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Abstract 
 

FPGAs have the ability to replace its hardware modules without disrupting the 
execution of the other modules of the system. This is called dynamic partial 
reconfiguration. The capability to dynamically replace a hardware module with another, 
while the rest of the system is still running, could have a major impact on a design in 
such way that a smaller device can be used to implement a great and complex system. 
The reconfiguration attribute would become even more advantageous if the modules 
were allowed to pause so that the module didn’t have to start at the beginning each time 
it was reintroduced to the system, it could resume from where it was, when replaced. 
This feature of partial reconfiguration is called context switching. Context switching must 
be able to preserve a modules internal state and its memory contents in order for the 
module to continue from where it was, in the execution time-domain, when 
reintroduced. 

A challenge of the partial reconfiguration property is that it is time consuming, 
especially if frequent context switching is taking place. In this thesis, a bitstream 
manipulator module is implemented in hardware to decrease the time consumption of 
context switching. The module creates a new partial configuration file based on the 
initial configuration file, readback file of the captured flip-flop values, and the masking 
file generated by the Xilinx tool ISE. An external memory is the module repository, which 
holds all necessary and generated files for each partial module. It is this methodology 
that decreases the time consumption of context switching. 

Simulation shows that the system performance of the process of creating a new 
partial configuration file is three orders of magnitude faster compared to the most 
relevant research work. The creation of a new partial configuration file is measured to 
5.12 μs for a file size of 1 kB (1024 bytes), and 47.7 μs for a file size of 15 kB. The results 
are promising, and further investigation will probably result in a step closer to realizing 
a satisfactory partial reconfigurable system that includes context switching. 
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Preface 
 

When choosing a master project I had two options, either contact companies in the 
electronic industry, and ask if they had any projects suited for a master student, or I 
could choose a project given by a research group at the university. I checked for 
available projects at the university, and I found a few projects related to FPGA and 
reconfiguration. I read the description of the projects and I was immediately fascinated 
by the one titled ‘High speed context switching on FPGAs’. My supervisor warned me 
that the project might be comprehensive, but I enjoy a challenge very much so I chose 
the project, and began enthusiastically.  

 A Spartan-6 device was chosen because of its relatively small architecture, and it is 
a low-cost device. I spent couple of weeks searching for articles and documentation on 
the subject of partial reconfiguration and context switching, and another two weeks 
trying to figure out the composition of the configuration file; which bit in the 
configuration file corresponds to which flip-flop in the device. I discovered that the 
manufacturer of the FPGA device is not so eager to share information about the Spartan-
6 configuration. My supervisor and I made a choice; Spartan-6 was unsuited for the tasks 
at hand due to lack of documentation and the limited time span of the project. Virtex-6 
suited better because of its capability to perform a capture of registers. 

Most previous work on the subject so far has used an embedded CPU to control 
and to initiate the reconfiguration and context switching process. I’ve already had an 
idea of how the system should work; using external memory and make the bitstream 
manipulation module interact directly with the memory, without the use of a CPU. This 
approach would make the context switching process go faster.  

Although Xilinx provides an IP core for controlling the external DDR3 memory, the 
documentation for it was not that impressive, some information was directly 
contradicting, and some information was not related to the current IP version. Due to 
poor documentation I spent a considerable amount of time going through forum threads 
searching for answers. It took me about two months to finally achieve a working 
memory controller that suited my needs. I was now about half way into the project with 
regards to time, and I realized that I had to moderate my goals, and even abandon a goal 
in order to produce some results. I focused on bitstream manipulation since that was in 
fact the main goal of the project. Implementation of a partial reconfigurable region is 
therefore not included, and it is assumed that is available. By doing these cutbacks I 
managed to generate some valuable results. 

I would like to thank my supervisor, Professor Jim Tørresen, for being critical and 
for asking questions that challenged me. I would also thank PhD student Alexander Wold 
for giving me assistance when I desperately needed it. 
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1 Introduction 
 

Field programmable gate array (FPGA) is a highly flexible integrated circuit that is 
programmable in the field. With an FPGA, complex digital circuits can be realized, and 
true parallelism is one of its many strengths. Another feature is partial 
reconfiguration (PR); meaning that parts of the FPGA can be reprogrammed, or 
reconfigured, in the field while the rest of the FPGA is running. The same 
reconfigurable area can be reconfigured many times over and that enables 
timesharing of hardware resources, i.e. two or more digital circuits can share the 
same area, on the FPGA, over time.  

 
PR can be used in many different ways. For instance, a design may operate with 
several modes where each mode may demand a specialized module, and when that 
mode is activated the partial reconfigurable area is configured with the required 
module. Another possibility is when a design has more than one start-up 
configuration and a selector determines which configuration should be used. A third 
possibility is that two or more modules continuously switch turns running on the 
partial reconfigurable region (PRR). The currently running module can then be 
paused before it is swapped with another module. Pausing a module means that the 
modules internal states, i.e. its register values, are stored. The stored information can 
then be retrieved when the modules is swapped back in, so that the module does not 
have to begin from the start again. This method is called context switching. A more 
comprehensive discussion on context switching can be found in chapter 2.5.  

 
Although PR has been available for many years, it has not yet been adopted by the 
industry on a large scale. A major contributing factor to its unfavorable status is that 
the process of reconfiguring the targeted area on the FPGA is time consuming and 
may be cumbersome to implement. The speed of partial reconfiguration is in many 
cases the essential factor, but there may be situations where the switching frequency 
is of less importance as exemplified in the ‘mode’ example above. However, there are 
benefits associated with PR and context switching. By sharing hardware resources, a 
smaller device can be used, and hence reduce the cost, mutual exclusive modules may 
be implemented on the same device, among others. 

 
There has been extensive research on the subject in academia for several years and it 
has progressed a lot since it was first introduced, see chapter 3.2 for the most 
relevant research related to partial reconfiguration in general and context switching 
in particular. There are two main methods of partial reconfiguration that includes 
context switching. One is to use a soft core embedded microprocessor like the 
MicroBlaze and write software that will perform all operations needed. This is the 
most widely used approach. The other is to design a hardware version without the use 
of a microprocessor. The latter is the approach chosen for this thesis on context 
switching. This choice was made for the following two reasons. First, the hardware 
approach has not, to my knowledge, been investigated thoroughly enough and I think 
there is a potential for reducing the overall time consumption of the reconfiguration 
process compared to the software approach. Secondly, I wanted to gain experience in 
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VHDL, and to keep the abstraction level as low as possible in order to gain a greater 
understanding of an FPGA. 

1.1 Scope of the thesis 

Three main goals were given in the thesis description, and are as follows: 
1) Design a hardware module for filtering out the state out of 

configuration readback data from an FPGA. 
2) Development of techniques for setting back a modules state. 
3) Design and implementation of a demo system. 

 
The first two goals must be defined more precisely in order to keep the tasks at hand 
as simple as possible due to limited duration of the thesis. They are also intertwined 
in such way that the second is dependent on the first. The first goal is, in here, defined 
to perform a capture of the internal registers of the partial reconfigurable module 
(PRM) at that point in time when it is ready for replacement, determined by a context 
switching main controller (CSMC). The captured data is then read back from the 
FPGAs internal configuration memory and stored in an external memory. The second 
goal is defined as constructing a new configuration file that contains the register 
information from the previously stored readback data. Both tasks include accessing 
an external memory for reading and storing of said data. 

 
The third goal was unfortunately not reached. It is therefore assumed that the PRR 
has already been implemented, and that two PRMs are available. Further, all 
measurements given in chapter 5.4 are based on simulations rather than actual 
results from a demo system. These measurements are then extrapolated in order to 
give an accurate estimation beyond simulation results. 

 
One issue regarding partial reconfiguration is security. To limit the extent of the 
thesis, this subject is not part of the thesis. See [1], [2]  and [3] for a discussion on the 
security aspect.  

1.2 Chapter overview 

Chapter 2 Background and theory 
 This chapter starts with a short description on the architecture of 

an FPGA. In section 2.3 a brief explanation of FPGA configuration 
is given. The chapter continues with the theory behind partial 
reconfiguration in section 2.4, and context switching in section 
2.5. The final section goes deeper into configuration of a Virtex-6 
FPGA with a description on configuration frames, packets and 
registers. This section also gives an example on how to decode a 
bitstream. 

  
Chapter 3 Relevant research  
 As mentioned in the introduction there has been extensive research 

on the subject of partial reconfiguration, but not as much on the 
issue of context switching. The most relevant work, to my 
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knowledge, compared to this thesis is presented here. They are 
listed in order of increasing relevance. 

  
Chapter 4 Implementation 
 This chapter first explains the concept of the system that has been 

designed for this master thesis. Then follows an overview of the 
system, in section 4.3, where a functional explanation is given. The 
chapter continues to give a short description of the hardware 
platform used in the project. In section 4.5 the implemented system 
is described, the section gives an overview on the data flow, and an 
operational description is given. In the final section a detailed 
description on the implemented modules is given. Simulation 
captures and excerpt of the code is given when it is necessary to 
highlight a problem or to illustrate how they were solved.  

  
Chapter 5 Simulation and measurements 
 This chapter gives a description of the simulation environment and 

how the simulation was performed. Section 5.2 gives a detailed 
description on the set-up of the simulation. Section 5.3 takes a closer 
look at how the DMC and DDR3 memory responds to read requests 
from the BMM. Measurements and results are given in section 5.4, 
this section also includes some equation needed to calculate 
parameters related to configuration frames and timing. The results 
are plotted in a graph and data extrapolation is used to give a precise 
timing estimate beyond simulation. The final section compares the 
simulated results width previously conducted experiments from 
other relevant work mentioned in chapter 3.2. 

  
Chapter 6 Conclusion and future work 
 This chapter provides a conclusion of the work presented in the 

thesis. It also gives a few suggestions on how to improve the system 
in order to increase its functionality and effectiveness. 
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2 Background and theory 
 

2.1 Chapter overview 

This chapter starts with a short description on the architecture of an FPGA. In section 
2.3 a brief explanation of FPGA configuration is given. The chapter continues with the 
theory behind partial reconfiguration in section 2.4, and context switching in section 
2.5. The final section goes deeper into configuration of a Virtex-6 FPGA with a 
description on configuration frames, packets and registers. This section also gives an 
example on how to decode a bitstream. 

2.2 Field programmable gate array 

An FPGA consists of a matrix of programmable logic blocks which can be connected 
together through programmable interconnects. A network of wires, both horizontally 
and vertically, are situated between the logic blocks, see Figure 2.1. In addition, there 
are programmable input and outputs used for communication with external 
components. This makes the FPGA highly flexible and complex digital circuits can be 
realized. Bitcoin miner, software defined radio, advanced digital filters, video and 
image processing, and high performance parallel computing are some few examples.  

 
 

 
 

 

 
Figure 2.1 - Simplified architecture of an FPGA [4] 

 

 
 

In addition to the logic blocks and the interconnects, an FPGA may contain dedicated 
embedded circuits such as digital signal processors (DSP), block RAM (BRAM) and 
even a hard core microprocessor, as illustrated in figure 2.2 This makes the FPGA 
highly versatile and powerful.  
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(a)                                                        (b) 

 

  

Figure 2.2 - Embedded hard core CPU (a), and Embedded RAM and DSP (b) [4] 

 

 
Each logic block, or configurable logic block (CLB) as Xilinx calls them, consists of 
slices and each slice contains logic cells, which comprises flip-flops and look-up tables 
(LUT), usually twice as many flip-flops as LUTs. Most modern FPGA devices are static 
RAM (SRAM) based; the LUTs are SRAM cells that hold the desired logical values 
corresponding to the implemented function, see figure 2.3. 

 
 

 

 

 
Figure 2.3 - SRAM based LUT. 

 

 
 

There are different types of slices, each with different complexity and functionality. 
For the Xilinx Virtex-6 device used in this thesis, there are only two slice types, called 
SLICEL and SLICEM. The first one, SLICEL, is the simplest one with four LUTs and 
eight flip-flops. Additionally, it has the ability for a carry signal to and from adjacent 
slices. SLICEM have the same functionality as a SLICEL but in addition the LUTs may 
be used as distributed RAM (256-bit) or as shift registers (128-bit). Each LUT in the 
Virtex-6 device is a six-input LUT which can be split into two five-input LUTs [5]. 

 
A numerous, sometimes thousands, CLBs are necessary to implement complex digital 
circuits and all these CLBs must be connected to each other.  To accomplish this, there 
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are programmable interconnecting switch boxes adjacent to the CLBs. The 
configuration of these switch boxes determines which CLBs are connected to each 
other. To accommodate the clocking of the flip-flops there are dedicated clock paths 
organized in such way that each end point of the path has the same delay as all the 
others. This can be accomplished by routing the clock paths in an H-tree or similar, 
which gives a uniform clock distribution. Figure 2.4 shows an example of a simple 
clock distribution network where each endpoint, represented by the dots, has equal 
path length. 

 
 

 

 

 

  
Figure 2.4 - Uniform clock distribution. 

 

 
 An FPGA is divided in clock regions, each region with its own dedicated clock 
distribution network. In the Virtex-6 device used in this thesis there are in total of 12 
clock regions. There are 32 global clock lines that can reach the entire FPGA, in all of 
the clock regions. In addition, each clock region has up to six regional clock trees [6].  

 
While modern computers have a central processing unit (CPU) that operates at 
frequencies up to approximately 3.5 GHz, the operation frequency of an FPGA design 
varies widely depending on the implemented design and the FPGA device. But it is far 
lower than the CPU frequency. In a computer, all internal components of the CPU are 
placed at a fixed location and the placement is optimized to minimize the internal 
routing in order to achieve the lowest possible path delay, i.e. highest possible 
frequency. This differs from an FPGA; although all CLBs, flip-flops, I/Os, embedded 
components and the internal routing network are at fixed positions on the die, the 
routing path between modules may become long due to the interconnecting switch 
boxes that connect CLBs and other components to each other. The longest path in a 
design can therefore vary and hence the frequency varies accordingly.  

 
In order to load an FPGA device with a design, the device need to be configured, i.e. all 
SRAM cells need to obtain their logic state, all flip-flops must be configured with their 
initial state, all BRAM used must be initialized with their intended data. This is done 
by uploading a configuration file, also known as the bitstream, to the FPGA. The next 
section gives a detailed description of FPGA configuration. 

2.3 Configuration 

The configuration data is stored in CMOS configuration latches (CCLs) [7]. Since 
SRAMs and CCLs are volatile, i.e. its value are lost at power down, an FPGA must be 
configured each time the power is applied. It is therefore necessary to have a memory 

Clock input 
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device connected to the FPGA that holds the configuration file(s) so the FPGA can be 
configured at power up in the field. The configuration file, or bitstream, consists of 
several commands in addition to the configuration data. The commands control the 
configuration process. A detailed description of the relevant commands can be seen in 
section 2.6.4. The configuration file is produced by the integrated development 
environment (IDE) tool and has the file extension of .BIT or .BIN.  

 
File size of the ML605 board Virtex-6 device configuration file is ~70 Mbit (~8.8 MB) 
according to [7]. When a configuration is complete the configuration interface on the 
FPGA side asserts a DONE signal, see section 2.6.1, indicating the configuration has 
completed with success. The configuration process of a Xilinx Virtex-6 device 
undergoes a specific configuration sequence with two phases; setup and bitstream 
loading. Figure 2.5 shows the sequence and its steps. The setup phase consists of three 
steps. The first step is to check availability of voltage power required by the device. 
The second step is to clear the configuration memory. Final step of the setup phase is 
to sample the mode pins that determines the configuration interface, the 
configuration clock (CCLK) also starts at this step. See table 4.1 for mode pin settings.  

 
Next phase is the bitstream loading which consists of four steps. First step is 
synchronization. A 32-bit synchronization word in the bitstream is detected and tells 
the configuration logic that a configuration is about to commence. Before the 
synchronization word there is a bus width detection pattern that tells the 
configuration logic the bus width of the configuration data. Any data in the 
configuration file before the bus width pattern is ignored. The synchronization word 
is 0xAA995566. Next step is to do a check of device ID to prevent configuration with 
a bitstream that is formatted for another device. After the device ID check 
configuration commands and data are uploaded to the device. Final step of the 
bitstream loading phase is a cyclic redundancy check (CRC). As the configuration data 
is uploaded the device calculates a CRC value. At the end of the bitstream a CRC 
command is issued followed by a CRC expected value. If the calculated value does not 
match the expected value the configuration is aborted. After the bitstream loading 
phase the bitstream instructs the device to perform the startup sequence, which is 
described in [8].  

 
 

 

 

 
Figure 2.5 - Configuration sequence 

 

 

2.4 Partial Reconfiguration 

FPGAs are flexible in the sense they can be reconfigured, i.e. uploading another 
configuration file, on-site. To perform the reconfiguration the FPGA has to shut down 
in order to load a new configuration file. The whole FPGA is then reconfigured. Partial 
reconfiguration (PR) is the ability to reconfigure only parts of the. Passive PR means 
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all clocks, and hence the whole system, are suspended during reconfiguration. Active 
PR means the rest of the system is running while reconfiguration takes place. The 
latter is also known as ‘run-time reconfiguration’, ‘dynamic partial reconfiguration’ or 
as ‘hardware multitasking’. In order to perform a partial reconfiguration it is 
necessary to partition the FPGA fabric into a static region and a partial region. The 
partial region can be reconfigured while the design in the static region is running. The 
partial region may take any size of the fabric. Partial reconfiguration enables three 
dimensional hardware space where different designs share the same area over time. 
Some benefits of partial reconfiguration are listed below.  

 
• Implementation of a bigger system onto a smaller FPGA device if the system 

can be divided into smaller independent designs. 
• Improved fault tolerance with the ability to reconfigure the damaged module 
• Mutual exclusive designs may use the same device 
• Faster startup time as only the static region needs to start first. The PR region 

with its modules may start at a later time 
• Custom CPU instruction for a soft core microprocessor may be implemented 

when necessary [9] 
 

A challenge with partial reconfiguration is that it takes a considerable amount of time 
to perform a reconfiguration. The bigger the partial region that is to be reconfigured 
the longer time it takes to reconfigure. 

2.4.1 Static region 
The static region may contain modules that are needed throughout the entire cycle of 
operation of the system such as a soft core microprocessor, a reconfiguration 
controller or others. These modules will never be interrupted or stopped due to 
partial reconfigurations.  

2.4.2 Partial region 
There are three different styles of PRR. These styles have various complexities and the 
simplest one is a single island style. This style is just one island on the fabric 
surrounded by the static region as seen in figure 2.6. The size of the island may vary 
but cannot be lower than the height of one clock region, or a frame. With island style, 
internal fragmentation may become an issue. Internal fragmentation is the PRR’s 
resources not used if the module has a smaller footprint than the size of the island 
itself. Only one PRM can be situated in an island at any given time. Multiple islands 
may be implemented on the same FPGA. 

 
 

 

 

 

 
Figure 2.6 - Different styles of partial reconfigurable regions [10] 
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Slot style partial region may resemble the island style, but it is narrower as a slot may 
refer to a column or a frame. These slots may have greater height than the height of a 
frame, just as the island style. They may even span the whole height of the FPGA. The 
issue of fragmentation becomes less with a slot style region as a multiple slots may 
host one PRM and the utilization of slots then becomes higher compared to an island 
style region. On the other hand, slot style region may suffer from external 
fragmentation due to the fact that a narrow slot may not include all logic resources, 
i.e. BRAM, DSP or others. Depending on a modules requirements a slot may therefore 
become completely unused.  

 
Grid style is the most complex style but gives the most flexibility. Each grid block is in 
its own a partial reconfiguration area. A partial module may have a foot print of 
several grid blocks but two modules cannot share the same block. So internal 
fragmentation still exists but is even less than in the slot style.  

2.5 Context switching 

One problem with partial reconfiguration is that whenever a module is reintroduced 
into the partial region it starts off from the beginning, i.e. the module’s progress is not 
recorded so that it can be resumed from where it was when it was replaced. Context 
switching addresses this problem. As mentioned in the introduction, context 
switching is the capability to preserve a modules internal state for later resumption at 
that point in time where the module was replaced. 

2.5.1 Context switching in software 
A computer, with one CPU core, can apparently perform several tasks simultaneously, 
i.e. applications run in parallel. This is however not the case. The computer switches 
between processes at a timely fashion. To accomplish this, the CPU, in cooperation 
with the operating system, has to perform a context switch each time it switches 
process. Context switch means to save a process’ state into memory, from here on out 
called context save (CS), and then restore those states when the process resumes, 
from here on out called context restore (CR). This enables multiple processes to share 
a single CPU. A context is defined to be the contents of a CPUs registers and program 
counter at any point of time [11]. For the CPU to know when to save the running 
process’ state and which process to switch to there are different triggers. The running 
process can make itself trigger a switch, e.g. by timeout or by waiting for another 
process’ flag, an interrupt may also trigger a switch,  

2.5.2 Hardware context switching 
Context switch in a hardware design is not that different from a software context 
switch. But what constitutes a modules context? In essence the only context available 
must be that information that is due to sequential logic, i.e. registers, and local RAM 
inside the module. Combinatorial logic cannot be preserved. Combinatorial circuits 
are realized with LUTs, multiplexers and latches. Information from these elements is 
not available unless they are registered through a flip-flop. It is therefore imperative 
that the design of a partial reconfiguration module includes registers wherever 
information needs to be passed on to the next run. The designer must also avoid 
inferring latches as output of a latch is not clocked. Before any CS can begin all clocks 
of that particular partial reconfiguration module must be halted to avoid saving of 
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invalid data. If the module uses more than one clock the module must be halted in 
between the cycles of the slowest clock. [12] lists other requirements. There are two 
ways to extract information from a module, by hardware checkpoints and by 
configuration readback with register capture. The latter is discussed in section 2.6.5 
and hardware checkpointing is discussed in next section. 

2.5.2.1 Hardware checkpointing 
Hardware checkpointing is a way to store a modules state during normal operation, 
in other words an image capture of the module at run-time. There are different 
methods to accomplish checkpointing, three which are described in [13], were a 
definition is given as: “A checkpoint is a set of data items representing the image of the 
last error-free state of a module of computation from which in case of the occurrence of 
a fault may be restored.” These data items are output (O), input (I), state (S), state 
transition function (Sf), output function (Of) and initial state (S0), half of which is 
necessary for checkpointing; O, I and S. A short summary of the different 
checkpointing techniques follows. 

1) Memory mapped state access 
Memory mapped state access utilizes a memory space in a CPU to store a 
modules states. The present value is fed back to the module while executing a 
checkpoint. This is achieved by integrating a checkpoint flip-flop into a 
read/write memory of the CPU. 
 

2) Scan chain based state access 
This technique is based on a long chain of flip-flops connected together as a 
shift register. A multiplexer in front of each flip-flop switches between normal 
operation and shift register. Chain ends are connected together to from a ring 
shift register. 
 

3) Shadow scan chain based state access 
Duplicating all the flip-flops is another way to take a snapshot of the module. 
That is what shadow scan chain does. These duplicates are used for the 
checkpointing only and, as in scan chain, they are arranged in a ring. The 
overhead for this technique is tremendous as one flip-flop in the module 
demands another flip-flop for checkpointing. The advantage is that it only 
takes one clock cycle to perform the checkpointing. 

 

Hardware checkpointing demands added hardware to the PRMs and hence adds logic 
overhead. Figure 2.7 illustrates the difference in both logic overhead and time 
overhead between the three hardware checkpointing techniques and compares them 
to configuration readback.  LLUT denotes extra LUTs in the PRM required for 
implementing the respective technique, and tc denotes time overhead in terms of 
clock cycles. It is seen that for the extremes the shadow scan chain provides close to 
none overhead in time and close to 100% logic overhead. Readback is completely 
opposite, almost none logic overhead and a huge overhead in time. In between there 
are scan chain and memory map.  
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Figure 2.7 - Time and logic overhead for the different hardware checkpointing techniques [10] 

 

 

2.5.2.2 Bitstream manipulation 
Bitstream manipulation is the key point when state extraction, or context save, is 
performed by configuration readback and register capture. In order to restore a PRM 
with its context from a previous run, the partial reconfigurable region, where the 
module is placed, must be uploaded with an updated partial bitstream. Generation of 
this new and updated partial configuration file is accomplished by masking the 
necessary bits in both the readback file and the initial partial configuration file. That 
means three files are used to create a new partial configuration file; the initial bit file, 
the mask file and the readback capture file. The initial bit file contains the module 
with its initial states, the readback capture file contains register data at point of 
capture and the mask file contains information of which bits in these two files are 
configuration data. According to [14] the creation of the new partial configuration file 
is done by the modification algorithm in equation 2.1. Next section gives details of the 
mask file.  

 
 
𝑁𝑒𝑤 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑓𝑖𝑔. 𝑓𝑖𝑙𝑒 = (𝑟𝑒𝑎𝑑𝑏𝑎𝑐𝑘 𝑓𝑖𝑙𝑒 ∗ 𝑚𝑎𝑠𝑘 𝑓𝑖𝑙𝑒) + �𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑏𝑖𝑡 𝑓𝑖𝑙𝑒 ∗ (𝑁𝑂𝑇 𝑚𝑎𝑠𝑘 𝑓𝑖𝑙𝑒)� 2.1 

 
 

2.6 Xilinx Virtex-6 FPGA configuration 

2.6.1 Configuration interfaces 
The configuration file can be uploaded to the FPGA through four different interfaces. 
Either by a serial peripheral interface (SPI), bus-width parallel interface (BPI), 
SelectMAP interface or by JTAG interface. For reconfiguration purposes the Internal 
Configuration Access Port (ICAP) is used, or if the reconfiguration is controlled by an 
external device the SelectMAP interface is used. A brief description of these interfaces 
will be given below. In newer FPGAs with integrated embedded microprocessors, 
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such as the Zynq all programmable system on chip (SoC) from Xilinx, there is also a 
fifth configuration port, the processor configuration access port (PCAP). This port will 
not be covered here but see [15] for more information. All interfaces share the same 
dedicated configuration pins, some of them are shown in table 2.1. All details of the 
pins are described in [7].  

 
Table 2.1 - Configuration pins 

Pin name I/O Description 
MODE [2:0] Input Determines configuration mode. Sampled 

on the rising edge of INIT_B 
CCLK Output Configuration clock source for all 

configuration modes except JTAG 
DONE Bi-directional Active high signal indicating configuration 

is complete. 
0 = FPGA not configured 
1 = FPGA configured 

PROGRAM_B Input Active-low full-chip reset 
D [15:0] Bi-directional BPI input / SelectMap input / output. 

 

2.6.1.1 Serial Peripheral Interface (SPI) 
This interface is used when the configuration file resides in a serial flash memory. The 
FPGA device provides clock for the flash, and default memory address always starts 
from zero. The flash can be programmed through the Xilinx tool iMPACT. 

2.6.1.2 Bus-width Peripheral Interface (BPI) 
This interface is used when the configuration file resides in a parallel flash memory. 
Bus widths of 8 or 16 are supported. The bus width is auto detected via the bitstream. 
BPI-Up mode sets the starting address to zero and increments it by 1 until DONE 
signal is asserted. BPI-Down mode set the starting address to memory end address 
and decrements it by 1 until DONE signal is asserted. The flash can be programmed 
through the Xilinx tool iMPACT. 

2.6.1.3 SelectMAP 
This interface provides data bus widths of 8, 16 or 32 bits. The data bus is also bi-
directional and is therefore used for bitstream readback. As with the BPI interface the 
bus width is auto detected. The interface is synchronous.  

2.6.1.4 JTAG 
Xilinx Virtex-6 devices supports IEEE 1149.1 standard of Test Access Port and 
Boundary-Scan architecture which are commonly referred to as JTAG. Configuring an 
FPGA by this method is quite slow as the frequency of the JTAG interface is often low 
and the fact that it is a serial interface. Its upside is that it can be used by debugging 
software like ChipScope Pro to get access to internal test signals, defined by the user, 
within the FPGA to provide a debugging platform. 

2.6.1.5 ICAP 
ICAP is the internal configuration port used for readback and reconfiguration. It is 
similar to the SelectMAP port but has no physical ports connected to the outside 
world. It acts solely internal and is therefore the configuration port of choice 
regarding partial reconfiguration. The ICAP interface is a Xilinx primitive, meaning 
that it can be instantiated in the VHDL or Verilog code. The ICAP supports 16 and 32-
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bits data bus. According to Xilinx documentation, the ICAP clock can only run at 
frequency of 100 MHz which corresponds to a data rate of 3200Mb/s (400 MB/s). 
The low clock frequency is the main reason for slow reconfiguration.  

2.6.1.5.1 Enhanced ICAP 
There have been some attempts at overclocking the ICAP clock with great success.  In 
[16] the authors managed to overclock the ICAP clock up to 500-550 MHz giving a 
data rate between 2000-2200 MB/s. This is five times faster than original speed and it 
significantly reduces the configuration speed. However, the measured data rate is 
accomplished writing the configuration only. When performing readback the authors 
didn’t overclock the ICAP clock in order to prevent corruption of the readback data. 
The authors used Virtex-4 and Virtex-5 in their experiments and not a Virtex-6 
device. So the overclocking has not, to my knowledge, been confirmed to be working 
on Virtex-6, but it is reasonable to assume that it will since there is no difference 
between the ICAP primitive from Virtex-4 and Virtex-6. 

2.6.2 Configuration frames and frame addressing 
The configuration data is organized in frames, the smallest addressable configuration 
segments. The FPGA logic space is arranged in rows and columns, and in addition it is 
divided into top half and bottom half [8]. A row has the height of one column, which 
corresponds to the height of one clock region. Top and bottom half each contains 
several rows, vertically aligned, each row contains several columns, horizontally 
aligned, and each column contains several frames, also horizontally aligned, as seen in 
figure 2.8 below.  

  
 
 
 

 
 

 

 Figure 2.8 - Virtex-6 configuration architecture.  
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In the center of a row lies a horizontal clock row (HROW). A configuration frame 
spans the height of 40 CLBs, 20 above HROW and 20 below. Each frame has a unique 
24-bit address that can be divided into five sections as seen in table 2.2 below. The 
24-bit address is sent as a 32-bit word and hence the eight MSBs are unused. All 
frames have identical length of eighty one 32-bits words, or 2592 bits. The 
XC6VLX240T-1 device has a total of 28488 configuration frames and additional 583 
32-bit words used for configuration commands [7]. A write to the frame address 
register (FAR), a section is dedicated to configuration registers, determines which 
frames to read from or write data to. 

 
 

Table 2.2 - Frame address format 

Address type Bit index Description 
Block [23:21] Valid block types are CLB, I/O, CLK (000), block RAM 

content (001), and CFG_CLB (010). A normal 
bitstream does not include type 010. 

Top / Bottom [20] Select between top-half rows (0) and bottom-half 
rows (1). 

Row Address [19:15] Selects the current row. The row addresses 
increments from center to top, and then resets and 
increments from center to bottom. 

Column Address [14:7] Selects a major column, such as a column of CLBs. 
Column addresses start at 0 on the left and increase to 
the right. 

Minor Address [6:0] Selects a frame within a major column. 
 
 

2.6.3 Configuration packets 
All data, either configuration data or configuration commands, are sent to the 
configuration control logic by means of data packets. There are two types of packets, 
type 1 packets are used to read or write the configuration registers, and type 2 
packets are used to write long blocks of data [7]. Type 2 packets must always be 
preceded by a type 1 packet. Table 2.3 below shows the format of type 1 packets and 
table 2.4 shows the format of type 2 packets, where x denotes a bit, and R denotes a 
reserved bit, this applies for both tables on configuration packets. Table 2.5 shows 
which operation codes are available. 

 
 

Table 2.3 - Configuration packet, type 1. 

Packet type op. code conf. reg. address  reserved word count  
[31:29] [28:27]  [26:13] [12:11]  [10:0] 

001 xx RRRRRRRRRxxxxx RR xxxxxxxxxxx 
 
 
 

Table 2.4 - Configuration packet, type 2. 

Packet type op. code word count 
[31:29] [28:27] [26:0] 

010 xx xxxxxxxxxxxxxxxxxxxxxxxxxxx 
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Table 2.5 - Configuration register operations. 

op. code function 
00 no operation (NO-OP) 
01 read 
10 write 
11 reserved 

 
 

2.6.4 Configuration registers 
A configuration command is either a read from the configuration register or a write to 
the registers. Table 2.6 below shows which registers are essential for reconfiguration 
purposes of a Virtex-6 device. All configuration registers are described in detail in [7].  

 
Table 2.6 - Configuration registers essential for reconfiguration. 

Name R/W address Description 
FAR r/w 00001 Frame Address Register 
FDRI write 00010 Frame Data Reg. Input, write configuration data 
FDRO read 00011 Frame Data Reg. Output, read configuration data 
CMD r/w 00100 Command Register 

 
 

The FAR register is explained in the section on configuration frames above. A write to 
the FDRI register tells the configuration logic that configuration data are about to be 
sent to the frame address specified in the FAR register The FDRO register provides 
readback data when readback has been set up. The read starts from the frame 
address specified in the FAR register and then auto increments until number of words 
specified in the word count is reached.  

 
The CMD register instructs the configuration logic to perform configuration functions. 
The instruction present at the CMD register is executed each time the FAR register is 
loaded with a new value. Table 2.7 shows which instructions are essential for 
reconfiguration and readback.  

 
 

Table 2.7 - Essential instructions in the CMD register related to reconfiguration. 

Command Code Description 
WCFG 00001 Writes Configuration Data: used prior to writing 

configuration data to the FDRI. 
RCFG 00100 Reads Configuration Data: used prior to reading 

configuration data from the FDRO. 
START 00101 Begins the Startup Sequence: initiates the startup 

sequence. The startup sequence begins after a 
successful CRC check and a DESYNC command are 
performed. 

GCAPTURE 01100 Pulses GCAPTURE: Loads the capture cells with the 
current register states. 
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An example of commands is given in table 2.8. This example is an excerpt taken from 
an actual configuration file for the ML605 Virtex-6 device. The example shows how to 
decode the configuration data present in the configuration file. The data is broken 
down do match the format of the specific packet type and then decoded. Marked data 
in the figure 2.9 shows the configuration commands and data used in the example.  

 
 

 

 

 

 
Figure 2.9 - Data from an actual configuration file for a Virtex-6 device. 

 
 

Note that the format of the command is decided by the packet type. The word count 
gives how many configuration packets are connected to the configuration command. 
When the word count in a type 1 packet is set to zero a packet of type 2 is following as 
seen in the example above. A packet of type 2 must always be preceded by a packet of 
type 1. The 32-bit word 0x20000000 in the example corresponds to a type 1 packet 
with operation code 00 which means that is an NO-OP command and the 
configuration control logic does not execute a command for one clock cycle. The last 
command tells the configuration control logic that the next 2370528 words are 
configuration data. This corresponds to 28488 configuration frames and hence 
configuration for the whole device. 
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Table 2.8 – Example of decoding the configuration file. 

Data in hex: 30008001 
Data in binary: 00110000000000001000000000000001 
Format: Packet type op.code address res. word count 
Data broken up 
accordingly to fit the 
format given by three 
first bit (packet type): 

001 10 00000000000100 00 00000000001 

Decoded command: Type 1 write CMD register - 1 word 

Then follows 32-bits of data connected to the command above 

Data in hex: 00000001 
Data in binary: 00000000000000000000000000000001 
Instruction in CMD reg:  WCFG Write configuration data 

Next command in the configuration file follows 

Data in hex: 20000000 
Data in binary: 00100000000000000000000000000000 
Format: Packet type op.code address res. word count 
Data broken up 
accordingly to fit the 
format given by three 
first bit (packet type): 

001 00 00000000000000 00 00000000000 

Decoded command: Type 1 no-op (CRC register) - - 

The above command is a NO-OP operation, and next command follows 

Data in hex: 30004000 
Data in binary: 00110000000000000100000000000000 
Format: Packet type op.code address res. word count 
Data broken up 
accordingly to fit the 
format given by three 
first bit (packet type): 

001 10 00000000000010 00 00000000000 

Decoded command: Type 1 write FDRI register - - 

Then follows 32-bits of data connected to the command above 

Data in hex: 502335C8 
Data in binary: 01010000001000110011010111001000 
Format: Packet type op. code word count 
Data broken up 
accordingly to fit the 
format given by three 
first bit (packet type): 

010 10 000001000110011010111001000 

Decoded command:  Type 2 write 2307528 words (28488 frames) 
 

2.6.5 Configuration readback and register capture 
As mentioned earlier, it is possible to perform a so-called readback of configuration 
data. This means that the configuration memory can be read and outputted. Readback 
may be used to perform a verification of configuration, to correct a single event upset 
(SEU), for debugging purposes, or, as in this case, to perform partial reconfiguration 
with context switching. The readback function is performed at users’ request. The 
initiator must send a sequence of configuration commands to the configuration 
control logic in order to perform a readback. The command sequence can be found in 
[7]. The user may use external devices as a microprocessor, another FPGA system or 
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the FPGA itself to send the command sequence. The commands have the same 
encoding as seen in the example in the previous section. When a readback is initiated 
the first frame of data is a pad-frame, which contains no data of interest, and must be 
discarded, see section on mask file below. 

 
The value present at each flip-flop in a LUT can be captured and read back from the 
device. An instruction, GCAPTURE, in the CMD register initiates the capture and the 
flip-flop value is transferred to the configuration memory. The value resides in the 
memory location normally used for programming that specific flip-flop. The 
command sequence for readback capture requires an additional step compared to a 
normal readback, and that is to set the GCAPTURE instruction. There is another 
method to transferring the flip-flop value to the configuration memory; instantiate 
the CAPTURE_VIRTEX6 primitive and assert the CAP input; the flip-flop value is then 
sampled and stored in the configuration memory at the next rising edge of the 
primitives clock [7]. The primitive has two operations: one-shot or continuous. One-
shot captures the flip-flop values once. 

2.6.6 Xilinx ISE configuration options 
There are options in the Xilinx tool ISE that need to be set in order to enable the 
reconfiguration capability. In process properties for the ‘Generate Programming File’ 
process there is a category named ‘Readback Options’. Here is the security option of 
enabling or disabling readback and reconfiguration. It must be set to ‘Enable 
Readback and Reconfiguration’. In addition, there are two other options available that 
is necessary to accomplish reconfiguration by means of the proposed system in this 
thesis: ‘Create ReadBack Data Files’ and ‘Create Mask File’.  

2.6.6.1 Mask file 
In order to extract register information from the readback data, we need to know 
where in that data the information is located. The mask file generated by the ISE tool 
masks which bit in the readback data that are actual configuration data and not 
configuration commands or other data. Mask file has the file extension .MSK. This file 
is used to create a new partial configuration file, in compliance with equation 2.1, for 
the PRM that have been replaced.  The content of the mask file does not match the 
readback data as seen in figure 2.10. It is therefore necessary to discard unwanted 
data from the readback data. 

 
 

 

 

 
Figure 2.10 – Misalignment of file contents [7]. 
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3 Related research  
 

3.1 Chapter overview 

As mentioned in the introduction there has been extensive research on the subject of 
partial reconfiguration, but not as much on the issue of context switching. The most 
relevant work, to my knowledge, compared to this thesis is presented here. They are 
listed in order of increasing relevance. 

3.2 Research papers 

 “Multitasking on FPGA coprocessors” [12]. The paper discusses requirements for 
context switching, or multitasking as the authors describe it. The paper focuses on 
context switching by means of bit stream read back and is therefore highly relevant. 
The requirements are listed in table 3.1 below. 

 
 

Table 3.1 - Context switching requirements. 

  
1 The FPGA must provide a readback bit stream that contains the 

current state of all registers and internal memory. 
 

2 Each register and memory bits in the FPGA must be able to 
preset or reset when a module is restored. 
 

3 Configuration and readback must be sufficiently fast to keep 
switching time as low as possible. 
 

4 Freezing the modules clock is necessary in order to take a 
capture of the registers and memory elements. 
 

5 If the module uses more than one clock the module must be 
interrupted only between cycles of the slowest clock. 
 

6 To avoid invalid data the clock must be stopped when it is safe, 
i.e. not when there is a memory addressing phase. 
 

7 The modules that are switched cannot contain latches or 
registers by means of combinatorial logic loops as states of these 
types cannot be accessed.  
 

8 If an external data source, or destination, is connected to the 
switching module the communication between the module and 
the external source/destination must be halted until the module 
is restored. 
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They also propose a client-server model of a hardware management unit (HMU) 
where the HMU is the server and the partial reconfiguration regions are the clients. 
The HMU is necessary to control the context switching. The setup included in this 
paper requires an external CPU that handles the reconfiguration process (the CPU act 
as HMU). No results were presented.  

 
“Efficient hardware checkpointing: concepts, overhead analysis and implementation”, 
[13]. This paper presents a tool, STATEACCESS, which utilizes hardware 
checkpointing to recover a module’s state in case of an operational fault. Hardware 
checkpointing adds some hardware to an existing module in form of a checkpointing 
finite state machine (CFSM). The main purpose of hardware checkpointing is to 
regularly take ‘snapshots’ of the internal states of a module in a fault-free operation in 
order to restore the module when a fault occurs. The paper also considers three 
different methods to perform hardware checkpointing which are; i) Memory-Mapped 
state access (MM), ii) Scan Chain based state access (SC) and iii) Shadow Scan Chain 
based state access (SHC). These methods provide four types of overheads defined by 
the authors: hardware overhead H (in terms of extra flip-flops and LUTs), 
performance reduction R (reduction of maximal clock frequency), time-overhead C 
(increase in execution time) and latency L (time for a complete checkpoint arrives at 
the rollback device). MM integrated the checkpointing flip-flops into a memory space 
of a CPU. With SC the flip-flops are chained together through a long shift-register 
chain where each flip-flop has a multiplexer associated that switches between normal 
operation and shift-register operation. The last method, SHC is actually a state copy. 
For every state-register in a module there exists another register that copies the state. 
This creates a massive hardware overhead. The authors tested hardware 
checkpointing on three different modules, (a) DES56 cryptographic IP core, (b) 16 tab 
FIR filter and (c) FFT/IFFT coprocessor. The paper reported following hardware 
overhead. 2%-11% increase in flip-flops and 32%-83% increase in LUTs for MM, 4%-
12% increase in flip-flops and 5%-66% increase in LUTs for SC, and finally 103%-
122% increase in flip-flops and 72%-121% increase in LUTs for SHC. Hardware 
checkpointing is implemented in design flow and does not consider context save and 
restore through bitstream readback.  

 
“Context saving and restoring for multitasking in reconfigurable systems”, [17]. This 
paper proposes a combined software and hardware solution to context switching. It 
utilizes the bitstream readback functionality and extracts register information from 
the bitstream (State Extraction Filter). This information is then used to produce a 
new partial configuration file that contains the information of the registers and 
memory elements (State Inclusion Filter). Another benefit of this system is that it 
contains a database of which configuration frames that holds the value of a register or 
a memory bit. That means that it isn’t required to perform a read back of all the 
configuration frames within the partial region but only the frames that contains the 
register and memory elements. This significantly reduces the overall context 
switching time in comparison to reading all the frames. The main focus of the paper is 
to develop a system that relocates the saved module to another part of the device. The 
implemented system includes a previously made relocation filter, REPLICA, from the 
same authors. They implemented the system on an XCV2000E (Virtex-E) and their 
test result shows a total relocation time (including state extraction and state 
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inclusion, also known as context save and context restore) between 0.4 ms and 14.8 
ms with a partial bit stream size ranging from 9.3 kB to 331.7 kB.  
 
“A novel mechanism for effective hardware task preemption in dynamically 
reconfigurable system” [18]. This paper presents a tool, BitFormatter, that analysez 
the configuration file for each PRM. The tool then generates a DPRS Bitstream Format 
(DBF) file that contains a State Data Descriptor Table (SDDT). The table contains 
information about which frames the PRM’s state information is situated in, and that 
frame’s FAR value. When readback capture is initiated only those frames listed in the 
SDDT are captured. These frames are then written into their corresponding location 
in the initial configuration file. Restoring the same PRM is done by loading the FPGA 
with the modified bitstream. The authors used a Virtex-4 device in their experiments 
and an embedded CPU to control the reconfiguration process. Since only a few frames 
are read, compared to the total number of frames in the PRR, the readback process is 
fairly fast. Their test results shows a readback time of only 60.11 μs for a readback file 
of 3.68 kB, and a reconfiguration time of 536.9 μs for a modified configuration file of 
158.83 kB. Modification time was not directly measured, but a comment on the issue 
was given; ‘slightly more than 1 ms (…)’  

 
“Hardware context-switch methodology for dynamically partially reconfigurable 
systems” [19]. The paper presents a hardware system that performs context 
switching. This system is similar to [17] except that instead of a CPU all work is done 
by means of hardware and without the relocation filter. The database in this system 
contains information about frame address and bit index. This information is derived 
from the logic allocation file generated by BitGen. The register information is 
extracted from the file, and with the frame address information, this constitutes the 
database contents. Whereas [17] used a CPU to perform the read operations, the 
system proposed in this paper use a command ROM to store the configuration 
commands needed. In experiments the authors used XC2V1000 and XC2VP20 devices. 
The presented results in this paper are not directly comparable.   

 
“On-chip context save and restore of hardware tasks on partially reconfigurable 
FPGAs” [14]. This paper proposes an autonomous software based on-chip context 
save and restore (CSR). They used a MicroBlaze soft core embedded processor with a 
Linux-like operating system based on BusyBox. The process of context switching 
consist of three main steps. First is to save the context (CS), which means to initiate 
capture of flip-flops. Next, the captured data is merged with the initial bitstream to 
make a new partial bitstream; this process involves bitstream manipulation with 
mask file, captured file and the initial bit file. The last step is context restore (CR) 
which is to send the new merged bit file to the PRR. In compliance with requirements 
presented by [12], the PRR clock is halted during the entire CSR. Their experiment 
was performed on a Virtex-5 device and they tested the system on PRRs that ranged 
from one to twelve columns. They only measured how long the intermittent 
processes lasted. There are four different time measurements. TCS, Tmerge and TCR 
where ‘CS’ is the context save process, ‘merge’ is the process of creating new partial 
configuration file, and the ‘CR’ is the context restore process. For a PRR of twelve 
columns and a PRM flip-flop count of 1920 the reported times where: TCS = 13.06 ms, 
Tmerge = 19.39 ms and TCR = 13.23 ms.  
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3.3 Summary 

Table 3.2 below gives a summary of the research papers above. The table shows 
which device was used, which techniques was used for extracting the states, and if the 
reconfiguration controller were implemented in software (CPU) or in hardware. 

  
Table 3.2 - Summary of essential parameters. 

Author Device State Extr. Tech. 1 HW/CPU2 

[13] Virtex-II Hardware checkpoints - 
[17] Virtex-E Bitstream manipulation Both3 
[18] Virtex-4 Bitstream manipulation CPU 
[19] Virtex-II Bitstream manipulation HW 
[14] Virtex-5 Bitstream manipulation CPU 

 
 

                                                        
1 State extraction technique used. 
2 Reconfiguration controlled by hardware or by CPU? 
3 A combination of embedded CPU and hardware modules are used. 
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4 Implementation 
 

4.1 Chapter overview 

This chapter first explains the concept of the system that has been designed for this 
master thesis. Then follows an overview of the system, in section 4.3, where a 
functional explanation is given. The chapter continues to give a short description of 
the hardware platform used in the project. In section 4.5 the implemented system is 
described, the section gives an overview on the data flow, and an operational 
description is given. In the final section a detailed description on the implemented 
modules is given. Simulation captures and excerpt of the code is given when it is 
necessary to highlight a problem or to illustrate how they were solved.  

4.2 System Concept 

As described in the introduction, the foundation of the system in this thesis is based 
on two PRMs sharing the same PRR over time. Figure 4.1 below shows the system 
concept.  

 
 

 

 

 Figure 4.1 - Concept of partial reconfiguration with context switching  
 

PRM A runs for a predetermined amount of time, and it is then switched with the PRM 
B. After the same amount of time the PRM A is reintroduced in to the PRR. Now it 
starts from where it was when it was replaced. Switching of PRMs continues as long 
as the FPGA is powered. As the figure 4.2 below shows, the PRMs are time 
multiplexed in the PRR. In-between execution time of PRMs, the system performs 
context save (CS) and context restore (CR).  

  

Static region 

Partial region 
Module repository 

PRM A 

PRM B 
PRM A / B 
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Context switching 

 
 

 

 

 Figure 4.2 - Time multiplexed hardware sharing  
 
The creation of new partial configuration file is performed concurrently as the other 
PRM is executing, illustrated in figure 4.3.  The CS and CR process occupies both the 
static region and the partial region. In the static region it writes and reads the 
readback and partial bitstream data to and from the memory. The partial region is 
halted when both CS and CR is in progress. 

 
 

 

 

 Figure 4.3 - Details of the context switching in Figure 4.2  

4.3 System overview 

The system for switching between PRM A and PRM B can be described as four phases 
of operation, visualized in figure 4.4 on the next page. 
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 Figure 4.4 – The four phases of operations of the system.  

 

The start-up phase, marked as grey in the figure, consists of two stages: 
1) Powering up the FPGA 
2) Configuration of the static region 

This phase is normal for any partitioned design. The partial region is not configured.  
 

Next phase is the set-up phase, marked as red in the figure, and consists of two stages: 
1) Initialization and calibration of the DDR3 memory 
2) Transferring of files from the flash to the DDR3 

Stage 1 is normal for the onboard DDR3 memory at every start-up, see [20] for more 
details. Duration of the initialization and calibration sequence is about 220 μs. Since 
the generation of a new partial configuration file is depended on the mask file and the 
initial partial configuration file, these files must be uploaded from a computer to the 
onboard flash memory, via the Xilinx tool iMPACT. The flash memory is not suitable 
for context switching for reasons given in the next section. The files must therefore be 
transferred to the DDR3 memory. Immediately after completion of stage 1 the 
transferring of files starts. This stage continues until all the files are transferred.  

 
The initial run phase, marked as orange, consists of four stages: 

1) Configuration of the PRR with the initial bit file for PRM A 
2) PRM A run-time 
3) Context save of PRM A 
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4) Configuration of the PRR with the initial bit file for PRM B 

Since there is no saved context, the PRR is configured with the initial bit file for PRM 
A. After configuration, the PRM A runs for a predetermined amount of time. When the 
time limit is reached, the context of PRM A is saved through register capture and 
readback. The saved data is stored at a predefined memory location. Final stage of the 
initial run phase is the configuration of PRR with PRM B. This is the first run of the 
PRM B, and there is, as for the first stage, no saved context for the PRM. The initial bit 
file of the PRM B is therefore used to configure the PRR. 

 
Next and final phase is the run-time loop phase, marked as green. The creation of new 
partial configuration file for PRM A is done simultaneously as the PRM B runs, as per 
figure 4.3. When the run-time limit is again reached the context of the PRM B is saved. 
After the first run of both PRMs there is now a readback file for each PRM so a context 
restore is performed. This operation fetches the modified bit file for PRM A from the 
DDR3 and reconfigures the PRR. While the PRM A runs the PRM B is modified just as 
previously for the PRM A. This phase loops until reset is asserted or the power is 
removed. The operation of the system is described later in this chapter.  

4.4 Hardware platform 

The ML605 evaluation board is used during the project. The board consists of a 
Virtex-6 XC6VLX240T-1 FPGA, 32 MB linear BPI flash memory, 16 MB platform flash 
memory, 512 MB DDR3 memory and some other peripherals. Figure 4.5 shows the 
block schematic of the board. Only peripherals used in this thesis are described here, 
the other peripherals are more thoroughly described in [21]. There are two main 
clocks connected to the FPGA device. A 66 MHz single ended clock and a 200 MHz 
differential clock. It is the 200 MHz clock that is the system clock for the system in this 
thesis. 
 

 

 

 

 
Figure 4.5 – ML605 block schematic [21]. 
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4.4.1 Virtex-6 XC6VLX240T-1 device 
The Virtex-6 XC6VLX240T-1 device mounted on the ML605 board has 37680 CLBs, 
each with four LUTs and eight flip-flops which means 150720 LUTs and 301440 flip-
flops. Further, it has 768 DSP slices, and with the package FFG1156 it has 600 user 
I/Os. For more details of the Virtex-6 device see [22]. 

4.4.2 Flash memory 
There are two on-board flash memories on the ML605 evaluation board. One that 
primarily holds the configuration files (128 Mb Xilinx XCF128X-FTG64C Platform 
flash XL) and the other that holds data files as well as configuration files (256 Mb 
Numonyx / Micron JS28F256P30 Linear BPI Flash). The Platform flash is there to 
provide fast configuration in compliance with PCIe startup requirements and will 
configure the FPGA in less than 100 ms, the bit rate can be as high as 800 Mb/s [23]. 
These two flash memories share the same address and data lines but since the BPI 
flash is twice as large as the Platform flash it has one more address line. The selection 
of which flash to use is determined by the signal P30_CS_SEL and at startup the S2 
switch-2. The S2 switch-2 can be overridden after configuration by the P30_CS_SEL 
signal [21].  

 
The Linear BPI flash memory is used to hold the initial bit files and the mask files. The 
flash defaults to an asynchronous page-mode read upon power up or after a reset. For 
every page, of 4 words, there is an initial access delay of max 85 ns, and a delay of 25 
ns from a valid address to valid output within a page [24]. Since the clock signal of the 
memory is tied to VCC2V5 synchronous burst read is not possible [21].  

 
 

 

 

 
Figure 4.6 – Flash memory selector [21] 

 

 
 

 

4.4.3 SDRAM memory 
A 512 MB DDR3 SODIMM SDRAM is mounted on the ML605 evaluation board. The 
memory is of vendor Micron with part number MT4JSF6464H-1G1. The memory is 
capable of a transfer rate of 1066 MT/s (mega transactions per second) [25], and with 
a data width of 64 bits it corresponds to a data rate of ~67 Gb/s (8.5 GB/s). The 
memory device operates from a differential clock. A temperature sensor IC is 
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mounted on the memory device which uses the I2C communication protocol. This 
sensor is however not used in the memory interface generator (MIG) core provided 
by Xilinx. This is explained more detailed in section 4.6.3.1. The memory supports x8 
burst which means memory accepts 8 x 64-bits data to be read or written at the same 
address, and that the next address is incremented by 8.  

4.4.4 ML605 configuration mode switch 
There are three configuration mode switches (S2 switch 3-5) that sets the 
configuration mode as mentioned in chapter 2.6.1. Table 4.1 lists different modes 
available for the ML605 evaluation board. 

 
 

Table 4.1 - Configuration mode switch settings. 

Configuration Mode S2 switch 3-5 Bus width 
Master Serial 000 1 
Master SPI 001 1 
Master BPI-Up 010 8,16 
Master BPI-Down 011 8,16 
Master SelectMAP 100 8,16 
JTAG 101 1 
Slave SelectMAP 110 8,16,32 
Slave Serial 111 1 

 
 

Since the configuration file is stored in the BPI flash, the switch setting is 010 which 
set the mode to master BPI-up. 

4.5 Implemented system 

According to [24] the highest frequency of the flash memory is 52 MHz. Flash memory 
data bus is 16-bit wide, and the memory has a capacity of only 32 MB. The low 
capacity may become a concern when the PRR becomes large. The memory should be 
able to hold 4 files for each PRM; the initial bit file, the mask file, the readback file and 
the created partial configuration file.  

 
The onboard DDR3 memory takes 512 bits of data per address and operates at 400 
MHz. Its capacity is 512 MB and has no problem of holding all the necessary files. 
Consequently, the DDR3 memory is faster at creating the new partial configuration 
file than the flash memory.  

 
The system consists, as seen in figure 4.7, of two external components; flash memory 
and DDR3 memory, and six hardware modules; flash memory controller (FMC), DDR3 
memory controller (DMC), file transfer module (FTM), bit manipulator module 
(BMM), data width converter (DWC) and ICAP instruction memory module (IIMM). 
The latter three modules reside in the CSMC. The DMC is based on an IP core from 
Xilinx, memory interface generator (MIG), and modified to suit the design. The system 
also includes one ICAP primitive in order to perform reconfiguration and readback 
from within the FPGA.  
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 Figure 4.7 – Implemented system and data flow.  
  

Figure 4.7 also shows which modules that have been implemented and tested. The 
orange blocks represent the external components, the green blocks represents the 
modules implemented in this work, the white block represents the ICAP primitive, 
and the red block are the modules that have not yet been implemented due to 
restricted duration of the thesis, as mentioned in the introduction. The DMC has an 
internal blue block that represents the IP core MIG.  

 
The flash memory holds the two of the three files, initial bit file and mask file, 
essential for the generation of new bit file. To read these files, a flash controller is 
therefore necessary. These files are transferred to the DDR3 memory at start-up. This 
is the only interaction with the flash memory. All files are stored, at run-time, in an 
external DDR3 memory. The CSMC, FTM and the BMM all interact with the external 
DDR3 memory, FTM only at the start-up phase. 

 
The CSMC is controlling the whole process of context saving, creation of a new partial 
configuration file and context restore. The IIMM contains the necessary 
reconfiguration and readback command sequences. To generate a new partial 
configuration file the algorithm in equation 2.1 is realized in the BMM. ICAP data bus 
is 32-bits wide and the DMC has a 256-bits wide data bus. The DWC converts 32-bits 
data into 256-bits data and vice versa. 
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4.5.1 Data flow 
Figure 4.7 also shows the data flow of the system. There is no writing of data to the 
flash memory and since the data width is 16-bit it must be converted into 256-bit 
which is the internal bus width of the DMC. This conversion is performed inside the 
FTM. The ICAP primitive has a 32-bit data bus and the DWC converts it to 256-bit 
before the readback data is sent to the DMC. This is a standalone converter since the 
one used in FTM is used only once in the set-up phase and it can only convert from 
16-bit to 256-bit, not from 32-bit to 256-bit and the other way around. The BMM does 
not interact with the ICAP and is therefore not connected to the converter since the 
data width of BMM is 256-bit. The IIMM has a data bus width of 32-bit which matches 
the ICAP data bus, and is therefore not connected to the converter. 

 

4.5.2 System operation 
Due to the fact that the system is not complete, it is necessary to make some 
assumption in order to explain the theory of operation of the system as it is intended. 
The assumptions are listed below.  

 
1) The partial reconfiguration region is already implemented. 
2) The region is a single island style. 
3) Two partial reconfigurable modules, A and B, are available. 
4) The modules have a footprint that fits the partial region. 
5) Start-up phase has completed. 

 
At set-up phase, the DMC performs initialization and calibration. When these tasks 
are completed the controller asserts a phy_init_done signal, which indicates that 
the initialization and calibration of the DDR3 memory have been completed, and the 
transferring of mask and initial files for each partial module begins, as seen in figure 
4.8 below. 

 
 

 

 
 

 

 Figure 4.8 - File transfer begins when the DDR3 initialization and calibration is done.  
 
 

The file transfer is automatic and is not controlled by another module other than the 
assertion of the phy_init_done signal. When the transfer is complete the transfer 
module asserts a transfer_done signal, which indicates that the transferring of 
files are complete, as depicted in figure 4.9, and the system enters the initial-run 
phase  
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 Figure 4.9 – The transfer_done signal indicates the completion of file transfer.  
 

PRR is configured with PRM A. Since it is the first run of PRM A, and there is no saved 
context, the PRR is configured with the initial bit file. After a predefined time interval 
the context switching main controller initiates a CS of partial module A; a readback 
with capture command sequence is sent to the ICAP.  

 
When the ICAP starts sending the readback data it is converted from 32-bit to 256-bit 
by the DWC. Immediately after the conversion, the CSMC asserts a write signal and 
sends the data to the DDR3 memory controller with a destination address. The 
memory controller sets the appropriate control signals and stores the data in the 
designated address.  

 
For each DDR3 address the memory controller stores 512-bits of data so for the next 
piece of 256-bit data from the context switching main controller, the DDR3 address 
stays the same. The address is incremented by eight for each 512 bits of data. This 
process continues until the readback has completed. When the CS is finished, i.e. the 
last configuration frame of data is stored; the process of CR of PRM B begins. 
Configuration command sequence is sent to the ICAP. Since it is the very first run of 
the partial module B the context switching main controller fetches the initial bit file 
from the DDR3 memory and sends it to the ICAP via the data width converter. When 
the reconfiguration is done, the system enters the run-time loop phase.  

 
Next process is important; while the partial module B is running, the bit manipulator 
receives a signal from the context switching main controller telling it to go ahead and 
generate new partial configuration file for the partial module A. The bit manipulator 
then fetches the first 512 bits from the location of the initial bit file and stores it in a 
local register; it then fetches the first 512 bits from where the mask file is stored and 
stores that data in another local register. The last data fetch is from the previously 
stored readback data. It now contains three 512-bit registers with data; it then runs 
the algorithm from equation 2.1 and as a final step it stores the newly created data in 
another memory location. The process described above repeats until power down of 
the FPGA. The time it takes for the bit manipulator to generate a whole new partial 
configuration file sets the minimum run-time width of the running module.  

 

4.6 Module descriptions 

4.6.1 Context switching main controller 
Unfortunately this module was not implemented due to limited duration of the thesis, 
but as stated above, the CSMC controls the entire process of reconfiguration and 
context switching including the creation of new partial configuration file. ICAP, BMM, 
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DWC and the IICM should all reside in the CSMC, as per figure 4.7. It should be 
implemented as a state machine, in order to achieve correct sequencing of the 
different processes. The state machine should be designed in accordance with the 
flow chart in figure 4.4. There must be a multiplexer in the CSMC that selects the ICAP 
input. In case of CR, both DWC and IIMM would send data to the ICAP. In case of CS, 
the IIMM would send data to ICAP and DWC would receive data from ICAP. 

4.6.2 Flash memory controller 
The flash memory has four control signals; CE (chip enable), ADV (address valid), OE 
(output enable), and WE (write enable). Other I/Os include CLK, RST, DQ, ADDR, and 
WAIT [24]. All control signals and the reset signal is active low inputs. The FMC has 
one additional custom control signal, TRANSFER_EN, which is controlled by the FTM. 
It acts like an enable signal; reading is not available unless the TRANSFER_EN has 
been asserted. On the ML605 evaluation board, the clock and WP is tied to Vcc2V5 and 
the ADV is tied to ground [26]. Only two signals, WE and OE, are therefore necessary to 
control. Table 4.2 shows the settings of the control signals of the flash memory when 
a read operation is to be performed. 

 
 

Table 4.2 - Control signals for read operation of the flash memory [24]. 

Bus operation RST CLK ADV CE OE WE 

Read Asynchronous 1 n/a 0 0 0 1 
Synchronous 1 running 0 0 0 1 

 
 

The controller sets the signal WE and OE to logic high at reset. When the system is out 
of reset the controller waits for the TRANSFER_EN enable signal coming from the 
FTM. When the signal is asserted the controller sets the OE signal logic low, and 
reading of data from the flash begins. Since the address in to the controller is updated 
once every rising edge of the clock of the transfer module, the update of output is 
synchronously. Reading of flash data continues until TRANSFER_EN is de-asserted by 
the transfer module. When that happens the OE is set to logic high again, preventing 
further reading from the flash. Since the WE is tied to logic high through a pull-up 
resistor [26] it is actually not necessary to control this signal and hence the OE is the 
only signal the module need to control. 

 

4.6.3 DDR3 memory controller 
The DMC is based on the MIG IP core from Xilinx. The ‘user design’ block in figure 
4.10 represents the DMC designed specifically for this thesis. A description of the 
‘user design’ is given later in this section. The available documentation for the MIG IP 
core is, in my opinion, inadequate and lacks sufficient information. It also contains 
several errors, which makes the implementation difficult and time consuming.  

 

4.6.3.1 Memory Interface Generator 
It is quite difficult to control a DDR3 memory due to strict timing requirements and 
advanced data handling, and that is why Xilinx has made a memory controller IP core. 
The core makes controlling of the memory easy, compared to designing a DDR3 
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memory controller from scratch. However, there are some signals that need to be 
controlled in the right manner. A deeper understanding of the Xilinx MIG IP core is 
given here. MIG version 3.91 is used in this thesis. The core comprises three main 
blocks; physical layer block, memory controller block and a user interface block (UI) 
[27]. Figure 4.10 shows these blocks.  

 
 
 

 

 

 
Figure 4.10 - MIG interfaces [27]. 

 

 
The physical layer block generates the correct timing and sequencing of signals to the 
memory module. The memory controller block receives requests from the UI and 
stores them in a logical queue. The UI creates an interface and presents a flat address 
space to the user. In addition it does reordering of retrieved data to match the 
requests. The interface between the memory controller and the UI block is called 
‘native interface’. It is possible to skip the UI block and interact with the memory 
controller through the native interface. This is somewhat complicated as retrieved 
data may be unordered compared to requests which mean that the user must reorder 
the retrieved data to match the requests. The UI block is therefore included in the 
system used in the thesis in order to keep it simple. 

 
The MIG provides an ‘infrastructure’ module which instantiates the advanced mixed 
mode clock manager (MMCM_ADV) primitive. This primitive generates different 
clocks. The physical memory module runs at 400 MHz, while the IP core and rest of 
the modules runs at 200 MHz.  

 
The UI has several inputs that need to be controlled by the user, and a few status 
outputs. Table 4.3 shows a list of these I/Os, signals marked red are control signals, 
and the signals marked blue are status signals. A command, that determines whether 
a read or a write operation is about to happen, is sent to the UI. The command is 
accepted by the UI when the app_rdy is asserted by the UI and the app_en is 
asserted by the user. This is called the Command Path. The app_cmd, app_addr and 
the app_en signal must be upheld until the app_rdy has been asserted. Figure 4.11 
shows a command being accepted by the MIG. The address is set first; the command is 
set simultaneously as the enable signal is asserted. Since the app_rdy is already 
asserted by the MIG, the command is accepted immediately. 
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 Figure 4.11 - Command path.  

 
When a write command is sent and accepted, the UI is waiting for the 
app_wdf_wren from the user. This signal is the enable signal for writing data to the 
DDR3. If the app_wdf_rdy is asserted by the MIG, two 256-bit words are sent to the 
memory in two consecutive clock cycles. Along with the last word app_wdf_end 
must be asserted by the user, indicating the last word of the data burst. The sequence 
is illustrated in figure 4.12. This means that it takes two clock cycles to write a full x8 
burst of data. This is called the Write Path.  

 
 

 
 

 

 Figure 4.12 - Write path.  

 
 

When a read command is accepted by the UI, the data at the current address are 
available at the app_rd_data output when the app_rd_data_valid is asserted 
by the UI. Just as in the write operation, there is an app_rd_data_end signal 
asserted by the UI, indicating the last 256-bit word of the read. The returned data 
from the memory are presented in the same order as requested by the user. This is 
called the Read Path. Figure 4.13 shows the read path. The assertion of app_en 
results in assertions of both app_rd_data_valid and app_rd_data_end after 
some clock cycles. It takes 23 clock cycles for the status signals to be asserted, so the 
figure has been modified in order to visualize the behavior.  

  
   

Command accepted. 
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 Figure 4.13 - Read path.  
 

 

Table 4.3 - Control and status signals from the MIG user interface [27]. Signals marked red are control signals, 
and signals marked blue are status signals. The other signals are: address, data and write mask. 

Signal UI - I/O Description 
app_rdy out Indicates that the UI is ready to accept commands. If the 

signal is de-asserted when app_en is enabled, the current 
app_cmd and app_addr must be retried until app_rdy is 
asserted. 

app_wdf_rdy out Indicates that the memory controller is ready to receive 
data. Write data is accepted when app_wdf_rdy and 
app_wdf_wren are both logic high. 

app_cmd in Command for the current request. 
app_addr in Address of the current request. 
app_en in Active high strobe signal for the app_addr and app_cmd. 
app_wdf_wren in Active high strobe signal for app_wdf_data. 
app_wdf_end in Indicates that the current clock cycle is the last cycle of input 

data on app_wdf_data. 
app_wdf_data in Data for the write command. 
app_rd_data out Output data for the read command. 
app_rd_data_valid out Indicates that the app_rd_data is valid. 
app_rd_data_end out Indicates that the current clock cycle is the last cycle of input 

data on app_rd_data. 
 

4.6.3.1.1 User design 
The user design is the module interacting with the MIG user interface, in this thesis 
that corresponds to the DMC in figure 4.7. As mentioned earlier, the UI has three 
control signals that the user need to assert relative to a read or a write operation, see 
figure 4.14 for I/O ports of the controller. There are two ways this can be 
accomplished, the designer can let all the modules that interact with the MIG, control 
the signals themselves, or a single module can control them all, and have just a few 
enable signals as input, in addition to the address and data bus. This module then 
becomes a memory controller itself with a higher abstraction level than the MIG UI. 
The system proposed in the thesis uses the latter alternative.  
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 Figure 4.14 - I/O ports of the DMC. Color coding corresponds 
with the color coding in table 4.3. 
 

 

 
The DMC has to enable signals; DDR3_write and DDR3_read. Based on these 
inputs, the controller asserts the corresponding control signals going to the MIG UI. 
Because controlling the memory is only dependent on two of the status signals 
coming from the UI, app_rdy and app_wdf_rdy, the other two are not connected 
to the DMC, as seen in figure 4.14. Each interacting module asserts the enable signal, 
corresponding to the request, for as long as it takes to perform the request. A 
multiplexer at the top level prevents more than one module accessing the memory at 
the same time.  
 
In the case of a memory read there is a delay of twenty three clock cycles between the 
rising edge of the DDR3_read signal and the rising edge of the 
app_rd_data_valid signal from the MIG UI, see chapter 5.3. It is not necessary to 
hold the DDR3_read for the duration of the delay but it must be held high for two 
clock cycles per read operation. 
 
The operation of the controller is based on an FSM, which consist of five states; idle, 
cmd, first_write, second_write and read. ASM of the FSM can be seen in figure 4.15. 
The idle state just waits for the assertion of either DDR3_write or the DDR3_read 
signal. When that happens the next state is set to cmd. The cmd state waits for the 
assertion of app_rdy from the MIG UI, if the DDR3_write is still high. If the 
DDR3_read is high the next state is set to read. The read state asserts app_en.  

 
The first_write state sets app_en and app_wdf_wren high. The app_wdf_end is 
not asserted at this state and that indicates that the first 256-bit word of data is 
written at the current address. If DDR3_write is still asserted, the state waits for 
app_wdf_rdy signal. The next state is set to second_write when the app_wdf_rdy 
signal goes high. If the DDR3_write signal is de-asserted, the state machine goes 
back to the cmd state.  
 
In the second_write state both app_wdf_wren and app_wdf_end signal is 
asserted, indicating the last 256 bit word that is to be written at the current address. 
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If the DDR3_write is still asserted then the state waits for confirmation by the MIG 
UI via the app_wdf_rdy signal before the FMS goes back to the cmd state. The DDR3 
address is controlled by the interacting module. 

 
 

 

 
 

 

 Figure 4.15 – State machine for DMC.  
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4.6.3.1.2 Constraints 
The Xilinx MIG IP core demands several constraints in order to work properly. When 
generating the core, a constraints file is made and the file needs to be modified to 
match the ML605 evaluation board; all location constraints must match the pin 
locations given in [21], all lines related to SDA and SCL must be commented out since 
the onboard temperature sensor mounted on the DDR3 module is not in use by the 
core. The core takes two different clocks, one as the system clock for the DDR3 
module itself and another for the controller. On the ML605 however, only one clock is 
used so the location constraints of the clock that is not used, and its associated timing 
specification, must be deleted. 

4.6.4 File transfer module 
As mentioned in system concept, necessary files must be transferred from the flash to 
the DDR3 memory. The FTM reads 512 bits of data from the flash, and then writes 
that data at a predefined location in the DDR3 memory. This continues until all files 
are read. The start address of each file, in DDR3, can be arbitrary chosen, but the 
address difference between two neighboring files must be greater than the address 
space each file consumes.  

 
 

 

 
 

 

 Figure 4.16 - The file transfer module and its ports.  
 

As mentioned in section 4.4.2 there is a significant read access delay. The transfer 
module must therefore run at a much lower frequency than rest of the system. This 
does not reduce the performance of context switching as the system accesses the 
flash memory at the start-up phase only.  

 
Transferring data from flash to DDR3 begins when the phy_init_done has been 
asserted by the MIG, and is based on four counters. The counters are listed below. 

 
1) Transfer_counter_18 
2) Transfer_counter_36 
3) Start_up_delay_counter 
4) No_flash_data_counter 

 
Transfer_counter_18 counts continuously from 0 to 17, when it becomes 17 it starts 
over from 0 again at the next clock cycle. When the counter is between 1 and 16 the 
flash_tr_en is asserted, and de-asserted when the counter is either 0 or 17. This 
translate to that the FTM reads 16 words from the flash, waits for two clock cycles, 
and then reads another 16 words. 

DDR3_tr_en 

DDR3_addr 
DDR3_data 
flash_tr_en 
flash_addr 

clk 
rst 
phy_init_done 
flash_data 

FTM 

27 

256 

16 
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The FTM must read 32 x 16-bit before the data can be written to the DDR3. Another 
counter is therefore necessary; transfer_counter_36 counts from 0 to 35. When the 
counter is between 0 and 2 the DDR3_tr_en is asserted and data is written to the 
designated address.  

 
Start_up_delay_counter is different. It is active only at start-up. The counter inhibits 
writing to the DDR3 memory at the beginning of file transfer since there is not any 
data to be written. Figure 4.17 illustrates the problem. The upper value of the counter 
is arbitrary, but it must be above 36 to allow for reading of 512 bits from the flash 
memory. 

 
 

 

 

  
Figure 4.17 - Start-up counter inhibits writing invalid data to DDR3 at the beginning of file transfer.  

 
No_flash_data_counter counts clock cycles when there is no reading from the flash, i.e. 
the counter is only active when the flash_tr_en is de-asserted. This is necessary 
in-between files. If the size of a file is a multiple of 16, a gap of invalid data appears 
when changing from one file to another. Writing to DDR3 must be prevented in this 
case. Figure 4.18 illustrates the problem. If the file size is not a multiple of 16 then the 
last read data fills that gap with valid data, and writing to the DDR3 is allowed, as 
seen in figure 4.19. 

 
 

 

 
 

 

 Figure 4.18 - Invalid data between files.  
 

  

 
 

 

 Figure 4.19 - Valid data between files.  
 
 

The flash address it updated once every clock cycle as long as the flash_tr_en is 
asserted. Address is halted when the enable is de-asserted. The DDR3 address is 
updated when the transfer_counter_36 is 0. The issue with changing files applies also 
for the DDR3 address update. The address is therefore additionally dependent on the 
no_flash_data_counter. 
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4.6.5 Bitstream manipulator module 
In order to create a new partial configuration file that includes the register value from 
the previous run, the initial bit file must be modified before it is sent to the partial 
region again. This modification is done by the BMM. The concept of the bit 
manipulator is that it reads 512 bits of data from each of the files, stores that data in 
local registers, then applies the modification equation from equation 2.1. The final 
step is to write the modified data at a new predefined address location in the 
memory. Figure 4.20 illustrates the concept, the skew of input register relative to 
each other represents that the reading of data from memory is performed in 
sequence. This process repeats until the final address of the files has been reached. 
The modification process starts when the context switch main controller asserts 
either PRM_0_run signal or the PRM_1_run signal. When the partial module A is 
running, indicated by the PRM_0_run signal, the creation of the new partial 
configuration file for partial module B is done and vice versa. The duration of the 
modification process determines minimum run time of the partial modules. 

 
 
 

 
 

 

 
Figure 4.20 - Process of creating new partial configuration file. 

 

 
 

The module must know when to stop reading from the memory and the end address 
for each file must therefore be determined. The static bit file is of known size, and 
determination of where the other files can reside in the flash memory is therefore 
possible. Since the memory space of the DDR3 memory differs from the flash 
memory, the file end address for each file must be changed compared to the file end 
address in the flash memory. The start address of these files may be chosen 
arbitrarily. The end address can be calculated, either on the basis of the file size, or, as 
it is implemented, on the basis of the start and end address of that particular file in 
the flash memory. Equation 4.1 shows how the address is calculated. 

 
 
 

𝐷𝐷𝑅3 𝑒𝑛𝑑 𝑎𝑑𝑑𝑟 = �𝑓𝑙𝑜𝑜𝑟 �
𝑓𝑙𝑎𝑠ℎ 𝑒𝑛𝑑 𝑎𝑑𝑑𝑟 − 𝑓𝑙𝑎𝑠ℎ 𝑠𝑡𝑎𝑟𝑡 𝑎𝑑𝑑𝑟

32 � ∗ 8� + 𝐷𝐷𝑅3 𝑠𝑡𝑎𝑟𝑡 𝑎𝑑𝑑𝑟 4.1 
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The function CALC_DDR3_END_ADDR performs the calculation as seen by the code 
excerpt in figure 4.21. The flash memory takes 16 bits of data at one address location 
and the DDR3 memory takes 512 bits of data at one address location. The flash 
address is incremented by one each time and the DDR3 address is incremented by 
eight each time. That means that for each 32 increments of the flash address the 
DDR3 address is incremented once. Based on this the file end address in the DDR3 
memory space can be calculated by the equation 4.1. As mentioned in chapter 2.6.6.1, 
the mask file and the configuration file contains data that are not of importance for 
the creation of new configuration file; header data and commands. So when reading 
both initial configuration file and the mask file from the DDR3, the start address for 
these files must be set accordingly. 

 
The mod operator checks whether the address is a multiple of 32, if it is then the 
address is then calculated in accordance with the equation. Otherwise, the address is 
decremented by one until it is a multiple of 32.  

 
 

 result  := flash_end_addr – flash_start_addr;  
             
   for i in 0 to 31 loop 
     if result mod 32 /= 0 then 
         result := result - 1; 
     else 
        DDR3_end := ( (result / 32) * 8) + DDR3_start_addr; 
        exit; 
     end if; 
   end loop; 

 

 
Figure 4.21 - Calculating the DDR3 file end address. 

 

 

4.6.5.1 Creating new configuration file 
The modification equation 2.1 is realized in hardware as a single signal assignment 
shown in figure 4.22. The modification process is controlled by a FSM which controls 
the address and read enable signal for the DDR3, and the actual modification. Figure 
4.23 shows the algorithmic state machine (ASM) chart of the FSM. 

 
 
 
 new_partial_bit  <= ( (readback and mask) or (initial and (not mask) ); 

 
 

 
Figure 4.22 – Equation 2.1 realized in hardware.  
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Figure 4.23 - Simplified ASM of the bitstream manipulator FSM. 

 

 
The DDR3_read_enable signal must be held high for six clock cycles in order to 
read from three address locations. Since the module performs three reads in a row it 
is necessary to have a counter the counts the number of app_rd_data_end 
assertions so the data is transferred to the correct register. The counting is done by 
the read_counter. If the read_counter is 1 it means that the initial bit file has 
been read, if the counter is 2 then the mask file has been read, and finally, if the 
counter is 3 the readback file has been read.  

 
The saving of the first 256 bits of the read data to the internal registers happens when 
the MIG user interface asserts the app_rd_data_valid and when the 
app_rd_data_end is asserted the last 256 bits are saved. There is a delay of one 
clock cycle from assertion of the last app_rd_data_end to the actual saving of data 
to the internal register. It is therefore necessary to wait one clock cycle after the de-
assertion of app_rd_data_end to apply the modification equation to the registers. 
There is a counter that is activated when the read_counter has counted to three, 
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commence_merge_counter. This counter also counts to three before the equation 
is applied. This is done to ensure that all three internal registers contains the correct 
data before applying the equation. The writing of the modified data happens at the 
next clock cycle and the writing takes two clock cycles. After the writing of modified 
data there must be a delay of one clock cycle before the reading of the three files can 
begin again, this assures that the app_rdy in the MIG user interface is given enough 
time to be asserted and a new command is accepted. During this delay the internal 
addresses are updated.  

4.6.6 Data width converter 
As mentioned earlier the ICAP data bus is 32 bits wide and the DDR3 memory data 
bus is 256 bits wide. It is therefore necessary to have a data bus width converter. This 
module has two enable inputs and two status outputs in addition to two data inputs, 
one for each width, and two data outputs, also one for each width. The converter 
works on the same principle as the converter in the transfer module; a counter 
controls the conversion. Note that when sending data to the ICAP, i.e. context restore, 
the reading of data from DDR3 memory is 8 times slower than the frequency of the 
ICAP. The same happens for writing to the memory when retrieving data from the 
ICAP, i.e. context save. 

4.6.7 ICAP instruction memory module 
This module was not implemented, but it should be easy to do so. It is just a small 
memory module that contains the command sequences necessary to perform a 
readback capture and PRR reconfiguration. The memory can be split into two smaller 
modules in order to have better control of the reconfiguration process, one for the CS 
process, and one for CR process, but that is up to the user to decide. The IIMM should 
be controlled by the CSMC. If two or more PRRs are implemented the FAR and 
FDRI/FDRO word count must be altered according to which PRR is about to be 
reconfigured. The memory modules should, in that case, be writeable.  
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5 Simulation and measurements 
5.1 Chapter overview 

This chapter gives a description of the simulation environment and how the 
simulation was performed. Section 5.2 gives a detailed description on the set-up of 
the simulation. Section 5.3 takes a closer look at how the DMC and DDR3 memory 
responds to read requests from the BMM. Measurements and results are given in 
section 5.4, this section also includes some equation needed to calculate parameters 
related to configuration frames and timing. The results are plotted in a graph and 
data extrapolation is used to give a precise timing estimate beyond simulation. The 
final section compares the simulated results width previously conducted experiments 
from other relevant work mentioned in chapter 3.2. 

5.2 Simulation set-up 

The Xilinx MIG IP core provides a batch file for generating simulation environment for 
both Xilinx’ own simulation tool iSim, and for the standalone simulation software 
ModelSim from Mentor Graphics. The simulation environment includes a testbench, 
and a simulation model of the DDR3 memory that corresponds to the MT4JSF6464H-
1G1 from Micron mounted on the ML605. In addition the core provides an example 
design, shown in figure 5.1. This design consists of the controller itself (Memc_ui_top), 
a clock and reset manager (infrastructure) and a data traffic generator. The testbench 
instantiates the example design, and makes simulation without a user design 
possible.  

 
 

 

 

 Figure 5.1 - Example design provided by the MIG IP core [27].  
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The example top file was modified to exclude the traffic generator, and to include the 
modules described in chapter 4.6, except for the data width converter, flash 
controller and the context switching main controller. The converter was not included 
since ICAP was not instantiated. The simulation testbench was also modified to 
simulate the PRM_A_run signal since the context switching main controller was not 
included in the simulation. In addition, data from the flash was generated by a 
random number generator function. The pseudorandom number generator takes two 
seed numbers as arguments and generates a random 16-bit number based on the 
seeds. In order to generate different numbers each time the function is called, i.e. each 
clock cycle, the seeds are changed every time. The seeds are initialized to 5618 
(0x15F2) and 12300 (0x300C), and they are accumulative added by 347 and 1097 
respectively. These numbers are arbitrary chosen.  
 
There is no simulation model of the flash memory. However, the memory controller 
was tested in real using the ML605 evaluation board. The eight MSBs of the flash data 
bus were outputted onto user LEDs on the board, a test file was uploaded to the flash 
memory through the iMPACT tool and address was controlled by onboard DIP 
switches. It was confirmed that the LEDs showed the eight MSBs of the 16-bit words 
in the test file. The read access time, and hence the reading speed, mentioned in 
chapter 4.4.2, was not tested. 
 
Since readback of captured data was not available, data from the initial bit file for the 
other partial module was used instead. This was done by changing the address 
location of the readback file to the location of the initial bit file of the other PRM. The 
testbench needed only to simulate the assertion of the reset and the PRM_A_run 
signals.  

 
The provided testbench has a long list of parameters that is passed on to the MIG IP 
core, but there are only a few parameters related to simulation [27]. The DDR3 model 
starts initialization and calibration immediately after de-assertion of reset and this 
process lasts for about 220 μs [27]. This is impractical for testing purposes as 
simulating that amount of time usually takes up to an hour and a half. The most 
relevant parameter and its available options are listed in table 5.1 below.  
 
 

Table 5.1 - Available options for reducing the simulation time [27]. 

Simulation parameter Options Description 

SIM_BYPASS_INIT_CAL 

OFF Regular simulation with normal 
initialization and calibration. 

FAST Bypasses initialization and performs 
an abbreviated calibration sequence. 

SKIP 

Bypasses initialization and skips the 
calibration sequence. Various timing 
relations between the FPGA and the 
memory are fixed. 
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The ‘SIM_BYPASS_INIT_CAL’ parameter was set to ‘skip’ which reduces the simulation 
duration significantly. With this option the phy_init_done is asserted after just 15 
μs, which corresponds to approximately 8 minutes in real time. 

5.3 DMC and BMM simulation 

When performing data read from the DDR3 memory there is a delay of 23 clock cycles 
from the initial assertion of the enable signal to the output of data, as seen in figure 
5.2. When reading from several address consecutively, as the figure shows, the 
distance between outputs is only 9 clock cycles. This means that reading data from the 
three files takes in total 47 clock cycles (23 + 2 + 9 + 2 + 9 + 2), which corresponds to 
235 ns.  

 
 

 

Figure 5.2 - Delay from read command is given till the data is available. 
 
 

This applies however, only for the very first read, because the MIG de-asserts the 
app_rdy signal for 8 clock cycles after the read, as can be seen in Figure 5.3. The 
initial delay increases to 36 clock cycles, and the total delay increases to 59 clock 
cycles, which corresponds to 295 ns.  

 
  

 

Figure 5.3 – De-assertion of app_rdy after reading from three addresses. 
 

As mentioned in chapter 4.6.5, storing of data into local registers is done in a 
sequence, and that a counter keeps track of which data belongs to which register. 
Figure 5.4 shows that the data is stored in local registers accordingly. Note that the 
equation 2.1 is applied immediately after the last read. 
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Figure 5.4 – Storing data in local registers. 

 

 

5.4 Measurements 

Four different file sizes, ranging from 1kB to 15kB, were simulated and the time to 
completion of the generation of new partial configuration file was recorded. The 
measurements were performed by measuring the time between the idle state and the 
finish state of the bit manipulator FSM, as shown in figure 5.5 below.  

 
 
 
 

 
 
 

Figure 5.5 - Measurement method. 

 
Table 5.2 shows the results for the four files tested. The file size has also been 
converted into configuration frames by the equation 5.1, where 𝐹𝑘𝐵R denotes how 
many frames there are pr. kB.  

 
 

𝐹𝑘𝐵 =  
𝑘𝐵

𝑓𝑟𝑎𝑚𝑒 𝑙𝑒𝑛𝑔𝑡ℎ
 5.1 

  

As mentioned in chapter 2.6.2, the length of a configuration frame for a Virtex-6 
device is 2592 bits. This gives 3.16 frames pr. kB. 

 
 

Table 5.2 - Meausrement results. 

File size [kB] File size [frames] Tcreate [μs] 
1 3.16 5.12 
2 6.32 10.29 
8 25.28 41.65 

15 47.40 77.38 
 
 
 

Start Stop 
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 Figure 5.6 – Plot of the result from the simulation data.  
 
 

As seen by the trend line in figure 5.6, the data is approximately linear, and that 
property is used to extrapolate the data beyond simulation. The graph also shows the 
calculated frames. File sizes of 64 kB and 128 kB is used as data points in the 
extrapolation. Table 5.3 shows the result of the extrapolation, and figure 5.7 shows a 
plot of the extrapolated data. 

 
 

Table 5.3 - Extrapolated data. 

File size [kB] File size [frames] Tcreate [μs] 
64 202.27 334.04 

128 404.54 668.21 
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Figure 5.7 - Plot of the extrapolated data. 
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Equation 5.1 can be used, in conjunction with Tcreate, to derive the time it takes to 
generate a new frame, as shown in equation 5.2, where Tframe denotes the time to 
create a single frame. 

 

𝑇𝑓𝑟𝑎𝑚𝑒 =  
𝑇𝑐𝑟𝑒𝑎𝑡𝑒 
𝐹𝑘𝐵

 5.2 

 
And we can also find how many frames can be created per μs, as per equation 5.3 
where Fμs denotes frames per μs: 

 

𝐹µs =  
𝐹𝑘𝐵

𝑇𝑐𝑟𝑒𝑎𝑡𝑒
 5.3 

 
By applying a file size of 1 kB into the equations we get that Tframe is 1.62 μs, and Fμs is 
0.62 frames per μs. To put this in perspective, XAPP883 [20] provides a partial 
reconfiguration example, and the PRM has a length of 1673 frames. Generating new 
configuration file for that PRM would take only 2.71 ms. Another example; to 
generate a full configuration file for the Virtex-6 device used in this thesis (28488 
frames) requires only 46.15 ms.  

 
To calculate the data rate of the bit file creation process we take the data from table 
5.2 and divide the file size with the corresponding Tcreate, as shown in table 5.4. 
Average data rate of the four file sizes are 1514 Mb/s.  

 
Table 5.4 - Data rate of the creating new bit file process. 

File size [kB] Data rate [Mb/s] 
1 1600 
2 1592 
8 1573 

15 1588 

5.5 Comparison 

Table 5.5 shows measurement results from the relevant research from chapter 3.2. 
Only two of the papers provided comparable data.  

 
 

Table 5.5 - Measurements from relevant research 

Author HW/ 
CPU Device PRR file size [kB] Reconfiguration time [μs] 

CS Bitstream manipulation CR 
[18] CPU Virtex-4 3.68 / 158.834 60.11 ~10005 536.90 
[14] CPU Virtex-5 0.96 6330 7220 5610 

 

                                                        
4 Smaller readback file compared to the configuration file since only ‘state information’ frames are read 
5 Not recorded, but the authors states: ‘slightly more than 1 ms (…)’ 
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As the measurements performed in this thesis focuses on the bitstream manipulation 
process, [18] is excluded in the comparison as the data is not recorded. Therefore 
there is only one paper that the result from the simulation is compared to. It was 
reported in [14] that the process of creating a new partial configuration file, or 
merging as the authors named it, lasted for a few milliseconds, see table 5.6. The 
authors used columns, frames and flip-flops as unit of measurement. This is not 
directly comparable to the results shown above since the authors used a Virtex-5 
device, where frames are smaller, in terms of bits, compared to a Virtex-6 device. The 
unit of measure from [14] must therefore be converted into file size as used in this 
thesis. A Virtex-5 device has a frame length of 1312 bits [8], which leads to 0.16 kB 
per frame, or ~6.25 frames per kB. The authors also reported near linear results. 

 
 

Table 5.6 - Results from [14]. 

V5-frames bits kB Tmerge [ms] 
2 2624 0.32 4.5 
4 5248 0.64 5.85 
6 7872 0.96 7.22 
~6.25 8192 1.00 ~7.38 
8 10496 1.28 8.57 
10 13120 1.60 9.91 

 
 

The data point marked red, has been calculated based on the other data points As 
seen in table above, the calculated data point, corresponding to a file size of 1 kB, 
shows that the proposed system in [14] use approximately 7.4 ms to complete the 
process of creating new partial configuration file. The system proposed in this thesis 
is over three orders of magnitude faster. This confirms the notion stated in the 
introduction that a hardware based partial reconfiguration is faster than a system 
based on a soft core microprocessor.  
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6 Conclusion and future work 
6.1 Chapter overview 

This chapter provides a conclusion of the work presented in the thesis. It also gives a 
few suggestions on how to improve the system in order to increase its functionality 
and effectiveness.  

6.2 Conclusion 

Partial reconfiguration with context switching demands that the internal state of a 
PRM is preserved for later resumption. The preservation of states can be done either 
by hardware checkpointing, as mentioned in chapter 2.5.2, or by capturing the 
register values which is then read back from the configuration memory. The latter 
option was chosen. Creating a new partial configuration file that contains state 
information is done by manipulating the initial configuration file for the PRM. To 
modify the file, two other files are necessary, the masking file and the readback file. 
The mask file is generated by the implementation tool ISE. Modification equation 
given in 2.1 determines how to manipulate the initial configuration file. Final step is 
to reconfigure the PRR with the newly created configuration in order to resume the 
PRM from where it was replaced.  
 
A bitstream manipulator module that generates a new configuration file has been 
implemented. The mask file and initial configuration file are uploaded from a 
computer to the onboard flash memory, but since flash is much slower compared to 
SDRAM these files are transferred to the onboard DDR3 memory. A flash memory 
controller, file transfer module and DDR3 memory controller have been implemented 
in order to transfer the files. All data files used by the BMM are stored in the DDR3 
memory. The manipulator has direct access to the memory, and hence, acts as a DMA. 
The DDR3 memory controller is based on the MIG IP core from Xilinx and modified to 
suit the system.  
 
Previous chapters have given an insight into the theoretical aspect of the subject of 
FPGA configuration, partial reconfiguration and context switching. A detailed 
description on how the system was implemented was also given. Since the project 
was comprehensive for a master project some modules, that is necessary to complete 
the partial reconfigurable system, was unfortunately not implemented. But the 
simulation of the implemented modules showed that the bit manipulator, and hence 
the generation of new partial configuration file, was working as intended.  

 
The system performance can be described, or measured, in two different ways, one is 
the time to completion of the creation of new partial configuration file, and the other 
is to determine the data rate at which the bit file creation is performed. The system 
can create a new partial configuration file, dependent on the file size, within a few 
milliseconds. Four file sizes were tested and the simulation showed that a file size of 1 
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kB, the process of creating new partial configuration file was completed within 5.12 
μs, and with a file size of 15 kB, the process clocked in at 77.38 μs, see chapter 5.4. 
This is more than three orders of magnitude faster compared to the system presented 
in [14], which used 7.38 ms for a file size of 1 kB. To put this in perspective, XAPP883 
[20] provides a partial reconfiguration example, and the PRM has a length of 1673 
frames. Generating new configuration file for that PRM would take only 2.71 ms. The 
data rate has been calculated to be between 1573 and 1600 Mb/s for the measured 
data set.  

6.3 Future work 

The system presented is based on a single island style partitioning, and the two PRMs 
run for an equal amount of time. The design is kept as simple as possible in order to 
minimize complexity. However, the system should be modified, optimized and 
improved in order to increase its functionality and effectiveness. A few examples of 
improvements are given below. 

6.3.1 Complete the design 
The system is not complete, as explained in the introduction. It is therefore necessary 
to finish the design in order to perform complete tests, including CS and CR, and to 
compare those results with other work. To perform these tests, PRR must be 
implemented and two or more PRMs must be available. What need to be 
implemented, to complete this system, is the CSMC and the IIMM, and to connect 
them to the other modules of the system.  

6.3.2 Advanced CSMC with a scheduler 
A PR system may have demands that go beyond the limitations mentioned above. 
These demands may include, among others: 

• Three or more PRMs 
• Prioritized PRMs. A PRM can have a higher priority compared to other PRMs. 
• Different run-time. Not all PRMs are required to run for the same amount of 

time. 
• Relocation. A PRM must be able to relocate to another PRR. 
• Location requirements due to signal latency or other dependent components.  

 
These requirements demand a smarter CSMC, and an advanced CSMC must therefore 
be able to handle the required demands efficiently. It must act more like a scheduler 
that keeps track of which PRMs are currently running, how long their respective run-
time is, which has the higher priority, the PRMs constraints if any, availability of 
PRRs, and other demands or constraints. 

6.3.3 Increase DDR3 memory controller efficiency 
A limiting factor of the performance of the file creation process is that the ML605 
have a 200 MHz system clock. The mixed mode clock manager (MMCM) in the 
‘infrastructure’ module then produces a 400 MHz clock for the memory module, 
which gives a data rate of 6.4 GB/s. The maximum frequency of the DDR3 module that 
the MIG IP core is designed for is 533 MHz [28], which gives a data rate of 8.5 GB/s. 
By using a higher clock frequency, i.e. an FPGA device with better speed grade, a 
higher data rate for the creation process may be achieved.   
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6.3.4 Use Enhanced ICAP hard macro 
As mentioned in chapter 2.6.1.5 a partial reconfigurable system uses ICAP to 
reconfigure the PRR. This interface has restrictions in data rate, 100 MHz and 32-bit 
data bus giving a data rate of 3200 Mb/s, which limits the reconfiguration process 
severely. Chapter 2.6.1.5.1 discussed attempts at overclocking the ICAP to increase its 
throughput. By implementing the enhanced ICAP proposed by [16], which has a data 
rate of up to 17600 Mb/s at readback, the overall reconfiguration time will be 
reduced significantly.  
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