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bstract

The aim of this paper is to study pricing of weather insurance contracts based on temperature indices. Three different pricing methods are
nalysed: the classical burn approach, index modelling and temperature modelling. We take the data from Malaysia as our empirical case. Our
esults show that there is a significant difference between the burn and index pricing approaches on one hand, and the temperature modelling
ethod on the other. The latter approach is pricing the insurance contract using a seasonal autoregressive time series model for daily temperature

ariations, and thus provides a precise probabilistic model for the fine structure of temperature evolution. We complement our pricing analysis by

n investigation of the profit/loss distribution from the contract, in the perspective of both the insured and the insurer.
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. Introduction

Weather index insurance is a class of products targeted to
ouseholds in developing countries (see Barnett and Mahul,
007; Barnett et al., 2008; Collier et al., 2009; Sakurai and
eardon, 1997; Skees, 1999, 2002, 2008). Such insurance con-

racts have close resemblance with weather derivatives, since
he claim is tied to the value of a weather index measured in
specific location. In classical weather-related insurance con-

racts, the insured must prove that a claim is justified based
n damages. The weather index contracts refer to an objective
easurement, like for instance the amount of rainfall or the tem-

erature in a specific location. As such, weather index insurance
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ccommodates a transfer of risk for droughts or flooding, say,
rom households in rural areas in Africa to insurance companies.
he premium to pay for buying a weather index insurance is our

ocus.
Consider a weather index insurance written on a temperature

ndex. For example, we may consider a contract giving protec-
ion against unusually high temperatures over a given period in
he season for growing crop. If temperatures are above a given
imit, then there may be a significant risk of dry conditions lead-
ng to a bad harvest. The limit or predefined threshold is the
oint where payments start. Once the threshold is exceeded, the
ayment is calculated as how much it goes beyond the limit.
e may construct a contract which pays out a certain amount of
oney according to an index value over the period, for example,

ased on a CDD-type (cooling-degree day) index.
Suppose, for further concreteness, a contract paying

(τ1, τ2) = k ×
τ2∑

s=τ1

max(T (s) − c, 0), (1)

hat is, an amount k times the CDD index over the time period τ1
o τ2, where c is some threshold. Both k and c are positive con-
tants, and c measures the critical temperature level, and k is the
onversion factor transforming the weather index into money.

oth k and c are contractual parameters, while the temperature

s measured at some agreed station. The insured will receive
he amount X(τ1, τ2) of money at time τ2, against paying a pre-

ium for the insurance at time t ≤ τ1. We note that the index and

http://www.sciencedirect.com/science/journal/18799337
dx.doi.org/10.1016/j.rdf.2012.01.004
mailto:imran@umt.edu.my
mailto:fredb@math.uio.no
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ctual experienced losses by the insured are obviously not per-
ectly correlated. There is a possibility of the insured receiving
o indemnity even though experiencing a loss, and in contrast,
he insured may also receive the indemnity with having a loss.

Given a reliable temperature model, the insured may assess
he distributional properties of X(τ1, τ2) and determine if the
ontract provides the protection sought for. A major problem is
f course the spatial risk incurred by the location of the tem-
erature measurement station relative to the location where the
nsured is living. The insurance company offering the protection
ill most likely wish to settle the contract against an index cal-

ulated from an official measurement station, which typically
re existing only in major cities. The spatial risk may be sig-
ificant, and the insurance contract may only provide partial
rotection against the real temperature risk. In Šaltytė Benth
t al. (2007), a spatial temperature model is presented, and in
arth et al. (2011) questions concerning hedging of spatial risk
sing weather derivatives are analysed. The spatial considera-
ion in the pricing of rainfall insurance has been done by Turvey
2001).

Important in the assessment of the contract is the premium
harged by the insurance company. The standard approach to
ricing the contract is by finding the expected value of the claim
ize [X(τ1, τ2)], adjusted for risk (sometimes called the risk load-
ng), and discount it by some interest rate to obtain the present
alue,

(t, τ1, τ2) = exp(−r(τ2 − t))[X(τ1, τ2)|Ft]. (2)

Since the money is paid at the end of the measurement period
f the index, at time τ2, we discount by exp(−r(τ2 − t)) to get
he present value, with r > 0 being the discount rate assumed to
e a constant. We use continuously compounding discount rates
n our analysis. The filtration Ft denotes all the available infor-
ation in the market up to time t, which the insurance company
ill take into account in its pricing.
Our concern is to study the price P(t, τ1, τ2) using three differ-

nt approaches. The first approach is the so-called burn analysis
dvocated in Jewson and Brix (2005) as the classical method
o price weather derivatives. The burn analysis is based on the
mpirical distribution of the payoff X(τ1, τ2) within the sam-
le data collected. The price is calculated using the mean value
f the observations. Next, we apply the slightly more sophisti-
ated index modelling approach presented in Jewson and Brix
2005), which amounts in fitting a distribution to the histori-
ally observed claims X(τ1, τ2), and price the contract based
n the expected value of the distribution. Lastly, we propose
very detailed modelling approach, where the daily tempera-

ure dynamics is modelled by a time series. Based on empirical
ndings, an autoregressive, AR(p), model turns out to be highly
uitable for describing the dynamics of temperature evolution.
sing this model, one may compute the index X(τ1, τ2), and find

he expectation for pricing the insurance contract. There are sev-

ral advantages with this approach. First, we obtain a consistent
ramework for pricing insurance contracts for various given time
eriods [τ1, τ2] without having to re-estimate a distribution (as in
he index approach), or collecting data (as in the burn analysis).

i
a
q
t
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urthermore, we can use current information on the tempera-
ure to price the insurance contract. The index modelling and
urn analysis will not use any dynamical model, and hence we
annot take into account current information when pricing. This
s an important aspect for the insurance company in their risk
ssessment of the contracts. As a final remark, a detailed time
eries model of the temperature dynamics is likely to capture
he statistical properties better that simply looking at the his-
orical data (burn analysis), or fit an “arbitrary” distribution to
he historical data (index modelling). The two latter approaches
lso suffer from little available data compared to the situation
or the temperature modelling approach, where the amount of
nformation is far better.

We will analyse the profit/loss distribution for both the insurer
nd the insured. The two factors determining the profit/loss dis-
ribution are of course the index X(τ1, τ2) which settles the
ayoff, and the price of the contract. The insurance company
ants to stay solvent, and thus charges an additional premium on

he “fair” expected value. However, the higher premium, the less
ttractive will these insurance contracts become. We emphasis
ere that the index-based contracts are very different from tradi-
ional insurance, as the insurance company cannot diversify its
isk by attracting many clients. In fact, the weather index-based
ontracts are very similar to financial derivatives. For example,
o illustrate matters by a simple case, an insurance company issu-
ng one contract on a temperature index in a given city, will have
o pay X(τ1, τ2). However, if it issues 100 contracts, it must pay
00 times this amount. In traditional non-life insurance, the risk
f paying out insurance claims are distributed among the clients,
nd the company would on average every year have to pay an
xpected claim size amount when having 100 clients, that is, only
fraction of the insured will make a claim. With temperature

ndex contracts, one will risk that all clients claim the insurance
ne year, whereas the next year none will claim a payoff. This is
arallel to how options functions in financial markets. Hence, in
he case of weather index insurance, the insurance company has
igger variations in their claim payoffs as in traditional insur-
nce. This means bigger risk, and higher prices as a consequence
hereof.

On the other hand, the insurance company may hedge their
isk using financial weather derivatives traded, for example, on
he Chicago Mercantile Exchange. Such weather derivatives
re not yet being traded on temperature indices in the devel-
ping part of the world, like Africa say, but there may be a
emand for such products with an increase of weather insur-
nce contracts. The insurance company may also hedge their
isk by exploiting weather correlation. From a careful analysis
f temperatures in different locations, the insurance company
ay identify places with independent or negatively correlated
eather patterns. This would offer possibilities to spread risk for

he insurance company, and thereby lower prices of the contracts.
n our analysis, we shall not analyse such hedging opportunities
n more detail, but focus on the effect of charging a risk load-

ng on the contracts. In order to compare the different pricing
pproaches, we use the a risk loading which is based on the
uantiles of the index X(τ1, τ2), since this is observable in all
hree approaches.
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Burn analysis is a very simple method that is traditionally
used for pricing a weather derivatives contracts (see Jewson
4 C.M.I.C. Taib, F.E. Benth / Review

We use daily temperature data from Malaysia in our analy-
is. Agriculture is the main economical activity in Malaysia. 15.3
ercent of the work force was employed in agriculture in 2000,
ontributing approximately 8.9 percent to the national GDP
Prime Minister’s Department, 2006). The favourable Malaysian
ropical climate spur the production of various crops including
he main export articles rubber, palm oil and cocoa. Almost 24
ercent of the whole area in Malaysia is allocated for agricultural
ctivity.

The paper is organized as follows. In Section 2, we present
he temperature data from Malaysia and price empirically the
eather insurance contracts based on the three approaches. The
ext Section 3 is devoted to some risk analysis, seen both from
he insured and the insurers point of view. Finally, the conclusion
s given in Section 4.

. Pricing temperature index insurance contracts

In this section we investigate three methods of pricing of a sin-
le temperature index insurance contract. The methods include
he classical way of pricing weather derivatives using classical
urn approach and index modelling (see Jewson and Brix, 2005),
nd a third method of pricing based on a dynamical temperature
odel adopted from Benth et al. (2007, 2008) and Benth and

ˇaltytė Benth (2011).
For all pricing methods, we analyse the CDD-index X(τ1, τ2)

efined in (1). As we want to perform an empirical analysis of the
erformance of the different pricing methods, we must choose a
hreshold level c. Obviously, since these insurance contracts are

ainly targeted for farmers, the threshold c will be dependent
n the crop grown. For the temperature insurance contract to be
ttractive for the farmer, the level c must be so that it reflects the
armful threshold for his or her crop. For the sake of illustration,
e choose c = 28 in our studies, imagining that temperatures

bove this threshold may imply drought, harming the growth of
specific crop. The money factor k is fixed to RM50 per unit

f the contract. We set a low value of the money factor just for
ase rather than dealing with any substantial amount. We further
oncentrate our analysis to January, that is, the time span [τ1,
2] means the month of January.

In our analysis of prices, we shall first compute “fair
rices”, based on the expected payoff of X(τ1, τ2), appropri-
tely discounted to present values. However, such prices will
ot compensate the insurer for taking on the risk, and a risk
oading will be added in the real pricing of the contract. We will
lso add a risk loading, based on adding 5% of the 95% quan-
ile of the payoff X(τ1, τ2). For the insurance company, the 95%
uantile of X(τ1, τ2) means a size of loss which is exceeded with
% probability.

.1. Description of the data

We have obtained daily average temperature (DATs) data

easured in degrees of Celsius from the Malaysian Meteoro-

ogical Department, which are observed over the period ranging
rom 1 January 1971 to 31 December 2010. The data have been
ollected in Petaling Jaya, Malaysia, as the nearest station to the
ig. 1. Petaling Jaya DATs for the period starting 1 January 2001 to 31 December
010.

apital city Kuala Lumpur. A number of 14,610 records cover-
ng 40 years of DATs data are observed, however, the amount of
ata is reduced to 14,600 after removing the measurements on
ebruary 29 in each leap year to synchronize the length of the
ears to 365 days in the analysis. A small amount of defective
r missing values have been detected in the data, constituting
nly 0.48% of the total sample. These data observations have
een corrected by using the average temperature between the
revious and following day observations. The time series of the
verage DATs is plotted in Fig. 1. For the purpose of illustration,
e just show the last 10 years of the time series data.
Note that the lowest and highest temperature recorded in the

ata set are 22.3 and 31.2, respectively, with the mean being
qual to 27.4. We observe a rather small variation in the data. In
ig. 2, we present the histogram of DATs in Petaling Jaya. The
kewness coefficient is 0.010, indicating nearly symmetric data.
he kurtosis is 3.011, showing that the data are not normally
istributed.

.2. Burn analysis
Fig. 2. Histogram of daily average temperature in Petaling Jaya.
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nd Brix, 2005). It simply uses the empirically computed mean
alue of the observed index X(τ1, τ2). In our case, we computed
he index X(τ1, τ2) for January each year in the data sample,
ltogether yielding 40 samples of X(τ1, τ2). Fig. 3 shows the
istogram of X(τ1, τ2). Based on the 40 observed values, we
ompute the empirical mean, and discount it by exp(−r(τ2 − t))
n order to get the present value at time t of the contract. In
he calculation of the premium, we do not include any infor-

ation Ft on present or historical temperatures, since this is
aturally not entering into this pure data driven approach. The
onditional expectation is transformed into a standard expecta-
ion. As t → τ1, the price will converge to the expected claim
ize X(τ1, τ2) as estimated from data. The empirical mean was
stimated to be 118.25.

.3. Index modelling

Index modelling is a pricing method for weather derivatives
ased on a distribution statistically modelling the claim size.
o the observed claim sizes X(τ1, τ2), one selects and fits a
istribution, and computes the mean of this distribution to find
he expected value of X(τ1, τ2). The advantage of this method is
hat we may derive statistically information of the claims outside
he range of the observed data values, and can make assessments
f the probability of extreme events happening. In particular, we
ay estimate quantiles of the claim X(τ1, τ2) outside the range

f observed data. However, we note that the data backing up the
stimation of the distribution is the same as for the burn analysis,
hich in our case of Malaysian data amounts in only 40 values.
From the histogram of the claim size X(τ1, τ2) in Fig. 3,

ne may propose an exponential distribution in modelling the
laims. Recall the density with parameter μ of the exponential
istribution as

exp(x; μ) = 1

μ
exp

(−x

μ

)
. (3)
We apply the maximum likelihood (ML) method to estimate
he parameter of distribution. We estimated μ to be μ̂ = 118.25.
s the parameter μ of the exponential distribution is the mean,

Fig. 3. Histogram of the claim size X.
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e find the expected claim size to be 118.25. This estimate coin-
ides with the result of the burn analysis, not unexpectedly as
he maximum likelihood estimation in this case will be based
n the mean value of the data. We show the empirical density of
he claims with the fitted exponential distribution in Fig. 4.

The confidence interval for the estimate μ̂ has upper and
ower limit 81.33 and 184.87, respectively, at the 1% significance
evel. This is a very wide confidence interval, demonstrating
learly the huge statistical uncertainty in this approach to model
he claims. The reason is obviously that we have only 40 data
oints available. We note that the mean claim size estimated for
he burn analysis will be infected by the same uncertainty. This is
drawback with these two methods. In a real world application,
n insurance company is likely to charge a premium also for this
ncertainty, leading to more expensive insurance contracts.

We also note that for the index modelling approach, the his-
orical temperature records up to current time t, Ft , do not play
ny role in the pricing. We do not create a dynamical model of
he index, and hence there is no natural definition of the filtration.
herefore, we also in this case compute an expectation rather

han a conditional one when assessing the insurance premium
f the contract.

.4. Temperature dynamical modelling

As an alternative to the burn analysis and index modelling
pproach, we propose to model the time dynamics of the tem-
erature evolution. Taking into account 40 years of daily data,
he amount of information available for such a model is signif-
cantly more advantageous than the poor 40 data points for the
urn and index model methods.

Suppose that the temperature T(t) at time t ≥ 0 is given as
ollows
(t) = S(t) + Y (t), (4)
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Estimated parameters for seasonal function.
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a simple linear regression of the detrended and deseasonalized
data and found α1 = 0.5895. The α1 value corresponds to the
mean reversion rate where temperature reverts back to its long
Fig. 5. Empirical ACF of daily average temperature in Petaling Jaya.

here S(t) is a deterministic seasonal mean function and

(t) =
p∑

i=1

αiY (t − i) + ε(t). (5)

Here, ε(t) are i.i.d. normally distributed noise with mean
ero. The AR(p)-process Y (t) models the random fluctuations
round the seasonal mean, or, in other words, the dynamics of
he deseasonalized temperatures, T (t) − S(t).

The seasonal mean function S(t) is defined as

(t) = a0 + a1t + a2 sin

(
2π(t − a3)

365

)
. (6)

The constants a0 and a1 describe the average level of tem-
erature and slope of a linear trend function, respectively, while
he amplitude of the mean is represented by a2. A constant a3 is
eferred to as the phase angle.

From this temperature dynamics, we may compute the tem-
erature index and subsequently the payoff X(τ1, τ2). Thereafter,
e may compute the expected payoff. The advantage now is

hat we get a very precise model for the temperature and a
rice which takes current temperature knowledge into account.
oreover, the model is flexible in pricing contracts settled on

arious periods of the year without having to perform a statisti-
al re-estimation like in the burn approach and index modelling.
e efficiently exploit 40 years of daily data to get a detailed

tatistical description of the claim size distribution.
A look at the ACF of the DATs in Fig. 5 shows that there are

lear seasonal effects in the data, but also apparent signs of mean-
eversion. The latter is observed from the decaying ACF for
oderate lags. This indicates that our model is appropriate. To

stimate it to data, we use a step-by-step procedure, where first
e estimate the trend and seasonal component in S(t), and next
nd the best AR(p) model fitting the deseasonalized temperature
ata.

We start by checking for the presence of a linear trend. By
imple least squares, we obtain the slope equal to 0.0001 and

ntercept being 26.8. Although the trend slope seems to be very
mall, the P-value of 0.0000 validates that it is significant. Next,
e fit the data with the complete seasonal function S(t) given
6.8373 0.0001 0.5673 56.1070

y (6) using least squares method. The estimated parameters are
resented in Table 1. We find an R2 value of 18.4%, indicat-
ng that there is not much explanatory power in the seasonality
unction S(t).

The DATs for the last 5 years are plotted in Fig. 6 together
ith the fitted seasonal function. We conclude that there is not
very pronounced seasonal variation in the data. This is unlike

he observations in most of the European countries, which have
igh temperatures in summer and low in winter. Temperature
nalysis for Stockholm, Sweden, shows a clear seasonality (see
enth et al., 2007, 2008), similar to the findings in USA and
ithuania (see Campbell and Diebold, 2005; Benth et al., 2007,

espectively). Malaysia on the other hand experiences two sea-
ons in general, with a dry season usually ranging from March
o October and rainy from November to February whereby June
nd July are recorded as the driest months of the year. Neverthe-
ess, we find the existence of a small seasonal variation which
e include for further analysis.
Next, we eliminate the linear trend and seasonal components

y subtracting the estimated S(t) from the original observations
nd plot the autocorrelation (ACF) of residuals as in Fig. 7. It
hows the positive strong autocorrelations which rapidly decays
owards zero. Noteworthy is that we do not observe any strong
easonal variation anymore in the ACF, which, despite a small
easonality pattern S(t), has a clear impact on the ACF. By
nspecting the partial ACF (PACF) plot in Fig. 8, we observe
very high spike in lag 1, thus suggesting AR(1) to be the most
referable model explaining the evolution of the time series.

We estimate the parameter α1 for the AR(1) process by using
Fig. 6. DATs in Petaling Jaya with fitted seasonal function.
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ig. 7. The ACF of the residuals of DATs after removing linear trend and
easonal component.

erm mean at this speed. This indicates that the speed of mean
eversion is rather fast. As suggested by Clewlow and Strickland
2000), the half life of an Ornstein–Uhlenbeck process with
ean reversion β driven by a Brownian motion is given by

β = ln(2)

β
. (7)

Converting the speed of mean reversion of our time series
ynamics into a continuous time mean reversion, we find β =
ln(α) ≈ 0.5284. This implies an estimate for the half life of

emperature dynamics being Tβ = 1.18, meaning that on aver-
ge the temperature takes 1.18 days to revert half-way back to
ts long term level. Looking at the histogram of residuals in
ig. 9, we may say that it follows the normal distribution. But

he Kolmogorov–Smirnov statistics of 0.022 is significant at the
% level, and we cannot reject the hypothesis of nonnormality
f data. However, taking the large number of data into account, it
s very hard to pass through a normality test. We find the normal
istribution a satisfactory choice for the residuals. The residuals
nd squared residuals for the last 10 years are plotted in Fig. 10.

Looking at the squared residuals, one may suspect the exis-

ence of clustering, indicating some pattern in the residuals that

ay be modelled using a seasonal variance in line with Benth
t al. (2008), or stochastic volatility (see Benth and Šaltytė

ig. 8. The PACF of the residuals of DATs after removing linear trend and
easonal component.
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omponent and AR(1).

enth, 2011). However, the effects seem to be minor, and we
ecided not to increase the level of sophistication of our model.
he estimated standard deviation for the noise term ε(t) is
.9571.

.4.1. Temperature dynamics insurance pricing
From (2), we have the price of the contract with the con-

itional expected value, using the filtration generated by the
ime series Y(t) in the dynamics of T(t). We can simulate this
onditional expectation by appealing to the Markov property
f Y(t). Thus, to find the price at time t, P(t, τ1, τ2), we first
imulate a path of the temperature T(s) for times s ≤ t (which
eans to simulate Y(t), and then to add the seasonality func-

ion). Given this T(t), we simulate N paths of T(s) for t ≤ s ≤ τ2,
nd compute the index X(τ1, τ2) for each path. Averaging over
ll the N realizations of X(τ1, τ2), we obtain an estimate of
(t, τ1, τ2). In this way, we have a mechanism which allows

he insurance company to take current information about the
eather into account, and thereby yielding a more accurate and
etailed pricing technology.

Fig. 11 illustrates the price evolution of the contract for
anuary. To obtain this price path, we have conditioned on
he actual observed temperatures T(t) at the dates in question.
tarting off the path simulations from these observed temper-
tures, we find the price paths which are wiggling rather than
mooth curves. We started at 1 December 2010 and by simu-
ating n = 10, 000 paths of temperature dynamics, we obtained

indexes of X(τ1, τ2). The indexes were then averaged and
iscounted in order to get its present value P(t, τ1, τ2). This pro-
edure was done for the following dates until 31 December 2010.
e used a discounting factor r = 0.00014 (corresponding to 5%

nnual interest rate). This is at the level of the current interest
ate in Malaysia. Since the price is calculated with regards to
he current information on temperatures, the evolvement is no
onger smoothly increasing.
We have plotted the obtained price path together with the
rice derived from the burn approach for comparison. We can
learly see that P(t, τ1, τ2) is significantly higher than the
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Fig. 10. Residuals and squared residuals of DATs for the last 10

rices obtained from the burn analysis. The price at 1 December
010 computed by temperature modelling is higher than burn
pproach with a difference of 164.89. At 31 December 2010, the
rice obtained by temperature modelling deviates about 194.72
bove burn. It is to be noted that the premia computed for
he temperature approach is prone to Monte Carlo error. We
ave estimated this by repeating the simulation of premia 100
imes for 1 December, 15 December and 31 December 2010 in
rder to find a numerical estimate of the confidence interval.
e found very narrow confidence intervals of [282.51, 282.77],

294.68, 294.88] and [324.64, 325.21] for the respective dates,
ignificant at 5% confidence level. The histogram of the claim

ize under temperature modelling is plotted in Fig. 12 together
ith the empirical one obtained from burn approach. It is appar-

nt that the claim size distribution resulting from temperature

ig. 11. The movement of the price P for contract in January. The red and
lue curve respectively represent the price calculated by burn approach and
emperature modelling.
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after removing linear trend, seasonality component and AR(1).

odelling has a mode, and that the exponential distribution
eems to be a bad choice. One would rather imagine a lognormal
istribution to be more appropriate. This is a first clear sign of
he superiority of the temperature modelling approach, since it
s able to reveal a much more detailed description of the claim
ize distribution. The histogram for the claims resulting from the
urn analysis has some real big values (around 1000), and a col-
ection of many small. The small values have too big probability
ompared with the distribution from the temperature modelling
pproach, which results in a far lower insurance price. The tem-
erature modelling approach produces an accurate view on the
istribution of claims, and is not prone to a high degree of uncer-
ainty. We get far better information on the tail probabilities of
he claims, enabling us to get a probabilistic grip on extreme
vents. Due to the little data supporting the burn analysis esti-
ates, one should put more trust into the temperature modelling

pproach.

. What’s in it for the farmer?

Consider a farmer who seeks to insure his crops in a period
τ1, τ2] against the impact of extreme temperature levels. The
ecision to buy a weather index insurance will be based upon
he size of the premium compared with the actual protection
iven by the insurance contract. In this section we analyse this
rotection as a function of the premium.

Based on the prices obtained in the previous section, we can
magine a farmer who has bought the insurance for a certain
mount of premium. The premium is an expense that he must
ay in advance to the insurer for obtaining the weather index

rotection. We will look at the distribution for his protection, and
he probabilities of getting back money. In parallel, we also wish
o find the probability that the money will exceed the premium
aid.
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Fig. 12. Claim size distribution from tempe

The profit (total loss or gain) for the insured is denoted by
and defined by the difference between the total claim sizes

(τ1, τ2) and the price P(t, τ1, τ2) at time t. For simplicity, we
uppose that t = 0, and recall that the premium we have to pay
o purchase the insurance today will be P(0, τ1, τ2) = e−rτ2 [X].

e can express the profit in a more convenient way by

= X(τ1, τ2) − P(t, τ1, τ2).

We use the same definition for total loss or gain to the insurer
ut with opposite sign. The loss to the insured can be considered
s gain to the insurer and vice versa. We will discuss loss or gain
or an individual insured with a single coverage provided by a
ingle contract. In principle, the fair premium holds

−r(τ2−t)[X(τ1, τ2) − P(t, τ1, τ2)|Ft] = 0,

hich implies that L is equal to zero in expectation. In reality,
he insurance company will charge an additional risk loading on
he premium, which will make the profit/loss function L have
egative expectation (that is, the farmer will on average lose on
he insurance contract). The reason is that the insurance contract
ill add a safety loading to the premium as a compensation for
earing the risk. We have designed some cases to investigate the
robability distribution of L under various pricing regimes.

.1. Insurance calculations

We think of a farmer who wishes to protect his crops for
dverse temperature events in the period of January 2011. He
s entering a CDD-based weather index insurance contract for
anuary 2011 “today”, which we let be 1st of December 2010.
t the end of January where the time equals τ2, the claim for the
articular month will be calculated. We use the initial price (the
rice on the 1st of December 2010) of Pburn(τ1, τ2) = 117.75 for
urn approach and index modelling and Ptemp(τ1, τ2) = 282.64
or temperature modelling. These are the ‘fair prices’ or the

rices with no risk loading. With having n = 10, 000 indexes of
xpected payoffs, we obtain the distribution of profit as shown in
ig. 13. Clearly, the distributions have negative values meaning

hat there is a positive probability for loss.
F
f

modelling (left) and burn analysis (right).

The probability of loss for the farmer entering the insurance
sing the burn approach is

(X(τ1, τ2)<Pburn(τ1, τ2))= P(X(τ1, τ2)<117.75)= 0.7958.

Hence, with an 80% chance, the farmer will receive nothing
r less than what he has paid. With only approximately 20%
hance he will actually receive more, meaning that if he renews
is insurance contract every year, he will only in 1 out of 5 years
eceive more than he paid in premium that year. In the case of
emperature modelling, the probability of loss becomes

(X(τ1, τ2)<Ptemp(τ1, τ2)) = P(X(τ1, τ2)<282.64) = 0.5642.

Thus, there is only 56% chance of a loss, and approximately in
out of 7 years the farmer will receive a profitable income from

he contract. The premium and the loss distribution are much
ore favourable for him. These considerations emphasize once
ore the differences in an approach resting on information from

emperature series, and the burn analysis which is grounded on
ery little data. Of course, we need to contrast these probabilities
ith the actual losses incurred in order to get the true picture of

he value of this insurance for the farmer.
As already indicated, an insurance company will naturally

ncur a risk loading to the ‘fair premium’ as we have calculated
bove. One may say that the insurance company wants to “insure
hemselves”, and add on to the fair premium such that they can
ontrol their risk of having to pay excessive amounts in claims.

standard way to do this is to introduce a safety loading which
ontrols a quantile of their loss distribution. This resembles the
alue-at-risk concept in finance, and entails in putting a premium
n the insurance contract such that their loss distribution from
laims is within an acceptable probability.

To be more specific, we find the value-at-risk at a given
ignificance level of the loss distribution for the insurance com-
any under ‘fair premium’ of the contract. Given this level, we
uppose that the insurance company charge a risk loading resem-
ling a certain fraction of this level. Letting the significance level
e 5%, we search a level γ such that

(Claim ≥ γ) = 0.05.
The level γ will only be exceeded with 5% probability.
or burn approach, we obtain γburn = 900.00 (the same value
or index modelling) while for temperature modelling profit
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Fig. 13. Top: Profit distribution and cumulative density for burn approach and index
modelling.

Table 2
Probability of loss and gain for 5% of risk loading.

Method γ Price P((1, (2) P(X < P(τ1, τ2)) P(X > P(τ1, τ2))

Burn analysis 900.00 162.75 0.8478 0.1510
T
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emperature 660.77 315.68 0.6253 0.3729

istribution, γtemp is equal to 660.77. The insurance company
ill now add 5% of the estimatedγ as risk loading to the fair price

risk loaded premium). With this new price, the probabilities of
oss and gain for the farmer are presented in Table 2.

A risk loaded premium increases the probability of loss
or the farmer, naturally. With the burn approach, the farmer
ill only receive a gain from the contract with 15% probabil-

ty, or approximately once every 7 year. With the temperature
odelling approach, the farmer receives a profit with 37% prob-

bility, which is slightly less than with the ‘fair premium’. It is
nteresting to note that although the premium is significantly
igger with the temperature modelling approach, the contract
eems more attractive than if we solely base our assessment on
he burn analysis.

. Conclusion
We have analysed three different pricing approaches for
eather index insurance contracts in this paper. Weather index

f
m
a

modelling. Bottom: Profit distribution and cumulative density for temperature

nsurance has gained some attention in recent years as a way
or farmers, say, in developing countries to protect their crop.

e have focused on contracts settled on temperature indexes in
iven months, using data collected in Malaysia as our empirical
ase, and we analyse cooling-degree indexes, which measures
xcessive temperatures which may harm the crop of a farmer.

As the claims in such weather index contracts are settled on
measurable objective index, and not on actual losses incurred,
ne may view the insurance contracts as weather derivatives.
otivated by theory on weather derivatives, we have considered

he three pricing approaches burn analysis, index modelling and
emperature modelling. The first two give similar results, and
re based directly on computing historical values of the index
n question. We argue that such an approach will rest on very
hin data material. The temperature modelling approach, on the
ther hand, is based on the time series properties of temperature,
rom which one can compute the index. Usually, one has very
ich sets of data for temperature.

We fitted a simple autoregressive time series model with sea-
onality for Malaysian daily average temperatures, based on 40
ears of data. This gives us a very precise information on the
ynamics of temperature, and hence, a very detailed description
f the temperature index in a given period. In fact, simulating

rom the model, we can obtain a very detailed probabilistic infor-
ation on the index, and therefore assess correctly the premium

nd probabilities of loss and profits.
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The burn analysis and index modelling approaches have a
igh degree of uncertainty in their premium estimates. The pre-
ium estimated from the temperature modelling approach is

rone to Monte Carlo error, on the other hand. Controlling for
his, we find big differences in premia between the approaches.
he temperature modelling approach has the additional advan-

age that it can account for current information of the weather
ituation, while this is not the case for the two other approaches.

Finally, we analysed the chances of receiving a profit from a
eather index insurance contract. The chances are not very high
sing the burn analysis approach, but far better in the tempera-
ure modelling case. This is obviously a result of the very poor
ata set backing up the results in the burn analysis method. The
emperature modelling methodology provides better foundation
or making assessments on the probabilities of loss and profit,
nd for our case the insurance becomes more advantageous for
he farmer despite the much higher premium.

As is standard in an insurance contract, the insured must pay
premium upfront in order to obtain a protection. Since farm-

rs in developing countries are rather poor, this may seem like
n unfair deal, since information and knowledge of these con-
racts naturally would be biased towards the insurance company.
ince the weather index insurance contracts are closely related to

emperature futures traded on the Chicago Mercantile Exchange
CME), the insurance companies may in principle hedge their
isk. For the time being, no temperature futures are traded for
ities in developing countries. However, one may imagine places
here one could partially hedge the risk using other locations

see Barth et al., 2011 for spatial hedging of temperature deriva-
ives). This would reduce the risk for the insurance company,
nd thus the premium, and making such products more attrac-
ive. But still, one is left to wonder whether it is better for the
armers to actually save the same amount as the premium in
bank account, controlling the money themselves, rather than

ntering into swap deals as is the case here.
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ˇaltytė Benth, J., Benth, F.E., Jalinskas, P., 2007. A spatial–temporal model
for temperature with seasonal variance. Journal of Applied Statistics 34,
823–841.

kees, J.R., 1999. Opportunities for improved efficiency in risk sharing
using capital markets. American Journal of Agricultural Economics 81,
1228–1233.

kees, J.R., 2002. Examining the feasability of livestock insurance in Mongolia.
The World Bank Policy Research Working Paper 2886.
kees, J.R., 2008. Innovations in index insurance for the poor in lower income
countries. Agricultural and Resource Economics Review 37 (1), 1–15.

urvey, C.G., 2001. Weather derivatives for specific event risks in agriculture.
Review of Agricultural Economics 23, 333–351.


	Pricing of temperature index insurance
	1 Introduction
	2 Pricing temperature index insurance contracts
	2.1 Description of the data
	2.2 Burn analysis
	2.3 Index modelling
	2.4 Temperature dynamical modelling
	2.4.1 Temperature dynamics insurance pricing


	3 Whats in it for the farmer?
	3.1 Insurance calculations

	4 Conclusion
	Acknowledgements
	References


