
Algebraic Component
Composition in the UML

Martin Harbu Bielecki
Master’s Thesis Spring 2014

Algebraic Component Composition in the
UML

Martin Harbu Bielecki

2nd May 2014

ii

Abstract

A software component is a reusable, high-level software entity with
provided and required interfaces. Software components can be com-
posed together in order to build software systems. When modeling
component-based software, the traditional way is to manually attach
their provided and required interfaces. This way of modeling is suppor-
ted by the Unified Modeling Language, which is an OMG standard for
object-oriented modeling.

As an alternative to this traditional approach, algebraic component
composition is an approach that emphasizes the definition of atomic
components and their compositions in an algebraic manner. The
compositions are done via algebraic expressions. The result of
an algebraic expression is a new composite component which is
automatically derived from the components used in the expression.
Component-based modeling in the algebraic manner is not supported
by the standard UML.

The result of this master’s thesis is a prototype which creates UML
models of components and algebraic component compositions. The
prototype accepts a textual specification of the model which it type-
checks and translates to the corresponding UML model. A UML profile
is used to extend the UML metamodel to support algebraic component
composition.

iii

iv

Contents

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 2
1.3 Problem statement . 3
1.4 Methods . 3
1.5 Thesis outline . 5

2 Components, component models and the UML 7
2.1 Introduction . 7
2.2 Component-based software engineering 8
2.3 What are components and component models? 9
2.4 The Unified Modeling Language (UML) 12
2.5 The term “model” defined . 13
2.6 Summary . 14

3 A look at different component models 17
3.1 Introduction . 17
3.2 "Real-world" components . 17
3.3 The rCOS Modeler . 21
3.4 Issues with the current state of rCOSP 27
3.5 Algebraic composition operators 29
3.6 Related work . 31
3.7 Summary . 31

4 The rCOSPN language 33
4.1 Introduction . 33
4.2 The goals of the language . 33
4.3 What is new? . 34
4.4 Component composition operators 38
4.5 Airport example revisited . 44
4.6 Summary . 47

5 From code to model 49
5.1 Introduction . 49
5.2 Technology stack . 49
5.3 The UML profile . 53
5.4 The structure of the semantic UML models 54
5.5 How rCOSPN gets translated to a UML model 55

v

5.6 Example: creating the airport UML model 59
5.7 Summary . 62

6 Type-checking and model validation 63
6.1 Introduction . 63
6.2 Type-checking . 63
6.3 Model validation . 64
6.4 Type-checking and model validation rules 65
6.5 Examples . 68
6.6 Summary . 69

7 Discussion 71
7.1 Introduction . 71
7.2 Prototype tool design decisions 71
7.3 Tool limitations . 75
7.4 Alternatives to UML profiles 76
7.5 Two worlds of component composition 77
7.6 Algebraic composition in "real-world" component-based

modeling . 80
7.7 Summary . 80

8 Conclusion 81
8.1 Introduction . 81
8.2 Summary and Results . 81
8.3 Future work . 82

A Full airport examples and UML model 85
A.1 Complete airport specification in rCOSP 85
A.2 Complete airport specification in rCOSPN 87
A.3 Complete airport UML model 89

vi

List of Figures

1.1 rCOS components are built on top of UML components . . 4

2.1 The traditional view of a component based-system. Figure
derived from [Crn+11]. 9

2.2 A semantic UML model . 14
2.3 A graphical component diagram 14

3.1 Layers of the OSGi framework 18
3.2 Method invocation in CORBA 20
3.3 The UML component diagram of the airport 24
3.4 The rCOS component diagram of the Gate components . . 28
3.5 The rCOS component diagram of the CustomerService

component . 29

4.1 UML diagram of parallel component CD 41
4.2 UML diagram of renamed component E 42
4.3 UML diagram of restricted component E 42
4.4 UML diagram of plugging component CD 43

5.1 Technology stack . 50
5.2 EMF relation between XML, UML and Java. Figure is

derived from [Ste+09], page 14 50
5.3 UML profile diagram . 55
5.4 UML structure as seen in Eclipse 56
5.5 The IGate interface and Gate component in UML 60
5.6 The CustomerService UML component 60
5.7 The CustomerService UML component diagram 61
5.8 The MyAirport UML component 61
5.9 The final component, MyAirport, in Eclipse 61

7.1 Component context . 74
7.2 The algebraic (above) and traditional (below) approach . . 79

vii

viii

List of Tables

4.1 Overview of notation used in operator definitions 39

6.1 Type-checking and model validation rules for the atomic
components . 66

6.2 Model validation rules for the binary composite components 66
6.3 Model validation rules for the unary composite components 67
6.4 Type-checking rules for the binary composition operators . 67
6.5 Type-checking rules for the unary composition operators . 67

ix

x

Acknowledgements

First of all, I would like to thank my supervisor Volker Stolz for ex-
cellent guidance, helpful discussions during the work on this thesis
and for giving me a push in the right direction when I needed it. I
would also like to thank my family for supporting me, and the guys
at the eight floor for good company. Thanks to Simen and Audun for
proofreading. At last but not least, a special thanks to June for be-
ing understanding and supportive in the process of writing this thesis.

Martin Harbu Bielecki
University of Oslo

May 2014

xi

xii

Chapter 1

Introduction

This master’s thesis is done at the Precise Modeling and Analysis
(PMA) group at the Institute of Informatics at the University of Oslo.
The thesis aims at discovering how the Unified Modeling Language
(UML) can be used to support algebraic component composition when
modeling component-based software, and how the algebraic composition
approach compares to the more traditional component composition
approach offered in component models such as rCOS1. This involves
developing a prototype tool for creating such models from a textual
input specification, together with the ability to validate these models
in order to ensure model correctness. This chapter provides a short
background to the topic of software modeling and software components,
before moving on to the motivation behind the thesis, the problem
statement and the methodology. The last section describes the outline
of the thesis.

1.1 Background

Creating models of a software system serves different purposes during
software development and creates a better understanding of the system
for a diverse set of stakeholders. Creating system models as a way to
document the system specification is a widely used technique [Som06,
chapter 8]. This technique utilizes a set of graphical models that can
describe business processes, the problem domain, the behaviour and
structure of the system that is going to be programmed. The behaviour
models show how the system should behave, for example the data flow
or event reaction. The structural models describe the static structure
of the system and the relationship with the different entities, such as
classes and components. These models unify the understanding of the
domain for each project participant and is helpful in analysis, design
and development. Models help capturing the system requirements, and
it is cheaper to alter the model to accommodate for requirement changes
early in the development process than later, when it might require more

1http://rcos.iist.unu.edu/

1

work to get the change implemented. A software system model is an
abstraction of the problem at hand, and leaving out the details is the
most important aspect of such a model [Som06]. In an abstraction, the
parts and details that are not important are left out, so the result is a
model where only the interesting parts are present.

A software component is, in its simplest form, a reusable, high level
software entity which encapsulates its functionality and contains two
sets of interfaces, the required set and provided set, which serves as
"connectors" to the outside environment. A required interface of a
component specifies what the component needs in order to function
properly, and a provided interface exposes functionality which the
component offers. These components can be joined together by
attaching their interfaces, if they are compatible, to create software
systems. The joining of components through their interfaces is known
as component composition. Software components gave rise to a branch
in software engineering called component-based software engineering,
or CBSE for short [Som06].

A model of a component-based system is a structured model with a
high level of abstraction and describes the different component entities
and their relationships. The traditional way of viewing such models
is by defining the components, their interfaces and the links between
these interfaces and viewing them in graphical component diagrams.
This can be helpful to understand how the sub-components of a system
are put together.

1.2 Motivation

Creating graphical models in the UML is a widely used technique in
software development and a de facto standard for object-oriented mod-
eling [Som06]. A graphical UML diagram is a visualization of a semantic
UML model, which is a tree hierarchy of the elements that a model con-
sists of. The UML supports the modeling of software components in the
traditional way by specifying the components, the interfaces and the
links between these interfaces as model elements. The traditional com-
ponent composition approach emphasizes the connection of component
interfaces, without necessarily creating a new component in the process.
This is the approach utilized by the rCOS component model.

However, as an alternative to this traditional way of modeling
components, the rCOS component model proposes in a recent article
by Dong et al. [Don+13] a way to write textual specifications of
components which contains a set of atomic components (an atomic
component is not created from other components through composition)
and algebraic composition expressions, which denotes the compositions
of these components. The composition expressions are built up from
a set of predefined component operators, which are applied to the
components. The result of applying an operator to one or two (depending
on the operator type) components is a new component, which again

2

can be used to create other composite components. In other words, the
algebraic approach is a way of saying “take one or two components and
apply an operator to it for deriving a new component”. An algebraic
component composition expression can be arbitrarily long, and contain
sub-expressions. The new component is computed automatically. The
new composite component will contain a set of features, e.g. interfaces
and methods, which is based on the features of the operands and
the component operator used. This approach offers a new way of
modeling components which encourages the work flow of defining
atomic components and using the operators to create other components
to create the final model.

The problem is that there is no support in the UML to represent
such algebraic component compositions. There is no way to know which
components where used to create a composite components and what the
resulting component is going to look like. A "plain" UML component
does not contain this information by itself, so we need a way to add it to
the UML model without the need to do any manual modeling.

A common approach to extend the UML is with the use of UML
profiles. A profile is a UML package which contains stereotypes used to
create custom model elements by extending existing ones. The profile
is then applied to a UML model. When the model is created, a natural
step in the model development process is for the developer, designer
or analyst to be able to validate the UML model. This is necessary to
ensure correct compositions and component specifications.

1.3 Problem statement

The motivation above can be used to formulate the two following main
problem statements:

1. How can the Unified Modeling Language, extended with a UML
profile, be used to support and represent models of textual
algebraic component specifications?

2. What are the benefits of the algebraic component composition
approach in component-based modeling?

1.4 Methods

1.4.1 Literature studies

Literature studies form the base of the research done in this master
thesis. A lot of literature can be found which covers the fields of com-
ponents, component models, component-based engineering, component
modeling and the UML. One of the more well-known books about com-
ponent software is written by Szyperski [Szy02], and Fowler [Fow03]
provides a nice introduction to the UML. The literature about the
rCOS method, tool and component model, especially the ones covering

3

component specification and composition operators, e.g. [Don+13] were
highly relevant as well. For the full list of literature, please refer to the
reference section.

1.4.2 Prototype implementation

A part of this thesis is an implementation of a prototype tool which
creates UML models, applied with a profile, of the textual algebraic
component specifications mentioned in the motivation. The prototype
developed is an extension to the existing rCOS tool. The rCOS
components act as a layer on top of the UML (see figure 1.1). The
rCOS tool offers functionality for creating UML models from a textual
component specification (the language is called rCOSP) and contains
a UML profile for creating models of rCOS components. However,
the tool does not yet support algebraic component composition and
the creation of UML models from algebraic specifications. Section 3.3
provides an example of how the rCOS tool, with the use of rCOSP,
creates specifications of components.

Being able to work on an extension to this tool was an advantage
because it was possible to reuse functionality already implemented
in the tool. The final prototype parses a component specification
written in a domain specific language (called rCOSPN) that supports
algebraic component specifications, type-checks it and translates this
specification to a semantic UML model. The model can be validated
at all times after its creation to ensure correctness if it is altered. The
prototype runs on the Java Virtual Machine and was implemented using
Test-driven development. The prototype can be found at http://www.mn.
uio.no/ifi/english/research/groups/pma/completedmasters/2014/bielecki/.

rCOS components

UML components

Figure 1.1: rCOS components are built on top of UML components

1.4.3 Tool evaluation

Several design decisions arose during development. We discuss the
impact of them in chapter 7. We evaluated both the rCOSP and
the rCOSPN languages based on the software model of a small
airport. The component specification language and algebraic component
composition approach was compared with the traditional way of
component composition.

4

http://www.mn.uio.no/ifi/english/research/groups/pma/completedmasters/2014/bielecki/
http://www.mn.uio.no/ifi/english/research/groups/pma/completedmasters/2014/bielecki/

1.5 Thesis outline

The thesis is outlined as follows:

Chapter 1: Introduction gives an overview of the thesis topic, de-
scribes the motivation, problem statement and methodology.

Chapter 2: Components, component models and the UML gives a
general background on component-based software engineering, defines
components and component models and gives a brief introduction to the
Unified Modeling Language (UML) and explains what we mean by the
term "UML model".

Chapter 3: A look at different component models will see how
components and component models are used in the "real world", and
gives an introduction to rCOS, an academic component model and soft-
ware engineering tool for component specification and composition. This
chapter will also introduce the algebraic component composition as a
new way to create models of component systems.

Chapter 4: The rCOSPN language introduces a new component spe-
cification language which focuses on easy component specification with
support for algebraic component composition expressions.

Chapter 5: From code to model is a technical chapter which de-
scribes the implementation of the rCOSPN language and how the UML
model is constructed from an rCOSPN specification. This includes a
study of the relevant part of the rCOS UML profile.

Chapter 6: Type-checking and model validation will show how the
rCOSPN specification, and the composition expressions in particular, is
type-checked during parsing and how the UML model can be validated
to ensure the correctness of the model after its creation.

Chapter 7: Discussion looks at prototype design decisions, tool limit-
ations, alternatives to using UML profiles and compares the algebraic
approach with the traditional approach of component composition.

Chapter 8: Conclusion and future work provides a summary of the
work and describes possibilities for future work.

5

6

Chapter 2

Components, component
models and the UML

2.1 Introduction

The development process of software projects can be hard and complex
to understand. To get a better understanding of the problem domain
and structure of the software application being developed, the Unified
Modeling Language1 (UML) offers a wide variety of diagrams to help
development teams in the development process. Diagrams such as
class-, sequence- and use case diagrams are widely used techniques in
describing and visualizing the static structure of software applications,
object interaction and user interactions, respectively. The use of these
diagrams are widely standardized in modeling object-oriented software.

The UML also offers functionality to describe and visualize software
on a higher level of abstraction than using class diagrams, namely
with the use of component diagrams. A software component groups
together related functionality to form a bigger entity, and communicates
with other components through required and provided interfaces. How
the components are constructed and plugged together is defined in a
component model. The UML component diagrams help visualize the
components, how they are wired together (their relations), and the
interfaces they provide and require. The component diagrams make
up a high level visualization of an entire system or its subsystems.
However, software components is not something that only exists
within the UML world. During the late 1990s, a branch in software
engineering called component-based software engineering (CBSE for
short), appeared [Som06]. As the name implies, CBSE makes heavy use
of components, and its foundation is the composition of reusable and
standardized components.

This background chapter will begin with a brief overview of
what component-based software engineering is, before explaining the
concepts of software components and component models. We will also

1http://www.uml.org/

7

give a brief overview of the Unified Modeling Language and UML
profiles.

2.2 Component-based software engineering

The foundation of component-based software engineering is reusable,
standardized software components. The components that make up
a system is loosely coupled independent units which sit on top of
an underlying platform (see figure 2.1), and the essence of CBSE
is how to define, implement and integrate these components into
systems [Som06]. The use of existing components, which can be third
party, can make the development of big software projects go faster,
since much of the functionality required may already exist in these
components. The components can then be mixed and matched together
using some “glue code” to produce, at least some part of, the system.
Sommerville [Som06] defines four key characteristics of CBSE.

1. The implementation of the components are hidden from their
interfaces. This means that one component could be swapped with
another without changing the behaviour of the application if they
provide the same functionality specified by their interfaces.

2. To make component integration easier, component standards
define how components should communicate and how their
interfaces should be described. These standards are a part of a
software component model.

3. Middleware is needed to glue the components together and
support component integration. The CORBA middleware is an
example of such middleware, and we will look at the CORBA
Component Model in section 3.2.2.

4. A special development process that is focused toward CBSE is
required. A rough overview over such a process is to first search
for suitable components, before doing a selection of the available
components and validate that they will work together.

Component vendors that base their business on development and
sale of components is the long-term vision of CBSE. However, since the
components can be black-box units where the code may not be available,
there is a problem when it comes to trust. The components can have
undocumented failures and non-functional properties which makes the
component not behave as expected. Because of this, most components
are developed and reused within a company [Som06].

8

 <<component>> <<component>>

<<Platform>>

Figure 2.1: The traditional view of a component based-system. Figure
derived from [Crn+11].

2.3 What are components and component mod-
els?

The word component is a broad and widely used term, and is not
only used within the software and computer science areas. A general
definition of a component is an entity that is a part or element of
a larger whole, especially a part of a machine or vehicle 2. This
section will give definitions and further explanation of the terms
“software component” and “component model”, and explains the concept
of component composition. The basic principles of these three elements
are rather straight forward.

2.3.1 Software components

A computer has different hardware components such as CPU, memory
modules, hard drives and external devices that together make up a
complete system. The hardware components communicate through
interfaces, and upgrading a component, for example the memory
module, is easy if the new memory module complies to the interface
offered by the motherboard. Similarly, a software application can be
composed of many software components such as a database component,
a user interface component and a component that handles the business
logic. These components can again be composed of even smaller
components. There is no set size of components, and they can be as

2http://www.oxforddictionaries.com/definition/english/component?q=component

9

small or as large as the component developer wants. It can be easy to
believe that components and object orientation (OO) goes hand in hand,
but it is not an absolute requirement that components contain classes
and objects in the normal setting of the object oriented paradigm.
They can, according to [Szy02] also be implemented using traditional
procedures or consist of global static variables and methods. Purely
functional entities using a functional programming language can also
be an approach to create components. The implementation behind
a component does not matter much, as long as its specification in
terms of provided and required interfaces is clear. Each component
is independent of other components, and can be composed together
with other components to form an application. The composition will
be explained and explored later, but it is important to note that
composition is a major part of components. Without the ability to
compose components together, the components would not be of much
use beside what they implement on their own. The definition found in
Szyperski’s book [Szy02] defines components as follows:

Definition 2.1 (Software Component). A software component is a
unit of composition with contractually specified interfaces and explicit
context dependencies only. A software component can be deployed
independently and is subject to composition by third parties.

This definition is divided in two parts; a technical part and a
market-related part [Szy02]. The technical part covers independence,
composition and the interfaces. The “explicit context dependencies”
refers to the required interfaces, the composition of components defined
in the component model and what the component needs in order to be
deployed properly. The part about marketing is not of any particular
interest for us in this thesis, but it covers the bit about deployment and
third parties. There is another definition, found in [Crn+11], which is
more specific and also mentions component models.

Definition 2.2 (Software Component). A software component is a
software element that conforms to a component model and can be
independently deployed without modification according to a composition
standard.

As pointed out earlier, a software component specifies interfaces
(or sometimes called contracts), either provided, required, or both,
that it communicates through. The component encapsulates its
implementation from the outside environment. The required interfaces
specify the services a component need in order to function properly (the
explicit context dependencies), while the provided interfaces defines the
services it offers to other components (clients).

A component can contain any number of interfaces. Each method (or
operation) in the interfaces can be supplied with pre- and postconditions
(conditions that must be true before and after the method body has
been executed, respectively) and invariants if the component model

10

supports it. In the UML, the Object Constraint Language3 (OCL) is a
declarative language used for specifying these conditions. For example,
a simple postcondition to express that an object reference is not null
before returning it can be written as post: theObject != null. When
a client invokes a method and the input parameters and current state
of the component satisfy the precondition, the component providing the
method will make sure that the postcondition is met. If the precondition
is not met, the behaviour of the invocation is undefined. Invariants are
additions to pre- and postconditions which are conditions that must hold
true at all times during execution. Extra-functional requirements such
as resource and time usage can also be a part of the interfaces. For
example, a component that provides functionality for drawing diagrams
can be useful for a spreadsheet application, but useless for an animation
application if the time spent drawing is slow. Components can be
swapped with other components if the new component offers at least
the same functionality and requires no more than the old one, i.e. they
are interchangeable. A contract on how the component can be deployed,
instantiated and how the instances behave through the interfaces is
also provided as a part of the component specification (or rather, the
component model).

2.3.2 Component models

The purpose of a component model is to define a standard for
the implementation of components [Som06]. Some component models
also specify the documentation and deployment instructions for the
components. The definition found in [Crn+11] defines a component
model to be the following:

Definition 2.3 (Software Component). A Component model defines
standards for (i) properties that individual components must satisfy,
and (ii) methods for composing components.

The standards make sure that the components that are developed
within it can operate and be composed together. The most well-known
models are the CORBA component model from the Object Management
Group (OMG), the Enterprise Java Beans model from Sun (now Oracle),
and the COM+ model from Microsoft [Som06]. However, many others
exist, and different models target different domains [Crn+11]. We will
take a look at a couple of different component models in the next
chapter.

As described in the previous section, the interface specification
defines a component. The component model describes the definition
of the interfaces, that is, the name, parameters and exceptions of the
operations. The usage information contains naming conventions, meta-
data and a description of how the component can be customized to the
application environment. The deployment information is an important

3http://www.omg.org/spec/OCL/

11

part of the model and specifies how the component should be packaged
for deployment as an independent, executable unit [Szy02].

2.3.3 Composition of components

The process of composing components together is, naturally, an
important aspect of component models. Sommerville [Som06] lists three
ways of component composition:

• Sequential composition: the components are executed in
sequence.

• Hierarchical composition: one component is directly using the
(at least some) of the services provided by another component.

• Additive composition: at least two components are added
together to form a new component. The interfaces of the new
component are the composition of the constituent components,
with possible duplicated operations removed.

Some glue code might be necessary to complete the compositions, but
incompatibilities between the components can occur. For example, para-
meter incompatibilities between a method call and a declared method
happens when the parameter types or number of parameters are differ-
ent. Operation incompatibilities occurs when the names of the required
and provided interfaces are different. Operation incompleteness is the
case where the provided interface(s) of a component is a proper subset of
the required interfaces of another component. To solve these incompat-
ibilities, an adaptor component is created to glue the other two compon-
ents together. The process of creating connections between components
is also known as the binding of components [Don+13].

2.4 The Unified Modeling Language (UML)

The Unified modeling Language, or the UML for short, is a de
facto standard for object-oriented modeling [Som06], and is managed
by the Object Management Group4 (OMG). The UML offers various
diagramming abilities to aid software developers and designers in the
software development process. Fowler [Fow03] lists three different
modes that people use UML for:

• Using UML as a sketch to quickly communicate some aspect of
the system. This is the activity most people use UML for.

• Using UML as a blueprint in cases where we want a complete
and detailed design of the system.

• Using UML as a programming language for drawing diagrams
that can be compiled/translated to code directly.

4http://www.omg.org/

12

The graphical diagrams in the UML can be divided into two types,
structure diagrams and behaviour diagrams. Component diagrams
are placed under the structure diagram classification, together with,
among others, class diagrams. Among the most well-known behaviour
diagrams are use case diagrams and sequence diagrams.

The modeling elements are backed by a metamodel. The metamodel
is a model which defines the concepts of the language [Fow03].
Unfortunately, the UML metamodel does not cover model facilities
for every application domain. Sometimes there are elements in the
domain for which there are no equivalent model elements in the UML
metamodel. As a remedy for this limitation, the UML is easy to extend,
and in fact is designed to be extended [CD00]. For these cases, a solution
is to create a UML profile that is tailored towards the particular domain.
A UML profile is a package that extends a reference metamodel [Gro11],
for example the UML metamodel. The goal of a profile is to adapt
the metamodel to the specific domain [Gro11]. A profile can contain
stereotypes. Stereotypes allow the developer or designer to create new
modeling elements by extending existing ones. Users of the UML can
then apply the customized UML profile to their model in order to use
these stereotypes.

While a UML profile extends a (UML) metamodel, there is another
way to define custom UML model elements. This is to create a custom
metamodel which suits the domain at hand. This is discussed in
chapter 7 where we look at alternatives to using profiles.

2.4.1 A note on nested classifiers in the UML

The UML Superstructure specification [Gro11] defines a UML classifier
as the following: ”A classifier is a classification of instances, it describes
a set of instances that have features in common”. For example, classes,
interfaces and components are considered classifiers in the UML. These
classifiers can be nested, i.e. be defined within other classifiers. In
this thesis, we say that the classifier defined within another classifier is
local to the enclosing classifier. For example, component A can contain
component B, where the B is local to A. The effect of this is to reduce
the visibility of classifiers which are not “relevant” for other than the
enclosing classifier.

2.5 The term “model” defined

The word “model” is ambiguous, and its meaning depends on the context
the word is used in. Generally when talking about UML models, it is
implicitly given that it is the graphical UML models that are talked
about. In this thesis we define a UML model as a collection of model
elements, which again contains a set of features. This definition is
a derivative of the definition found in [WK03]. This definition is also
in line with the Object Management Groups description of an UML

13

model in the UML Superstructure specification [Gro11] which says that
”It contains a (hierarchical) set of elements that together describe the
system being modeled”. We call this the semantic UML model. An
example can be seen in figure 2.2.

The semantic UML model is not tied to any particular UML
diagrams. However, the semantic UML model in the sense we just
defined can be drawn as one or more graphical diagrams. We say that
the diagram shows the model [WK03]. Each type of diagram shows the
model from a different viewpoint. Even though an element is present
in the model, it does not necessarily have to be drawn in the diagram.
A component diagram of the semantic UML model in figure 2.2 can be
seen in figure 2.3.

Figure 2.2: A semantic UML model

StudentRegisterDatabase

IDatabase

Figure 2.3: A graphical component diagram

2.6 Summary

Component-based software engineering (CBSE) is a software develop-
ment approach where one uses and assembles components to create a
system. A component is a software entity which exposes interfaces, both
required and provided. The interfaces are used to communicate with
other components, and the required interface of one component can be
plugged into the provided interface of another component if they are
compatible. A component model defines a standard for the implementa-
tion of components and component composition.

14

The Unified Modeling Language (UML) is a standard for object-
oriented modeling and supports a wide array of graphical model
diagrams. The UML can be extended with UML profiles to support new
types of model elements. In this thesis, the semantic UML model, which
we simply call the UML model, is a hierarchical representation of the
model elements. We say that the graphical diagrams show the UML
model from different viewpoints.

15

16

Chapter 3

A look at different
component models

3.1 Introduction

The previous chapter covered the theoretical background of components,
component models, component-based software engineering and the
UML. In this chapter we will take a look at a couple of component
models to see how the theory is put into practice.

The chapter is organized as follows: the first section (section 3.2)
will present two component models used in "real-world" software. The
first one is the OSGi framework (section 3.2.1), which is a light-weight
component model on the Java platform. The second component model
we will look at is the CORBA Component Model (CCM) in section 3.2.2.
CCM is, together with Microsoft COM and Enterprise JavaBeans
(EJB) one of the most well-known and mature component models.
Section 3.3 will explore the rCOS1 component model (Refinement of
Component and Object Systems). We will explore how we can use
rCOSP, a component specification language bundled with rCOS, to
create a textual specification of a small airport system which consists
of different components and their compositions. This example will
demonstrate how the current way of component composition in rCOSP
works. Section 3.5 introduces the idea of algebraic component operators
as a tool for component composition. Using these composition operators
we can treat composition as an expression, where the new component
is computed as a result of the components used as operands in the
expression.

3.2 "Real-world" components

This section will present an overview of two component models used in
software, the OSGi framework and the CORBA Component Model, to
see how components can be utilized in practice.

1http://rcos.iist.unu.edu/

17

 Bundles

Execution environment layer

Hardware layer

Module layer

Life cycle layer

Service layer

S
e
c
u
r
i
t
y

Figure 3.1: Layers of the OSGi framework

3.2.1 The OSGi framework

OSGi2 is a framework for creating modular systems. It is the only
mature solution for Java today [BE13, p. 9]. The OSGi specification is
maintained by the OSGi alliance, and several implementations of the
specification exist. Two of the most popular implementations are the
Apache Felix3 and Eclipse Equinox4, the latter which the Eclipse IDE
is built on top of [BE13].

The OSGi functionality is layered, and the layer outline can be seen
in figure 3.1. The OSGi term for component is module, and in OSGi
they come in the form as bundles [The12] and are defined in the module
layer. A bundle is a collection of Java classes which are packaged in
a JAR-file. JAR stands for Java Archive, and is a way to create a
package of Java class files and other resources to make it available for
distribution. In OSGi, additional resources such as a manifest file is a
part of the JAR-file, and it describes what the JAR-file contains. The
bundles specify exported and imported packages and this information is
specified as headers in the manifest file. The exported packages contain
functionality that is provided by the bundle, and the packages that are
imported are the dependencies it requires. It is also possible to require
entire bundles. The OSGi 5 specification [The12] states that if a bundle
requires another bundle, the framework must include every exported
package from this bundle, and attach it to the requiring bundle. This
mechanism wires bundles directly together.

The life cycle layer handles the life cycle of the framework itself and
the bundles installed in the framework [BE13]. The specification says
that each bundle can be in a number of different states:

2http://www.osgi.org/Main/HomePage
3https://felix.apache.org/
4http://www.eclipse.org/equinox/

18

Installed: the bundle is installed in the framework. However, it can
not be started because of missing dependencies [BE13].
Resolved: every dependency of the bundle is available, and the bundle
is ready to start or has been stopped.
Starting: the bundle is starting.
Active: the bundle is running.
Stopping: the bundle has been stopped.
Uninstalled: the bundle is removed.

The bundle mechanism makes it possible for bundles to hide their
actual implementation from each other and expose their functionality
through interfaces. These interfaces can be implemented by Java
objects, which are known as OSGi services, and be published in a service
registry. These OSGi services live on the service layer, and the Java
object is owned by a bundle, which it also runs in [The12]. Bundles
can register and search for services in the registry. The framework
handles the connection between the bundles that offer the service and
the bundle that requires it, so if a bundle goes to the stopping state,
the services associated with it are removed from the service registry.
The composition of bundles (or components) is therefore dynamic, since
the coupling of bundles is done at run-time.

3.2.2 CORBA

The Common Object Request Broker Architecture, commonly known
as CORBA, is a standard developed and maintained by the Object
Management Group (OMG). CORBA aims to create interoperability
between different programming languages, platforms and implement-
ations [Szy02], also in distributed systems. CORBA based programs
are able to communicate with each other. This interoperability is solved
by hiding the implementation of objects from the outside environment
via common interfaces definitions. In the CORBA Object Model, a cli-
ent written in Java can invoke a method in an object written in another
language, because the object interface is defined in the OMG Interface
Definition Language, or IDL for short. The IDL is a common language
that can be bound to a number of different programming languages, for
example Java, C++ and C [Szy02]. A client stub and an object skeleton is
compiled from the IDL. The stub and skeleton will redirect traffic to the
real implementations, although, for the other end, they appear to be the
real object. When doing a method call, the client specifies the method
it wants to call on a specific object reference and marshals the method
arguments using the IDL. The IDL at the receivers end unmarshals the
arguments and invokes the method [Gro13]. The Object Request Broker
(ORB) handles the call and keeps information about where to send the
invocation request. Figure 3.2 is a high-level abstraction which shows
how a method call travels through these layers. If the system is distrib-
uted and the client and receiver is remote, the ORB on the client side

19

Client Object Implementation

IDL Stub IDL Skeleton

Object Request Broker (ORB)

Figure 3.2: Method invocation in CORBA

routes the invocation to the ORB on the receiver side.
The CORBA Component Model (CCM) is an extension of the CORBA

Object Model [WSO00]. A CCM application contains a number of CCM
components, which can come from different vendors. The OMG CCM
specification [Gro06] describes a CCM component type as a structure
which encapsulates its internal representation and implementation
and that contains set of features, which can be described by an IDL
component definition. Concrete component instances are instantiated
by a component type. These instances are managed by one or more
component homes, which handles component life cycles and component
access. A basic CCM component is a "component wrapper" for a CORBA
object. An extended component has a greater set of features, such as
ports. A port is a component feature that allows clients to interact with
the component, and [Gro06] lists four different kinds:

• Facets, which are provided interfaces.

• Receptacles, which are required interfaces. The facets and
receptacles of components are connected to each other [Szy02].

• Event sources, which sends out events on an event channel.

• Event sinks, which consumes events of a specific type. The event
source and sink provides a publish/subscribe system for events.

The connections between a facet and receptacle can be set in
component configuration or be made and destroyed dynamically during
runtime [Szy02].

20

3.3 The rCOS Modeler

According to [Don+13], the complexity of software development can be
divided into four fundamental attributes:

1. the complexity of the domain application,

2. the difficulty of managing the development process,

3. the flexibility possible through software,

4. the problem of characterizing the behaviour of software systems.

The first attribute says that it is hard to interpret and grasp the domain
for the application, for example when it comes to software design. The
second attribute states that it can be hard to manage the development
process, for example the handling of large teams and a changing
requirement specification. The third attribute refers to the wide range
of, among others, software architectures, tools, algorithms, protocols
that is offered, and that there are many possibilities to consider when
developing an application. The fourth attribute is about the complexity
of capturing the semantic behaviour of a system, which can be used for
analysis, validation and verification for correctness [Don+13].

The concept separation of concerns can help handle this software
complexity [Che+07]. As the name implies, this concept emphasizes
divide and conquer of the software application, where different views
are made for the different development stages. The views can for
example be static structural views, interaction views and dynamic
views. When integrated together, these views can model the complete
system [Che+07]. An approach to separation of concerns is the OMG’s
Model-Driven Architecture (MDA)5. In MDA, different system models
are built to handle the complexity. MDA focuses on creating platform
independent models (PIMs) which are then translated to platform
specific models (PSMs) via some kind of model mapping. However, this
approach does not address the semantic behaviour of the application.
In order to validate and verify correctness of the models, the developer
has to do the work manually [Don+13].

Refinement of Component and Object Systems6 (rCOS) is an
attempt to seal the gap between the models in MDA and semantic
validation and verification. rCOS is an approach to component-
based MDA, where the key concepts are component architectures with
hierarchical component composition, refinement between models and
model transformations [Che+07]. The models built using rCOS can
be of different levels of abstractions, and be reasoned about through
refinement and transformations. The rCOS tool also supports code
generation from these design models. The weak parts about rCOS is
that is does not consider deployment, does not support dynamic (run-
time) composition and does not consider extra-functional requirements.

5http://www.omg.org/mda/
6http://rcos.iist.unu.edu/

21

The rCOS component model

The rCOS component model is hierarchical and specifies two types of
components, service components and process components. The former is
often referred to as just component and the latter as process [Che+07].
The service component is passive and will wait for client calls, while
the process component is active and can call other components without
waiting for clients. Components can be closed, which means that they
do not depend on functionality (no required interfaces) or open, which
means that they have required interfaces.

The rCOSP specification language

rCOSP is a component definition language provided by rCOS. It allows
the developer to textually describe and specify an architectural view of
the components and their compositions. It provides some of the same
language constructs as an object-oriented programming language, such
as interfaces and classes, and its syntax is similar to the Java program-
ming language. In addition to interfaces and classes, rCOSP introduces
two new constructs, namely contracts and components. Below is a short
description of the most important parts of rCOSP and how the compon-
ent composition works. The next section shows how these parts can be
used to model a small airport which consists of different components
composed together and highlights the different features of rCOSP.

Interface: An rCOSP interface contains method declarations and field
declarations. Each interface defines a set of operations, and can extend
other interfaces. Interfaces cannot share names within the same scope,
and cannot be partially implemented. By partial implementation we
mean that the classes that implement the interface must give defini-
tions to every method.

Class: A class in rCOSP is similar to a class in Java. It is a blueprint
for creating data objects, and defines custom data types used in the com-
ponents. A class can implement functionality to realize interfaces and
contracts.

Contracts: A contract is associated with an interface and contains
additional information which is needed when using the component,
without needing to know how the component internally works. Each
method declared in the interface can be extended in the contract with
implemented functionality and protocols, but this is optional. The con-
tract can be viewed as a layer between a component and an interface.
Each defined interface can be associated with more than one contract.
This allows interface reuse, because the developer can create a contract
that is tailored towards a specific component without defining a new in-
terface.

22

Protocols: A protocol puts restrictions on the method invocation or-
der, e.g. that the method “loadPassengers” has to be invoked before the
“unloadPassengers” method. The protocol is defined in the contract, out-
side the method bodies.

Pre- and postconditions: The pre- and postconditions are "abstract"
specifications, in contrast to a "concrete" implementation we know from
traditional programming with e.g. declarations, variables and assign-
ments. The conditions are written as [pre : expression1, post : expression2],
or using syntactic sugaring as simply [expression1 ` expression2]. These
conditions are written inside the method bodies, e.g. in the contracts
and classes.

Components: Components are the most interesting building block. A
component contains an optional component composition expression, de-
clarations of provided and required contracts and can define internal
classes, interfaces and contracts. Components can also contain intern-
al/nested component definitions, which means that components can be
nested. This opens up for local component compositions.

Provided contracts: The provided contract(s) of a component can
either be by a class implementation or a delegation. A delegation hap-
pens when the contract is provided by a sub-component.

Required contracts: The required contract(s) of a component simply
states what functionality the component needs to have.

Component composition: Component composition expressions tell us
how the required and provided contracts of two components are plugged
together. The plugging of interfaces is then given implicitly by the ex-
pressions. As an example, assume that we have a component C1 with
provided contract A, and a component C2 which requires A. In the spe-
cification of component C2 we can express the composition of the con-
tract A between C and C2 as composition : C1 | C2 [(C2.A <− C1.A)].

3.3.1 Airport example in rCOSP

We will now explore rCOSP using an example model of a small airport.
The example will demonstrate how the airport components can be
specified using the language, and how the components are composed to
form a model of the system. Figure 3.3 shows a plain UML component
diagram of the airport system using the standard UML ball-and-socket
notation for component wiring. This diagram shows composition in the
traditional perspective. In this notation, the ball represents a provided
interface, and a socket represents a required interface. Later in this
example, we will see the rCOS component diagram of this model.

23

Gate1 Gate2

Airport

IGate IGate

CustomerService

Office

ICustomerCentre

CustomerCentre

IOffice

<<delegate>>

ICustomerService
ICustomerCentre

Figure 3.3: The UML component diagram of the airport

The gate component

An airport gate is a moveable bridge that connects the airport terminal
and the aircraft. Our airport will contain two such gates, but there is
no limit to how many gates can be included. Two is chosen to keep the
model relatively small.

The gates are, naturally, modelled as components. Each component
provides a contract of type GateCtr which is associated with the in-
terface IGate. This interface declares two methods, loadPassengers
and unloadPassengers, and the contract lay down a restriction
on the loadPassengers method by specifying a pre- and postcondi-
tion. The precondition says that the number of passengers has to
be greater than zero if this method invocation is to have a valid re-
sponse. In this case the postcondition is defined as simply true, which
means every state holds. The contract also specifies a protocol, which
says that the loadPassengers method has to be called before the
unloadPassengers method. The interface and contract can be viewed
in listing 3.1.

The gate component itself is pretty simple. It is a passive service
component and does not contain any component compositions. Its only

24

Listing 3.1: The gate interface and contract

1 interface IGate {
2 public loadPassengers (int numPassengers) ;
3 public unloadPassengers () ;
4 }
5 contract GateCtr of IGate {
6 public loadPassengers (int numPassengers) {
7 [numPassengers > 0 |− true]
8 }
9 protocol { loadPassengers ; unloadPassengers }

10 }

task is to provide the GateCtr contract by a class called GateClass.
The GateClass is a class which implements the two methods in the
IGate interface. The class is not shown in the listing because of
simplicity (the full example is in appendix A.1). Listing 3.2 shows the
definition of two gate components, Gate1 and Gate2.

Listing 3.2: Two gate components

1 component Gate1 {
2 provided GateCtr by GateClass ;
3 }
4 component Gate2 {
5 provided GateCtr by GateClass ;
6 }

The customer service component

The customer service component is slightly more complicated than the
gate component, because it contains a composition of two local compon-
ents. Recall that a component is local when they are defined inside an-
other component. These local components are an office component and a
customer centre component. The code is shown in listing 3.3. This list-
ing only shows the components. Everything else related to these com-
ponents, such as interfaces, contracts and classes are left out, but can
be seen in the full specification in the appendix A.1. As we can see, the
customer service component provides the interface ICustomerService
by the CustomerServiceCtr contract, and delegates the provided con-
tract CustomerCentreCtr by the local customer centre component.

The most interesting bit is the composition of the two local
components. The composition expression says that the Office
and CustomerCentre components are going to be composed. More
specifically, the provided contract OfficeCtr in Office will be
attached to the required OfficeCtr contract of CustomerCentre.
This will allow the customer centre to use functionality provided by the
office.

25

Listing 3.3: The customer service component

1 component CustomerService {
2 composition : Of f i ce | CustomerCentre
3 [(CustomerCentre . Off iceCtr <− Off i ce . Off iceCtr)]
4

5 provided CustomerServiceCtr by CustomerServiceClass ;
6 provided CustomerCentreCtr by
7 CustomerCentre . CustomerCentreCtr ; / * Delegation * /
8 component Off i ce {
9 provided Off iceCtr by Off iceClass ;

10 }
11 component CustomerCentre {
12 provided CustomerCentreCtr by CustomerCentreClass ;
13 required Off iceCtr ;
14 }
15 }

The airport component

The airport component is a central piece in this example, and ties the
previous components together. The airport requires two gates and a
customer service. Listing 3.4 shows the code. The specification of
the component is rather short, because it only requires functionality
from other components and the composition of the components which
provides this functionality.

An important thing to note here is that the airport will have more
than one gate. This implies that we have to require multiple contracts
of type GateCtr. We cannot however, require the same contract more
than once. If we do this, we have no clue which of the two similar
methods we call, and which of the gate components will be invoked,
since both of them are denoted by the same contract name. For instance
the invocation GateCtr.loadPassengers(42) is ambiguous. One way of solving
this is to define multiple equal contracts, but with different names. In
other words, by simple renaming of the contracts. The code is shown
line 1 and 2 in listing 3.4. These lines define two new contracts, namely
Gate1Ctr and Gate2Ctr. They extend GateCtr, but add nothing
new, so in this way we can view them as equal to the "original" gate
contract, although with different names. After renaming, we specify
that the airport component requires two gate contracts, namely the one
we just defined, together with one customer service. The composition
expression shows how these are attached together with the provided
contracts of the other components which we previously defined. We plug
the provided GateCtr contracts of Gate1 and Gate2 into Gate1Ctr
and Gate2Ctr, respectively. The provided CustomerServiceCtr by
the customer service component is inserted into the airport’s required
contract with the same name.

26

Listing 3.4: The airport component

1 contract Gate1Ctr of IGate extends GateCtr { } / * Renaming * /
2 contract Gate2Ctr of IGate extends GateCtr { } / * Renaming * /
3 component Airport {
4 composition : Gate1 | Gate2 | CustomerService
5 [(CustomerServiceCtr <− CustomerService .

CustomerServiceCtr)
6 (Gate1Ctr <− Gate1 . GateCtr)
7 (Gate2Ctr <− Gate2 . GateCtr)]
8 required Gate1Ctr ;
9 required Gate2Ctr ;

10 required CustomerServiceCtr ;
11 }

The final airport model

We can run the complete textual specification of the airport model
through the rCOS tool. The result is an (semantic) UML model and an
rCOS diagram. The rCOS diagramming capabilities extend the UML
diagramming, and is tailored for rCOS models. The figures 3.4 and 3.5
show two rCOS component diagrams displayed in Eclipse after some
manual adjustments have been applied (drag-and-drop diagramming).
The first picture shows the gates and the airport, and the second
shows the airport and the customer service. If we compare these
diagrams to the diagram in figure 3.3, we find that they are similar
in structure (hierarchical composition). However, the rCOS diagrams
contain contracts instead of interfaces. The compositions are shown as
dependencies (dotted arrows).

3.4 Issues with the current state of rCOSP

As we now have seen, the rCOSP component specification language
allows us to textually specify components and their compositions. From
here, the rCOS tool can take this specification as input and create the
UML model. We will now highlight and discuss some aspects of the
language that can be seen as limitations and propose improvements for
them.

Multiple components of the same type

One of the problems that arises is when we want multiple components
of the same type, as we did with the two gate components in the
airport example. In the example, we created two gate components
identical in structure, although with different names, to accommodate
for the requirement of two gates demanded by the airport. This is a bit
redundant, and ideally we would want to specify each type of component
once, e.g. by one single specification of component of type Gate. This

27

Figure 3.4: The rCOS component diagram of the Gate components

single component would be used in every composition that requires it.

Name clashes

Another problem we saw when modeling the airport was that we cannot
require the same contract multiple times in a component, because
this gives rise to an ambiguous specification when it comes to method
invocations. In our specification, we solved this by defining multiple,
equal contracts with different names (renaming). However, these are
essentially duplicated specifications which we should avoid. A better
solution would be an approach where we define the contract once. We
will stick to the idea of renaming, but instead of doing the renaming by
creating multiple contracts, we can introduce the idea of enumerating
the required contracts. The enumeration can be expressed like required
GateCtr[N], where the N in the square brackets denotes how many
required contracts we want. A simple renaming where we append the
number (2 to N) to each required contract would suffice in most cases. In
the airport example, the result is two required contracts called GateCtr
and GateCtr2, respectively, substituting N for 2. Upon encountering an
expression of this type, the program would automatically create two (or
N) required contracts of this type in the component. This would remove
the need to create and rename contracts manually. This change would
probably not be too hard to implement in rCOSP.

28

Figure 3.5: The rCOS component diagram of the CustomerService
component

Composition

The last thing to point out is that the component composition can
be improved. In the current state in rCOSP we need to explicitly
specify the composition of components, by specifying what provided and
required contracts are going to be plugged together. When modeling in
the long run, this seems like a cumbersome and error-prone task. We
need a simple way of modeling component compositions where the risk
of errors is minimized.

3.5 Algebraic composition operators

We can take a new approach to the composition of components by
introducing the idea of algebraic component composition. The algebraic
composition is hierarchical in the sense that one component is directly
using functionality provided by another. Composition is done via
algebraic expressions, and the result of an expression is a new
component. The algebraic composition expressions will have an infix
notation. As an example, assume that we have two components, C and
B, where C provides some functionality that B requires. To compose C
and B using an algebraic operator, we can specify this as K = C ∥ B, where
the ∥ symbol means "parallel composition". The component K denotes

29

the new component created as a result of this expression.

3.5.1 The term "algebraic" explained

In mathematics, something is algebraic when it is related to or involves
algebra 7. The oxford dictionary 8 further states that an algebra deals
with letters and other symbols, which can represent numbers and
quantities in formulae and equations. In mathematics, these letters and
symbols can be applied to algebraic operations, for example addition and
subtraction. This will result in algebraic expressions.

We can use similar definitions for these terms when switching from
mathematics to component composition. The algebraic symbols repres-
ents components and the composition operators are the algebraic oper-
ations. When applying these two together we get the algebraic compon-
ent composition expressions. The algebraic commutative and associat-
ive laws are valid for the parallel and disjoint composition operators,
and this ensures that different expressions can yield components that
are structurally equal although the expressions are manipulated differ-
ently.

3.5.2 Algebraic composition operator example

Take the following airport as an example to demonstrate. Assume
we have a gate component which provides the contract GateCtr and
an airport component which requires two gates, as before. Imagine
that the two required contracts of the airport are now specified using
enumeration and are called GateCtr and GateCtr2. The following
algebraic composition expression creates a new airport: AirportSystem
= Airport ∥ Gate ∥ Gate. The operator used here is called the parallel
operator, and will be defined in the next chapter. However, note that
the operator is binary. The expression can be represented as a tree:

∥

Airport ∥

Gate Gate
The right subtree of the root node will compose two gates. The

resulting "anonymous" component of this composition will then be
composed with the Airport component which is the left subtree of
the root. The result of this composition will be assigned to the
AirportSystem variable.

7http://www.oxforddictionaries.com/definition/english/algebraic?q=algebraic
8http://www.oxforddictionaries.com/definition/english/algebra?q=algebra

30

3.6 Related work

As stated in the introduction (in section 1.4), the work done in this
thesis is heavily influenced by, and based on, the rCOS component
model and tool. The main contribution to this thesis is the work laid
out in [Don+13]. This article defines a format and syntax for atomic
component specification and component composition using component
composition operators. We have adopted a simplified format of this
atomic component specification language in our prototype tool, since
it provides a readable syntax with focus on clear specification of
components with provided and required interfaces. The language
constructs that were left out were internal interfaces and actions.
Please refer to chapter 4 for an introduction to this language.

[Don+13] defines five operators in total, three binary operators
(parallel, disjoint, and plugging) and two unary operators (renaming
and restriction). The prototype tool implements these operators,
although in simplified versions in order to reflect the constructs that
were left out from the language.

3.7 Summary

This chapter gave an overview of three component models. The OSGi
framework and CORBA Component Model which are used in "real-
world" software and rCOS which is an "academic" component model. We
saw how components in the OSGi framework, called modules, export
and import Java classes in order to create systems. The CORBA
Component Model is an extension to the CORBA Object Model, which
aims at creating interoperability between software, no matter what
platform or programming language is used. The rCOS modeler is an
approach to component-based MDA. The component model in rCOS
is hierarchical with two types of components, services and processes.
Components are composed by directly attaching required and provided
contracts to each other, i.e. hierarchical composition. The rCOS
tool comes with a component specification language, rCOSP, which
opens up for text specifications of components. These specifications
can be translated to rCOS UML models. However, there were some
shortcomings with the language. The last section introduced algebraic
component composition as an alternative to the traditional approach,
and showed how we can use the algebraic approach to overcome
the limitations by the rCOSP approach and at the same time view
components and component composition from a different perspective.

31

32

Chapter 4

The rCOSPN language

4.1 Introduction

In this chapter we will introduce a new language for component
specification and composition, called rCOSPN (for "rCOSP New"), and
take a look at what it has to offer. The rCOSP specification language
is used as a base for the new language, and much of its syntax and
features are still used in rCOSPN, especially method bodies. However,
there are also several changes and new features, and we will describe
each of these in turn in the next section. We will also introduce the
composition operators and their formal definitions. In the last section
we go back to the airport example, and show how we can model it using
the new language.

4.2 The goals of the language

Three main goals were in mind when creating the rCOSPN language.
As stated in the previous chapter, rCOSPN is inspired by the component
specification format found in [Don+13]. The first goal of rCOSPN is
to provide a specification language which emphasizes readability and
usability. By readability we mean that a component model specification
should be easily understood just by glancing at the code. This requires
a clear format for the specification of interfaces and atomic components.
It should be clear what the behaviour of the composition operators are,
and writing the composition expressions should be straight forward in
most cases. By usability we mean that it should not require too much
time to get acquainted with the language, and the user should quickly
be able to write component specifications.

The second goal is the ability to extend the specification language
in the future, and possibly integrate it further with the rCOS tool.
Although creating structural models is the focus in rCOSPN, we chose
to include behavioural modeling as well to some extent. Method
bodies, protocols and pre- and postconditions are behavioural parts
of the language, and are transferred untouched from rCOSP to
rCOSPN. Using these elements have no impact on the structural UML

33

model created by the tool, but they are included nonetheless because
behavioural models, e.g. sequence diagrams are an essential part of the
rCOS tool which allows model transformations between different types
of models. In the future, it might be relevant to implement functionality
for integration between models made by rCOSPN and the rest of the
rCOS tool.

The third goal is, naturally, to create UML models which reflects
the specifications. This goal can be viewed in light of the first goal.
The readable format of the textual specification should be relatively
transferable to a clear and equally readable UML model. This implies
that each language construct should have basic counterparts in the
UML which can be utilized in model construction.

4.3 What is new?

The main changes from rCOSP, in addition to the introduction of
the composition operators (section 4.4), are the removal of contracts
(section 4.3.1), a new syntax for constructing atomic components
(section 4.3.3), and allowing method bodies in interfaces (section 4.3.2).

4.3.1 Removal of contracts

The concepts of contracts and interfaces in rCOS are explained in
section 3.3, but let us take a quick recap. In rCOS, an interface is
just a set of method signatures. A method signature in rCOSP is the
method name and the input and output parameters of the method. It
does not have an explicit return type like in Java, but the type of the
last output parameter is the return type for the method. The input and
output parameters are delimited by a semicolon. Think of an interface
as a label for a collection of method signatures. Components provide
or require these interfaces through contracts. We call this interface
realizations and interface usages, respectively. A contract therefore
plays the role as a layer between an interface and the component,
and the user of the component is not required to have any knowledge
about how the component implements the operations. The contract
also augments the interface with one or more protocols and adds
pre- and postconditions to operations. A contract can contain code
for implementing an operation, but it is not required. Contracts are
sometimes called contract interfaces, while the regular interfaces are
called syntactic interfaces [Gro14].

In the new language, we went for a stripped down solution
where contracts are no longer a part of the language. The reason
was that we wanted a simple specification language, as stated in
section 4.2. The functionality that contracts employ is, as stated above,
operation implementations (method bodies), protocols and pre- and
postconditions. All of these are optional in contracts. The effect is that it
is possible to have an empty contract, as we saw in the airport example,

34

which really adds nothing to the model besides an empty model element.
The method bodies, protocols and pre- and postconditions are not
restricted to contracts only, and can be put elsewhere, for example in
the component itself.

A positive thing about contracts is that they allow interface reuse,
but the specification might require more maintenance. For example, one
simple change in an interface might require that every accompanying
contract is changed accordingly.

4.3.2 Interfaces

Since contracts now are out of the picture, there are two alternatives
when it comes to handling the optional method bodies, protocols and
pre- and postconditions that were in the contracts. The first solution
is to keep everything in the component specifications, and not allow
these constructs to be anywhere else. This solution seems a little rigid,
because having the possibility to have e.g. optional method bodies is
handy when it comes to code reuse. The second solution is to allow
these constructs to be optional in the interfaces, and this is the approach
realized in the prototype.

The reason why we went for this approach is that we were inspired
by the concept of traits in the Scala programming language 1. In Scala,
a trait is a unit of code reuse [OSV11], similar to an interface in Java.
One of the biggest differences between a Scala trait and a Java interface
is that a trait can be partially implemented. Partial implementation in
this setting means that some (or all) of the methods declared in the
trait can be implemented in the trait. We adopt this approach in the
rCOSPN language, and the effect is that the interface can provide base
functionality which is common for different components. If a component
specification designer wants to create a more specific functionality of
a method, it can be overridden by the method implementation in the
components. The biggest advantage of this is that it allows for code
reuse since an interface is just a collection of method signatures (and
now possibly method implementations). It does not matter for the
specification if the method implementation lives in the interface or the
component.

The rCOS interfaces can contain field declarations. When a
component provides an interface that contains one or more field
declarations, these declarations are "moved" to the set of fields the
component contains. The reason behind this is that, as mentioned, an
interface is only a collection, or label, of methods and fields. The fields
will belong to the component, not the provided interface.

The required interfaces in rCOSPN can be enumerated. As we will
see, the algebraic composition works on method-level, not on interface-
level. An enumeration of a required interface also renames the methods
in the interface. This will make sure that we get no duplicated required

1http://www.scala-lang.org/

35

methods.

4.3.3 New component syntax

In this section we will take a look at how we can construct atomic
components in rCOSPN. Recall that an atomic component is not created
from other components. The new component syntax is formally defined
in the Extended Backus-Naur Form (EBNF) grammar in listing 4.1.
The first production rule in this grammar states that a component is
either a service component or a process component, as before. Recall
that a service component is passive and can only carry out operations
when it receives stimulation from the outside (someone calls one of
its methods). A process component is active and can initiate actions
to other components. The second and third rule describe a service
component and a process component, respectively. The "CNAME" rule
is a production rule for identifiers that begins with an uppercase letter
followed by zero or more letters or numbers (0-9). The fourth and fifth
production rule shows what a component body and a process component
body can consist of.

Other than being passive and active, there is another major differ-
ence between service components and process components. Processes
act as coordinators between service components. We discovered two dif-
ferent ways to handle the process components. The first alternative is
to treat them as normal service components with required and provided
interfaces. They can then be implemented with a main method as an
entry point which starts the active execution. This is the way it is done
in rCOSP. The other alternative is to create a distinction between pro-
cesses and service components. As can be seen in the fifth rule in the
grammar, process components can only require interfaces, not provide
them. This approach is described in [Don+13]. The effect is that the
processes can focus on coordinating service components rather than be
concerned of having to provide implementation themselves.

One of the effects of making the language simple is that it does not
support nested component definitions and local composition expressions
inside components.

An example component specification displaying the new syntax is
shown in code listing 4.2. Here, we define two interfaces, IAdminCRUD
and IDatabase. We then define a service component called UserAdmin
which provides the IAdminCRUD interface and requires the IDatabase.
A provided interface is denoted by the keyword provided followed by
the interface name. The methods of the interface are implemented in
the provided interface body. Some of the implementations of methods
are left out in this example, but note that the updateUser method in
the IAdminCRUD interface contains an implementation. Because of this,
it is not necessary to include this method in the provided block in the
component.

36

Listing 4.1: Component grammar

1 component ::= servicecomponent | processcomponent ;
2

3 servicecomponent ::= "component" CNAME
4 "{" componentbody* "}" ;
5

6 processcomponent ::= "process" CNAME
7 "{" processcomponentbody* "}" ;
8

9 componentbody ::= processcomponentbody | providedinterface ;
10

11 processcomponentbody ::= requiredinterface
12 | classdef
13 | field ;

Listing 4.2: User admin component

1 interface IAdminCRUD {
2 public createUser (str ing name; User usr) ;
3 public updateUser (str ing name, User usr) {
4 user . setName (name)
5 }
6 public deleteUser (int id) ;
7 public retrieveUser (str ing name; User usr) ;
8 }
9

10 interface IDatabase {
11 public save (User usr) ;
12 public load (int id ; User usr) ;
13 }
14

15 component UserAdmin {
16 provided IAdminCRUD {
17 public createUser (str ing name; User usr) {
18 usr := User .new(name) ;
19 save (usr)
20 }
21 public deleteUser (int id) {
22 / * Implementation * /
23 }
24 public retrieveUser (str ing name; User usr) {
25 / * Implementation * /
26 }
27 }
28 required IDatabase ;
29 }
30 public class User {
31 / * Implementation * /
32 }

37

4.3.4 Multiple identical interfaces

When modeling the airport in the previous chapter we saw that a
problem arose when we wanted more than one Gate component. The
solution was to create duplicate Gate component specifications, and
create identical contracts via renaming so the airport component was
able to require more than one Gate. To avoid code duplication and
multiple identical specifications, we considered three alternatives.

In the first alternative, the solution is to split the component in
a number of smaller components, each requiring exactly one of the
multiple interfaces. In the airport example, this means that we create
two airport components instead of one, where each will require one
Gate. We can then "stitch" these components back together using
composition with Gate components. The benefit is that there is no new
syntax to implement. All we do is to split components into smaller ones.
The disadvantages are that we do not avoid code duplication and we
need to create more composition expressions to create the model.

The second alternative will use renaming of the duplicated required
methods. In the component specification we state the requirement of
two (or more) interfaces of the same type. Without renaming, this would
cause ambiguous method calls since method calls are no longer prefixed
by their contract name. Recall that if we specify the requirement of
two contracts of type GateCtr, the method call GateCtr.loadPassengers(42)
is ambiguous. However, using renaming, we can manually change

the name of the methods that are duplicated, for example by adding
a “renaming block” inside the component which explicitly states the
renaming of methods. If a component requires two IGate interfaces,
we will have two loadPassengers methods. Using renaming, we can
rename one of them to, for example, loadPassengers2. The advantage
is that code duplication is reduced. However, there is a risk for errors
since manual work is required to rename the duplicated methods.

The third alternative, which is the alternative we went for, is
a variant of the enumeration of required interfaces proposed in
section 3.4. To require two IGate interfaces we simply write require
IGate[2];. This will automatically rename the methods in one of
the required IGate interfaces by simply appending the integer 2 to
the method names. The other IGate interface will stay unchanged.
Advantages of this approach are that renaming is automated and is
less error prone and duplicated code is reduced. Ambiguous method
calls are no longer a problem. The disadvantage is that the language
syntax is extended, but we regarded the pay-off as greater than the cost
of implementing the functionality in the prototype.

4.4 Component composition operators

In this section we introduce the composition operators and their defini-
tions. The operators parallel (section 4.4.1), disjoint (section 4.4.2) and

38

plugging (section 4.4.5) are binary infix operators, while renaming (sec-
tion 4.4.3) and restriction/hiding (section 4.4.4) are unary operators.
The result of each operator application is a new component. We will go
through each operator in turn, and we begin with the parallel operator.
Every operator is a simpler version than the ones proposed in [Don+13].
Each will be demonstrated through examples. In order to do that, we
need to define a couple of components (listing 4.3) to use as examples.
The notation used in the definitions is explained in (table 4.1).

Table 4.1: Overview of notation used in operator definitions

Notation Explanation

C.pIF The union of the methods provided by the component C
C.rIF The union of the methods required by the component C
C.vars The set of variables defined in the component C

Listing 4.3: Two simple components

1 interface A {
2 public foo () ;
3 public bar () ;
4 }
5

6 interface B {
7 public fooz () ;
8 public baz () ;
9 }

10

11 component C {
12 provided A { / * Impl * / }
13 provided B { / * Impl * / }
14 }
15

16 component D {
17 required A;
18 }

4.4.1 The parallel operator

The parallel operator, denoted by ∥, is, as mentioned, a binary, infix
operator. This is an overloaded operator, meaning that the result
depends on the type of the operands. The operands can be two process
components (1), two passive service components (2), or one of each kind
(3). The resulting component is a little bit different for each of these
cases. The composition which involves processes is a special case of
a composition involving two service components, and we will give all
definitions in this section.

39

Definition 4.1 (Parallel composition of processes). Let P1 and P2

be two process components. Their parallel composition, P1 ∥ P2, results
in a new component P3, where

P3.r I F = P1.r I F ∪P2.r I F

P3.var s = P1.var s ∪P2.var s

It is required that they do not have any variables in common.

The next definition applies to the cases where we have one process
and one service component. The process will coordinate the behaviour
of the service component.

Definition 4.2 (Coordination of components). Let P and C be a
process component and a service component, respectively. Their parallel
composition, P ∥C , results in a component G, where

G .pI F = C .pI F

G .r I F = P.r I F ∪C .r I F

G .var s = P.var s ∪C .var s

It is required that the two components do not have any variables in
common.

Definition 4.3 (Parallel composition of service components). Let
C1 and C2 be two passive service components, either open or closed.
Recall that a closed component do not have any required interfaces,
while an open component does. Their parallel composition, C1 ∥ C2,
results in a new component C3, where

C3.pI F = C1.pI F ∪C2.pI F

C3.r I F = (C1.r I F ∪C2.r I F)\(C1.pI F ∪C2.pI F)

C3.var s = C1.var s ∪C2.var s

It is required that the two components do not have any variables or
provided methods in common.

In every case, the parallel operator is commutative and associative since
the composition never hides any methods of provided interfaces, unlike
plugging (section 4.4.5). Let’s look at an example which demonstrates
definition 4.3.

Example 4.4. We can use the parallel operator on component C and D,
shown in figure 4.3 to create a new component: C D = C ∥ D. The new
component CD will provide the methods in interface A and B (the union),
and since C provides A, the methods in this interface are not exposed as
a required interface from CD.

40

CD
{ foo(), bar(), fooz(), baz() }

Figure 4.1: UML diagram of parallel component CD

4.4.2 The disjoint operator

The disjoint operator, denoted by ⊗, is a specialized version of the
parallel operator. Two components are disjoint when their required
interfaces do not overlap, and a component does not provide something
that the other requires [Don+13].

Definition 4.5 (Disjoint composition of components). Let C1 and
C2 be two disjoint components. Their disjoint composition, C1⊗C2 results
in a new component where

C3.pI F = C1.pI F ∪C2.pI F

C3.r I F = C1.r I F ∪C2.r I F

C3.var s = C1.var s ∪C2.var s

The disjoint operator is useful in expressions when it is a requirement
that the two operands are disjoint. If they are not, we will get a type
checking error and the whole expression will not pass the type checker.
This operator is commutative and associative. The definition of disjoint
composition involving one or more processes is the same as for the
parallel composition operator.

4.4.3 Renaming

We can use the renaming functionality if we want to rename some of
the methods in the interfaces of a component. Renaming applies to
methods in the provided interface. Renaming methods can be handy
when certain interfaces of two components do not match, but should be
used carefully. There is no restriction to rename e.g. a method called
add to delete.

Definition 4.6 (Method renaming). Let C1 be a service component.
The renaming of its methods is defined as

C2 =C1[ol d1 ← new1, . . . ,ol dk ← newk]

The result is a new component C2 which is identical to C1 except its
methods ol d1, . . . ,ol dk are renamed to new1, . . . ,newk .

Example 4.7. We can use the renaming operator on component C
(listing 4.3) to create a new component where names of two of the
provided methods have changed. E = C [f oo ← f ood ,baz ← bar z]. The
new component E will now provide the methods { f ood ,baz,bar, f ooz}.

41

E
{ food(), baz(), bar(), fooz()}

Figure 4.2: UML diagram of renamed component E

4.4.4 Restriction (hiding)

Restriction, also known as hiding, takes a list of method names that is
going to be restricted from the environment outside the component.

Definition 4.8 (Method restriciton). Let C1 be a service component.
The restriction of at least one of its provided methods, denoted as
C1\{method1, . . . ,methodk } results in a new component C2 where C2.pI F =
C1.pI F \ {method1, . . . ,methodk }.

Example 4.9. We can use the restriction operator on methods { f oo,bar }
in component C to create a new component where these methods are
hidden from the outside environment. This is expressed as E = C \
{ f oo,bar }.

E
{ fooz(), baz()}

Figure 4.3: UML diagram of restricted component E

4.4.5 The plugging operator

The last composition operator to define is the plugging operator, denoted
by ¿. This is a binary, infix operator, and is a combination of parallel
composition and restriction.

Definition 4.10 (Plugging composition of components). Let C1 and
C2 be two components. The plugging of C1 with C2 is defined as

C3 =C1 ¿C2 = (C1 ∥C2) \C2.r I F

It is required that C1 ∥ C2 is defined, and the restriction of C2.r I F only
applies if C2.r I F ∩C1.pI F 6= ;. The restriction operator, as shown in
definition 4.8, applies to the provided interface of a component, so the
effect of the plugging composition is that the provided methods of C1

that C2 requires are only available to C2, and they are not exposed to
the outside environment through the provided interface of C3.

42

Example 4.11. In this example we will create a new component C D by
using the plugging operator on component C and D in listing 4.3. The
expression C D =C ¿ D creates a new component C D which provides only
the methods found in interface B , since the methods in A are hidden and
only accessible for component D.

CD
{ fooz(), baz() }

Figure 4.4: UML diagram of plugging component CD

4.4.6 Operator precedence and associativity

In this section we will take a look at the precedence and associativity
of the operators. The EBNF grammar of the composition operators
is given in listing 4.4. Specifying operator precedence is important to
avoid ambiguous grammars. An ambiguous grammar can generate two
different parse trees from the same input string [Lou97]. There are two
basic methods to make a grammar unambiguous. The first one is to
explicitly provide disambiguating rules which tells the parser which of
the different parse trees is correct. This will not solve the unambiguity
of the grammar, but we do not have to change the grammar to get
the correct parse tree. The other method is to change the structure
of the grammar so it forces the parser to construct the correct parse
tree [Lou97]. As the grammar in 4.4 shows, the precedence of the
operators are given by method two. Associativity deals with which side
of the binary composition operator production rules in the grammar we
put the recursive case. In our grammar, we have the recursion on the
right side, making this right associative for the binary operators. This
means that in cases of A = B ∥ C ∥ D, the composition of C and D is further
down the parse tree, and the resulting component (of composing C and
D) is then composed with A. This is equivalent with the parenthesized
expression A = B ∥ (C ∥ D).

Of the binary operators, the plugging operator has the lowest
precedence, followed by the parallel operator and with the disjoint
operator with the highest precedence. This can be seen in listing 4.4.
This means that the disjoint operator is "used" first, and is deeper in
the parse tree than the parallel and plugging operators. The reason for
this is that the primary use cases of the disjoint operator is to express
a specific parallel composition when we require that the two operands
are disjoint. Plugging has lowest precedence because we say that one
wants to "plug" together the two component operands after they have
been fully evaluated.

43

Listing 4.4: Component operator grammar

1 compositionexpr ::= CNAME "=" pluggingexpr ";" ;
2

3 pluggingexpr ::= parallelexpr ("¿" pluggingexpr)? ;
4

5 parallelexpr ::= disjointexpr ("∥" parallelexpr)? ;
6

7 disjointexpr ::= baseexpr ("⊗" disjointexpr)? ;
8

9 baseexpr ::=
10 "(" pluggingexpr ")"
11 (("\" "{" restrictionexprlist "}")?
12 | ("[" renameexprlist "]")? (pluggingexpr)?)
13 | CNAME "[" renameexprlist "]"
14 | CNAME "\" "{" restrictionexprlist "}"
15 | CNAME ;

When it comes to renaming and restriction, they work by taking
the closest component to the left, and they take precedence over all the
binary operators. In fact, the renaming and restriction can be seen as
base cases of the binary operators, together with the case where we have
a single name which identifies a component. As an example, imagine
we have an expression like this: A = B ∥ C \ {method, method2}. With our
grammar, this is equivalent to A = B ∥ (C \ {method, method2}). Here we use
the restriction operator on component C before applying the parallel
operator to B and the restricted component. If we want to first apply
the parallel operator and then use restriction on the result, we have
to parenthesize the expression like this: A = (B ∥ C) \ {method, method2};.
Parenthesis can also be used in expressions where we want to override
the natural precedence. For example, if we want parallel to take place
over disjoint, we parenthesize the expression like this: A = (B ∥ C) ⊗ D;

4.5 Airport example revisited

In this section, we will go back to the airport example which we
modelled in section 3.3.1, and see how we can model it using the new
language. The full specification can be found in appendix A.2. We will
utilize the composition operators to see how we can use them to create
a real model. Note that there are some minor changes to the structure
of the model in order to adjust it to the algebraic composition.

Recall that the airport consists of two Gate components and a
CustomerService component. The airport component has dependency
requirements on the gates and customer service. The gate interface,
IGate, is shown in listing 4.5. In this example, there are no method
bodies in the interfaces, it is just method signatures. The components
will provide the implementation. The Gate component is also displayed
in the same listing. The pre- and post conditions and protocols that

44

previously were in the contract have been moved to the provided
interface of the component, and recall from section 3.3.1 that the
behaviour of the methods was provided by the class GateClass. This
is no longer the case, and the code is moved to the provided interfaces of
the component instead. This will minimize the lines of code and create
a more compact specification that is easier to understand.

Listing 4.5: The IGate interface and Gate component

1 interface IGate {
2 public loadPassengers (int numPassengers , Flight f l i g h t) ;
3 public unloadPassengers (Flight f l i g h t) ;
4 }
5 component Gate {
6 provided IGate {
7 public loadPassengers (int numPassengers , Flight f l i g h t)

{
8 [numPassengers > 0 ` true] ;
9 f l i g h t . numPassengers := numPassengers

10 }
11

12 public unloadPassengers (Flight f l i g h t) {
13 f l i g h t . numPassengers := 0
14 }
15 protocol { loadPassengers ; unloadPassengers }
16 }
17 }

The customer service component is displayed in listing 4.6.
Note that the specification of Office and CustomerCentre now
are top-level specifications, instead of being internal components
(see listing 3.3). The CustomerCentre component also provides
ICustomerCentre, as before, and ICustomerService, which is dif-
ferent from the airport in chapter 3. The most interesting part of this
example is the component composition which uses the plugging oper-
ator to compose the Office component and CustomerCentre com-
ponent together. The result is a new component, CustomerService.
This new component we just created will provide methods found in
ICustomerService and ICustomerCentre. The methods in the
provided interface IOffice is not provided to the outside environment
by CustomerService because we use the plugging operator.

The airport component is shown in 4.7. We can see that the com-
position that previously occupied much of the specification in rCOSP of
this otherwise trivial component is removed. This has reduced the com-
plexity of the component to only require three interfaces. Two IGate
interfaces are required, so we use the enumeration of required inter-
faces to denote that. This means that renaming of the methods of the
"second" required IGate will take place, and the result is that the air-
port requires four methods; loadPassengers, unloadPassengers,
loadPassengers2, unloadPassengers2. The composition expres-

45

Listing 4.6: The new CustomerCentre component

1 component Off i ce {
2 provided IOf f i c e {
3 public provideEmployee (; s tr ing employee) { / * Impl * / }
4 }
5 }
6 component CustomerCentre {
7 provided ICustomerService {
8 public handleCustomer () { / * Impl * / }
9 }

10 provided ICustomerCentre {
11 public customerSupport (str ing inquiry ; str ing support)

{ / * Impl * / }
12 }
13 required IOf f i c e ;
14 }
15

16 CustomerService = Of f i ce ¿ CustomerCentre ;

sion can be seen below the component specification. First (line 6-
7), we rename one Gate component in order to accommodate for the
renaming of the required IGate interface in the airport component.
The second expression (line 8) tells us to create a new component,
OneGateAirport. This plugs the GateRenamed into the atomic air-
port. The third expression (line 9) plugs another Gate into this compos-
ite component we just created. Now we have two gates, but the customer
service is missing. This is expressed in the last expression (line 10),
where we plug the CustomerService component to the airport. Before
doing so, note that we restrict, or hide, the provided customerSupport
method. In the example, the expressions are split up to provide an
easier overview. It would also be possible to create one big expression
at the cost of readability. In the end the result is the same, namely one
composite component that is created by other composite components, all
the way down to the atomic components which we defined.

Listing 4.7: The new airport component

1 component Airport {
2 required ICustomerService ;
3 required IGate [2] ;
4 }
5

6 GateRenamed = Gate [unloadPassengers ← unloadPassengers2 ,
7 loadPassengers ← loadPassengers2] ;
8 OneGateAirport = GateRenamed ¿ Airport ;
9 TwoGatesAirport = Gate ¿ OneGateAirport ;

10 MyAirport = CustomerService \ { customerSupport } ¿
TwoGatesAirport ;

46

4.6 Summary

In this chapter we presented a new language, rCOSPN, for component
specification and composition. The language emphasizes an easy-to-use
way of creating components, where the focus is on atomic components
and their required and provided interfaces and the composition of
these components. We looked at and defined the composition operators
parallel, disjoint, plugging, restriction, and renaming. In the last
section (section 4.5) of this chapter we went back to the airport example
from section 3.3.1, and modeled it again using the new syntax and the
composition operators. The result was a short and clear specification
where the operators made compositions easy, without the need to be
explicit about the attachment of required and provided interfaces.

47

48

Chapter 5

From code to model

5.1 Introduction

Having introduced the theoretical aspects of the component specifica-
tion language and formally defined the composition operations paral-
lel, disjoint, plugging, renaming and restriction in the previous chapter,
this chapter is all about the practical aspects of the implementation of
the language and the creation of the UML models. We will go through
every stage that occurs when translating from a textual specification to
the UML model, and will study the airport example again.

The chapter is outlined as follows: section 5.2 will go through
the stack of technologies utilized in the implementation. Section 5.3
describes the rCOS UML profile, and is followed by a section which
describes the structure of the UML models. We will also look at how
we go from text to UML model (section 5.5) and see this in practice in
section 5.6 where we create a UML model of our airport example.

5.2 Technology stack

Several technologies were used to implement the tool, and this section
will give an overview of them. These are the Eclipse Modeling
Framework (EMF), the parser generator ANTLR, Eclipse UML2,
TOPCASED and the Scala programming language. The stack is
depicted in figure 5.1.

5.2.1 The Eclipse Modeling Framework

Eclipse1 is an open source project [Ste+09] and Integrated Development
Environment (IDE) for software application development. It is
primarily used for developing Java applications, but other languages
are supported via plug-ins. Eclipse Modeling Framework (EMF) is a
framework built on top of Eclipse. EMF tries to extinguish the gap
between modeling and programming. Instead of creating a model of the

1https://www.eclipse.org/

49

JVM (Java Virtual Machine)

Eclipse

Eclipse Modelling Framework

Topcased Modeller

ANTLR

UML2

rCOS

Figure 5.1: Technology stack

EMF
Model

XML UML Java

Figure 5.2: EMF relation between XML, UML and Java. Figure is
derived from [Ste+09], page 14

software first and do the implementation after, the developer defines an
EMF Model of the application domain in either XML Schema, UML or
Java and then generates code from the model. Transformation between
XML Schema, UML and Java is seamlessly supported, and EMF unifies
these three technologies [Ste+09]. It is also possible to create the EMF
Model directly in Eclipse and generate the other forms from it. The
relationships are depicted in figure 5.2. The model which is used to
build other models in EMF is the Ecore model [Ste+09]. The Ecore
model itself is defined as an EMF model, which makes it a meta-
model. The advantages of using EMF are code generation and model
transformations. We will see later in this chapter how these provided
facilities were used in the development of the tool.

50

5.2.2 ANTLR parser generator

Writing language recognition programs by hand can be a tedious task.
A language recognizer consists of two parts, a lexer and a parser [Par07].
The lexer creates tokens from the stream of textual input. These tokens
are consumed by the parser which analyses the syntactic structure of
the input. If the input is not syntactically correct, as defined by the
grammar, the parser will give an error. There are several tools which
can generate a lexer and parser to a target language, e.g. Java, from a
grammar specification written in a grammar language provided by the
tool. Some of the most well-known for the Java programming language
are JFlex2, which generates a lexer, and CUP3, which generates a
parser. These two can be used in combination to create a full language
recognizer. Another option is to use ANTLR4, shorthand for ANother
Tool for Language Recognition, which generates both the lexer and
the parser from a single grammar specification. In this project ANTLR
version 3 is used, because it allows us to reuse parts from the rCOSP
specification grammar, such as method bodies. Another reason for
choosing ANTLR is the grammar development tool ANTLRWorks5

which supports syntax highlighting, grammar debugging facilities and
a syntax diagram visualizer, among others. This allows for quick
grammar development. The last reason to choose ANTLR is that it
supports tree building and tree grammars, which will be explained later
in this section.

To generate a lexer and a parser with ANTLR, the grammar is given
on Extended Backus-Naur Form (EBNF) in a grammar file. It is then
possible to generate the lexer and parser to two separate Java files
which can be compiled and run. Creating the recognizer is the first
step to building an interpreter, translator or compiler. The next step
is to do something beyond just recognizing the language, so we need to
enhance the parser with actions. An action in ANTLR is a block of code,
written in the target language [Par07] in the grammar, and inserted
into the generated parser. Actions can be used to perform various
tasks such as putting variables in a symbol table, retrieving information
about production rule references and executing a method call. Actions
outside production rules are used to declare global members (methods
and variables). An action is triggered when the production rule it is
associated with is invoked. Listing 5.1 shows two actions associated
with the component production rule at line 7, one for each alternative
in the rule. In this case, either an exception is thrown or the name
of a component is set, depending on what alternative is matched.
The grammar file can contain "import" statements which are directly
inserted into the generated lexer and parser. This makes it possible
to use external Java code in the generated code. In addition to defining

2http://www.jflex.de
3http://www2.cs.tum.edu/projects/cup/
4http://www.antlr3.org/
5http://www.antlr3.org/works/

51

Listing 5.1: ANTLR example

1 // in text parser grammar file
2 compositionExpr
3 : name=CNAME ’=’ p=pluggingCompositionExpr ’;’
4 -> ^(COMPOSITION $name $p) ;
5

6 // in tree parser grammar file
7 composition
8 : ^(COMPOSITION name=CNAME name2=CNAME)
9 {throw new SimpleAssignmentException

10 ("Simple assignment at " + name + " = " + name);}
11 | ^(COMPOSITION name=CNAME comp=ASTcompositionExpr)
12 {m.setName($comp.r, $name.text);};

actions, production rules can be parameterized, have return values, and
define scopes.

Sometimes a single pass through the input is not enough to solve
a language problem [Par07]. We will later see how this applies to our
parsing of rCOSPN. Using the lexer and parsing the token stream
multiple times is one solution, but a more efficient way to do multiple
passes is to construct one or more abstract syntax trees, or AST for
short. An AST is a simplified parse tree. ANTLR version 3 supports
construction of such trees during parsing with the use of rewrite rules.
Line number 4 in listing 5.1 shows the construction of an AST when a
composition is matched. The arrow "->" denotes the start of the rewrite
rule. In this case, the root node COMPOSITION is created with the
name and composition expression as child nodes. A tree grammar is
created to parse the AST. A tree grammar generates an AST parser.
Parsing the AST and triggering the appropriate action for each tree
node makes it easy to translate the input into something else, like a
UML model in our case. The actions trigger Java code which calls
methods to build each model element.

5.2.3 Other technologies

Eclipse UML2

The Modeling Development Tools6 (MDT) is an Eclipse project which
offers implementations of industry standard metamodels and tools for
creating models with these metamodel implementations. One of the
tools offered is an implementation of the UML 2.x metamodel, called
Eclipse UML2. This implementation makes it possible to define the
UML models programmatically by using its API. Eclipse UML2 is used
in the tool to build the UML models from the textual specification.

6http://www.eclipse.org/modeling/mdt/

52

The Scala programming language

The Scala programming language is a statically typed general purpose
programming language that runs on the Java Virtual Machine (JVM).
Scala code compiles to Java bytecode. This ensures interoperability with
existing languages on the JVM such as Java. Calling code written in
Java from Scala is a trivial task. Scala lives in both the object-oriented
programming and functional programming paradigm. As an object-
oriented language, every value in Scala is an object [OSV11]. Functional
programming is about computation without side effects, immutable
values and functions as first-class citizens. As a functional language,
Scala supports all these features. The reason for choosing Scala as the
programming language in this thesis is that it emphasizes concise and
expressive code, supports interoperability with Java (the existing rCOS
tool is built in Java), and due to personal preference. Eclipse supports
Scala development through the use of the Scala IDE plug-in7.

TOPCASED modeling Tools

TOPCASED8 is an acronym for Toolkit in OPen-source for Critical
Applications and SystEms Development [Far13]. TOPCASED is a
modeling tool which, among others, offers model editors, model
transformations and model checking which is built on top of the Eclipse
Modeling and the Graphical Editor frameworks.

5.3 The UML profile

As section 2.4 states, a profile is an extension mechanism to a referenced
metamodel. This allows us to create model elements which are
necessary for the modeling domain and are not available in the UML
metamodel. The composition operators introduce a modeling problem
that is not covered by the elements in the UML metamodel. The
metamodel contains a component element, but this element does not
record which operator and components, either atomic or composite, that
were used in the composition to create the component. We need a way
to express this declarative information in the UML. Figure 5.3 shows
the rCOS UML profile part for modeling the compositions. The profile
is a hierarchy of stereotypes. A UML stereotype is used to extend
an existing UML model element. Stereotypes carry the annotation
«stereotype» and are easily distinguishable from other model elements

The profile is built as an extension of the existing profile for
rCOS, and only the part of the profile that covers the components and
component composition is shown here. At the top of the hierarchy is
the rCOSComponent stereotype. This stereotype has an extension
association with the component metaclass. This kind of association

7http://scala-ide.org
8http://www.topcased.org/

53

is used to show that the properties of a metaclass are extended
through the stereotype [Gro11]. The stereotype is attached to the
extension via an ExtensionEnd property. An ExtensionEnd is navigable,
which makes it possible to attach an instance of the stereotype to
an instance of the extended classifier without modifying the classifier
with a property [Gro11]. The rCOSComponent stereotype also contains
a Component property which is attached to the member end of the
extension association. This member end shows that a Component
instance takes part in the association. The result of this is a seamless
connection between an instance of an rCOSComponent and an instance
of a UML component.

A stereotype can build on other stereotypes via a generalization
relationship. As depicted in the profile diagram, the ServiceComponent,
ProcessComponent and CompositionOperator stereotypes are more
specified versions of the rCOSComponent. This concept is similar
to the concept of relationship between a superclass and subclass,
and the specific stereotype inherits the properties from the general
stereotype. The ServiceComponent and ProcessComponent stereotypes
are reserved for the atomic components and are applied to the
atomic service components and process components respectively. The
ComponentOperator stereotype defines the base for every composite
component which is a result of an operator application. Since every
operator applies to at least one component, the stereotype contains a
property, left, which is typed by rCOSComponent. This property is
used to refer to the left component operand in one of the three binary
compositions or as the single component in the two unary operators.

Recall from the operator definitions in chapter four that the disjoint
and plugging operators are specializations of the parallel operator.
This is reflected in the profile which shows these two operators as
UML stereotypes that extends the Parallel stereotype. The Parallel
stereotype itself is an extension of ComponentOperator, and adds a
property, right, which will hold the reference to the other argument.
The two unary operators, renaming and hiding, are also defined as
two stereotypes which extends the ComponentOperator stereotype.
The Renaming stereotype contains a property, ops, which is a list of
RenamePair objects. A RenamePair is a tuple which holds references
to the old and new operation. The Hiding stereotype defines a property,
method, which is the list of hidden operations.

With the profile defined in UML, generating Java code is a trivial
task using EMF. Each stereotype gets translated to a Java interface
and a class which implements this interface. As we will see, the Java
code is used in the construction of the UML models.

5.4 The structure of the semantic UML models

We have stated earlier that the (semantic) UML model can be viewed as
a hierarchical tree structure. An example model created by our tool can

54

Figure 5.3: UML profile diagram

be seen in figure 5.4. This is the rCOS UML model created by feeding a
slightly larger version of the specification given in listing 4.2 to the tool
(the Database service component and a parallel composition between
this component and the UserAdmin component is added).

We see that the rCOS UML profile is applied. The rCOS stereotype
of a model element is shown with its name surrounded by guillemets.
At the top of the hierarchy is the <Model> element. The model is
defined as a UML package which captures a view of the system. Its child
elements describes the complete system [Gro11]. The elements labeled
with <Package> provide namespaces and are used to group elements.
We can see that a class model package, a use case model package and a
component model package are created as individual parts of the model
in this example. In our case, the component model package is the most
interesting package. We can see that the interfaces and components are
added to this package.

5.5 How rCOSPN gets translated to a UML
model

A model created with rCOSPN can be viewed from three different
view points. We have already seen the first one, which is the
textual representation defined by the rCOSPN language. The second

55

Figure 5.4: UML structure as seen in Eclipse

perspective is as a regular UML model. However, the UML model
does not exhibit the declarative information obtained through the
composition expressions, i.e. which operator was used to create the
composite components and what the left and right operands were. The
rCOS UML profile defined can be viewed as the third perspective, and
shows the stereotype applications. This section shows how the UML
model gets constructed and how the UML-profile is applied to the model
elements.

5.5.1 Parsing

During model construction, the prototype builds an in-memory model
in Java using the generated Java classes and the Eclipse UML2 API.
When the parsing is done, this model is saved using a library function
in EMF and can be opened with an UML model viewer. The model
gets built during three phases of parsing and each phase is explained
in turn below. The parsers are modifications of the parsers in the rCOS
tool and adapted to support the new syntax and component composition
expressions.

First phase: from text to AST

Parsing the textual input file is the first step in the model construction
and is done during the first phase of the parsing. A grammar defined in
ANTLR creates a lexer and parser which transforms the text to an AST
using rewrite rules. This AST is used in the second and third phase by
tree grammars.

Second phase: create basic UML elements

The parser in the second phase is an AST parser, which means that it
is defined as a tree grammar in ANTLR (see section 5.2.2. This phase
is the first phase in construction of the UML model. The grammar is
augmented with actions which are executed when the corresponding
production rule is matched. These actions will create the basic UML

56

elements in the model as Java objects. These elements are interfaces,
atomic components and classes.

Third phase: compositions

The third parsing phase will parse the AST a second time using a
different tree grammar. In this phase several important events happen.
Attributes, methods and method bodies get created and added to their
respective elements which were created during the second phase. This
is functionality from the existing rCOSP parser. Provided and required
interfaces are associated to their components. In cases of provided
interfaces, the methods of the interface are added to the component in
addition to being in the interface.

During this phase the ASTs of the composition expressions are
parsed and the composite components get constructed. Upon encoun-
tering a composition expression, parser augmented actions will execute
the correct code depending on what kind of composition it is. A compos-
ition expression can be viewed as a tree structure, and the composite
component will be built bottom up starting at the leaves of the tree.
We will go into more detail about composite component construction in
section 5.5.3.

A limitation clearly manifests itself during this phase. The parser
parses the input from top to bottom. In this case it means that a
composition expression can not depend on a component which is a result
of a composition expression defined later in the input. As an example,
the following expression will create an error during this parse phase:
A = B ∥ C; B = D ∥ E. As we can see, the first expression depends on B.
However, B does not exist yet at this point of the parsing.

5.5.2 Model elements

As we now have seen, the UML model is created during parsing. The
model elements get "translated" from text to UML via Java objects. We
will now examine these translations further and see what each UML
element consists of. Note that attributes, interfaces, classes and some
parts of components are unchanged in this version of the tool from the
previous version.

Attributes: Each attribute declared in a classifier will be added to the
UML model as either a UML property (primitive types) or a UML asso-
ciation (non-primitive types).

Interface: An interface definition is translated to a plain UML inter-
face with its declared methods and attributes.

Required interface: Each required interface declaration in a compon-
ent is given as a usage dependency relationship in the UML model. The
full requirement specification of a component is the union of the meth-

57

ods in the required interfaces. In cases where the required interface
declaration is followed by a number denoting enumeration, the corres-
ponding number of interfaces are created and their methods renamed.
The component will have usage dependencies to all of these interfaces.

Provided interface: A provided interface declaration is translated to
an interface realization relationship between the component and the in-
terface. Each method defined in the provided interface block is added to
the component as an owned operation. The type-checker will verify that
a component provides all methods that are declared in the interface. For
more about type-checking, please refer to chapter 6.

Class: A class in rCOSPN is simply constructed as a regular UML class.
The classes are added to the rCOS class model package as top-level clas-
sifiers. The consequence is that there are no local classes even though
they can be defined inside a component.

Component: The components are regular UML components with a cer-
tain rCOS stereotype applied. This will make them rCOS components.
The stereotype applied depends on what kind of component it is: Ser-
vice, Process, Parallel, Disjoint, Plugging, Renaming or Hiding. If the
component is a composite component, a UML dependency relationship
will be created. The component it depends on (one component for Re-
naming and Hiding, two components for Parallel, Disjoint and Plugging)
is the supplier, and the composite component is the client in the depend-
ency relationship. The purpose of having these UML dependencies is to
be able to display in a UML diagram which components were used to
create the composite component, they do not show which of the compon-
ents were the left and right operands. The reason is that we do not have
diagram capabilities to show the structure of the rCOS components and
the UML dependencies work as a substitute for that.

5.5.3 Composition expressions

A composition expression can be arbitrarily large, i.e. contain sub-
expressions, and the abstract syntax tree of an expression is traversed
in a post-order traversal. This means that the subtrees of the root are
visited before the root. The root of a tree tells us what kind of com-
position it is. A composition using a binary operator has the left and
right operand as its subtrees. Renaming and hiding have two subtrees
as well; the component to apply the operation to and a list of names de-
noting the operations. The nature of post-order traversal implies that
the composition is built bottom-up. The leaf nodes of the tree are either
atomic or already defined composite components. The operators are im-
plemented according to the definitions found in chapter 4.

The parallel operator will create a new component which provides
the union of the methods provided by the left and right subtree. Each

58

provided method will be copied over to the new component. The re-
quired methods will be the union of the required methods of the left and
right subtree, except those that are also provided. The union of attrib-
utes are copied over as well.

The disjoint operator is almost equal to the parallel, except that it is
mandatory for the required methods of the left and right subtree to be
disjoint and that one component does not provide something the other
requires.

The plugging operator is equal to the parallel, except that the set dif-
ference between the provided and the required is calculated and exposed
as the provided interface.

The hiding operator will create a new component based on its left sub-
tree. The operations that are not hidden will be copied over to the new
component. The operations that are hidden are added to the list of hid-
den operations. The effect of this is that we know what the component
exposes (UML view) and why it exposes it (rCOS view).

The renaming operator behaves similar to the hiding. It copies every
operation from the component in the left subtree, renamed if specified.
It keeps a list of RenamePairs to keep track of which operations are
renamed and to what.

The union of the provided interfaces is collected into one interface. On
condition that the computed set of provided methods is not empty, a
new UML interface is created. This interface is added to the context
of the component. An UML interface is created for the computed set of
required methods as well, given that the set is not empty.

The lack of the special operator symbols ∥, ⊗ and ¿ on a normal
keyboard is solved by allowing them to be replaced by || (two vertical
bars), o (a single ’o’ character) and << (two "less than" characters) in
the composition expressions.

5.6 Example: creating the airport UML model

In this section we will run the tool on the airport specification given
in section 4.5 and inspect the UML model both as a hierarchical
tree and diagrammatically. As before we will begin with the Gate
component, defined in listing 4.5. Figure 5.5 shows the tree view of
the IGate interface and Gate component as displayed in the UML
model view in Eclipse. The complete UML component model is
appendix A.3. The IGate interface is a plain UML interface with its
two owned operations. The Gate is an rCOS UML component with the
service component stereotype applied. The component has an interface
realization relationship with the interface.

59

Figure 5.5: The IGate interface and Gate component in UML

Listing 4.6 defines the components Office and CustomerCentre.
These are similar to the Gate component. This listing also contains the
composition expression which creates the CustomerService compon-
ent. The UML model of this component is depicted in figure 5.6 and its
graphical counterpart, which is plain UML except showing the rCOS
stereotypes, is in figure 5.7. This component is a result of applying the
plugging operator, so this is the applied stereotype as well. The dot-
ted arrows are the UML dependencies which refer to the two operands.
Note that the Office and CustomerCentre components are shown
outside of the CustomerService component in the diagram, and not
inside. This is because they are considered top-level classifiers. We will
discuss this in section 7.2.3. Recall the definition 4.4.5 which says that
the provided methods of the left operand are going to be hidden if they
are required by the right operand. This is reflected in the model, and the
provided operation provideEmployee by the Office component (left op-
erand) is not a part of the provided interface of the CustomerService,
since CustomerCentre (right operand) requires it. The new provided
(called _provided in the model) interface is calculated and added loc-
ally to the component. The component has an interface realization with
this interface.

Figure 5.6: The CustomerService UML component

The final component, MyAirport, is shown in figure 5.8 and fig-
ure 5.9 as semantic model and graphical model, respectively. We
see that it is a plugging composition. The expression which cre-
ates this model contains a sub-expression (see listing 4.7 line 10),
that is the restriction on method customerSupport in component
CustomerService. This is reflected in the model as the nested com-
ponent CustomerService_restricted. The graphical diagram is
shown in the Eclipse environment in figure 5.9.

60

Figure 5.7: The CustomerService UML component diagram

Figure 5.8: The MyAirport UML component

Figure 5.9: The final component, MyAirport, in Eclipse

61

5.7 Summary

We started this chapter by giving an overview of the technologies which
were used to develop the tool. Among these were the Eclipse Modeling
Framework which offers a convenient way to unify UML, XML and
Java and easy conversion between these formats. We saw how the
ANTLR parser generator was used to create parsers used for model
building. The rCOS UML profile for was defined in section 5.3. This
profile extends the UML metamodel with custom stereotypes for correct
domain modeling. It exists one stereotype for each type of component,
seven in total.

Several phases of parsing makes the transformation from textual
specification to the UML model complete. Section 5.5 presented each
stage: parsing text to AST, parsing the AST the first time to create basic
UML model elements and parsing the AST a second time for "filling in"
these basic elements. The composition expressions are handled during
the last phase. This section also covered the details about constructing
the composite components. During development a number of design
decisions had to be made. These are presented in section 7.2.

The last section went back to the airport example and created a
UML model of the airport which was given as a rCOSPN specification
in chapter 4, and viewed the model both semantically and graphically.

62

Chapter 6

Type-checking and model
validation

6.1 Introduction

To avoid creating erroneous UML models and violation of the component
operator definitions it is vital to do various checks on the model entities,
especially the components and composition expressions, in the different
phases of the model construction. Type-checking the input specification
during parsing is important to ensure that a correct model is created.
Even if a model is valid immediately after construction (from an
rCOSPN input specification), it is highly possible that it will be altered
at a later point. Having the possibility to do model validation on the
UML model whenever necessary is important to ensure the model stays
correct at all times. If the model is correct, the validation passes. If not,
we get one or more notifications that tells us which parts are wrong.
The first part (section 6.2) of this chapter will look at the type-checking
of components and component composition expressions, which is done
during parsing. The second part (section 6.3) covers the validation of
the UML models. The third part (section 6.4) lists all the type-checking
and validation rules.

6.2 Type-checking

Mitchell [Mit02] defines a type as ”a collection of entities that share
some common property” and type-checking as ”an algorithm that
goes through the program to check that the types declared by the
programmer agrees with the language requirements”. In our case the
type is the collection of components. The scope of this thesis is the focus
on the specification of atomic components and their compositions i.e.
the structural model perspective, and we will only concentrate on the
type-checking of components and composition expressions. However,
the type-checking of rCOSPN specifications is not limited to components
only. Arithmetic expressions, method invocations and method bodies
are other examples where type-checking is important. The rCOS tool

63

which we build on offers type-checking for these categories which can
be integrated in our tool.

The set of components which we just defined as a type can be divided
into two groups, namely the atomic components and the composite
components. Since the composite components depend on the atomic
components, it is important to make sure that the atomics are correct
before they are used in compositions. If they are not, even a small error
may ripple through to the composite components, making the model
wrong. The atomics are run through the type-checker immediately
after they are created, which will do various checks such as seeing if
the provided block(s) are complete (every method in the interface is
provided) and that there is only one of each provided method. The full
list can be seen in section 6.4. If the type-checker detects an error, the
parsing is canceled, no model is built and the error is displayed to the
user.

When an algebraic composition expression is encountered, the type-
checking routine will be invoked before the composite component is
created. Depending on the type of operator used, either binary or unary,
this routine will inspect the expression and do various checks similar to
what is done to the atomic components. If restriction or renaming is
used, the component which this operator is applied to will be inspected.
In renaming for example, it is verified that the methods that are going
to be restricted exist in the component. For the binary operators both
operands are checked, and tests such as making sure that they are
compatible, for example no common provided methods, are executed.
There are different checks for each type of composition. As an example,
the expression A = B ∥ C; will run the parallel checking routine on the
operands A and B . If they somehow do not fit together, e.g. overlapping
provided operations, an error is generated and shown to the user.

The checks done during parsing could also be done during model
validation, and we will see that this is in fact also the case for some of
them (see the tables in section 6.4 for an overview of the rules). Given
that the model can be validated after construction, type-checking as
described above is not a critical requirement since the errors caught
during this phase can also be caught during model validation. Therefore
an alternative solution could be to do no type-checking during parsing
at all. However, there is no reason to create a model if the specification
is wrong, and if there is one error present in the specification we should
get a notification about this at the moment it is discovered and not wait
until the model is built so it can be validated.

6.3 Model validation

Once the rCOSPN input is parsed, type-checked and found correct, the
output is the UML model with the rCOS profile applied. This model
is a representation of the textual input specification, and can be edited
further, for example by adding a new interface and a new component.

64

To be safe that these changes do not violate the rules, we can validate
the model to ensure that it stays correct. We say that the model is
valid when it conforms to the rules defined in section 6.4. In the tool,
the model validation process can be invoked at all times. This means
that errors are discovered quickly if the user alters the model after its
construction, e.g. by adding an operation to an interface, but forgets to
add it to the provided block of a component.

6.3.1 The Object Constraint Language

The Object Constraint Language (OCL), a declarative language, is
defined as an add-on to the UML [WK03]. The OCL can be utilized to
augment a UML model with expressions, constraints and information
that cannot be expressed by the UML alone. For example, a UML
class model can say that a Car has a set of seats and an association
to the Person class, but not that the number of passengers must be less
than or equal to the number of seats. In our implementation, we use
the OCL to formulate the model validation rules as Boolean queries.
The outcome of these queries (true or false) depends on whether the
queried model element, the query context satisfy the rules. A query that
checks that a component does not provide the same interface more than
once is expressed as self .interfaceRealization−>asBag()−>isUnique(name). The
keyword self refers to the context, i.e. the component currently tested.
In our implementation, each OCL query is declared as a Java string and
the context is set explicitly before each query.

6.4 Type-checking and model validation rules

How do we know when a model is correct? In order to type-check
components and composition expressions, and validate the UML models
we need to define a set of rules, or "checks", which the expressions and
models must conform to. The rules of the atomic components can be
found in table 6.1. These rules applies both to type-checking and model
validation. The rules for the composite components which are created
by one of the binary composition operators are found in table 6.2. These
rules only apply to the model validation. The renaming and restricted
(the unary composition) model validation rules are shown in table 6.3.
Note that some rules are listed in multiple tables, since they apply to
more than one category of components.

The type-checking and model validation rules for component com-
position expressions are described in table 6.4 and table 6.5. The former
shows the rules for the binary operators, and the latter displays the
rules for the unary operators.

65

Rule Service Process

There must be no duplicate variable definitions X X

The set of provided and required methods must
be disjoint

X -

Must provide an implementation of every
method declared

X -

Must not provide a method that is not declared
in the interface

X -

Must not provide the same interface twice X -

No duplicate provided methods X -

Must not provide the same method twice X -

Must not provide methods - X

Table 6.1: Type-checking and model validation rules for the atomic
components

Rule Parallel Disjoint Plugging

There must be no duplicate variable definitions X X X

The set of provided and required methods must
be disjoint

X X X

Must provide an implementation of every
method declared

X X X

Must not provide a method that is not declared
in the interface

X X X

No duplicate provided methods X X X

Must not provide the same method twice X X X

Should provide the union of the methods of the
sub components

X X -

Should contain the union of the variables of the
sub components

X X X

Should not require methods which are provided
by one of the sub-components

X X X

Should require every method from both sub-
components

- X -

Provided methods by the first operand which is
required by the second is hidden

- - X

Table 6.2: Model validation rules for the binary composite components

66

Rule Renaming Restriction

There must be no duplicate variable definitions X X

The set of provided and required methods must be disjoint X X

Must provide an implementation of every method declared X X

Must not provide a method that is not declared in the interface X X

No duplicate provided methods X X

Must not provide the same method twice X X

Should still provide the methods that are not renamed X -

A renamed operation is not provided with its old name X -

Every renamed operation is provided with its new name X -

Should provide those methods that are not restricted - X

Should not provide those methods that are restricted - X

Table 6.3: Model validation rules for the unary composite components

Rule Parallel Disjoint Plugging

No common variables X X X

No common provided methods X X X

No common required methods - X -

One component do not provide a method
the other requires - X -

Table 6.4: Type-checking rules for the binary composition operators

Rule Renaming Hiding

The operations which are renamed or restricted
must exist X X

Not rename an operation more than once X -

Table 6.5: Type-checking rules for the unary composition operators

67

6.5 Examples

The code listings 6.1 and 6.2 demonstrates the rule which says that
a component can not provide a method that is not declared in one of
the interface(s) it provides. The first listing shows the type-checking
code of this rule written in Scala. This rule is applied to atomic
components during parsing. Lines 2-5 collects every method from the
interface(s) specified as provided. Line 7-8 fetches the set of the methods
the component owns. The for loop in line 10-16 compares these sets,
and throws an exception if an owned method is not found in the set
of interface methods. The OCL equivalent of this rule is shown in
the second listing. Lines 2-3 fetches the owned method set and the
set of methods in the interface(s) it provides, respectively. Then we
loop through the owned methods, and for each method check that an
equivalent method exists in the other set. This evaluates to either true
or false.

Listing 6.1: Type-checking rule

1 def tcNotProvideUndeclaredMethod (component : Component) {
2 val provs = new OperationSet (Buffer . empty [Operation])
3 val providedInterfaces = component . getProvideds ()
4 providedInterfaces . foreach (
5 in f => provs ++= in f . getOwnedOperations ())
6

7 val owned = new OperationSet (Buffer . empty [Operation])
8 owned ++= component . getOwnedOperations ()
9

10 for (o <− owned) {
11 i f (! provs . contains (o)) {
12 throw new ProvidedUndeclaredOperationException (
13 "The component " + component . getName
14 + " provides method " + o . getName +
15 " which doesn ’ t ex i s t in any of the provided

inter face (s) ")
16 }
17 }
18 }

68

Listing 6.2: OCL validation rule

1 l e t
2 set1 : Set (Operation) = s e l f . ownedOperation−>asSet () ,
3 set2 : Set (Operation) = s e l f . provided . getOperations ()−>asSet ()
4 in
5 set1−>forA l l (
6 s1 | set2−>ex is t s (s2 | s1 .name=s2 .name and
7 (l e t
8 ppars : Sequence (Parameter)=s1 . ownedParameter−>asSequence () ,
9 opars : Sequence (Parameter)=s2 . ownedParameter−>asSequence ()

10 in
11 ppars−>forA l l (
12 ppar |
13 l e t
14 opar : Parameter = ppars−>at (ppars−>indexOf (ppar))
15 in
16 ppar .name=opar .name and ppar . type=opar . type))))

6.6 Summary

In this section we emphasized the importance of type-checking com-
ponents and component expressions during parsing and being able to
validate the UML models. It is vital to report any errors if the model
designer writes an erroneous specification or introduces an error in the
UML model. The model validation rules are written as OCL queries.
At the end of this chapter was several tables which show every type-
checking and model validation rule which is used to ensure correctness.

69

70

Chapter 7

Discussion

7.1 Introduction

This chapter will present an evaluation of the tool and discuss the
prototype in light of the problem statement. Section 7.2 will look
into the major design decisions made during the development of the
prototype. After that follows a discussion on limitations of the tool.
Alternatives to using UML profiles to support algebraic component
composition are discussed in section 7.4, and section 7.5 will take a
look back and compare the algebraic way of component composition
with the "traditional" way of component composition. The last section
describes how the algebraic component composition can be used in the
"real world".

7.2 Prototype tool design decisions

7.2.1 Handling interface compatibility

Dealing with interface compatibility, i.e. when a required and provided
interface of two components are compatible, was a topic we had to
decide on how to handle when creating the prototype. In the Java
programming language, entities can be considered "equal" if they
implement the same interface. Consider an example where we have
an interface called Shape and two classes Circle and Square which
implements this interface. This allows us to pass instances of these
two classes to a method where a Shape is required. However, if we
create another interface Form, with the same method signatures as
Shape, and change Square to implement this interface instead, we
will get a compiler error if we try to pass an instance of Square to the
method which requires a Shape. This is because these two interfaces
are considered distinct types although they contain the same method
signatures. This approach is not directly transferable to the algebraic
component composition because we don’t view an interface as a type.
Deciding whether an interface fits with another based solely on the
name would be too rigid and is not an optimal solution either.

71

Another way of describing interface compatibility is to view two
interfaces as compatible if the one we would like to use (the provided
interface) offers at least the same methods as the one required, but
possibly more. The qualified names of the interfaces do not matter in
this approach. So, if the required interface is a subset of the provided
interface in terms of method signatures, they are compatible.

However, in the prototype the criteria for interface compatibility
as described above was thought to be too strict. After all, in the
tool, interfaces are just labeled collections of method signatures, and
the algebraic compositions do not attach interfaces together in the
traditional manner. As we know, they compute a new set of required
and provided methods based on the component(s) used as argument(s)
in the expression. If component A requires the methods a, b and c and
component B provides methods a and b only, it should still be possible
for A to use the two methods provided by B even though they are not
compatible like described above. The approach where this is allowed is
reflected in the definitions of the composition operators, and the solution
implemented in the prototype. If there are any methods "left over" after
a composition, they are simply required by the composite component.
This approach emphasizes compatibility on "method-level" instead of
"interface-level".

7.2.2 Static vs. dynamic component instances

A question that arose during development was how references to
components should be handled in composition expressions. In object
oriented programming it is common to define a class and instantiate it
by creating objects (instances) of that class. A similar approach could
be used in our case, where we create a new, independent "component
instance" each time a component is used in a composition. The
component instance is only used by the composition expression in which
it was created. As an example, in the two expressions A = B ∥ C; D = B ¿
E; the B component is used twice in two separate expressions, creating
two independent instances. This would make the implementation more
complex without adding any real value, because a component model in
UML is a static model. Independent instances would effectively lead
to duplications of components and a harder to maintain model. In our
implementation, there exists only one instance of the component which
is referred to by every composition expression using it.

7.2.3 The problem of setting component context

Recall from section 2.4.1 that components may be nested. Another
way to express this is that components may be added to a component
context. The context is a kind of scope, which is the environment of
the component, and we say that if component B is nested inside A, A is
the context of B. The context of a component depends on what kind of
component it is. During parsing of the input, each atomic component,

72

whether it is a service or a process component, gets added as a top-
level classifier. This means that it is attached to the global scope,
and visible to every other classifier in the model. Components which
are part of compositions, however, will be added to the context of the
resulting component. For example, in the composition K = A ∥ B ∥ C ,
the "anonymous" composite component which is a result of B ∥ C will
be added to K’s context. This is fine because this composite component
is only used by K and is not needed elsewhere. We do not take into
consideration that B ∥C might be part of other compositions as well.

The problem arises when we consider the context of atomic compon-
ents that are used in compositions. Following the idea described above,
a component that is a part of a composition should be added to the com-
posite component’s context. However, a component can only be a part of
one context at a time, i.e. it can only belong to one component. In the
above example, if atomic component A was assigned to the context of K,
it would move A from the top-level classifiers to the context of K. If A is
used in another composition the user would be presented with an error
saying that no component with that identifier exists.

Three solutions to this problem were considered. In the first
solution, the notion of context would be dropped completely. This
would make the model cluttered since every component would end up
as a top-level classifier. This in turn would make the hierarchical
view of the model flat. The second approach was to keep every
"original" atomic component as a top-level classifier and create a new
version of the atomic components each time they were used in a
composition, effectively duplicating each component when it was needed
(see section 7.2.2). This duplicate component would be added to the
correct context. However, one of the core ideas is that we want only
one of each atomic component in the model, which will be referred to by
the sub-components in a composition. In the end, editing an atomic
component, e.g. adding a method to its provided interface, should
affect every composite component that depends on this component (see
section 8.3 about future work). Duplication of components will make
this harder to implement because of the extra bookkeeping details. The
third option, which is the one we went for in the implementation, is to
divide the components into two sets, one for root components and one for
internal components. The root set contains every top-level component,
both atomic and composite. The components in this set will not change
context. The internal components are part of a composition and will be
assigned to a context. In the example above where K = A ∥ B ∥ C , the
component B ∥C will be added to K’s context, but A will not because it is
in the root set. This is shown in the figure 7.1.

7.2.4 Handling interfaces

We have emphasized that an interface in rCOSPN is nothing more
than a collection of methods signatures and optional method bodies.
This means that two interfaces which contain exactly the same method

73

K

CBA

Top-level
classifiers

context context context

B || C
context context

Figure 7.1: Component context

signatures can be viewed as equal, even if their names are different.
When constructing the UML model, there are two ways to handle the
interfaces; either discard them or translate them to UML interfaces.
Discarding means that the only usage of an interface is in the textual
specification as a convenient way of grouping related methods to reduce
code duplication. During the UML model building, the interfaces will
not persist and no UML interfaces will be created. The methods
declared in an interface are copied over to each component. This could
work with provided interfaces, if we assume that a component provides
every method that it owns. In UML, we can inspect what methods a
component provides by looking up its owned operations. Showing what
a component requires is another matter and we discovered that it is
harder to express without an UML interface. Copying the required
operations to the component is not a solution, since it would make it
impossible to differentiate between the provided and required methods
and making us lose vital information about the model. We needed
something in the implementation to keep the provided and required
methods apart and a simple way of knowing what methods are provided
and required. As we have seen, we went for creating UML interfaces,
because it is a convenient way of bookkeeping method details and
grouping methods. Another solution could be to keep simple lists of
e.g. operation names in each component, one for provided and one for
required.

74

7.2.5 No simple assignment

A simple assignment on the form A = B; is not allowed in rCOSPN. We
felt that the use cases of such expressions would be rare and only apply
in cases where the modeler wants to duplicate a component and give it a
new name. This would have no direct effect on the model semantics. The
expression can also be viewed as an empty renaming or hiding which
would be an erroneous operation with no semantic meaning.

7.2.6 Renaming only applies to provided methods

Recall that the renaming of method names in a component only applies
to the provided methods of the component. However, the definition
of renaming proposed in [Don+13] says that renaming applies to both
provided and required methods. In principle this would not cause any
problems, but we felt that being able to rename required methods was
a bit redundant. The purpose of renaming is to make components
compatible for composition, and the renaming of provided methods only
is enough to accomplish that. Another incentive to not allow renaming
of required methods is that a potential error when renaming both
provided and required could lead to the same name on a provided and
required method, leading to a valid model becoming a non-valid model.

7.3 Tool limitations

7.3.1 Common variables

The component definitions for the binary operators state that it is
required for the component operands to have disjoint sets of variables.
This is important to ensure in order to avoid incorrect models. As an
example, imagine the component specification given in listing 7.1. Both
components contains the integer i, and provide methods which use this
variable.

Listing 7.1: Common variable

1 component A {
2 int i ;
3

4 /* provided methods which does something to ’ i ’ */
5 }
6

7 component B {
8 int i ;
9

10 /* provided methods which does something to ’ i ’ */
11 }
12

13 //type−checking error : both contain ’ i ’
14 AB = A ∥ B;

75

The type-checker will throw an error upon parsing the parallel
composition expression saying that it is not possible to compose two
components which contain the same variable. After all, these two
components might do different things to i, for example by storing
an important value. How should common variable(s) potentially be
handled in the tool? One solution is to compose these two together
as normal and create a component where only one of the i’s persists.
This could potentially lead to a component where the methods from
A will overwrite the value written by B, and vice versa, which is
clearly not a good behaviour. Another solution is to place both i’s
in the new component. However, this would cause a name clash in
the component. So far this restriction seems good in order to avoid
composite components like the one above.

The biggest impediment in this restriction is that it makes compos-
ing two components of the same kind a hard task, if they contain the
same variable(s). Common provided methods can be remedied with a
renaming expression, but renaming does not apply to variables. For
example, imagine composing two memory cell components to create a
two-place memory cell component. In the current version of the tool,
there is no other way around this than simply defining these compon-
ents without any variables.

7.3.2 Showing explicit method "attachment"

In a UML model created by the tool, there is no explicit way of telling
which methods are "plugged" into each other in a binary composition.
The model only reflects which components are used in a composition,
and if one component provides something the other requires, these
required methods are not carried over to the composite component. In
many cases this is fine, because we want to automatically derive new
components from existing ones without thinking of what methods went
where. On the other side, in the cases where we do want to know,
we have to manually inspect the UML model to discover the joining
of required and provided methods.

7.4 Alternatives to UML profiles

In this thesis we looked into how the UML could support algebraic
composition with the help of a UML profile. The main reasons for
choosing a profile were that a profile is a lightweight, convenient and
easy way to extend the UML metamodel with UML stereotypes which
defines customized modeling elements by extending existing ones, and
that we could utilize the rCOSP UML profile. In addition to using a
profile, there are two other alternatives to consider. The first is to not
extend the UML at all and stick to using plain components. The second
is to create our own UML metamodel.

76

7.4.1 Using plain UML components

We have emphasized that the UML metamodel alone does not suffice to
model the algebraic composition of components, since it does not contain
the specialized modeling capabilities needed for this particular domain.
Using plain UML could however work to some extent. After all, we still
use the basic building blocks such as UML components and interfaces.
As an example, imagine that we have a complete rCOS UML model
with atomic components and algebraic compositions. If we take this
model and remove the rCOS profile application, we would be left with
a UML model with plain UML components and interfaces. This model
could still be of some use and could be drawn in a diagram. However, it
would lack the information associated with the rCOS and the algebraic
compositions. For example, we can no longer distinguish the parallel
compositions from the plugging compositions since the stereotypes are
no longer present.

7.4.2 Creating a new metamodel

The field of metamodeling is beyond the scope of this thesis, but creating
a new metamodel for the algebraic composition could be an alternative
to using a profile. Although UML profiles are suitable for modeling
the domain of algebraic composition, they are limited in the sense that
they have to reference an existing metamodel. Simply put, a metamodel
defines the concepts of the language [Fow03], for example it defines the
concepts of classes, interfaces and components. The model elements we
use in our ordinary models are instances of the concepts defined in the
metamodel [WK03].

Building a new metamodel for our prototype would probably require
more work than defining a profile. It would require us to create our own
versions of modeling elements like interfaces, classes and components
which are already available in the UML metamodel maintained by
OMG. Using rCOS as a foundation would no longer be of use, since
it uses the UML metamodel. The domain of algebraic composition is
likely not big and specialized enough that creating an entirely new
metamodel would be a huge improvement over using profiles. Besides,
it would be harder to interchange models because it would require that
the recipient had acquired the metamodel. This is in contrast to UML
which is an industry standard for modeling.

7.5 Two worlds of component composition

We can view the algebraic composition and traditional composition
as two different worlds of component compositions. Recall that by
traditional composition we mean the normal hierarchical composition
by the attachment of provided and required interfaces of components,
without necessarily creating a new component in the process. Although
it might be hard to directly compare the two composition paradigms

77

in several ways, we will in this section look at and discuss the major
differences.

7.5.1 The nature of compositions

The algebraic paradigm is flexible and do not restrain composition when
it comes to the structure of the component(s). The only requirement is
that the compositions are valid according to the operator definitions. For
example, composing two components which only provide functionality is
a valid composition as long as the component arguments do not overlap
in any way, e.g. by providing some of the same methods. The result is
just a component which provides the union of the provided methods of
arguments. In a more traditional component model, a composition like
this would perhaps not result in anything being done since there is no
attaching of a provided and a required interface involved.

One of the main differences between the two paradigms is the
outcome of a composition. In algebraic composition, the result of a
composition expression is always a new component regardless of the
operator used. This is not the case for hierarchical composition, where
we just attach interfaces to each other and the composition will not
necessarily produce a new component in the process.

7.5.2 Component independence

In the prototype, the attributes and methods of the components used as
arguments are copied over to the resulting component. The effect is that
every component, no matter the type, is independent in the sense that
it contains every attribute and method itself. The benefit is that we can
remove the components used as arguments from the model, including
the references to them, until only the composite components are left.
The component is still fully functional since it is self-contained.

We can mimic the result of getting a new component as a result
of composition in the traditional approach if we define a component
with one or more local components. This component might delegate the
provided functionality of the sub-components. In this case, the compos-
ite component serves as a wrapper for the sub-components, although it
might appear for the outside environment that the composite compon-
ent provides this functionality by itself. Removing the sub-components
will affect the composite component, since it is not self-contained, and
might cause the model to be wrong.

This difference is illustrated in figure 7.2, where the first diagram
shows two atomic components, A and B, and their parallel composition,
C. We see that the algebraic approach provides the methods foo() and
bar() by itself, since they are copied to C from A and B. Recall that the
UML dependencies are only relevant for the diagramming (the dotted
arrows). The second diagram in the figure shows the approach where C
is a wrapper for A and B. The interfaces of A and B are delegated through
C, but the methods are still a part of A and B.

78

<<parallel>>
C

<<service>>
A

<<service>>
B

{ foo() } { bar() }

{ foo(), bar() }

———————————————————————————

Interface
delegated from

A

<<Component>>
C

<<Component>>
A

<<Component>>
B

<<delegate>> <<delegate>>

Interface
delegated from

B

Figure 7.2: The algebraic (above) and traditional (below) approach

7.5.3 Explicit and implicit composition

Recall from section 3.3 that the composition in rCOSP is explicit, i.e.
we have to explicitly specify the attaching of the provided and required
contracts of components like in the following expression: composition A |
B [(A.fooCtr <− B.fooCtr)]. The advantage is that we have complete control
and knowledge of what goes where, at the cost of some manual work
of writing out the compositions. After a quick glance at an rCOSP
specification, it might be easier to understand the compositions and
how the model is going to look like afterwards, in contrast to the
algebraic composition in rCOSPN where the process of carrying out the
compositions is automated and maybe not intuitive at first sight. This
negatively impacts the goal of readability, which we earlier stated was
one of the primary goals of rCOSPN.

However, the positive attribute is that the process of composition

79

is carried out automatically. The model developer or designer knows
the provided and required set of methods of the atomic components,
and simply specifies the compositions of these in an expression. The
system will take care of figuring out the details of composition and the
"attachment" of methods and building the new component based on the
operator used in the expression.

7.6 Algebraic composition in "real-world" component-
based modeling

The idea of doing component-based modeling in the algebraic approach
is based on specifying atomic components and use these as building
blocks to create composite components which again can used as bigger
building blocks. As we have seen in this chapter, the approach offers
several benefits when doing component-based modeling. For instance,
the compositions are automatically deriving new information, there are
less restrictions on component compositions and the need for interface
compatibility is removed. As it stands now, however, most developers
and designers probably do not want anything to do with the semantic
UML model we create in the prototype. Graphical diagrams are more
important and are more accessible to use than editing the semantic
models. In section 8.3 we will elaborate on this topic.

7.7 Summary

This chapter presented discussions of several aspects of the algebraic
composition approach and the prototype. Many design decisions af-
fected the implementation and result of the prototype, which unfortu-
nately is not without limitations. Using a UML profile proved to be
a decent solution in order to make the UML support component-based
modeling in the algebraic manner, with the alternatives being to use
plain UML or create a new metamodel for the algebraic domain. Sec-
tion 7.5 provided a comparison between the algebraic approach and the
"traditional" approach. As we could see, these two approaches are dif-
ferent in several ways, such as the automatic and explicit composition.

80

Chapter 8

Conclusion

8.1 Introduction

In this chapter we will give a summary of the thesis and conclude our
work. We will also look at possible topics for future work.

8.2 Summary and Results

The first main goal of this master’s thesis was to investigate how the
Unified Modeling Language, extended with a UML profile, could be
used to support and represent models of textual algebraic component
specifications. The problem was that the UML metamodel does not
have the modeling elements which satisfies the information we need to
express when modeling in the algebraic approach, so we had to create
them ourself. A UML profile is a package that is used to provide an
extension to a referenced metamodel, which in our case is the UML
metamodel. One of the benefits of using a UML profile is that it is a very
convenient way of creating model elements which are tailored towards
the modeling domain. The entities that extend the existing model
elements are UML stereotypes, which are contained inside a profile.
Another huge benefit was that we were able to build on the existing
rCOS UML profile. This allowed us to reuse modeling elements from,
and build on, the rCOS tool. Alternatives to using a UML profile were
to stick to using "plain" UML or creating a specific metamodel. With
the former we would still have modeling capabilities to some extent,
but without the additional information associated with the algebraic
compositions. The latter option could be a good solution. However, since
we already use many of the modeling elements in the current UML
Metamodel, creating a new metamodel would lead to building many of
the model elements which are readily available in the UML Metamodel.
We would also not be able to use the existing rCOS tool. The end result
is that the UML profile provided a nice and simple way of making UML
support algebraic component compositions.

A part of this thesis was to develop a prototype tool for algebraic
component composition in the UML. This prototype takes a textual

81

specification written in the rCOSPN language as input, and creates
the UML model from this specification. rCOSPN is a language with
a clear and readable format which emphasizes algebraic component
composition expressions. Chapter 4 presented the rCOSPN language,
and chapter 5 covered the UML profile and the model construction. The
tool also was able to type-check the algebraic composition expressions
and validate the models. This was covered in chapter 6.

The second main goal was to discover what the benefits of the al-
gebraic component composition approach in component-based modeling
are. As discussed in chapter 7, the algebraic composition approach is
quite different from the more traditional hierarchical composition in a
number of different ways. The biggest strengths of the algebraic com-
position we implemented in the prototype is that it emphasizes the spe-
cification of small, reusable components which can be used as a base
for creating several different kinds of composite components. The res-
ult of an algebraic composition expression is a new component where
its properties are derived automatically based on the expression argu-
ments. There is no need to explicitly state the details of composition, i.e.
the attaching of a provided and a required interface. This is done auto-
matically by the tool. The components are independent because they
own their properties. Also, there is no need for two components to be
compatible interface wise when doing a composition, since the joining
of provided and required methods are done on method-level and not on
interface-level.

8.3 Future work

In this thesis we have created a prototype and foundation for creating
UML models of component-based systems in an algebraic manner. This
foundation is a good starting point to further investigate how we can
support the UML with these kinds of models in the realm of graphical
diagrams (diagramming).

8.3.1 Extending the tool to UML diagramming

In this thesis we emphasize a workflow where we write a textual
component specification in rCOSPN, run it through the tool and inspect
the semantic UML model to do further editing and model validation.
Tools such as TOPCASED contain functionality for drawing UML
diagrams, and we can use these tools to draw a diagram of the
model. Although a UML component diagram of an rCOS model drawn
by TOPCASED shows the classifiers with the stereotypes applied, it
does not contain diagramming capabilities that are specific to rCOS
components, such as displaying which components are the left and right
operands for a composite component. In a diagramming tool for rCOS
components, we need to display this kind of information. A possible
extension to the prototype is to create such diagramming capabilities in

82

the UML.
On the semantic UML model level, the editing of components and

their compositions are still done manually before being validated.
Besides creating a textual specification, editing the model graphically
by "click-and-drag" components into the model is an approach which
can speed up the process. However, in the graphical environment we
do not have access to the composition operators. It can be cumbersome
to have to edit the textual specification every time we want to create
new atomic components and composition expressions, so having access
to the operators graphically as well would be an advantage for efficient
modeling.

Furthermore, the graphical part of the tool should make a distinc-
tion between the atomic components and the composite components,
and put down a set of restrictions when it comes to the graphical editing
of these classifiers. A suggestion is to make the composite components
read-only since they are computed as a result of component composition
and are defined in terms of other components. In this way, the editing of
a composite component would have to go through an atomic component.
The editing of an atomic component would imply that every composite
component which is derived from this atomic would be changed as well.
An additional functionality could be to let a composite component be
tagged as writeable, and in the process make it independent from the
component(s) it was derived from.

8.3.2 Behavioural modeling

A possible direction to investigate could be to look into behavioural
modeling. The prototype supports method bodies in the textual
specification, however this support is only transferred from rCOSP,
which we know handles composition differently. For example, method
calls are no longer prefixed by the contract name. The work could begin
by adapting the syntax of method bodies to the algebraic approach, and
implementing functionality for transforming models into behavioural
models.

8.3.3 Code generation

It could also be possible to look into generating executable code, e.g.
Java, from an rCOSPN specification. The rCOS tool can generate Java
code from an rCOSP specification, but this has to be adapted to handle
algebraic components and compositions.

83

84

Appendix A

Full airport examples and
UML model

A.1 Complete airport specification in rCOSP

/ * Gate * /
interface IGate {

public loadPassengers (int numPassengers) ;
public unloadPassengers () ;

}

contract GateCtr of IGate {
public loadPassengers (int numPassengers)
{

/ * [pre : numPassengers > 0 , post : true] * /
[numPassengers > 0 |− true] / * Syntactic sugaring * /

}

protocol { loadPassengers ; unloadPassengers }
}

class Flight {
int numPassengers ;
public Flight () { }

}

class GateClass {

Flight f l i g h t ;

public GateClass () {
f l i g h t := Flight .new ()

}

public loadPassengers (int numPassengers ;) {
f l i g h t . numPassengers := numPassengers

}

public unloadPassengers () {
f l i g h t . numPassengers := 0

}

85

}

component Gate1 {
provided GateCtr by GateClass ;

}

component Gate2 {
provided GateCtr by GateClass ;

}

/ * Customer Service * /
interface IOf f i c e {

public provideEmployee (; s tr ing employee) ;
}

contract Off iceCtr of IOf f i c e { }

interface ICustomerCentre {

public customerSupport (str ing inquiry ; str ing support) ;
}

contract CustomerCentreCtr of ICustomerCentre {
public customerSupport (str ing inquiry ; str ing support) {

[inquiry != null |− support ’ != null]
}

}

interface ICustomerService {
public handleCustomer () ;

}

contract CustomerServiceCtr of ICustomerService {
}

component CustomerService {

/ * Composition of Off i ce and CustomerCentre * /
composition : Of f i ce | CustomerCentre

[(CustomerCentre . Off iceCtr <− Off i ce . Off iceCtr
)]

provided CustomerServiceCtr by CustomerServiceClass ;
provided CustomerCentreCtr by CustomerCentre .

CustomerCentreCtr ;

class CustomerServiceClass {
public handleCustomer () {
}

}

component Off i ce {
provided Off iceCtr by Off iceClass ;

class Off iceClass {
public provideEmployee (; s tr ing employee) {

/ * Poor Bob gets assigned to a l l customer
inquir ies . * /

employee := "Bob"

86

}
}

}

component CustomerCentre {
provided CustomerCentreCtr by CustomerCentreClass ;
required Off iceCtr ;

class CustomerCentreClass {
public customerSupport (str ing inquiry ; str ing

support) {
Var str ing emp;
emp := Off iceCtr . provideEmployee () ;
support := " Support provided by " + emp

/ * support := " Support provided " * /
}

}
}

}

/ * Renaming * /
contract Gate1Ctr of IGate extends GateCtr { }
contract Gate2Ctr of IGate extends GateCtr { }

/ * Airport * /
component Airport {

composition : Gate1 | Gate2 | CustomerService
[

(Airport . CustomerServiceCtr <−
CustomerService . CustomerServiceCtr)

(Airport . Gate1Ctr <− Gate1 . GateCtr)
(Airport . Gate2Ctr <− Gate2 . GateCtr)

]

/ * Gates . One required contract f o r each gate needed * /
required Gate1Ctr ;
required Gate2Ctr ;
required CustomerServiceCtr ;

}

A.2 Complete airport specification in rCOSPN

interface IGate {
public loadPassengers (int numPassengers , Flight f l i g h t) ;
public unloadPassengers (Flight f l i g h t) ;

}

component Gate {
provided IGate {

public loadPassengers (int numPassengers , Flight f l i g h t)
{

[numPassengers > 0 |− true] ;
f l i g h t . numPassengers := numPassengers

}

87

public unloadPassengers (Flight f l i g h t) {
f l i g h t . numPassengers := 0

}
protocol { loadPassengers ; unloadPassengers }

}
}

class Flight {
int numPassengers ;
public Flight () {
}

}

/ * Of f i ce * /
interface IOf f i c e {

public provideEmployee (; s tr ing employee) ;
}

component Off i ce {
provided IOf f i c e {

public provideEmployee (; s tr ing employee) {
/ * Poor Bob gets assigned to a l l customer inquir ies .

* /
employee := "Bob"

}
}

}

/ * Customer Service * /

interface ICustomerCentre {
public customerSupport (str ing inquiry ; str ing support) ;

}

interface ICustomerService {
public handleCustomer () ;

}

component CustomerCentre {

provided ICustomerService {
public handleCustomer () {
}

}

provided ICustomerCentre {
public customerSupport (str ing inquiry ; str ing support)

{
[inquiry != null |− support != null] ;
Var str ing emp;
emp := provideEmployee () ; / / provided by IOf f i c e
support := " Support provided by " + emp

/ * support := " Support provided " * /
}

}
required IOf f i c e ;

}

CustomerService = Of f i ce << CustomerCentre ;

88

component Airport {
required ICustomerService ;
required IGate [2] ;

}

GateRenamed = Gate [unloadPassengers <− unloadPassengers2 ,
loadPassengers <− loadPassengers2] ;

OneGateAirport = GateRenamed << Airport ;
TwoGatesAirport = Gate << OneGateAirport ;
MyAirport = CustomerService \ { customerSupport } <<

TwoGatesAirport ;

A.3 Complete airport UML model

89

90

Bibliography

[BE13] P. Bakker and B. Ertman. Building Modular Cloud Apps
with OSGi. O’Reilly Media, 2013.

[CD00] John Cheesman and John Daniels. UML Components: A
Simple Process for Specifying Component-based Software.
Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 2000.

[Che+07] Zhenbang Chen et al. ‘Modelling with Relational Calculus
of Object and Component Systems - RCOS.’ In: CoCoME.
Ed. by Andreas Rausch et al. Vol. 5153. Lecture Notes in
Computer Science. Springer, 2007, pp. 116–145. URL: http:
/ / dblp . uni - trier . de / db / conf / dagstuhl / cocome2007 . html #
ChenHHKLLLNORSYZ07.

[Crn+11] Ivica Crnkovic et al. ‘A Classification Framework for Soft-
ware Component Models’. In: IEEE Transaction of Software
Engineering 37.5 (Oct. 2011), pp. 593–615. URL: http://www.
mrtc.mdh.se/index.php?choice=publications&id=2139.

[Don+13] Ruzhen Dong et al. ‘rCOS: Defining Meanings of Component-
Based Software Architectures’. In: Unifying Theories of Pro-
gramming and Formal Engineering Methods. Ed. by Zhim-
ing Liu, Jim Woodcock and Huibiao Zhu. Vol. 8050. Lec-
ture Notes in Computer Science. Springer Berlin Heidel-
berg, 2013, pp. 1–66. URL: http:/ /dx.doi.org/10.1007/978- 3-
642-39721-9_1.

[Far13] Patrick Farail. TOPCASED 2 hour presentation. 2013. URL:
http://www.topcased.org/ (visited on 19/03/2014).

[Fow03] Martin Fowler. UML Distilled: A Brief Guide to the Stand-
ard Object Modeling Language. 3rd ed. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2003.

[Gro06] Object Management Group. CORBA Component Model Spe-
cification, OMG Available Specification, Version 4.0. http: / /
www.omg.org/spec/CCM/4.0/. 2006.

[Gro11] Object Management Group. OMG Unified Modeling Lan-
guageTM (OMG UML), Superstructure. Version 2.4.1. http :
//www.omg.org/spec/UML/2.4.1/. 2011.

91

http://dblp.uni-trier.de/db/conf/dagstuhl/cocome2007.html#ChenHHKLLLNORSYZ07
http://dblp.uni-trier.de/db/conf/dagstuhl/cocome2007.html#ChenHHKLLLNORSYZ07
http://dblp.uni-trier.de/db/conf/dagstuhl/cocome2007.html#ChenHHKLLLNORSYZ07
http://www.mrtc.mdh.se/index.php?choice=publications&id=2139
http://www.mrtc.mdh.se/index.php?choice=publications&id=2139
http://dx.doi.org/10.1007/978-3-642-39721-9_1
http://dx.doi.org/10.1007/978-3-642-39721-9_1
http://www.topcased.org/
http://www.omg.org/spec/CCM/4.0/
http://www.omg.org/spec/CCM/4.0/
http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/UML/2.4.1/

[Gro13] The Object Management Group. CORBA basics. 2013. URL:
http : / / www. omg . org / gettingstarted / corbafaq . htm (visited on
16/02/2014).

[Gro14] The rCOS Group. An rCOS walk-through. Feb. 2014. URL:
http://rcos.iist.unu.edu/index.php/rcos-modeler/tutorial.

[Lou97] Kenneth C. Louden. Compiler Construction: Principles and
Practice. Boston, MA, USA: PWS Publishing Co., 1997.

[Mit02] J.C. Mitchell. Concepts in Programming Languages. Cam-
bridge University Press, 2002.

[OSV11] Martin Odersky, Lex Spoon and Bill Venners. Programming
in Scala: A Comprehensive Step-by-Step Guide, 2Nd Edition.
2nd. USA: Artima Incorporation, 2011.

[Par07] Terence Parr. The Definitive ANTLR Reference: Building
Domain-Specific Languages. Pragmatic Programmers. Prag-
matic Bookshelf, May 2007.

[Som06] Ian Sommerville. Software Engineering: (Update) (8th Edi-
tion) (International Computer Science). Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2006.

[Ste+09] David Steinberg et al. EMF: Eclipse Modeling Framework
2.0. 2nd. Addison-Wesley Professional, 2009.

[Szy02] Clemens Szyperski. Component Software: Beyond Object-
Oriented Programming. 2nd. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2002.

[The12] The OSGi Alliance. OSGi Core Release 5 Specification. http:
//www.osgi.org/Specifications. 2012.

[WK03] Jos Warmer and Anneke Kleppe. The Object Constraint
Language: Getting Your Models Ready for MDA. 2nd ed.
Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 2003.

[WSO00] Nanbor Wang, Douglas C Schmidt and Carlos O’Ryan.
Overview of the CORBA Component Model. 2000. URL: http:
/ / www . cs . wustl . edu / ~schmidt / PDF / CBSE . pdf (visited on
16/02/2014).

92

http://www.omg.org/gettingstarted/corbafaq.htm
http://rcos.iist.unu.edu/index.php/rcos-modeler/tutorial
http://www.osgi.org/Specifications
http://www.osgi.org/Specifications
http://www.cs.wustl.edu/~schmidt/PDF/CBSE.pdf
http://www.cs.wustl.edu/~schmidt/PDF/CBSE.pdf

	Introduction
	Background
	Motivation
	Problem statement
	Methods
	Thesis outline

	Components, component models and the UML
	Introduction
	Component-based software engineering
	What are components and component models?
	The Unified Modeling Language (UML)
	The term ``model'' defined
	Summary

	A look at different component models
	Introduction
	"Real-world" components
	The rCOS Modeler
	Issues with the current state of rCOSP
	Algebraic composition operators
	Related work
	Summary

	The rCOSPN language
	Introduction
	The goals of the language
	What is new?
	Component composition operators
	Airport example revisited
	Summary

	From code to model
	Introduction
	Technology stack
	The UML profile
	The structure of the semantic UML models
	How rCOSPN gets translated to a UML model
	Example: creating the airport UML model
	Summary

	Type-checking and model validation
	Introduction
	Type-checking
	Model validation
	Type-checking and model validation rules
	Examples
	Summary

	Discussion
	Introduction
	Prototype tool design decisions
	Tool limitations
	Alternatives to UML profiles
	Two worlds of component composition
	Algebraic composition in "real-world" component-based modeling
	Summary

	Conclusion
	Introduction
	Summary and Results
	Future work

	Full airport examples and UML model
	Complete airport specification in rCOSP
	Complete airport specification in rCOSPN
	Complete airport UML model

