter
or dark matter, and so we can not use observations based on BAO to find
constraints on α, we would have to use observations related to the time
before recombination - for example Big Bang Nucleosynthesis.

When β is the active interaction parameter, we have interaction between
baryonic matter and dark energy. We get broad contours if ΩDM,0 were to
be larger than 0.24. This is because baryons are not very relevant to the
expansion rate at the time related to our redshifts in our BAO data set.

At last, when γ is the active interaction parameters, we have interactions
between the two dark components: dark matter and dark energy. We get
way smaller contours than for the other two cases here. This is because the
dark components are the two most important components of the universe at
the BAO times.

6.5.2 Two interactions

As in the one-interaction case, we can see from all three contour plots that
the ΛCDM model is within the 1σ contour, and so also here we have no
statistical evidence for the interactions being present. Also as in the one-
interaction case, we can not exclude the interactions either.
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We can also see that if one of the interaction parameters is zero, we get
the same result as in the one-interaction case, which is a nice consistency
check.

We see that if α is active together with β or γ, we get constraints on
α. This is because α affects the abundance of the energy in the baryonic
and dark matter, which affects how much can then go to the dark energy
through the other active interaction. So even though baryonic and dark
matter affects the expansion of the universe in the same way, there is still
an indirectly effect on α.

The strongest constraints is obtained for the parameter γ, representing
the interaction between the two dark components. As in the one interaction
case, this is due to the fact that the dark components are dominating over
the baryonic matter component at the times where we have our BAO data.

In the end, we also here get weak constraints on the interaction parame-
ters - β = −0.04 and γ = 0.05 is inside the 1σ region, for example, and that
represents quite strong interactions, making the universe very different from
the ΛCDM model. But the BAO constraints are stronger than the super-
novae Ia constraints from the last chapter. There may be multiple reasons
for this, one being the marginalization that I did over Ωb0, where I could
have used a higher resolution or a lower shifted invertall.
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Chapter 7

The cosmic microwave
background

7.1 Prediction and discovery of CMB: proof of a
universe with a finite age

In the middle of the 20th century, the idea of a universe with a finite age,
starting with a big bang, was not as strong as it is today. One of the problems
astronomers worked on was the abundance of elements in the universe. In
order to form helium from hydrogen, a hot, dense universe is required. If
the universe is expanding, the universe could have been in such a dense state
a long time ago. The problem became present when astronomers tried to
compute the age of the universe: approximately 1 billion years. In 1928,
the age of the Earth had been measured to be several billion years using
radioactivity. And so the Earth were to be older than the universe according
to this idea. Then the steady state model seemed to be better: a universe
that is homogeneous and isotropic also in time - it has no beginning, no end,
and is infinitely old. Of course, if it was to expand (which they knew it did
due to Hubble’s law), matter must be spontaneously created through the ages
to maintain the average density. Calculations showed that the creation rate
would be around a few hydrogen atoms per cubic meter every ten billion
years. Such a small rate would be impossible to measure. This of course
violates the law of conservation of mass-energy, and this question were left
unanswered in this model.

Another problem with the steady state model is the abundance of helium
in the universe today, which already back then was established to be around
one quarter of all the baryonic matter. There was not enough helium created
in stars to make up all this, but the big bang model could account for this
abundance. So the only problem for the big bang model now was to find a
proof of such a big bang. A proof of the big bang has yet to be found, but we
have very good theories today of what happend just a fraction of a second
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after the big bang.
Anyway, in the big bang model, the early universe should be hot and

dense - so hot and dense that the mean free path of the photon was so short
that the universe would be very close to thermal equilibrium. The radiation
field in this universe should have a blackbody spectrum, and should fill the
whole universe. The expansion of the universe would cool this down, and in
1948, predictions showed that the temperature of this radiation field should
be around 5 Kelvin today.

The first discovery of the cosmic microwave background was made by two
radio astronomers, Arno Penzias and Robert Wilson, at the Bell Laborato-
ries in Holmdel, New Jersey. They were working with a huge horn reflector
antenna, that was used to communicate with a satellite. They discovered
that no matter how much they cleaned the antenna (including removing
some pigeons that had nested inside the horn), there was a persistent hiss in
the signal that they could not get rid of. This hiss seemed to be coming con-
tinuously from all directions of the sky. This fitted the idea of a blackbody
radiation filling the whole universe. In 1965, this was confirmed by obser-
vations: the detected radiation had a Planck spectrum with a peak around
a wavelength of 1.06 mm, in the microwave region of the electromagnetic
spectrum.

And so we have this afterglow of the big bang, filling the whole universe,
as a black body radiation field with a temperature of 2.725 ± 0.002 K, ac-
cording to COBE [12]. Maps of the CMB shows that we have anisotropies
in the CMB temperature, red areas being hotter than the mean temperature
and blue areas being cooler. If one does a deep analyze of the CMB, one
can find an asymmetry in the map. This asymmetry is one of the unsolved
mysteries in cosmology today. On Figure 7.1 on the next page is such a map
from 2008, made using the five year WMAP data. On Figure 7.2 on the
facing page is a map from 2013, which is made using data from the Planck
satellite, and has much higher resolution than the map from WMAP.

For more details about the physics and background on CMB, see [13].

7.2 CMB - related quantities

In our data set, we are given three quantities, labeled z∗, lA and R. The first
is the redshift of the CMB. We will use a fitting formula for z∗, given in [14]:

z∗ = 1048 · (1 + 0.00124(Ωb,0h
2)−0738)(1 + g1((Ωb,0 + ΩDM,0)h2)g2), (7.1)

where g1 and g2 are given by

g1 =
0.0783(Ωb,0h

2)−0.238

1 + 39.5(Ωb,0h2)0.763
,

g2 =
0.56

1 + 21.1(Ωb,0h2)1.81
.
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Figure 7.1: A map of the cosmic microwave background, made using the data from
WMAP.

Figure 7.2: A map of the cosmic microwave background, made using data from the
Planck satellite.
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Table 7.1: Our data obtained from WMAP5, maximum likelihood.

Quantity value error
lA 302.10 0.86
R 1.710 0.019
z∗ 1090.04 0.93

The second quantity is called the "acoustic scale", which measures the
ratio of the angular diameter distance r to recombination and the comoving
sound horizon rs at recombination. lA is then given by

lA = π
r(z∗)
rs(z∗)

. (7.2)

Here, rs(z∗) is given by Equation 6.5.
The third quantity we will use is the shift parameter, R. This measures

the ratio of the angular diameter distance and the Hubble radius at the
decoupling time 1. It is given by

R =
√

(Ωb,0 + ΩDM,0)r(z∗). (7.3)

If we look at the two last quantities lA and R, and take the angular diameter
distance DA(z∗) into account, we can express lA and R as

lA = (1 + z∗)
πDA(z∗)
rs(z∗)

, R = DA(z∗)H(z∗),

so as for the Baryon Acoustic Oscillations case, CMB uses standard rulers
to constrain my interaction parameters with observational data. See [15] for
more details about the parameters.

7.3 The CMB data

To obtain observational constraints from CMB, we will use CMB data from
WMAP, a five-year fit to models with spatial curvature and dark energy
[15]. The maximum likelihood values will be used. The data are given in
Table 7.1. The entries of the inverse covariance matrix are given in Table 7.2
on the facing page.

7.4 Observational constraints from the CMB

Now that we have observational data to the CMB related quantities, we
can compare them to our models. Having already done this with BAO,

1Do not confuse with the parameter R of the analytical solutions in Chapter 3
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Table 7.2: The entries of the inverse covariance matrix for the CMB data.

1.800 27.968 -1.103
27.968 5667.577 -92.263
-1.103 -92.263 2.923

we can save a lot of work for the CMB case. We just copy the code, and
insert computations of the CMB quantities into our code. In the BAO case,
we used the comoving distance to the CMB, r(z∗), and the comoving sound
horizon at recombination, rs(z∗) directly, and entered our BAO data through
the dilatation scale DV (z), where z was in our BAO data. This time, we
first compute z∗ from Equation 7.1, then we compute r(z∗) and rs(z∗) using
the computed value for z∗. Then we can easily compute lA(z∗) and R(z∗)
using z∗, r(z∗) and rs(z∗). Then we make a column vector X, with entries
lA(z∗), R(z∗) and z∗, in that order. Using the inverse covariance matrix C−1

from Table 7.2, we compute χ2 using the similar expression as in the BAO
case:

χ2 = XTC−1X =
∑
i

∑
j

XiC
−1
ij Xj .

Now that we have the χ2 estimator for a grid of interaction parameters,
we write the values to a file and use matlab to make contour plots. As
in the BAO case, we marginalize over Ωb,0. We have the measured quan-
tity Ωb,0h

2 = 0.023, but we do not know what Ωb,0 and h should be sepa-
rately. Since we are not directly interested in these quantities anyway, we
just marginalize over Ωb,0, that is, for each combination of interaction pa-
rameters, we choose the value of Ωb,0 that gives the smallest value for χ2.

7.5 Results

7.5.1 One interaction

For the one-interaction case, we let ΩDM,0 be a free parameter, as we did
for supernovae type Ia and BAO. We then run our program three times, one
with each interaction parameter varying, the two others being zero. We use
matlab to make the contour plots of χ2. The contours shows the 1, 2 and
3σ regions, according to Table B.1 on page 164. In Figure 7.3 on the next
page, we have the contour plots where α is the active interaction parameter,
β is the active interaction parameter for the contour plot in Figure 7.4, and
γ is the active parameter in Figure 7.5 on page 81.

7.5.2 Two interactions

For the two-interactions case, we have fixed ΩDM,0 to 0.224, the best fit
value for the ΛCDM model. We run the program three times, one time for
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Figure 7.3: Contour plot of the χ2-estimator with one interaction, showing the 1,
2 and 3σ regions. α is the active interaction parameter.

Figure 7.4: Contour plot of the χ2-estimator with one interaction, showing the 1,
2 and 3σ regions. β is the active interaction parameter.
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Figure 7.5: Contour plot of the χ2-estimator with one interaction, showing the 1,
2 and 3σ regions. γ is the active interaction parameter.

each combination of non-zero interaction parameters (or one time for each
interaction parameter being zero). We use matlab to make the contour plots,
as in the one interaction case.

In Figure 7.6 on the next page, we have the contour plot for the case
where α and β are active. In Figure 7.7 on the following page, we show the
contours when α and γ are active, and in Figure 7.8 on page 83, we have the
contour plot with β and γ as active interaction parameters.

7.6 Discussion

7.6.1 One interaction

When α is the active interaction parameter, representing interactions be-
tween baryonic matter and dark matter, we have a wide, but limited, 1σ
contour for ΩDM,0, and small 2 and 3σ contours. We get no constraints on
α itself. The explanation is the same as in the SNIa case and the BAO case:
baryonic matter and dark matter affects the expansion rate in exactly the
same way, so we can not use this to tell them apart, and the interaction
paramater can be anything.

When β is the active parameter, we get one wide, but closed contour
for the 1σ region, and smaller, but open regions for the 2 and 3σ regions.
The regions are large since the abundance of baryonic matter is so small
compared to the two dark components.

When γ is the active interaction parameter, giving us interaction between
the two dark components, we get closed contours for all three σ-levels. These
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Figure 7.6: Contour plot of the χ2-estimator with two interactions, showing the 1,
2 and 3σ regions. α and β are the two active interaction parameters.

Figure 7.7: Contour plot of the χ2-estimator with two interactions, showing the 1,
2 and 3σ regions. α and γ are the two active interaction parameters.

82



Figure 7.8: Contour plot of the χ2-estimator with two interactions, showing the 1,
2 and 3σ regions. β and γ are the two active interaction parameters.

are all smaller than when α and β were active, and this is because γ is not
related to baryonic matter, which there is way less of compared to the dark
components.

The three contour plots all shows that the ΛCDM model, which all inter-
action parameters equal to zero and ΩDM,0 = 0.023, is inside the 1σ contour,
but the 1σ contour also covers an non-zero area. In other words, there are
no statistical evidence for the interactions being present, but we can not
exclude them either. But the contours are smaller compared to when we
used SNIa and BAO data. This is because the CMB data are observations
of the universe at way higher redshifts compared to SNIa and BAO, and so
the interactions would eventually have more time to make its impact on the
expansion rate.

7.6.2 Two interactions

The contour plots for two interactions shows much of the same as for one
interaction: the ΛCDM model is inside the 1σ region in all cases, and so we
have no statistical evidence for the interactions, but we can not exclude them
either. We get some weak constraints on α, since it affects the abundance
of baryonic and dark matter, which affects the efficiency of the other active
interaction, and so α has an indirect effect on the expansion rate, when two
interactions are active. The contours constraining β and γ are quite narrow,
since β and γ affects the expansion rate directly, and the dark components
are dominating over the baryons today.
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Chapter 8

Interactions and the formation
of structures

Now the time has come to study how our interactions will affect inhomoge-
neous perturbations in the metric and the energy densities of our universe
components, which is what gives rise to cosmological structure formations.
We will set up perturbations in the metric tensor, which together with our
assumption that all the components of the universe are perfect fluids will
give us the energy-momentum tensor for our components. Then we can use
the equation for energy-momentum conservation in the general theory of rel-
ativity along with the Einstein equations and the Boltzmann equation for
photons to get a set of coupeled, partial differential equations for how our
perturbations evolve in space and time. By Fourier transforming our partial
differential equations, we will get an infinite set of ordinary differential equa-
tions, which will tell us how our perturbations evolve in time on different
length scales. The evolution in different length scales will then be decoupled
from each other. These equations will be solved numerically, and we will be
able to see how our interaction models affects an inhomogeneous universe.

8.1 The perturbed metric and the four velocity

When setting up perturbations, we need a background to perturb around.
Our background is the universe we have worked with so far, with the usual
FRWmetric and our interaction models we get from that metric. This metric
is defined in Equation 1.1, which in Cartesian coordinates reads

ds2 = gµνdx
µdxν = −dt2 + a2(t)(dx2 + dy2 + dz2).

Now, our metric is symmetric under the SO(3) group, and so we use irre-
ducible representations of SO(3). We may then use the decomposition the-
orem, which says that perturbations of different tensor ranks (like scalars,
vectors and tensor of higher ranks) will evolve independently to first order.
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We will only deal with scalar perturbations, that is, our perturbation quan-
tities will be scalar quantities, and then we do not have to worry about the
perturbations of tensor rank one or higher. See [16] for more details and
proof of the decomposition theorem.

Now we move on to the metric, and the choice of gauge. The most general
way to write a metric with scalar perturbations is with the four functions
A,B,E and ψ, all depending on xµ:

g00 = −(1 + 2A), g0i = −a∂B
∂xi

= gi0,

gij = a2

(
δij(1 + 2ψ)− 2

∂2E

∂xi∂xj

)
.

The four functions A,B,E and ψ are all perturbations, and when doing
computations, we will only keep terms up to first order in these quantities.
Now, we know that the line element ds2, in general given by Equation A.1,
is invariant. We use this to set up a coordinate transformation, from xµ to
x̃µ:

ds2 = g̃σρdx̃
σdx̃ρ = gµνdx

µdxν

⇒ gµν = g̃σρ
∂x̃σ

∂xµ
∂x̃ρ

∂xν
.

The most general, infinitesimal coordinate transformations generated by
scalars (under the SO(3) group) are given by two functions:

t→ t̃ = t+ ξ0(xµ), xi → x̃i = xi + δij
∂ξ(xµ)
∂xj

,

where we also take the functions ξ0 and ξ to be small quantities, and we
only keep terms up to first order in ξ0 and ξ. When we now do coordinate
transformations, we can use these two functions to eliminate two of the
functions in the metric, and so there are only two of the functions A,B,E
and ψ in the metric that matters. When we choose which functions (or
combination of functions) to use, we choose a gauge. We will set A = Ψ
and ψ = Φ, and B = E = 0. This choice of gauge is called the conformal
Newtonian gauge. The advantage of this gauge is that the metric is diagonal,
which will be useful in some occasions later, and that the functions Ψ(xµ)
and Φ(xµ) are directly related to perturbations in the gravitational field and
spatial curvature.

In the conformal Newtonian gauge, our perturbed metric looks like this:

g = (gµν) =


−(1 + 2Ψ) 0 0 0

0 a2(1 + 2Φ) 0 0
0 0 a2(1 + 2Φ) 0
0 0 0 a2(1 + 2Φ)

 .

(8.1)
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For more details about coordinate transformations and gauges, see [17],
which this section is based on.

Next comes the four velocity. We start with the background (unper-
turbed) universe, assuming that we have a particle following the expansion
of the universe. This particle will then be at rest in space, moving only in
time. The background four-velocity ūµ will then have components ū0 = 1
and ūi = 0 - time component is 1 and the three spatial components are 0.
Then we introduce perturbations: uµ = ūµ + δuµ. We have u0 = 1 + δu0

and ui = δui. Now we can use the four velocity identity, Equation A.3, to
find the perturbation for the time component of the four velocity, δu0:

−1 = uµuµ = gµνu
µuν = g00(u0)2 + giju

iuj

= −(1 + 2Ψ)(u0)2 + δija
2(1 + 2Φ)(δui)2.

Now, since we are doing first order perturbation theory, we can neglect the
last term on the right hand side, since it contains (δui)2, which we assume
is very small compared to the first term. We also Taylor-expand the part we
are left with, and again only keep terms up to first order:

(u0)2 ≈ 1
1 + 2Ψ

⇒ u0 ≈ (1 + 2Ψ)−
1
2 ≈ 1−Ψ. (8.2)

Using the metric, we also get u0:

u0 = gµ0u
µ = −(1 + 2Ψ)(1−Ψ) ≈ −(1 + Ψ). (8.3)

8.1.1 Perturbation decomposition

As mentioned, the decomposition theorem says that perturbations of differ-
ent tensor ranks evolve independently to first order. We will be dealing with
perturbations in the four velocity, and this brings in a point where we need
to be careful, since the four velocity is a vector. We split the four velocity
into a time component and a space component. We have already taken care
of the time component. The perturbations in the space-components of the
four velocity δui can be split up into a pure vector part vi and a pure scalar
part v, like this:

δui = vi +
∂v

∂xi
= vi + ∂iv. (8.4)

Here, vi has divergence zero:

∂vi

∂xi
= ∂iv

i = 0.

And using the decomposition theorem, we will only keep the scalar part of
the perturbed four velocity ∂iv. Now, I will actually write the other term
instead, so δvi = vi and δui = vi. Not only does this save writing, but
the equations will be easier to read, since I will use the partial differential
operator for actual partial differentiation a lot.
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8.1.2 The connection coefficients

With our new, perturbed metric comes connection coefficients Γαµν , defined in
Equation A.4, and, since our basis is a coordinate basis, the connection coef-
ficients are Christoffel symbols, and we can compute them by using Equation
A.5. We divide the Christoffel symbols into groups, where each index takes
zero or a Latin entry. We start with all indices being zero:

Γ0
00 =

1
−2(1 + 2Ψ)

∂

∂t
(−(1 + 2Ψ)) =

1
1 + 2Ψ

∂Ψ
∂t
≈ ∂Ψ

∂t
,

where I in the last approximation only have kept terms up to first order.
This will be done for all the other Christoffel symbols as well. Next, we let
one of the lower indices be spatial:

Γ0
0j =

1
−2(1 + 2Ψ)

∂

∂xj
(−(1 + 2Ψ)) ≈ ∂Ψ

∂xj
= Γ0

j0.

Next we have two spatial lower indices:

Γ0
ij =

a2δij
1 + 2Ψ

(
H(1 + 2Φ) +

∂Φ
∂t

)
≈ a2δij

(
H(1 + 2(Φ−Ψ)) +

∂Φ
∂t

)
.

Then we have the upper index spatial and the two lower indices zero:

Γi00 =
−δij

2a2(1 + 2Φ)
∂

∂xj
(−(1 + 2Ψ)) ≈ δij

a2

∂Ψ
∂xj

.

Upper index spatial, one lower index spatial:

Γij0 =
δij

2(a2(1 + 2Φ))
∂

∂t

(
a2(1 + 2Φ)

)
=

δij
1 + 2Φ

(
H(1 + 2Φ) +

∂Φ
∂t

)
≈ δij

(
H +

∂Φ
∂t

)
.

At last, three spatial indices:

Γijk =
1

2a2(1 + 2Φ)

·
(

∂

∂xk
(
δija

2(1 + 2Φ)
)

+
∂

∂xj
(
δika

2(1 + 2Φ)
)
− ∂

∂xi

(
δjka

2(1 + 2Φ)
))

≈ δij
∂Φ
∂xk

+ δik
∂Φ
∂xj
− δjk

∂Φ
∂xi

.
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8.2 The energy-momentum tensor

The three components of the universe we are working with - baryonic matter,
dark matter and dark energy, are all assumed to be perfect fluids, which
means that there is no viscosity and no thermal conductivity. The energy-
momentum tensor for each of the components is then given by Equation
A.13. Written with one upper and one lower index, it reads

Tµν = (ρ+ p)uµuν + pgµν .

We need to introduce perturbations into our energy densities before we
compute the components of the energy-momentum tensor. We use the den-
sity fluctuations δ to define our perturbations,

ρ(xµ) = ρ̄(x0)(1 + δ(xµ)), (8.5)

so δ(xµ) describes the deviation from the mean energy-density ρ̄(x0). We
will use the usual equation of state ρ = wp to relate the energy-density to
the pressure for all our components, and so we do not need to introduce
separate perturbations in the pressure.

8.2.1 Baryons and dark matter

Baryonic matter and dark matter are both assumed to be pressureless, and
so we have w = p = 0. The components of the energy-momentum tensor are
then

T 0
0 = ρu0u0 = ρ̄(1 + δ)(1−Ψ)(−1−Ψ) ≈ −ρ̄(1 + δ)

where, as usual, terms of second order and higher in the perturbation quanti-
ties (Ψ and δ) have been neglected. Continuing with the other components:

T 0
i = ρu0ui = ρ̄(1 + δ)(1−Ψ)vi ≈ ρ̄vi,

T i0 = ρuiu0 = ρ̄(1 + δ)vi(−1−Ψ) ≈ −ρ̄vi,

T ij = ρuiuj = ρvivj ≈ 0.

And so the whole tensor written in matrix form reads

T (b,DM) = (Tµν ) =


−ρ̄(1 + δ) ρ̄vx ρ̄vy ρ̄vz
−ρ̄vx 0 0 0
−ρ̄vy 0 0 0
−ρ̄vz 0 0 0

 . (8.6)
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8.2.2 Dark energy

Dark energy has its usual equation of state: p = wρ, where we take w as a
constant. The energy-momentum tensor Tµν for dark energy then has these
components:

T 0
0 = (ρ+p)u0u0 +wρg0

0 = (1+w)ρ̄(1+δ)(1−Ψ)(−1−Ψ)+wρ ≈ −ρ̄(1+δ),

T 0
i = (ρ+ p)u0ui + wρg0

i = (1 + w)ρ̄(1 + δ)(1−Ψ)vi ≈ (1 + w)ρ̄vi,

T i0 = (ρ+ p)uiu0 + wρg0
i = (1 + w)ρ̄(1 + δ)vi(−1−Ψ) ≈ −(1 + w)ρ̄vi,

T ij = (ρ+ p)uiuj + wρgij ≈ wρ̄(1 + δ)δij .

And the whole tensor in matrix form reads

T (DE) = (Tµν ) =
−ρ̄(1 + δ) (1 + w)ρ̄vx (1 + w)ρ̄vy (1 + w)ρ̄vz
−(1 + w)ρ̄vx wρ̄(1 + δ) 0 0
−(1 + w)ρ̄vy 0 wρ̄(1 + δ) 0
−(1 + w)ρ̄vz 0 0 wρ̄(1 + δ)

 . (8.7)

8.3 The energy-momentum conservation equation

Now that we have the energy-momentum tensor of our three components, we
can go back to our interaction equations in covariate form, which, if added,
is nothing more than the conservation equation of the energy-momentum
tensor. We start with the left hand side of the equations, which are the
covariate derivatives of the energy-momentum tensors. Using Equation A.7,
we have

∇µTµν = Tµν,µ + ΓµαµT
α
ν − ΓανµT

µ
α .

We can split this equation into two cases: the time component with ν being
zero and the space components with ν being 1, 2 or 3. In both cases, we split
the sums over µ and α on the right hand side into time and space parts, in
the terms with the connection coefficients (the partial derivative is left for
later).

8.3.1 The time component equations

For the time component (ν = 0), expanding α first, then µ, we have

∇µTµ0 = Tµ0,µ + Γµ0µT
0
0 + ΓµiµT

i
0 − Γ0

0µT
µ
0 − Γi0µT

µ
i

= Tµ0,µ + Γ0
00T

0
0 + Γi0iT

0
0 + Γ0

i0T
i
0 + ΓjijT

i
0 − Γ0

00T
0
0 − Γ0

0iT
i
0 − Γi00T

0
i − Γi0jT

j
i .

We see that some of the terms cancel each other, so we are left with

∇µTµ0 = Tµ0,µ + Γi0iT
0
0 + ΓjijT

i
0 − Γi00T

0
i − Γi0jT

j
i . (8.8)
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Now we choose which component we want to work with. We start with
baryons or dark matter - they have the same form of the energy momentum
tensor. Since the pressure of these two components is zero, the last term
will go away. Inserting for the connection coefficients and summing up in
the other terms, we have

∇µTµ0 = Tµ0,µ − 3
(
H +

∂Φ
∂t

)
ρ̄(1 + δ)− ∂Φ

∂xi
(ρ̄vi)− 1

a2

∂Ψ
∂xi

ρ̄vi

≈ ∂T 0
0

∂t
+
∂T i0
∂xi
− 3Hρ̄(1 + δ)− 3ρ̄

∂Φ
∂t

= −
(
δ
∂ρ̄

∂t
+ ρ̄

(
∂δ

∂t
+
∂(vi)
∂xi

+ 3H(1 + δ) + 3
∂Φ
∂t

))
, (8.9)

Where at the last equality, I have used the fact that the average energy
density ρ̄ does not depend on space, which cancels a term.

Over to dark energy, now we have pressure to account for, and we can
not cancel so many terms as we could for the matter components. Going
back to Equation 8.8, inserting for the connection coefficients and the energy-
momentum tensor and summing up, we have

∇µTµ0 = Tµ0,µ − 3
(
H +

∂Φ
∂t

)
ρ̄(1 + δ) +

∂Φ
∂xi

(ρ̄vi)

− 1
a2

∂Ψ
∂xi

ρ̄vi − 3
(
H +

∂Φ
∂t

)
wρ̄(1 + δ)

≈ Tµ0,µ − 3(1 + w)Hρ̄(1 + δ)− 3(1 + w)ρ̄+
∂Φ
∂t

= −
(
δ
∂ρ̄

∂t
+ ρ̄

(
∂δ

∂t
+ (1 + w)

(
∂(vi)
∂xi

+ 3H(1 + δ) +
∂Φ
∂t

)))
. (8.10)

As a consistency check, we see that if we set w = 0, we get the same equation
as for the matter case.

8.3.2 The space component equations

Now we go back to Equation A.7, setting ν to a spatial index k. Expanding
the sums over α and µ, we have:

∇µTµk = Tµk,µ+Γ0
00T

0
k +Γi0iT

0
k +Γ0

i0T
i
k+ΓjijT

i
k−Γ0

k0T
0
0 −Γ0

kiT
i
0−Γik0T

0
i −ΓikjT

j
i

This time, no terms cancel right away. Starting with the matter components,
we have T ij = 0. Inserting for the connection coefficients and the energy-
momentum tensor in the other terms, we have

∇µTµk = Tµk,µ + ρ̄

(
vk
∂Ψ
∂t

+ 3vk

(
H +

∂Φ
∂t

)
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+(1 + δ)
∂Ψ
∂xk
− δikvi

(
H +

∂Φ
∂t

)
+ a2δkiv

i

(
H(1 + (Φ−Ψ)) +

∂Φ
∂t

))
≈ vk

∂ρ̄

∂t
+ ρ̄

(
∂(vk)
∂t

+ 3Hvk +
∂Ψ
∂xk

)
. (8.11)

For dark energy, we have

∇µTµk = Tµk,µ + ρ̄

(
(1 + w)

(
vk
∂Ψ
∂t

+ 3vk

(
H +

∂Φ
∂t

)

+a2δkiv
i

(
H(1 + 2(Φ−Ψ)) +

∂Φ
∂t

)
− δikvi

(
H +

∂Φ
∂t

))
−w(1 + δ)δji

(
δij

∂Φ
∂xk

+ δik
∂Φ
∂xj
− δjk

∂Φ
∂xi

)
+δik(1 + δ)

∂Ψ
∂xi

+ 3δikw(1 + δ)
∂Φ
∂xi

+ (1 + δ)
∂Ψ
∂xk

)
≈ Tµk,µ + ρ̄

(
3Hvk(1 + w) + w

∂Ψ
∂xk

+ 3w
∂Φ
∂xk

+
∂Ψ
∂xk

+H(1 + w)vk −H(1 + w)− 3w
∂Φ
∂xk

)
= (1 + w)vk

∂ρ̄

∂t
+ ρ̄

(
∂vk
∂t

+ w
∂δ

∂xk
+ (1 + w)

(
3Hvk +

∂Ψ
∂xk

))
, (8.12)

where we in the last step again have used that ρ̄ is constant in space to
eliminate a term.

8.4 The interaction terms

Now we are going to take a closer look at the interaction terms of two
components x and y, Qν(x, y). These terms generate exchange of energy-
momentum between the different components. The interaction terms have
this form:

Qν(x, y) = ζ∇µsµ(ρ(x) + ρ(y))sν(x, y).

Here, x, y ∈ {b, DM, DE}, and ζ ∈ {α, β, γ}. We can divide the interaction
term into four parts: First we have the interaction parameter ζ, which is
directly related to the strength of the interaction. Then we have the four
divergence, which is where the expansion of the universe comes in. Next we
have the sum of the energy-densities of the two components interacting, and
at last we have the four velocity factor. There are multiple possibilities for
the four velocity factor, and we will use a simple case where sµ is the average
four velocity of the two interacting components x and y:

sµ(x, y) =
uµ(x) + uµ(y)

2
,
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and the same for sν(x, y). Now we can take a closer look at the four diver-
gence. We use Equation A.8 to find this factor in terms of our perturbation
quantities, to first order. First we need the determinant of the metric. Since
the metric is diagonal, is is simply the product of the entries:

| det(gαβ)| = (1 + 2Ψ)a6(1 + 2Φ)6 ≈ a6(1 + 2Ψ + 6Φ),

where we have kept only zeroth and first order terms. Inserting this, we get

∇µsµ ≈ a−3(1−Ψ− 3Φ)
∂

∂xµ
(
a3(1 + Ψ + 3Φ)sµ

)
= a−3(1−Ψ− 3Φ)

(
∂

∂t
(a3(1 + Ψ + 3Φ)(1−Ψ)) +

∂

∂xi
(a3(1 + Ψ + 3Φ)si)

)
≈ 3
a

da

dt
(1−Ψ) + 3

∂Φ
∂t
− ∂si

∂xi

= 3H − 3HΨ + 3
∂Φ
∂t

+
∂si

∂xi
. (8.13)

Here, we see that the zeroth order term is just three times the Hubble ex-
pansion, as we are used to in the background universe. Turning to the whole
interaction term Qν(x, y), starting with the time component, ν = 0:

Q0(x, y)

= ζ

(
3H(1−Ψ) + 3

∂Φ
∂t

+
1
2
∂

∂xi
(vi(x) + vi(y))

)
·(ρ̄x(1 + δx) + ρ̄y(1 + δy))(−1−Ψ).

Here, we have inserted for si and used that s0 = −1 − Ψ in our form of s.
To first order, we get

Q0(r, s) ≈

−ζ
(

(ρ̄x + ρ̄y)
(

3H + 3
∂Φ
∂t

+
1
2
∂

∂xi
(vi(x) + vi(y))

)
+ 3H(ρ̄xδx + ρ̄yδy)

)
.

(8.14)
For the space component, we get

Qk(x, y) = ζ

(
3H − 3HΨ + 3

∂Φ
∂t

+
1
2
∂

∂xi
(vi(x) + vi(y))

)

·(ρ̄x(1 + δx) + ρ̄y(1 + δy))
1
2

(uk(x) + uk(y))

≈ 3
2
Hζ(ρ̄y + ρ̄x)(uk(x) + uk(y)). (8.15)
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8.5 Interactions: the left hand side and the right
hand side meet

Now that we have the left hand sides and the right hand side of all our
equations, the time has come to let them meet each other.

8.5.1 Baryons

We start with the baryon equation:

∇µTµν (b) = Qν(b,DM) +Qν(b,DE).

Time component

We start with the time component, ν = 0:

∇µTµν (b) = −
(
δb
∂ρ̄b
∂t

+ ρ̄b

(
∂δb
∂t

+
∂(vi)
∂xi

+ 3H(1 + δb) + 3
∂Φ
∂t

))

= −α(ρ̄b + ρ̄DM)
(

3H + 3
∂Φ
∂t

+
1
2
∂

∂xi
(vib + viDM)

)
−β(ρ̄b + ρ̄DE)

(
3H + 3

∂Φ
∂t

+
1
2
∂

∂xi
(vib + viDE)

)
+3H(α(ρ̄bδb + ρ̄DMδDM) + β(ρ̄bδb + ρ̄DEδDE)).

We use the background equation to eliminate all terms with derivatives of
ρ̄b:

∂ρ̄b
∂t

+ 3Hρ̄b = 3H(α(ρ̄b + ρ̄DM) + β(ρ̄b + ρ̄DE)).

Then we divide by −ρ̄b, and re-arrange terms, ending up with

∂δb
∂t

+
∂vib
∂xi

+ 3
∂Φ
∂t

= 3H
(

2δb(α+ β) + α
ρ̄DM

ρ̄b
(δb + δDM) + β

ρ̄DE

ρ̄b
(δb + δDE)

)
+α

(
1 +

ρ̄DM

ρ̄b

)(
3
∂Φ
∂t

+
1
2
∂

∂xi
(vib + viDM)

)
+β
(

1 +
ρ̄DE

ρ̄b

)(
3
∂Φ
∂t

+
1
2
∂

∂xi
(vib + viDE)

)
.

Now we do a Fourier transformation of the whole equation, using Equation
B.6, going from space x to wavenumber k. This will turn the partial dif-
ferential equation into an infinite set of ordinary differential equations, one
equation for each wavenumber k. These equations will be decoupled from
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each other, meaning that perturbation evolutions on different lengthscales
(by the wavenumber k) will evolve independently. The differential operators
for ∂xi goes to iki (where the i in front of k is now the imaginary unit).
We also assume that the velocity field is irrotational, that is, it points in
the same direction as k. Then we have ikivi = ikv. We change integration
variable, from cosmic time t to conformal time η, which will be useful later
on. This change of variable is given by dt = adη, where a is the scale factor
from the metric tensor. Also, we re-scale the four velocity, replacing v by
iv/a, which also will be useful later (the imaginary unit i now goes away).
We end up with

∂δb
∂η

= −kvb − 3
∂Φ
∂η

+α
(

1 +
ρ̄DM

ρ̄b

)(
3
∂Φ
∂η

+
k

2
(vb + vDM)

)
+β
(

1 +
ρ̄DE

ρ̄b

)(
3
∂Φ
∂η

+
k

2
(vb + vDE)

)
+3H

(
2δb(α+ β) + α

ρ̄DM

ρ̄b
(δb + δDM) + β

ρ̄DE

ρ̄b
(δb + δDE)

)
. (8.16)

Space component

When ν is a spatial index k, we get this interaction equation:

vbk
∂ρ̄b
∂t

+ ρ̄b

(
∂(vbk)
∂t

+ 3Hvbk +
∂Ψ
∂xk

)
=

3
2
H
(
α(ρ̄b + ρ̄DM)(vbk + vDM

k ) + β(ρ̄b + ρ̄DE)(vbk + vDE
k )

)
.

As we have seen earlier, there is no background equation for the space com-
ponent, since there are no zero-order terms in Qk(r, s). But we can still use
the background equation of the time component to get rid of the terms with
the time derivative of the background energy-density of the baryons, ρ̄b. We
also divide by ρ̄b, which after some re-arrangements leaves this equation:

∂vbk
∂t

+
∂Ψ
∂xk

= 3H
(
α

(
1 +

ρ̄DM

ρ̄b

)
3vbk + vDM

k

2
+ β

(
1 +

ρ̄DE

ρ̄b

)
3vbk + vDE

k

2

)
.

As for the time component equation, we Fourier transform to get ordinary
differential equations, assume an irrotational velocity field, rescale v to iv/a
(which brings a term Hvb into the equation through the derivative of vbk),
and we change integration variable to conformal time η. We end up with
this equation:

∂vb
∂η

= −Hvb − kΨ

+3H
(
α

(
1 +

ρ̄DM

ρ̄b

)
3vb + vDM

2
+ β

(
1 +

ρ̄DE

ρ̄b

)
3vb + vDE

2

)
. (8.17)
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8.5.2 Dark matter

Now we have come to dark matter. The computations will be very similar
to the baryonic case, but with β replaced by γ, and some of the signs will
change.

The time component

The time component of the dark matter interaction equation is

−
(
δDM

∂ρ̄DM

∂t
+ ρ̄DM

(
∂δDM

∂t
+
∂(vi)
∂xi

+ 3H(1 + δDM) + 3
∂Φ
∂t

))
= α(ρ̄b + ρ̄DM)

(
3H + 3

∂Φ
∂t

+
1
2
∂

∂xi
(vib + viDM)

)
−γ(ρ̄DM + ρ̄DE)

(
3H + 3

∂Φ
∂t

+
1
2
∂

∂xi
(viDM + viDE)

)
+3H(−α(ρ̄bδb + ρ̄DMδDM) + γ(ρ̄DMδDE + ρ̄DEδDE)).

Now we use the background equation to get rid of terms with the time
derivative of ρ̄DM, we Fourier transform x to k, assume irrotational velocity
fields, rescale v to iv/a, and change integration variable from t to η. This
gives us

∂δDM

∂η
= −kvDM − 3

∂Φ
∂η

−α
(

ρ̄b
ρ̄DM

+ 1
)(

3
∂Φ
∂η

+
k

2
(vb + vDM)

)
+γ
(

1 +
ρ̄DE

ρ̄DM

)(
3
∂Φ
∂η

+
k

2
(vDM + vDE)

)
+3H

(
2δDM(γ − α)− α ρ̄b

ρ̄DM
(δb + δDM) + γ

ρ̄DE

ρ̄DM
(δDM + δDE)

)
. (8.18)

The space component

Now for the space component of the dark matter interaction equation:

vDM
k

∂ρ̄DM

∂t
+ ρ̄DM

(
∂vDM

k

∂t
+ 3HvDM

k +
∂Ψ
∂xk

)
=

3
2
H(−α(ρ̄b + ρ̄DM)(vbk + vDM

k ) + γ(ρ̄DM + ρ̄DE)(vDM
k − vDE

k )).

Again we Fourier transform, assume irrotational velocity fields, rescale v to
iv/a, and change integration variable to η. We end up with

∂vDM

∂η
= −HvDM − kΨ

+3H
(
−α

(
ρ̄b
ρ̄DM

+ 1
)
vb + 3vDM

2
+ γ

(
1 +

ρ̄DE

ρ̄DM

)
3vDM + vDE

2

)
. (8.19)
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8.5.3 Dark energy

At last we have dark energy. To make things a lot simpler, I will set w = −1
straight away. When I am going to do numerical simulations, I must set
a value for w, and then a very natural choice is w = −1. Setting w to
something else is a whole field to explore, and I will not do that here, but
see [18] and [19] for models with varying cosmological constants.

The time component

Putting together the time component of the dark energy interaction equation,
with w = −1, we get

−
(
δDE

∂ρ̄DE

∂t
+ ρ̄DE

(
∂δDE

∂t

))

= β(ρ̄b + ρ̄DE)
(

3H + 3
∂Φ
∂t

+
1
2
∂

∂xi
(vib + viDE)

)
+γ(ρ̄DM + ρ̄DE)

(
3H + 3

∂Φ
∂t

+
1
2
∂

∂xi
(viDM + viDE)

)
−3H(β(ρ̄bδb + ρ̄DEδDE) + γ(ρ̄DMδDM + ρ̄DEδDE)).

For the fifth time, we Fourier transform, assume irrotational velocity fields,
rescale v to iv/a, and change integration variable to η. We end up with this
equation:

∂δDE

∂η
= −β

(
ρ̄b
ρ̄DE

+ 1
)(

3
∂Φ
∂η

+
k

2
(vb + vDE)

)
−γ
(
ρ̄DM

ρ̄DE
+ 1
)(

3
∂Φ
∂η

+
k

2
(vDM + vDE)

)
−3H

(
2δDE(β + γ) + β

ρ̄b
ρ̄DE

(δb + δDE) + γ
ρ̄DM

ρ̄DE
(δDM + δDE)

)
. (8.20)

The space component

At last, we have the space component for dark energy. This time, we start
with the equation for a general w. Then it reads

(1 + w)vDE
k

∂ρ̄DE

∂t
+ ρ̄DE

(
∂vDE

k

∂t
+ w

∂δ

∂xk
+ (1 + w)

(
3HvDE

k +
∂Ψ
∂xk

))

= −3
2
H(β(ρ̄b + ρ̄DE)(vbk + vDE

k ) + γ(ρ̄DE + ρ̄DE)(vDM
k + vDE

k )).

We see that when we set w = −1 in this equation, a lot of terms cancel -
including the term with the time derivative of the dark energy velocity field.
This means that we will not get a differential equation for vDE

k , but we will
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get an algebraic equation, since vDE
k appears on the right hand side. Setting

w to −1, Fourier transforming, and rescaling v to iv/a, we can solve for vDE:

vDE =
2kδDE

3H(β(ρ̄b/ρ̄DE + 1) + γ(ρ̄DM/ρ̄DE + 1))

−
(
β

(
ρ̄b
ρ̄DE

+ 1
)
vb + γ

(
ρ̄DM

ρ̄DE
+ 1
)
vDM

)
. (8.21)

8.6 Let there be light

Photons play an important role in the evolution of the universe, and so we
must see how they behave in our space with a perturbed metric. We will use
the Boltzmann equation to see how all the photons in the universe statisti-
cally behave. Starting with the phase-space distribution function f(xµ, pµ),
the Boltzmann equation, which we have in Equation 1.17, tells us how the
phase-space distribution evolves in time. In its most compact form, it reads

df

dt
= C[f ],

where C[f ] describes collisions, interactions with other particles. The strat-
egy is to look at the two sides of the Boltzmann equation separately. We
start with the left hand side, which tells us how the distribution of photons
evolves in our space, with our perturbed metric given in Equation 8.1. This
is the same as setting the right hand side to zero. Then we are going to study
the collision term, which then will modify the evolution of the phase-space
distribution function.

The Boltzmann equation for photons is not directly connected to my
interaction model, so all this is well known from before. I will follow a set
of lecture notes by Øystein Elgarøy [20] and parts of chapter 4 in Dodelson
[17].

8.6.1 Left hand side: photons in a perturbed metric

We start with the left hand side: we expand the total time derivative into
partial derivatives, and compute each factor we get. Then we expand the
distribution function. First thing first, we have from Equation 1.18

df

dt
=
∂f

∂t
+
∂f

∂xi
dxi

dt
+
∂f

∂p

dp

dt
+
∂f

∂p̂i
dp̂i

dt
.

Then we go through each term. Starting with the last term, we know that
photons follow a Bose-Einstein distribution at the background level, so f is
given by

f(xµ, pµ) =
1

ep/T (t) − 1
= f(p, T (t)).
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We see that f does not depend on the direction of pµ, and so ∂f/∂p̂ has no
zero-order terms. Also, since there are no potential for the photons to fall
into at the background level, we have dp̂/dt = 0. The conclusion is that the
last term in the left hand side of the Boltzmann equation for photons has no
zero or first order term, and so we can neglect it right from the start, since
we are doing first order perturbation theory.

The other terms however will contribute. For the second term, we can
use the kinematic of the photon, where the most important fact is that the
photon is massless. When all the manipulations and cancellations are done,
we end up with

∂f

∂xi
dxi

dt
≈ ∂f

∂xi
p̂i

a
,

since f is independent of xi to zeroth order. For the third term, we use the
geodesic equation to manipulate with the time derivative of the magnitude
of the momentum. One ends up with

dp

dt
≈ −p

(
p̂i

a

∂Ψ
∂xi
− ∂Φ
∂t
−H

)
.

Finlay, we need to expand the phase-space distribution function f(xν , pν).
We will expand around an average temperature, and so we introduce pertur-
bations in the temperature field, Θ:

T (xµ, p̂) = T (t)(1 + Θ(xµ, p̂)).

Manipulating around, one ends up with this expansion:

f ≈ f(0) − p
∂f(0)

∂p
Θ.

Putting everything together, we get the left hand side of the Boltzmann
equation:

df

dt
≈ −p

∂f(0)

∂p

(
∂Θ
∂t

+
p̂i

a

∂Θ
∂xi

+
∂Φ
∂t

+
p̂i

a

∂Ψ
∂xi

)
. (8.22)

8.6.2 Right hand side: Compton scattering

The collision term on the right hand side of the Boltzmann equation, C[f ],
is non-zero for photons, since the photons interact with electrons through
Compton scattering. Compton scattering is the process

e−(~q) + γ(~p)→ e−(~q′) + γ(~p′).

The collision term C[f ] is an integral:

C[f ] =
1

8p(2π)5

∫
q

∫
q′

∫
p′

|M|2

Ee(q)Ee(q′)Eγ(p)
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·δ3(~p+ ~q − ~p′ − ~q′)δ(Eγ(p) + Ee(q)− Eγ(p′)− Eγ(q′))

·(fe(~q′)fγ(~p′)− fe(~q)fγ(~p))d3p′d3q′d3q.

After a lot of manipulations, and inserting Θ, one ends up with

C[f ] = −p
∂f(0)

∂p
neσT (Θ0 −Θ(p̂) + p̂ · ~vb),

where we see the zeroth order expansion of Θ for the first time. It is defined
in Equation B.8, with F = Θ and l = 0.

Now we are going to put the two sides together. We will write in terms
of conformal time η, defined in Equation 1.10, and the optical depth:

τ(η) =
∫ η0

η
neσTadη

′,

which we will work more with later. We will also Fourier transform the
equation so we get it in terms of the wavenumber k, by using Equation B.6.
µ is the angle between p̂i and ~vb. We end up with

∂Θ
∂η

+ ikµΘ +
∂Φ
∂η

+ ikµΨ = −∂τ
∂η

(Θ0 −Θ + µvb). (8.23)

This is the Boltzmann equation for photons to first order, written in Fourier
space and in terms of the conformal time.

8.7 The return of the Einstein tensor

To get enough equations to work with, we must know how the metric pertur-
bations Ψ and Φ are related to the energy-density perturbations. Einsteins
field equations, Equation A.15, gives us this relation. Now, the interaction
are set up in such a way that the Einstein equations are unaltered, so there
is really not much new in this section. I will follow the lecture notes by
Øystein Elgarøy [21] closely, from where the section title is quoted.

From the metric, we can compute the Christoffel symbols. I have already
done this, since I needed them to write out the expression for the covariate
derivative of the energy-momentum tensor. To recap, they are (to first order
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in the perturbations, as usual)

Γ0
00 ≈ ∂Ψ

∂t
,

Γ0
0j = Γ0

j0 ≈ ∂Ψ
∂xj

,

Γ0
ij ≈ a2δij

(
H(1 + 2(Φ−Ψ)) +

∂Φ
∂t

)
,

Γi00 ≈ δij

a2

∂Ψ
∂xj

,

Γij0 = Γi0j ≈ δij

(
H +

∂Φ
∂t

)
,

Γijk ≈ δij
∂Φ
∂xk

+ δik
∂Φ
∂xj
− δjk

∂Φ
∂xi

.

8.7.1 The Ricci tensor and scalar

The Ricci tensor can be computed using the Christoffel symbols using Equa-
tion A.9. The non-zero components are

R00 = −3
a

d2a

dt2
+

1
a2

∂2Ψ
∂xk∂xk

− 3
∂2Φ
∂t2

+ 3H
(
∂Ψ
∂t
− 2

∂Φ
∂t

)
,

Rij = − ∂2

∂xi∂xj
(Φ−Ψ) + δij

((
2a2H2 + a

d2a

dt2

)
(1 + 2(Φ−Ψ))

+a2H

(
6
∂Φ
∂t
− ∂Ψ

∂t

)
+ a2∂

2Φ
∂t2
− ∂2Φ
∂xk∂xk

)
.

Now the time has come for the Ricci scalar, which we get by contracting the
Ricci tensor:

R = gµνRµν

= (−1 + 2Ψ)
(
−3
a

d2a

dt2
+

1
a2

∂2Ψ
∂xk∂xk

− 3
∂2Φ
∂t2

+ 3H
(
∂Ψ
∂t
− 2

∂Φ
∂t

))
+

1− 2Φ
a2

(
− ∂2

∂xk∂xk
(Φ + Ψ) + 3

((
2a2H2 + a2d

2a

dt2

)
(1 + 2(Φ−Ψ))

+a2H

(
6
∂Φ
∂t
− ∂Ψ

∂t

)
+ a2∂

2Φ
∂t2
− ∂2Φ
∂xk∂xk

))
.

8.7.2 The Einstein tensor

Now that we have the Ricci tensor and the Ricci scalar, we can compute the
Einstein tensor by Equation A.11. Now, for the energy momentum tensor,
we have always worked with Tµν , and we want to continue with that. Since
the energy-momentum tensor is proportional to the Einstein tensor by the
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Einstein equation, we need the Einstein tensor with one index upstairs and
one index downstairs as well - Eµν . So we can compute Eµν from Rµν and
R, which we already have, and then use gµν to raise one index. We end up
with these non-zero components:

E0
0 = −(1 + 2Ψ)

(
−3
a

d2a

dt2
+

1
a2

∂2Ψ
∂xk∂xk

− 3
∂2Φ
∂t2

+ 3H
(
∂Ψ
∂t
− 2

∂Φ
∂t

))

+6Ψ
(
H2 +

1
a

d2a

dt2

)
+

1
a2

∂2Ψ
∂xk∂xk

−3
∂2Φ
∂t2

+ 3H
(
∂Ψ
∂t
− 4

∂Φ
∂t

)
+

2
a2

∂2Φ
∂xk∂xk

,

Eij = giν
(
Rjν −

1
2
gνjR

)
= δik

1− 2Φ
a2

Rkj −
1
2
δijR

= Aδij +
1
a2

∂2

∂xi∂xj
(Φ−Ψ).

For the spatial components, I have written the Einstein tensor in a way that
may appear a little bit strange now, with a factor A which contains a lot of
terms. This way of writing Eij will be useful later. Now we split E0

0 into zero
and first order terms: E0

0 = Ē0
0 + δE0

0 . The first-order term of E0
0 is

δE0
0 = −6H

∂Φ
∂t

+ 6H2Ψ +
2
a2

∂2Φ
∂xk∂xk

. (8.24)

8.7.3 The energy-momentum tensor for photons

The Einstein tensor Eµν is to be related to the energy-momentum tensor Tµν .
We already have the energy-momentum tensor for baryons, dark matter and
dark energy, but not for photons, since we used the phase-space distribution
function f directly when we worked with photons. The energy-momentum
tensor is given by the phase-space distribution function in Equation A.12:

Tµν = g

∫∫∫
P

1
(2π)3

√
−det(gαβ)

PµPν
P 0

fdP1dP2dP3.

The determinant of the metric is easy to find, since the metric we use is
diagonal in our gauge:

det(gαβ) ≈ −a6(1 + 2Ψ + 6Φ).

For photons, the degeneracy g is 2, and from the computations around the
Botlzmann equation, we found

P0 = −p(1 + Ψ), Pi = app̂i(1 + Φ),

which gives us

T 0
0 (γ) = − 2

(2π)3

∫
P
pf(xµ, Pµ)d3p.
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Using our Taylor expansion for the phase-space distribution function f ,

f ≈ f(0) − p
∂f(0)

∂p
Θ,

we simply get
T 0

0 (γ) = −ρ̄γ(1 + 4Θ0).

Now that we have the energy-momentum tensor for all our components, we
can find the Einstein equations.

8.7.4 The Einstein equations: space and the energy within

Now that we have both sides of the Einstein equation, the time has come
to put them together. As usual, some terms will be of zeroth order and
some of first order, and they make one equation each. The zeroth-order
equation is just the first Firedmann-equation again, Equation 1.6 for the
time component. The first order equation is

δE0
0 = 8πGδT 0

0 ⇒ −6H
∂Φ
∂t

+ 6H2Ψ +
2
a

∂2Φ
∂xk∂xk

= −8πG(4(ρ̄γΘ0 + ρ̄bδb + ρ̄DMδDM + ρ̄DEδDE).

Using conformal time and Fourier transforming the equation, we end up with

k2Φ + 3H
(
∂Φ
∂η
−HΨ

)
= −4πG(4(ρ̄γΘ0 + ρ̄bδb + ρ̄DMδDM + ρ̄DEδDE). (8.25)

Now we go to the space components. We start by Fourier transforming
our expression for Eij :

Eij = Aδij +
kikj
a2

(Φ + Ψ).

Now we are going apply a projection operator on Eij :(
k̂ik̂

j − 1
3
δji

)
Eij =

2k2

3a2
(Φ + Ψ),

where the A-term has gone away. Now we also need to let this projection
operator act on T ij . We have(

k̂ik̂
j − 1

3
δji

)
p̂ip̂j =

3
2
P2(µ).

103



with µ = k̂ · p̂, and P2(µ) is the second order Legendre polynomial with
argument µ. We then have(

k̂ik̂
j − 1

3
δji

)
T ij =

g

(2π)3

∫
P

2
3
P2(µ)

p2

E
f(xµ, Pµ)d3p.

This is non-zero only for photons, since T ij = 0 for baryonic matter and dark
matter, and T ij ∝ δij for dark energy. In the end, the space component of the
Einstein equation is

k2(Φ + Ψ) = −32πGa2ρ̄γΘ2. (8.26)

8.8 Some last pieces

Now we have gone through the energy-momentum conservation equations for
baryons, dark matter and dark energy, we have seen the Boltzmann equation
for photons, and we have looked at the Einstein equations. There are still a
few things left: Polarization will have a small contribution in the Boltzmann
equation for photons, the perturbations in the photon temperature Θ must
be expanded in to multipoles, and we will look at the term for Compton
scattering that enters the equations for the baryons.

8.8.1 Polarization

Polarization of the photon field has to be taken account for. I will do it the
simple way by adding polarization contribution through Θ2 in the Boltzmann
equation for photons. With this modification, Equation 8.23 takes this form:

∂Θ
∂η

+ ikµΘ +
∂Φ
∂η

+ ikµΨ = −∂τ
∂η

(
Θ0 −Θ + µvb −

1
2
P2(µ)Θ2

)
, (8.27)

where P2(µ) = 1/2(3µ2− 1) is the second order Legendre polynomial, which
we can get from Equation B.7. See [17], chapter 10 for more details.

8.8.2 Multipole expansion of the temperature perturbations

We have seen multiple examples already on the multipole expansion of the
radiation field Θl for photons. In the Boltzmann equation, the zeroth order
multipoles - the monopoles, came in, and in Equations 8.26 and 8.27, the
second order multipole moment, the quadrupole, came in. In this section, we
will expand all Θ into multipoles, so only Θl will enter our equations - not Θ.
The Legendre expansion is given by Equation B.8, and we will also use the
recursion relation in Equation B.9. to find the higher order moments in terms
of the lower ones. Using the zeroth and first order Legendre polynomials and
integrating, we get these two equations for Θ0 and Θ1:

∂Θ0

∂η
+ kΘ1 = −∂Φ

∂η
,
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∂Θ1

∂η
− k

3
Θ0 +

2k
3

Θ2 =
k

3
Ψ +

∂τ

∂η

(
Θ1 +

1
3
vb

)
. (8.28)

For the higher moments (l ≥ 2 ), we have

∂Θl

∂η
− lk

2l + 1
Θl−1 +

k(l + 1)
2l + 1

Θl+1 =
∂τ

∂η

(
Θl −

Θ2

10
δl,2

)
. (8.29)

Now we can see a general problem that we will have if we are going
to solve this numerically - the equation for every moment depends on the
moment above. This is solved pretty simply by setting a cut-off value for l.
We will come back to this in the next chapter.

8.8.3 Compton scattering

In addition to interactions with dark matter and dark energy through our in-
teraction models, the baryons also interact with the photons through Comp-
ton scattering. We have seen this all the time when working with the pho-
tons, but we must also include this the other way, by adding a collision term
in the equation for the baryons. We have two equations for baryons - one
time component, Equation 8.16, which tells us how the energy-density per-
turbation evolves, and one space component, Equation 8.17, which tells us
how the velocity perturbation evolves in time. Due to symmetry, we only get
a non-zero interaction term in the space component equation. With this in-
teraction term, the space-component of the interaction equation for baryons
takes this form:

∂vb
∂η

= −vb −
k

H
Ψ +

∂τ

∂η

4ρ̄γ
3ρ̄b

(3Θ1 + vb)

+3
(
α

(
1 +

ρ̄DM

ρ̄b

)
3vb + vDM

2
+ β

(
1 +

ρ̄DE

ρ̄b

)
3vb + vDE

2

)
. (8.30)

8.9 In the beginning, there was φ

In this section, I will set up the initial conditions to our set of differential
equations. I will neglect the interactions models here to make matters simpler
(I will defend this later), and set up the initial conditions according to the
ΛCDM model. This is then all done before, and I will follow the lecture
notes by Øystein Elgarøy [22] (from which again, the section title is quoted)
and Dodelson [17].

The first question is what time we are to set our initial conditions at.
We can not set them at big bang (cosmic time t = 0), because we do not
know the physics of that event. But we will choose a time in the very early
universe, so early that a chosen wave number times conformal time η is way
smaller than 1. This will of course depend on the chosen wavenumber, so we
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will choose the η that fullfills this for the largest interesting wavenumber. We
will come back to specific quantities later, but now we can state that we will
set initial conditions to length scales that are way larger than the particle
horizon. We then know that the distribution of photons is very smooth, and
we will only consider the monopole contribution, so Θ ≈ Θ0. Also in this
era, the universe is radiation dominated, and the Friedmann equations then
tells us that η ∝ a.

Using kη � 1 and Θ ≈ Θ0, we can simplify Equation 8.23 to this:

∂Θ0

∂η
= −∂Φ

∂η
.

For the energy-density perturbations, the δ’s, we simplify Equations 8.16 on
page 95, 8.18 on page 96 and 8.20 on page 97 to this:

∂δb
∂η

=
∂δDM

∂η
= −3

∂Φ
∂η

,

∂δDE

∂η
= −3(1 + w)

∂Φ
∂η

.

The velocities are comparable to the first order moments Θ, and so we can
set

vb = vDM = 0

since we are only keeping Θ0. Now we take a closer look at Equation 8.25:
We can neglect the k2Φ term since it contains k2, and we can neglect the
terms with contributions from baryons, dark matter and dark energy, since
the universe is radiation dominated in the epoch we work with now. So this
equations first simplifies to

3H
(
∂Φ
∂η
−HΨ

)
= 16πGa2ρ̄rΘ0

In the radiation dominated epoch, we have H = 1/η. We use the first
Friedmann equation, Equation 1.6, to relate η to the background energy-
density of radiation:

1
η2

=
8πG

3
ρ̄ra

2.

We then have
1
η

∂Φ
∂η
− Ψ
η2

=
2Θ0

η

Next, we differentiate with respect to η and re-organize the terms, which
gives us

η
∂2Φ
∂η2

+ 3
∂Φ
∂η
− ∂Ψ
∂η

= 0.
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The second Einstein equation, Equation 8.26, is now

k2(Φ−Ψ) = −32πGa2ρ̄rΘ2 ≈ 0,

since we neglect higher order moments of Θ. This equations gives us Ψ ≈ −Φ,
and our second order differential equation reads

η
∂2Φ
∂η2

+ 4
∂Φ
∂η

= 0.

This equation has a solution on the form Φ = ηp, and the equation then
gives

p(p+ 3) = 0.

The solution p = −3 corresponds to a quickly dying mode, so we are inter-
ested in the p = 0 solution. This corresponds to a constant mode. Then we
get

∂Φ
∂η

= 0⇒ Φ = −Ψ = 2Θ0.

Since Φ is constant, Θ0 is also a constant. And so we have Φ(k, ηi) =
2Θ0(k, ηi) for an initial conformal time ηi. Moving on to the energy-density
fluctuations:

∂δb
∂η

=
∂δDM

∂η
= 3

∂Θ
∂η

Which means that δb(k, ηi) = δDM(k, ηi) = 3Θ0 plus a constant of integra-
tion. We will work with adiabatic initial conditions, which are favored by
observations, and this means that this constant of integration is zero. For
dark energy, we get a similar expression:

∂δDE

∂η
= 3(1 + w)Θ0 ⇒ δDE(k, ηi) = 3(1 + w)Θ0

We move on to the velocity perturbations. The terms with k must now
be accounted for again - if not, we will just get zero everywhere, and then the
equations are useless. For baryons and dark matter, v = vb and v = vDM,
we have

∂v

∂η
+Hv = −ikΨ.

Since the universe is radiation-dominated at the time epoch we work with
now, we have H = 1/η. Combined with Ψ = −Φ, we have

∂v

∂η
+
v

η
= ikΦ

We multiply with η and use the product rule on the left hand side:

∂

∂η
(nvη) = ikΦη.
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Now we integrate and divide by η, reinset η = 1/H, and set up our initial
conditions:

vb(k, ηi) = vDM(k, ηi) =
ikΦ
2H

Now for the multipole expansion of the radiation field, Θl. We know
the initial condition for Θ0. We use the recursion relation for the Legendre
polynomials, Equation B.9, and the quantity ε to express Θl+1 in terms of
Θl, when l ≥ 1:

ε =
k

Hτ̇
,

where τ̇ is the optical depth differentiated with respect to the conformal
time, which we will look more at later. First, the initial condition for Θ1 is

Θ1(k, ηi) = − k

6H
Φ.

Early on, the optical depth (and also its derivative) will be very large, and so
the number ε will be very small. The number ε can therefore be used as an
expansion parameter for Θl when l ≥ 1: Θl+1 ≈ εΘl. The initial conditions
for Θl when l > 2 are then

Θ2 = − 20k
45Hτ̇

Θ1,

Θl =
l

2l + 1
Θl−1, l > 2.

Now our initial conditions are ready. We set an initial conformal time ηi:

δb(k, ηi) = δDM(k, ηi) = 3Θ0(k, ηi), (8.31)
δDE(k, ηi) = 3(1 + w)Θ0(k, ηi), (8.32)

vb(k, ηi) = vDM(k, ηi) = −kΦ
2H

, (8.33)

Θ0(k, ηi) =
1
2

Φ(k, ηi), (8.34)

Θ1(k, ηi) = − k

6H
Φ, (8.35)

Θ2 = − 20k
45Hτ̇

Θ1, (8.36)

Θl =
l

2l + 1
Θl−1, l > 2. (8.37)

Now, what physical mechanism sets up these initial conditions? The
answer lies in the concept of inflation, and our best model for inflation is a
scalar field φ that leaks energy. However, we do not get any useful equations
for this thesis if we go further on, so I will not go anymore into inflation
here. But there lies the explanation to the section title.
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Remember that I have neglected the interaction models when I have set
the initial conditions. This will of course have some consequences, but trial
and errors shows that the solutions will converge towards the true solutions,
independent of the initial conditions - if they do not deviate a lot from the
ΛCDM model, of course. I will come back to this when we are looking at
the results.
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Chapter 9

Numerical simulations of
structure formations

In the last chapter, we set up the equations for the perturbations in the metric
tensor and the energy-densities, using the energy-momentum conservation
equation (this is where our interaction model entered), the Einstein equation
and the Boltzmann equation. The perturbation in the temperature field for
photons were expanded into multipoles, and we have set initial conditions to
our equations. Fourier transforming our equations turned partial differential
equations into an infinite number of ordinary differential equations.

In this chapter, we will solve our set of equations. Before we do that,
some of the equations will have to be rewritten, due to limitations (multipole
moments) and numerical instabilities (tight coupling). We will start with
this. Then we will go through the whole recipe for the numerical simulations,
going from our theoretical setup from the last chapter with the modifications,
and the background quantities we have been working on earlier, through the
recombination area and all the way to the solution of our equation system.
Then we will look at results we get along the way, and compare these to the
ΛCDM model, where none of my interactions are present.

9.1 Preparations

Before we can start simulating, there are a set of preparations we must do.
We need to put some limitations on our multipole expansion, and we must
look at some numerical instabilities that we will run into. There are quan-
tities in the background universe we must look at, and we must study some
detailed physics that took place during recombination. In the theoretical
work we did in the previous chapter, we started out with cosmic time t,
and then we changed to conformal time η. The conformal time will still
pop up a few places, but from now on, we will use the number of e-foldings
N = ln a as our time variable, which will give us more accurate results when
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we integrate.

9.1.1 The background universe

In the background universe, there are some quantities that we need as a
function of N : the density parameters {Ωb,ΩDM,ΩDE,Ωr}, the conformal
time η, the Hubble parameter H, the scaled Hubble parameter H = Ha and
its derivative H′ with respect to N . For the density parameters, we go back
to Equation 2.16, and for the Hubble parameter, we use Equation 2.17. The
scaled Hubble parameter H = Ha is given by this differential equation:

dH
dN

= eN
(
H +

dH

dN

)
, (9.1)

and the conformal time η is given by this differential equation:

dη

dN
=

1
eNH

. (9.2)

9.1.2 Recombination

In the early universe, the temperature was so high that the electrons and
photons were tightly coupled together. Today, they are not, which means
that at some point, things changed. The time the photons and electrons de-
coupled is called recombination. At this time, the temperature had decreased
to a point where the protons and electrons could form neutral atoms without
the photons destroying them over and over again. Since there were so many
more photons than baryons, recombination did not occur until the temper-
ature of the universe had cooled down to 3000K. Now the photons were free
to move as far as they wanted to, so the universe became transparent, and
the cosmic microwave background was created.

In this section, I will go through some important points from the physics
of recombination, since we will integrate our equations through this era.
What we really need to know is the optical depth τ(η), which we have seen
before:

τ(η) =
∫ η0

η
neσTadη

′. (9.3)

From these definitions, we can set up these two useful expression with τ :

dτ

dη
= −neσTa

dτ

dx
= −neσTa

H

In these equations, a is the scale factor as we know from before, ne is the
electron number density, and σT is the Thomson scattering cross section:

σT =
8πα2

3m2
e

,
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where α is the hydrogen fine structure constant, and me is the electron
mass. The Thomson scattering cross section is a constant, and we get the
scale factor a through the Friedmann equations. The problem is the electron
number density, which is dramatically changed during recombination. We
start by defining the free electron fraction:

Xe =
ne
nH

=
ne
nb
, (9.4)

where we have ignored helium, setting the proton number density equal to
the hydrogen number density. If we also ignore the small mass difference
between neutral hydrogen and free protons, we have

nH = nb ≈
ρ̄b
mH

=
Ωbρc
mHa3

, ρc =
3H2

0

8πG
,

where ρc is the critical energy-density of the universe. Before recombina-
tion, the universe is completely ionized, so Xe = 1, and ne ∝ a−3. After
recombination, the universe is almost completely neutral, so Xe � 1. So our
questions is how Xe changes during recombination. When the change in Xe

goes slowly, we can use the Saha equation, which is an algebraic equation:

X2
e

1−Xe
≈ 1
nb

(
meTb

2π

) 3
2

e
ε0
Tb . (9.5)

When we do our numerical simulations, we will use the Saha equation when
Xe ≥ 0.99. When Xe < 0.99, we will use the Peebles equation:

dXe

dN
=
Cr(Tb)
H

(
β(Tb)(1−Xe)− nHα(2)(Tb)X2

e

)
. (9.6)

See [17] for more details about the Saha equation and the Peebles equation.
Now, we need the baryon temperature Tb. This is given by a differential
equation that couples to Xe, but it is a good approximation to just set it
equal to the photon temperature:

Tb ≈ Tγ =
T0

a
, T0 = 2.725 K.

As mentioned, we expect Xe to be equal to 1 before recombination, and dur-
ing recombination, it will decrease and approach zero (but it will always be
greater than zero). Later on, it will actually rise towards 1 again, and today,
the universe is more or less ionized again. This is due to star formation, and
most of the electrons today are in stars. This process is called re-ionization.
We will not take re-ionization into account, and so we will expect Xe to
approach zero after recombination.

When we have Xe, we also have ne, and we can compute the optical
depth, which tells us how transparent the universe is. And when we have
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the optical depth (and its first order derivative), we can compute the visibility
function g. We define it and scale it like this:

g(η) = g(N) = −Hτ ′e−τ(N)

g̃ = −τ ′e−τ(N) =
g(N)
H(N)

. (9.7)

The scaled version is what we will use in our simulations. The visibility
function is normalized:∫ η0

0
g(η)dη =

∫ 0

−∞
g̃(N)dN = 1,

and so we can use it as a probability distribution. g̃(N) is then the prob-
ability that a given photon were last scattered at time N . We expext g̃ to
have a peak around redshift z = 1100, the redshift of recombination.

9.1.3 An l above all else

Looking back at Equation 8.29, we see that in order to find the evolution
of Θl, we need to know the evolutions for both Θl−1 and Θl+1. We can not
solve for an infinite number of multipoles, and so we must find a cutoff value
for l. For large l, the time dependence of Θl(k, η) can be approximated by
the spherical Bessel functions, as discussed in [23]:

lim
l→∞

Θl(k, η) = jl(kη)

Using a recurrence relation for the spherical Bessel functions, Equation B.11,
we get

Θl+1 ≈
2l + 1
kη

Θl(k, η)−Θl−1(k, η), l = lm.

Putting this into Equation 8.29, with N as our free variable, we get

∂Θl

∂N
≈ k

H
Θl−1 −

(
l + 1
Hη(N)

− ∂τ

∂N

)
Θl, l = lm. (9.8)

Previous testings of this shows that the low value lm = 6 is actually a good
cutoff value for l. See [24] for more details.

9.1.4 Tight coupling

Early on, when the photons and baryons were tightly coupeled to each other,
the optical depth, and also its derivative, was very large. This time epoch
is called tight coupling, and there is a numerical instability in the tight
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coupling regime that we must take care of. When written in terms of N , the
differential equation for Θ1 takes this form:

∂Θ1

∂N
= Θ′1 =

k

3H
Θ0 −

2k
3H

Θ2 +
kΨ
3H

+ τ ′
(

Θ1 +
vb
3

)
Early on, the quantity in the brackets, Θ1 + vb/3, is very small, and this is
to be multiplied with τ ′, which, as mentioned, is very large. This can cause
a numerical instability. To solve this, we expand 3Θ1 + vb in powers of 1/τ ′.
We define R as 4ρ̄r/3ρ̄b. Then we set up a parameter q:

q =
−((1− 2R)τ ′ + (1 +R)τ ′′)(3Θ1 + vb)− kΨ

H
(1 +R)τ ′ +H′/H− 1

+
(1 + H

H
′) kH(2Θ2 −Θ0)− k

HΘ′0
(1 +R)τ ′ +H′/H− 1

. (9.9)

In terms of q, we can write v′b like this:

v′b =
1

1 +R

(
−vb −

k

H
Ψ +R

(
q +

k

H
(2Θ2 −Θ0)− k

H
Ψ
))

.

With q and v′b, the differential equation for Θ1 during the tight coupling
regime can be written like this:

Θ′1 =
q − v′b

3
. (9.10)

With this “new” differential equation for Θ1 and our modified multipole
expansion, we have obtained our modifications for the tight coupling regime.
For the higher order moments, it is a good approximation to set Θ′l = 0 when
l ≥ 2. Therefore, we just use the initial conditions through the whole tight
coupling for these moments.

We now need to state when the tight coupling regime is. A good estimate
is to set that if ∣∣∣∣ kHτ ′

∣∣∣∣ < 1
10

and |τ ′| > 10, (9.11)

we use the tight coupling equations. Also, when we reach the start of the
recombination era, we switch to the full set of equations, even if the above
conditions gives a later time.

9.2 The true final form of our differential equations

As the title says, I am now going to present the true final form of our
differential equations, which are to be put straight into our program for
numerical simulations. From our theoretical setup to the final form, we have
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• Changed the free variable from conformal time η to the e-fold number
N = ln a.

• Expanded Θ into multipoles, using the Legendre expansion.

• Set a cutoff value at lm = 6 for the multipole expansions, since the
equation for one multipole depends on the one above and the one below.

• Explored numerical instabilities in the tight coupling regime, where we
have taken care of a numerical instability with a large τ ′, and modified
the multipole expansion for Θ.

• Set the equation of state parameter w for dark energy to −1.

• For the Einstein equations, we use the density-parameters Ω in stead
of the energy-densities ρ.

• We set the initial condition for Φ to 1, since we are not interested in the
physical values of our quantities, we will only compare our interaction
models to the ΛCDM model.

• To save some writing, we define these rations as well:

Rb,DM =
ρ̄b
ρ̄DM

Rb,DE =
ρ̄b
ρ̄DE

RDM,DE =
ρ̄DM

ρ̄DE
.

9.2.1 Full equation set

In its final form, our complete set of equations outside the tight coupling
regime looks like this:

Θ′0 = −Θ1

H
−Ψ′.

Θ′1 =
k

3H
Θ0 −

2k
3H

Θ2 +
k

2H
Ψ + τ ′

(
Θ1 +

vb
3

)
.

Θ′l =
lk

(2l + 1)H
Θl−1 −

(l + 1)k
(2l + 1)H

Θl+1 + τ ′
(

Θl −
Θl

10
δl,2

)
, l ∈ [2, lm).

Θ′l =
k

H
Θl−1 −

l + 1
Hη(N)

Θl + τ ′Θl, l = lm.

δ′b =
k

H
vb − 3Φ′

−3
(

2δb(α+ β) + αR−1
b,DM(δb + δDM) + βR−1

b,DE(δb + δDE)
)

+α
(

1 +R−1
b,DM

)(
3Φ′ − k

2H
(vb + vDM)

)
+β
(

1 +R−1
b,DE

)(
3Φ′ − k

2H
(vb + vDE)

)
.
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v′b = −vb −
k

H
Ψ + τ ′R(3Θ1 + vb)

−α(1 +R−1
b,DM)

3vb + vDM

2
.

δ′DM =
k

H
vDM − 3Φ′

−3
(

2δDM(γ − α)− αRb,DM(δb + δDM) + γR−1
DM,DE(δDM + δDE)

)
−α(Rb,DM + 1)

(
3Φ′ − k

2H
(vb + vDM)

)
+γ(1 +R−1

DM,DE)
(

3Φ′ − k

2H
(vDM + vDE)

)
.

v′DM = −vDM −
k

H
Ψ− 3α(Rb,DM + 1)

vb + 3vDM

2
.

δ′DE = +3(2δDE(β + γ) + βRb,DE(δb + δDE) + γRDM,DE(δDM + δDE))

−β(Rb,DE + 1)
(

3Φ′ − k

2H
(vb + vDE)

)
−γ(RDM,DE + 1)

(
3Φ′ − k

2H
(vDM + vDE

)
.

vDE =
2kδDE

3H(β(Rb,DE + 1) + γ(RDM, DE + 1))

− (β (Rb,DE + 1) vb + γ (RDM, DE + 1) vDM) .

Φ′ = Ψ− k2

3H2
Φ +

H2
0

2H2
(Ωbδb + ΩDMδDM + ΩDEδDE + 4ΩrΘ0) .

Ψ = −Φ− 12H2
0

k2a2
Ωr0Θ2.

The initial conditions comes from Equation 8.37:

Φ = 1.

δb = δDM =
3
2

Φ, δDE =
3(1 + w)

2
Φ.

vb = vDM =
k

2H
Φ.

Θ0 =
1
2

Φ, Θ1 = − k

6H
Φ, Θ2 = − 8k

15Hτ ′
Θ1, Θl = − l

2l + 1
k

Hτ ′
Θl−1.
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9.2.2 Tight coupling

In the tight coupling regime, we will have some modifications. The equations
for Θ1 and vb are modified, using the parameter q from Equation 9.9:

v′b =
1

1 +R

(
−vb −

k

H
Ψ +R

(
q +

k

H
(2Θ2 −Θ0)− k

H
Ψ
))

,

Θ′1 =
q − v′b

3
.

For the higher order moments of Θ, we just use the initial conditions:

Θ2 = − 8k
45Hτ ′

Θ1 Θl = − lk

(2l + 1)Hτ ′
Θl−1.

9.3 Simulations

Now we are ready to actually start the simulations. The simulations are
divided into three steps: the background universe, recombination, and struc-
ture evolution. After the simulations are set up, we must set values for our
interaction parameters, and this is done in the end.

9.3.1 The background universe

We start with the background universe, by setting up a N grid from the
start of recombination at N = −7.39658 (redshift z = 1630.4) and to the
end of recombination at N = −6.4220 (redshift z = 614.2), with a 200
points resolution. Then we continue to today, N = 0, with 300 points
resolution. This is the grid we will use when we display our results. But
to compute them, we must actually start a lot earlier, at N = −23.0259,
far into the radiation dominated era. In this grid, we compute the energy-
density parameters Ω from Equation 2.16 and the Hubble parameter H from
Equation 2.17. Now we can easily compute the scaled Hubble parameter
H and its derivative H′ from Equation 9.1. When we have the Hubble
parameter, we can compute the conformal time using Equation 9.2. Note
that when we compute the density parameters and the Hubble parameter,
we set initial conditions today, at N = 0, and we integrate backwards. We
use the ΛCDM values for the density parameters and Hubble parameter as
initial conditions, so Ωb(N = 0) = 0.046,ΩDM(N = 0) = 0.224,Ωr(N = 0) =
8.3·10−5, and ΩDE(N = 0) = 0.7299, which is one minus the sum of the three
others. H(N = 0) = H0 = 70 km/s/Mpc. When we compute the conformal
time η, we set initial condition η(N = −23.0259) = H0

√
Ωr(N = 0) ∗ a−10,

since we assume that the universe is radiation dominated that early, and we
neglect our interaction models and use ΛCDM. Next, we use a cubic spline,
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so that when we later need to know any of these quantities at a time N that
is not in our grid, we use a cubic spline method to interpolate to our point
using a third degree polynomial. The routine that does these computations
was given to me by an earlier lecturer, and I will not go into more details
about those.

9.3.2 Recombination

Next, we look at recombination. We set up another grid over N that runs
through recombination (from −7.3966 to −6.4220), using 1000 points. We
are going to compute the free electron fraction, defined in Equation 9.4 in
our recombination grid. The initial condition is Xe(N = −7.3966) = 1 - the
universe is completely ionized before recombination. Then we use the Saha
Equation 9.5, which is algebraic, when Xe ≥ 0.99. When Xe < 0.99, we use
the Peebles Equation 9.6, which is a differential equation. When we have
the free electron fraction, we can compute the electron number density, the
optical depth τ and its first and second derivative, Equation 9.3, and the
visibility function g and its first and second derivative, Equation 9.7. We
spline each of these functions, so we can use them for any value of N later
on.

9.3.3 Structure evolution

So comes our perturbation quantities. We start by setting up a set of
wavenumbers that we wish to use. We start at k0 = 0.0001H0 and end
at kn = 10H0, using this distribution:

ki = k0 ·
(
kn
k0

) i
n

.

When we then start counting at i = 1, we see that our lowest wavenum-
ber, k1, is 0.0011. Now we can set our initial conditions (some of which
depends on k). Then we need to know at which N the tight coupling
regime ends. We use the condition in Equation 9.11. We solve the tight
coupling equations up to this point, then we turn to the full set of equa-
tions, solving through our grid that we set in the beginning. We end up with
Θl(k,N), δb(k,N), δDM(k,N), δDE(k,N), vb(k,N), vDM(k,N), vDE(k,N),
Φ(k,N) and Ψ(k,N). We will look closer at the energy-density pertur-
bations, and so we write out these with varying wavenumber for redshift
z = 1100 (recombination) and z = 0 (today), and as a function of N (or
redshift), for the smallest and largest wavenumber I have used.

9.3.4 Interaction strength

At last, we must set values for the interaction parameters. We start with the
ΛCDM model: α = β = γ = 0 - no interactions at all. Then we will study
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models with one interaction active, and then models with two interactions
active.

An important question is then what non-zero values we should use for the
interaction parameters. With three different interaction parameters, there
are a whole lot of different models to study. First, I have limited γ to be
non-negative, since there will be an instability if γ is negative [25]. I also
think it is more interesting to study how the universe models differs when the
signs of the interaction parameters change, and so I have chosen, by trial and
error, to set the absolute value of any non-zero interaction parameter to 0.01.
The observational constraints we looked at earlier suggests that the interac-
tion parameters should be even smaller, but let us look at more hypothetical
universes for now. The stronger the interactions are, the more exotic the uni-
verse models can be. So with a set value of the magnitude of the interaction
parameters, and the stability criteria for γ, we get five different universe mod-
els when one interaction is active, which I will label {α+, α−, β+, β−, γ},
and eight different universe models when two interactions are present, which
I will label {α+ β+, α+ β−, α− β+, α− β−, α+ γ, α− γ, β + γ, β − γ}.

When displaying the results, we are always interested in comparing them
to the ΛCDM model. Therefore, for the two matter components, I will
plot the ratio of the density fluctuation δb,DM in my model to the density
fluctuation δ(b,DM),0 for the ΛCDM model. We also square to make the
quantity positive (I want to use logarithmic axes), and to smooth out some
of the curves:

∆2 =
δ2

δ2
0

. (9.12)

For dark energy, there are no perturbations in the ΛCDM model, and so
I will plot δ2

DE directly. I will also plot the sign of δDE, which is given by
δDE/|δDE|, so we can see when we have overdensity or underdensity of dark
energy.

9.4 Results

Now we can run our simulations and see what kind of universes we get. We
start with no interactions, the ΛCDMmodel, then we turn on one interaction,
then two interactions.

9.4.1 No interactions

For the ΛCDM model, we have α = β = γ = 0. In this case, we will look at
some of quantities in the background universe and the recombination era as
well, these are displayed on Figure 9.1 on the next page: The energy-density
parameters Ω follow the well-known evolutions, as in the upper left plot.
The evolution of the free electron fraction Xe is shown on the upper right
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Figure 9.1: The density parameters, the free electron fraction, the optical depth
and the visibility function, all for the ΛCDM model.

plot. In the lower left plot is the optical depth τ and its first and second
derivative, and in the lower right is the visibility function and its first and
second derivative, the latter two scaled by 1/10 and 1/300 so they all fit the
same scale.

Moving on to the energy-density perturbations, we see from our equations
that if β and γ are both zero, there are no perturbations for dark energy. So
these will not be plotted for those cases. We now plot the perturbations ∆2

b

for baryons and ∆2
DM for dark matter according to Equation 9.12, in four

cases: varying redshift for two wavenumbers, and varying wavenumber for
two redshifts. The fluctuations are squared to avoid negative values, since
we want to use logarithmic scales. All plots are shown on Figure 9.2 on
the following page, note that the line for ∆2

DM is multiplied by 10, to avoid
overlapping.

At last, we want to study how the perturbation Ψ in the gravitational
potential evolve. For the ΛCDM case, it is shown on Figure 9.3.

9.4.2 One interaction

Now we turn on one of the interaction parameters. As mentioned earlier, I
have set the magnitude of the interaction parameter to 0.01, and will study
how the perturbations evolve with different signs on the interaction parame-
ters. Due to the instability mentioned earlier, γ will always be non-negative,
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Figure 9.2: δb and δDM for the ΛCDM model. All plots have logarithmic axes.

and so we have five different models with one interaction. The two models
where α is active will not touch the dark energy, and so there will be no
perturbations in the dark energy density. Therefore, δDE will not be studied
for these cases. When displaying the results, I will plot ∆2 defined in Equa-
tion 9.12 for the matter components, and δ2

DE and δDE/|δDE|for dark energy,
comparing all five models in the same plot (three models for dark energy).

It may also be interesting to study the evolution of the density parameters
Ω for the different models. I have picked out two of them, the one with α =
0.01 and the one with β = −0.01. The evolutions are shown on Figure 9.4 on
the next page. Remember that we here have used the ΛCDM values today
as initial conditions, and integrated backwards in time.

Baryonic matter

We first look at the density fluctuation ratio for baryonic matter, ∆2
b . We

have four cases, two with constant wavenumber k = 0.1H0 and k = 1000H0,
and two with constant redshifts z = 1100 and z = 0. All cases is shown in
Figure 9.5 on page 124.

Dark matter

Turning to dark matter, we plot ∆2
DM. Again we have four cases, two with

contant wavenumbers and two with constant redshift. The plots are in Fig-
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Figure 9.4: The evolution of the density parameters Ω(N), integrated backwards.
On the left plot, we have α = 0.01 and on the right plot, we have β = −0.01.

ure 9.6 on the next page.

Dark energy

Now we will look at dark energy. Since there are no density fluctuations to
compare with in the ΛCDM model, I will plot δ2

DE directly. The square is
there to make all values non-negative, so that I can have logarithmic scales.
The plots for the four cases (each case now having only three models) is
displayed in Figure 9.7 on page 125. Now, δDE may also be negative, which
represents an underdensity of dark energy. It is important so wee when that
is the case, and so I have plotted the sign of δDE as well, in Figure 9.8 on
page 125.

The gravitational potential

At last we will look at the perturbations in the gravitational potentials.
They are shown on Figure 9.9 on page 126. For the two cases with fixed
wavenumbers and the first case with fixed redshift, I have plotted the dif-
ference Ψ − ΨΛCDM, and used linear y-axis. For the second case with fixed
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redshift, I have plotted the ratio Ψ2/Ψ2
ΛCDM, and used logarithmic y-axis.

9.4.3 Two interactions

Now we turn on two of the interactions. Here we have are eight different
models to look at, and all the models will produce dark energy density fluc-
tuations. All plots will be divided into two parts, one where α and β are
active, and one where γ and either α or β are active. For the matter com-
ponents, we will study ∆2 according to Equation 9.12, and for dark energy,
we will study δ2

DE directly, and the sign of δDE.
For the evolution of the density parameters Ω, we have looked at four

of the models: α = β = 0.01, α = −β = 0.01, α = β = −0.01 and
α = γ = 0.01. Again, we have used the ΛCDM values today as initial
conditions and integrated backwards in time. The evolutions are displayed
on Figure 9.10 on the next page.

Baryonic matter

We study ∆2
b for a total of eight models, and the usual four cases: two

with fixed wavenumber, and two with fixed redshift. The plots with fixed
wavenumber are on Figure 9.11 on page 128, and the plots with fixed redshift
are on Figure 9.12 on page 128.
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Figure 9.10: The evolution of the density parameters Ω(N) for four different models:
top left is α+ β+, top right is α+ β−, bottom left is α− β− and bottom right is
α+ γ+.

Dark matter

Here we study ∆2
DM for the eight models and four cases. For fixed wavenum-

ber, look at Figure 9.13 on page 129, and for fixed redshift, see Figure 9.14
on page 129.

Dark energy

Now we will study the dark energy density fluctuation δDE, both the magni-
tude through δ2

DE, and the sign through δDE/|δDE|. For fixed wavenumber,
see Figure 9.15 on page 130 for the magnitude, and Figure 9.18 on page 131
for the sign. For fixed redshift, have a look at Figure 9.17 on page 131 for
the magnitude and Figure 9.18 on page 131 for the sign.

The gravitational potential

Finally, we will look at the perturbations in the gravitational potentials, Ψ.
On Figure 9.19 on page 132, we have the cases where the wavenumber k is
fixed, and on Figure 9.20 on page 132, we have the cases where the redshift
z is fixed. In most of the plots, I have plotted the difference Ψ − ΨΛCDM
and used linear y-axis, but in a few plots were the differences were greater,
I have plotted the ratio Ψ2/Ψ2

ΛCDM, and used logarithmic y-axis.
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Figure 9.11: Baryonic matter density fluctuation ratios, fixed wavenumber. Upper
plot have wavenumber 0.0011H0, lower plot have wavenumber 10H0. Logarithmic
axes.
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Figure 9.12: Baryonic matter density fluctuation ratios, fixed redshift. Upper plots
have redshift 1100, lower plots have redshift 10. Logarithmic axes.
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Figure 9.13: Dark matter density fluctuation ratios, fixed wavenumber. Upper plot
have wavenumber 0.0011H0, lower plot have wavenumber 10H0. Logarithmic axes.
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Figure 9.14: Dark matter density fluctuation ratios, fixed redshift. Upper plots
have redshift 1100, lower plots have redshift 10. Logarithmic axes.
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Figure 9.15: Plots of δ2DE, fixed wavenumber. Upper plot have wavenumber
0.0011H0, lower plot have wavenumber 10H0. Logarithmic axes.
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Figure 9.16: Sign of δDE, fixed wavenumber. Upper plot have wavenumber
0.0011H0, lower plot have wavenumber 10H0. The values are scaled differently
so we can tell the lines apart. Logarithmic x-axis.
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Figure 9.17: Plots of δ2DE, fixed redshift. Upper plots have redshift 1100, lower
plots have redshift 10. Logarithmic axes.

100 101 102 103

Wavenumber k/H0

5

0

5

si
gn

(
D
E
)

Dark energy, redshift z ~ 1100

+ +

+

+

100 101 102 103

Wavenumber k/H0

5

0

5

si
gn

(
D
E
)

Dark energy, redshift z ~ 1100

+ +

+

+ +

+

100 101 102 103

Wavenumber k/H0

5

0

5

si
gn

(
D
E
)

Dark energy, redshift z = 0

+ +

+

+

100 101 102 103

Wavenumber k/H0

5

0

5

si
gn

(
D
E
)

Dark energy, redshift z = 0

+ +

+

+ +

+

Figure 9.18: Sign of δDE, fixed redshift. Upper plots have redshift 1100, lower plots
have redshift 10. The values are scaled differently so we can tell the lines apart.
Logarithmic x-axis.
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Figure 9.19: Perturbations in the gravitational potential Ψ, fixed wavenumber.
Upper plots have wavenumber 0.0011H0, lower plot have wavenumber 10H0.
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Figure 9.20: Perturbations in the gravitational potential Ψ, fixed wavenumber.
Upper plots have wavenumber 0.0011H0, lower plot have wavenumber 10H0.
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Chapter 10

Structure formation analysis

Now we have went through the energy-momentum conservation equations
and the Einstein equations for a universe described by the perturbed metric
in Equation 8.1, and we have solved them numerically, giving us the evolution
of the energy-densities when we have interaction between the components of
the universe. It is time to look at these results, to see what they tell us about
the basics of structure formations, and how the interaction models affect the
structure formations compared to the ΛCDM model.

10.1 No interactions

We started out with a model where none of our interactions were present.
We first look at the energy-density contrasts, defined in Equation 8.5, and
plotted in Figure 9.2 on page 122. From the upper plots, we see that the
fluctuations grow in time, and they grow faster for the higher wavenumbers.
This is due to the horizon growing, so causal physics can act over more
than one wavelength. The smaller the wavelength (larger wavenumber) is,
the earlier the horizon covers the whole wavelength, and the perturbations
can grow more. Also notice the oscillations in the upper right plot, these
are baryon acoustic oscillations. The same features can bee seen in the
lower plots, that the perturbations grows more for large wavenumbers, and
grow monotonically in time for the wavenumbers I look at. We also see
BAO at early times for high wavenumbers. Note that since there are no
interactions active, there will be no perturbations for dark energy, and so
there are no lines for that component. At last, we have the perturbations
in the gravitational Ψ in Figure 9.3 on page 123. For high wavenumbers
and low redshifts, Ψ is close to zero, while for low wavenumbers and high
redshifts, it is closer to 0.7. When we look back, we know that the initial
value is −1, and so we see that Ψ goes towards zero, but slower at lower
wavenumbers, since causal physics affects over one wavelength at later times
than at higher wavenumbers.
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Now we look back to the plots in Figure 9.1 on page 121. The evolu-
tion of the energy-density parameters {Ωb,ΩDM,ΩDE,Ωr} are plotted in the
upper left, and we see the well-known evolution from early radiation domi-
nation, through the matter domination and all the way to the dark energy
domination today. I have plotted the free electron fraction Xe as a function
of redshift (notice that this z-axis goes the other way) in the upper right,
and we see the usual evolution that the universe goes towards being neutral
through recombination. The optical depth τ , along with τ ′ and τ ′′, is plotted
in the lower left, and there we see that the universe goes from being opaque
( τ � 1) to transparent (τ � 1) during recombination. On the plot in the
lower left, we have the visibility function g, and we can see that a given
photon from space was most probable last scattered during recombination.

Our results agree with Dodelson [17], where more details about structure
formations in the ΛCDM model can be found.

10.2 One interaction

Now we turn one one interaction. As before, we are studying five different
models. The magnitude of the active interaction parameter is always 0.01.

10.2.1 The baryons

For the baryons, we have plotted ∆2
b as defined in Equation 9.12, both

as a function of redshift for two fixed wavenumbers, and as a function of
wavenumber for two fixed redshifts. All the plots are in Figure 9.5 on
page 124.

The main feature we see is that we get more baryons if α or β is posi-
tive than if they are negative. There are stronger variations for the largest
wavenumbers (smallest length scales) and the lowest redshift, since causal
physics have had more time to act at small scales and late times. At redshift
z = 1100, we can see oscillations when k is larger than 100H0 for all five
models, while at z = 0, we can see oscillations at all length scales when α is
positive. There might be oscillations for some other models as well, but they
are way weaker. These large oscillations are probably caused by a numerical
instability, since it would be very strange that δ2

b in this model should be a
factor of 103 larger than the ΛCDM case. We also see oscillations when z
is varying, more at larger wavenumbers and higher redshifts - these may be
related to the baryon acoustic oscillations that we see in the ΛCDM model.

Now, the way that the matter components affect the expansion of the
universe differently than dark energy gives some exceptions, and that is also
why γ being non-zero gives ∆2

b different from one, even though γ is not
directly connected to the baryons. The abundance of baryons and of the
other two components also plays a role, of course. The evolution of the
abundance is shown on Figure 9.4 on page 123 for two models.
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10.2.2 Dark matter

For dark matter, we have plotted ∆2
DM, with the usual two wavenumbers

and redshift, as a function of the other variable. The plots are displayed on
Figure 9.6 on page 124.

As in the baryon case, we get more dark matter than in the ΛCDM model
if α is negative or γ is positive, since these values directly gives more dark
matter. We see that β have only very weak effect on ∆DM, as expected. As
usual, there are almost no variations at small wavenumbers/large scales and
high redshifts. Today, we can see a lot of oscillations when α is positive.
These are the same oscillations as we saw in the baryonic matter case, and
are probably caused by a numerical instability, due to the huge amplitudes.
Also notice the huge variation when k = 1000H0 and α = 0.01 - we actually
get a higher dark matter fluctuation after z = 40 here compared to when
α = −0.01. This may again be related to the abundance of baryonic matter
and dark matter.

10.2.3 Dark energy

When we study dark energy, we look directly at δDE, since there are no
fluctuations in for dark energy in the ΛCDM model we can compare to. In
figure 9.7 on page 125, we have the magnitude of δDE through δ2

DE, and in
Figure 9.8 on page 125, we have the sign of δDE.

Starting with the sign of δDE, we see that when β or γ are positive,
we always get a negative sign - which means negative fluctuations. This is
because these models goes from dark energy to the other components. When
β is negative, we have a model that gives more energy in dark energy, and
the sign can be positive, giving overdensities. We also see a lot of oscillations
in this model, which may be related to BAO, or numerical instabilibies.

For the magnitude, we see that when β or γ are positive, the underdensity
grows, the growth being stronger at higher wavenumbers and lower redshifts.
During recombination, there are also some oscillations when β is positive
at low redshifts. These are connected with the oscillations in the baryon
fluctuations. The same goes for the oscillations we see when β is negative.
When k = 1000H0, the oscillations die out at low redshifts, when the dark
energy starts to dominate because of the expansion of the universe. At
z = 1100, the oscillations are only present at the highest wavenumbers, since
causal physics have had longer time to work on those scales than on the
larger scales.

10.2.4 The gravitational potential

In Figure 9.9 on page 126, we compare the inhomogeneities in the gravita-
tional potential, Ψ, to the ΛCDM model. When the differences are small, I
have plotted the difference Ψ − ΨΛCDM directly, using linear scales. When
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the differences are larger, I have plotted the ratio Ψ2/Ψ2
ΛCDM, and used

logarithmic axes.
We can see that when we have interaction that goes towards dark matter

(α− and γ+), we get a lower value for Ψ, while if we have interactions going
away from dark matter (only α+), we get a higher value for Ψ, compared to
the ΛCDM model. Now, remember that Ψ is usually negative in the ΛCDM
model, so we get stronger inhomogeneities in the gravitational potentials
when we have more dark matter. This is logical, since dark matter is the
most important source of gravitational potentials, especially at the largest
scales. This brings me over to the next point - the differences are smaller
at smaller scales, especially early on, like at z = 1100. At later times, dark
energy has started to dominate, and the differences vary a lot more, as we
can see in the lower right plot.

10.3 Two interactions

When we now have seen how one active interaction affects our perturbations,
let us turn on one more interaction. Both active interaction parameters will
have magnitude 0.01. Since we have eight different models, I have splitted
the plots into two parts, one with α and β active, and one with γ and either
α or β active. Much of the analysis will be the same as in the one interaction
case, and I will mostly try to point out the differences to the one interaction
case.

10.3.1 The baryons

For the baryons, the cases with fixed wavenumber is in Figure 9.11 on
page 128, and the cases with fixed redshift is in Figure 9.12 on page 128.

As in the one interaction case, we see see oscillations in the baryonic mat-
ter density fluctuations at high redshift and high wavenumbers. These are
related to the baryonic acoustic oscillations we have in the ΛCDM case, but
they are shifted either upwards or downwards, depending on the interaction
parameters. In the plots where γ is active together with either α or β, we
see that α gives a larger difference to the ΛCDM model than β does at late
times. This is connected to the abundance of dark matter being greater than
the abundance of dark energy earlier, giving more time for the interaction
to have an impact on the fluctuations.

10.3.2 Dark matter

For dark matter, the cases with fixed wavenumber is shown on Figure 9.13
on page 129, and the cases with fixed redshift is in Figure 9.14 on page 129.

We see that there are larger differences to the ΛCDM model at late times
and large wavenumbers, since causal physics have had more time to act on
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these scales. During recombination, the differences are largest for the largest
wavenumbers, since the clustering goes slower at these scales. Today, we see
oscillations when α is positive, these are again realted to BAO. As expected,
β does not have a very large impact in the dark matter cases.

10.3.3 Dark energy

Now we look at the dark energy. For fixed wavenumber, the magnitude of
δDE is illustrated on Figure 9.15 and the sign on Figure 9.16 on page 130. For
fixed redshift, see Figure 9.17 for the magnitude and Figure 9.18 on page 131
for the sign.

Again, when the interactions are active, we do get fluctuations in the
dark matter energy-density. These fluctuations are mostly positive when γ
is zero, and mostly negative when γ = 0.01, and some cases of oscillations
today, redshift z = 0, when coupeled to baryons. We see that the oscillations
are stronger when also α is positive, even though α is not directly related
to the dark energy. These strong oscillations is most probably caused by
numerical instabilities.

For all cases, we see that the magnitude of the fluctuations are larger for
smaller scales and later times.

10.3.4 The gravitational potential

Finally, we look at the fluctuations in the gravitational potential Ψ. See Fig-
ure 9.19 on page 132 for the cases with fixed wavenumbers, and Figure 9.20
on page 132 for the cases with fixed redshift.

When the wavenumber is fixed, we see that the deviations from the
ΛCDM model are fairly small early on, and growing later. For the (α−, γ+)
model, the deviations are great compared to the other ones. In this model,
both interactions goes towards dark matter, the most important source of
gravitational potentials, so this may be expected.

When the redshift is fixed, we see that the differences are largest at the
largest scales, and pretty small at the smaller scales, during recombination.
This again has to do with causality. Today, we see oscillations when α is
positive. For the same reason as before, the model (α−, γ+) has the largest
impact on Ψ.
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Epilogue

The time is almost out, and there are still lots of stuff that can be done in
the studies of a universe with interacting components. I will now put up a
summary of what we have done with the interaction models, and then I will
write some words of what can be done in the future.

Summary and conclusions

The background universe

We now go all the way back to the background universe, which starts with
the FRW metric in Equation 1.1 and the interaction model in this metric,
Equation 2.6. We studied universe models where either one or two of the in-
teractions were present, and in those cases, we found the analytical solutions
to the equations, and we studied the stability of these solutions.

One interaction

For the three cases with one active interaction, which we looked at in Chapter
3, I make this conclusion:

• To get the analytical solution in a straight forward way, we use methods
from linear algebra by writing the equation set as a matrix equation
and find the eigenvalues and eigenvectors of the matrix. We also make
some substitutions to decouple the system and get analytical solutions
that are easier to interpret.

• To study the stability of the solutions, we write the equations in terms
of the density parameters. The Friedmann constraint, Equation 2.7,
can be used to eliminate one of the equations. We then use Equation
2.9 to study the stability of the solutions.

• When α is active, we make the substitutions ρM = ρb + ρDM and
S = ρDM/ρM. Since both matter components are pressureless, we get
the simple solutions ρM = ρ

(0)
M (1 + z)3 and S = 3αN + S0. For the

stability, we either get ΩDE = 0, which also gives α = 0, and we have no
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interaction, or ΩDE = 1, a universe totally dominated by dark energy,
independent of α. Both these critical points are stable.

• When β or γ is active, we get analytical solutions on the same form.
We make a common energy density of the two components ρ = ρb,DE +
ρDE and a ratio R = ρDE/ρb,DM. When β is active, ρ(N) is given in
Equation 3.10, and R(N) is given in Equation 3.11. When γ is active,
we get ρ(N) from Equation 3.7 and R(N) from Equation 3.8.

• For the stability, we can get two critical points with different stability
depending on the interaction strength. If γ or β is between 0 and 1/4,
we can have a stable solution.

Two interactions

For the three cases with two active interactions, which we looked at in Chap-
ter 4, I make this conclusion:

• We use methods from linear algebra to find the analytical solutions.

• When studying the stability, we make region plots, showing where
each of the three critical points exists, and what kind of stability they
have. We also show where the critical points are real, and where the
Friedmann constraint is fulfilled, and we make some phase maps to
show the evolution of the system for a given combination of interaction
parameters.

• In all three cases, we could always find a stable critical point where
the Friedmann constraint is fulfilled.

Observational constraints

For the second part of this thesis, we worked with observational data to see
if the interaction models could be used to describe the universe we live in,
and how strong they could be.

Supernova Ia

We started with the Union2 data set comprising 557 supernova type Ia,
which we looked at in Chapter 5.

• Supernovae type Ia are exploding white dwarfs, which all are very
similar. They then have approximately the same absolute magnitude,
and they are standardazible candles.

• Our data set, the union two, consisted of redshift and apparent mag-
nitude of 557 type Ia supernovae.

140



• We worked with models with one and two active interactions. When
one interaction was active, we also included ΩDM,0 as a free parameter,
and got some constraints on that as well. In the two interaction case,
ΩDM,0 was fixed to 0.224, the best fit value in the ΛCDM model.

• In the one interaction case, we got no constraints on α, since baryonic
matter and dark energy affects the expansion of the universe in the
same way. When α was active, the best value for ΩDM,0 seemed to be
around 0.22, close to the ΛCDM value for ΩDM,0.

• We got some weak constraints on β, γ and ΩDM,0 with one interaction
active, with higher value for the active interaction parameter giving a
higher value for ΩDM,0.

• In the two interaction case, we got some weak constraints on α, since
it indirectly affects the other interaction. We got stronger constraints
on β and γ, one balancing for the other.

• We concluded that we get no statistical evidence proving that the in-
teractions are present, but such models are possible. Supernova Ia
gives rather weak constraints, allowing quite strong interactions. This
is due to the supernovae in the data set being rather close to us, all
below a redshift of 1.5.

Baryon acoustic oscillations

In Chapter 6, we used data from observations of baryon acoustic oscillations
(BAO) to constrain our models.

• We used a total of six data points of BAO from three different surveys.

• The model constraints were based on the comoving sound horizon at
recombination, and is an example of a standard ruler. The data were
obtained through observations of galaxies.

• In contrast to the supernovae Ia studies, we included correlations in
our data, which makes this case a little bit more complicated.

• We did two cases, the first with one interaction active together with
having ΩDM,0 as a free parameter, and one with two active interactions
with ΩDM,0 = 0.224, the best-fit value in the ΛCDM model.

• In the one interaction case we got no constraints on α, since the matter
components affects the expansion of the universe in the same way.
For ΩDM,0, a value around 0.22 seemed to be favored. We got some
weak constraints on β, and stronger constraints on γ, since the dark
components are the dominating components of the universe in the time
eras we are working with here.
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• In the two interaction case, we get some weak constraints on α, since
it indirectly affects the other active interaction. When β and γ were
active, they seem to balance each other.

• As in the supernovae Ia case, we get no statistical evidence for or
against my interaction models: they can be present, but the ΛCDM
model also fit.

• The constraints from BAO are also weak, allowing quite strong in-
teractions, but the constraints are stronger than in the supernovae Ia
case.

The cosmic microwave background

In Chapter 7, we used data based on the cosmic microwave background to
constrain our models.

• We used data from the WMAP satellite for three quantities related to
the CMB: The redshift of the CMB, the acoustic scale, and the shift
parameter.

• The data were correlated, as in the BAO case.

• We studied models with one and two interactions active, the first with
ΩDM,0 being a free parameter as well.

• When one interaction was active, we got no constraints on α for the
same reasons as in the supernovae Ia and BAO cases, and ΩDM,0 should
be around 0.22. We did get constraints on β and γ, the magnitude
should be smaller than 0.01.

• With two interactions active, we got some weak constraints on α for
the same reasons as before, and we got constraints on both β and γ.

• As in the supernovae Ia and BAO cases, we can not conclude anything
about the presence of my interaction models.

• Compared to the supernova Ia and BAO cases, we get significantly
stronger constraints now, since the observations we are working with
are at way higher redshifts than the supernovae Ia and BAO.

Structure formations

In the third part of the thesis, I studied how my interaction models would
affect the evolution of inhomogeneous perturbations in the metric and the
energy-densities of the components, which is what makes structures in our
universe.
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• In Chapter 8, we set up perturbations in the metric tensor and the
energy-densities of the components.

• We used the interaction models in a covariante form to see how they
looked in our new metric.

• Then we went through the energy-momentum conservation equations
to get equations for the evolutions of the density fluctuations with the
interactions present.

• We gave a summary of the deviations of the Boltzmann equation for
photons and the Einstein equations, which are known from the ΛCDM
model, and we set initial conditions to our equations based on the
ΛCDM model.

• Fourier transforming our equations got us from coupeled partial dif-
ferential equations to an infinite set of ordinary differential equations,
which were decoupled on different length scales.

• In Chapter 9, we rewrote our equations to a form fitted for numerical
simulations.

• Then we looked at numerical instabilities in the tight coupling regime,
and we studied some of the physics in the recombination era, which we
needed to know.

• Next, we solved our equations through time and at different length
scales.

• We plotted our results using the ratio to the ΛCDM model for easy
comparison.

• In the end, we saw that my interaction models had a lot of impact on
the structure formation, which interactions were active and which way
they were going gave way different universes.

• Numerical issues also seemed to be present in my results, giving oscil-
lations with very large amplitudes in some cases.

The road ahead

Even though I have gone through studies of the background universe, obser-
vational constraints and structure formations, there are still a lot of things
that can be done connected to my interaction models.
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Three interactions

As we have went through this thesis, I have never worked with cases where
all three interactions have been present at once. There are numerous reasons
for that, the most important one being time. The priority was to get through
all three parts, and then the cases with one and two interactions took time
enough. Also, since a third interaction makes up a dimension, a lot of the
results must be displayed in another way, and I never did any exploration
in this area. I was considering going further with observations, doing Monte
Carlo simulations and such, but I did not get the time.

A fourth interaction

We saw in Chapter 8 that the baryons were interacting with the photons
through Compton scattering, and this was not included in my interaction
models from the beginning. It is possible, and maybe interesting, to study
models were the components couple to photons as well, which we know that
they do. Baryons couples directly to the photons through Compton scat-
tering as we have seen, dark matter sets up gravitational potentials that
we know affect the photons, and dark energy drives the acceleration of the
expansion of the universe, which redshifts the photons within it. Interac-
tions to photons can be implemented as the three other interactions were by
adding a new term in the interactions, and setting up a new equation for the
photons, but one has to be careful when doing this. Changing the physics of
the photons will have a large impact on almost every area of astrophysics,
since photons make up all the observations we have. The luminosity distance
and the black body spectrum of the CMB are among the things that can
change. Still, such interaction models may be something to study in the
future.

Big Bang Nucleosynthesis

We used data from supernovae Ia, baryon acoustic oscillations and the cosmic
microwave background to get constraints for the strength of our interactions.
These never gave any direct constraints on the parameter α, since baryonic
matter and dark matter affects the expansion of the universe in the same
way after recombination. However, data based on the time epoch called
Big Bang Nucleosynthesis (BBN), where nucleis of hydrogen, helium and
some lithium were formed, could tell us something about the abundance
of baryonic matter compared to dark matter, and this could then directly
tell us something about α. The standard constraint from BBN is that the
Hubble expansion rate at that time cannot vary more than about 10 % from
the standard model.
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A model for the interactions

Through the studies of my interaction models in this thesis, I have only
focused on how the interaction models affects our universe. I have never
mentioned how the interaction models work, the mechanisms that drive the
interactions. A possibility would be some kind of scalar field. Again, there
were not enough time to do this, since it was not a priority, but it may be
interesting to study this sometime.
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Appendix A

The general theory of relativity

In this appendix, I will give a short summary of the general theory of rel-
ativity, which will go from the basic assumptions to the results we need in
this thesis. I have set the speed of light c equal to one. The text in this
appendix is based on some small parts of the book by Grøn and Hervik [26],
and some lecture notes by Øystein Elgarøy [27].

A.1 The principle of equivalence

One of the most difficult concepts in physics is mass. In one way, everyone
knows what mass is, since we use it every day from the day we are born.
Mass then tells us how heavy something is. But if one looks closer to this,
it can actually be quite difficult to define precisely what mass really is, and
the easiest way of thinking of mass is how we measure it.

In Newtonian mechanics, the mass of an object appears in two ways: as
inertial mass in Newton’s second law F = ma, which applies to any force,
and as gravitational mass in Newton’s law of gravitation FG = GMm/r2,
which only applies to the force of gravity. If an object is only affected by
gravity, then one can combine the two laws, which, with a suitable choice of
units, tells us that the two masses are the same, even though they actually
are defined through way different physical phenomena. The principle of
equivalence says that these two masses are equal.

From this, and the definition of a gravitational field as the force of gravity
acting on an object divided by the objects mass, the combination of New-
ton’s second law and Newton’s law of gravitation along with the principle of
equivalence then says that a gravitational field is equal to an acceleration.
And so, the principle of equivalence also states that a gravitational field
is equivalent to an accelerated reference frame. The related acceleration is
locally called the acceleration of gravity.
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A.2 Distances and the metric tensor

If we want to do specific physical computations, we need a coordinate system.
In the theory of relativity, such a coordinate system needs four dimensions,
one time dimension, labeled by 0, and three spatial dimensions, labeled by
1, 2 and 3. Physical quantities will have to be labeled by the basis of this
coordinate system, using subscrips and superscrips as indices. A Greek index
can be any dimension, and runs from 0 to 3. A Latin index is always a spatial
dimension, and runs from 1 to 3.

When choosing a coordinate system, we choose a basis, a set of vectors
eµ that span our coordinate system. From the basis vectors, we obtain the
metric tensor through the scalar product: gµν = eµ · eν . The metric tensor
is actually the definition of the dot product between two basis vectors, and
it has two main purposes:

• Measure distances through the invariant line elemend ds2.

• Isomorphism between a tangent plane and its dual.

We take the first one first. The coordinates of points in space depends on
our coordinate system, but the distance between two points does not - if we
define this distance properly, using all four dimensions. If we have two points
in our space with an infinitesimal separation dxµ in our coordinate system,
we can define the line element ds2:

ds2 =
∑
µ

∑
ν

gµνdx
µdxν = gµνdx

µdxν . (A.1)

Now, ds2 does not depend on what basis we have - it is invariant. By the
way, here is the first example of Einstein’s summing convection - repeated
indices are summed over.

The metric tensor is also used for raising and lowering indices. If we have
a component vµ of a vector or a component vµ of a one-form (a function that
acts on a vector to produce a real number), we can use the metric tensor to
find the components of the corresponding one-form/vector:

vµ = gµνv
ν vµ = gµνvν .

This can be extended to tensors of higher rank by adding more factors of the
metric tensor. So for this mixed tensor of rank three, for example, we have

T βγα = gαρg
βσgγτT ρστ .

The metric tensor then allows us to establish a correspondence between
covariant and contravariant tensors. From this, we also see that gµν is the
inverse of gµν .
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A.3 Proper time and four velocity

In this section, I will define two important concepts: the invariant quantity
called the proper time, and the four vector quantity called the four velocity.
First, we choose a coordinate system (which then has a given basis), and
label points in our coordinate system by xµ. Now we imagine that we have
a particle in our coordinate system with fixed spatial position xi, but with
changing time t = x0 of course. The line element ds2 then reads

ds2 = gµνdx
µdxν = g00dt = −dτ2.

To the last equality, I have used that only one term survives, (dx0)2, which I
then have labeled dt2. The line element is then a time component, the time
measured on a clock following this particle (which does not move through the
three-space in our coordinate system). This quantity is then also invariant,
and we call it the proper time, labeled by τ . The sign is there only for conve-
nience. Now we set up a particle that moves in our coordinate system. This
particle will also have a proper time, since we can have another coordinate
system that follows this particle. We want to compute the velocity of this
particle in our coordinate system. We then define the four velocity uµ of the
particle as the position xµ differentiated with respect to the proper time τ
of the particle:

uµ =
dxµ

dτ
. (A.2)

From this definition, one can show a useful relation called the four velocity
identity :

uµu
µ = gµνu

µuν = −1. (A.3)

A.4 Covariant differentiation

Covariant differentiation deals with differentiating tensors in a way that is
independent of basis. The tensor must then be differentiated with respect
to an invariant parameter. We will use the proper time τ as this invariant
parameter. For a scalar - a tensor of rank zero, this would be straight forward,
and may serve as a good example for introducing useful notation: a comma
denotes partial derivative with respect to the corresponding coordinate. So
if we have a scalar field φ(xµ), we can write

dφ

dτ
=

∂φ

∂xµ
dxµ

dτ
= uµ∂µφ = uµφ,µ.

Here, I have used the four velocity, and introduced two alternative ways to
label the partial derivative (comma and ∂µ). Also note that an upper index
in a denominator corresponds to a lower index in a numerator.
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Now, let us move on to a vector A, a tensor of rank one. We write it as
a linear combination of our basis vectors: A = Aµeµ. Differentiating, we get

dA
dτ

=
d

τ
(Aµeµ) = eµ

dAµ

dτ
+Aµ

deµ
dτ

.

We take a closer look at the last term, defining the connection coefficients
Γαµν :

deµ
dτ

= Γαµν
dxν

dτ
eα = Γαµνu

νeα. (A.4)

If our basis is a coordinate basis (which means that the basis vectors are par-
tial derivative operators), we call the connection coefficients the Christoffel
symbols. The Christoffel symbols are symmetric in the two lower indices:
Γαµν = Γανµ. By using Hamilton’s principle and the Lagrange equation, one
finds this useful expression for the Christoffel symbols in terms of the metric
tensor:

Γαµν =
gαβ

2
(gµβ,ν + gβν,µ − gµν,β) . (A.5)

Back to the covariant derivative, inserting the four velocity and the con-
nection coefficients, we have

dA
dτ

= Aµ,νu
νeµ + Γµναu

νAαeµ

Now we remove the four velocity and the basis vector, and introduce two
notations for the covariant derivative, the ∇ and the semicolon:

∇νAµ = Aµ;ν = Aµ,ν + ΓµανA
α. (A.6)

This is then the covariate derivative of a vector component. This expression
can be generalized to a tensor of any rank. We will need this expression for
a mixed tensor of rank two. It will look like this:

∇µTαβ = Tαβ;µ = Tαβ,µ + ΓασµT σβ − ΓσβµT
α
σ . (A.7)

When ν = µ in Equation A.6, we have this useful formula for the covari-
ant derivative, which now is a divergence:

∇µAµ =
1√

|det(gαβ)|
∂

∂xµ

(√
|det(gαβ)|Aµ

)
. (A.8)

Note that α and β are not free indices, they are just there to label which
version of the metric we use.
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A.5 Some useful tensors

A tensor is a mathematical object which follows a specific transformation
rule: a component of a tensor written in one basis is a linear combination
of the tensor components written in another basis. All tensors have a rank,
which is zero or greater. A tensor of rank zero is a scalar, and a tensor of
rank one is a vector. For example, if we have a contravariant tensor T of
rank 3 written in the basis (eµ, eν , eσ), we write the components as Tµνσ,
and if we want to know the components of T in the basis (eµ′ , eν′ , eσ′), we
transform like this:

Tµ
′ν′σ′ =

∂xµ
′

∂xµ
∂xν

′

∂xν
∂xσ

′

∂xσ
Tµνσ.

From this, we can also see that if T has rank zero, there are no coefficients,
and so a scalar has the same value in all coordinate systems.

We have already met one tensor of rank 2, the metric tensor gµν . Another
tensor we need is the Ricci tensor Rµν . To define it, we first define the
Riemann curvature tensor, which is given by the connection coefficients and
the structure coefficients:

Rαβγδ = Γαβδ,γ − Γαβγ,δ + ΓµαδΓ
α
µγ − ΓνβγΓανδ − c

ρ
γδΓ

α
γρ.

Here, the structure coefficients cαµν comes into play, which are defined through
this commutator:

[eµ, eν ] = cαµνeα.

When we work with a coordinate basis, the connection coefficients reduce to
the Christoffel symbols, all structure coefficients are zero, and we can ignore
the last term in the Riemann curvature tensor.

If we contract the upper index with the middle lower index in the Rie-
mann curvature tensor (that is, setting them equal and summing over), we
get the Ricci tensor:

Rµν = Rρµρν .

The Ricci tensor can be found using the Christoffel symbols, by this formula:

Rµν = Γαµν,α − Γαµα,ν + ΓαβαΓβµν − ΓαβνΓβµα. (A.9)

If we contract the Ricci tensor, we get the Ricci scalar:

R = Rµµ = gµνR
µν . (A.10)

The Ricci tensor minus one half times the metric times the Ricci scalar gives
us the Einstein tensor:

Eµν = Rµν −
1
2
gµνR. (A.11)
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The Einstein tensor fulfills this equation:

∇µEµν = 0,

or, in other words, the Einstein tensor has zero covariant divergence. This
is an important point in Einstein’s field equations.

Next comes the energy-momentum tensor Tµν . There are multiple ways
to define it, and I will define it by the phase-space distribution function
f(xµ, Pµ)

Tµν = g

∫∫∫
P

1
(2π)3

√
−det(gαβ)

PµPν
P 0

fdP1dP2dP3. (A.12)

Here, the factor g is the degeneracy level, and is related to the internal
degrees of freedom of the component we are working with. Also note that
the determinant of the metric tensor is also basis-independent, so the indices
α and β are not free indices, they are just there to label the metric tensor.
The integral goes over the spatial momentum space. Now, if we have a
component that is a perfect fluid (a fluid that has no viscosity and no thermal
conduction), the expression for the energy-momentum tensor is way easier:

Tµν = (ρ+ p)uµuν + pgµν . (A.13)

Using covariant differentiation, conservation of energy and momentum
takes on a very simple form:

∇µTµν = 0. (A.14)

As in the case for the Einstein tensor, the energy-momentum tensor also has
zero covariant divergence.

A.6 Einstein’s field equations

In classical mechanics, we use Newton’s laws to find the equation of mo-
tion for an object. Einstein’s field equations are the equation of motion in
the general theory of relativity. There is a way to deduce Einstein’s field
equations from the variational principle, but I am not going to do that.
I will simply state that the two tensor with zero covariant divergence we
now have, the Einstein tensor and the energy-momentum tensor, are pro-
portional. The constant of proportionality is 8πG, where G is the universal
constant of gravity. This is the constant of proportionality that gives us the
correct result when we look at the limits between Newton’s law of gravity
and Einstein’s field equations. So, Einstein’s field equations, also called the
Einstein equations, reads

Eµν + gµνΛ = 8πGTµν , (A.15)
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where I have used one index upstairs and one index downstairs, since Tµν is
the easiest form of T to work with. Now, we get the Einstein from Riemann’s
curvature tensor, which we again get from the metric tensor. The Einstein
tensor contains the geometry of space. We get the energy-momentum tensor
from the energy-densities and pressure of what we have in our space, and
the Einstein equation then relates geometry of space and the contents of the
space. Or as Taylor and Wheeler says it in [28] - space tells matter how to
move, and matter tells space how to curve, through the Einstein equation.

Note the term with Λ in Einstein’s field equations- Einstein noticed that
one could add a constant to one side of the equation, and the equation would
still be fulfilled.
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Appendix B

Mathematical, numerical and
statistical methods

In this appendix, I will write about some of the mathematical, numerical
and statistical methods that we have used in this thesis.

B.1 Mathematical methods

Through the thesis, I have used a set of mathematical methods that I feel
needs a little bit more explanation, and that is what one finds in this section.
I will start with the linear algebra used for solving systems of differential
equations and studying the stability of the solutions, then I will explain
more details of some tricks used for manipulating equations, named after
some famous mathematicians.

B.1.1 Eigenvalues and eigenvectors

Two important concepts in linear algebra, which are strongly related, are
eigenvalues and eigenvectors. If one has an n × n matrix A, an eigenvalue
u ∈ C and an eigenvector v, which is a column vector with n rows, fulfills
this equation:

Av = uv. (B.1)

We see that v = 0 fulfills this equation for any u, and so v = 0 is not
considered an eigenvector. However, the eigenvalue u may be zero with a
non-zero eigenvector (then the eigenvector belongs to the kernel of A, since
it fulfills the equation Av = 0).

If we have the matrix A, we can find the eigenvalues through the char-
acteristic polynomial, since we know that the eigenvalues must fulfill this
equation, In being an n× n identity matrix:

(A− uIn)v = 0. (B.2)
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Since v is always non-zero, we know that the matrix A−uIn is not invertible,
and so the determinant of this matrix must be zero. This sets up the charac-
teristic polynomial, since the determinant of an n×n matrix is a polynomial
of degree n. So a n × n matrix have n complex eigenvalues, but some of
them may be equal. The characteristic equation is then∣∣∣∣∣∣∣∣∣

a11 − u a12 . . . a1n

a21 a22 − u
...

. . .
an1 ann − u

∣∣∣∣∣∣∣∣∣ . (B.3)

The eigenvectors v are found through the equation set Av = uv, when we
now know the eigenvalues u.

B.1.2 Differential equations

Now we have the eigenvalues and eigenvectors, let us use them to solve differ-
ential equations. In this report, we will be looking at systems of first order,
linear ordinary differential equations with constant coefficients. Assume we
have a set of n functions yi(x), where i ∈ {1, 2, . . . , n}, that we wish to find,
and we have differential equations for them. Since we are talking about first
order, ordinary linear differential equations with constant coefficients, we can
write the system like this:

y′1 = a11y1 + a12y2 + . . .+ a1nyn,

y′2 = a21y1 + a22y2 + . . .+ a2nyn,

...
y′n = an1y1 + a2ny2 + . . .+ annyn.

Here, the prime denotes differentiation with respect to the variable x. If
we now let the coefficients aij (which are constants) make up a matrix A,
we can write this system as y′ = Ay. If we now let ui be the eigenvalues
of A (which we assume are different, see below), and v the corresponding
eigenvectors, the solution is simply given by

y(x) =
n∑
i=1

civieuix. (B.4)

Here, the coefficients ci are integration constants, and are determined using
the initial conditions. So solving such a system of differential equations is
essentially the same as finding the eigenvalues and eigenvectors of the matrix
A.

Now, we assumed that all the eigenvalues were different. If some of the
eigenvalues are equal, and the corresponding eigenvectors are linear depen-
dent, we get fewer solutions than the number of equations in our set. For
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an eigenvalue u that appears more than once, one can find a solution on the
form

y(x) = cxeux,

where c is a constant to be determined by the initial conditions.

B.1.3 Stability and fixed points

When solving systems of differential equations using the linear algebra meth-
ods we have just explained, they can turn out to be very complex, and it can
be hard so see how the system behave just by looking at solutions. Another
thing we can do to study the behavior of the system is to find the fixed
points, and from them see what kind of stability we have. Assume we have
a set of n ∈ N functions xi(t), i ∈ {1, 2, . . . , n}, that are given through a set
of differential equations

dxi
dt

= fi(x),

so each of the total derivatives with respect to t is a function of all the
components, but not explicitly dependent on the parameter t. We say that
such a system is autonomous. In vector form, we can write

dx
dt

= f(x).

A fixed point is a point x∗ where fi(x∗) = 0∀i. To study the stability of such
a point, we make this matrix M :

M =


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn

...
...

. . .
...

∂fn
∂x1

∂fn
∂x2

. . . ∂fn
∂xn

 , (B.5)

so we take all the functions and differentiate with respect to all the variables.
This corresponds to linearizing the system, so we Taylor expand the system
around x∗ and study small perturbations around x∗. The stability of a fixed
points is determined by the eigenvalues of the matrix M evaluated at the
corresponding fixed point. A fixed point is said to be stable if the system
ends up in this point if we let the time go long enough, provided the initial
conditions are right. Think of it as a bottom of a potential well. In the same
way, a fixed point is said to be unstable if the system goes further and further
away from this point as time goes. A saddle point then is like a saddle: if
one views it from one angle, is is a stable point, from another angle, it is
unstable, like the saddle on a horse. Depending on the initial conditions,
the system can then first approach this point, and then turn around and go
away from this point at some time. We can also have spirals, meaning that
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the system will approach or leave the fixed points following a spiral path -
or it can just orbit the fixed point following an elliptical path.

To simplify, we will now constrain ourselves to two dimensions, since this
is what we will use this for in this thesis. The matrix M then have two
eigenvalues, which may be complex, and we get these possible cases for the
fixed point in question:

• If the eigenvalues are real, and both are positive, we have an unstable
fixed point.

• If the eigenvalues are real, and both are negative, we have a stable
fixed point.

• If the eigenvalues are real, and one is negative and the other is positive,
we have a saddle point.

• If the eigenvalues are complex with a positive real part, we have an
unstable spiral.

• If the eigenvalues are complex with a negative real part, we have a
stable spiral.

• If the eigenvalues are complex with real part zero (pure imaginary), we
will have an ellipse around the fixed point.

Note that if one of the eigenvalues is complex, the other eigenvalue is the
complex conjugate of the first, and hence their real parts are the same.

B.1.4 Fourier, Legendre and Bessel

In this section, I will look at some useful mathematical methods named after
Joseph Fourier, Adrien-Marie Legendre and Friedrich Bessel. These methods
are useful for analyzing some functions and manipulating equations. This
section is based on parts of [29].

Fourier transforms

We start with Fourier. We will use what we call a Fourier transform of a
function. A Fourier transform is defined simply: If you have a function f(x),
you can Fourier transform this function to get a function g(k) by multiplying
f(x) with e±ikx and integrate over x. Also, a factor of 2π or (2π)−1 should
also be present - this factor (and the sign in the exponent) depends on which
way we transform (one could also have a factor of (2π)−1/2 for both ways).
However, if we start with f and transform to g, this is the most common
definition:

g(k) =
∫ ∞
−∞

f(x)e−ikxdx. (B.6)
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Then, to get from g back to f , we have

f(x) =
1

2π

∫ ∞
−∞

g(k)eikxdk,

with the sign in the exponent reversed and a factor of (2π)−1 in front.
Since the number in the exponent should be dimensionless, x and k must

have inverse units - so if x is a length, units meters, k will be associated with
a wave number, unit inverse meter. If x has unit time, unit seconds, k will
be a frequency, unit inverse seconds. This is important when we use Fourier
transforms in physics.

We will Fourier transform the terms in partial differential equations.
Since the integral of a sum is the sum of the integrals, this just corresponds
to Fouriertransforming term by term (if the coefficients in the equation does
not depend on the variable we are Fourier transforming). What happens if
our term contains a differential operator, differentiating with respect to x?
We use integration by parts to test:∫ ∞

−∞

∂f

∂x
e−ikxdx =

[
fe−ikx

]∞
−∞
−
∫ ∞
∞

ikfe−ikxdx

= ik

∫ ∞
−∞

f(x)eikxdx = ikg,

where g is the Fourier transform of f . Dropping f (and g), we see that the
differential operator goes away under the Fourier transformation, and we
just multiply the Fourier transformed function with ik. And so an ordinary
differential equation in our first space is an algebraic equation in Fourier
space, and a partial differential equation in our first space is a set of decou-
pled, ordinary differential equations in Fourier space. So if a quantity f(x, t)
is given through a partial differential equation in x and t, and we Fourier
transform, going from x to k, we get an infinite set of decoupled, ordinary
differential equations - one for each value of k.

Legendre expansions

Now turning to Legendre. We start with a differential equation, Legendre’s
equation, where we have a function y(x), and l is a constant:

(1− x2)
d2y

dx2
− 2x

dy

dx
+ l(l + 1)y = 0.

The solution can be found using power series, and one then finds that the
series always converges for |x| < 1. When l ∈ Z, the series also converges
if |x| = 1. These are the cases we are interested in. The solution y(x) is a
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polynomial of degree l. These are the Legendre polynomials Pl(x), and they
are given by the Rodrigues’ formula:

Pl(x) =
1

2ll!
dl

dxl

(
(x2 − 1)l

)
. (B.7)

Note that l must be non-negative now - this is no problem, since Legendre’s
equation will have the same solution for l as for −l, and so we only need to
consider l ∈ N0, that is, l = 0 or l ∈ N.

When x ∈ [−1, 1], the Legendre polynomials form a complete set of
orthogonal functions. This means two things:

• A function F (x) can be expressed as a linear combination of Legendre
polynomials:

F (x) =
∞∑
l=0

clPl(x).

(This formula becomes a little bit more complicated when F is not
continuous, but we will not worry about that.) The coefficients are
given by

cl =
2l + 1

2

∫ 1

−1
F (x)Pl(x)dx.

• The integral of the product of two Legendre polynomials of degree
m and l over the interval x ∈ [−1, 1] has a Kroenecker delta: the
orthogonality relation is

2l + 1
2

∫ 1

−1
Pl(x)Pm(x)dx = δlm.

Now, we need the Legendre expansion formula using the variable µ:

µ =
~x · p̂
|~x|

= cos θ,

where θ is the angle between a unit vector p̂ (the hat means that the length
of the vector is 1: |p̂| = 1) a the vector ~x. The expansion is then

cl =
1

2(−i)l

∫ 1

−1
F (µ)Pl(µ)dµ. (B.8)

The Legendre polynomials also have this useful recursion formula ([17], page
418):

(l + 1)Pl+1(µ) = (2l + 1)µPl(µ)− lPl−1(µ). (B.9)
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Spherical Bessel functions

The Bessel functions are solutions to Bessle’s equation. In Its standard form,
it reads

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − l2)y = 0,

where l ∈ R is called the order of the Bessel function Jl(x), which solves the
equation. The solution Jl(x) can be written in terms of the Γ functions:

Jl(x) =
∞∑
n=0

(−1)n

Γ(n+ 1)Γ(n+ 1 + l)

(x
2

)2n+l
,

where the Γ function is

Γ(p) =
∫ ∞

0
xp−1e−xdx, p > 0.

When l = (2n + 1)/2, n ∈ Z, we label the Bessel function by jl(x), and we
have the spherical Bessel functions. They are related to the ordinary Bessel
functions by

jl(x) =
√

π

2x
J(2l+1)/2(x). (B.10)

We will need this useful recursion relation for jl(x):

jl+1(x) =
2l + 1
x

jl(x)− jl−1(x). (B.11)

Bessel functions are used in a lot of ways in physics, and we are going to use
them as a limit in an expansion.

B.2 Numerical simulations

When I use observational data to constrain parameters in a model, I do a
lot of numerical simulations, which I write from the bottom. In this section,
I will write about the methods I use when I solve differential equations, in-
terpolate and integrate numerically. In the part where I work with structure
formations, I used more advanced methods for numerical simulations, such
as the Burlich Stoer algorithm for solving differential equations and cubic
splines for interpolation. These methods were given to me in modules that
were ready to use, so I have not gone into them in details, and I will not
write more about them here.

B.2.1 Ordinary differential equations

When we are working with observational data, we will use a different kind of
variable and different functions than what we do when we study the model
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alone. It turns out that the equations we will solve becomes non-linear
when we do this substitution, and therefore, we will solve the equations
numerically. I will use a straight forward fourth order Runge Kutta method
for solving my differential equations, which are on the form

dyj
dx

= f(x, y1, y2, . . . , yn)

for j ∈ {1, 2, . . . , n}. This method is just a more complicated version of the
classical Euler method. Now, let us gather all the unknown functions yj in
a vector y. When I later add a number to this vector, it is to be understood
that we add this number to all of the components. Now, if we have yi at
point xi, we use this algorithm for getting yi+1, at point xi+1:

• We start with a set of initial conditions, y0 at x0.

• Then we set up a grid of x values. The distance between two x-values
is called the step size, and we label it by h.

• We calculate four numbers: k1, k2, k3 and k4. The first one is given as
k1 = hf(xi,yi).

• The next three numbers are k2 = hf(xi+h/2,yi+k1/2), k3 = hf(xi+
h/2,yi + k2/2) and k4 = hf(xi + h,yi + k3).

• Then we calculate yi+1 like this:

yi+1 = yi +
1
6

(k1 + k2 + k3 + k4). (B.12)

In the end, we end up with numerical values for our functions y at all the
points x in our grid.

B.2.2 Linear interpolation

When I have solved the set of differential equations numerically according to
the previous subsection, I end up with the desired quantity y(x) evaluated at
discrete points xi, where the x-grid is set up before we solve the equations.
Comparing with observational data, we will need to know y(x) for some value
of x that is between to points xi and xi+1 in our grid. We then use linear
interpolation to find y(x). The formula is then simply

y(x) =
y(xi+1)− y(xi)

xi+1 − xi
(x− xi) + y(xi). (B.13)

This formula is simply derived based on Figure B.1 on the next page.
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Figure B.1: Linear interpolation. We know y1 at x1 and y2 at x2, and want to find
y at x between these points.

B.2.3 Numerical integration

I will need to do numerical integration in this thesis. For this I will use
the trapezoidal rule, which I will explain here. We start with a function
f(x) that we want to integrate over the interval [a, b]. Then we compute the
function in N mesh points xi between a and b, in such a way that x0 = a
and xN = b. We also have a stepsize dx which is xi+1 − xi for some integer
i ∈ [0, N − 1]. The integral is then approximated like this:∫ b

a
f(x)dx = f(a) +

N−1∑
i=1

f(xi)
2

+ f(b). (B.14)

B.3 Statistics

As mentioned above, a big part of this thesis is about observational data.
Then we also need some statistics, so we can say how good the data constrains
the models. This section is based on parts of [30].

The main statistical quantity we will use is the χ2 estimator. We have
made a model where we have some parameters that we can change, and we
want to find the combination of parameters that best fits our model to a data
set. The data set contains N independent observations, which consists of
points xi, observations yi and observation errors σi, where i ∈ {1, 2, . . . , N}
labels the observations. For each set of parameters in our model, we plug in
the observed points xi and compute ŷi based on the model. This is then to
be compared with the observed yi. If all the data points yi are uncorrelated,
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Table B.1: The entries are the differences from the best value of χ2 to the given
significance level, when we have m free parameters that we are fitting.

Significance level σ 2 3
1σ 2.3 3.53
2σ 5.99 7.82
3σ 9.21 11.34

we can define the χ2 estimator like this:

χ2 =
N∑
i=1

(yi − ŷi)2

σ2
i

. (B.15)

The best model is then given by the combination of parameters that gives
the smallest value for χ2.

Now, what if there are correlations between the data? Then we make a
covariance matrix, C. On the diagonal, we gather the errors for each data
point, and in the non-diagonal entries, we insert the correlation coefficient.
So Cij , i 6= j is the correlation between data point i and data point j. The
diagonal elements of the covariance matrix is the error of that data point
squared: Cii = σ2

i . Now we make a vector X where each entry is the esti-
mated quantity ŷi(xi) (based on a model) minus the corresponding observed
quantity yi: Xi = ŷi(xi)− yi. Then we get this simple expression for the χ2

estimator:
χ2 = XTC−1X =

∑
i

∑
j

XiC
−1
ij Xj . (B.16)

Now that we have the χ2 estimator as a function of some parameters, we
will draw confidence regions of χ2 in the parameter space. These plots then
shows how far away in terms of parameter combinations from the lowest
value of χ2 we must go in order to have a model that significantly differs
from our data set. In the cases we will work with, we will constrain either
two or three parameters, and we will use three significance levels, which is
just one, two and three standard deviations σ. This will then correspond to
differences from the best χ2 value according to Table B.1.
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