
Toolset for NFC tag
development
Design, implementation and evaluation

Aage Dahl
Master’s Thesis Spring 2014





Toolset for NFC tag development

Aage Dahl

2nd May 2014



ii



Abstract

NFC tags follow a range of standards and communication protocols.
Support for communicating with these tags is limited, and few empirical
studies investigate their performance. Therefore it is challenging to develop
tags for specific user scenarios.

This master thesis aims at designing, developing and implementing two
apps and one library, which are supposed to reduce the effort of testing NFC
tags. The library enables seamless communication with a range of different
tags, through a singular interface. The library functions as a tool for the two
apps that are developed in the course of this work. The first app enables tag
developers to assess their proprietary communication protocols, whereas
the second app offers flexible automated benchmarking procedures that
can ultimately be used to compare tags.

To confirm that the apps fulfill their purpose, extensive testing is
performed to compare a set of five tags based on five different standards
in order to assist in the development of one proprietary tag. The results of
this study indicate that there is no ultimate standard that perfectly fits any
scenario and that the selection of the standard both restricts and enables
design choices.

The present research reveals that the communication performance
between the NFC reader and the NFC tag is not significantly influenced
by the increase in distance between them from zero to 30mm, not even
when a body of saline solution separates them. My research also provides
some unexpected results; the measured energy consumption for powering
the tag is about 30% higher than that for writing to the tag. Hence, the
energy consumption seems to decrease when the reader is communicating
with the tag, as opposed to when the reader is merely powering the tag.

iii



iv



Preface

Prior to writing this thesis, I was not distinctly familiar with the term NFC
and had little knowledge of RFID and how it worked. However with Ali
Zaher’s introduction of the NFC based tag that could potentially impact
the lives of people suffering from diabetes, it became clear that a thesis
exploring NFC technology is both needed and desired.

I would like to thank my primary supervisor, Thomas Plagemann
for both introducing me to this subject and for guiding me through the
development of my thesis. And especially for providing the input I needed
when I needed it, which has truly been essential for the thesis to give results.
It has helped me to focus on the main issues at hand and to make the right
decisions at the critical points in time.

I would also like to thank my second supervisor, Ali Zaher, who has
helped me throughout this thesis with his relentless understanding and
lengthy discussions. I could not have asked for better guidance.

To my family, I would like to thank them for being patient and having
faith in me. It has made it much easier to tackle this task.

And last but not least, I would like to thank my dear wife for believing in
me and providing me with support, love and understanding. There would
simply be no thesis without her.

v



vi



Contents

I Introduction 1

1 Introduction 3
1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 The implant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Power source . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.2 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.3 Communication speed . . . . . . . . . . . . . . . . . . . . 8
1.4.4 Read/write . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.5 Anti-collision . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.6 Computation . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.7 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Identification systems 11
2.1 Automatic identification system . . . . . . . . . . . . . . . . . . 11
2.2 Radio frequency identification . . . . . . . . . . . . . . . . . . . 11

2.2.1 Transponder (RFID tag) . . . . . . . . . . . . . . . . . . 12
2.2.1.1 Passive transponder (passive tags) . . . . . . 13
2.2.1.2 Active transponder (active tags) . . . . . . . . 13

2.2.2 Reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Near field communication . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Communication modes . . . . . . . . . . . . . . . . . . . 14
2.3.1.1 Active . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1.2 Passive . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Operating modes . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2.1 Read/write . . . . . . . . . . . . . . . . . . . . . 15
2.3.2.2 Peer-to-peer . . . . . . . . . . . . . . . . . . . . 15
2.3.2.3 Card-emulation . . . . . . . . . . . . . . . . . . 15

2.4 NFC tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 NFC tags 19
3.1 NFC Forum Type 1 Tags . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

vii



3.1.2 Read command . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.3 Write command . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.5 Topaz 512 . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 NFC Forum Type 2 Tags . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.1 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 Read command . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.3 Write command . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.5 NTAG203 . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 NFC Forum Type 3 Tags . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.1 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.2 Read command . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.3 Write command . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.5 FeliCa Lite-S . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 NFC Forum Type 4 Tags . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.1 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.2 Read command . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.3 Write command . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.5 Mifare Desfire . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 MIFARE Classic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5.1 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5.2 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5.3 Read command . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5.4 Write command . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5.6 MF1S50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Android OS 31
4.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Android architecture . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.1 Linux Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.2 Native Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.3 Application Framework . . . . . . . . . . . . . . . . . . . 33
4.2.4 Application layer . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Software components . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.1 Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.2 Intent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.3 Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.4 Fragment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.5 SQLite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 App development with Android . . . . . . . . . . . . . . . . . . . 36

viii



5 Design patterns 39
5.1 MVC pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Singleton pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 Factory pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4 Wrapper pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

II Design and implementation 41

6 App design 43
6.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Requirements decomposition . . . . . . . . . . . . . . . . . . . . 44

6.2.1 Tag communication . . . . . . . . . . . . . . . . . . . . . 44
6.2.2 Tag benchmarking . . . . . . . . . . . . . . . . . . . . . . 45
6.2.3 Tag protocol testing . . . . . . . . . . . . . . . . . . . . . 46

6.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.4 NFC benchmark app functionality and UI . . . . . . . . . . . . 46

6.4.1 Benchmark tests . . . . . . . . . . . . . . . . . . . . . . . 48
6.4.2 Persistence . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.5 NFC protocol tester app functionality and UI . . . . . . . . . . 50
6.6 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.6.1 Messaging system module . . . . . . . . . . . . . . . . . 54
6.6.2 NFC communication library module . . . . . . . . . . . 55
6.6.3 NFC benchmark app modules . . . . . . . . . . . . . . . 56

6.6.3.1 Activity module . . . . . . . . . . . . . . . . . . 56
6.6.3.2 Fragments module . . . . . . . . . . . . . . . . 56
6.6.3.3 Domain module . . . . . . . . . . . . . . . . . . 58
6.6.3.4 Persistence module . . . . . . . . . . . . . . . . 58

6.6.4 NFC protocol tester modules . . . . . . . . . . . . . . . . 58
6.6.4.1 Activity module . . . . . . . . . . . . . . . . . . 58
6.6.4.2 Fragments module . . . . . . . . . . . . . . . . 58
6.6.4.3 Domain module . . . . . . . . . . . . . . . . . . 59
6.6.4.4 Persistence module . . . . . . . . . . . . . . . . 59

7 App implementation 61
7.1 Messaging system . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.2 NFC communication library . . . . . . . . . . . . . . . . . . . . . 63
7.3 NFC benchmark app . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.3.1 Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.3.2 Persistence . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.3.3 Fragments . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.3.4 Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.4 NFC protocol tester app . . . . . . . . . . . . . . . . . . . . . . . 71
7.4.1 Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.4.2 Persistence . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.4.3 Fragments . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.4.4 Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

ix



8 The experiment 73
8.1 The experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8.1.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
8.1.2 Phone settings . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.2 Experiment implementation . . . . . . . . . . . . . . . . . . . . 76
8.2.1 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . 76
8.2.2 Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
8.2.3 Unexpected behavior . . . . . . . . . . . . . . . . . . . . 77

8.3 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8.3.1 Persistence . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8.3.2 Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

9 Data presentation 81
9.1 Round trip time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
9.2 Read communication performance . . . . . . . . . . . . . . . . . 83

9.2.1 Without saline solution . . . . . . . . . . . . . . . . . . . 83
9.2.2 With saline solution . . . . . . . . . . . . . . . . . . . . . 84
9.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9.3 Read all communication performance . . . . . . . . . . . . . . . 86
9.4 Write communication performance . . . . . . . . . . . . . . . . 87

9.4.1 Without saline solution . . . . . . . . . . . . . . . . . . . 87
9.4.2 With saline solution . . . . . . . . . . . . . . . . . . . . . 88
9.4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

9.5 Battery performance while reading . . . . . . . . . . . . . . . . . 90
9.6 Battery performance while writing . . . . . . . . . . . . . . . . . 91
9.7 Battery performance while powering . . . . . . . . . . . . . . . 92

III Conclusion 95

10 Analysis 97
10.1 Displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

10.1.1 Communication performance . . . . . . . . . . . . . . . 97
10.1.2 Energy consumption . . . . . . . . . . . . . . . . . . . . . 98

10.2 Saline solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
10.2.1 Communication performance . . . . . . . . . . . . . . . 100
10.2.2 Energy consumption . . . . . . . . . . . . . . . . . . . . . 100

10.3 Tag type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
10.3.1 Communication performance . . . . . . . . . . . . . . . 100
10.3.2 Energy consumption . . . . . . . . . . . . . . . . . . . . . 103

10.4 Experiment conclusion . . . . . . . . . . . . . . . . . . . . . . . . 105

11 Accomplishments and future works 107
11.1 NFC protocol tester app evaluation . . . . . . . . . . . . . . . . 107

11.1.1 Accomplishments . . . . . . . . . . . . . . . . . . . . . . . 107
11.1.2 Future improvements . . . . . . . . . . . . . . . . . . . . 107

11.2 NFC benchmark app evaluation . . . . . . . . . . . . . . . . . . 108
11.2.1 Accomplishments . . . . . . . . . . . . . . . . . . . . . . . 108

x



11.2.2 Future improvements . . . . . . . . . . . . . . . . . . . . 109
11.3 NFC communication library . . . . . . . . . . . . . . . . . . . . . 109

11.3.1 Accomplishments . . . . . . . . . . . . . . . . . . . . . . . 109
11.3.2 Future improvements . . . . . . . . . . . . . . . . . . . . 109

xi



xii



List of Figures

1.1 Micro implant connected to a sensor with a smartphone as
the reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Micro implant powered by NFC-watch . . . . . . . . . . . . . . 6

2.1 RFID communication range [14] . . . . . . . . . . . . . . . . . . 12
2.2 Main components of the RFID system[59] . . . . . . . . . . . . 12
2.3 Protocol stack for R/W mode . . . . . . . . . . . . . . . . . . . . 17

3.1 Memory layout of NFC Forum Type 1 Tag . . . . . . . . . . . . 20
3.2 Memory layout of NFC Forum Type 2 Tag . . . . . . . . . . . . 22
3.3 Memory layout of NFC Forum Type 3 Tag . . . . . . . . . . . . 23
3.4 Memory layout of FeliCa Lite-S . . . . . . . . . . . . . . . . . . . 25
3.5 Memory layout of NFC Forum Type 4 tag . . . . . . . . . . . . . 26
3.6 Memory layout of MIFARE Classic . . . . . . . . . . . . . . . . 28
3.7 MIFARE Classic authentication procedure[38] . . . . . . . . . 29
3.8 Memory layout of MF1S50 . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Android architecture [37] . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Binder driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Activity lifecycle [13] . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 Fragment [13] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.5 Android Studio IDE . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.6 Eclipse IDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1 MVC pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.1 Basic NFC benchmark app architecture . . . . . . . . . . . . . . 47
6.2 Basic NFC protocol tester app architecture . . . . . . . . . . . . 47
6.3 Benchmark Fragment mockup . . . . . . . . . . . . . . . . . . . 48
6.4 NFC protocol tester mockups . . . . . . . . . . . . . . . . . . . . 52
6.5 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.6 MessengerService . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.7 NFC communication . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.8 Engine lifecycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.1 NFC protocol tester illustrations . . . . . . . . . . . . . . . . . . 72

8.1 Illustration of testbed . . . . . . . . . . . . . . . . . . . . . . . . . 75
8.2 Test-bench construction . . . . . . . . . . . . . . . . . . . . . . . 76

xiii



9.1 Round trip time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
9.2 Read communication performance without saline solution . . 84
9.3 Read communication performance with saline solution . . . . 85
9.4 Read all communication performance . . . . . . . . . . . . . . . 87
9.5 Write communication performance without saline solution . . 88
9.6 Write communication performance with saline solution . . . . 89
9.7 Energy consumption for reading operations . . . . . . . . . . . 91
9.8 Energy consumption for writing operations . . . . . . . . . . . 92
9.9 Energy consumption while powering tag . . . . . . . . . . . . . 93

10.1 Power to noise ratio . . . . . . . . . . . . . . . . . . . . . . . . . . 99
10.2 Read and write throughput for small packets at 0mm dis-

placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
10.3 Tag1 readall command performance . . . . . . . . . . . . . . . 102
10.4 Communication performance at 0mm displacement without

saline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
10.5 Comparing energy consumption for reading, writing and

powering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

11.1 NFC protocol tester app . . . . . . . . . . . . . . . . . . . . . . . 108

xiv



List of Tables

1 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

2.1 NFC combinations . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Tag type properties . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6.1 Benchmarking tests overview . . . . . . . . . . . . . . . . . . . . 49
6.2 Attributes description . . . . . . . . . . . . . . . . . . . . . . . . . 50

8.1 Materials for experiment . . . . . . . . . . . . . . . . . . . . . . . 74

9.1 Commands used to estimate RTT . . . . . . . . . . . . . . . . . 83
9.2 Throughput and S.D. in BPS for reading 64 bytes packets

without saline solution . . . . . . . . . . . . . . . . . . . . . . . . 84
9.3 Throughput and S.D. in BPS for reading 64 bytes packets

with saline solution . . . . . . . . . . . . . . . . . . . . . . . . . . 85
9.4 Memory sizes read with the ReadAll function . . . . . . . . . . 86
9.5 Throughput and S.D. in BPS for writing 64 bytes packets

without saline solution . . . . . . . . . . . . . . . . . . . . . . . . 89
9.6 Throughput and S.D. in BPS for writing 64 bytes packets

with saline solution . . . . . . . . . . . . . . . . . . . . . . . . . . 90
9.7 Packet sizes written for each tag . . . . . . . . . . . . . . . . . . 91

10.1 Signal strength reduction . . . . . . . . . . . . . . . . . . . . . . 98
10.2 Overhead for reading a byte . . . . . . . . . . . . . . . . . . . . . 101
10.3 Estimated throughput from energy consumption and mea-

sured throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

xv



xvi



Listings

4.1 Intent filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.1 Creation of tables for benchmark database . . . . . . . . . . . . 49
7.1 Register callback . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.2 MessageHandler interface . . . . . . . . . . . . . . . . . . . . . . 62
7.3 Sending of messages . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.4 Sending and receiving NDEF messages . . . . . . . . . . . . . . 63
7.5 Sending and receiving binary data . . . . . . . . . . . . . . . . . 64
7.6 Wrapper factory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.7 The DatabaseHandler class . . . . . . . . . . . . . . . . . . . . . 66
7.8 Benchmark engine interface . . . . . . . . . . . . . . . . . . . . . 69
7.9 Setup and stopping of foreground dispatch . . . . . . . . . . . . 70
8.1 RTT SQL query . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
8.2 Communication performance SQL query . . . . . . . . . . . . . 78
8.3 Battery performance SQL query . . . . . . . . . . . . . . . . . . 79

xvii



xviii



Abbreviations

The abbreviations used in this document are presented in Table 1.

xix



Abbreviation Description

IT Information Technology
NFC Near Field Communication

IC Integrated Circuit
I/O Input/Output

EEPROM Electrically Erasable Programmable Read-Only Memory
RFID Radio Frequency Identification
SSP Bluetooth Secure Simple Pairing
GPS Global Positioning System
RDT Record Type Definition

NDEF NFC Data Exchange Format
OSI Open Systems Interconnection
LLC Logical Link Control
MAC Medium Access Control
bps Bits Per Second
BPS Bytes Per Second
UI User Interface

UUID Universally Unique Identification
3s.f. Three significant figures
S.D. Standard deviation
RF Radio frequency

CRC Cyclic redundancy check

Table 1: Abbreviations

xx



Part I

Introduction

1





Chapter 1

Introduction

Information technology has exploded during the last few decades and what
started out as being a tool for IT professionals has quickly become a source
of information that is readily accessible even by the youngest members of
our society. My very own 12 months old nephew is now a proud user of the
iPad and has through apps developed for this platform acquired the ability
to recite the English alphabet in the form of a song. As Mark Weiser advice:

“Machines that fit the human environment, instead of
forcing humans to enter theirs, will make using computers as
refreshing as taking a walk in the woods.” [62]

This advice is taken seriously by the development community [27, 33] and
it leads to consumers completely surrendering to the automation and ease
supplied with the power of computing and creativity of developers. For
example, to take a picture and render it available for millions of users
enjoyment can be accomplished with a few clicks of a button through
mobile apps such as Instagram [28]. Simply the process of rendering this
picture would 15 years ago easily take a week for the amateur photographer,
as this process would have to be outsourced to a professional printing
service. This magnificent improvement is reflected in vast other areas
as well, technologies such as content analytics is trying to close the gap
between natural language and structured information, allowing computers
to make sense of our tweets and Facebook comments as well as mimicking
humans understanding of visual and audio contents [2, 39]. Artificial
intelligence is yet another area that tries to give machines the ability to
reason and learn like humans. A common theme amongst these topics is
that they strive to populate the virtual world with a virtualized version of
the real world. A final topic that strives for the same result is ubiquitous
computing where computing appears to be everywhere and operating
seamlessly under our noses to understand and fulfill our needs and desires
without our conscious interaction with the devices.

The gap between the real world and the virtual world is growing closer
by every new technology and software solution made available on the
market, and one of these technologies is Near Field Communication (NFC).
NFC makes the virtual world reachable by the gesture of a touch whilst still

3



retaining a high level of security. By moving two NFC enabled devices into
close proximity of each other, the two can exchange information. This is
done without the need of pressing a single button.

Imagine placing your phone over the palm of your hand and being
able to see what goes on inside your body. Allowing information from
integrated sensors to flow to a transceiver in the palm of your hand, and
from there being able to transmit that information to powerful software
solutions made available with your mobile phone. It is a future that is well
within our reach through the use of existing technologies such as NFC.

The focus of this master thesis is closely aligned with the description in
the previous paragraph. Through the use of implanted sensors connected
to implanted integrated circuits (ICs) with an NFC interface, vital signs
can be monitored with the simple gesture of touching the phone to the
location of the IC located underneath the skin. An illustration of this is
depicted in Figure 1.1. This technology enables the transfer of both power
and information through a single wireless interface, potentially allowing
sensors and circuits to run without the need of separate implanted power
supplies such as batteries. For patients with chronic illnesses such as
diabetes type 1, this system could perform continuous monitoring of vital
signs, allowing information to be collected and processed with minimal
invasion into the patient’s daily activities. The processing could further be
used for early warning systems to alert both the patient and the medical
staff of upcoming dangers and thereby prevent or reduce the impact of
upcoming disasters.

Figure 1.1: Micro implant connected to a sensor with a smartphone as the
reader

1.1 Problem statement

NFC is a term used to refer to a collection of short-range wireless
technologies for exchanging data between devices. A subset of these
devices is passive NFC tags (see 2.3.1.2) that are used for a range of

4



different applications. Different protocols operate amongst these tags and
result in different characteristics and behavior, however little research has
been conducted that informs us about their performance. There exist
studies of how NFC technologies generally perform [34]. There even
exist studies that prove that NFC tags are able to communicate through
biological tissue[23]. However, no published studies exist that compare the
performance achieved by these different tag types. The performance is in
this context related to battery consumption, bit error rates, communication
range and communication throughput. Information about these metrics
can assist developers in choosing the right tag type for their specific use-
case scenario.

Technical specifications for each individual tag exist, but there are
no empirical studies that show how these relate to real life scenarios.
When developing tags that are used for specific scenarios such as those
mentioned in the introduction section of this chapter, how the tags perform
can be imperative to the tag type selection. Some tag protocols have
large overheads related to data transfers and might therefore be inefficient
when repeatedly transferring small samples of data. Other tag protocols
have small overheads that make transfers of small data efficient at the
cost of making transfers of large data less efficient. Furthermore, how
these I/O operations are influencing battery consumption can have design
implications for systems involving NFC. The environment or setting, in
which the tags are used, can influence data integrity and communication
range, but it is not known how much or what implications this has on
systems that are developed that incorporate NFC technology. This thesis
aims at producing software that enables answering of these questions as
well as designing and conducting an experiment that provides insight into
the performance of some tag technologies in a specific scenario.

1.2 Contribution

Existing research has mapped out general usage of NFC as a technology,
ranging from studies into user interaction with NFC devices [4, 40, 51]
to security aspects [31], covering the usage of NFC in medical devices
[3, 23, 58], for payment and ticketing applications [24, 44] etc. Also
further improvements of existing NFC protocols are discussed, [52] briefly
recognizing limitations of current NFC protocols and propose future NFC
protocols inspired by the TCP/IP protocol stack and discuss how power
consumption for polling can be reduced to 1% of current consumption[36].

Through this thesis, I hope to answer the questions posed in Section 1.1.
There is no ultimate NFC protocol that fits all use-case scenarios, but there
are always protocols that are better suited for certain scenarios. One such
scenario is related to the works of Zaher, in which a tag is developed that
forward sensor values from inside the human body. The tag is planned
to be implanted under the skin and from there connected to implanted
sensors. It uses the inductive capabilities of NFC to power itself and the
connected sensors as suggested in [43]. The sensor values are monitored

5



and offloaded to NFC readers that are within close proximity of the tag and
queries for this information.

To make an informed decision about what tag technology to base
Zaher’s work on, it is important that the different capabilities are mapped
out. The tag is required to communicate through tissue, if this significantly
increases the bit error rate, it is reasonable to design the tag to transfer
data in small chunks to minimize repeated transfers. If the throughput
is small, it limits the update rate for the sensors or possibly impacts the
granularity of the sensor values. Battery consumption impacts how the
tag can be used, if repeated communication is expensive, the design needs
to negotiate between an acceptable update rate and an acceptable battery
consumption cost. And finally, if the phone needs to be touching the skin to
communicate, a wrist watch located directly above the tag, with an NFC
interface and Bluetooth capabilities might be compulsory to achieve the
desired user experience. Information is then relayed through the watch
to an external device such as the mobile phone as depicted in Figure 1.2.

Figure 1.2: Micro implant powered by NFC-watch

1.3 Methods

Different methods are applied to different stages of this work. Initially, a
requirement analysis is done to map out areas where information about
NFC is lacking. Then, as an overall procedure, a design-implementation-
evaluation method is used to prepare an overall understanding of what
needs to be done, how it is implemented and evaluated. The implemen-
tation of the software is done in accordance with the lean software de-
velopment methodology, which belongs to the iterative software develop-
ment method family [7]. Such a method is imperative to the success of the
project, as it enables it to grow dynamically as new needs are identified.

6



1.4 The implant

This work is a prerequisite to the study of protocol selection for an Android
application that communicates with a Micro-implant that incorporates an
NFC interface. The communication technology of the implant is heavily
based on tag technology; therefore, by studying the tag properties, we
hope to identify what requirements should be set for the implant. As
identified when comparing tags in Section 2.4, the different tags hold
different properties, and we need to consider what properties are important
for our use case. The following subsections discuss these properties.

1.4.1 Power source

The micro implant is supposed to be implanted into the wrist of patients
and is connected to different sensors located inside the body. One such
sensor is the GlucoSense, which measures blood sugar levels. The patients
applicable for this micro implant are principally those that have diabetes
type 1. For such patients, it is important to measure the insulin level of the
blood regularly, which requires a blood test. With a GlucoSense operated in
under the skin and indirectly talking to a reader through the micro implant,
the blood sugar level can be monitored with much greater ease and at higher
frequency. The sensor is also extracting power from the electromagnetic
field created by the reader and therefore can operate without its own power
source as illustrated in Figure 1.1. This is a key feature as changing battery
on such a sensor requires surgery.

The external power supply is also a problem, because no operations can
be performed when the power source is out of range and therefore no data
can be collected form the sensors. To resolve this issue, a strap could be
developed that is worn on the wrist and, at fixed intervals, power up the
system to enable measuring of the glucose values. This records historical
data in the memory of the implant and allows a reader to extract this
information at a later point in time. Such a feature requires more memory.

1.4.2 Memory

All tags have a small part of non-volatile memory, usually an EEPROM
memory. This memory defines the amount of space to make available for
storing information on the tag. The way the memory is structured is tag
dependent and defined in the tag specifications. However, although the
tag specification does pose some restrictions to the memory structure, it
also gives the designer some degree of flexibility to have some parts of the
memory available for customized solutions.

As proposed in the preceding Subsection, it is possible to power the tag
without performing I/O operations with it. This is expected to preserve
the battery power of the reader, but requires parts of the memory to be
available as a buffer to store a window of sensory values. In such a design,
it is important to know how much memory is required to buffer the sensor
values. This depends on the sampling rate of each connected sensor and

7



how often the values are offloaded from memory, e.g.:

Sm ≥ B ≥
n∑

x=0

(
Sx .Ss ×Sx . fs

fo

)
, wher e

∣∣∣∣∣∣∣∣∣∣∣

Sx = Sensor
fs = Sampli ng f r equenc y
fo = O f f l oad r equenc y
Sm = Memor y si ze
B = Bu f f er

For example, a single sensor that is updated every 5 minutes, has a
sampling size if 10 bits per sample and that is offloaded every 24 hours,
requires a buffer of

1
5 ×10

1
24′60

= 2880bi t s = 360by tes

Whilst a sampling frequency of once every 5 minutes might be suitable
for collecting data about the blood sugar level, this frequency is useless for
measuring the heart rate. In such a situation, the sampling rate needs to
be multiple times per second and requires vast more memory or a higher
offload frequency.

Using a buffer also creates complexity related to sampling frequency
of the different sensors, because the frequency will vary depending on the
sensor type. When multiple sensors of variable sampling frequency and
varying sampling size are connected to the tag, it must be able to store these
without overwriting existing samples.

An alternative to using a buffer is to simply transfer on demand. When
an NFC interface is available, it can post commands and thereby read values
directly from the sensors. Although this is a much simpler design, it is
predicted that it consumes much energy, because each collected sample has
to be transferred to the reader at once.

1.4.3 Communication speed

With the estimated recordings of 360 bytes per 24 hours, this does not
put a great deal of strain on the bandwidth requirements. If 360 bytes
are transferred at the rate of 106Kbps, then the information should arrive
in: 360×8

106000 = 27ms. Hence the communication speed is not an issue in this
scenario. However, if sampling the heartrate at a frequency of 200 Hz,
which is required to get a mostly error free sampling [61], and with a 8
bit accuracy, the results are: 200× 8× 60× 60× 24 = 138240000bytes. This
takes: 138240000×8

106000 = 10400(3.s. f )seconds or about 3 hours and requires about
134MB of memory. Such a system is required to be rethought, in this
scenraio the values might have to be streamed directly to the reader for
storage.

1.4.4 Read/write

It is imperative that it is possible to read from and write to the tag. This is
because the tag is used to relay information from the sensors to the reader

8



and thus, the sensors need to write their data to the tag and the readers
need to be able to read this data from the tag. Additionally, it is important
to allow the reader to adjust operating parameters for the sensor. This
could be stored at specific locations in the memory that the sensor reads
from before performing its measurements.

1.4.5 Anti-collision

Anti-collision measures should be taken when multiple NFC interfaces are
operating close to each other. However, it is unlikely that multiple NFC
interfaces are interfering with each other in this specific scenario. Hence,
for this tag, it is not of great importance that anti-collision is supported.

1.4.6 Computation

Performing computations on a tag requires the tag to constantly be powered
by the reader. If the computations require a lot of processing, it might
be more efficient to transfer the information to the reader for processing
instead. In situations where the reader is a smart phone, it has vastly more
processing power and is able to process larger amounts of data more power
friendly and faster than computation done directly on the tag.

1.4.7 Security

The final point to consider is security. This is medical information that
is made available wirelessly, without any encryption. It could be important
for legal reasons that medical information needs to be secured and this area
needs to be investigated. However, this is left as future works, because the
security aspect of NFC is a thesis topic in itself and a lot of research in this
field has already been done.

1.5 Thesis structure

This thesis is divided into three parts and 11 chapters. The first part
aims at identifying why this thesis is needed and supplies the background
information required to understand some of the concepts, technologies and
ideas of this thesis. Especially chapters 2 to 5 should be used as a reference
for technical information, as they do not introduce any knowledge directly
related to the project.

Part one has five chapters. Chapter 1 introduces the thesis and briefly
discusses the project. Chapter 2 gives an introduction to NFC. The tags used
in this thesis and their memory structures and the command sets relevant
for this thesis are introduced in Chapter 3. Chapter 4 describes the Android
Operating system, whereas Chapter 5 describes some key design principles
followed in the software development.

Part two describes the design and implementation of two apps, a library
and an experiment. It is divided into four chapters where chapters 6 and

9



7 describe how the two apps and the library are developed, designed and
implemented in this work. Chapter 8 discusses how the experiment was
conducted in this thesis. Chapter 9 presents the data collected from the
experiment.

Part three concludes this thesis and consists of two chapters. Chapter
10 presents the key results collected through the experiment and evaluates
it. The final chapter, Chapter 11, evaluates the developed software and
suggests the topics for further development.

10



Chapter 2

Identification systems

This chapter starts by introducing Automatic Identification Systems and
shows how it is related to Radio Frequency Identification. The chapter
continues with Near Field Communication and introduces some tag types
that implement this technology.

2.1 Automatic identification system

Automatic identification systems have existed for decades. The most com-
mon and widespread is one that we interact with every day, barcodes. Bar-
codes allow alphanumeric information to be represented as an arrangement
of wide and narrow bars. These bars are optically read and interpreted by
an optical laser scanner. The barcode is usually used to identify the ob-
ject, and information about the object is typically stored elsewhere. The
reason for storing data elsewhere is the limited amount of information that
can be represented by this technology. However, other automatic identi-
fication systems exist such as RFID that can store a lot more information.
This makes it possible to store not only identification, but also information
about the object itself, which helps to create more generic applications that
require less prior knowledge about the object to be identified.

2.2 Radio frequency identification

RFID is an automatic identification system, the similarity to the barcode
is obvious: they contain information about the object they are associated
with. However, they communicate their information in a very different way.
While barcodes store and send their information optically, RFID stores the
information electronically and sends it through the use of radio frequency
(RF). Since barcodes are optically stored, they can be written to only once,
upon creation. RFID tags, on the other hand, can be written to and read
from multiple times, as their information is stored electronically.

The operating frequencies of RFID range from the low frequency
band up to the Microwave band. These different frequencies allow

11



Figure 2.1: RFID communication range [14]

Figure 2.2: Main components of the RFID system[59]

communication over different distances ranging from 10cm up to 10 meters
as depicted in Figure 2.1.

The main use of RFID is as a critical tracking and control technology. It
primarily consist of two components: the interrogator (or reader) and the
transponder (or RFID tag). The task of the RFID tag is to, upon request
from a reader, send the information stored in the tag to the reader. The task
of the reader is to identify the presence of a RFID tag, extract information
from it and for some tag types, to power it. The main components of the
RFID system are depicted in Figure 2.2.

2.2.1 Transponder (RFID tag)

The RFID tag is an integrated circuit that can hold small applications and
small amounts of data. Similar to other electronic devices, RFID tags also
need a power source. There are two methods of powering an RFID tag, and
these two methods require two different types of tags, namely passive tags
and active tags. The passive tags are powered by the electromagnetic field

12



created by the reader, whereas the active tags have their own embedded
power supply. In terms of communication range, it makes sense to use
the active tags. However, these tags are more expensive, and when the
power source is consumed, the power source (or tag) needs to be replaced.
A passive tag is more appropriate in situations where replacement is not a
viable option such as in implanted RFID tags, or when the communication
range is not an issue such as in product registration in shops.

2.2.1.1 Passive transponder (passive tags)

Passive tags consist of a transponder chip and an antenna. The
transponder chip generates energy from the electromagnetic field created
by the reader to operate the internal circuit. The antenna is used to
transmit the information back to the reader.

2.2.1.2 Active transponder (active tags)

Active tags consist of an embedded power source, a transponder chip and
an antenna. The power source is used to power the transponder chip,
which generates the signal to be transmitted by the antenna. Since it has an
embedded power source, the active tag can produce a much stronger signal
and therefore operate over a much longer distance.

2.2.2 Reader

The reader continually polls for nearby RFID tags and creates an electro-
magnetic field. When a tag is within range, the tag responds to the signal
created by the reader by modulating the electromagnetic field. By inter-
preting the modulated electromagnetic field, the reader may extract the
information. This is illustrated in Figure 2.2.

2.3 Near field communication

NFC is a close cousin of RFID that extends the capabilities of RFID tags.
It uses the bandwidth 13.56 MHz for communication, which gives it a
maximum communication range of up to 20 cm [15, p. 57]. The extension
to RFID enables NFC to operate in three modes, read/write operation
mode, card-emulation mode and peer-to-peer mode. The read/write
operating mode enables the NFC device to replicate a RFID reader, to
enable reading from and writing to RFID tags. Through the properties of
peer-to-peer mode, the NFC device adopts data sharing abilities similar to
wireless communication devices such as Bluetooth, Wi-Fi and infrared.

One of this technology’s prime advantages is its implicit security due
to the short communication range. This property makes it more resilient
against eavesdroppers and makes it a suitable candidate for transferring
sensitive data. This property is used for implicit pairing of Bluetooth
enabled devices. With the use of Bluetooth Secure Simple Pairing (SSP),

13



the devices can exchange authentication information over a NFC link [16] to
establish a Bluetooth connection without the need of any user interaction.
SSP uses NFC as the secure element in initiating data communication
between two Bluetooth enabled devices. This eliminates the need for
manual pairing.

The gesture of moving the device into close proximity of a target is
unlikely to happen by accident, and it can therefore be assumed that the
user wants to perform some type of action. This feature is extensively used
in the Android operating system where NFC tags can be associated with the
launching of apps and configuration of the phone. For example, entering
the car and touching the phone to a NFC tag mounted somewhere in the
car may configure the phone to connect to the car’s Bluetooth handsfree set
and launch the GPS app on the phone.

2.3.1 Communication modes

For two NFC devices to be able to communicate, the devices can take on
either an active or passive communication mode.

2.3.1.1 Active

In active mode, both NFC interfaces generate a magnetic field and send
their data by modulating it. They do so in an alternating fashion to avoid
collision. The advantages of this mode are that it operates over a longer
distance and the power consumption is shared between the devices.

2.3.1.2 Passive

In passive mode, the NFC interface that initiates the communication
provides the magnetic field. The target can draw energy from the magnetic
field, but cannot create its own. The initiator sends data by modulating
its magnetic field and the target sends by load-modulation. The transfer
speeds available with this communication mode are 106, 212, and 424
Kbit/sec [59, p. 102], depending on the type of tag it communicates with.

2.3.2 Operating modes

There are three main smart devices in NFC: NFC enabled mobile phones,
NFC readers and NFC tags. The valid NFC device combinations are sum-
marized in Figure 2.1. To allow the NFC enabled phone to communicate
with all three device types, it needs three different operating modes: read-
/write, peer-to-peer and card-emulation. The read/write mode allows the
NFC phone to communicate with tags by simulating the role of a reader.
The card-emulation mode allows it to communicate with NFC readers by
simulating a smart card. In peer-to-peer mode, it can communicate with
other NFC enabled mobile phones.

14



Device Mobile phone Reader Tag
Mobile phone X X X

Reader X - X
Tag X X -

Table 2.1: NFC combinations

2.3.2.1 Read/write

An NFC device can operate in reader/writer mode, when there is another
NFC device in range that is in card emulation mode. This allows the reader
to transmit commands to the NFC device in card emulation mode and
receive the response. This is used when NFC phones interrogate NFC tags,
as described in Section 2.4.

This mode is used to write data to, or read data from, a NFC tag. From
the NFC tag’s side, the phone is perceived as a reader.

2.3.2.2 Peer-to-peer

This mode is used to allow NFC enabled mobile phones to exchange
information between each other. This mode is used when performing SSP
to allow NFC enabled devices to implicitly establish a Bluetooth connection.

2.3.2.3 Card-emulation

In this mode, the mobile phone simulates the properties of a smart card or
a tag so that the phone can be read by a reader. This mode is useful for
contactless payment applications, because it gives payment issuers greater
control over their payment strategies as the credentials can be stored on a
remote server rather than on the mobile device.

2.4 NFC tags

NFC tags are passive RFID tags that are used as small data containers and
that respond to certain commands that are defined by the standard they
belong to. They enable communication with readers and, depending on
type, can allow readers to write information to their memory. Four types
have been defined by the NFC forum and are compared in Table 2.2. As
the Table shows, the tags have varying properties related to memory size,
communication speed, cost, read/write abilities, anti-collision support,
security and standards that they are based on.

Memory defines the available space for storing information on the tag.
It is important to define what memory space is required as large memory
space increase complexity and cost of the tag to be developed. For example,
a sensor can write its sensed data in timed intervals to the tag and allow
the tag to buffer this data. Once a reader is available for offloading the
information from the tag, the tag is free to clear the memory and make

15



Type Tag 1 Tag 2 Tag 3 Tag 4
Memory(B) <= 1K <= 2K <= 1M <= 64K

Com.
speed(Kbps)

106 106 212/424 106/212/424

Cost Low Low High Medium/High
R/W Yes Yes Variable Variable

Anti-collision No Yes Yes Yes
Security 16/32 bit

Signature
Insecure 16/32 bit

Signature
Variable

Standard ISO-14443A ISO-14443A JIS X 6319-4 ISO-14443A
or B

Table 2.2: Tag type properties

space for new readings. In this scenario, the size of the sensed data,
frequency of recordings and the frequency of offloading are key factors to
consider when deciding on what tag to choose.

Similarly the communication speed puts requirements to the hardware,
making it more expensive to develop and manufacture. Generally, the
amount of data transmitted from the tag to the reader does not require
a large bandwidth. For example, if the tag is updated with insulin blood
levels at intervals of five minutes, and each recording is one byte long, the
required transfer speed is way below 106Kbps and hence tag type 1, 2 and
4 are suitable in relation to speed. However, transfer speed becomes a
key factor in situations where real-time monitoring of sensor data, such as
heart rate, is stored on a tag and needs to be continuously transferred to the
reader. To decide on the type of tag, one needs to consider the frequency of
transfers, the size of the data to transfer and how the transfer speed affects
the user experience.

The cost is always an issue, both in development and in production.
The cost reflects the complexity of the system, and therefore the complexity
should be kept to a minimum.

All the tags presented have read/write capability, however, a subset of
them (e.g. tag type 1, 3 and 4) also have memory areas that can be protected
by switching them from read/write to read only memory. This can be done
at manufacturing time or in some tags by the user. The advantage is that
the tag cannot be tampered with whether it is intentional or not.

Anti-collision ensures that when multiple sensors are sharing a
medium, they negotiate who transfers information and when. This is im-
portant if the tag operates in an environment surrounded by other tags. The
introduction of anti-collision does incur a significant increase in complexity
to the hardware of the tag and the need should therefore be carefully con-
sidered. When multiple sensors are making recordings in a confined area
and storing the information on tags, it could be sensible to include anti-
collision measures to ensure that information can flow fluently. However,
in the case that is considered at the end of this paper, only one tag is used
and therefore this situation does not occur.

16



Layer With NDEF Without NDEF
Application NDEF application Non NDEF

ISO-14443-4 NFC Forum Mandated applications
ISO-14443-3 Tag Operations
ISO-14443-2 Digital protocol
ISO-14443-1 Analog

Figure 2.3: Protocol stack for R/W mode

Security issues related to tags are covered by earlier studies[12, 31]. It
prevents eavesdroppers from being able to study the information available
on the tag. The NFC forum has standardized RDT, a digital signature
system that enable secure transfer of NDEF packets through the use of
private and public keys. The information transmitted between the NFC
interfaces is then being encrypted with the public key and can only be
decrypted with the private key. Hence, when transmitting, the transmitter
encrypts with the recipients public key and the recipient decrypts with
its private key. Anyone listening in, is unable to decrypt the information
without the private key.

2.5 Protocols

The area of interest for this paper is the communication between an NFC
enabled device, primarily a mobile phone, and NFC tags. Therefore the
emphasis on protocols are related to protocols for read/write mode. Fur-
thermore the paper focuses on the implementation offered by Android’s
application framework [25]. Essentially this offers two forms of communi-
cation with NFC enabled devices: through NDEF messages, which specify
protocols based on tag type, and through non NDEF messages, where the
protocol stack is implemented by the application developer directly. The
two protocol stacks are illustrated in Figure 2.2.

The NFC Forum Mandated Tag Operations-layer delivers NDEF
messages to the NDEF application and allows the NDEF application to
send NDEF messages to the target without the need to know the specifics
of the implementation. This layer identifies the tag type and performs
operations accordingly, leaving the application with a simplified interface
for communicating with all NFC mandated tag types.

In non NDEF applications, there is no reliability in the data transmitted.
Simply raw bytes are transferred from the Digital protocol layer to the
application. Due to this, if we want to implement such a communication,
we need to define a set of protocols that handle communication with the
device. To acquire reliable connection with the device, we need to define a
link layer protocol for transmission of data back and forth.

In the OSI model, the data link layer handles communication between
two nodes in a network. This layer is divided into two sub-layers, the
LLC and MAC. The LLC layer is the uppermost of the two and multiplexes
between communication protocols.

17



The link layer offers a set of possible functionalities for using the
communication channel. Firstly, if the communication channel is shared,
there is a need for a medium access control scheme. This scheme
negotiates a solution to reduce collisions when multiple devices are trying
to communicate simultaneously. Secondly, if the communication channel
is not error free, and validity of the data is essential, we need to have a way
of detecting and possibly fixing errors in the data transmitted. Lastly, to
enable variable size data transmission, we need a flow control system.

2.6 Conclusion

NFC is a flexible and expandable standard that builds on top of RFID and
offers a large range of uses. To help standardizing the implementation of
tags, the NFC Forum has defined four tag types that have some pre-defined
features. However, as becomes apparent in the following chapter, the way
the tags are defined leaves the developer open to customize the tag and
extend the tags functionality.

18



Chapter 3

NFC tags

This chapter consists of five sections, each of which introduces a new tag
type together with its basic physical characteristics such as communication
speed, memory size and anti-collision support. Each section includes three
sub-sections that explain the general memory layout of the tag and how
reading and writing operations are performed. At the end of each section,
the implementation of a tag that complies with these specifications is
presented together with its physical attributes. The tags presented are used
for testing in Part II. It must be noted that the description is compressed
to the essential knowledge required to understand the implementation of
these protocols in the developed software introduced in Part II. As such,
the full flexibility and all possibilities of the tag types are not explored.
However, reference to relevant documentation, where the full description
is available, is supplied in the text.

3.1 NFC Forum Type 1 Tags

This section introduces the NFC Forum Type 1 tag, which is based on the
ISO-14443A [29] standard. A more complete description can be found in
the official NFC Forum Type 1 Tag Operating Specifications [17]. This
tag type communicates with a speed of 106Kbits/s and has an expandable
memory of 64B up to 2KB, but it does not have any anti-collision support
[41].

3.1.1 Memory

The NFC Forum Type 1 tags have two memory structures: a static memory
of 120 bytes and a dynamic memory stretching beyond 120 bytes. The
memory is considered to be divided into blocks of 8 bytes, and the division
of these blocks is illustrated in Figure 3.1. As can be seen, the first block
contains manufacturing data, whereas block 13 and 14 are reserved for
internal use and locking bits. Locking bits control read and write access
to blocks, and once it is set, it cannot be changed. More information about
locking bits is available from the official NFC Forum Type 1 tag operating
description [17]. The dynamic memory is further divided into segments,

19



where each segment consists of 16 blocks. The address space for both static
and dynamic memory is flat.

Figure 3.1: Memory layout of NFC Forum Type 1 Tag

3.1.2 Read command

There are four commands available for reading NFC Forum Type 1 tags,
read, rall, rseg and read8. The rall and read commands are required
for tags with static memory, whereas the rseg and read8 commands are
required for tags with dynamic memory. The read command contains
the number of the byte to read together with the first four UID bytes of
the tag. The tag responds with the referred address and a single byte.
The rall command includes the first four bytes of the tag UID, and the
tag responds with a copy of the first 128 bytes of its memory. The read8
command contains the number of the block to read from and the first four
bytes of the tag UID. The tag responds with the bytes available from the
referenced block. The rseg command contains a segment number and the
first four bytes of the tag UID. The tag responds with the bytes found in the
referenced segment.

3.1.3 Write command

Similar to reading, there are four commands available for writing to NFC
Forum Type 1 tags: write-e and write-ne, which are required for tags with
static memory, and write8-e and write8-ne, which are required for tags
with dynamic memory. The write-e command contains a byte, a byte
address and the first four bytes in the tag UID. The tag proceeds with
updating the byte with the referenced address with the given byte. This
command gives access to blocks 1 to 12 and thus prevents overwriting any
settings bits. The write-ne gives full write access to blocks 0 to 14, but does
not reset the byte it writes to and any bits that are set in the byte it writes
to, remain set after the operation completes. The write8-e is identical to
the write-e command, with the difference that it works with blocks instead

20



of bytes. The write8-ne is identical to the write-ne command, with the
difference that the operation is performed on a full block instead of a single
byte.

3.1.4 Discussion

NFC Forum type 1 tags have very simple read and write commands with
a low overhead that transfer one or eight bytes at a time. This makes it
efficient for transferring small loads. However, it also makes it expensive to
transfer larger chunks of data. This tag also specifies a single rall command
that reads 128 bytes of the tags memory with a very low overhead. This low
overhead makes reading the full memory efficient. However, this does scale
well for medium sized data transfers.

3.1.5 Topaz 512

This is a tag that operates according to the specifications of NFC Forum
Type 1 tag. It has a dynamic memory that expands to 512 bytes and it
supports commands for both static and dynamic memory access. However
the static memory access is limited to the first 128 bytes. The app described
in Chapter 6 only supports commands required for the static memory
model. This tag is throughout the remainder of this work referred to as
Tag1.

3.2 NFC Forum Type 2 Tags

This section introduces the NFC Forum Type 2 tag, which is based on the
ISO-14443A [29] standard. A more complete description can be found in
the official NFC Forum Type 2 Tag Operating Specifications [18]. It has
anti-collision support, communicates with a speed of 106Kbits/s and has
an expandable memory of 64B up to 2KB [18, 41].

3.2.1 Memory

Tag 2 has two defined memory layouts, static and dynamic. The static
layout has 64 bytes of memory, whereas the dynamic layout is larger in size.
The page size of this tag is four bytes and is referred to as a block. Bytes
contained in a block cannot be individually modified without overwriting
the remaining bytes in the block. Blocks are grouped in sectors, which are
defined as 256 contiguous blocks. The blocks are addressed relative to the
sector they belong to.

As is illustrated in Figure 3.2, the first four blocks contain manufactur-
ing data and tag settings. Special attention should paid not to overwrite
any of this data unintentionally. The two MSB (most significant bytes) of
the third block contain locking bits for the first 15 blocks. The information
on how the locking bits work can be found in [18, p.5].

21



Figure 3.2: Memory layout of NFC Forum Type 2 Tag

3.2.2 Read command

The read command of NFC Forum Type 2 tags define the starting block
to read from. The tag responds with 16 consecutive bytes starting from
the first byte in the block defined in the query. This command is not able
to select the sector to read from and therefore uses the currently selected
sector. To select a different sector, it is necessary to issue a sector select
command [18, p.18].

3.2.3 Write command

The write command of NFC Forum Type 2 tags defines the block to write to
together with the four bytes that are written to this block. If a subset of the
bytes in a block is to be updated, it is necessary to perform a read operation
of the designated block and alter the desired bytes before issuing the write
command. Similar to the read command, this command is not able to select
the sector to write to and so this has to be accomplished through a sector
select command [18, p.18].

3.2.4 Discussion

NFC Forum type 2 tags have very short commands, which create small
overhead with efficient use of the NFC. This is optimal for reading and
writing smaller amounts of data. The tag does not have any built-in security
and information stored on it is, therefore, available for anyone wnh has a
chance to scan it.

3.2.5 NTAG203

An existing NFC Forum Type 2 tag is the NTAG203 from NXP Semicon-
ductors. This is a tag with a dynamic memory layout and 144 bytes of user
memory [53]. The software described in Chapter 7 has been tailored to

22



work with this memory size. This tag is throughout the remainder of this
work referred to as Tag2.

3.3 NFC Forum Type 3 Tags

This section introduces the NFC Forum Type 3 tag, which is based on the
JIS X 6319-4 [32] standard. A more complete description can be found
in the official NFC Forum Type 3 Tag Operating Specifications [19]. It
has anti-collision support, variable memory up to 32KB per service1 and
supports communication speeds of 106, 212 and 424Kbits/s[19, 41]. The
concepts of reading and writing information to this tag are covered in the
preceding sub-sections.

3.3.1 Memory

The memory of a NFC Forum Type 3 tag has a page size of 16 bytes that
is referred to as blocks in this standard. Memory management on this tag
differs from the two preceding tags in that it does not supply direct access to
the memory chip. Instead, it maintains a type of file system, where services
supply access to a subset of memory blocks and where these memory blocks
are addressable relative to the service they belong to. Thus, the operating
system on the chip takes care of mapping the block addresses in the service
to the physical location on the chip. An illustration of the memory division
is displayed in Figure 3.3. Each service is uniquely identified by a service
code, which also determines the type of access this service grants to its
associated blocks. The access type is read only or read and write.

Figure 3.3: Memory layout of NFC Forum Type 3 Tag

1A service grants access to a memory segment.

23



3.3.2 Read command

This command contains the full eight byte UID of the tag, a list of
all services to work with and all blocks to read from. It is up to the
manufacturer to determine how many services can be active simultaneously
and how many blocks that can be read simultaneously. Since each block is
uniquely addressed, the blocks read do not need to be situated contiguously
in memory.

3.3.3 Write command

The write command contains the full eight byte UID, the start block, the
end block and the data to transfer. The standard is designed to allow up
to four blocks of data to be written to simultaneously. However some tag
suppliers only support the writing of one block at a time.

3.3.4 Discussion

The flexibility of the read command enables the protocol to cater for
variable needs without excessive overhead. Since blocks are individually
addressable in this standard, they do not need to be contiguously located in
memory, which improves the flexibility when designing how the memory is
used. The disadvantage of reading block sized chunks is that if an individual
byte is to be altered, the memory block needs to be “swapped in” (read from
the tag) before it is changed with the desired byte and then written back to
the tag.

3.3.5 FeliCa Lite-S

An existing NFC Forum Type 3 tag is the FeliCa Lite-S tag developed by
Sony. In this subsection, the specifics relating to the implementation of the
FeliCa Lite-S are introduced. The tag grants access to blocks through two
services: one, which gives read access and is referred to as the read service,
and the other, which gives read and write access and is referred to as the
read-write service. The read service gives read access to the set of read-
only memory blocks and the set of read-write memory blocks, whereas the
read-write service only grants access to the read-write memory blocks. The
memory layout of this tag is illustrated in Figure 3.4.

The structure of the FeliCa Lite-S memory is such that the first 14 blocks
are defined as user blocks. User blocks are read-write blocks and do not
affect the internal settings of the tag. They are therefore available for
the user to use as he/she sees fit. In the Nfc.Communication framework,
reading and writing access is limited to these 15 user blocks. This is done
to abstract the user away from knowing the internal memory structure of
each individual tag and simply view the tag as a storage device.

In this tag, a read command enables reading of up to four individually
addressable memory blocks. The size of the command varies depending on
the number of blocks that are read. As a response, the tag collects the bytes
available in the desired blocks and returns this as a response.

24



Figure 3.4: Memory layout of FeliCa Lite-S

A write command with FeliCa Lite-S enables the user to write to up to
two blocks at a time. The command expects the number of bytes to be
written to reflect the number of blocks to write to. Therefore, even if only
one byte is to be written, the remaining 15 bytes needs to be padded into
the array in order for the command to be accepted.

This tag is throughout the remainder of this work referred to as Tag3.

3.4 NFC Forum Type 4 Tags

This section introduces the NFC Forum Type 4 tag, which is based on the
ISO-14443-4 [30] standard. A more complete description can be found in
the official NFC Forum Type 4 Tag Operating Specifications [20]. This
tag supports the ISO/IEC 7816 APDU message structure and this section
presents some of the key elements of this standard.

3.4.1 Memory

The memory management of this tag resembles that of NFC Forum Type
3 tags as described in subsection 3.3. It also employs a file system for
managing the memory of the tag. The file system consists of a set of
applications, where each application grants access to a subset of files. These
files grant read and write access to pre-defined areas of the memory. Before
any IO operations can be performed, an application needs to be selected
and with it the file that it should operate with. Once the file is selected,
IO commands can be issued for updating or reading contiguous parts of the
file. The standard does not pose any limitations on the amount of bytes that
can be updated in one command. The layout of the memory is illustrated in
Figure 3.5.

3.4.2 Read command

Before any read operations are executed, it is necessary to select an
application and a file associated with this application. The read command
consists of an offset into the file and the number of bytes to read. If the
number of bytes to read exceeds 59 bytes, it is split into multiple transfer
operations.

25



Figure 3.5: Memory layout of NFC Forum Type 4 tag

3.4.3 Write command

As with the read command (see subsection 3.4.2), the write command also
requires an application and the desired file to be selected. Similar to the
read command, the write command consists of an offset into the file and
the number of bytes to write. If the bytes to write exceed 52 bytes, it is
split into multiple write commands, where the first gives information about
the size and the offset into the file, and the consecutive commands simply
transfer bytes.

3.4.4 Discussion

NFC Forum type 4 tags have very flexible read an write commands that
scale well with the size of the packet being transmitted when reading from
or writing to the tag. However, it also has some overhead when writing as it
needs to select the correct application and file on the tag. Additionally, all
read and write operations have to be performed on contiguous memory.

3.4.5 Mifare Desfire

An existing NFC Forum Type 3 tag is the MifareDesfire tag developed by
Philips Semiconductors. This tag has 4kB of non-volatile memory. The tag
has an extension to the NFC Forum Type 4 tag command set, which allows
it to create and manage applications and files on demand on the chip. More
details about such procedures can be found in the official Mifare Desfire
datasheet supplied by Sony Semiconductors [54].

In the application described in Chapter 7, an application, and a file
associated with this application, is created on this tag unless they exist from
before. The file is created with a size of 512 bytes of memory.

This tag is throughout the remainder of this work referred to as Tag4.

26



3.5 MIFARE Classic

MIFARE Classic is a proprietary tag based on the ISO-14443A standard
[29]. It has anti-collision support, variable memory size and a communi-
cation speed of 106Kbits/s [41]. The memory size varies from 1KB to 4KB.
Compared to the preceding tags, this one also supplies secure reading and
writing to sectors2 of the tag. This section introduces the concepts of I/O
operations, security and the memory for this tag.

3.5.1 Memory

The memory in MIFARE classic tags is divided into pages with a size of
16 bytes. These pages are in this standard called blocks. Each block is
individually addressable by a block number and belongs to a sector, which
is addressable by a sector number. Access to a block within a sector requires
authentication with the sector. The authentication process is described in
Section 3.5.2. The memory is illustrated in Figure 3.6 and shows that the
first block contains manufacturer data such as the UID of the tag and is
therefore ROM. The last block of each sector contains two keys and access
bits, which are used in the authentication process. It is important to take
care not to overwrite these values unintentionally, as they can render the
sector inaccessible. Not all MIFARE Classic tags have sectors with 16
blocks. However the larger tags such as the 4KB sized tag does, and it
is therefore necessary to cater for this when designing a framework for
manipulating the tags memory.

3.5.2 Security

Secure access to the memory area of a Mifare Classic tag is gained through
the division of the memory into sectors. Each sector controls access to a
set of either 4 or 16 blocks. When the interrogator requests authentication
with a sector, it needs to specify which key it desires (A or B) together with
the six byte key. This key is compared with the key found in the last block
of the given sector. Furthermore, the “Access” bits, which are illustrated in
Figure 3.6, determine what type of access is granted. The authentication
procedure is illustrated in Figure 3.7. More information on authentication
can be found in [57].

3.5.3 Read command

Reading from this tag is performed through a read command that specifies
the block number to read. The tag responds with the 16 bytes found in this
block.

2Sectors refer to predefined segments of memory on the tag

27



Figure 3.6: Memory layout of MIFARE Classic

3.5.4 Write command

Writing to this tag is performed through a write command that specifies the
block number to write to and an array of 16 bytes to write. Because this tag
writes a full block of 16 consecutive bytes, it is required to read the block
first, if one desires to update a subset of the bytes residing in the block.

3.5.5 Discussion

The built in security feature of MifareClassic gives some protection to the
data stored, but it also requires some overhead with data transfer such
as when authenticating sectors. Additionally, read and write commands
transfer large amounts of data, which incurs a large overhead when
transferring smaller packets to the tag.

3.5.6 MF1S50

MF1S50 is a Mifare Classic tag with 1kB of memory distributed as displayed
in Figure 3.8. As can be seen from the illustration, all sectors on this tag
have four blocks comprising of 16 bytes of memory each. In total this
renders 752 bytes of read-write memory space.

28



Figure 3.7: MIFARE Classic authentication procedure[38]

This tag is throughout the remainder of this work referred to as
MifareClassic.

3.6 Conclusion

To conclude, the flexibility of the different tag type standards leaves
great flexibility to the manufacturer of the tag. This requires application
developers to have knowledge about both the tag type standard and the
actual tag implementation. This flexibility is both a blessing and a curse, as
it enables tag manufacturers to develop tags tailored to specific scenarios,
which in turn makes it harder to develop generic systems for handling all
tags.

29



Figure 3.8: Memory layout of MF1S50

30



Chapter 4

Android OS

This chapter describes the Android operating system, some of its history,
its structure and app development for it. The chapter touches on some
key components and concepts related to developing apps on the Android
platform such as the Activity and Fragments, xml layout files and Intents.
To conclude, it introduces and discusses some IDE’s available for helping
developers with creating apps.

4.1 History

Android Inc. is the start-up company that developed Android, which is
an Open Source operating system that is based on the Linux kernel. This
company was bought by Google in 2005, only 22 months old [55]. In 2007,
the Open Handset Alliance[6, 42] is formed, which results in a significant
amount of intellectual property being added by its key members to the
Android Platform.

In 2008, the first Android driven mobile phone is released by T-Mobile,
the G1[26]. It is the start of an exponential growth of devices running the
Android operating system, which now cover 72% of the global smartphone
marked [63].

4.2 Android architecture

The Android OS is composed of a set of layers as depicted in Figure 4.1. At
the core is the Linux Kernel and above lies the Native layer, which contains
native libraries that are hardware specific. The Application Framework
is the next layer, and it contains the building blocks that developers’ apps
interact with. At the top lies the Application Layer, and this is where user-
developed apps reside.

4.2.1 Linux Kernel

The Linux kernel residing at the core of Android is a derived version of the
vanilla flavored Linux Kernel [63], patched to fit the needs of Android. As

31



Figure 4.1: Android architecture [37]

32



such it is not a trivial task to replace it with a kernel from kernel.org because
some major changes are required to enable the rest of the Android stack to
run correctly. For example, the Binder, which is extensively used for system
services in Android, is an Android specific component that resides inside
the kernel. Without it, these system services do not run.

4.2.2 Native Layer

The native layer maintains core libraries that are designed to handle
different types of data. Amongst other things, the SQLite library resides
here, this is a library that contains a relational database engine and allows
efficient persistence of data. This layer also holds the Dalvik Virtual
Machine [63], which is the software that runs apps on Android.

4.2.3 Application Framework

The application framework exposes the functionalities supplied by the
Android OS to the app developer. It also supplies an abstraction of
hardware access, which enables the developer to use one API to control
different hardware components.

4.2.4 Application layer

This layer contains all apps, both those that come pre-installed on the
device and those that are developed for the device.

4.3 Software components

This Section introduces Services, Intents, Activities, Fragments and SQLite,
which are five key software components in Android that are extensively
used in this thesis.

4.3.1 Services

Services are ways for processes to work in the background. More
specifically, they linger in the background and supply any app with the right
privileges, access to their functionality. This is how it is possible to start a
pdf viewer app to display a pdf document from within another app. This is
made possible through Androids Binder driver, which resides in the kernel.
Because of this, it is able to forward messages to the service, which can
execute processes based on these messages and return results. This seems
to the caller as a synchronous call to a local function, because the thread
is blocked in the binder, waiting for the service to return the result (thread
migration). This is illustrated in Figure4.2.

33



Figure 4.2: Binder driver

4.3.2 Intent

One of the most important components of Android is Intents. Intents allow
apps to perform inter process communication (IPC) amongst each other. It
is also what is used for apps to use Services. The developer can define in the
Intent filter of an app’s manifest file, that the app is interested in Intents
from a given Service. By doing this, the app is able to receive Intents from
the Service. The Intent filter for listening for the tag technology discovered
Intent is supplied in Listing 4.1.

Listing 4.1: Intent filter

1 <intent−filter>
2 <action android:name="android.nfc.action.TECH_DISCOVERED"

/>"
3 </intent−filter>

When a service wants to broadcast some event to registered apps,
Android investigates the Intent filter of all installed apps, the fil-
ters that includes the Intent being broadcasted, receives the Intent.
Therefore, the example in Listing 4.1 enables the app to receive
android.nfc.action.TECH_DISCOVERED Intents which are broadcasted
when NFC tags are discovered.

4.3.3 Activity

Android applications consist of one or more Activities [5]. These Activities
can inflate Android layout files and thereby create their own UIs. An app
can consist of multiple Activities that can be produced on demand and
implements their own user interaction logic. The Activities are designed
to fill one screen with components, and they can therefore not reside inside
each other.

All Activities extend the android.app.Activity class (or derived versions
of this). By extending this class, they fall under the control of the Activity
lifecycle, which is illustrated in Figure 4.3. When the app is launched,

34



Figure 4.3: Activity lifecycle [13]

it initiates the onCreate() function, which allows the Activity to inflate
a layout file. The layout file contains xml description used by Android
to display widgets and other UI components. Once this is finished, it
progresses to the onStart() function. Once this function is called, the
UI components are already available and any changes to these, such as
programmatically adding new UI components, need to be done post this
stage. Right before the app comes to the foreground, it calls on the
onResume() function.

The Activity has three states. When it is in the foreground and
running, it is in the running state, this enables user interaction. When
it has lost focus but is still visible, it is in the paused state. And lastly,
when the Activity is hidden from view by another app or Activity, it
is in the stopped state. Transcending between these states causes the
onDestroy()/onCreate(), onStop()/onStart() and onPause()/onResume()
functions to be called.

4.3.4 Fragment

The lacking ability of reusing Activities inside other Activities has evolved
the need for Fragments. Fragments are basically UI components that can

35



Figure 4.4: Fragment [13]

be integrated into other Activities or Fragments as illustrated in Figure
4.4. The advantage of Fragments is that it allows reusable UI components
to be created. The Fragments have their own life cycles, which strongly
resembles that of the Activity with an addition of some extra function calls
that allow the developer to customize the Fragment prior to and after being
attached to the Activity.

4.3.5 SQLite

SQLite[1] is an engine that provides persistence of data in a relational
database. This component can be used for efficient storing, accessing and
porting of data, if it is to be used for post processing on a more powerful
device such as a PC, or if it should be available for processing by other apps.
Several softwares exist that can access data available in SQLite databases,
such as SQLite Manager [35], which enables the use of SQL language to
query and extract information from the database.

4.4 App development with Android

Androids official web page for developers [48] offers two integrated
development environments (IDE’s), the Eclipse[60] IDE with the android
development tools [37] (ADT) plugin and the Android Studio IDE. Eclipse
is a well-established IDE for developing java applications and is an
open source solution for automated building, running and debugging of
source code. It provides tools for refactoring and the ability to extend
its functionality through plugins. One such is the ADT plugin. ADT
extends Eclipse with an integrated environment where Android apps can
be built, debugged, tested and exported to signed .apk (Android application
package) files. Such files are ready to be distributed to smart phones

36



Figure 4.5: Android Studio IDE

running the Android operating system [47]. Furthermore, it provides
an Android Layout file editor with preview functionality that enables
interactive user interface (UI) development. It also provides a range
of other abilities that are not further discussed in this work, but for
the interested party, this information can be found at androids official
developer site [25].

Android Studio is another IDE that is built on top of the InteliJ IDEA,
which provides much of the functionality that Eclipse does with the dif-
ference of a slightly more extensive refactoring ability. Additionally, An-
droid Studio uses Gradle for building solutions and project management.
This framework provides an efficient way of handling multi project solu-
tions. Solutions can be divided into modules where each module can con-
tain any number of projects. In larger projects, where libraries are built to
support the application functionality, it can be a handy feature to collect
these libraries in modules that link them to the main solution. This means
that these library projects can be debugged and extended simultaneously
as working on the main solution. Additionally, in case of flexible libraries,
these projects can be included into other solutions as well. The GUI part of
this IDE is displayed in Figure 4.5.

Eclipse with the ADT plugin (depicted in Figure 4.6) was originally used
in the software solution for the NFC benchmark app 6.4. However, as the
development progressed and it was identified that a second app with a lot
of common features were needed, it became clear that the Android Studio
IDE with the Gradle build system was an advantage due to its modular
design pattern. This allows modules to be shared between the two apps
and thereby reduce development effort and improve consistency between

37



Figure 4.6: Eclipse IDE

the apps. It is also recognized that Android Studio is an IDE that is
specifically tailored to develop Android apps. A challenge that is identified
with this IDE is that it is in a pre-beta stage, and a range of difficulties were
encountered as the project progressed. The main difficulty being the lack of
information available to assist in resolving bugs that existed in the IDE. For
example, the Android Studio 0.4.2 supposedly has support for building and
deploying apps with java libraries. However, as two of the libraries in this
solution are of this type, it was quickly identified that although the solution
compiles and deploys, the app encounters an exception when accessing
parts of the functionality that uses the java library modules. This is a bug
that is introduced in one of the version between 0.4.0 and 0.4.2, and it
therefore works correctly with Android Studio 0.4.0. The result is that
only versions existing before 0.4.0 can be used. Other issues are related
to importing of projects that required some manual handling.

38



Chapter 5

Design patterns

To retain a structure in the developed software and to decouple the view
from the implementation, the Model-View-Controller (MVC) [22] pattern
is used in the software developed for this work. This helps to maintain the
code as the solution grows and more projects are added. Alternatives to this
pattern exist, such as model-view-presenter (MVP) where all data between
the view and the model goes through the presenter. This pattern puts the
presentation logic into the presenter, which also handles user interaction
logic. The MVC pattern is chosen because it clearly separates the user
interface from the business logic.

The singleton design [22] is used in certain utility tools to ensure that
all objects refer to the same instance of the tool. The factory pattern is
used to have a single source of mapping objects to interfaces so that the
construction of objects is handled in a single factory.

5.1 MVC pattern

The MVC pattern is used to decouple the user interface from the underlying
business logic. This allows the interface to be easily changed without
requiring modifications to the business logic. The pattern consists of three
components: the Model, the View and the Controller. The controller
handles user requests such as when the user presses a button. The model
models the data that the user is working with and ensures data integrity,
i.e. makes sure that changes to the data follow given rules. The view merely
presents the data through a graphical user interface (GUI).

When the user requests some data, this request is handled by the
controller. The controller calls on the correct functions in the model, which
in turn executes the action and updates the view with the results. This is
illustrated in figure 5.1

5.2 Singleton pattern

The singleton pattern ensures that only one instance of a class is in use at
any given point in time in an application. This is useful when it is important

39



Figure 5.1: MVC pattern

that the same instance is used throughout the application.

5.3 Factory pattern

The factory pattern defines a factory that is used to create other objects.
The objects created by the factory can be represented by an interface and
therefore allows the actual object class to be changed without having to alter
the classes that are using these objects.

5.4 Wrapper pattern

The wrapper pattern is used to allow one interface to be used from another.
It is used to map functions existing in one class to a desired interface
without needing to change the source code in the original class.

40



Part II

Design and implementation

41





Chapter 6

App design

This chapter describes the design of the software developed for this thesis.
It starts with introducing the requirements for the apps and continues with
decomposing these into objectives. At the end, it presents the architecture
of the software.

6.1 Requirements

The software developed in this work is required to communicate with a
range of different tags, extract data related to the tags communication
performance and test proprietary tag protocols. These requirements can
be summarized in the following three higher level objectives:

• to develop a standalone solution that provides a single interface to
communicate with a range of tags, and

• to develop software for benchmarking tags, and

• to develop software for testing proprietary tag communication proto-
cols that are based on one of the standards described in Chapter 3.

The standalone solution is required to provide communication access to
tags. It must be able to provide developers of any apps with this access.

The software for benchmarking tags must provide a user interface
that enables the user to monitor and collect data about communication
performance of tags. The data collected must show how reading and writing
operations affect the battery and what throughputs are accomplished with
a given tag. The throughput is defined as the number of bytes successfully
transferred, and the throughput is therefore reduced when corrupted bytes
are transferred. The resulting data must be presented to the user.

The communication protocol testing software must provide the user
with an interface for transmitting arrays of bytes to the tag and monitoring
the response. It must also allow the user to read arrays of bytes from
specific locations in a tags memory and writing arrays of bytes to a tags
memory.

43



6.2 Requirements decomposition

This section describes how the requirements are decomposed into two apps
and a library, as well as the basic design decisions that are taken. The first
objective requires a standalone solution that other solutions can build upon
and therefore needs to be considered as a component with no dependencies
to solutions that use it.

The second and third objectives simply demands two features that can
be provided through one or two apps. The two apps solution separates the
features into two apps and thereby obtains a clear distinction between the
two. Alternatively it can be provided through a single app, which initially
enables the user to choose which features of the app to use. This solution
requires more functionality to be added to a single app, inherently making
it more complex. However, it also provides the user with a single access
point for both features, which makes them more readily accessible. I have
chosen to use the solution with two apps. The main reasoning behind this
decision is that both apps are using the standalone solution to provide
communication access to the tags, which ensures that the standalone
solution is flexible enough to be used for multiple purposes.

6.2.1 Tag communication

The first objective requires a standalone solution for communicating
with tags. Two alternatives to accomplish this objective in an Android
environment is to develop a library that enables this communication and
resides inside the apps address space, or to develop an Android Service that
is registered in the Binder of the Android Kernel. A Service has very loose
coupling and allows any app with the correct privileges to use it. It also
has control over the number of apps that are using its services. These are
desirable features, which makes the component more user friendly than the
library. But it also has a downside, information transmitted between them
need to be serializable, which requires extra implementation effort.

The library version resides in the apps address space and is therefore
directly accessible through the library’s API. In contrast to the Service,
objects transmitted between the library and other components in the app,
do not have to be serializable. On the downside, the library does not
know if any other instances of itself are currently running. This can create
issues where more than one instance tries to communicate with the tag
simultaneously, which might result in unexpected behavior.

For the current project, I have chosen to work with the library
solution because of the reduced implementation effort and because of the
unlikelihood of more than one instance of the library running at the same
time. It is recognized that the library solution has been designed so that it
easily can be migrated to a Service solution. This is discussed in more detail
in the Chapter 11.

44



6.2.2 Tag benchmarking

The second objective aims at benchmarking the tags, and this feature is
provided in the NFC benchmark app. The app monitors and collects data
about communication performance and energy consumption related to
reading from and writing to a tags memory. It also estimates the round trip
time for data communication and the energy consumed while powering a
tag without performing any I/O operations.

The collection of data can be done through one single procedure
that monitors and collects all the desired data. This makes it simple
to handle the procedure’s lifecycle, as there is only one benchmark
to handle. However, it also adds some complexity to the benchmark
and therefore makes it more difficult to extend with monitoring of new
data. Alternatively, one benchmarking procedure can be created for each
communication feature to be monitored. If the benchmarking procedures
follow a certain pattern, they can be controlled in a generic way, and
the solution can be designed to expand with an undefined number of
benchmarks. I have chosen to follow the second suggestion and create a
design where one benchmark exists for every communication feature.

Interaction with benchmarking procedures can be accomplished in
several ways. A procedure can be accessed in a single view, where the
GUI is tailored to the needs of the benchmark and controls the benchmark
lifecycle. Alternatively, all benchmarks can be selected from a single
view, where the GUI is generic enough to provide configuration of all
benchmarks. The first alternative provides more flexibility to the given
benchmark and the possibility of a more tailored GUI, but it also requires
that a single benchmark is completed before another is initiated. The
second alternative enables automation of the run of multiple consecutive
benchmark procedures. This increases the complexity of the app, which in
its turn increases the implementation effort. However, the user friendliness
is drastically improved as each benchmark can take from minutes to hours
depending on tag type and settings. Therefore, the opportunity to run
them in concession without requiring users to monitor for the completion
of each individual benchmark, is a time-saver. Additionally, if the tests are
extensive, it might be beneficial to allow the app to run throughout the night
when the user is unavailable. I have chosen the second alternative, where
the user can select benchmarks from a single view to run consecutively.
The choice is made because the user can then collect more data with less
interaction.

Data created by monitoring the communication must be accessible by
the user. This can be provided either in the GUI or in the form of a file. The
GUI renders the information available for instant evaluation by the user.
However it makes it more difficult for the user to do any further analysis.
Additionally, the data that is collected in this app can consist of millions
of samples, and it is therefore difficult to present this data in a meaningful
way. By exporting the data to a file, it is possible to run post processing
routines to analyze the information. I choose to export the data to a file,
because it makes the data readily available for post processing.

45



Two ways of storing the data to a file has been assessed in this work,
through the use of a SQLite database or by storing it in a XML file. The XML
file is simple to create, but requires solutions to be developed for extracting
and analyzing the data. The SQLite database is a piece of software that
provides a SQL database engine. It provides simple and effective extraction,
insertion and analysis of information from the database with the use of SQL
queries. I choose to use the SQLite database solution for persisting the data,
because of the extra functionality it provides, and because it makes the data
more readily accessible for other applications and users.

6.2.3 Tag protocol testing

The third objective aims at testing protocols, and this feature is provided in
the NFC protocol tester app. The app enables users to transmit collections
of bytes to a tag and observe the tags response. It also allows the user to
write byte sequences to and read byte sequences from the tags memory.
The user is able to modify the bytes transmitted to the tag so that it can
resemble any given proprietary communication protocol as long as the tag
is based on one of the standards described in Chapter 3.

6.3 Overview

This section briefly introduces the apps that are developed in this work. The
introduction for each app describes how users interact with them and how
the apps respond.

The NFC benchmark app allows the user to run a set of benchmark
tasks that are designed to collect performance metrics from the tag. These
performance metrics measure the communication and battery performance
related to different tag operations and stores the results in a database.
The settings supplied with the testing enables the user to customize what
benchmarking tasks to run and how they will run, e.g. how granular the
tests will be. The user interaction with this app is illustrated in Figure
6.1. As it shows, the user configures the settings for the app, and when
the tests are run, data is collected and transmitted to a database called
BenchmarkResults.db. This database is of the type SQLite1 and is be
further described in Section 6.4.

The NFC protocol tester app allows the user to perform three basic op-
erations on the tag: reading, writing and transmitting custom commands.
These commands produce some response from the tag, which is presented
to the user. The operations of this app are illustrated in Figure 6.2.

6.4 NFC benchmark app functionality and UI

1SQLite is a software that implements a SQL database engine

46



Figure 6.1: Basic NFC benchmark app architecture

Figure 6.2: Basic NFC protocol tester app architecture

47



Figure 6.3: Benchmark Fragment
mockup

The NFC benchmark app hides the
details relating to the tags memory
structure and protocol selection,
giving the user an abstracted view
of the tag. The different bench-
marks available are described in
Table 6.1. To add some flexibility
to the benchmarking procedures,
the user can configure some set-
tings that change the behavior of
the benchmarks. Configuration of
the settings are available through
the same view that allows the user
to start the benchmarking proce-
dures. Figure 6.3 shows a mockup

of this view, illustrating input fields for benchmark selection and parameter
configuration.

Four parameters are supplied with the settings: the Benchmark name,
the Interval size, Repetitions and Power drop. The Benchmark name
allows the user to tag the collected data with a description of the run. The
Interval size and the Repetitions configurations are used for benchmarking
procedures related to the communication performance, and the Power
drop parameter is used for benchmarking procedures related to the battery
performance.

6.4.1 Benchmark tests

Table 6.1 summarizes the seven benchmark tests that the user is able to
run with the NFC benchmark app. These are described in the coming
paragraphs. Additionally, this app offers a selection of other benchmark
tests that can be started and run through separate views. These tests
include communication testing for NDEF messages, and results from these
are displayed on screen instead of being persisted in a database.

The Write binary and Read binary benchmarks generate and transmit
random data stored in packets to and from the tag. The size of these
packets start at 1 byte and expands with an interval of Interval size until
reaching the full span of the tags memory. For each packet size, the transfer
is repeated Repetitions times, and for each repetition, a sample of the
communication performance is created.

The ReadAll binary benchmark reads the full memory of the tag and
measures the performance as a sample that is stored in a database. This
procedure is repeated Repetitions times.

The RTT benchmark transfers a minimal command to a tag and
measures how quickly it responds. The measurement is stored as a sample
in a database. This procedure is repeated Repetitions times.

48



Name Description Input Output

Battery read Measures battery
consumption for
reading tag.

n Time taken until
battery level is
reduced by n%

Battery write Measures battery
consumption for
writing to tag.

n Time taken until
battery level is
reduced by n%

Battery powering Measures battery
consumption for
powering tag.

n Time taken until
battery level is
reduced by n%

RTT Calculates round
trip time.

Repetitions r r RTT samples

Write binary Calculates write
communication
performance.

Interval size i ,
repetitions r

Status, size and
throughput for each
sample

Read binary Calculates read
communication
performance.

Interval size i ,
repetitions r

Status, size and
throughput for each
sample

ReadAll binary Calculates readAll
communication
performance.

Repetitions r Duration and size
for each sample

Table 6.1: Benchmarking tests overview

The Battery read, Battery write and Battery power benchmarks
performs read, write and power operations respectively until the energy
level of the battery is dropped with Power drop%. The power operation
consists of inductively powering the tag without transferring or receiving
any commands from it.

6.4.2 Persistence

Once the information from the benchmarking has been collected, it
is necessary to store this information in a structured way. This is
accomplished through a database so that the data is easily accessible
for other applications for further analysis. Each entry in the database
stores information about when the data is recorded, the user defined
name, tag type etc. The database consists of seven tables, one for each
benchmark described in Table 6.1. The tables, including attributes are
listed in Listing 6.1. Each attribute is described in Table 6.2. The
database is stored at the following location in the phones filesystem:
storage/sdcard0/Nfc.Benchmark/BenchmarkResults.db.

Listing 6.1: Creation of tables for benchmark database

CREATE TABLE ReadBatteryPerformance(id INTEGER PRIMARY
KEY,time TEXT,name TEXT,technology TEXT,startLevel
FLOAT,endLevel FLOAT,elapsedTime FLOAT,bytesTransferred

49



Attribute Description

id Unique id for Table entry
time Time the sample is recorded

technology Technology the sample is associated with
startLevel Battery level at start of sample
endLevel Battery level at end of sample

elapsedTime Time elapsed
bytesTransferred Number of bytes transferred during sample

RTT Round trip time
size Size of packet transferred

duration Time taken for transferring packet
status Status of transfer; Succeed, Fail or CommunicationError

Table 6.2: Attributes description

INTEGER);
CREATE TABLE WriteBatteryPerformance(id INTEGER PRIMARY

KEY,time TEXT,name TEXT,technology TEXT,startLevel
FLOAT,endLevel FLOAT,elapsedTime FLOAT,bytesTransferred
INTEGER);

CREATE TABLE PowerBatteryPerformance(id INTEGER PRIMARY
KEY,time TEXT,name TEXT,technology TEXT,startLevel
FLOAT,endLevel FLOAT,elapsedTime FLOAT,bytesTransferred
INTEGER);

CREATE TABLE RTT(id INTEGER PRIMARY KEY,time TEXT,name
TEXT,technology TEXT,RTT FLOAT);

CREATE TABLE WriteCommunicationPerformance(id INTEGER
PRIMARY KEY,time TEXT,name TEXT,technology TEXT,size
INTEGER,duration FLOAT,status TEXT);

CREATE TABLE ReadCommunicationPerformance(id INTEGER
PRIMARY KEY,time TEXT,name TEXT,technology TEXT,size
INTEGER,duration FLOAT,status TEXT);

CREATE TABLE ReadAllCommunicationPerformance(id INTEGER
PRIMARY KEY,time TEXT,name TEXT,technology TEXT,size
INTEGER,duration FLOAT,status TEXT);

6.5 NFC protocol tester app functionality and
UI

The NFC protocol tester app is required to supply three functionalities,
which can be provided in a single view. Advantages of this solution are
that it is simple to make and does not provide any effort with maintaining
multiple views. The disadvantages are that a lot of UI components need
to be fitted into a small area, which can make it more difficult to use
and which makes the code more difficult to manage. An alternative is to

50



have one Activity to handle each functionality and a start-up screen that
allows the desired Activity to be chosen. This separates the functionalities
making them easier to manage. However, it does not provide a simple
way of switching between each functionality. Another alternative is to use
a single Activity with multiple Fragments, where the Fragments provide
the views. These can be handled by a ViewPager2 that allows the user to
use the "swipe" gesture to navigate between the views. I choose to use
the ViewPager alternative with a set of swipe views due to its simple and
intuitive navigation system.

The NFC protocol tester app consists of a set of swipe views, where each
view enables the user to configure and perform one of its operations. The
read operations allow the user to select a memory address to read from and
the number of bytes to read. Assuming that the command is successfully
executed, the app presents the results to the user. A mockup of this view is
presented in Figure 6.4a.

The write operation allows the user to select a memory address and an
array of bytes to write to this memory address on the tag. The app responds
with information about the operations success or failure. A mockup of this
view is shown in Figure 6.4b.

Finally, the operation for transmitting a command to the tag enables
the user to produce an array of bytes to transmit to the tag. This array
is wrapped with standard SOD3 and EOD 4 data in accordance with the
protocol related to the given tag type. The app presents the user with the
tags response to the command. A mockup of this view is presented in Figure
6.4c.

6.6 Architecture

The two apps developed in this work have some similar functionality
requirements such as those that require them to communicate with tags.
These functionalities can either be shared between the apps or they
can each implement them independently of each other. To share the
functionality requires some overhead, because the functionality needs to be
extracted to a library that is generic enough to cover the functional needs of
both apps. The functional requirements are rarely identical between apps,
and it is therefore often more effective to develop two solutions that are
tailored to the specific needs of the given app. However, this requires up to
twice the implementation effort. Additionally, functionality that is shared
is more rigorously tested when used by two apps. Because of this, I choose
to extracted some functionality into libraries that are shared between the
apps developed.

Android Studio offers three levels of organizing the source code: in
packages, in projects and in modules. Packages generally structure classes
within a project, and to use these classes, the whole project needs to be

2Belongs to the android.support.v4.view package
3Start Of Data is a byte specifying the length of the command
4End Of Data is the CRC calculated on the bytes in the command

51



(a) Read Fragment mockup (b) Write Fragment mockup

(c) Command Fragment mockup

Figure 6.4: NFC protocol tester mockups

referenced. All the components of an app can be included inside a single
project and be structured into packages. This makes it easy to navigate
between classes, but it makes it less efficient to share functionality between
solutions, because the whole project needs to be referenced as a library.
Alternatively, blocks of functionality can be extracted to library projects.
The advantage of this is that the functionality supplied by the project can
easily be shared between projects and solutions. Finally, modules can be
used, these group projects that offer some functionality to solutions. I have
chosen to use all these organizational methods in my solution. Packages
are used for structuring classes inside projects, and modules are used to
group projects into large functional blocks. This is done to maintain a rigid
structure in the source code and to separate blocks of code so that they can
efficiently be reused.

The NFC benchmark and NFC protocol tester apps consist of six
modules each. These modules have one or more stand-alone projects with
dataflow as depicted by the arrows in Figure 6.5. Two of the modules are the
same for both apps and contain code for handling overlapping functionality
such as communicating with the different tag types. Figure 6.5 illustrates
the module structure for the two apps.

Subsections 6.6.4 and 6.6.3 introduce and discuss the modules that are
exclusive for the NFC protocol tester app NFC benchmark app respectively.
Subsections 6.6.1 and 6.6.2 do the same for the SimpleMessenger and

52



Figure 6.5: Modules

53



Nfc.Communication modules.

6.6.1 Messaging system module

Android components, such as Fragments and Activities, are very decou-
pled, which makes sharing of information a challenge. In Androids official
developer guide, it is advised to have the Fragments implementing inter-
faces that allow the Activity to respond to events generated by the Frag-
ments [49]. This has the disadvantage that Fragments require an Activity
to relay the information if Fragments need to communicate. It also means
that the Activity needs to implement code to handle events from all of its
Fragments. In this work, there are several Fragments associated with one
single Activity and implementing handlers for all the events generated by
the Fragments makes the implementation very complex.

An alternative is to use Android’s built in messaging system with Intents
to enable communication. This removes dependencies between the sender
and the receiver of the Intents. However it also requires that the messages
are serializable. Sometimes objects are transmitted between senders and
receivers, and the serialization requirement adds extra implementation
effort.

Another alternative is to develop an event driven messaging system
where Fragments and other objects pass messages to the system, and the
system makes sure that the messages are transmitted to the designated
receivers. In this system, senders are unaware of who the receivers
are, which makes them loosely coupled. Any object wanting to receive
messages need to register in this system. The advantage of this solution
is that multiple receivers can be registered for handling a message without
needing to make any changes to the sender.

I choose to follow the third solution, because it reduces dependencies
between senders and receivers, and because it does not require serializa-
tion. The event driven messaging solution that is designed and imple-
mented is depicted in Figure 6.6. This is a framework that enables any ob-
ject to transmit a message that implements the IMessage5 interface when
an event occurs. Other objects can register a callback function that is exe-
cuted with the message as a parameter, whenever such a message is trans-
mitted. By utilizing this functionality, an object can send a message when
it has information to share and any object can receive and handle it.

Interaction with the UI is in Android handled by the UI thread. Blocking
on this thread renders the UI unresponsive and hinders a good user
experience. Even more, if the UI thread is blocked for more than a few
seconds, it responds with an “application not responding” dialogue [50].
It is therefore important that heavy workloads and blocking processes
are delegated to worker threads and that the UI thread is simply used
for updating the UI. In the two apps developed for this work, the
SimpleMessenger framework is used to enable worker threads to execute

5Interface defined in the MessengerService module, belongs to the
no.as.gold.utils.simplemessenger package

54



Figure 6.6: MessengerService

processes in the background and then inform the UI thread of the result
when they are finished.

6.6.2 NFC communication library module

When communicating with the NFC device, the caller thread is blocked
until the call returns with a response form the Android operating system.
It is therefore imperative to create a multi-threaded system, where time
consuming tasks are performed asynchronously by worker threads. The
NfcComHandler library therefore offers functions that allow the object to
communicate with the tags asynchronously. The function calls are non-
blocking and start background threads that perform the communication.
The results are published to the MessengerService framework by sending
an instance of the Nfc.Communication.ComHandlerMessage class. This
object contains basic information about what is sent, received and if
there was some problems with the communication. The information
contained in this message can be received by any object that chooses to
do so. By registering a handler in MessengerService that is paired with
the ComHandlerMessage class, the message is received and the handler is
executed. This multi-threaded environment can result in multiple threads
accessing the Nfc.Communication classes, thus, to distinguish between the
responses, a UUID object can be paired with the message on creation.
When a UUID is given to the message being sent, the Nfc.Communication
framework sets the UUID in the responding ComHandlerMessage to the
given UUID, and the receiver can thereby filter for this message. Figure
6.7 gives an example of an object using the NfcComHandler class with the
MessengerService framework to communicate with a tag.

It is important for the NFC benchmark app that the behavior of the

55



Figure 6.7: NFC communication

communication can be monitored. This is accomplished by having an
object with a worker thread that continuously initiates communication
with the tag and waits for a response before repeating the process with
possibly a changed parameter. Simultaneously, another object can register
interest for the same message type and simply record statistics related to
the communication performance.

6.6.3 NFC benchmark app modules

This subsection introduce the modules that are exclusive for the NFC
benchmark app.

6.6.3.1 Activity module

The Nfc.Benchmark.View.Gui is the project that contains the main Activ-
ity of the app. The project has two responsibilities: to render the differ-
ent benchmarking operations for the user and to display messages to the
user. To accomplish this, the project is dependent on two other projects,
Nfc.Benchmark.View and SimpleMessenger. Nfc.Benchmark.View con-
tains the Fragments to be rendered, and SimpleMessenger is the channel
through which Fragments send messages that should be rendered for the
user.

6.6.3.2 Fragments module

The structure in this module follows the MVC pattern, where the classes in
the Controller package and Model package and the Layouts associated with
each class in the Controller package, has the role of the Controller, Model
and View respectively.

The Nfc.Benchmark.View module contains a set of Fragments for
performing benchmarking operations and for configuration purposes in
addition to one benchmark Fragment for running sets of consecutive
benchmarks. This module has five packages that are described in the
following paragraphs.

56



Figure 6.8: Engine lifecycle

Controller classes reside in the controller6 package and extend the
Fragment7 class. These attach to the user interface and handle user
interaction with UI components. Most of these Fragments handle the
lifetime of a benchmarking procedure and therefore have one or more
IBenchmarkEngines8. These Fragments fulfill the Controller part of the
MVC pattern.

Engine classes reside in the engines9 package. These implement
the IBenchmarkEngine10 interface, which controls the lifecycle of the
benchmark procedures and enables starting, stopping and persisting the
benchmarking. The lifecycle is illustrated in Figure 4.3. The engine is
initially stopped. When the engine is started, it proceeds to the running
state where benchmarking activities are performed. At any time during
running, the engine can be stopped, at which point the engine goes to the
stopped state. If the engine is not stopped and completes its run, it enables
persistence of the data and proceeds to the stopped state.

Message classes reside in the messages11 package. These classes
implement the IMessage interface and are used with the SimpleMessenger
framework to communicate between Fragments in the Nfc.Benchmark
module.

Model classes reside in the models12 package. Each model is linked to
one or more Fragments and will maintain user data and make sure that

6Full package name: no.as.gold.nfc.benchmark.controller
7Belongs to the android.app package
8Interface for a benchmark engine, residing in the

no.as.gold.nfc.benchmark.controller.engines package
9Full package name: no.as.gold.nfc.benchmark.controller.engine

10Resides in the no.as.gold.nfc.benchmark.controller.engines package
11Full package name: no.as.gold.nfc.benchmark.controller.messages
12Full package name: no.as.gold.nfc.benchmark.models

57



Fragments are updated with changes. These classes fulfill the task of the
model in the MVC pattern.

6.6.3.3 Domain module

The Nfc.Benchmark.Domain module has objects designed for storing the
results of the benchmarking activities. These objects are persisted in a
database.

6.6.3.4 Persistence module

The DatabaseHandler class resides in the Nfc.Benchmark.Persistence
module. This class handles creation, updating and maintaining of a SQLite
database that persists samples from benchmarking engines.

6.6.4 NFC protocol tester modules

This subsection introduces the modules that are exclusive for the NFC
protocol tester app.

6.6.4.1 Activity module

The Nfc.View.Gui is the project that contains the main Activity of the
app. The project has two objectives: to render the GUI and to display
messages to the user. To accomplish this, the project has dependencies
to two other projects, Nfc.View and SimpleMessenger. Nfc.View contains
the Fragments to be rendered and SimpleMessenger is the channel through
which Fragments send messages to the UI thread.

6.6.4.2 Fragments module

The Nfc.View module contains the majority of the app’s functionality. It
consists of a collection of Fragments that enable the user to interact with
the tag. This project is dependent on Nfc.Communication to interact with
the tag and is dependent on Nfc.Domain to maintain objects produced by
the interaction.

The module is comprised of two packages: the Controller13 and
the Models14. The Controller package contains code for handling the
Fragment inflation and mapping user inputs to model classes in the Models
package. It contains three Fragments that each accomplishes the objectives
described in Subsection 6.5: reading from the tag, writing to the tag and
sending user defined commands to the tag.

The Models package contains the information about the user inputs and
updates the Fragment when new information arrives. One model exists for
each Fragment in the Controller package.

13Full package name: no.as.gold.nfc.controller
14Full package name: no.as.gold.nfc.models

58



6.6.4.3 Domain module

The Nfc.Domain module contains the domain objects for the NFC protocol
tester app.

6.6.4.4 Persistence module

The Nfc.Persistence module contains classes that handle persistence of
domain objects. Since there are no objects to persist in the NFC protocol
tester app, this module does not contain any functionality and is only
created to maintain a consistent structure of the app. If data collected
through this app should be persisted in future works, it should be done
through this module.

59



60



Chapter 7

App implementation

This chapter presents the implementation of the two apps that are
developed for benchmarking of NFC tags and for testing proprietary NFC
communication protocols. The apps are comprised of four key components
each and two shared components, which are discussed in more detail
throughout the coming sections. Only the most important components and
classes are discussed. There exist other utility tools and convenience classes
that are not touched as these are assumed to be self-explanatory and no
deeper knowledge is required to understand their use.

The source code for the software described in this chapter, can be
located in the following repositories:

• Messaging system [8]

• NFC communication library [9]

• NFC protocol tester app [10]

• NFC benchmark app [11]

7.1 Messaging system

MessengerService is a singleton class that resides within the SimpleMes-
senger module and allows processes to broadcast messages to any inter-
ested object without having a direct reference to them. This is done by
messages being divided into a set of classes and allowing objects to regis-
ter callback functions to handle a given message type. Registration is done
with the function presented in Listing 7.1.

Listing 7.1: Register callback

1 /**
2 * Registers interest for a certain type of messages
3 * @param key: Identification of the handler
4 * @param messageHandler: Callback function when receiving a message

of the given class type
5 * @param messageClass: Type of message to listen for

61



6 */
7 public synchronized void Register(Object key,
8 Class<?> messageClass,

MessageHandler messageHandler)
{

9
10 // Initiate new hashmap for new recipient
11 if(!mHandlers.containsKey(key)) {
12 ConcurrentHashMap<Class<?>, ArrayList<MessageHandler>>

hashMap = new ConcurrentHashMap<>();
13 mHandlers.put(key, hashMap);
14 }
15
16 ConcurrentHashMap<Class<?>, ArrayList<MessageHandler>>

hashMap = mHandlers.get(key);
17 if(!hashMap.containsKey(messageClass)) {
18 ArrayList<MessageHandler> handlers = new ArrayList<>();
19 hashMap.put(messageClass, handlers);
20 }
21
22 mHandlers.get(key).get(messageClass).add(messageHandler);
23 }

Each registration requires a key, which exists so that the handler later
can be removed if desired. The callback function implements the interface
in Listing 6.6. A limitation of this implementation is that only one callback
function can be registered for the combination of one key and one message
class.

Listing 7.2: MessageHandler interface

1 /**
2 * This is the interface of messages that can be sent by the {@link

no.as.gold.simplemessenger.MessengerService}
3 * Created by Aage Dahl on 06.12.13.
4 **/
5 public interface IMessage {
6 public String getMessage();
7 }

When a process sends a message, MessengerService executes the
callback functions that are registered for this message type as indicated in
Listing 7.3. This component has a close resemblance to the way Intents
work in Android, only the communication is synchronous, and it cannot
communicate between apps. The advantage of using MessengerService
is that, since it runs in the address space of the app itself, objects
can be referenced directly. Intents require objects to be serializable to
allow them to travel via the kernel. Since the handler is executed from
inside the apps address space, the overhead of including the kernel is

62



redundant and serializing and deserializing simply creates extra processing
and implementation efforts.

Listing 7.3: Sending of messages

1 /**
2 * Sends message to all callback functions that registered interest for this

message type
3 * @param msg: message to be transmitted
4 */
5 public synchronized <T extends IMessage> void send(T msg) {
6 for(Object receiver : mHandlers.keySet()) {
7 ConcurrentHashMap<Class<?>, ArrayList<MessageHandler>>

recepientHandlers = mHandlers.get(receiver);
8 // If this receiver does not have any handlers − go to next receiver
9 if(recepientHandlers == null)

10 continue;
11
12 for(Class<?> key : recepientHandlers.keySet())
13 if(key.isInstance(msg))
14 for(MessageHandler handler :

recepientHandlers.get(key))
15 handler.handle(msg);
16 }
17 }

7.2 NFC communication library

NfcComHandler is the core class in the Nfc.Communication module. It has
two static classes: NdefComHandler and ByteComHandler. These handle
transfers of Ndef messages and raw bytes respectively. To the end user, this
creates a simplified view of tags as a simple storage media.

Two of the base stubs in NdefComHandler are displayed in Listing 7.4.
These show that the tag is passed with a UUID object to the function.
These are non-blocking functions that start a separate thread to perform
the communication asynchronously. When the communication is finished,
an instance of a ComHandlerMessage1 is sent to the MessengerService
framework together with the supplied UUID object. Therefore, it is
required that anyone wanting to know the result of the transfer, needs to
register a handler for the ComHandlerMessage class in MessengerService.
The UUID object can be used to uniquely identifying the results from a
transfer.

Listing 7.4: Sending and receiving NDEF messages

1 /**

1Belongs to the no.as.gold.nfc.communication.messages package

63



2 * Reads the data available on a tag and marks it for sending to a
designated receiver. This task is done asynchronously and will result
in a ComHandlerMessage being published to MessengerService.

3 * @param tag Tag to read from
4 * @param initiatorUUID Universally unique sender ID to associate with

this read operation
5 */
6 public static void Read(Tag tag, UUID initiatorUUID);
7
8 /**
9 * Writes bytes to a tag. This task is done asynchronously and will result in

a ComHandlerMessage being published to MessengerService.
10 * @param tag Bytes to write
11 * @param initiatorUUID Universally unique identifier of object initiating

this write operation
12 * @param data Bytes to write
13 */
14 public static void Write(Tag tag, UUID initiatorUUID, byte[] data);

The transfers of binary data greatly resemble that of NDEF messages
with the difference that it also requires the offset into the tags memory
where the data should be inserted or extracted. The stubs for these
functions are given in Listing 7.5.

Listing 7.5: Sending and receiving binary data

1 /**
2 * Writes bytes to a tag. This task is done asynchronously and will result in

a ComHandlerMessage being published to MessengerService.
3 * @param tag Tag to write to
4 * @param selectedTech Technology to use when transferring
5 * @param writeUUID Unique ID to associate this write operation with
6 * @param payload Bytes to write
7 * @param offset Offset into the memory of the tag where data is to be

inserted.
8 */
9 public static void Write(Tag tag, String selectedTech, UUID writeUUID,

byte[] payload, int offset);
10
11 /**
12 * Writes data to a tag. This task is done asynchronously and will result in

a ComHandlerMessage being broadcasted to MessengerService.
13 * @param tag Tag to read from
14 * @param selectedTech Technology to use when transferring
15 * @param mReadUUID Unique ID to associate this read operation with
16 * @param start Byte position to start reading from
17 * @param length Number of bytes to read
18 */
19 public static void Read(Tag tag, String selectedTech, UUID mReadUUID,

64



int start, int length);
20
21 /**
22 * This function transfers a command consisting of raw bytes directly to

the tag. No SOD or EOD must be added because it will be added
automatically.

23 * When the transfer is completed, this function will post the results as a
{@link
no.as.gold.nfc.communication.messages.ComHandlerMessage} to
{@link no.as.gold.simplemessenger.MessengerService}.

24 * @param tag Tag to send the command to
25 * @param uuid UUID to mark the message with
26 * @param command raw byte command to be transferred to the tag. (do

not include SOD or EOD)
27 */
28 public static void TransferCommand(Tag tag, UUID uuid, byte[]

command);

In addition to reading and writing, ByteComHandler provides a Trans-
ferCommand function. The objective of this function is to transfer a com-
mand consisting of raw bytes to the given tag. This is done by simply trans-
ferring the raw bytes to the tag and posting the response in a ComHandler-
Message to the MessengerService framework together with the supplied
UUID object. This allows the sender to identify the response by register-
ing a callback function to handle ComHandlerMessages and filtering for
messages with the given UUID object.

In some situations, (such as when, for example, the response time
needs to be minimized) it is desirable to perform blocking read and
write operations. This is implemented for binary communication with
the tags through a set of wrapper classes that wrap a given technology
to present a single interface for performing IO operations with the tag.
The WrapperFactory2 is a helper class that helps with selecting the correct
wrapper for tags. The method stubs for this class is given in Listing 7.6. As
can be seen, it only requires the tag. The factory identifies the technologies
supported by the tag and checks if any of these are supported by the
Nfc.Communication library, if so it returns the wrapper that handles this
technology. If multiple technologies are supported, it selects the wrapper
that handles the topmost abstraction level. For example, NFC Forum Type
2 Tag supports both NfcA technology and MifareClassic technology. The
MifareClassic technology is a higher level protocol for communicating with
the tag and the selected wrapper is therefore the one that wraps around the
MifareClassic technology.

Listing 7.6: Wrapper factory

1 /**
2 * Creates a wrapper from the given tag.
3 * @param tag Tag to create wrapper from

2Belongs to the no.as.gold.nfc.communication.technologies package

65



4 * @return Wrapper for communication with tag
5 */
6 public static ITagTechnologyWrapper getWrapper(Tag tag) throws

UnsupportedOperationException;

7.3 NFC benchmark app

The Nfc.Benchmark module contains four projects: Nfc.Benchmark.Domain,
Nfc.Benchmark.Persistence, Nfc.Benchmark.View and Nfc.Benchmark.View.Gui
that handles domain objects, persistence of data, Fragments and Activities
respectively.

7.3.1 Domain

The Nfc.Benchmark.Domain module contains three interfaces that define
the three sample types that are collected when benchmarking the tags:
IRttSample, IComBenchmarkSample and IBatteryBenchmarSample. Ad-
ditionally, it contains three classes that implement these interfaces and a
convenience class for handling collections of IComBenchmarkSample sam-
ples.

7.3.2 Persistence

Persistence of domain objects is done through an SQLite database, and par-
ticularly with the help of the SQLiteOpenHelper 3. The DatabaseHandler
class contained in this module, extends the abstract SQLiteOpenHelper
class, which requires two functions to be implemented. Parts of this class
with stubs of its core functions are given in Listing 7.7. This listing has
left out the creation of the seven tables that store samples from the bench-
marks. For each of these tables, there exist an add method that adds a
sample to the designated database table.

The listing also contains two stubs that are required when extending
the abstract SQLiteOpenHelper class, the onCreate() and onUpgrade()
methods. The onCreate() method is the method that creates the tables
for the database and is only executed when the database that is being
referenced either has an old version number or does not exist. The
onUpgrade() method makes it possible to perform operations on the
database prior to running the onCreate() method. This is an ideal place to
make table updates if the tables have changed and we want to keep the data
stored in the old tables. As a side-note, this function was used to introduce a
new table for the RTT measuring, because this metric was introduced after
the first measurements in the experiment (see Section 8.1) were recorded.

Listing 7.7: The DatabaseHandler class

3Abstract helper class to manage SQLite databases, resides in an-
droid.database.sqlite.SQLiteOpenHelper package

66



1 /**
2 * This class maps objects to a database. The class only handles putting

objects to the database.
3 * Created by Aage Dahl on 18.03.14.
4 */
5 public class DatabaseHandler extends SQLiteOpenHelper {
6
7 public DatabaseHandler(Context context) {
8 super(context, Environment.getExternalStorageDirectory() +

"/Nfc.Benchmark/" + DATABASE_NAME, null,
DATABASE_VERSION);

9 }
10
11 //region SQLiteOpenHelper Overrides
12 // Creating Tables
13 @Override
14 public void onCreate(SQLiteDatabase db){...};
15
16 // Upgrading database
17 @Override
18 public void onUpgrade(SQLiteDatabase db, int oldVersion, int

newVersion){...};
19 //endregion SQLiteOpenHelper Overrides
20
21 //region Public methods
22
23 /**
24 * This function removes all tables in the database
25 */
26 public void clearDatabase(){...};
27
28 /**
29 * Adds a sample to the binary read benchmark Table
30 * @param sample Sample to be added
31 */
32 public void addReadCommunicationSample(IComBenchmarkSample

sample) throws Exception{...};
33
34 /**
35 * Adds a sample to the binary read benchmark Table
36 * @param sample Sample to be added
37 */
38 public void addWriteCommunicationSample(IComBenchmarkSample

sample) throws Exception{...};
39
40 /**
41 * Adds a sample to the binary read all benchmark Table
42 * @param sample Sample to be added

67



43 */
44 public void

addReadAllCommunicationSample(IComBenchmarkSample
sample) throws Exception{...};

45
46 /**
47 * Adds a sample to the rtt Table
48 * @param sample Sample to be added
49 */
50 public void addRTTSample(IRttSample sample) throws

Exception{...};
51
52 /**
53 * Adds a sample to the battery read benchmark Table
54 * @param sample Sample to be added
55 */
56 public void addReadBatterySample(IBatteryBenchmarkSample

sample) throws Exception{...};
57
58 /**
59 * Adds a sample to the battery write benchmark Table
60 * @param sample Sample to be added
61 */
62 public void addWriteBatterySample(IBatteryBenchmarkSample

sample) throws Exception{...};
63
64 /**
65 * Adds a sample to the battery power benchmark Table
66 * @param sample Sample to be added
67 */
68 public void addPowerBatterySample(IBatteryBenchmarkSample

sample) throws Exception {...};
69 //endregion Public methods
70
71 //region private methods
72 ...
73 }

7.3.3 Fragments

The Nfc.Benchmark.View module is composed of three main components:
Fragment layouts, models and controllers. The Fragment layouts define
how UI elements are displayed to the user, the controllers map UI
components to functions and the models contain the data created through
user events. Some Fragments have little functionality and therefore have
no models, which is due to the fact that to create a full model for handling
a simple list of objects is seen as too much overhead and adds unnecessary

68



complexity to the solution.
Most of the Fragments handle the lifetime of a single benchmark

operation. This is simplified by delegating the benchmarking procedure
to an engine that implements the interface presented in Listing 7.8.

The interface defines startBenchmarking() and stopBenchmarking(),
which control the two states the benchmarks can be in: running and
stopped. When in the running state, the benchmark is performing the
desired operation until completed and then progresses to the stopped state.
Calling stopBenchmarking() when the state of the benchmark is running
changes its state to stopped and stops the benchmarking. Additionally,
the interface defines a persist() function. This stores all the data collected
during the benchmarking to the supplied database.

The BenchmarkSchedulerFragment differs from the rest, because it is
used to start a collection of benchmarks. It uses the interface presented in
Listing 7.8 to run a set of selected benchmark engines in sequence.

Listing 7.8: Benchmark engine interface

1 /**
2 * Created by Aage Dahl on 11.03.14.
3 */
4 public interface IBenchmarkEngine {
5 /**
6 * Gets the name of this engine.
7 * @return Name of this engine.
8 */
9 String getName();

10
11 /**
12 * Starts the benchmarking
13 * @throws java.lang.IllegalArgumentException on error with settings
14 * @param settings Settings that define the execution of the

benchmarking
15 */
16 void startBenchmarking(IBenchmarkSettingsModel settings) throws

IllegalArgumentException, NullPointerException, IOException;
17
18 /**
19 * Interrupts the benchmarking
20 */
21 void stopBenchmarking();
22
23 /**
24 * Persists the samples contained in this engine to the given database.
25 * @param dbh database handler
26 */
27 void persist(DatabaseHandler dbh) throws Exception;
28 }

69



7.3.4 Activity

The MainActivity class resides inside the Nfc.Benchmark.View.Gui mod-
ule. This class handles and displays all Fragments available in the
Nfc.Benchmark.View module as separate tab views. Additionally, it dis-
plays a log output window at the bottom of the screen. Whenever a Frag-
ment experiences a runtime error, it transmits an instance of the ErrorMes-
sage4 class with the error message description, to MessengerService. The
log output window is used to display these messages. This is done by the
MainActivity instance registering a handler in MessengerService for han-
dling ErrorMessage messages. The handler extracts the error description
from the message and displays it in the output window.

The NFC benchmark app has an intent filter in its manifest file to receive
Intents when a new NFC technology is detected. The issue with this is
that Android tries to start a new Activity every time this happens. If the
app is already running, it is important that the currently active Activity
receives the Intent, and it is not desired that a new Activity is started.
Therefore, the MainActivity class calls on the functions as shown in Listing
7.9. When the setupForegroundDispatched() function is called, it redirects
any Intents from NFC tags to the currently running Activity. This enables
the running instance of the NFC benchmark app to have full control of
the NFC communication as it is in a running state. When exiting the
running state, it releases the control of the NFC communication by calling
the stopForegroundDispatch() function. This enables other apps to receive
Intents when tags are discovered.

Listing 7.9: Setup and stopping of foreground dispatch

1 @Override
2 protected void onResume() {
3 super.onResume();
4 setupForegroundDispatch(this, mAdapter);
5 }
6
7 @Override
8 protected void onPause() {
9 super.onPause();

10 stopForegroundDispatch(this, mAdapter);
11 }

When an Intent arrives to the MainActivity, and it is identified that this
is an Intent containing a new tag (e.g. a new NFC tag has been detected),
the process wraps this tag inside a NewIntentMessage and broadcasts it
to the MessengerService framework. This allows other objects to receive
information about the discovery of new tags.

4Belongs to the no.as.gold.simplemessenger.messages package.

70



7.4 NFC protocol tester app

The Nfc module has an identical structure to the Nfc.Benchmark module,
it also contains four projects: Nfc.Domain, Nfc.Persistence, Nfc.View and
Nfc.View.Gui.

7.4.1 Domain

The Nfc.Domain module contains domain objects used by the NFC protocol
tester . Currently there are no domain objects, and this project is only added
to stay true to the architectural design.

7.4.2 Persistence

The Nfc.Persistence module is prepared for persistence of data. The current
version does not persist any data, and therefore this module does not supply
any functionality.

7.4.3 Fragments

The Nfc.View module is composed of three views, which each has a
Fragment layout, a model and a controller. The Fragment layouts define
how UI elements are displayed to the user, the controllers map UI
components to functions and the models contain the data created through
user events. The three views allow the user to perform reading of a
tags memory, writing to a tags memory and transmitting user-defined
commands to a tag. The response from the tag is presented to the user.

7.4.4 Activities

The MainActivity class resides in the Nfc.View.Gui module. This renders
the Fragments that enable UI components to be presented to the user. It
also handles user navigation between the three available views.

7.4.5 Evaluation

This subsection is supposed to introduce the results from testing Zaher’s
tag. However, the tag is still in the process of being manufactured. Due to
this, I have decided to pursue testing of Tag1 to show that the software is
able to send commands in byte format to the tag and observe the response.
Three screen-shots of the app are presented in Figure 7.1. The first screen-
shot shows how the byte array is inputted. The input 1.1.0.112.132.13.0 is
deciphered to the following hexadecimal values: 0x01 0x01 0x00 0x00 0x70
0x84 0x0D. The input is deciphered by extracting the values between the
dots and interpreting them as byte values. The given input is a command for
Tag1 to read the byte value at address 0 in the tags memory. This command
is constructed in accordance with the protocol description in [17].

71



(a) Inputting command (b) Selecting technology (c) Command transferred

Figure 7.1: NFC protocol tester illustrations

When the tag is detected, the app displays the tags id and the tags
available technologies. In the second screen-shot, the andr oi d .tech.N f c A
technology is selected. This results in the underlying NFC communication
library selecting this technology when transmitting the command to the tag.

In the third screen-shot, the command has been transferred to the tag.
The tag responds with the byte located at memory address 0, and this value
is displayed just below the "Transmit command" button. This value is −124,
which is not surprising as the first four bytes in the Tag1 memory contain
the tag ID. As can be seen from the screen-shot, this tags ID is 112, −124,
13, 0, and the byte value at memory address 1 should therefore be −124.

72



Chapter 8

The experiment

This chapter starts by describing the design of the experiment. It follows
with the description of the implementation of the experiment and data
collection. The chapter that follows introduces and describes the results
of the experiment.

8.1 The experiment

In this section, the design of an experiment is introduced. The goal of this
experiment is to establish which tag standard is most suitable for Zaher’s
tag, and how the communication protocol should be designed. Zaher’s tag
is planned to reside inside human tissue, therefore it is important to know
how the tag standards are affected by this environment.

The communication protocol of Zaher’s tag is not defined, and one of
the design decisions to make is how to bundle information transferred from
the tag to the reader. Information traveling between the tag and the reader
can be bundled in order to improve communication efficiency, and it is
therefore important to know the effect of doing this, both on battery and
on throughput. To identify how this tag is going to be used, it is important
to know how it performs at different distances between the reader and the
tag, as this influences how the user interacts with it.

The experiment shows how the NFC benchmark app is used to extract
information about the performance of five tags based on five different
standards. The tag standards are described in Chapter 3. The results of
the analysis are used to deduce which of these standards are better suited
for Zaher’s tag.

The objective of the experiment is therefore to identify communication
characteristics and battery performance of tag-standards and show how
these are influenced by:

• displacement between the tag and the reader, and

• size of data transferred, and

• placing the tag in a saline solution.

73



Description Quantity

LG P700 mobile phone 1
Rail 1

Rail-clamp 1
Clamp 1

NFC forum Tag1 (Topaz 512) 1
NFC forum Tag2 (NTAG203) 1

NFC forum Tag3 (FeliCa Lite-S) 1
NFC forum Tag4 (Mifare Desfire) 1

MifaceClassic tag (MF1S50) 1
Saline solution (0.9%NaCl) 150ml

Plastic card 5

Table 8.1: Materials for experiment

The experiment is designed to extract a lot of data from multiple areas of
interest.

The experiment must be repeatable so that any significant findings can
be verified through further experiments. It must be possible to adjust the
displacement between the reader and the tag in a controlled and accurate
way so that it produces representative measures for all tags. It is also
important that the number of external factors is limited and that variables
are changed in a controlled manner. This ensures that it is a controlled
experiment. Too many uncontrolled external factors can pollute the results
and render them unusable. The experiment also has to be realistic for
Zaher, so that he is able to base his decisions on the results.

To achieve repeatability, the experiment design is explained in full
through the remainder of this chapter. This includes materials used
and construction of the testbed. This also introduces how the other
requirements are fulfilled.

The results are analyzed and presented in Chapter 9.

8.1.1 Design

The materials used in this experiment are summarized in Table 8.1.
Figure 8.1 shows the planned set-up of the experiment. The rails allow

the displacement between the phone and the tag to be changed, but still
remain accurate. The clamp is attached to the phone and assures that
the phone resides in the same position during the experiment and thereby
reduces the impact of external variables. Each tag is attached to a plastic
card, and the plastic card is fastened to the rail-clamp.

For each tag and displacement, the seven benchmarks summarized
in Table 6.1 are executed, and the collected data is stored in a database
called BenchmarkResults.db. The benchmarks collect data related to tag
types, size of the data being transmitted, timestamp for the measurement,
whether communication is achieved or not and displacement between the
tag and the reader.

74



Figure 8.1: Illustration of testbed

In the first part of the experiment, the tag and the reader is separated
by air while data is collected. In the second part of the experiment,
the data collection is repeated with the tags covered with approximately
seven millimeter saline solution on all sides. This is done to replicate the
permittivity the tag experiences while covered with human tissue[21, 46].
To cover the tags in a saline solution, the tags are inserted into small plastic
bags that in turn are inserted into larger bags containing a saline solution.
The bags prevent the saline solution from damaging the tags. The thickness
of the saline solution is controlled by hand prior to all experiments.

The saline solution variable was not planned in the original experiment,
but is added towards the end of this work. Due to limited time, an optimal
solution is not available and any results must therefore be treated with
causion. At best, the results from the saline solution part of the experiment
can be used as an indication towards further investigation. More realistic
constructions exist, such as discussed here [45].

8.1.2 Phone settings

It is important to prevent the external interferences from influencing
the results of the sampling. It is possible to acquire this by deriving
a new version of the Android operating system, where all but the most
basic operations are removed and where full priority is given to the NFC
benchmark app. This gives very accurate results regarding the power
consumption and communication efficiency. However, the effort required
to do this exceeds what is feasible in this thesis. Alternatively, running apps
can be turned off, and the phone can be set in "Flight mode", which turns off
all wireless technology. This mode requires that NFC is manually enabled. I
choose to use the second method because the first requires more time than
I have available.

75



Figure 8.2: Test-bench construction

8.2 Experiment implementation

This section explains how the experiment is implemented.

8.2.1 Composition

The test-bench is constructed based on the ideas in the preceding chapter
with some minor modifications. The phone is placed horizontally as this
fitted with the clamp that was acquired. The construction of the testbed
is shown in Figure 8.2. The construction is kept for the duration of the
experiment without being taken apart. The rail and the clamp are fixed to
the table, the phone is fixed to the clamp, and the rail clamp is attached to
the rail. Each of the five tags is glued to the upper part of a plastic card, and
the plastic cards are in turn fastened to the rail clamp.

8.2.2 Experience

The preliminary battery tests show signs of great variation between
each conducted benchmark, and, after repeated trials with the same tag
and identical distance from the tag, a pattern starts to emerge. The
result is greatly dependent on the battery level at the beginning of the
benchmarking. Hence, when the tests are conducted with a battery level
of 40%, the drop of 3% takes about 450 seconds. However, when the same
experiment is conducted with a battery level of 100%, the same drop takes
about 350 seconds. To avoid this variance, the battery is fully recharged

76



before performing battery tests for reading from, writing to and powering
of the tag.

8.2.3 Unexpected behavior

The benchmarks without the saline solution are conducted as planned, and
in this setting, the tag is placed at the topmost part of the plastic card. For
the benchmarks with the saline solution, to fully submerge the tag and at
the same time prevent the saline solution from pouring into the plastic bag,
the tag is glued to the lower part of the plastic card. This has the effect that
the phone needs to be tilted about 30◦ to detect the tag. I did consider the
idea of redoing the experiments. However, it takes a few weeks to collect
the samples, and the objective limitations of the study, prevent me from
repeating the whole experiment once again.

8.3 Data collection

This section summarizes how data is collected and extracted.

8.3.1 Persistence

All results are stored in a SQLite database and extracted to a laptop for
further analysis. Whilst on the laptop, the data is exported to a MySQL
database for further processing. MySQL has an extended set of functions
available for analysis of data compared to SQLite. This is extensively used
to extract statistical information on the collected data.

8.3.2 Extraction

The Name of each sample follows the syntax nmm, where n identifies the
displacement in millimeters between the tag and the reader. All samples
collected with the saline solution have "_s" appended to the end of the
Name. In this way, it is possible to identify which samples belonged to
which tests. The Technology identifies the tag technology that the sample
is based on.

For each average calculated, the standard deviation is also calculated to
indicate how much the results vary from the estimated average.

Three queries are used to extract the data from the SQLite database.
The query presented in Listing 8.1 extracts the average round trip time
measured for each technology and displacement. RTT gives the expected
latency of the tags and defines the expected delay for a response. The
acquired value tells something about the minimum expected delay from
information is sent until the response is received. This value indicates what
the expected response time is and how long the reader needs to power the
tag to receive a response.

The results consist of averaging and measuring the standard deviation
on the 50 samples collected for each setting, and are grouped by technology

77



and name. The average throughput is given by:

RT Taver ag e =
∑n

i=1 r t ti

n
, wher e

∣∣∣∣ n = sample count
r t t = r ound tr i p ti me

(8.1)

The standard deviation is given by:

σ=
√√√√ 1

N

N∑
i=1

(
xi −µ

)2, wher e µ= 1

N

N∑
i=1

x (8.2)

Listing 8.1: RTT SQL query

−− Calculate average RTT for each technology and name
SELECT

technology as Technology,
name as Name,
avg(RTT) as Average,
STDDEV_POP(RTT) as StandarDeviation

FROM
benchmarkresults.rtt

GROUP BY
technology, name

The query presented in Listing 8.2 extracts the average duration and
communication throughput grouped by the name, technology and size
of the sample. This is used to extract communication throughput for
reading and writing data packets of different sizes to tags at different
displacements between the tag and the reader. The different throughputs
are important to measure, because they describe how the tags perform in
relation to sizes of packets transmitted. As stated in the introduction of
this experiment, the communication protocol is not yet defined, and the
packet sized performance can influence how data should be bundled to
acquire optimal performance. In addition to the throughput, the standard
deviation is measured to indicate how the measured values vary from the
given average.

In this query, < t able > is one of the three tables that relate to communi-
cation performance: ReadAllCommunicationPerformance, ReadCommu-
nicationPerformance and WriteCommunicationPerformance. The stan-
dard deviation is calculated based on Equation 8.2 and the following for-
mula presents the averaging performed by this query:

T x = x∑n
i=1 ti

n

, wher e

∣∣∣∣∣∣∣∣∣
T = Av g . thr oug hput
x = si ze
n = sample count
t = el apsed ti me

(8.3)

Listing 8.2: Communication performance SQL query

−− Calculates average throughput for each size, technology and name

78



SELECT
name as Name,
technology as Technology,
size as SizeInBytes,
avg(duration) AS AverageDuration,
avg(size/duration) AS AverageSpeed,
STDDEV_POP(size/duration) as StandardDeviation

FROM
benchmarkresults.<table>

WHERE
status = "Succeed"

GROUP BY
name, technology, size

The last query is presented in Listing 8.3 and extracts the average en-
ergy consumption for each second elapsed and for each byte communicated
for the reading, writing and powering benchmarks related to estimating en-
ergy consumption. These are key values to measure as they describe how
the energy efficiencies of the different standard. High energy efficiency is
desired, because it improves usability of the system. The measurement of
energy consumed per second is used to describe how reading, writing and
powering operations affect the battery can help design a protocol that is
more energy friendly.

< t able > relates in this context to one of the three table types: Read-
BatteryPerformance, WriteBatteryPerformance and PowerBatteryPer-
formance. The following formula presents the calculation of energy per
second:

E second = est ar t −eend

t
, wher e

∣∣∣∣∣∣
est ar t = St ar t ener g y level
eend = End ener g y l evel
t = El apsed ti me

(8.4)

The following formula calculates the energy consumption per second:

E by te =
est ar t −eend

b
, wher e

∣∣∣∣∣∣
est ar t = St ar t ener g y level
eend = End ener g y l evel
b = B y tes tr ans f er r ed

(8.5)

Listing 8.3: Battery performance SQL query

−− Calculate average energy drop per byte and per second for each
technology and name

SELECT
name AS Name,
technology AS Technology,
(startLevel − endLevel) AS EnergyDrop,
elapsedTime AS ElapsedTime,
(startLevel − endLevel)/ElapsedTime AS EnergyDropPerSecond,
(startLevel − endLevel)/bytesTransferred AS EnergyDropPerByte,

79



FROM
BenchmarkResults.<table>

WHERE
startlevel <> endLevel and elapsedTime > 0

GROUP BY
name, technology, EnergyDrop

80



Chapter 9

Data presentation

In total, more than one million table entries are collected and analyzed,
and approximately three GB of data is transmitted between the NFC reader
and the five tag types. The result of this data collection is presented in
this chapter and visualized in a set of figures that aim at comparing the
performance of each tag type. One section is dedicated to each benchmark,
where the data collected for that benchmark is described and discussed.

As a general note, all communication performance is based on the actual
transmission of data, which does not include time for connecting to and
disconnecting from the tag. The measurements of throughput are based on
the amount of successfully transferred bytes per second. Unsuccessful byte
transfers are those that contain corrupted data, which result in reduced
throughputs.

In the presented results, the displacement varies from 0mm to 30mm.
30mm is defined from the approximately average detection range of the five
tags. 0mm is defined as the situation when the tag is touching the phone.
Not all tags have values for all displacements, which is due to the fact that
not all benchmarks were successful. The unsuccessful benchmarks did not
communicate with the tag throughout the run and are therefore left out
from the results.

The aim is to extracting one sample with the saline solution for each tag,
however, more were collected, and I decided to use these values as well to
have a stronger basis for analysis.

All values given in tables and referenced in the text are correct to 3s.f.

9.1 Round trip time

Round trip time (RTT) is the time taken for a signal to be transmitted
from the sender to the recipient and back again. This value is estimated
in computer networks by transmitting minimal packets from the sender to
the receiver and back again.

The RTT values are based on the average response time for transmitting
the commands listed in Table 9.1 and is calculated using Formula 8.1. None
of the tags have a specific command for estimating the RTT. Therefore, the
given set of commands are used to base this value on. The number of bytes

81



transferred are defined by the respective commands and therefore vary for
each tag type.

The timer for estimating the RTT is started at the point when the
command is sent with a transcieve[48] function. This function allows apps
to transmit a command to a library, which then transmits it to the tag.
When the operation is completed and the function returns with the result,
the timer is stopped and the RTT is calculated.

Figure 9.1 presents the RTT values. The delay is displayed along
the vertical axis, and the tag types and displacements are shown along
the horizontal axis. The samples with and without a saline solution are
shown with red and blue columns respectively. The values are calculated
by averaging 50 samples collected for each displacement. One standard
deviation from the calculated average is indicated by black error bars on
top of each column.

At 0mm displacement, Tag1 has a RTT of 8.52ms (3s.f.). This varies
greatly from MifareClassic, which has a RTT of 31.0ms (3s.f.). When
comparing these values and considering the standard deviation, it is
apparent that MifareClassic shows a significantly higher RTT and that
this is statistically significant. The results indicate a high overhead for
transferring data with MifareClassic tags.

Tag3 shows results for the saline solution that indicates that the saline
solution improves the RTT. However, the standard deviation shows that
this is not a statistically significant difference.

Figure 9.1: Round trip time

82



Tag Command Bytes sent Bytes received

MifareClassic Authenticate sector 13 3
Tag1 Read 9 3
Tag2 Read 4 18
Tag3 Read 8 18
Tag4 0x001 3 4

Table 9.1: Commands used to estimate RTT

9.2 Read communication performance

The read communication performance is based on the reading of 1 → n
bytes of data from the tag, where n is the full size of the tags memory.
The step size between each sample is one byte. Reading is repeated 50
times for each displacement, tag type and size, and then the average of
these 50 samples represent the read throughput acquired for the given tag,
size and displacement. The graphs in Figure 9.2 and 9.3 show these read
throughputs. The data in the figures is organized with the throughput given
along the vertical axis, the size given along the horizontal axis and the tag
type and displacement along the depth axis. The throughput is calculated
with the equation given in Formula 8.3. A slice of throughput values with
standard deviation for 64 bytes packages are provided in Table 9.2 for the
results without a saline solution and in Table 9.3 with a saline solution.

The first Subsection describes the results acquired without a saline
solution, whereas the second describes the results with the saline solution.

Reading of data is done with the read command of the respective tags.
For tags that have multiple commands for reading, the one that best fits the
remaining bytes to read, is used. Hence, if a given tag has commands to
read 4 and 16 bytes, the command for reading 16 bytes is used until four or
less bytes remain.

9.2.1 Without saline solution

The graphs presented in Figure 9.2 shows the read throughput when the
tag is not covered with a saline solution. The throughput varies greatly
with the tag type and packet size, and it is clear that some tags are better
suited for certain packet sizes. The graphs also show that there is no
noticeable difference in throughput when the displacement between the tag
and the reader is increased. The tag with the most noticeable reduction in
throughput with displacement is Tag3, which has a throughput of 3080
(3.s.f) BPS at 64 byte packets and 0mm displacement, compared to 2650
(3s.f.) BPS at 20mm displacement. With a standard deviation of 120 and
144 bytes respectively, the results do show some statistical significance. The
other differences are much smaller and do not show any great correlation
between throughput and displacement.

1Not a defined command, responds with error code 0x67 0x00 (Wrong length)

83



Tag
0mm 5mm 10mm 20mm 30mm

µ σ µ σ µ σ µ σ µ σ

MifareClassic 812 60.4 811 61.4 - - - - 811 84
Tag1 108 3.10 111 4.06 - - 110 3.67 110 4.56
Tag2 1520 106 1430 151 1450 144 - - - -
Tag3 3090 120 2580 175 - - 2650 144 - -
Tag4 1320 64.2 1190 145 - - 1220 141 - -

Table 9.2: Throughput and S.D. in BPS for reading 64 bytes packets without
saline solution

A noticeable feature of the graphs is that they have throughput values
for packet sizes up to the size of the tags memory. This is because the tag
cannot receive read commands that expand beyond the tags memory. It is
easy to see from this that Tag1 has the smallest and Tag4 has the largest
memory.

Figure 9.2: Read communication performance without saline solution

9.2.2 With saline solution

The graphs presented in Figure 9.3 show the read throughput when the
tag is covered with a saline solution. As without the saline solution, the
throughput varies greatly with the tag type and packet size, and it distinctly
follows the same pattern indicating that the saline solution does not greatly
degrade the read throughput. The saline solution physically separates
the tag from the reader, so it is naturally not possible to test the read

84



Tag
10mm 20mm 30mm
µ σ µ σ µ σ

MifareClassic - - 820 62.5 - -
Tag1 110 4.24 110 4.41 - -
Tag2 1490 165 1470 149 1460 142
Tag3 - - 2990 144 - -
Tag4 1220 143 - - - -

Table 9.3: Throughput and S.D. in BPS for reading 64 bytes packets with
saline solution

throughput at 0mm and 5mm displacements.

Figure 9.3: Read communication performance with saline solution

9.2.3 Summary

Some patterns are observable from the figures introduced in the two
preceding subsections. There are distinct peaks at regular intervals for all
except Tag1. Tag4 and MifareClassic displays a rounder pattern where the
peaks are less prominent compared to Tag2 and Tag3. The displacement
between the tag and the reader does also not seem to influence the read
throughput within the tested range.

85



Tag Size (bytes)

MifareClassic 333
Tag1 122
Tag2 143
Tag3 208
Tag4 512

Table 9.4: Memory sizes read with the ReadAll function

9.3 Read all communication performance

The graphs in Figure 9.4 show the results for reading all the available
memory in the tags. Tags are aligned along the horizontal axis of the
figure, and the read throughput is aligned with the vertical axis. The
samples with and without a saline solution are shown with red and
blue columns respectively. One standard deviation from the calculated
average is indicated by black error bars on top of each column. The
memory sizes read are summarized in Table 9.4, and the equation used
for calculating the results is given in Formula 8.3. The results are based on
the average and standard deviation calculated from 50 samples collected
at each displacement between the tag and the reader. The figure compares
the communication throughput acquired for all the five tags at different
displacements, and with and without a saline solution.

It is clear from the figure that the saline solution and displacement has
no noticeable effect on the throughput when reading the whole of the tag’s
memory. None of the results show any difference that greatly exceeds a
standard deviation from the mean. However, when comparing the tag
types, the difference becomes significant. The largest difference can be
observed with Tag1 at 0mm displacement with a throughput of 3440 (3s.f.)
BPS and MifareClassic with a throughput of 1090 (3s.f.) BPS at the same
displacement. This is significant, since the standard deviation is 127(3s.f.)
BPS and 47.6 (3s.f.) BPS on each tag respectively. It is also clear that Tag1
read throughput is much higher than the other acquired read throughputs,
both with and without the saline solution and at any displacement.

86



Figure 9.4: Read all communication performance

9.4 Write communication performance

The write communication performance is based on the writing of 1 → n
bytes of data to the tag, where n is the full size of the tags memory. The
step size between each sample is one byte. Writing is repeated 50 times
for each displacement, tag type and size and then the average of these 50
samples represents the write throughput acquired for the given tag, size
and displacement. The graphs in Figure 9.5 and 9.6 show these write
throughputs. The data in the figure is organized with the throughput given
along the vertical axis, the size given along the horizontal axis and the tag
type and displacement along the depth axis. The throughput is calculated
with the equation given in Formula 8.3. A slice of throughput values with
standard deviation for 64 bytes packages are provided in Table 9.5 for the
values without a saline solution and in Table 9.6 with saline solution.

The first subsection describes the results acquired without a saline
solution, and the second describes the results with the saline solution.

Writing of data is done with the write command of the respective tags.
For tags that have multiple commands for writing, the one that best fits the
remaining bytes to write, is used. Hence, if a given tag has commands to
write 4 or 16 bytes, the command for writing 16 bytes is used until four or
less bytes remain.

9.4.1 Without saline solution

The graphs presented in Figure 9.5 show the write throughput when the tag
is not covered with a saline solution. Similar to the read throughputs, the
write throughputs vary greatly with the tag type and packet size, and it is

87



clear that some tags are better suited for certain packet sizes. The graphs
also show that within the tested range, there is no noticeable difference
in throughput when the displacement between the tag and the reader is
increased. The only tag that seems to have some reduced effect with
displacement is again Tag3.

A noticeable feature of these results is that the acquired throughputs
for writing are significantly lower than those acquired for reading. This is
most striking when comparing the read throughput of Tag2 and Tag3 with
the write throughputs of Tag2 and Tag3. If considering the throughput
at 64 bytes and 0mm displacement for these two tags, the relationship
between read and write throughput is 3090

763 ≈ 4.05(3s.f.) times for Tag3
and 1520

303 ≈ 5.02(3.s.f) times for Tag2. The standard deviation of the
write throughput for Tag2 signifies that the mean for reading is 1520

22.1 =
68.8σ away from the mean for writing, which can hardly be said to be a
random effect. MifareClassic, Tag1 and Tag4 seem to have a much smaller
difference between its writing and reading throughputs. Performing the
same calculation with these reveals that the same relationship is 812

674 ≈
1.20(3s.f.) for MifareClassic, 108

68.1 ≈ 1.59(3s.f.) for Tag1 and 1320
1060 ≈ 1.25(3s.f.)

for Tag4.

Figure 9.5: Write communication performance without saline solution

9.4.2 With saline solution

The graphs presented in Figure 9.6 show the write throughput when the
tag is covered with a saline solution. As without the saline solution, the
throughput varies greatly with the tag type and packet size, and it distinctly
follows the same pattern indicating that the saline solution does not greatly

88



Tag
0mm 5mm 10mm 20mm 30mm

µ σ µ σ µ σ µ σ µ σ

MifareClassic 674 53.6 638 38.9 - - - - 643 32.5
Tag1 68.1 0.65 68.3 1.31 - - 68.1 1.16 68.0 1.13
Tag2 303 22.1 287 34.0 301 21.2 - - - -
Tag3 763 28.0 708 17.9 - - 706 32.6 - -
Tag4 1060 94.4 977 55.8 - - 977 40.4 - -

Table 9.5: Throughput and S.D. in BPS for writing 64 bytes packets without
saline solution

degrade the write throughput. The saline solution physically separates the
tag from the reader, which makes it impossible to test the write throughput
at 0mm and 5mm displacements.

The data in Table 9.5 and Table 9.6 confirm that the throughput values
do not vary greatly for package sizes of 64 bytes.

Figure 9.6: Write communication performance with saline solution

9.4.3 Summary

Similar to the results from the read throughputs, the write throughputs
presented in the two preceding subsection also show some distinct peaks
at regular intervals for all tags except Tag1. A difference is that Tag2
and Tag3 have much more reduced write throughputs compared to read
throughputs than MifareClassic, Tag1 and Tag4. Tag4 seems to have
little difference between read and write throughputs overall. Again the

89



Tag
10mm 20mm 30mm
µ σ µ σ µ σ

MifareClassic - - 656 31.7 - -
Tag1 68.3 1.06 69.1 1.15 - -
Tag2 300 22.6 298 14.8 302 20.4
Tag3 - - 740 36.1 - -
Tag4 991 45.1 - - - -

Table 9.6: Throughput and S.D. in BPS for writing 64 bytes packets with
saline solution

displacement between the reader and the writer, and the introduction
of the saline solution does not seem to influence the write throughputs
significantly.

9.5 Battery performance while reading

Figure 9.7 compares the energy consumption registered when continuously
reading from the tags at varying displacements, both with and without a
saline solution covering the tags. The benchmark reads the full memory of
the tag using the ReadAll function, and the packet size read for each tag is
summarized in Table 9.4. The results are presented in two figures, where
the first shows the battery consumption per second, and the second shows
the energy consumption per byte transferred. The energy consumption
per second is based on Formula 8.4, and the energy consumption per
second is based on Formula 8.5. In these figures, the tags are presented
with displacements along the horizontal axis, and the relative energy
consumption is presented along the vertical axis. The samples with and
without a saline solution are shown with red and blue columns respectively.

Figure 9.7b shows that there is not much difference between the battery
consumption per second regardless of what tag, displacement or whether
or not the tag is covered by a saline solution. It does however show that the
registered values vary with ±10%.

Figure 9.7b shows that the saline solution and displacement does not
seem to influence the battery consumption much (if anything the energy
consumption seems to have declined slightly). Comparing the general
consumption for the tag types reveals a striking difference. Tag1, with its
25.7(3s.f.) nano portions consumed per byte, is almost three times more
energy efficient per byte transferred compared to MifareClassic, with its
69.5(3s.f.) nano units consumed per byte, and outperform all the other
tags. Tag3 and Tag4 seem to be close to, but not as efficient as Tag1. Tag2
is in the middle and consumes more than two times the energy per byte
compared to Tag1.

90



Tag Bytes

MifareClassic 333
Tag1 95
Tag2 143
Tag3 208
Tag4 512

Table 9.7: Packet sizes written for each tag

(a) Energy consumption per byte (b) Energy consumption per second

Figure 9.7: Energy consumption for reading operations

9.6 Battery performance while writing

Figure 9.8 compares the energy consumption registered when continuously
writing to the tags at varying displacements, both with and without a
saline solution covering the tags. The benchmark writes packets with the
sizes summarized in Table 9.7, using the write command. The results are
presented in two figures, where Figure 9.8a shows the battery consumption
per second ,and Figure 9.8b shows the energy consumption per byte
transferred. The energy consumption per second is based on Formula 8.4,
and the energy consumption per byte is based on Formula 8.5. In these
figures, the tags are presented with displacements along the horizontal axis,
and the relative energy consumption along the vertical axis. The samples
with and without a saline solution are shown with red and blue columns
respectively.

Figure 9.7a shows that the saline solution and displacement does
not seem to influence the battery consumption much. Also here there
is an indication that the energy consumption declines slightly with the
introduction of the saline solution. Comparing the general consumption
for the tag types reveals a striking difference that also is striking when
compared to reading. Tag1, with its 1070(3s.f.) nano portions consumed
per byte, is vastly less energy efficient compared to the other tags, whereas
Tag4, with its 35.8(3s.f.) nano portions consumed per byte, seems to be the
most energy efficient.

Figure 9.7b shows, just as with the reading operation, that there is not

91



much difference between the battery consumption per second regardless
of what tag, displacement or whether or not the tag is covered by a saline
solution. Also here the registered values vary with about ±10%.

(a) Energy consumption per byte (b) Energy consumption per second

Figure 9.8: Energy consumption for writing operations

9.7 Battery performance while powering

Figure 9.9 compares the energy consumption registered per second when
continuously powering the tags at varying displacements, both with and
without a saline solution covering the tags. In this figure, the tags are
presented with displacements along the horizontal axis, and the relative
energy consumption along the vertical axis. The energy consumption per
second is based on Formula 8.4. The samples with and without a saline
solution are shown with red and blue columns respectively. As shown by
the figure, the energy consumption per second varies much between each
individual sample. When looking at the results with the saline solution, the
energy consumption seems to have been slightly reduced.

92



Figure 9.9: Energy consumption while powering tag

93



94



Part III

Conclusion

95





Chapter 10

Analysis

This chapter discusses the features described in Chapter 9. It aims at
explaining why these features exist by deducing what created them. The
sections in this chapter progress by describing the features identified for
the three controlled variables: displacement, saline solution and tag type.
Each section discuss the effect on communication performance and energy
consumption. The term throughput is used in this context and refers to
the amount of bytes that are successfully transferred from the sender to the
receiver, and, therefore, transfers that fail reduce the overall throughput.

10.1 Displacement

The displacement between the tag and the reader is controlled in the
experiment and defines the distance between the phone and the tag.

10.1.1 Communication performance

It is striking that changing the displacement does not seem to have any
effect on the throughput. The only tag that seems to consistently acquire a
higher throughput with a shorter distance is Tag3.

Two factors that are expected to affect the throughput are propagation
time and noise on the communication channel. The propagation time is the
time it takes for a signal to travel from the sender to the receiver. The signal
speed of radio-waves in air is close to the speed of light, and the propagation
time is therefore defined by the formula:

TPr opag ati on = d

c
{sec}, wher e

∣∣∣∣∣ d = di snt ance
c ≈ 3×108ms−1 (10.1)

Hence, the theoretical propagation time for changing the displacement by
20mm is: 0.03

c ≈ 1×10−10 seconds. This is such a small number that it is not
expected to have any noticeable influence on the throughput.

The effect of noise is a factor that is expected to increase along with
the displacement between the tag and the reader. As a result, the power
experienced by the tag is reduced, and the noise therefore becomes more

97



Displacement (mm) Signal strength reduction (dB) Difference (dB)

5 −50.93 -
10 −44.91 6.02
20 −38.89 6.02
30 −35.37 3.52

Table 10.1: Signal strength reduction

prominent. The graph presented in Figure 10.1 is a fictional graph that
illustrates how the noise affects the signal. The noise in the illustrated
examples is the same. However, the power of the signal is reduced. As can
be seen, when the power is reduced to one third of full power, the signal is
already showing significant signs of influencing the results.

The free-space path loss[56] (FSPL) formula defines how a signal
degrades with distance in free air and is summarized in the following
formula:

F SPL =
(

4πd

λ

)2

, wher e

∣∣∣∣∣ d = di snt ance
λ= w avel eng th

(10.2)

The FSPL in decibel is calculated with the formula[56]:

F SPL (dB) = 10l og10

((
4πd

λ

)2)
= 20l og10

(
4πd

λ

)
(10.3)

The wavelength is defined as:

λ= c

f
, wher e

∣∣∣∣∣ c ≈ 3×108ms−1

f = f r equenc y
(10.4)

Therefore, NFC, with a frequency of 13,56M H z, has a wavelength of
c

13,56M H z ≈ 22,12meters. Table 10.1 shows the reduction in signal strength
with the displacements given for this experiment. As can be seen, the
displacement does not incur a great loss in signal strength, which concurs
with the observations from the experiment. Another notion to make is that
for every doubling of the distance, the value drops with about 6dB .

10.1.2 Energy consumption

The overall energy consumption does not seem to be much affected by
displacement. These observations closely match those for throughput,
because the reduced need for retransmission leads to more stable energy
consumption.

10.2 Saline solution

The saline solution introduces another media for the electromagnetic field
to pass through. This field is expected to reduce the power of the field

98



(a) Full power (b) Half power

(c) One third power

Figure 10.1: Power to noise ratio

99



and, thereby, increase energy consumption and reduce throughput. These
expectations and the observations from the experiment are discussed for
communication performance and energy consumption in the following
subsections.

10.2.1 Communication performance

Surprisingly, the observed throughputs do not seem to be affected by the
introduction of a seven millimeter thick saline solution.

The tags are submerged in a saline solution as described in Chapter 8,
and the phone is tilted about 30◦. This can result in the antenna on the
reader being better aligned with the antenna of the tag. If the tag antenna
is aligned to cover a larger surface area of the reader antenna, it results in a
higher power experienced by the tag[15]. The higher power seems to cancel
out the reduction in power due to the introduction of the saline solution.
Further analysis should be conducted to confirm this hypothesis.

10.2.2 Energy consumption

It is expected that the saline solution significantly reduces power with
distance. However, the results indicate otherwise. The assumed reason
behind these observations is the same as for the throughput. The alignment
with the antenna of the reader and the tag is assumed to produce a stronger
electromagnetic field in the experiment conducted with the saline solution.

10.3 Tag type

This section compares the performance of the five tag types and discusses
the most striking features of the tags.

10.3.1 Communication performance

The graph displayed in Figure 9.1 indicates that the RTT is not greatly
dependent on the displacement from the tag. This seems reasonable as
radio-waves travel with a speed close to the speed of light, and increasing
the distance by a few centimeters does, therefore, not have a noticeable
effect. The RTT packets are designed to be as small as possible, merely
consisting of the packet overhead. The small size results in the noise on the
channel having less impact as retransmission is less costly. However, the
RTT shows the impact of the overhead of the packet and the computation
time. When comparing the five tags, it can be seen that the NFC forum type
tags have very similar RTTs of about 10ms. This differs greatly from the
MifareClassic tag, which has an RTT of approximately 30ms. Compared to
Tag1, with a RTT of about 8ms, the MifareClassic tag is almost four times
slower. This indicates a higher cost for transmission of small packets for the
MifareClassic tag compared to Tag1. This also means that for transmission
of small packets, Tag1 seems to be the better option.

100



Tag Bytes sent Bytes received Total bytes Transfers

Tag1 9 3 12 1
Tag2 4 8 22 1
Tag3 18 31 49 1
Tag4 19 12 31 3

MifareClassic 18 21 39 2

Table 10.2: Overhead for reading a byte

When comparing the overhead required to transfer packets of data, it
becomes clear why Tag1 is more efficient. This relates well to the overhead
of reading and writing small packets. Table 10.2 summarizes the minimum
number of bytes transferred for reading a single byte of data from the
memory of the five tags. The data in the table is extracted from observing
data communication between the tag and the reader as the reading is
performed. As can be seen, Tag1 has the smallest overhead for reading a
single byte.

The results indicating that Tag1 is more suitable for smaller packets,
is also confirmed when zooming in on the read and write communication
performance for Tag1, as shown in Figure 10.2. One standard deviation
from the calculated average is indicated by black error bars for each
throughput value. The zoomed version only shows the throughput for
0mm displacement between the reader and the tag and without the saline
solution. This is to make the results more readable. According to the figure,
Tag1 is either better or close to the other tag types for reading and writing
of one byte. The figure also shows that Tag1 rapidly drops in transmission
efficiency compared to the other tags when the size increases. This is
consistent for Tag1 for all packet sizes with the read command.

When comparing the throughputs with the overhead for packets of
one byte it is clear that these show a strong relation. The only outlier is
Tag3, which has a higher throughput compared to Tag4 and MifareClassic
even though it also has a higher overhead. To understand this relation,
it is important to consider the number of transfers. With MifareClassic,
it is necessary to verify a sector on the tag before performing any read
operations, which therefore result in two transfers. Reading from Tag4
requires three transfers: one for selecting the application on the tag, one
for selecting the file on the tag and one for sending the actual command. It
is clear from this comparison that multiple transfers incur a cost and reduce
throughput.

Tag1 has a special command for reading all the tags memory, which
has very little overhead and is called the readall command. The other tag
types have general read commands that scale well as the size of the packet
increases. However, they do not acquire the same throughput as Tag1
for reading the full memory. Figure 10.3a compares the communication
performance with the readall command of Tag1 with the read commands
of the other tags at a displacement of 0mm from the tag. The standard
deviation is indicated with vertical black bars for each measurement.

101



(a) Read (b) Write

Figure 10.2: Read and write throughput for small packets at 0mm
displacement

(a) Tag1 readall versus read. (b) Tag1 read vs Tag1 readall

Figure 10.3: Tag1 readall command performance

The graph indicates that the readall command of Tag1 outperforms the
other tags when reading packets with a size greater than 64 bytes and
smaller than 96 bytes. However, the results are not entirely conclusive
when considering the standard deviation of the throughputs. Figure 10.3b
compares the read and readall commands for Tag1 and shows that when
reading more than four bytes, it is more efficient to use the readall
compared to the read command.

The graphs in Figure 10.4 show the read and write throughputs without
the saline solution and at a displacement of 0mm for all tags. These graphs
distinctly show the peaks observed in Chapter 9.

The read throughputs for Tag2, Tag3, Tag4 and MifareClassic have
peaks at certain packet sizes, which is not so strange when considering the
design of the read command in the respective tags. The read command for
Tag2 reads pages from the memory consisting of 16 bytes, and therefore,
the pattern that emerges is that the peak performance is at intervals of
16 bytes read from memory. The exact same pattern is visible with the
MifareClassic tag, only at a lower throughput. This can be explained by
the fact that the MifareClassic tag is required to authenticate sectors before
reading from them.

The disadvantage with page sizes of certain sizes is that the throughput

102



is dependent on the location in the memory to read from. With a page
size of 16 bytes, reading 16 bytes from address zero in the tags memory,
can be done in one read. However, to read 16 bytes from memory address
one requires two reading operations of 16 bytes each, which reduce the
throughput.

The peaks found with Tag4 repeat themselves at less regular intervals,
and this fits well with its command design for reading. The command
specifies that once a read command has been transmitted to the tag, the
tag splits the response into transfers containing 59 bytes each. Hence, a
transfer of 60 bytes requires two transfers compared to the single transfer
required for 59 bytes. An advantage that Tag4 gives is that memory is not
mapped to pages of any specific size, and therefore, starting at an offset into
the memory should not incur a penalty on throughput.

Tag3 has a different pattern compared to the others as it has some
distinct peaks inside its peaks. These can be explained by the tag offering
an adaptable read command. This command can be modified to read from
one to four blocks. Each block consists of 16 bytes of data and the read
throughput should therefore have minor peaks at an interval of 16 bytes
and major peaks at an interval of 64 bytes. These peaks are identified in the
graph.

The write throughput acquired is very different from the read through-
put for all but Tag1 and Tag4. The write commands for these tags are very
similar to the read command. Writing to Tag1 is accomplished one byte at
a time. Therefore, it has little change in throughput as the packet size in-
creases. Write command for Tag4 has a limit of 52 bytes on the first trans-
fer, but allows consecutive transfers to be of up to 59 bytes each.

As is seen from the graphs, the write throughput for Tag3 and
MifareClassic is rather similar. This fits with their write command structure
as well, they both write with a size of 16 bytes. Therefore, they have
performance peaks at intervals of 16 bytes.

Tag2 also have small peaks, although at much higher frequency. This
can be explained by the write command enabling writing of 4 bytes at a
time.

Another explanation to the overall reduction in throughput for reading
operations compared to writing operations, is that writing to flash memory
(the tags memory) is many times more time-consuming than reading form
it.

10.3.2 Energy consumption

The energy consumption per byte for read and write operations varies
greatly between each tag. However, the energy consumption per second
seems to be rather consistent. This fits well with the throughputs measured
for the respective tags. Tag1, with its readall command has a measured
average throughput of 3440 bytes per second. Tag4 has a measured
average throughput for reading its total memory of 2510 bytes per second.
These values correlate well to the average battery consumption per byte
transferred. If the energy consumption is unchanged and the throughput

103



(a) Read throughputs (b) Write throughputs

Figure 10.4: Communication performance at 0mm displacement without
saline

Tag
0mm displacement

Read throughput (BPS) Write throughput (BPS)
Estimated Measured Estimated Measured

MifareClassic 1090 1090 880 895
Tag1 2590 3440 67.7 68.2
Tag2 1340 1490 295 298
Tag3 2090 2410 732 792
Tag4 2300 2510 2009 2034

Table 10.3: Estimated throughput from energy consumption and measured
throughput

increases, the energy consumption per byte decreases. The formula below
pressents the relationship between between energy consumption per byte,
throughput and the energy consumption per second:

Te = Et

Eb
, wher e

∣∣∣∣∣∣
Et = Ener g y consumpti on per second
Eb = Ener g y consumpti on per by te
Te = E sti mated thr oug hput

(10.5)

This formula is used in Table 10.3 to estimate the throughput based
on the energy consumption per second and the energy consumption per
byte. The calculated values are then compared with the actual measured
throughput. The results reveal a striking correlation between the measured
and estimated throughput. This is a strong indication that the RF activity
consumes equal amount of energy, regardless of whether read or write
operations are performed.

In Figure 10.5, the energy consumption per second is compared for both
read, write and power operations. An interesting result is that the values
indicate that energy consumption for merely powering is more expensive
than performing I/O operations on the tag. When comparing the writing
and powering operations of Tag4 at 0mm displacement, the powering is
1− 96.2

71.9 = 33.7% more expensive. Two theories are deduced from this, either
the phone detects tags with a maximum power and then adjusts the power

104



Figure 10.5: Comparing energy consumption for reading, writing and
powering

to what is required for communication when the tag is detected, or the
modulation of the RF field results in a reduction in energy consumption.
When the reader transfers information to the tag, it modulates the RF field,
this can be done by reducing the power transmitted to the RF antenna. If
so, this results in a reduced energy consumption, which may be the effect
detected in this experiment. It is also possible that the values in the graph
represent a purely random effect, and to verify that this is not the situation,
further benchmarking needs to be conducted.

10.4 Experiment conclusion

One of key features that this experiment tries to define is how the energy
consumption can be characterized. The energy consumption influences the
user a great deal. The user is expected to use a phone as a reader and a
phone has a limited energy source. If the energy source depletes to quickly,
the user experience degrades.

The results from the experiment indicate that the energy consumption is
not dependent on the tag type or standard. However, further experiments
are required to confirm this. If it is correct, the energy efficiency is more
related to the throughput than the actual energy consumption per second.
It is therefore important to consider this aspect in the design of the data
communication, so that maximum throughput can be gained, and thereby
the highest energy efficiency can be acquired.

Zaher’s tag provides power to a number of sensors, and in turn, they
provide it with information that the tag transfers to the reader. Therefore,

105



most of the time, the tag is transferring information to the reader. If Zaher
is able to bundle the information transferred from the tag to the reader in
such a way that it utilizes the full capabilities of Tag1, it is advised to base
his tag on the NFC Forum Tag 1 Type. This is a simple tag to establish
communication with, and it performs well when data is bundled correctly.
Furthermore, it has a simple memory structure that can be extended up to
1KB, which enables a significant storage capacity.

NFC Forum Tag1 Type occupies a small range of commands and there
is nothing preventing Zaher from expanding this command set with his
own propfrietary commands. These could be used to establish reading
of information directly from sensors or to change internal settings of the
tag. If the tag collects information gained from the sensors over time in a
buffer, custom commands can be created that read and clear these buffers.
If the number of commands exceeds what can be represented by a byte,
a variable-width code encoding can be used to extend the command set
(such as with UTF-8). In this way, the only limit seems to be the available
throughput.

Although the tag standard defines a maximum memory range, it is
possible for the tag to have its own extended memory. This memory could
be accessed through the proprietary command set and thereby allow the tag
to store more data.

As the experiment showed, there are no conclusive results that indicate
that energy can be saved by using the reader to power the tag and only
transfer the information at given intervals. Rather this seems to have the
opposite effect. I therefore advice Zaher to await further test results before
designing the tag in this way. With the given results, it seems to be a better
solution to enable the reader to use the tag to forward sensor values directly.

The saline solution is used as a substitute to human tissue and
the results from the experiment does not indicate the expected results.
However, limitations in the experiment design are identified, discussed and
suggestions are proposed to improve the reliability of the results in Section
10.2.

106



Chapter 11

Accomplishments and
future works

This chapter describes the accomplishments and suggests topics for further
work related to the apps and the library developed in this thesis. One
section is dedicated to each app and library.

11.1 NFC protocol tester app evaluation

The NFC protocol tester app is designed to assist tag developers in testing
their proprietary commands. These commands are entered as byte values
separated by a dot. The user enters the command and places the phone
close enough to the tag that it is detected. The screen then displays the
tags supported technologies. In the end, the user pushes the "Transmit
command" button, and the tag’s response to the command is displayed.
This process is depicted in the pictures in Figure 11.1.

This section evaluates the accomplishments of this app and discusses
what future work should be done to improve its usefulness.

11.1.1 Accomplishments

This app has accomplished transmission of user defined commands to a tag.
It has also accomplished reading from and writing to the tags memory. The
app enables transfers of commands to any tag type as long as it is supported
by the NFC communication library. The app is designed to be used in the
development of Zaher’s tag to test its command set. This tag is not yet
produced and thus the functionality has been tested with a NFC Forum Tag
1 Type, which is able to execute the command set defined by this standard
and responds as expected.

11.1.2 Future improvements

Some features are desirable, such as inputting the commands in hexadec-
imal instead of dot delimited byte values. Additionally, it could be desir-
able to enable users to store the created commands so that it is not needed

107



(a) Command input (b) Selecting technology (c) Command transferred

Figure 11.1: NFC protocol tester app

to construct them multiple times. Another feature could be to enable the
user to pair commands with expected results, to allow the app to execute
sets of these commands in sequence and observe if the responses match,
and report the ones that do not match. This could be used to enable auto-
matic testing of the produced tags to ensure that newly added changes do
not affect the behavior of already tested commands. This enables a leaner
development approach to designing the command set of tags.

In the development phase of a tag, it is not always desirable to
implement the full CRC check before testing the tags command set. This is
because implementation of calculating the CRC on a IC chip is an extensive
piece of work. Therefore, it could be desirable to add a feature that allows
the app to read the response even though the CRC fails. In the development
of Zaher’s tag, the initial tests do not require CRC checks. However, this
feature requires extensive work to be done with the NFC Communication
library as this unit then needs to use its own native libraries to communicate
with the NFC hardware and enable the forwarding of data even though it
does not pass the CRC.

11.2 NFC benchmark app evaluation

The NFC benchmark app enables automatic benchmarking of all tag types
that are supported by the NFC communication library developed in this
work.

11.2.1 Accomplishments

This app enables automatic benchmarking of tags and this is firmly tested
through the experiment described in Chapter 8. Seven benchmarking pro-

108



cedures are automated through the app, and an additional two benchmark-
ing procedures are available for testing by being run manually. This app
also enables storing of benchmarking results to a database for further anal-
ysis. It has through this work been used as a tool for supporting Zaher in
developing his tag, which was one of the key objectives.

11.2.2 Future improvements

The results gained from observing the power consumption display great
variation, which indicates inaccurate measurements. This seems to be
related to the method of monitoring the battery consumption. There
are systems that give more accurate results by observing built-in battery
voltage sensors such as described here [64]. These systems could
significantly improve the accuracy of the estimated energy consumption of
tag operations.

11.3 NFC communication library

The NFC communication library is designed to enable simplified commu-
nication with NFC tags. In this section, the accomplishments related to this
library and future works are described.

11.3.1 Accomplishments

The library is extensively used by two apps to provide communication with
five NFC tags based on five different standards. The library allows apps
to perform read and write operations, both in the form of NDEF messages
and binary data, to the tags memory. It also allows apps to send their own
constructed commands to the tag and receive a response.

11.3.2 Future improvements

Migration of this library towards a service solution could enable other
apps to share its functionality such as described in Chapter 4. The
library is currently tailored to work with the tags introduced in Chapter
3. However other tags exist and further work should be aimed at enabling
communication with these as well.

109



110



Bibliography

[1] Grant Allen and Mike Owens. The Definitive Guide to SQLite.
Apress, 2010.

[2] An introduction to video content analysis industry guide. BSIA -
british security industry association. 2009.

[3] Jose Bravo et al. ‘Enabling NFC Technology for Supporting Chronic
Diseases: A Proposal for Alzheimer Caregivers’. In: must find journal
(2008), p. 17.

[4] Gregor Broll et al. ‘Improving the Accessibility of NFC/RFID-based
Mobile Interaction through Learnability and Guidance’. In: must
find journal (2009), p. 10.

[5] Barry Burd. Android Application Development All-in-One For Dum-
mies. Hoboken, NJ: John Wiley & Sons, 2011.

[6] Ed Burnette. Hello, Android: Introducing Google’s Mobile Develop-
ment Platform. 2nd. Pragmatic Bookshelf, 2009. ISBN: 1934356492,
9781934356494.

[7] Hames Cadle and Donald Yeates. Project Management for Informa-
tion Systems. fifth edition. Pearson, 2008.

[8] Aage Dahl. Version git checkout bddf7bd. URL: https://bitbucket.org/
aahdahl/no.as.gold.utils.simplemessenger.

[9] Aage Dahl. Version git checkout 4004a7c. URL: https://bitbucket.org/
aahdahl/no.as.gold.nfc.communication.

[10] Aage Dahl. Version git checkout 51bfabe. URL: https://bitbucket.org/
aahdahl/no.as.gold.nfc.

[11] Aage Dahl. Version git checkout aeaf02a. URL: https://bitbucket.org/
aahdahl/no.as.gold.nfc.benchmark.

[12] Gauthier Van Damme and Karel Wouters. ‘Practical Experiences
with NFC Security on mobile Phones’. In: (2009).

[13] Android Developers. Fragments. Last accessed: 29.03.14. Google.
URL: http:/ /developer.android.com/guide/components/fragments.
html.

[14] David Dressen. ‘Considerations for RFID Technology Selection’. In:
Atmel Applications Journal (2004), pp. 45–47.

111

https://bitbucket.org/aahdahl/no.as.gold.utils.simplemessenger
https://bitbucket.org/aahdahl/no.as.gold.utils.simplemessenger
https://bitbucket.org/aahdahl/no.as.gold.nfc.communication
https://bitbucket.org/aahdahl/no.as.gold.nfc.communication
https://bitbucket.org/aahdahl/no.as.gold.nfc
https://bitbucket.org/aahdahl/no.as.gold.nfc
https://bitbucket.org/aahdahl/no.as.gold.nfc.benchmark
https://bitbucket.org/aahdahl/no.as.gold.nfc.benchmark
http://developer.android.com/guide/components/fragments.html
http://developer.android.com/guide/components/fragments.html


[15] Klaus Finkenzeller. RFID Handbook: Fundamentals and Applica-
tions in Contactless Smart Cards and Identification. 2nd ed. New
York, NY, USA: John Wiley & Sons, Inc., 2003. ISBN: 0470844027.

[16] NFC Forum. Bluetooth Secure Simple Pairing Using NFC. 18.10.2011.
URL: http://www.nfc-forum.org/resources/AppDocs/NFCForum_AD_
BTSSP_1_0.pdf.

[17] NFC Forum. Type 1 Tag Operation Specification. NFC Forum.
13th Apr. 2011.

[18] NFC Forum. Type 2 Tag Operation Specification. NFC Forum.
31st May 2011.

[19] NFC Forum. Type 3 Tag Operation Specification. NFC Forum.
28th June 2011.

[20] NFC Forum. Type 4 Tag Operation Specification. NFC Forum.
28th June 2011.

[21] K. R. Foster and H. P. Schwan. ‘Dielectric Permittivity and Electrical
Conductivity of biological Materials’. In: CRC Handbook of biologi-
cal Effects of Electromagnetic Fields. Ed. by C. Polk and E. Postow.
1986, pp. 25–96.

[22] Martin Fowler. Patterns of Enterprise Application Architecture.
Addison-Wesley, 2003.

[23] Eric Freudenthal et al. ‘Suitability of NFC for Medical Device
Communication and Power Delivery’. In: must find journal (2007),
p. 4.

[24] Stefano Levialdi Ghìron et al. ‘NFC Ticketing: A Prototype and
Usability Test of an NFC-Based Virtual Ticketing Application’.
In: First International Workshop on Near Field Communication
(2009), pp. 45–50.

[25] Google. Android. Last accessed 20.05.2013. URL: http://developer.
android.com/index.html.

[26] Javier Gozalvez. ‘First Google’s Android Phone Launched’. In: IEEE
VEHICULAR TECHNOLOGY MAGAZINE (2008), p. 8.

[27] Jeffrey Hightower and Gaetano Borriello. ‘A Survey and Taxonomy
of Location Systems for Ubiquitous Computing’. In: (2001).

[28] Nadav Hochman and Raz Schwartz. ‘Visualizing Instagram: Tracing
Cultural Visual Rhythms’. In: AAAI Technical Report WS-12-03
Social Media Visualization (2012), pp. 6–9.

[29] Identification cards - Contactless integrated circuit(s) cards -
Proximity cards. Norm. 2000.

[30] Identification cards - Contactless integrated circuit(s) cards -
Proximity cards - Part4: Transmission protocol. Norm. 2001.

[31] Antonio J. Jara et al. ‘Evaluation of the security capabilities on NFC-
powered devices’. In: must find journal (2010), p. 9.

112

http://www.nfc-forum.org/resources/AppDocs/NFCForum_AD_BTSSP_1_0.pdf
http://www.nfc-forum.org/resources/AppDocs/NFCForum_AD_BTSSP_1_0.pdf
http://developer.android.com/index.html
http://developer.android.com/index.html


[32] JIS X 6319-4 - Specification of implementation for integrated
circuit(s) cards - Part 4: High Speed proximity cards. Japanese
Standards Association, 20th July 2005.

[33] CoryD Kidd et al. ‘The Aware Home: A Living Laboratory for Ubiq-
uitous Computing Research’. In: Cooperative Buildings. Integrat-
ing Information, Organizations and Architecture. Lecture Notes
in Computer Science 1670 (1999). Ed. by NorbertA Streitz et al.,
pp. 191–198. DOI: 10.1007/10705432\_17. URL: http://dx.doi.org/
10.1007/10705432%5C_17.

[34] Josef Langer, Christian Saminger and Stefan Grunberger. ‘A COM-
PREHENSIVE CONCEPT AND SYSTEM FOR MEASUREMENT
AND TESTING NEAR FIELD COMMUNICATION DEVICES’. In:
must find journal (2009), p. 6.

[35] Lazierthanthou. SQLite Manager. Last accessed: 15.04.14. Mozilla.
URL: https : / / addons . mozilla . org / en - US / firefox / addon / sqlite -
manager/.

[36] Richard G. Mair. ‘Protocol-Independent Detection of Passive
Transponders for Near-Field Communication Systems’. In: must
find journal (2010), p. 6.

[37] R. Meier. Professional Android 4 Application Development. Wrox
Professional Guides. Wiley, 2012. ISBN: 9781118102275. URL: http:
//books.google.no/books?id=bmJIl%5C_wPgQsC.

[38] MF1 IC S50 - Function specification. Product data sheet. NXP
Semiconductors, 15th Jan. 2007.

[39] Thomas B. Moeslund et al., eds. Visual Analysis of Humans -
Looking at people. Springer, 2011.

[40] Juergen Morak et al. ‘Feasibility of mHealth and Near Field Commu-
nication Technology based Medication Adherence Monitoring’. In:
must find journal (2012), p. 4.

[41] Nokia. Introduction to NFC. Nokia, 19th Apr. 2011.

[42] Open Handset Alliance. Last accessed: 30.03.14. URL: http://www.
openhandsetalliance.com/.

[43] Charl A. Opperman and Gerhard P. Hancke. ‘Using NFC-enabled
Phones for Remote Data Acquisition and Digital Control’. In: must
find journal (2011), p. 6.

[44] Marc Pasquet. ‘Secure payment with NFC mobile phone in the
SmartTouch project’. In: Collaborative Technologies and Systems
(2008), pp. 121–126.

[45] David Michael Peterson. ‘Tissue equivalent phantom development
for biomedical applications’. In: (2009).

[46] R. Pethig. ‘Dielectric properties of body tissues’. In: Clin. Phys.
Physiol. Meas. 8 (1987), pp. 5–12.

113

http://dx.doi.org/10.1007/10705432\_17
http://dx.doi.org/10.1007/10705432%5C_17
http://dx.doi.org/10.1007/10705432%5C_17
https://addons.mozilla.org/en-US/firefox/addon/sqlite-manager/
https://addons.mozilla.org/en-US/firefox/addon/sqlite-manager/
http://books.google.no/books?id=bmJIl%5C_wPgQsC
http://books.google.no/books?id=bmJIl%5C_wPgQsC
http://www.openhandsetalliance.com/
http://www.openhandsetalliance.com/


[47] Android Open Source project. Android Developer Tools. Last ac-
cessed: 17.04.14. Google. URL: http://developer.android.com/tools/
help/adt.html.

[48] Android Open Source project. Android Development official web
page. Last accessed: 02.04.14. Google. URL: http://developer.android.
com/.

[49] Android Open Source project. Communicating with Other Frag-
ments. Last accessed: 17.04.14. Google. URL: http : / / developer .
android.com/training/basics/fragments/communicating.html.

[50] Android Open Source project. Processes and Threads. Last accessed:
17.04.14. Google. URL: http : / / developer . android . com / guide /
components/processes-and-threads.html.

[51] Jukka Riekki, Ivan Sanchez and Mikko Pyykkonen. ‘NFC-Based User
Interfaces’. In: must find journal (2012), p. 7.

[52] Hiroshi Sakai and Akira Arutaki. ‘Protocol Enhancement for Near
Field Communication (NFC): Future Direction and Cross-Layer
Approach’. In: must find journal (2011), p. 6.

[53] NXP Semiconductors. NTAG203 - NFC Forum Type 2 Tag compli-
ant IC with 144 bytes user memory. NXP Semiconductors. 12th Dec.
2011.

[54] Philips Semiconductors. mifare DESFire Contactless Multi-Application
IC with DES and 3DES Security MF3 IC D40. Norm. Philips Semi-
conductors. Philips Semiconductors, Apr. 2005.

[55] James C. Sheusi. Android application development for Java pro-
grammers. Course Technology PTR, 2013.

[56] Mario Marques da Silva. Multimedia Communications and Net-
working. CRC Press, 2012.

[57] Ryan Smith. Using Mifare Classic Tags. Skyetek Inc, Apr. 2005.

[58] Esko Strömmer et al. ‘Application of Near Field Communication for
Health Monitoring in Daily Life’. In: must find journal (2006), p. 4.

[59] Busra Ozdenizci Vedat Coskun Kerem Ok. NEAR FIELD COMMU-
NICATION: FROM THEORY TO PRACTICE. John Wiley & Sons,
Inc., 2012. ISBN: 978-1-119-97109-2.

[60] Deepak Vohra. Java EE development with Eclipse. Packt Publishing,
2012.

[61] A Voss et al. ‘Influence of Low Sampling Rate on Heart Rate
Variability Analysis Based on Non-linear Dynamics’. In: Computers
in Cardiology (1995), pp. 689–692.

[62] Mark Weiser. ‘The computer for the twenty-first century.’ In: Scien-
tific American (1991), pp. 94–104.

[63] Karim Yaghmour. Embedded Android. Sebastopol, CA: O’Reilly
Media, 2013.

114

http://developer.android.com/tools/help/adt.html
http://developer.android.com/tools/help/adt.html
http://developer.android.com/
http://developer.android.com/
http://developer.android.com/training/basics/fragments/communicating.html
http://developer.android.com/training/basics/fragments/communicating.html
http://developer.android.com/guide/components/processes-and-threads.html
http://developer.android.com/guide/components/processes-and-threads.html


[64] Lide Zhang et al. ‘Accurate Online Power Estimation and Automatic
Battery Behavior Based Power Model Generation for Smartphones’.
In: (2010).

115


	I Introduction
	Introduction
	Problem statement
	Contribution
	Methods
	The implant
	Power source
	Memory
	Communication speed
	Read/write
	Anti-collision
	Computation
	Security

	Thesis structure

	Identification systems
	Automatic identification system
	Radio frequency identification
	Transponder (RFID tag)
	Passive transponder (passive tags)
	Active transponder (active tags)

	Reader

	Near field communication
	Communication modes
	Active
	Passive

	Operating modes
	Read/write
	Peer-to-peer
	Card-emulation


	NFC tags
	Protocols
	Conclusion

	NFC tags
	NFC Forum Type 1 Tags
	Memory
	Read command
	Write command
	Discussion
	Topaz 512

	NFC Forum Type 2 Tags
	Memory
	Read command
	Write command
	Discussion
	NTAG203

	NFC Forum Type 3 Tags
	Memory
	Read command
	Write command
	Discussion
	FeliCa Lite-S

	NFC Forum Type 4 Tags
	Memory
	Read command
	Write command
	Discussion
	Mifare Desfire

	MIFARE Classic
	Memory
	Security
	Read command
	Write command
	Discussion
	MF1S50

	Conclusion

	Android OS
	History
	Android architecture
	Linux Kernel
	Native Layer
	Application Framework
	Application layer

	Software components
	Services
	Intent
	Activity
	Fragment
	SQLite

	App development with Android

	Design patterns
	MVC pattern
	Singleton pattern
	Factory pattern
	Wrapper pattern


	II Design and implementation
	App design
	Requirements
	Requirements decomposition
	Tag communication
	Tag benchmarking
	Tag protocol testing

	Overview
	NFC benchmark app functionality and UI
	Benchmark tests
	Persistence

	NFC protocol tester app functionality and UI
	Architecture
	Messaging system module
	NFC communication library module
	NFC benchmark app modules
	Activity module
	Fragments module
	Domain module
	Persistence module

	NFC protocol tester modules
	Activity module
	Fragments module
	Domain module
	Persistence module



	App implementation
	Messaging system
	NFC communication library
	NFC benchmark app
	Domain
	Persistence
	Fragments
	Activity

	NFC protocol tester app
	Domain
	Persistence
	Fragments
	Activities
	Evaluation


	The experiment
	The experiment 
	Design
	Phone settings

	Experiment implementation
	Composition
	Experience
	Unexpected behavior

	Data collection
	Persistence
	Extraction


	Data presentation
	Round trip time
	Read communication performance
	Without saline solution
	With saline solution
	Summary

	Read all communication performance
	Write communication performance
	Without saline solution
	With saline solution
	Summary

	Battery performance while reading
	Battery performance while writing
	Battery performance while powering


	III Conclusion
	Analysis
	Displacement
	Communication performance
	Energy consumption

	Saline solution
	Communication performance
	Energy consumption

	Tag type
	Communication performance
	Energy consumption

	Experiment conclusion

	Accomplishments and future works
	NFC protocol tester app evaluation
	Accomplishments
	Future improvements

	NFC benchmark app evaluation
	Accomplishments
	Future improvements

	NFC communication library
	Accomplishments
	Future improvements




