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Abstract

Psi-calculi are a parametric framework for nominal calculi, where standard calculi are found
as instances, like the pi-calculus, or the cryptographic spi-calculus and applied-pi. Psi-calculi
have an interleaving operational semantics, with a strong foundation on the theory of nominal
sets and process algebras. Much of the expressive power of psi-calculi comes from their logical
part, i.e., assertions, conditions, and entailment, which are left quite open thus accommodating
a wide range of logics. We are interested in how this expressiveness can deal with event-
based models of concurrency. We thus take the popular prime event structures model and give
an encoding into an instance of psi-calculi. We also take the recent and expressive model
of Dynamic Condition Response Graphs (in which event structures are strictly included) and
give an encoding into another corresponding instance of psi-calculi. The encodings that we
achieve look rather natural and intuitive. Additional results about these encodings give us more
confidence in their correctness.

The work in this thesis has also been published or/and presented at the following interna-
tional workshops:
- “Event Structures as Psi-calculi” at NWPT, November 2013
- “Concurrency Models with Causality and Events as Psi-calculi” at ICE, June 2014
- “True Concurrency Semantics for Psi-calculi” at MeMo, June 2014
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Chapter 1

Introduction

1.1 Introduction

We look into true concurrency models as they, in contrasts to interleaving models [Mil80], allow
for multiple actions to happen simultaneously. In the real world things do happen at the same
time, and then true concurrency seams more adaptable to be used as a model for a wider range
of situations. In the computer world interleaving is good for modelling single core computers.
But nowadays we can see a clear trend towards multi-core platforms, hence one easily arrives
in situations where processes happen at the same time and thus the interleaving model is less
accurate.

Psi-calculi [BJPV11] is a recent framework where various existing calculi can be found as
instances. In particular, the spi- and applied-pi calculi [AG99, AFO01] are two instances of in-
terest for security. Psi-calculi can also accommodate probabilistic models, by going through
CC-pi [BMO07, DFM"05] which has already been treated as a corresponding psi-calculus in-
stance. The theory of psi-calculi is based on nominal data structures [Pit13]. Psi-calculi can be
seen as a generalization of pi-calculus with two main features:

(i) data structures (i.e., general, possibly open, terms) in place of communication channels
and also in place of the communicated data; and

(i1) a rather open logic for capturing dependencies (i.e., through conditions and entailment)
on the environment (i.e., assertions) of the processes.

The semantics of psi-calculi is given through structural operational rules and adopts an in-
terleaving approach to concurrency, in the usual style of process algebras. On the other hand,
event-based models of concurrency take a non-interleaving view. Many times these form do-
mains and are used to give denotational semantics, as e.g., done by Winskel in [Win82, WN95].
Many times non-interleaving models of concurrency can actually distinguish between inter-
leaving and, so called, “true” concurrency, as is the case with higher dimensional automata
[Pradl, Pra00, vG06], configuration structures [vGP09], or Chu spaces [Gup94, Pra95]. The
recent Dynamic Condition Response graphs (abbreviated DCR-graphs or DCRs) [HM10a] is
a model of concurrency with high expressive power which strictly extends event structures by
refining the notions of dependent and conflicting events, and including the notion of response.
Due to their graphical nature, DCRs have been successfully used in industry to model business
processes [SMHM13].
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Research goals

In Chapter 3 a first goal we are interested in is how psi-calculi could accommodate the event
structures model of concurrency [NPW79, Win86], with a final goal of capturing the DCR-
graphs model [HM10a], that we explore in Chapter 4. Event names in event-based models
of concurrency are unique, and can thus be thought of nominals, whereas the execution of an
event can be seen as a communication of some sort. The dependencies between events that an
event structure defines can be captured with assertions on the nominal data structures, whereas
the notion of computation is captured through reduction steps between psi-processes. To be
confident on the encodings, we like to see a correlation between the notions of concurrency
from the two encoded models and the interleaving diamonds from the psi-calculus behaviour.

These are the basic ideas we follow in this work to give encodings of event structures and
DCRs into corresponding instances of psi-calculus which we call respectively eventPsi and
dcrPsi. After a few results meant to better explain the correlation between the encoding and the
event structure model, we give a result that shows that the concurrency embodied by the event
structure is captured in the encoding psi-process through the standard interleaving diamond. For
the event structures encoding we also give a result that identifies the syntactic shape of those
psi-processes which correspond exactly to event structures. Another feature of true concurrency
models is that they are well behaved wrt. action refinement [vGGO1]. For this we give a result
showing that action refinement is preserved by our translation under a properly defined refining
function on psi-processes, which we define similarly to the refinement function on the event
structures.

A last goal is to define non-interleaving semantics for psi-calculi. This is still ongoing work
which is presented here in Chapter 5.

The semantics of psi-calculi is given through structural operational [Plo81] rules and adopts
an interleaving approach to concurrency, in the usual style of process algebras. On the other
hand, event-based models of concurrency take a non-interleaving view. Many times these form
domains and are used to give denotational semantics, as e.g., done by Winskel in [Win82,
WNO5]. Many times non-interleaving models of concurrency can actually distinguish between
interleaving and, so called, “true concurrency”, as is the case with higher dimensional automata
[Pradl, Pra00, vGO06], configuration structures [VGP09], or Chu spaces [Gup94, Pra95].

We are interested in non-interleaving semantics for psi-calculi, and Chapter 5 reports on pre-
liminary results in this direction. In particular, we are interested in a true concurrency semantics
that is more operational than denotational. In other words, we would like the concurrency model
that is obtained from the semantics of psi-calculus to be less like event structures or configura-
tions structures, and more like higher dimensional automata or asynchronous transition systems
[Bed88, Shi85].
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1.2 Motivations and design decisions

The work in this thesis is done in order to investigate the expressiveness of the psi-calculi
[BJPV11] meta language in connection with the expressiveness of true concurrency models.
Psi-calculi differentiates itself from other process calculi through the fact that it is not a single
calculus in itself, but rather a framework that will give a correct process calculus when a correct
instantiation is done. Along with this is the fact that it has been formally proved using the
Nominal Isabel theorem proofer [Ben12].

The starting idea for this thesis was to define a psi-calculi instance that would accommodate
the true concurrency model DCR-graphs [HM10b]. As a preliminary step towards this goal we
chose to work on a more basic true concurrency model known as prime event structures, for
which we defined a psi-calculi instantiation that we called eventPsi.

When we first started developing the eventPsi instance, the main focus of the master project
was to look into distribution of DCR-graphs, and how this could be used to make a true-
concurrent programming language. The work of instantiating DCR-graphs into psi-calculi was
started during the stay of this author at ITU Copenhagen as an Erasmus student, where he was
taught about psi-calculi by the Uppsala authors [BJPV11] who were visiting ITU at that time. In
addition to just instantiating DCR-graphs into psi-calculi, there was also the hope that we could
use this instantiation as a help in distributing DCR-graphs. This hope affected the preliminary
approaches to our instantiation, but was abandoned as the initial attempts that might given a
distribution help were shown not to promising. The work on instantiating both event structures
and then DCR-graphs took more time than initially expected, while also proving to be more
interesting than expected. As it was becoming more interesting, and time was of a factor, the
focus for the thesis moved away from the distribution aspect and more into exploring psi-calculi
in more depth. An idea that came up early after the focus had shifted was to look into how to
adapt the operational rules of psi-calculi to give it a non-interleaving semantic without having
to change the proven work done for psi-calculi.

When we started to work on instantiating event structure into psi-calculi, the original thought
was to use an extension to psi-calculi known as broadcast psi [BHI*T11]. This adds two new
predicates to psi-calculi, that have to be instantiated (refer to Section 2.1 for the definitions of
psi-calculi). These two predicates are:

2TxT—C Output Connectivity
S TxT—C Input Connectivity

The first predicate allows a single output over some channel a to be sending over a broadcast
channel b, i.e. a < b. In a similar way does the second predicate allows all enabled processes
with an input on some channel ¢ to be receiving at the same time a message outputted on b,
i.e. b= c. This makes it possible for a single output process to synchronize with every input
process at the same time with the same message.

The idea was primarily to use this and have each event just send on a global broadcast chan-
nel a message signifying that it had happened. In this way each event would have a replicating
input process, and a single output process. The input process would constantly be listening for
messages on the broadcast channel about events happening, and then update a local assertion
that the event it was input for could use to determine if it was enabled. This idea was thought
of as a way to simulate the message passing between different computers or other entities that
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events might be distributed over, where broadcast messages would be messages sent to everyone
on the network.

A different but similar approach that was considered at the same time, was instead of having
a single broadcast channel, there would be one for each event. In this approach events would
only listen to the events they were depending on to know when they were enabled or not.

Both ideas had several problems. The main one was how to make a local assertion that
would only affect its sub-process and not all the other sub-processes. This turned out not to be
possible. A second problem was that this approach could possibly become quite more complex
than necessary.

The idea of using assertions for deciding when an event/process should be able to happen
was there from the beginning, but has changed to be one global assertion. Because of this
we went away from broadcast psi as its extra predicates were no longer needed to make the
assertion affect the sub-processes the way we wanted. We still had a communication between
two processes as the sign of an event happening, but this would leave us with a transition system
with only 7 transitions, a notion that was not preferable. Moreover as an output process does not
need to synchronize with any other process in order to have a reduction step, we could remove
the communication aspect altogether. This left us with a natural and intuitive solution: For
each event we would have an output process guarded by a condition, who on a transition would
reduce into an assertion, with the events name as both transition label and as the assertion left
behind.

This gave us the nice simple instantiation we present here in Chapter 3.

After we had made eventPsi, we turned our attention to creating dcrPsi as an instantiation
of DCR-graphs into psi-calculi. As DCR-graphs is a conservative generalization of event struc-
tures, the idea was to use the same methods as we used in the instantiation of eventPsi as much
as possible. There were some problems that came from the fact that DCR-graphs are more
complex than event structures. This is visible primarily in the marking which is the analogue of
the configuration in event structures, i.e., the state of the system. In eventPsi we found a nice
way to make the assertions be the same as the configurations. But for DCR-graphs problems
came from the requirements to how the composition of assertions must be instantiated to be
valid in psi-calculi, and how the marking of DCR-graphs changes on transitions. Where the
configuration of an event structure only grows, by adding events each time an event happens,
parts of a marking can both increase and decrease during the course of a run, and even loose
elements and gain others on the same transition.

One of the possible solutions that we investigated was to see if one could use multisets to
simulate an increasing and decreasing marking. By using two multi-sets to simulate a single
set from the marking. The idea was for any element that at any time was added to the set of
a marking (meaning it was not in it when added through a union operator), we would add this
event to the first of the two multisets simulating this set, a multiset that one could say kept track
of all elements added to the markings set. Similar for any element that was removed from the
markings set at some time, these elements would be added to the second multiset, which would
keep track of elements that were removed.

This could be thought of as having the sets P.S as the set we simulate from the marking,
M S, as the multiset keeping track of the added elements and M S, as the multiset keeping track
of the removed sets. Where M'S, \ M S, = PS.
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The strength here is updating any single multi set is done just using the union operator, while
allowing for transition labels to show exactly what event is happening.

The problem with this approach were to make sure that after a transition we would get
the correct simulation; meaning that for a transition P.S < PS’ we would be able to have a
transition (M S,, M S,) < (MS!, MS") where M S’ \ MS! = PS’. To be able to do this we
had to know before a transition occurred exactly whatl set we were simulating, in order to be
able to add the correct elements to the multisets. The only way to know this in psi-calculi would
be to define entailment between conditions and assertions, so that only assertions simulating the
specific marking the condition was looking for was entailed. This would mean we would have to
check for every marking that would enable an event with their own conditions, for every single
event, effectively creating a state machine. State machines have the problem of state explosion
which would result in having to make very large psi-calculi processes. A second problem we
faced was problems in proving that the assertions we left behind after a transition would have
the correct sets, such that when it got composited with the earlier assertions we would get a
frame that was simulating the correct marking. When we found a solution that was easier to
prove and would give nicer and more compact psi-calculi processes, this idea was shelved as
we finished up the solution presented in Chapter 4.

While working on the multi set approach, we were also thinking of using a notion of gen-
erations for assertions, which is a nice way to make only the data from the assertions of newest
generation to be kept in the composition of assertions. With this we would be able to say that
the last made assertion would be the only assertion that gets considered in entailments. As only
one assertion would be considered at any time we had to place the entire marking into each
assertion, this would effectively remove the problems of having to use multisets in order to get
the assertions give the right markings. The hard part was to get the assertions right, as we would
still need to know what the assertion was before a transition, in order to know which assertion
to leave behind after the transition. Due to the generation aspect who also would have to be up-
dated with each new assertion the state-machine problem from the multiset idea would explode
even more as we would have to expand each state to every possible generation. As DCR-graphs
are designed to give finite models for infinite behaviour, we would always have to assume we
had an infinite behaviour DCR-graph and make infinitely large processes, or only accept those
with finite behaviour.

The thought of using a function which would take the current assertion as a parameter in
order to make the new one was considered but discarded as the assertions are built of terms.
This would have been a good idea as it would have given a compact psi-calculi processes for
each event, as well as nice transition labels like we had for event structures.

The solution we got came from moving to communications, where each event would have its
condition guarded input. The messages sent around would be the same as the current assertions,
and the data received on an input would be used as variables in creating the next output process,
and a new assertion with higher generation than the one we received. This is the solution we
present in Chapter 4.
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1.3 Summary of contributions

This thesis presents the encoding of two true concurrency models into Psi-calculi. These models
are the popular prime event structures, and the newer dynamic condition response graphs (DCR-
graphs) that is a conservative generalization of event structures. We define two corresponding
instantiations which we name eventPsi and dcrPsi respectably. In combination with these
instantiations we also define two functions ESPSI and DCRPSI that take an event structure or an
DCR-graph respectably, and return psi-calculi processes for their respective instantiations.

We also check that the instantiations maintain certain properties that the models they instan-
tiate have. One of the main properties we are interested in is that we have a correlation between
the states of the models and the assertions of our psi-calculi instantiations. Particular we want
the assertions in eventPsi to have a correlation with the configurations of event structure, and
the assertions in dcrPsi have a correlation with the markings of DCR-graphs.

For eventPsi we obtained a nice instantiation. Here we define an independence relation
that is giving the exact same independences in an eventPsi-process that we have in the event
structure this process is representing. We define a specific syntax that a eventPsi process must
follow to represent a correct event structure. In addition to this we give a definition of refinement
functions on eventPsi-processes, that let us refine eventPsi-processes in the same way as we
can refine event structures, and get the same process as we would get by creating it from the
refined event structure using ESPSI.

For dcrPsi we show that the transitions are correctly showing the same changes in the
assertions as we have in the DCR-graphs between markings. But as we have no real refinement
of processes and that independence of events is non-trivial to define, we do not have results on
these parts.

The work presented in this thesis has been published and/or presented at international work-
shops. We list these here in chronological order.

(1) A first short article, backed by an extended version available online, was presented by
Hakon Normann and published as (extended abstract):

“BEvent Structures as Psi-calculi”. in 25" Nordic Workshop on Programming Theory
(NWPT’13), November 2013, Tallinn, Estonia. Editors: Tarmo Uustalu and Juri Vain. 3
pages.

(2) A more mature work has been accepted for publication (and presentation) as:

“Concurrency models with causality and events as psi-calculi”. 7*" Interaction and Con-
currency Experience (ICE2014), June 2014, Berlin Germany. Editors: Ivan Lanese and
Ana Sokolova. Electronic proceedings in Theoretical Computer Science. (coauthors:
C. Prisacariu and T. Hildebrandt). 15 pages.

(3) The work currently in progress in Chapter 5 has been accepted as a presentation at:

“True Concurrency Semantics for Psi-calculi”. 1% International Workshop on Meta Mod-
els for Process Languages (MeMo), June 2014, Berlin, Germany. (coauthors: C. Prisacariu
and T. Hildebrandt). 6 pages.



Chapter 2

Background

2.1 On psi-calculi

Psi-calculus [BIPV11] has been developed as a framework for defining nominal process calculi,
like the many variants of the pi-calculus [MPW92]. The psi-calculi framework is based on
nominal datatypes, [BJPV11, Sec.2.1] giving an introduction to nominal sets used in psi-calculi.
We will give a short presentation of nominal datatypes in this thesis, but for those who want
more background on this we refer to the book [Pit13] which contains a thorough treatment of
both the theory behind nominal sets as well as various applications (e.g., see [Pit13, Ch.8] for
nominal algebraic datatypes). We expect, though, some familiarity with notions of algebraic
datatypes and term algebras.

2.1.1 Nominal datatypes

A traditional datatype can be build from a signature of constant symbols, functions symbols,
etc. A nominal datatype is more general, for example it can also contain binders and identify
alpha-variants of terms. Formally a nominal datatype is not required to be build in any particular
way; the only requirements are related to the treatment of atomic symbols.

As usual we assume a countably infinite set of atomic names N ranged over by «q, ..., z.
Intuitively, names will represent the symbols that can be statically scoped, and also represent
symbols acting as variables in the sense that they can be subjected to substitution.

A nominal set [Pit13] is a set equipped with name swapping functions, written (ab) for any
names a, b. An intuition is that for any member X it holds that (ab) - X is X with a replaced
by b and b replaced by a. Formally, a name swapping is any function satisfying certain natural
axioms such as (ab) - ((ab) - X') = X. One main point to this is that even though we have not
defined any particular syntax one can define what it means for a name to "occur" in an element:
it is simply that it can be affected by swappings. The names occurring in this way in an element
X constitute the support of X, written n(X). We write af X, pronounced "a is fresh for X", for
a ¢ n(X). In an inductively defined datatype without binders we will have afX if a does not
occur syntactically in X. In for example the lambda calculus where alpha-equivalent terms are
identified (i.e. the elements are alpha-equivalence classes of terms) the support corresponds to
the free names. If A is a set or a sequence of names we write AfX tomeana € A : af X

A function f is equivariant if (ab) - f(X) = f((ab) - X) holds for all X.

7
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A nominal datatype is a nominal set together with a set of equivariant functions on it. In
particular psi-calculi consider substitution functions that substitute elements for names. If X is
an elements of a datatype, a is a sequence of names with duplicates and Y is an equally long

sequence of elements of possibly another datatype, the substitution X [a := Y] is an element of
the same datatype as X.

2.1.2 Psi-calculi syntax

For psi-calculi it is not needed to define exactly what a substitution does. The only formal
requirements are that a substitution is an equivariant function that satisfies two substitution
laws:

1. ifa Cn(X)and b € n(T) then b € n(X|[a :=T])

2. if bt X, a then X[a = T] = ((ba) - X)[b := T]

—

Law 1 says that substitution may not loose names: any name b in the objects 7" that substitute
for names a occurring in X must also appear in the substitution X [a := T]

Law 2 is a form of alpha-conversion for substitutions; here it is implicit that a and b have
the same length, and (dl;) swaps each element of a with the corresponding element of b.

The psi-calculi framework is parametric; instantiating the parameters accordingly, one ob-
tains an instance of psi-calculi, like the pi-calculus, or the cryptographic spi-calculus. These
parameters are:

T terms (data/channels)
C conditions
A assertions

which are nominal datatypes not necessarily disjoint; together with the following operators:

<: T xT — C channel equality

® : A XA — A composition of assertions
1 e A minimal assertion

FC AxC entailment relation

Intuitively, terms can be seen as generated from a signature, as in term algebras; the con-
ditions and assertions can be those from first-order logic; the minimal assertion being top/true,
entailment the one from first-order logic, and composition taken as conjunction. We will shortly
exemplify how pi-calculus is instantiated in this framework. The operators are usually written
infix,i.e.. M <> N, U @ V', Ut o

The above operators need to obey some natural requirements, when instantiated. Channel
equality must be symmetric and transitive. The composition of assertions must be associative,
commutative, and have 1 as unit; moreover, composition must preserve equality of assertions,
where two assertions are considered equal iff they entail the same conditions (i.e., for U, ¥’ € A
we define the equality ¥ ~ V' iff Vo e C: U F o & V' I ).

The intuition is that assertions will be used to assert about the environment of the processes.
Conditions will be used as guards for guarded (non-deterministic) choices, and are to be tested
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against the assertion of the environment for entailment. Terms are used to represent complex
data communicated through channels, but will also be used to define the channels themselves,
which can thus be more than just mere names, as in pi-calculus. The composition of assertions
should capture the notion of combining assumptions from several components of the environ-
ment.

Given valid psi-calculus parameters, the psi-calculi agents, ranged over by P, (), .. ., are of
the following forms.

0 Empty/trivial process

M(N).P Output

M((A\Z)N).P Input

case 1 : Pp,...,p,: P, Conditional (non-deterministic) choice
(va)P Restriction of names a inside processes P
P|@Q Parallel composition

P Replication

() Assertions

The empty process has the same behaviour as, and thus can be modelled by, the trivial assign-
ment (|1).

The input and output processes are as in pi-calculus only that the channel objects M can be
arbitrary terms. In the input process the object (A\Z) N is a pattern with the variables Z bound in
N as well as in the continuation process P. Intuitively, any term message received on M must
match the pattern N for some substitution of the variables . The same substitution is used to
substitute these variables in P after a successful match. The traditional pi-calculus input a(z).P
would be modelled in psi-calculi as a((Az)x).P, where the simple names a are the only terms
allowed.

The case process behaves like one of the F; for which the condition ¢; is entailed by the
current environment assumption, as defined by the notion of frame which we present later. This
notion of frame is familiar from the applied pi-calculus [AF01], where it was introduced with
the purpose of capturing static information about the environment (or seen in reverse, the frame
is the static information that the current process exposes to the environment). A particular use
of case is as case ¢ : P which can be read as if ¢ then P. Another special usage of case is
ascase T : P, T : Py, where ¥ - T is a special condition that is entailed by any assertion,
like a <+ a; this use is mimicking the pi-calculus nondeterministic choice P; 4+ P». Restriction,
parallel, and replication are the standard constructs of pi-calculus.

Assertions (|W|) can float freely in a process (i.e., be put in parallel) describing assumptions
about the environment. Otherwise, assertions can appear at the end of a sequence of input/output
actions, i.e., these are the guarantees that a process provides after it finishes (on the same lines
as in assume/guarantee reasoning about programs). Assertions are somehow similar to the
active substitutions of the applied pi-calculus, only that assertions do not have computational
behaviour, but only restrict the behaviour of the other constructs by providing their assumptions
about the environment.

Replication rule opens up for a possibly infinitely large process. This comes from the fact
that any transition within the replication process, will lead to a reduced process in parallel
composition with the replicating process that remains unreduced.
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2.1.3 Examples of psi-calculi instances

Example 2.1.1 (pi-calculus as an instance) 7o obtain pi-calculus [MPW92] as an instance of
psi-calculus use the following, built over a single set of names N :

T 2 N

c 2 {a=alabeT}
A = {1}

O

® = AU, 0,1

1 2 1

o2

{(1,a=a)|aeT}

with the trivial definition for the composition operation. The only terms are the channel names
a € N, and there is no other assertion than the unit. The conditions are equality tests for
channel names, where the only successful tests are those where the names are equal. Hence,
channel comparison is defined as just name equality.

Example 2.1.2 From the instance created in Example 2.1.1 one can obtain the polyadic pi-
calculus by adding the tupling symbols t,, for tuples of aritynto T, i.e. T = NU{t,(My, ..., M,) :
My, ..M, € T}. The polyadic output is to simply output the corresponding tuple of object

names, and the polyadic input a(by, ..., b,). P is represented by a pattern matching a(Aby, ...by, )t (b1, ...

Strictly speaking this allows nested tuples and tuples also in subject position in agents, but those
do not give rise to any transitions, since in this psi-calculus M <> M is only entailed when M
is a name, i.e., only names are channels.

2.1.4 Operational semantics for psi-calculi

Psi-calculus is given an operational semantics in [BJPV11] using labelled transition systems,
where the nodes are the process terms and the transitions represent one reduction step, labelled
with the action that the process executes. The actions, generally denoted by «, 3, represent
respectively the input and output constructions, as well as 7 the internal synchronization/com-
munication action:

The actions ranged over by «, 3 are of the following three kinds:

M/{(va)N) Output, where @ C n(N)
M(N) Input
T Silent
For actions we refer to M as the subject and N as the object.
Transitions are done in a context, which is represented as an assertion W, capturing assump-
tions about the environment:
Uvp>PS P
Intuitively, the above transition could be read as: The process P can perform an action « in an
environment respecting the assumptions in W, after which it would behave like the process P’.
The context assertion is obtained using the notion of frame which essentially collects (using
the composition operation) the outer-most assertions of a process. The frame F(P) is defined
inductively on the structure of the process as:

b).P.
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For a simple example, if afW;:
F(wi) [ (va) (W) | M(N).(¥3]) = (va)(¥1 @ T»)

Here W3 occurs under a prefix and is therefore not included in the frame. An agent where
all assertions are guarded thus has a frame equivalent to 1

We give the transition rules for psi-calculus, as defined in [BJPV11, Table 1]. The (CASE)
rule shows how the conditions are tested against the context assertions. The communication rule
(coM) shows how the environment processes executing in parallel contribute their top-most
assertions to make the new context assertion for the input-output action of the other parallel

processes.
VEMSK
— (IN)
U MOG)N.Pp EX=EN, pre
VEMeK
(ouT)

v>MNP XN p
Up>P 5P Uk

— (CASE)
Up>casep: P — P

(va)N

Uooue P 2% b g usQEh Q0 UoeUpe UMK

- (com)
Ve PlQ D (va) (P Q)

TRUog>P 5P bn(a)#Q
U>PlQSPIQ

(PAR)

VPSP b, U
U > (vb)P % (vb) P!

(SCOPE)

M(va)N
—_—

VP P ba,U,M  ben(N)

P M(vau{b})N

(OPEN)

U > (vb) P
¥ P|IPS P
- (REP)
U >lPp S p

The (IN)-rule says that any input can happen for a channel M if it is channel equivalent with
the channel K that will show in its transition label.

The (OUT) rule says more or less the same as the (IN)-rule in that the channel of the process
and the channel of the transition label must be channel equivalent.
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The (CASE)-rule says that if one of the possible case processes can do an « transition into
P’, and if the condition is entailed by the assertion over the entire case process, then the entire
case process can do an « transition to P’.

In the (COM)-rule the assertions ¥p and W, come from the frames of F(P) = (vbp)Up
respectively F(Q) = (VBQ)\IIQ. We also see that for a synchronization to happen the channel in
the transition labels for the input and output processes must be channel equivalent.

In the (PAR)-rule the assertion ¥, comes from the frame of F(Q) = (vbg) ¥, and say that
if P can do an « transition to P’ and « is a fresh name in () then the parallel composition P |
can do an « transition to P’ | Q.

The (SCOPE) says that for a process (vb)P that is under the scope of b can have an «
transition to (vb) P’ if P can have an « transition to P’ and b is fresh in both o and the assertion
that the process is under.

The (REP) rule says that it can have a transition from !P to P’ if it could have the same
transition from P |!P to P’ meaning if P could transition we generate a copy of this in parallel
composition with ! P and have the transition on P.

The symmetric versions of (COM) and (PAR)-rules are elided. In the rule (COM) it is as-
sumed that F(P) = (vbp)¥p and F(Q) = (vbo) ¥ where bp is fresh for all of ¥, by, Q, M
and P, and that Z;Q is correspondingly fresh. In the rule PAR it is assumed that 7 (Q)) = (VBQ)\I/Q
where l;Q is fresh for W, P and «v. In OPEN the expression a U {b} means the sequence a with b
inserted anywhere.

There is no transition rule for the assertion process; this is only used in constructing frames.
Once an assertion process is reached, the computation stops, and this assertion remains floating
among the other parallel processes and will be composed part of the frames, when necessary,
like in the case of the communication rule.

2.1.5 Bisimilarity in psi-calculi

For the standard pi-calculi the notion of strong bisimulation is used to formalise when two
agents "behave the same way"; it is defined as a symmetric binary relation R satisfying the
simulation propert: R(P, ()) implies that for « such that bn(«)i@Q),

if PS5 P'thenQ S Q' AR(P, Q).

But psi-calculi need to take the assertions into consideration. The behaviour of an agent is al-
ways taken with respect to an environmental assertion. For psi-calculi bisimulation is defined
as a ternary relation R(¥, P, )), saying that P and () behave in the same way when the enviro-
ment asserts W. Because of this two additional issues arise. The first is that the agents can affect
their environment through their frames (and not only by performing actions), and this must be
represented in the definition of bisimulation. The second is that the environment (represented
by U in R(V, P,(Q)) can change, and for P and () to be bisimilar they must continue to be
related after such changes. This leads to the following strong bisimulation.

Definition 2.1.3 A bisimulation R is a ternary relation between assertions and pairs of agents
such that V in R(V, P, Q) implies all of

1. Static Equivalence: ¥ @ F(P) ~ V¥ @ F(Q)
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2. Symmetry: R(¥,Q, P)
3. Extension of arbitrary assertions: YV' R(V @ V' P, Q)

4. Simulation: for all o, P' such that bn(«)fV, Q) there exists a ()’ such that

ifU>P3SPthn¥>Q%Q AR(Y, P,Q)

P Ry Q is defined to mean that there exists a bisimulation R such that R(V, P,Q), and ~
is written for ~

2.2 On event structures

For event structures we try to follow the standard notation and terminology from [WNO95, sec.8].
We choose to use prime event structures as this is one of the most basic and well known models
of concurrency. Moreover, the DCR-graph model described in Section 2.5 which is our final
goal, is a conservative extension of event structures. Therefore, a first step is to look at event
structures.

Definition 2.2.1 (prime event structures) A labelled prime event structure over alphabet Act
isatuple E = (E,<,#,1) where E is a set of events, < C E x E is a partial order (the causality
relation) satisfying

1. the principle of finite causes, i.e.: Ve € E : {d € E | d < e} is finite,

and § C E x E is an irreflexive, symmetric binary relation (the conflict relation) satisfying
2. the principle of conflict heredity, i.e., Vd,e, f € E:d < eNdif = etf.

and | : E — Act is the labelling function.

Intuitively, a prime event structure models a concurrent system by taking d < e to mean that
event d is a prerequisite of event e, i.e., event e cannot happen before event d has been done. A
conflict dfe says that events d and e cannot both happen in the same run of the system.

Definition 2.2.2 (concurrency) Casual independence (or concurrency) between events is de-
fined in terms of the above two relations as

dlje 2 ~(d<eVe<dVdie)

capturing the intuition that two events are concurrent when they are not in conflict and there is
no causal dependence between the two.

Example 2.2.3 We make a simple ES with four events a, b, c, d where we have the relations
a <c,b<d,bic, bic, dia, atd, ctd, dic. This would give us the tuple
ES = ({a,b,e.d}, {(a,0), (b. )}, {(b, ), (c,), (d, ), (a, ), (¢, d), (d, )}, D)

The usual graphical representation of this system is pictured in Figure 2.1. On the figure we
have not added the conflict relation between c and d, because this is deducible from the conflict
heredity requirement in Def 2.2.1.2. We have that a||b for this example.
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Figure 2.1: Graphical view of an ES

The behaviour of an event structure is described by subsets of events that happened in some
(partial) run. This is called a configuration of the event structure, and steps can be defined
between configurations.

Definition 2.2.4 (configurations) Define a configuration of an event structure £ = (E, <, 1) to
be a subset of events C' C FE that respects:

1. conflict-freeness: Ve, e’ € C : =(efle’) and,
2. downwards-closure: Ve, e’ € E: e/ <eNee (C =¢ €.

We denote the set of all configurations of some event structure by Ce.

Note in particular that () is a configuration of any event structure(i.e., the root configuration)
and that any set [¢] = {¢/ € E | ¢/ < e} is also a configuration determined by the single event
e. Events determine steps between configurations in the sense that C' = C” whenever C, C" are
configurations, e ¢ C, and C' = C' U {e}.

Remark 2.2.5 It is known (see eg., [WN95, Prop.18]) that prime event structures are fully de-
termined by their sets of configurations, i.e., the relations of causality, conflict, and concurrency
can be recovered only from the set of configurations Cg¢ as follows:

1. e<eiffVC eCs:e e C=eeC;
2. et iff VO € Ce: m(e€ CNE €C);

3. elle iff IC,C" €Ce e € CNe ECNe €C'Neg C'"NCUC" € Ce.

For some event e we denote by <e = {¢’ € E | ¢ < e} the set of all events which are
conditions of e (which is the same as the notation [e] from [WNO95], but we prefer to use the
above so to be more in sync with similar notations we use in this thesis for similar sets defined
for DCRs too), and fe = {¢’ € E' | ¢’fe} those events e is in conflict with.
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Figure 2.2: Transition graph of an ES

Example 2.2.6 Let us take the event structure we made in Example 2.2.3 called ES. For ES
we are able to make a transition system between the configurations or states of ES to be like
the transition system graph in Figure 2.2. We have the possible configurations of E'S marked
as sl, 52,83, 54,55, 56, where s1 = () as no events have happened at the start of the execution.
From the transition s1 % s2 we have s2 = s1 U {a} = {a}. In a similar way we have that the
rest of the configurations are s3 = {b}, s4 = {a, c}, sb = {a,b}, s6 = {b,d}.

From these configurations we can find what the relations of ES are, using Remark 2.2.5.
We have that the only configuration where c is in is s4 and as a is in this configuration, a is
in all configurations that c is in so a < c. Similar we have that d is only in s6 and as b is in
this configuration, we have b < d. These are the only two condition relations that we have in
ES. For the conflict relations we can see that a is in s2, s4, s5 and that d is in none of these,
which give us that afid. We see that d is only in s6 and as a ¢ s6 N\ ¢ ¢ s6 we have the relations
dfa, dfc. cis only found in s4 and as we have b ¢ s4 N\ d & s4 we get relations cfb, cfd. b is in
the three configurations s3, sb, s6 and as we have that c is not in any of them we have bfic. This
gives us all six conflict pairs we have in ES.

For the final relation we see that a € s2 while b ¢ s2, and we have that b € s3 while a ¢ s3.
We know that s2 = {a} and s3 = {b} with s2 U s3 = {a} U {b} = {a,b} as {a,b} = s4 we
have that a||b.

2.3 Refinement of event structures

An action can be considered as a conceptual entity at a chosen level of abstraction. This allows
for the representation of systems in a hierarchical way, changing the level of abstraction by
interpreting actions on a higher level by more complicated processes on a lower level. This
method of give more detail to an action, thus turning the abstract model into a more concrete
one, is referred to as refinement of actions or action refinement [vGGO1].
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Wake up [—|Having Breakfast > [Go to Work

Figure 2.3: Having breakfast event structure

r---------_---------q
1 1
I '

Wake up i—) Making breakfast|—> Eating breakfastl-!—) Go to Work

lh__-----------l------_-J

Figure 2.4: refinement by a sequential event structure

Example 2.3.1 We can look at the actions of waking up, having breakfast and going to work,
like visualized in the event structure in Figure 2.3.

We might want to know a bit more about how one is having breakfast, this can be done by
refining the action of having breakfast into several other actions. We first go to the abstract
level where having breakfast is build up of the actions make breakfast and eat breakfast. Make
breakfast must happen before eat breakfast, as otherwise there would be nothing to eat. This is
visualized in the Figure 2.4.

We can go even further down the levels of abstraction and look at what we are making for
breakfast. This can be that we fry veggie bacon and fry an egg. These two actions can happen
at the same time (no one says you can’t be using the same frying pan for both the bacon and the
egg at the same time), so we will not have any internal relations in the event structure we are
building. This new event structure after refinement a second time looks like in Figure 2.5

If we are even more interested in how one is having breakfast, one can refine the eating
breakfast action into actions that say where one is eating breakfast. This can be eating the
breakfast in the kitchen or in the living room. But one can not eat breakfast in more than one
room (no walk around), so these two events must be in conflict. Trying to refine "eat breakfast"
event with these two new events, we will come into a situation where our morning bird would
not be able to go to work, due to the conflict heredity. Refining this way would result in the event
structure in Figure 2.6.

We see from the previous example that by refining an event into an event structure with
conflicts, one can cause other events that could happen before we refined, to no longer be able

Wake up |—]Fry veggie bacon]—:—> Eating breakfast]—) Go to Work
7

rl.ll-.-.l-ll -aul
J
M
<
(0]
«Q
«Q
TR L YO

Figure 2.5: refinement by a parallel event structure
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Wake up |—|Fry veggie bacon]ﬁ:-> Eating breakfast

){in kitchen
-‘[ Fry egg Y #i

Eating breakfast
in living room

Go to Work

Figure 2.6: refinement by a conflict event structure

to execute. Depending on how one sees the correct refinement of events this may be a problem
or not in terms of correctness. The way we are presenting here removes the option of getting
into these situations, as we demand the event structure we refine an event into, to be conflict-
free. In the above example one can easily see that getting into an always conflicted situation is
not a preferred one.

Actions are often considered single entities which when happening give no information
about how long the action took (often thought of as instantaneous), or what making it happen
entails. This means that the behaviour of the original system does not have any information
about the system we are refining it into. There is though the idea where we want the event
structure we get to preserve the behaviour of the one we refined from.

The intuition of refinement is to take one action (which is thought as an abstraction) and
give it more structure. Since the same action can be instantiated several times at different points
in the system, i.e., by different events, all these events labelled by the same action are being
given more structure by replacing them with a new event structure. For example one event can
become a sequence of events, or the parallel composition of deterministic components.

But refinement is restricted to not contain conflicts, i.e., not contain choices. This is because
of technical reasons that make it not possible to define the new conflict relation in a way that
we obtain prime event structures after refinement; but also there are natural counter examples
for requiring conflict-free refining event structure, like seen in Example 2.3.1 or in [vGGO1].

We take the definition of action refinement from [vGGO1]. This is done using a function
ref that is a function from actions to finite, non-empty event structures without conflict (i.e., the
conflict relation is empty). This is considered as a given function to be used in the refinement
operation. This refinement operation can be also seen as a function from event structures to-
gether with functions as above, and returning new event structures; it is like an algorithm. For
notation economy this algorithm is also denoted by ref, to connect it with the essential input it
takes as the refinement function ref : Act — ES (conflict-free).

Definition 2.3.2 (refinement for prime event structures) For an event structure € with events
labelled by | : E — Act with actions from Act we have the following definitions.

(i) A Function ref : Act — E,.im. is called a refinement function (for prime event struc-
tures) iff Va € Act : ref(a) is a non-empty, finite and conflict-free labelled prime event struc-
ture.

(ii) Let £ € E i and let ref be a refinement function.

Then ref (E) is the prime event structure defined by:
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Figure 2.7: Graphical idea of refinement of events

* Enge) :={(e;€)|e € Eg, e’ € Erepgg(e) }

(d,d') <pepie) (e,€) iffd <g eor (d=eNd <) €)

(d, d)trep (e (e, €) iff dige,

Lieg(e)(€, €)= Lueg(ie(e) ().

The refinement operation ref takes any event in ES (the parent part), and pairs its name with
the name of each of the events it refines into (the child part). The new conflict relation between
the pair of names is determined by the conflict relations between the parent events, i.e. if the
parent events were in conflict, then the new pair is in conflict. The new condition relations are
either between pairs where the parents were in a condition relation, or where the parents are the
same event, and the children were in a condition relation.

Example 2.3.3 We continue with our event structure ES from Example 2.2.3. We have a func-
tion ref which will refine the action a into the event structure ({e, f},{(e, f)},0, Lies(a)) and let
the other three events stay the same.

For simplicity in writing ref (b) = b instead of (b, b) for the refined action of b and similar
for the actions ¢ and d. We have that ref (a) = {(a,e),(a, )} as Erap)) = {e, f}. The
condition relations we are getting are (a,e) <,pms) (a, f) dueto a = a N e <,ipsa) |-
and (a,e) <ref(ES) C (a, f) <ref(ES) G from a < c. We also maintain b < d relation as
both actions here were replaced with them selves. From the relations afd, dfa we get the four
relations (a, €)iref(£5)d, (@, f)irer(Bs)d, Aires(25) (@ €), direr(ms) (@, f).

This gives the event-structure
ref (ES) = ({(a, ), (a, f), b, ¢, d} {((a,€), ¢), ((a, [), ¢), (b, d)},

{((a,e),d), ((a, ), ), (d,), (b, )}).

On a graphical presentation we would end up with an event structure graph similar to

Figure 2.8
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Figure 2.8: Refined ES as graph

2.4 On Condition Response Event Structures

Condition Response Event Structures (CRES) presented in [HM10b] is an intermediate step
from Event Structures to Dynamic Condition Response Graphs. CRES generalize event struc-
tures by introducing the notion of progress based on a response relation. CRES is interesting
in its own right as an extensional event-based model with progress, abstracting away from the
intentional representation of repeated behaviour. In particular it allows for an elegant character-
ization of weakly fair runs of event structures.

Generalising a prime event structure to CRES is done by adding the response relation e—,
which can be seen as the dual to the condition relation. the set {¢’|c e ¢’} represents the events
that must happen (or be in conflict) after event e has happened for the run to be accepting. The
resulting structure, named condition response event structures, in this way adds the possibility
of state progress conditions. A subset Re is also introduced, capturing the initial responses,
which are the events that are initially required to eventually happen (or become in conflict). In
this way the structure can represent the state after an event has been executed. As shown bellow,
it also allows to capture the notion of maximal runs.

Definition 2.4.1 A labelled condition response event structures (CRES) over an alphabet Act
is a tuple (E, Re, Act, e, —® 1) where

1. (E,—»,t,1) is a labelled prime event structure, referred to as the underlying event struc-
ture

2. &—C E X I is the response relation between events, satisfying that —e U e— is acyclic
3. Re C E is the set of initial responses.

A configuration c and run p of a CRES is respectively a configuration and run of the underlying
event structure. We define a run (eg, l(eg)), (e1,l(e1)), ... to be accepting if Ve € E,i > 0.¢; e
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Eat in livingroom

#

Eat in kitchen

Figure 2.9: Example of simple CRES

e =35 > 0.(ete; V(i < jAe=e;))and Ve € R3j > 0.(efe; V e = e;). In words, any
pending response event must eventually happen or be in conflict.

A prime event structure can be regarded as a condition response event structure with empty
response relation. This provides an embedding of prime event structures into condition response
event structures that preserves configurations and runs.

Proposition 2.4.2 The labelled prime event structure (E, Act, <,f,1) has the same runs as the
CRES (E, 0, Act, <, 0, ,1) for which all runs are accepting.

We can also embed event structures into CRES by considering every condition to also be a
response, and all events with no condition to be initial responses. This characterizes the inter-
pretation in [Che95] where only maximal runs are accepting. In other words, the embedding
captures the notion of weakly fair execution of event structures.

Proposition 2.4.3 The labelled prime event structure (FE, Act, < t,1) has the same runs and
maximal runs as respectively the runs and accepting runs of the CRES (E, {ele = 0}, Act, <

Y S? ﬁ? l)‘

Example 2.4.4 We can take the event structure where we have the events: "Fry bacon", "Fry
eggs", "Eat in living room", "Eat in kitchen". Here we have that both fry events are conditions
for the eat events, as we need to make what we want to eat. Since we can only eat in one place
the eat events are in conflict with each other.

Taking this event structure we can make a CRES where we either have no initial responses
(we do not necessary need to eat anything), or we have that both eat events are initial responses
(we need something to eat). For both ways we add response relations between events that
already have a condition relation. This says that if we start making food we need to eat it also.
Both CRES’s are giving us the same graphical look if we add the same relations to them looking
like Figure 2.9

These two CRES’s may look the same but due to the fact that only one has initial responses
we will get two different set’s of accepting runs. Where the first one only will get accepting runs
when one of the eat events has happened, the second one can have an accepting run where no
events happen at all, in addition to those the first CRES has.
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2.5 On DCR-graphs

Dynamic Condition Response Graphs (DCR-graphs) is a recent model of concurrency, that
was originally presented in [HM10b]. This model focuses on giving a finite representation of
possibly infinite behaviour, while also facilitating the notion of accepting runs. Particular to
DCR-graphs is the fact that a single event may constantly switch between being enabled or
not being enabled during a run. This is because that any enabled event may execute, and by
executing, change the state of the DCR-graph, where some events that was not enabled now
is enabled, and some that was enabled no longer is enabled. An effect of this is that DCR-
graphs are very well suited for modelling work-flows, especially those where you do not know
in advance how many times a single event may have to happen in order to get it done correctly,
without having to generate several instances of the same event, one for each possible time it
may happen. In addition to this, DCR-graphs have a graphical notation that makes it easy for
people in industry to see what a DCR-graph will do and what work-flow it is modelling.

Example 2.5.1 An example of a DCR-graph can be created based on the TV-show Hell’s
Kitchen (or any other restaurant kitchen, where several cooks are making the food, and one
head-chef decides after checking if it is good enough for the customers), is the work-flow for
one cook, based on a single order. In advance we do not know how many times chef Ramsay
will demand the food to be re-fired, because the food he gets up to the pass is not perfect.

An event structure built to model this situation may have to be infinite large in order to
capture the fact that the food may never get accepted and the cook has to remake it forever all
night long (this is not directly true as the restaurant do not have infinite amounts of ingredients,
and in the end either Ramsay gets so angry he shuts kitchen down or the customer leaves hungry,
but these are possibilities we do not consider in this example). Similar we would be able to get
an infinite CRES model for same reasons, though we would be able to say that we have an
accepting run once the food finally gets accepted.

In DCR-graphs on other hand we can get away with only having to have five events. These
events will be "Get order", "Cook order", "Take to pass", "Re-fire demanded" and "Food ac-
cepted”. As we are modelling single orders, we can only get an order in once so we make that
the "get order" event can only be enabled until it execute. It is intuitive that the cook has to make
the food before being able to take it to the pass, and we should not cook anything unless we are
ordered to do so through either getting an order in or having to re-fire the food. If the food is
accepted we end the execution as the order has been fulfilled, but if the food is rejected then a
re-fire is ordered and we need to cook the food again before taking it to the pass. This DCR can
be represented by the graph seen in Figure 2.10. This picture was made using the graphical
modelling tool for DCR-graphs developed by Exformatics (www.exformatics.com) that can be
found at www.itu.dk/research/models/wiki/index.php/DCR_graphs_editor.

We will follow the notations of DCR’s from [HM10a, HMS12] for the work we do.

Definition 2.5.2 (DCR Graphs) We define a Dynamic Condition Response Graph to be a tuple
G=(E,M,—e, e —0 —+, —%, L,1) where

1. FE is a set of events,
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Figure 2.10: DCR of how a line cook has to handle an order

2. M € 2F x 2F x 2F js the initial marking,

3. —e, e —0, —+,—% C ExFE are respectively called the condition, response, milestone,
include, and exclude relations,

4. | : E — L is alabelling function mapping events to labels from L.

For any relation —€ {—e, e— —o —+ —%}, we use the notation e — for the set
{¢/ € E|e— ¢}and — efortheset {¢/ € E | ¢ — e} of events ¢/ € E which are in the
respective relation with e.

A marking M = (Ex, Re, In) represents a state of the DCR. One should understand Ex as
the set of executed events, Re the set of events that must happen sometime in the future, and
In the set of included events, i.e., those that can happen in the next steps. The five relations
impose constraints on the events and dictate the dynamic inclusion and exclusion of events.

For a DCR Graph (E, M, —e e— —o —+,—%) and a marking M = (Ex, Re, In),
we say that an event e € E is enabled in M, written M F e, iff e € In A (InN —ee) C
ExA(Inn —e) C E\ Re. Intuitively an event can only happen if it is included, all it’s included
preconditions have been executed, and none of the included events that are milestones for it are
scheduled responses. The behaviour of a DCR is given through transitions between markings
done by executing enabled events. The result of the execution of the event e in marking M =
(Ex, Re, In) is defined as the new marking M’ wf (ExU{e}, (Re\ {e}) Ueeo,

(In\ e =%) U e —+). We denote a transition as M = M.
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Condition Relation
e———»  Response Relation
e e O Milestone Relation
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—_—% Exclude Relation

Figure 2.11: Index of DCR relations

! \"

Fending Happened

Figure 2.12: Signs for pending and executed events in DCR

Graphically events are drawn as boxes with relations between events being shown as arrows
of shape like the formal relations (for better visual looks they have different colours also). These
relations are shown in Figure 2.11. The events that are included are shown with a full border,
while the excluded events have a dotted border. The graphical representation of DCR-graphs
i use as examples here are all made with a graphical modelling tool that can be obtained from
www.itu.dk/research/models/wiki/index.php/DCR_graphs_editor. This tool gives the ability to
make DCR-graphs and then simulate the runs they can have. In addition to the standard graph-
ical representation, this tool gives additional three graphic symbols that make the graphs easier
to understand from just looking at them. The first symbol we can see in Figure 2.10 where it
shows a stop sign on the events "cook order" and "take to pass". This sign means that events
that have it are not enabled in the current marking and are unable to execute. In Figure 2.12
we see the last two signs we can get. Here we have the red exclamation mark saying that this
event is pending an response, and the green V saying that this event has happened at least once
already during this run. With these last two symbols one can easily visualize the marking that
the DCR-graph is in, where all events with a green V are in the set of executed events, all event
with the red exclamation mark are in the set of pending responses, and all events with a full
boarder are in the set of included events. The stop sign is not directly needed to see the state of
the graph, but it gives a faster way to read which events are enabled and which is not than by
having to check its relations to other events and the state they are in.

From the fact that it is not tested against if an event has been executed yet, when determining
whether the same event is enabled. We have that an event may be enabled and disabled at
several times during a run, even after it has been executed, and its not said it gets disabled when
it execute. This gives us that an event may be enabled infinitely often, and able to execute
infinitely often during a run. The only way to make sure an event is only able to execute once,
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( 51 —=y 82 /

Figure 2.13: conflict relation in DCR

would be to make it exclude itself and make sure it does not get included.

Any CRES can be embedded into a DCR-graph. This is done by leaving the include and
milestone relations empty, as these are two additions to DCR graphs which directly expands on
CRES. All events are made to exclude themselves, so that no event can be enabled after it has
happened once. The conflict relation just excludes all related events, like shown in Figure 2.13.
The condition and response relations are the same from CRES.

Example 2.5.3 We start by taking our graphically defined DCR-graph from Example 2.5.1.
Here we have five events that for ease of writing and reading we will rename like this: "Get
order" = go, "Cook order" = co, "Take to pass" = tp, "Re-fire demanded" = rd and "Food
accepted" = fa. Looking at the graph we can build up the formal DCR-graph tuple. The set of
events is F = {go, co,tp,rd, fa}.

For the marking we can see that we have no executed events so Ex = (), we have no pending
responses so Re = (), and we have only three events that have full borders, i.e. are included
In = {go, co,tp}. This gives us the marking M = (0,0, {go, co, tp}).

The relations can be created from looking at the relations arrows, and make the relation
pairs based on them (using for pairing the (from,to) placement in the pairs). This gives us the
relations:

—e = {(go, co), (co, tp)},

o—= {(go, co), (co, tp), (tp, fa), (tp,rd), (rd, co)},

—0 = {(co, tp)},

= {(tp, fa), (tp, rd), (rd; co), (rd, tp)},

—% = {(g0,g0), (co, co), (tp, tp), (rd,rd), (fa, fa), (fa,rd), (rd, fa)}.

For the labels L we let them be the same as the names of the events I/ and [ labels the events
with their own names. We thus get the DCR-graph G = (E, M, —e, e~ —0o, —+, —0, L, 1)

Based on the relations we can determine that only go is enabled, both co and tp fail on the
part (InN e=.) C () due to fact that for co, go is in both e, and In, the same problem is for
tp as co is in both e, and In. For the events rd and fa neither of them is in In and thus not
enabled. For go we have that it is in the set In and as —e,, = 0 and g0 = 0 we have that it
is enabled.
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From the relations we know that go &= {co}, go —+ = 0 and go —% = {go} .

A transition M 2% M’ would cause the new marking to change into M’ = (ExU{go}, (Re\
{go})Ugo e, (In\go —%)Ugo —+) = (0U{go}, (0\{go})U{co}, ({go, co, tp}\{go})UD) =
({90}, {co}, {co, tp}).

This can also be seen as a transition between DCR-graphs G 2> G where G' = (E, M', —
o o —o —+, —, L, 1)
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Chapter 3

Encoding event structures in psi-calculi

3.1 The encoding

Due to their popularity, we have chosen to work with a version of event structures called prime.
These have many nice features like correlations with domains which makes them a good candi-
date for being used for semantics of concurrent programs. Nevertheless, we believe that other,
more general, versions of event structures, like those from [Win86] or [vGP09], can be encoded
in psi-calculi following similar ideas as we give here.

Definition 3.1.1 (event psi-calculus) We define a psi-calculus instance, which we call eventPsi,
parametrized by a nominal set F, to be understood as events, by providing the following defini-
tions of the key elements of a psi-calculus instance:

T |

C X 9F  9F

A Y or

. d
ey

d
0% U

1%
FE Wb g iff (m(0) C W) A (W N Ta(p) = 0)

UVEa<biffa=0

where T, C, and A are nominal data types built over the nominal set E, and 7y, 7R are the
standard left/right projection functions for pairs.

It is easy to see that our definitions respect the restrictions of making a psi-calculus instance.
In particular, channel equivalence is symmetric and transitive since equality is. The ® is com-
positional, associative and commutative, as U is, and moreover ) U S = S, for any set S, i.e., 1
is the identity.

The conditions C are pairs of subsets of events, which intuitively will hold the enabling con-
ditions for an event, i.e., the left set holding those events it depends on and the right set holding
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those events it is in conflict with. The assertions A intuitively can be understood as capturing
the set of all executed events, i.e., a configuration of the event structure. Channel equivalence is
equality of event names, as in standard pi-calculus. Composition of two assertions is the union
of the sets. The entailment I~ intuitively captures when events may fire, thus describing when
events are enabled by a configuration.

Definition 3.1.2 (event structures to eventPsi) We define a function ESPSI which given an
event structure £ = (E, <, 1) and a configuration C of £, returns an eventPsi process Pr =
leep P. with P, = ({e}]) if e € C, otherwise P, = case ¢, : €(e).({e}]), where p. = (<e, te).

A process generated by the ESPST function is built up from smaller “event processes” put in
parallel. These come in two forms: those corresponding to the events in the configuration of
the translated event structure (i.e., those that already happened), and processes corresponding
to events that have not happened yet. For the later we use a condition ¢, that contains the set
<e of events e is depending on and the set fie of events e is in conflict with. Together these two
sets along with the frame of the entire psi-process, decide, through the entailment, if the event
can execute or not. When an event happens we will have a transition over the channel with the
same name as the event. Usually an event structure is encoded into eventPsi starting from the
empty configuration, i.e., with no behaviour.

Example 3.1.3 We take the event structure from Example 2.2.3 which we will now call E'S, and
where ESPSI(ES, Cgs) = Pgs. Let us first recall that
ES = ({a,b,c,d},{(a,c), (b,d)},{(b,c),(c,b),(d,a),(a,d),(c,d),(d,c)}, 1), and we assume
that Cgs = (. We have that <,= 0,8, = {d}, <p= 0,1, = {c}, <.= {a},f. = {b,d}, <4=
{b}, 84 = {a,c} from the relations, and thus can create o, = (<4, 8a), 00 = (<p, ), P =
(<o o), 0a = (Zq,8aq). Further we have that Pps = P,|P,|P.|P; where P, = case ¢, :
a(a).({a})) asa ¢ Cgg, P, = case @, : b(b).({b}) as b ¢ Cgs, P. = case ¢, : ¢(c).({c})
as ¢ ¢ Cpg and Py = case p, : d{d).({d})) asd ¢ Cgg

This gives us the eventPsi process Prs where each event has been transformed into its sub
process for psi-calculi, each one with its guarded output behind a condition. The frame of Prgs
is here F(Pgs) = 1 = () as we have no assertions in Pgg other than the identity assertion which
is always present. We can also look and see that as ) & ¢, due to (0 C 0) A (0N {d} =0), P,
may happen, similar we have that P, may happen as ) = oy, due to (0 C 0) A (0 N {c} = 0).
For both P, and P; we do not have that the case condition is allowed by entailment, if we try
entail . we will end up with {a} C ) which is not true, and similar we can see that p, is not
entailed. This leaves us with that only a and b are allowed to happen in the ESPSI(ES, Cg)
process we made, this are the same events that can happen in the overlaying event structure.

Example 3.1.4 We take the same event structure we had in Example 3.1.3, but instead of having
Crs = 0 we assume that it is Cps = {a}. This would change P, as we in Example 3.1.3 had
that a ¢ Cgg, but as a € {a} we must have that P, = ({a}| from Def 3.1.2, the event
processes for the other three events will not be changed as they still not in the configuration we
get as parameter. This will change the frame of the process we make to F (Prg) = 1® ({a}]) =
0 U{a} = {a}, while also changing which conditions are being entailed by the assertion. We
have that b is not affected by this change as (0 C {a})V ({a}N{c} = 0), and thus is still able to



The encoding 29

happen. For c and d we had that neither of them was allowed to happen due to their condition
not being entailed. Now we have that for . the part of the entailment that was preventing it
from being entailed earlier is {a} C {a} and this is now correct, and as {a} N {b,d} = 0, we
have that .. is enabled and ¢ can happen. On other hand d still cannot happen as {b} C {a}
is not true.

Lemma 3.1.5 (correspondence configuration—frame) For any event structure £ and config-
uration Cg, the frame of the eventPsi process ESPSI(E, C¢) corresponds to the configuration
Ck.

Proof: Denote ESPSI(E, Cs) = P as in Def 3.1.2. The frame of Py is the composition with
® of the frames of P, fore € E. As P, is either ({e}|) if e € C¢ or case ¢ : €(e).({e}] then
the frame of P, would be either F(({e}])) = {e} or F(case . : €(e).({e}])) = 1. Thus the
frame of Pg is the ® of 1’s and all events in Cl, thus having that the frame is the union of all
events in Cg O

This lemma intuitively says that any time we make a new eventPsi process, we know that
the configuration set is the same as the set our eventPsi process has as its assertion.

Lemma 3.1.6 (transitions preserve configurations) For some event structure & and some con-
figuration of it C¢, any transition from this configuration Cs C% is matched by a transition

0 > ESPSI(E, Cg) < ESPSI(E, CL) in the corresponding eventPsi-process.

Proof: Before the event e is executed we have that our eventPsi-process ESPSI(E, Cg) can be
written in the form P = case ¢, : é(e).({e}| |Q. By Lemma 3.1.5 we know that the frame of
P is the same as Cg, i.e., we have that F(P) = 1 ® F(Q) = ¥y = C¢ before e has happened,
and e ¢ Ck.

We can observe the transition between eventPsi-processes by the following proof tree,
using the transition rules of psi-calculi.

Vo0 I—eéie ouT
Vo @0 >ele).({e}) = ({e}) Vo0 - e
o0 > case ¢ : ee).({e}) = ({e})
0 > case ¢, : ele).({e}) |Q “« ({e}l@

CASE

PAR

An event e can happen if the corresponding condition in the case construct is entailed by
the appropriate assertion W = .. This forms the right condition of the (CASE) rule, saying
that all the preconditions of e are met, and e is not in conflict with any event that has happened.
This condition is met because Cg = W and the assumption of the lemma, i.e., the existence
of the step, which implies that e is enabled by the configuration C'¢, meaning exactly what the
definition of the entailment relation needs.

After < has happened we have P’ = ({e}))|Q and F(P') = F(({e}))®F(Q) = {e}U¥,,
meaning that the frame of P’ corresponds to C; = Cg U {e}. From Def 3.1.2 it is easy to see
that ESPSI(E, C%) = ({e}])| Q- |

By this we have that transitions in an event structure, and the corresponding transitions
in the eventPsi-process we get from giving the event structure to ESPSI, will make that the



30 Encoding event structures in psi-calculi

configuration of the event structure and the frame of the eventPsi remains equal, for equal
runs.

Example 3.1.7 We can look at the process from Example 3.1.3 now called P, and the process
from Example 3.1.4 now called P,. The only difference between these two processes was that
one was made before any events had happened in the overlaying event structure, and the other
after event a had happened.

We have that for an event to happen in eventPsi, that there is an output over the channel
with this event’s name. From Example 3.1.3 we already determined that a may happen under
the frame F(Py) = (). This frame was the same as the configuration we had when we made Py
using ESPSI. A transition on case ¢, : a{a).({a}|) would result in the transition label aa and
result after transition as the process ({a}|). We can see that we with this transition went from
the P, process we had in P to the P, process we had in P,. This transition does not affect any
of the other processes we have in P, and we can see that we after the transition in P, get the
same process with the same frame as the process P, that we made in Example 3.1.4, where we
did a transition on a in the event structure before making an eventPSsi-process.

Theorem 3.1.8 (preserving concurrency) For an event structure £ = (E, <, ) with two con-
current events e||e then in the translation ESPSI(E, () we find the behaviour forming the inter-
leaving diamond, i.e., there exists Cg s.t. () > ESPSI(E, Cg) = P LN Py and ) > ESPSI(E, C¢) LN
Py % Py with P, = P,

Proof: In a prime event structure if two events e, ¢’ are concurrent then there exists a configu-
ration C' reachable from the root which contains the conditions of both events, i.e., <e C C and
<e’ C C, and does not contain any of the two events, i.e., e, ¢’ € C' (cf. Remark 2.2.5). Take this
configuration as the one C¢ sought in the theorem. Therefore we have the following steps in the
event structure: Ce — CeUe, Ce LN CeU€, CeUe LN CeU{e, €'}, and CeUe’ 5 CeU{e, €'},

Since CY¢ is reachable from the root then by Lemma 3.1.6 all the steps are preserved in the
behaviour of the eventPsi-process ESPSI(E, (), meaning that ESPSI(E, C¢) is reachable from
(i.e., part of the behaviour of) ESPSI(E, 0).

Since e, ¢’ € Cg we have that ESPSI(E, C¢) is in the form Py = P,|P.|Q with P. and P,
processes of kind case. From Lemma 3.1.5 we know that the frame of ESPSI(E, C¢) is the
assertion corresponding to Cg, which is F(P.|P.|Q) = {0} U {0} U ¥y = T,.

From Lemma 3.1.6 we see the transitions between the eventPsi-processes: () > ESPSI(E, Cg) —
P S pyowith P = (e) | (/)| Q as well as O > EspsI(E,Cs) S Py 5 Py with Py =
(e) | (€') | Q. We thus have the expected interleaving diamond.

As a side, remark that F(P,) = F(F) ® (e|) and F(P;) = F(P) ® (') thus F(P) ®
F(P;) = F(Py) @ (e) @ (e') = F(Py), which say that e € F(P) Ae' ¢ F(P) ANe €
F(P3) Ne ¢ F(P3) NF(P) ® F(Ps) = F(P,). With Lemma 3.1.8 these can be correlated
with configurations and the we can see the definition of concurrency with configurations from
Remark 2.2.5. O

The proof of Theorem 3.1.8 hints at an opposite result, stating a true concurrency rule for
eventPsi-processes. Intuitively the next result says that any two events that in the behaviour
of the eventPsi-process make up the interleaving diamond are concurrent in the corresponding
event structure.
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Theorem 3.1.9 (independence diamonds) For any event structure &, in the corresponding
eventPsi-process ESPSI(E, (), for any interleaving diamond () > ESPSI(E,Ce) = P, = Py

and ) > ESPSI(E, Cy) <, Py S P, with Py = Py, for some configuration Cs € Cg, we have
that the events e||e’ are concurrent in E.
Proof: Since ESPSI(E, Cg) has two outgoing transitions labelled with the events e and ¢’ it
means that ESPSI(E, C¢) is in the form Py = P.|P./|Q) with P, and P, processes of kind case.
From Lemma 3.1.5 we know that the frame of ESPSI(E, Cy¢) is the assertion corresponding to
Ce, which is F(P.|P.|Q) = {0} U {0} U g = Vg

We thus have that e, e’ ¢ W and Py 5 Py and P, e—/> P5. This means that for these two
transitions to be possible it must be that the precondition for e and €’ respectably must be met.
Since e, e’ ¢ W, it must be that ¢’ ¢ 7.(p.) and e ¢ 7L (¢e). Since 7L (¢p.) is the same as
the set <e and 7 (¢),) the set <e’ we have the two parts of the Definition 2.2.2 that concern <
for the casual independence (concurrency) of the events e, €/, i.e., =(e/ < eV e < e). After
the two transitions are taken we have that P, = (e|)|P./|@ and P; = P.|(¢'))|Q. We thus have

that e € F(P;) and ¢’ € F(P;). For the transition P L P, to happen we must have that
e ¢ mr(pe ) and for Py % P, we must have €/ ¢ mg (). This is the same as ¢/ ¢ fe and e ¢ fe’
which makes the last part of Definition 2.2.2 concerning the conflict relation, i.e., —(e’tie). This
completes the proof, showing e||e’. O

Theorem 3.1.8 and Theorem 3.1.9 make sure that we catches the independence relation that
exists in event structures nicely in our psi-calculi instance, and let us see when two events are
independent of each other looking at the transitions we get in the interleaving semantics of
psi-calculi. Though we are able to capture the independence relation for event structures, are
this more due to the fact of how nicely this independence relation work, than a strength in psi-
calculi, and not certain we would be able to find such an independence relation for all other true
concurrency models when instantiated in psi-calculi.

We have seen that the eventPsi-processes that we obtain from event structures in Defini-
tion 3.1.2 have a specific syntactic form. But the eventPsi instance allows any process term to
be constructed over the three nominal data-types that we gave in Definition 3.1.1. The question
is which of all these eventPsi-processes correspond exactly to event structures? We want to
have syntactic restrictions on how to write eventPsi-process terms so that we are sure that there
exists an event structure corresponding to each such restricted process term.

Theorem 3.1.10 (syntactic restrictions) Consider eventPsi-process terms built only with the

following grammar: Pos = (e)) | case ¢ : &(e).(e) | Prs| Pas

Moreover, a term Pgg has to respect the following constraints, for any @., . from case ¢ :
e(e).(le]) respectively case ¢’ : €'(¢').(€| :
1. conflict: e & Tr(p.) and €' € Tr(pe) iff e € Tr(Per);
2. causality: e & p(p.) and ife € T(pe) then €' & wp(pe) A TL(pe) C TL(Wer)s
3. executed events: Prg cannot have both (|e]) and case ¢ : €(e).(le|) for any e, nor multiples
of each.

For any such restricted process Prg there exists an event structure £ and configuration Cg € Cg

s.1.
ESPSI(g, Cg) = Pggs.
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Proof: From a eventPsi-process Pgs defined as in the statement of the theorem, we show how
to construct an event structure £ = (F, <, ) and a configuration Cs. We have that Pgg is built
up of assertion processes and case guarded outputs, i.e., Pps = (| ccr.(€])) | (| fer, case ¢y :

FH-01D)-

Because of the third restriction on Pgg we know that £. and F, are sets, as no multiples of
the same process can exist. Moreover, these two sets are disjoint. For otherwise, assume we
have (le|)|case . : €(e).(e|) part of Pgg. This is the same as if e has happened already and e
may happen in future, which cannot be the case for event structures.

We take Cf¢ to be the frame of F(Pgs) = E.. We take the set of events tobe £ = E. U E,.
We construct the causality and conflict relations from the processes in the second part of Pgg
as follows: <= U.cpg, {(¢/,e)le’ € mr(pe)} and § = Uecp {(€¢/,e)|e’ € mr(ve)}. We prove
that the causality relation is a partial order. For irreflexivity just use the first part of the second
restriction on Pgg. For antisymmetry assume that e < e’ A e’ < e A e # ¢’ which is the same as
having e € 7 (pe) A€ € m(pe). This contradicts the second restriction on Pgg. Transitivity
is easy to obtain from the second restriction which says that when e < ¢’ then all the conditions
of e are a subset of the conditions of ¢/. We prove that the conflict relation is irreflexive and
symmetric. The irreflexivity follows from the first part of the first restriction on Pgg, whereas
the symmetry is given by the second part.

It is easy to see that for the constructed event structure and the configuration chosen above,
we have ESPSI(E, C¢) = Pgg. The encoding function ESPSI takes all events from C¢ to the left
part of the Pgg, whereas the remaining events, i.e., from [, are taken to case processes where
for each event f € FE, the corresponding condition ¢ contains the causing events respectively
the conflicting events. But these correspond to how we built the two relations above. O

We can see that for requirement one, we must have that an event cannot be in conflict with
itself, but that all events this event has in its set of conflicting events, this event must be in their
sets of conflicting events.

Requirement two says that an event cannot be a condition for itself. If an event is a condition
for another event, then all of the events this first event has as conditions, are conditions for the
second event.

Requirement three gives us that no event should be able to happen more than once, and
cannot be both executed and not executed same time. So only one sub-process is allowed for
each event, in either the style of an single assertion or as an output process reducing to an
assertion.

Remark 3.1.11 In Event Structures the E/ may be infinite. The configurations though are al-
ways finite. So we may generate infinite terms in Def 3.1.2. Infinite terms are not desired, for
practical reasons. But there are works with infinite terms, like infinite summation. Recursion of
pi-calculi and replication of psi-calculus are the way to obtain infinite parallel components, as
we generate from event structures.

In our case we also wanted to have the nice presentation, therefore we opted to generate
infinite terms. From these terms it is clear and natural to see the correlation with the event
structures. We work the same as in event structures, by tacitly having infinitely many events,
thus infinite parallel processes.
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3.2 Refinement

In the previous section we have seen results that give close correlations between event structures
and eventPsi-processes. In Section 2.3 we described the important method of action refinement
for event structures. Here we would be interesting in having a similar method of refinement for
the eventPsi-processes and see how it can be correlated to the corresponding event structures.

Definition 3.2.1 Given a refinement function for event structures ref, we define a function ref*
that refines an eventPSi-process to a new one over the names

T" ={(e,¢') | e € E.€’ € Eresagen}-
A process P with frame F(P) = Vp is refined into a process

T@fP(P> = ‘(e,e’)ETPP(e,e’)

with
Peey = ({(e;€)}),if e € ¥p
otherwise
Pleey = case g : (e,e)(e,€).({(e,€)})
with the conditions being

S0(676/) = (S(ev 6/)7 ﬁ(ea 6/))7

where
<(e,e) ={(d,d) | d e mrlpe) V(d=eNd €< eruay €)}

and

ﬂ(ea 6/) = {(d’ d/)‘d < WR(@S)}

The new names are pairs of a parent event name (i.e., from the original process) and one of
the event names from the refinement processes. We do not end up outside the eventPsi instance
because we can rename any pair by names from £. Take any total order < on £ and define from
it a total order (e, ¢’) < (d,d') iffe < dV (e = d A € < d') on the pairs; rename any pair by an
event from E while preserving the order, thus making 77 the same as the T of eventPsi.

We make new conditions for each of the new names (e, ¢’), where <(e, ¢’) contains all pairs
of names s.t. either the left part is a condition for e, or the left part is the same as e but the right
part is a condition for ¢’. The conflicts set f(e, €’) contains all pairs of names with the first part
a conflict for e. The refinement generates for each new pair one processes which is either an
assertion or a case process, depending on whether the first part of the event pair was in the
frame of the old P or not.

Example 3.2.2 We look on the eventPsi process P we made in Example 3.1.3, and the refine-
ment function refused in Example 2.3.3. We have that only one event a are to be refined into
something other than itself, and this is into ({e, f},{(e, )}, 0, liefa)). We will follow the way
we wrote the new names for events b, c and d that we used in Example 2.3.3. From ref we can
make ref” that will take our P and return a refined version of it P, f#, similar to when we used
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ref in Example 2.3.3. In this ref” we get that we change nothing in oy, as a was not part of any
of its two sets. For . we get that <. gets changed to <c = {(a,¢), (a, f)} as a €<, in P, but
the conflict set does not change as a & f. in P. For v, we have that while <, remains the same
tq gets refined into {(a,e), (a, f),c} due to a € t4 in P.

For P, we have that it gets refined into the two processes P, ) and P y). The condition
P(a,e) 1S made up of the two sets <(q.¢y and §(q.c), where <, )= () as neither a nor e have any
conditions to keep, and {4 ) is {d} from a being in conflict with d in P,. For the condition ¢,y
we have that 4, p) is {d} from a being in conflict with d, while we have that <., p)= {(a,e)} as
e<f.

From these conditions we can move ahead and create the processes:

Plae) = case @ae) : (a,€)((a,€)).({(a,€)}),

Pay) = case g : (@ Dila, N)-0{(a F)})

that are the new sub-processes we get in place for P,. After we change the conditions needed

for the other three event-processes we get that Pre; = Pq.c)|Pla,p)| P| Pe|Pa.

Theorem 3.2.3 (refinement of eventPsi corresponds to refinement in ES) For a prime event
structure £ we have that: ~ ESPSI(ref(€),0) = refP(EspsI(E,D)).

Proof: As T = E and as T is built from T with the same rules as E,¢s s built from E we
have that ¥ = FE,,;. Since the processes we work with are parallel compositions of assertion
and case processes, it means we have to show that any assertion processes on the left is also
fount on the right of the equality (and vice versa), and the same for the case processes. Since
we work with the empty initial configuration, then there are no assertion processes on neither
sides.

The case processes on the left side are those generated by ESPSI from the pairs events
returned by the ref from the event structure. This means that for each pair we have its condition
built up as in the Definition 2.3.2. On the right side we have case processes for the original
process before the refinement, with their respective conditions. But the ref” replaces these with
many case processes, one for each new pair, and for each new case process, the conditions
are build exactly as the ref is defining them. This says that we have the same number of
case processes on both sides of the equality, and they have the same conditions. |

Example 3.2.4 In Example 3.2.2 we used a refinement function ref” to refine our eventPsi-
process from Example 3.1.3, based on the ref function from Example 2.3.3 and made the process
Prcy. This time we will take the event structure we got after refining in Example 2.3.3, and
convert it into an eventPsi-process using the ESPSI function. To recall we had that the event
structure after refining was

ref(ES) = ({(a,e), (a, f), b, ¢, d}, {((a,€), ¢), ((a, f), ), (b, d)},

{((a,€),d),((a, f), d), (d(a,€)),(d, (a, f)), (d; ), (¢,d), (b,c), (¢, b)})-

Having five events and no configuration we need to make five case processes, and their con-
ditions respectively. These conditions will become ¢ 0y = (0, {c}), p(a,5) = ({(a,€)},{c}), p» =
(0,{c}),vc = {(ase), (a, f)},{b,d}), pa = ({b},{(a,€), (a, f),c}). We can now look and see
that these conditions are the same conditions that we got after refining the process P in Exam-
ple 3.2.2.



Refinement 35

Each of the sub-processes are made in the same way as we make the sub-process for the
event (a,e) here: P, o) = case O : (a,¢){(a,e)).({(a,e)})). When placed together in par-
allel composition we get that the eventPsi-process we make is Py.;(gs) = Pla,e)|Pla,)| Po| Pe| Pa.
It is easy to see that this process, are the same as the process we made in Example 3.2.2.
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Encoding event structures in psi-calculi




Chapter 4

DCR-graphs as psi-calculi

We achieved a rather natural and intuitive translation of the prime event structures into an in-
stance of psi-calculi. We made special use of the logic of psi-calculi, i.e., of the assertions and
conditions and the entailment between these, as well as the assertion processes. Noteworthy
is that we have not used the communication mechanism of psi-calculus, which is known to
increase expressiveness.

We try to extend this approach from event structures to the DCR-graphs. But it appears that
we need the communication constructs on processes to keep track of the current marking of a
DCR-graph. The particularities and expressiveness of DCR-graphs do not allow for a simple
way of updating the marking, as was the case for event structures when just union with the newly
executed event was enough. But we obtain a nice encoding once we use the communication,
outputting a term representing the current marking, and incorporating an idea of generation (or
age) of an assertion, where assertion composition keeps the newest generation. We thus have
a way to just use the newest assertion for entailments, and we get a more natural encoding for
DCR-graphs in a psi-calculus instance. We can then see correlations with the previous encoding
of the event structures. The markings are kept in the assertions, i.e., as the frame of the process,
the same as we did with the configurations of the event structures. Case processes are used for
each event of the DCR-graph, and the conditions of the case processes capture the conditions
that the events of a DCR-graph depend on to be enabled in a marking. The entailment relation
then captures the enabling of events by markings.

Definition 4.0.5 (dcrPsi instance) We define an instantiation of Psi-calculi called dcrPsi by
providing the following definitions:

TY (miuA

d
A Y 9B« 9F « 9F « N
where E is a nominal set and N is the nominal data structure capturing natural numbers using
a successor function s(-) and generator 0, whereas m is a single name used for communication,
d
CY ol ol x
<;>def

1% (0,0,0,0)
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((Ez, Re, In,Q)) ifG > G

((Ex, Re, In,G))®((Ex', Re', In',G")) < { ((E«', Re!, In', G")) ifG < G

((FxU E2',ReU Re', InU In',G))) ifG =G

where the comparison G < G’ is done using sub-term relation, eg., s(N) > N. Entailment |- is
defined as:

((Ex,Re,In,G)) F (Co, Mi,e) iff e€ InA(InNCo) C Ex A ((Inn Mi)N Re) = ().
((Ex,Re,In,G)) Fa <> biffa=1>

Terms can be either a name m, which we will use for communications, or assertions which
will be the data communicated. Assertions are a tuple of three sets of events, and a natural
number we intend to hold the generation of the assertion. The first set is meant to capture
what events have been executed, the second set for those events that are pending responses, and
the third set for those events that are included. These three sets mimic the same sets that the
marking of a DCR-graph contains. The generation number is used to get the properties of the
assertion composition, which are somewhat symmetric, but still have the composition return
only the latest marking/assertion (i.e., somewhat asymmetric).

The composition of two assertions keeps the assertion with highest generation.! This makes
the composition associative, commutative, compositional, and with identity defined to be the
tuple with empty sets and lowest possible generation number.

The conditions are tuples of two sets of events and a single event as the third tuple compo-
nent. The first set is intended to capture the set of events that are conditions for the single event.
The second set is intended to capture the set of events that are milestones for the single event.

The entailment definition mimics the definition in DCR-graphs for when an event (i.e., the
third component of the conditions) is enabled in a marking (i.e., the first three components of
the assertions). Compare the example below with the definition of enabling from DCR-graphs

((Ex,Re,In,G)|) F (—ee, —0e,e) iff e € ExA(InN —ee) C ExA((InN —oe)NRe) = ().

Definition 4.0.6 We define the function DCRPSI which takes a DCR-graph (E, M —e, e —
o, =+, =%, L,1) with a distinguished marking M = (Ex', Re/,In’) and returns a dcrPsi
process

Pdcr = Ps ‘ PE
where P, = ((EZ, Re', In',0))) | m{(E, R¢', In’, 0)).0
and

Pr = | ccrP.
with P, =l(case ¢, : m{(Xp, Xz, X1, X5)).

(T(Xp U {e}, (Xr\ {e}) Ueos, (X7 \ e —%) Ue -+, s(Xe))).0]
((XpU{e}, (Xp\{e}) Ueon, (X;\ e =) Ue —+,5(Xe))]))

IFor technical reasons, when we compose two assertions with the same generation number we obtain an as-
sertion where the sets are the union between the associated sets in each assertion, and the generation number is
unchanged.
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where Xg, Xg, X1, X¢ are variables and ¢, = (—ee, —0e, €).

The process Py, generated by DCRPSI contains a starting processes F; that models the
initial marking of the encoded DCR-graph as an assertion process, and also communicates this
assertion (i.e., the current marking) on the channel m. The rest of the process, i.e., Pg captures
the actual DCR-graph, being a parallel composition of processes P, for each of the events of
the encoded DCR-graph. The events in a DCR-graph can happen multiple times, hence the
use of the replication operation as the outermost operator. Each event is encoded, following
the ideas for event structures, using the case construct with a single guard .. The guard
contains the conditions for the event e that need to be checked against the current marking (i.e.,
the assertion) to decide if the event is enabled; these conditions are the set of events that are
prerequisites for e (i.e., —ee) and the set of milestones related to e. There may be several
events enabled by a marking, hence several of the parallel case processes may have their
guards entailed by the current assertion. Only one of these input actions will communicate
with the single output action on m, and will receive in the four variables the current marking.
After the communication, the input process will leave behind an assertion process containing an
updated marking, and also a process ready to output on m this updated marking. In fact, after a
communication, what is left behind is something looking like a P; process, but with an updated
marking. The updating of the marking follows the same definition as in the DCR-graphs.

Example 4.0.7 We take the DCR-graph we formalized in Example 2.5.3, where we have the
DCR-graph G = (E, M, —e, & —0, —+, —%, L, 1) where

E ={go,co,tp, fa,rd},

M = (0,0,{go, co, tp})

—e = {(g0, co), (co, tp)},

o—={(go, co), (co, tp), (tp, fa), (tp,rd), (rd, co)},

—0 = {(co, tp)},

—t = {(tp, fa), (tp, rd), (rd, co), (rd,tp)},

—% = {(g0, g0), (co, o), (tp, tp), (rd,rd), (fa, fa), (fa,rd), (rd, fa)}.

From this DCR-graph we make the dcrPsi process

Pier = DCRPSI(G) = Ps|Pyo| Peo| Pip| Pra| Pra

We make our start process Ps which is the part where our initial assertion and our initial
output process is to be:

((0,0,{go, co,tp},0)) | m((D,0,{go, co, tp},0)).0

For the five other processes Py, Peo, Py, Prq and Py,. We have that they are all made using
the P, template from Def 4.0.6, causing them to be replicating processes:
P,, =!(case ¢4, : m{(Xg, Xr, X1, X¢)).
(m{(Xg U{go}, (Xr\ {g0}) Ugoe—, (X \ go —%)Ugo —+,5(Xg))).0]|
((XEU{go}, (Xr \ {g0}) Ugoe=, (X1 \ go—%) U go —+,s(Xc))]))
P., =!(case ¢ : m{(Xg, Xr, X1, Xg)).
(m{(Xg U{co}, (Xgr \ {co})Ucoe—, (X[ \ co—%)Uco—+,s(Xg))).0|
((XpU{co}, (Xr\ {co}) Ucoe—, (X} \ co—=%) Uco —+,s(Xa))))
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P,, =!(case ¢y, : m{(Xg, Xgr, X1, X¢))-
(m{(Xg U{tp}, (Xr \ {tp}) Ucoe— (X \ tp —%) Utp —+,s(Xs))).0]|
((Xp U {tp}, (Xg \ {tp}) Utpe—, (X, \ tp =) Utp —+,5(Xc)))))
Py, =!(case g, : m((Xg, Xr, X1, X@)).
(Mm((Xp U{fa},(Xp\{fa}) U fae= (X;\ fa —00) U fa —+,5(Xc))).0|
((XpU{fa},(Xp\{fa})U faes, (X \ fa =) U fa —+,5(Xc)))))
P,q =!(case ¢,q : m{(Xg, Xgr, X1, X¢)).
(m{((XpU{rd}, (Xg\ {rd})Urde—, (X;\ rd =%)Urd —+,s(Xg))).0|
((XgU{rd},(Xgr\ {rd})Urde— (X;\ rd —%)Urd —+,s(Xq))))) |
Here we have that the conditions for each of these processes are:
Vg0 = (—9g0, =090, g0), Y., = (—@co, —0c0, c0),
Orp = (—tp, —0tp, tp), oy = (—eaf, —oaf,af), vrq = (—erd, —ord, rd)

Lemma 4.0.8 For any DCR-graph D, the frame of the corresponding process DCRPSI(D) cor-
responds to the marking of the encoded DCR-graph (i.e., the first three components).

Proof : DCRPSI(D) return a dcrPsi process with only one assertion which thus is the frame.
This assertion is made directly from the marking of D and added generation 0. O

Lemma 4.0.9 For any DCR-graph D, in the execution graph of the corresponding process
DCRPSI(D) at any execution point there will be only one output process.

Proof: Initially we have only one output in the P; part of DCRPSI(D). Inductively we assume
a reachable process P with only one output process. If we have any enabled input processes
only one of these processes will join a communication with the single output process. All input
processes are of the form P,, which reduces with psi-calculi rules for replication and input to

P.lm{((XgU{e}, (Xr\{e}) U o> ¢, (X\ =%e)U —te,5(Xs))).0]|

((XpU{e}, (Xp\ {e}) U o= e (X \ e F0)U —te, s(Xa))))
with Xz, Xg, X7, X substituted with the terms that were sent. The output process reduces to
0. We have added as many new output processes as we have removed, and as we initially only
have one output process by induction we always will have only one. O

Lemma 4.0.10 For any DCR-graph D, in the corresponding process DCRPSI(D) the message
being sent will always be the same as the frame of the dcrPsi process.

Proof: Initially, the first message being sent by P; is by construction the same as the initial
frame. The proof of Lemma 4.0.9 shows that with each communication a new assertion is
added and a new sender replaces the old one. The two new terms (i.e., the assertion process and
the message) are identical and have the generation part increased by one. Since the composition
of assertions keeps only the assertion with the higher generation, all older assertion processes
that are still present are being ignored when computing the frame of the new process. We thus
have our result. a
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Lemma 4.0.11 (generations count transitions) 7The generation part of the frame is the same
as the number of transitions we have done from the initial process.

Proof: We use induction and assume we have done n transitions and the generation part of our
frame is n’ where n = n’. From Lemma 4.0.10 we have that the frame and message are equal,
so we will be sending n as generation part of the message. After the communication a new
assertion with generation s(n’) is added, which by the definition of assertion composition will
be the new frame. By our assumption s(n’) = s(n) = n + 1. From Lemma 4.0.8 we have that
n = n’ = 0 for the initial process, and by induction we have that this holds for any number of
transitions. |

Theorem 4.0.12 (preserving transitions) In a DCR-graph D, for any transition (D, M)
(D, M) there exists a reduction between the corresponding dcrPsiprocesses DCRPSI(D, M)
DCRPSI(D, M").

&
—
K
—

Proof: From Lemma 4.0.8 we know that the frame and marking are the same. This means that
since M I e, the corresponding condition in the DCRPSI(D, M) will be entailed by the frame.
Therefore a communication is possible, i.e., a transition labelled by 7. For M = (Fx, Re, In)
it means that the frame of DCRPSI(D, M) is (Ex, Re, In,G). From Lemma 4.0.10 we know
that the frame is always the same as the message being sent. When the transition corresponding
to the event e happens the new frame of the dcrPsi becomes

((ExU{e}, (Re\ {e})U e e, (In\ e —=%)Ue —+,s(G)))
after alpha-conversion. For a transition in a DCR-graph over the event e we get the new marking
M' = (ExU{e},(Re\{e})Uee, (In\ e —%)Ue —+),

which is the same as the new frame, with the exception of the generation part. O

Example 4.0.13 We return to our process Py, from Example 4.0.7 where for ease of reading
we will denote it Py, = Ps | Py, | Q with Q = P, | Py, | Pra| Pay. We know from Example 2.5.3
that only event go can happen initially, and thus is the only input process that is enabled. The
output process is always enabled as it is never under a condition. This means that only these
two processes may have transitions reducing them at the start of our run.
We know that go e—~= {co}, go =+ = 0, go =% = {go} and thus P,.. can be written as
Pier = Q1((0,0,{go, co, tp},0)) [m((0, 0, {go, co, tp},0)).0|
l(case g0 : m{((Xp, Xr, X1, X¢)).
(m((Xg U {go}, (Xr \ {go}) U{co}, (X1 \ {go}) U0, 5(Xc))).0]
15 U {go}, (X \ {go}) U feo}, (X, \ {go}) UD, 5(Xa)))) )

. . .. T
A communication over m would cause the transition Py.. — P,

Fier=@Q101((0,0,{go, co,tp}, 0)) | ((0U{go}, (0\{go})U{co}, ({go, co, tp}\{go})Ub, 5(0)))
|m((0,0,{go, co, tp}, 0)(D U {go}, (B\ {go}) U {co}, ({go, co, tp} \ {go}) UD, 5(0))).0|
!(case QOQO : m((XE, XR, X[, Xg)>
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(M((Xe U{go}, (Xr \ {go}) U {co}, (X1 \ {go}) UD,s(X¢))).0]
(X U{go}, (Xr \ {go}) U{co}, (X1 \{go}) UD, 5(Xc))]))

More compressed written as

P =Q|0[((0.0,{go,co,tp},0)) | (({go},{co}, {co, tp}, 5(0)))
|7{({go}, {co}, {co, tp}, 5(0))).0|
!<Case Pgo - m((XEa Xr, X1, XG)>
(M((Xg U {go}, (Xr \ {go}) U{co}, (X1 \ {go}) UD, s(Xc))).0]
((Xe U {go}, (Xr\ {go}) U{co}, (X1 \{go}) UD, 5(Xc))]))

We can see that

(({go}, {co}, {co, tp}, s(0))) @ ((D,0,{go, co, tp}, 0)) = (({go}, {co}, {co, tp}, s(0))).
If we look at the three sets in this tuple we see that these are the same sets that make up the
marking M’ that we got in Example 2.5.3 after transition on go.

If we look at the dcrPsi we get from DCRPSI(G’), the only difference would be in the P,
part, where we would have to use M’ instead of M to generate it. This would give us

Py = ((0,0,{go, co,tp},0)) [m(({go},{co},{co,tp},0)).0

With the exception of the generation number this is the exact same as the P, part of P'.



Chapter 5

True concurrency semantics for Psi-calculi

5.1 Introduction

This is ongoing work where we are interested in developing a non-interleaving semantic for
psi-calculi.

The semantics of psi-calculi is given through structural operational rules and adopts an in-
terleaving approach to concurrency, in the usual style of process algebras. On the other hand,
event-based models of concurrency take a non-interleaving view. Many times these form do-
mains and are used to give denotational semantics, as e.g., done by Winskel in [Win82, WNO95].
Many times non-interleaving models of concurrency can actually distinguish between inter-
leaving and, so called, “true concurrency”, as is the case with higher dimensional automata
[Pradl, Pra00, vGO6], configuration structures [VGP09], or Chu spaces [Gup94, Pra95].

We are interested in non-interleaving semantics for psi-calculi, and this chapter will report
on our results in this direction. In particular, we are interested in a true concurrency seman-
tics that is more operational than denotational. In other words, we would like the concurrency
model that is obtained from the semantics of psi-calculus to be less like event structures or con-
figurations structures, and more like higher dimensional automata or asynchronous transition
systems [Bed88, Shi85]. (Note that Chu spaces would somewhat capture both worlds, as Pratt
argues in [Pra02].)

The work of Mukund and Nielsen [MN92] is particularly attractive because it gives a non-
interleaving semantics in an operational style to a process calculus, Milner’s CCS [Mil80]. Usu-
ally non-interleaving models of concurrency, like Mazurkiewicz traces [Maz88], event struc-
tures [NPW79, Win88], or geometric models [GM12] s.a. higher dimensional automata [Pra91,
v(G06], are used in a denotational style. Domains for such models are well investigated and op-
erations on them are used to give semantics to process calculi, e.g., Winskel for CCS [Win82],
Goubault for HDAs [Gou93]. On the other hand, operational style of giving semantics using
structural operational transition rules [Plo81, AFVO01] for process languages obtains an inter-
leaving concurrency semantics. Operational semantics are more intuitive and easy to under-
stand, whereas non-interleaving models of concurrency are more expressive and adequate for
capturing concurrent systems.

The achievement of Mukund and Nielsen [MN92] combines the above two aspects by going
to asynchronous transition systems (ATS). These are a non-interleaving concurrency model that
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generalizes transition systems (i.e., the model of the SOS interleaving approach) and that has
the same expressive power as the event structures [WN95, Sec.10]. Their work looks at the CCS
process calculus which has only synchronization. We are interested in the psi-calculus which
also has communication mechanisms. These pose extra challenges. Non-interleaving semantics
in the denotational style have been recently investigated for pi-calculus by Crafa, Varacca, and
Yoshida [CVY07, CVY12] using event structures as the underlying concurrency model and
following the categorical techniques of Winskel and Nielsen [WN95]. We would like to extend
the work on CCS using ATS, taking insights from the work using event structures, to develop a
non-interleaving operational semantics for psi-calculus based on ATS.

A first step in our investigation was to extend the work of Mukund and Nielsen on CCS
to the psi-calculi [BJPV11] where the work of Sangiorgi [San96] is closely related. But San-
giorgi has a different goal in his work and is based on the original dynamic approach to lo-
cations introduced in [BCHK94, BCHK93], and work on pi-calulus [Mil99]. On the other
hand, Mukund and Nielsen use the approach of Aceto [Ace94] with static locations, obtaining
a more clean presentation and semantics for CCS, in our opinion. It is not easy to use the work
of [San96] for our semantics purposes, but the recent observations that Crafa, Varacca, and
Yoshida [CVYO07, CVY12] make for their denotational approach is much useful for us, as we
detail further. Therefore, we have reworked the approach with static locations of Mukund and
Nielsen to the setting of psi-calculus, thus treating also the extra logical aspects that psi-calculus
has, compared to pi-calculus.

5.2 Background

5.2.1 Asynchronous transition systems

Asynchronous transition systems were independently introduced by Bednarczyk [Bed88] and
Shields [Shi85]. The main idea is to extend transition systems by, in addition, specifying which
transitions are independent of which. More accurately transitions are to be thought of as occur-
rences of events which bear a relation of independence. In this thesis we adopt the definition
from [WN95].

Definition 5.2.1 (Asynchronous transition systems) An synchronous transition system is a struc-
ture AT'S = (S,i, E, I, Tran) such that

* (S,i, E,Tran) is a transition system

* [ C Ex E is an irreflexive and symmetric relation, called “independence”, satisfying the
following conditions:
l. e€ E=3s,5 € S.(s,e,s) € Tran
2. (s,e,8") € Tran and (s,e,s") € Tran = s = §"
3. e1leyand (s,eq,s1) € Tran and (s, ez, s9) € Tran =
Ju : (s1,e,u) € Tran and (sq,e1,u) € Tran
4. eles and (s,e1,51) € Tran and (s1,ez,u) € Tran =
Js9.(s, €9, 82) € Tran and (s, e1,u) € Tran
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Condition (1) stipulates that every event in £/ must appear as the label of some transition
in the system. The second condition guarantees that the system is deterministic. The third and
fourth conditions express properties of independence: condition (3) says that if two independent
events are enabled at a state, then they should be able to occur "together" and reach a common
state; condition (4) says that if two independent events occur immediately after one another in
the system, it should be possible for them to occur with their order interchanged.

5.2.2 CCS, locations and asynchronous transition systems

Mukund and Nielsen present in [MN92] semantics for CCS as a non-interleaving transition
system. The main criteria was to develop semantics as close as possible to the original (inter-
leaving) semantic, while also identify the concurrency present in the system in a natural way,
and be simple.

This has been done by adding locations to the semantics, thus positioning where the tran-
sitions happen in the system. Through these locations one can see when two transitions are
independent.

Start by fixing a set of actions Act = AUA, where A is a set of names ranged over by «, 3, ...
and A is the corresponding set of co-names {@|a € A}. The co-name operation is considered
as standard bijection such as @ = « for all @ € A. The symbol 7 ¢ Act denotes the invisible
action. a, b, c... range over Act and p, v... range over Act, = Act U {7}. Consider also a set
of process variables and let x, ¥, ... range over V.

The operational semantics developed in [MN92] is
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For a basic action preformed by a process >;¢;u; P;, the transition is tagged with the source
and target process expressions. The tag is extended with Os and 1s on the left as the transitions
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are lifted through left and right branches of a parallel composition. With each communication
they keep track of the tags corresponding to the two components participating in the commu-
nication. By extending the tag to the left with «, they keep track of the nesting of restrictions
with respect to the overall structure of a process. This is crucial in order to determine whether
or not a communication is possible even though the visible actions which make up the commu-
nications are restricted away. Finally, the rule (STRUCT) ensures that processes from the same
equivalence class are capable of making exactly the same moves.

The string of Os and 1s which is used to tag a transition when one moves up the left and
right branches of a parallel composition essentially pins down the location where the transition
occurs. Locations provide a natural way of identifying independence between transitions.

An example of this is shown in Figure 5.1 taken from [MN92], where the behaviour of the
processes a||b and ab+ ba are displayed as labelled transition systems. Notice that the transition
system for a||b has four transitions, but only two distinct labels on the transitions. This captures
the fact that there are only two underlying (independent) events, one labelled a and the other
labelled b. In contrast, the process ab + ba has four distinct events.

It can be shown that the labels of the transition systems obtained by the above operational
semantics follows the following fact.

Proposition 5.2.2 For any transition P % P , u is of the form
1. s[P][P'], where s € ({0,1} UA)* and pu € Act.
2. s[P][P'], where s € ({0,1} UA)* and p = .
3. s(so[Po)[PY], s1[PA][P]]), where s, 50,51 € ({0,1} UA)*, and = .

For convenience, the brackets around the process expressions in the labels are omitted so
for example s[P][P’] is written sP P’ instead.
Each distinct label in the transition system corresponds to an event, as follows.

Definition 5.2.3 (Events) Define the set of events FEv as follows:

Ev = {(u,u)|3P, P' € Proc.P %}

For e € Ev we can identify Loc(e) C {0, 1}*, the location(s) where e occurs, as follows:

{s Loy} ifu=sPP'

Ve = (u,u).Loc(e) =
o “ {{330 Loy, 851 4 {0,1}}  ifu = s(soPoFy, s1.P P))

where for s € ({0,1} U A)*, s |(o.1y denotes the projection of s onto {0,1}. In other words,
s L{o,1} is the subsequence of s obtained by erasing al elements not in {0, 1}.

From the way the information about locations is introduced into the event labels, it is clear
that the locations Loc(e) of an event e is a string which identifies the nested component where
e occurs. The independence relation is defined on locations and then lifted to events as follows:
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allb ab + ba
0[a] [;% Nl [ab-!-ba]yé }Kb-l-ba] (4]
nil||b a||nil b a
1[!»195\5 %[u][mﬂ 0 [\\b %ﬂfﬂ
nil||nil nil

Figure 5.1: Concurrency versus non-deterministic interleaving

Definition 5.2.4 (Independence on events) Define an independence relation on locations I; C
{0,1}* x {0, 1}* as follows:

Vs, s € {0,1}".(s,8) € Liiff s A S Ns' £ s
where < is the prefix relation on strings.
We can extend this to a relation I; C ({0,1} U A)  x ({0, 1} U A)* in the obvious way.
V3,5 € ({0,1} UN).(5,8) € Liff (3 Loy, 8 Lromy) € I

For convenience, we shall write both I and I; as 1.
Using I, we can define an independence relation on events [ C Fv x Ewv as follows:

Ve,e' € Ev: (e,e') € Iiff Vs € Loc(e),Vs' € Loc(e') : (s,s") € I

Having defined the sets of events /v and the independence relation I on events, they define
an asynchronous transition system corresponding to the operational behaviour of a process P.
This is the transition system 7'Sccs = (9,4, E, I, Tran) where

S ={[P]|P € Proc}.

o I/ = Fw.

I C Fv x Fvis given in Def 5.2.4.

Tran C 8 x Bv x 8 = {([P], (. w), [P =)|P & P},
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5.2.3 Denotational approach to giving event structure semantics to Pi-
calculus

In the study of concurrent and distributed systems, the true concurrent semantics approach takes
concurrency as a primitive concept rather than reducing it to non-deterministic interleaving.
One of the by-products of this approach is that the casual links between process actions are
more faithfully represented in true concurrent models.

Prime event structures [NPW81] are a casual model for concurrency which is particularly
suited for the traditional process calculi such as CCS and CPS since they directly represent
causality and concurrency simply as a partial order and an irreflexive binary relation. Winskel
[Win82] proposed a compositional event structure semantics of CCS, that has been proved to
be operationally adequate with respect to the standard labelled transition semantics.

The main issues when dealing with the full pi-calculus over CCS are name passing and the
extrusion of bound names. These two ingredients are the source of the expressiveness of the
calculus, but they are problematic in that they allow complex forms of casual dependencies.

Compared to a pure CCS, (either free of bound) name passing adds the ability to dynam-
ically acquire new synchronization capabilities. For instance consider the pi-calculus process
P =n(z).(Z < a > |m(x)), that reads from the channel n and uses the received name to output
the name a in parallel with a read action on m. Hence a synchronization along the channel m
is possible if a previous communication along the channel n substitutes the variable 2z exactly
with the name m. Then in order to be compositional, the semantics of P must also account for
"potential" synchronizations that might be activated by parallel compositions, like the one on
channel m.

Casual dependencies in pi-calculus processes arise in two ways [BS98, DP99] by either
nesting prefixes (called subject causality) or by using a name that has been bound by a previ-
ous action (called object causality). While subject causality is already present in CCS, object
causality 1s distinctive to the pi-calculus. The interaction between the two forms of causal de-
pendencies are quite complex.

This is especially understood in terms of the two ingredients of extrusion: name restriction
and communication.

1. The restriction (vn)P adds to the semantics of P a casual dependence between every
action with subject n and one of the outputs with object n.

2. The communication of a restricted name adds new casual dependencies since both new
extruders and new actions that need an extrusion may be generated by the variable sub-
stitution.

A casual semantics for pi-calculus should account for such a dynamic additional objective
causality introduced by scope extrusion. In particular, the first item above hints at the fact that
we have to deal with a form of disjunctive (objective) causality. Prime event structures are stable
models that represent disjunctive causality by duplicating events and so that different copies
causally depend on different (alternative) events. In this case it amounts to represent different
copies of any action with a bound subject, each one causally depending on different (alternative)
extrusions. However, the fact that the set of extruders dynamically changes, complicates the
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picture since new copies of any action with a bound subject should be dynamically spawned for
each new extruder. In this way the technical details quickly becomes intractable.

The paper of Crafa, Varacca, and Yoshida [CVY 12] follows a different approach, that leads
to a nice technical development. The idea is to represent the disjunctive objective causality in a
so-called inclusive way: in order to trace the causality introduced by scope extrusion it is suffi-
cient to ensure that whenever an action with a bound subject is executed, at least one extrusion
of that bound name must already executed, but it is not necessary to record which output was
the real extruder. Clearly, such an inclusive-disjunctive causality is no longer representable with
stable structures like prime event structures. However, it is shown that an operational adequate
true concurrent semantics of the pi-calculus can be given by encoding a pi-process simply as
a pair (E, X)) where F is a prime event structure X is a set of (bound) names. Intuitively, the
casual relation of I encodes the structural causality of a process. Instead, the set X affects
the computation on F: where it is defined a notion of permitted configurations, ensuring that
any computation that contains an action whose subject is a bound name in X, also contains
a previous extrusion of that name. Hence a further benefit of this semantics is that it clearly
accounts for both forms of causality: subjective causality is captured by the causal relation of
event structures, while objective causality is implicitly captured by permitted configurations.

5.3 Preliminary results

Taking the work of Mukund and Nielsen [MN92], specially the way they add locations, we
look into how this method would work for adding locations to the operational semantics of psi-
calculi [BJPV11]. Preliminary results suggest that this can be done in an intuitive way, where
we add the location labels to the tags of the transitions in psi-calculi in very much the same
manner as Mukund and Nielsen did.

The operational semantics that we currently are working on and trying to prove is effectively
giving the locations of processes is defined as bellow:
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The main two differences between what Mukund and Nielsen did is the way bounded names
are marked. This we handle very similar though, and that we have replication rule instead of
recursion. This later we leave the actual location discovery to the rule of parallel composition
that it builds upon.

With these operation rules we can go from psi-calculi processes to asynchronous transition
systems in very much the same way that [MN92] went from CCS to asynchronous transition
systems. There are minor differences related to the fact that in psi-calculi we work only with
replication, instead of general recursion as [MNO92] considers, and also we do not have struc-
tural congruence. These changes do not affect much the proofs of similar results that Mukund
and Nielsen had in [MN92]. In particular, we are able to prove the fact that the asynchronous
transition systems that are obtained by the non-interleaving semantics of psi-calculus are ex-
actly those that can be associated one-to-one with event structures, which are called elementary
in [MN92], and correspond to those investigated in [WN95, Sec.10.2] rather differently in cor-
relation with Petri nets.

We define events to be the same as in Def 5.2.3, and independence relation to be the same as
Def 5.2.4. With these two definitions we can see that we have the same events and independence
relation as in [MN92], and the same asynchronous transition system they obtain in that paper.
Our preliminary investigations show that the logic aspect and binding of names affect very little
the concurrency aspect. These parts of psi-calculi are not present in CCS.

From the logic aspect we can see that we do not maintain any logical information in the
labels and thus events. And the logic only affects what transitions are produced. As concurrency
in this transition system is based on when events are independent this logic will not affect this
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part. So the logic does not decide what is independent or not, just what events that exist in the
first place.

We also look at extra dependencies that come from name binding as identified in [CVY12].
Preliminary investigations into this show that the operational semantics handles all of these
problems for us, either through transitions being blocked due to dependencies or that the inde-
pendence relation does not accept them as independent.

Further work, besides detailing the results above, involves looking closer at the relations
between the denotational approach of [CVY12, WN95] and our non-interleaving operational
approach. This means that we would extend the work on pi-calculus from [CVY12] to psi-
calculus and then give an operational adequacy result.

Another line of further investigation is to look at known instances of psi-calculi and see how
our results give non-interleaving semantics to such instances as pi-calculus, spi-calculus, and
cc-pi.

Further interesting results could come from looking at how previous work from Chapters 3
and 4 on encoding event structures and DCR graphs [HM10a] in psi-calculi instances conforms
with the non-interleaving semantics we give here. In particular, in Chapter 3 we gave a psi-
calculus instance and encoded event structures as such psi-processes, making a tight correlation
between the concurrency in event structures and the interleaving diamonds of the interleaving
semantics of psi-calculus. But through our work here we would obtain an event structure (i.e.,
equivalent to the elementary ATS) as the semantic object for the same psi-process that encodes
also an event structure. This rises the question of how are these related.
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Chapter 6

Conclusions

We have encoded the true concurrency models of prime event structures and DCR-graphs into
corresponding instances of psi-calculi. For this we have made use of the expressive logic that
psi-calculus provides to capture the causality and conflict relations of the prime event struc-
tures, as well as the relations of DCR-graphs. The computation in the concurrency models
corresponds to reduction steps in the psi-processes. The more expressive model of DCR-graphs
required us to make use of the communication mechanism of psi-calculi, whereas for event
structures this was not needed. The data terms we sent were tuples of terms, capturing mark-
ings of DCR-graphs with a generation number attached to them.

For the encodings we also investigated some results meant to provide more confidence in
their correctness. In particular, for event structures we also looked at action refinement as well
as gave the syntactic restrictions that capture the psi-processes that exactly correspond to event
structures. Besides providing correlations between the computations in the respective models,
we also investigated how true concurrency is correlated to the interleaving diamonds in the
encodings we gave.

These results have been presented in Chapters 3 and 4, while Chapter 2 gave background
information for these. In more concise presentations the same results have been published at
international workshops [Nor13, NPH14a, NPH14b].

The purpose of our investigations was to see how well the expressiveness of psi-calculi can
accommodate the expressiveness of true concurrency models. And with the above results we
will say we have managed to a certain degree to show that we capture the expressiveness of
the true concurrency models we have looked at in psi-calculi. This is only inhibited by the
fact that psi-calculi currently do not have a built in way to model liveness properties, and these
would have to be defined independently for each instantiation outside the standard psi-calculi
definitions.

As future work in that regard is the possibility to look into adding responses to psi, as done
in [CHPW12] for Transition Systems with Responses. This is interesting from the fact that we
currently do not have a way to show the accepting runs from DCR-graphs in dcrPsi. This could
be defined based on the assertions of dcrPsi, as we know these assertions are modelling the
markings, and the accepting states of DCR-graphs are defined on its marking. We would prefer
a way that would give psi-calculi its own accepting states on the meta-model level instead.

Nevertheless, a discrepancy remains between the interleaving semantics based on SOS rules
of psi-calculi, and the true concurrency nature of the two models we considered. We have
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started to look into creating a non-interleaving semantic for psi-calculi in Chapter 5. The plan
is to finish this work as a next step after this thesis. Following this we would be interested in
checking if this non-interleaving semantic would give us the independencies for event structures
with its own independence relation, as we get from our independence relation in eventPsi.
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