Ui0O ¢ Department of Informatics
University of Oslo

Investigating performance of
complex data in Semantic Web

Comparing two different ontology approaches

Magnus Daehlen
Master’s Thesis Spring 2014

Acknowledgement

I would like to thank my supervisors Kjetil Kjernsmo and Martin Giese for
their support and guidance during my thesis. I also want to thank Daimler,
especially Kai Holzweissig, for contributing with valuable data. Without
these data the thesis would have been difficult to realize. In the end I want
to thank my family and friends for motivation and help along the way.

ii

Abstract

The internet is becoming a marketplace for more and more products. With
this in mind there will soon be possible to buy and sell any kind of product
with component constraints, in the same manner we order a personalized
computer. Today there is not done enough research within this area.
The problem is how users and manufacturers should share their data to
increase the information flow on the web. This will be even more important
when more complex data are uploaded to the web. In this thesis we study
how semantic web can be used to represent complex data with component
constraints on the web today. This will be done by testing a product specific
ontology against a generic ontology. To do this we have used an application
which represented a real life scenario to help us test the two different
ontology approaches. We have used a domain about car models from both
Renault and Daimler to be able to experiment the two approaches. The
experiments were conducted using the approach Design of Experiments
(DoE) to investigate what factors would influence the performance of the
two approaches.

We will discuss several aspects of the different approaches, emphasizing
the definition of the ontologies and the representation of the complex
data. This discussion will be based on the experiments done against the
application. In the end we will present the most important elements when
representing and structuring complex data in semantic web.

1l

iv

Contents

1__Introduction| 1
1.1 Motivation| 1
[1.2 Approach| 1
1.3 Goall e e 2
[t.a Howtoevaluate] 2
1.5 Previouswork| 3

[27 Background| 5
[2.1 History of semantic web technologies| 5

[2.1.1 Thebeginning. 5
.............................. 5
[2.2 WhatisanOntology?|. 7
[2.3 Frameworks and technologies|. 8
[2.3.1 Resource Description Framework|. 8
[2.3.2 Resourse Description Framework Schema & Reasoning| 10
[2.3.3 Web Ontology Language| 11
[2.3.4 SPARQI] 12
[2.3.5 GoodRelations| 13
[2.3.6 Linkeddatal 16
[2.3.7 Ontologyalignment| 17
2.3.8 Jenal. e 19

[3 Ontologies| 23

[3.1 Vehicle Sales Ontology-VSO| 23
............................. 23
[3.1.2 Properties|, 24

[3.2 Car Options Ontology-COO| 25
............................. 25
[3.2.2 Properties|, 26

3.3 VSO . . . e e 27

[3.4 Configuration Ontology| 28
............................. 28
[3.4.2 Properties|, 30

|4 Prototype] 35
[4.1 OVEIrVIEW| . . . o it e e e e 35

[4.1.1 Programming languages| 36

4.2.1 Choosingontology|
l4.2.2 Liftingthedatal

.................................
|4.3.1 Datarepresentation|

4.4 Alignmentl.
[4.41 VSO/COO->CO|
4.4.2 CO->VSO/COO|ottt

4.5 From datato application|.
l4.5.1 Posttoform|.............
[4.5.2 QUeries| it e e e
l4.5.3 Compatibility],
4.5.4 Finalizing

[4.6 Datamining|

[5.1 Design of Experiments|
[5.1.1 Planning the experiment|
[5.1.2 Full factorial experiment|

[5.2 Experiments|
[5.2.1 Experiment with three factors|

|5.2.2 Experiment with four factors|.

5.2.3 Experiment with six factors|.

[5.2.4 Experimentwithtenfactors|

[6 Discussion|
[6.1 Evaluatingtheresults|.
[6.1.1 The small scale experiments|
[6.1.2 The large scale experiments|
[6.2 Theontologyimpact]
[6.2.1 Programming, pointofview
[6.2.2 Ontology performance|.
[6.2.3 Generic versus product specific]
6.3 Prosandcons|
|6.3.1 Alterations for thefuture]

{7 Conclusion|

|8 Further research|

APP q

IK Daimler RDF1

(B Planning matrix for the large experiment|

[C Results from the experiments|

55
55
56
56
58
60
61
62

64

73
73
74
75
78
78

79
81

82
83

85
87
93
95
97

929

101

vii

viil

List of Figures

2.1 The semanti mmelinel

[2.2 Small ontology examplef
[2.3 TMustration of how the linked open data cloud Tooks Tike]. . . .
2.4 The interaction between the different APIsinJenal

[3.1 Diagram showing how COO and VSO interactf
3.2 Visual approximation of the CO representation|

[3.3~ Chart describing the Configuration ontology]

4.1 Inmitialviewforauser|
4.2 Thewview afterasearch|
4.3 RenaultValueChart|
l4.4 Figure showing CO after alignment|

5.1 Resulting graph for the three factor experiment{.
5.2 Resulting graph for the four factor experiment|
5.3 Resulting graph for the six factor experiment|
5.4 Resulting graph for the ten factor experiment|

ix

List of Tables

[2.1 Exampleoftriples| 9
[4.1 Data mined from the VSO/COO and CO RDF graph| 54
5.1 2°possibleruns| 57
5.2 A filled planning matrix with 3 factors|. 57
---------------- 66
------- 66
5.5 Table of effects for the three factor experiment 66
5.6 Fourfactorexperiment|. 67
5.7 Table of effects for the four factor experiment| 67
[5.8 Six factorexperiment| 68
[5.0 The significant effects of the six factor graph|. 69
[5.10 The top twenty significant effects of the ten factor graph|. . . . 69

xi

xii

Listings

2.1 An RDF document in TURTLE syntax|. 9
[2.2 Adding domain and range to a property|. 10
[2.3 Adding domain and range to aproperty]. 11
2.4 RDFSentaillmentruleg| 11

2.5 OWLproperties| 12
2.6 A SPARQL query to find the capital of Norway]. 13
2.7 ASPARQLFILTERexample| 13
.8 A SPARQL OPTIONAL exampl 1
5.9 GoodReIAtions eXamplel . . . - . « v oo oeeeeeen 15
[2.10 SPARQL ConStruct example]. v vvvvveeeeen . 18
B1_ Example data aboutVoO]. - . « o o oo ooeeeeeeenn . o5
3.2 Larger example with base model, trim and derivative] 26
|3.3 Sﬁemﬁcation example|. o oL 28
B4 Configuration variable example].o voovoon. .. 29
3.5 Starting CONAZUIALON . .+« -« o e o ooeeeeeeeeen 30
36 The next CONAGUIAtON]« .« v vvveeeeeeeee . 30
[3.7 The next step in the configuration process| 31

4.1 Small snippet from the Daimler XML file about A-Class cars| .

[4.2" The RDF equivalent to the Daimler XML snippet] 41
[4.3 OWL definition of daim:emission and example of use] 42

4.4 Added compatibilitytriples.]

[4.5 Onecar moﬂe!fs Conﬁ guratlon VarlaE!e reﬁresentmg Fue! Tﬁe| 46
[4.6 One car model’s Specification representing Diesel fue] 46

4.7 S owing a possible configuration link it Diesel 1s chosen| . . . 46
‘4.8 Daimler specifications after alignment attempt) 48
[4.9 A snippet from the construct used in aligning the ontologies| . 49
:4.10 How reasoning was done in the application| 52

[4.11 Query for data in the VSO/COO graph| 52

4.12 Query fordatainthe COgraph| 52
[6.1 Representation differences in CO and VSO/COQ] 79

xiii

Xiv

Chapter 1

Introduction

1.1 Motivation

In society today it is more and more common to browse and buy products
over the internet. Until now the products available for sale are often
defined products with none or a small amount of specifiable content.
With the internet taking over more and more of our shopping habits it is
natural that soon more complex products can be bought or ordered online.
This increases the complexity when users get the option of ordering new
products with several component constraints. In order to describe such
products, there is a need to represent the models in a structured way.

A complex product which can be bought online today are computers.
Several vendors offer the possibility of specifying the computer down to
the smallest detail. One can say that the personal computer is getting even
more personal. Even automobiles can be specified and ordered online from
the web pages of each individual car manufacturer, but what if one wants
to compare cars from different manufacturers? Today one would have to
check each site and do a manual comparison. A solution for a third party
site is to make a car comparing tool, but to do this effectively they need
data.

This increases the demand for trustworthy information and the optimal
source of such information is the manufacturers. Semantic web can be an
easy and comprehensive way of exchanging valid data between sources. The
problem today is that there are no best practice on how to represent and
store complex data with semantic web.

1.2 Approach

An approach to this problem is using semantic web and creating structured
ontologies. With semantic web the manufactures can post their data and
the vendors can easily extract the data needed. Today there are several
internet vendors which utilize semantic technologies to enhance their data,

for instance Rakuten.de. [[| They are using GoodRelations, a web vocabulary
for E-commerce, to represent and enhance the information around their
products. This also opens up for several ways of representing data about
more complex products. Products like this often consists of more than one
component and the components can have constraints between them. The
use of semantic technologies on these kinds of products are a quite new
notion, but a field with endless possibilities.

This is why we propose a web application which utilizes complex
data from different data sources. Our application will be the base
of a recommendation on how data about complex products should be
represented and handled.

1.3 Goal

The goal of this thesis is to present a proposal on how to represent complex
data in semantic web. Today there are several ways to represent data
with semantic web. In this thesis we will present two different approaches
and compare them to find their strengths and weaknesses. Each approach
contains an ontology and has its own way of representing data. To make
this comparison we have used data about the same domain, data about car
models and their component constraints. The first approach is a generic
ontology. By generic it means that it can be used to represent any product
model with component constraints. The second approach is a domain
specific ontology which as the name implies, is only applicable with one
particular domain. In this thesis that domain is about car models.

We will also show how to create a viable web application which utilizes
such complex data.

1.4 How to evaluate

We will in this thesis do several performance tests on the prototype
to determine the weaknesses of each ontology approach. This will be
done with complex data found on the web today from different car
manufacturers. With performance we mean the response time between a
HTTPP| post against the application and when the application presents the
user with an answer. The application will contain the possibility to do HTTP
posts against both approaches.

There will be several options on how to query the ontologies because of
all the different specifications. That is why we have chosen to use the testing
approach Design of Experiments (DoE). This approach will be further
explained alongside the results in Chapter |5l The evaluation will be based
on four experiments testing several aspects of the approaches. They will
help us determine what kind of factors are significant to the performance.

1Rakuten.de is a leading German online mall, aggregates 6500 merchants with more
than 16 million item pages [[1]

2The Hypertext Transfer Protocol (HTTP) is an application protocol for distributed,
collaborative, hypermedia information systems. [19]]

1.5 Previous work

Complex products and specifying configurations has been a research topic
for over a decade. The possibility to personalize more and more products
is why several research articles have proposed different approaches on
how to handle these configurations. Most of the research are around
finding the ultimate solution with a specification system. In 1999,
M. Aldanondo et. al proposed how to structure a system to handle
configurations and their constraints. This included proposed definitions
for products, configurations and configurators. The paper focused on
making a generic solution to fit several manufacturers. [35] In a newer
article, H. Afsarmanesh and M. Shafahi (2013) proposed a complex
product specification system. [10]] This include object modelling and a
user interface. They have focused on supporting stakeholders in the
specification process.

Unfortunately these articles do not present any research done with
semantic technologies. The use of semantic technologies on complex
products is a young field of research. The only thing done here is what
Renault and Volkswagen have presented. Both of these car manufacturers
have presented the public with two different solutions. They have also
shown how to present the data on the web and the complexity around their
solutions.

Chapter 2

Background

2.1 History of semantic web technologies

2.1.1 The beginning

The definition of semantic “is the study of meaning”. The science
of studying semantics has existed longer than computer science. Still
semantics have played an important role in the history of computer science,
which is still a young science/f]

When semantic web was first suggested, the World Wide Web (WWW) was
mostly designed so that humans could read and understand the content.
The semantic web was then described as an extension of the WWW so that
machines could more effectively and intelligently search the web for data. It
was not supposed to clean up and restructure the WWW in an instant, but
it was suggested as a new technology which would improve communication
and globalization of the web. It was going to be so easy that almost every
web page with any user communication would benefit from it. In “The
Semantic Web” Hendler et al. even said that even an office manager with
no prior computer science background could easily encode the semantics
into a web page by using “off-the-shelf software for writing Semantic Web
pages”. [l41] They visioned it to be so easy that even a doctor’s office could
implement it, but they also knew there would be challenges. Even from the
beginning Tim Berners-Lee and the other people working on “The Semantic
Web” project, knew that the biggest challenge would be to make everybody
communicate in the same understanding of the world.

2.1.2 Today

Today the semantic web technologies have evolved quite much from the
start, but maybe not as much as Tim Berners-Lee had hoped. Figure
lon the following page|shows some of the steps, frameworks and publication
done since the beginning. It is even a little outdated because there have
been published a lot of new research the last few years, like SPARQL 1.1
which became a recommandation 21th of March 2013. Many companies

1Compare it to philosophy which can be dated as far back as 2880 BC. [[17]

4

1999 2001 2004 2007 2008 2009

| —mm

ueat] oWl | — W s
L] sPaRQL] >
SCIENTIFIC A] ROFa.
AMERICAN
(Wi
Wise]
RIF

HCLS

Figure 2.1: The semantic web timeline

and organizations have adapted the semantic model and are using it
for different purposes. For instance is Google using semantic web for
additional information to a search besides the regular word search. An
example would be to do a search on the word 'Reagan’. Google then
presents the regular search results with links to different sites, giving us
a Wikipedia page about Ronald Reagan as the top result. The additional
information that Google gives us is a small information tab about Ronald
Reagan. This information tab included links to other American presidents
and several of the movies Ronald Reagan starred in. To acquire this
information Google uses their Knowledge Graph. It uses semantic web to
enrich data and be able to give the user links to useful information linked
to that particular entity.

It is only in recent years that large companies, such as Google, have
begun using Semantic Web actively to improve the user experience and
their information exchange. There are still some of the same issues today
as it was in the beginning of Semantic Web. One of the major issues with
the semantic web is trust. Even though there are plenty of standards and
frameworks for semantic web, which will be explained in further detail
later, there will always be a little uncertainty whether one can trust one
another on the web. It is the same issue Wikipedia face every day. Anyone
can say anything about everything, there is no information control except
manual labour. This means that if a company decides to use semantic web,
they have to know which sites are reliable. Even if a site is reliable how
do one know that the semantics on that site has the same meaning as your
semantics and how can one link seemingly disjoint information together.
That is why ontologies have become an important part of sharing data.

6

<Class>
Movie

"The Dark
Knight"

"Batman
Begins"

hasPrequel

Figure 2.2: Small ontology example

2.2 What is an Ontology?

There are several definitions of what an ontology is and some of them
contradicts each other. In this thesis we will use Stanford’s definition of
an ontology. An ontology is a formal explicit description of concepts in
a domain of classes. [37] An ontology also contains properties describing
various features, attributes and relations concerning the classes. The
purpose is to represent a set of individual instances with the ontology and
to enrich the meaning of the data. The ontology together with the set of
data is often referred to as a knowledge base. These steps are done when
developing an ontology:

« Defining classes in the ontology
 Arranging the classes in a taxonomic (subclass - superclass) hierarchy
« Defining relations and describing allowed values for these relations

In the end when one got a fully functional ontology the last step is to fill it
with individual instances. In Figure[2.2|there is an example of how a small
ontology is used. The ontology has one class, Movie, and one property,
hasPrequel. In the example it is also added two instances.

Why do we need ontologies?

There are several reasons for why we need ontologies. Beneath some of
them are presented:

« To share common understanding of the structure of information
among people or software agents

« To enable reuse of domain knowledge

» To make domain assumptions explicit

« To analyze domain knowledge

The first two reasons are key concepts of semantic web, to share data
and information on the web. This helps with identifying information and
defines the meaning behind this information. Making explicit domain
assumptions means that there is no ambiguity about what the data states.
This also helps when there has to be done alterations in the domain
specifications. Analyzing domain knowledge is possible once a declarative
specification of the terms is available. Formal analysis of terms is extremely
valuable when both attempting to reuse existing ontologies and extending
them (McGuinness et al. 2000). In this thesis it was very valuable for
analysing the ontologies and use them correctly in the application.

2.3 Frameworks and technologies

It has been done a lot of work around the semantic web since the beginning.
In this chapter we will present frameworks and technologies which are
useful for this thesis.

2.3.1 Resource Description Framework

Resource description framework (RDF) was introduced in 1999 as a found-
ation for processing metadata by the World Wide Web Consortium. [34]]
It had the intention to improve the communication and information ex-
change between applications on the web. In the beginning one could only
write RDF in XML syntax. Later it has been developed several syntaxes for
the RDF format. Up until 24th of February 2014, RDF/XML was the only
standardized syntax for writing RDF. Now several serializations are stand-
ardized, among them is TURTLE which will be used in most of the examples
in this thesis. Beneath are some of the serializations used for representing
RDF.

.« RDF/XML
. N3

— TURTLE
— N-Triples

RDF was the first step on the way to make the semantic web a reality. In
1999 when RDF was revealed and W3C proposed that it could be used for
resource discovery to improve search engines, structuring content of a web
page which normally would have been unstructured, helping intelligent
software agents to easily access content on open web pages and collect
useful data. RDF could also be used for expressing privacy settings of either
a user or a whole web page. In 1999 W3C launched their own interpretation
of the concept “the web of trust” which are one of the main keys to semantic
web success.

Subject | Predicate | Object
Norway | hasCapital | Oslo
Norway | population | ~ 5000000
Oslo population | ~ 620000

Table 2.1: Example of triples

An RDF graph may contain an infinite amount of triples. A triple is a
sentence which contains a subject, a predicate and an object. This defines
some logical dependency between the subject and the object. An example
is shown in Table There are three ways to represent the information
in an RDF graph and that is either with uniform resource identifiers (URI),
blank nodes or literals. URIs can be used in the subject, predicate and the
object position, blank nodes can be used in subject or object position while
literals can only describe the object. The document described in Table
may be written in TURTLE syntax shown in Listing

@prefix dbpedia: <http://dbpedia.org/resource/>
@prefix dbp-ont: <http://dbpedia.org/ontology/>

dbpedia:Norway dbp-ont:capital dbp: Oslo
dbpedia:Norway dbp-ont:populationTotal "5000000"
dbpedia: Oslo dbp-ont: populationTotal "620000"

Listing 2.1: An RDF document in TURTLE syntax

On 24th of February 2014, W3C published the new RDF 1.1 recommenda-
tion. [26]] There they added more serializations as standards and changed
from using Uniform Resource Identifiers (URIs) to Internationalized Re-
source Identifiers (IRIs). The difference between them is that IRIs are in-
ternational and allows non-latin alphabet characters in them. An URI is
almost the same as an URL except the URI might not link to an actual web
page. Unlike URL which should provide a location of the resource, hence
the name Uniform Resource Locator (URL). URIs are therefore a great way
to separate different resources since they will always be unique. This is
also quite effective when one wants to merge two RDF graphs. It will not
arise any merge conflicts since the URIs are unique and then eliminates
the possibility for name clashes. Often the content of an RDF graph may
be referred to a graph where the subjects and the objects are nodes, and
the predicates are the edges. Still an URI from a predicate position can be
a subject in another triple because a predicate can be assigned a property.
This means that an edge can also be a node in the graph which is in a normal
notion of a graph is a little odd.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix fam: <http://www. ifi.uio.no/INF3580/v13/family#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

fam:hasSibling rdfs:range foaf:Person ;
rdfs:domain foaf:Person.

Listing 2.2: Adding domain and range to a property

2.3.2 Resourse Description Framework Schema & Reas-
oning

RDF Schema is a vocabulary defined by W3C and it was originally thought
to be a “schema language” for RDF just like XML Schema. In an earlier
publication, RDFS contained different kinds of constraints which would
specify what properties classes and types may have. [15] Today RDFS is not
used for validating RDF syntax, but for enriching property and resource
description in RDF. RDFS introduces the concepts of classes to RDF which
only has rdf:type to assign subjects and objects to different categories. The
RDFS vocabulary adds some axioms about resources and properties, these
are the most important.

» Resource
— rdfs:Class
— rdfs:Resource
» Property
— rdfs:domain
— rdfs:range
rdfs:subClassOf
— rdfs:subPropertyOf

The first axiom added is rdfs:Class which is according to rdfs documenta-
tion the superclass of everything. [13] The second is rdfs:Resource and is
a subclass of rdfs:Class. It states what is a resource which is what one can
have in a subject and an object position in RDF triples. This alone does not
add much functionality to RDF, but the property statements do. In RDFS
one can define what domain and range a property should have. In List-
ing it is defined a domain and a range for the relation fam:hasSibling.
This means that the subject and the object resource when using this rela-
tion has to be an instance of foaf: Person. Two other important statements
added with RDFS are rdfs:subClassOf and rdfs:subPropertyOf. The first
is used to declare a subclass of another class. This means that an instance
of the subclass will also be an instance of the superclass. This shows its use
when one wants to apply reasoning on an RDF graph. The second state-
ment is the same as subclass just for properties. In Listing there is an
example on how subClassOf and subPropertyOf can be used. In the ex-
ample, fam:familyMember is set to be a subClass of foaf:Person, which
means that every family member has to be a person.

10

@prefix rdfs: <http://www.w3.org/2000/01/rdf —-schema#> .
@prefix fam: <http://www. ifi.uio.no/INF3580/v13/family#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

fam: familyMember rdfs:subClassOf foaf:Person .
fam:hasFamilyName rdfs:subPropertyOf foaf:name .

Listing 2.3: Adding domain and range to a property

Reasoning is used to derive RDF triples from existing triples in an
RDF graph. This is done by using a set of entailment rules and a set of
premises. RDFS has a set of entailment rules which say something about
how to derive certain triples. For instance in the set of RDFS entailment
rules there is a rule for transitivity. This means that if AAA is a subclass of
XXX and XXX is a subclass of YYY, then AAA is also a subclass of YYY. This
is entailment rule rdfs11. Listing [2.4]|shows an example showing the use of
another RDFS entailment rule.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
@prefix foaf: <http://xmlns.com/foaf/0.1/>
@prefix ex: <http://www.example.org/>

Premises
ex:Man rdfs:subClassOf foaf:Person
_:Adam rdf:type ex:Man .

Derived from entailment rule rdfsg
_:Adam rdf:type foaf:Person

Listing 2.4: RDFS entailment rule 9

RDFS reasoning is quite simple since it only allows certain kind of
derivations. For instance it does not include relation symmetry which is
quite useful in several cases. In the next chapter OWL will be described
which adds a lot more functionality both to the RDF graph and to the
reasoning. Often there will also be useful to describe your own ontology
and do your own reasoning.

2.3.3 Web Ontology Language

The Web Ontology language, also known as OWL, is the standard ontology
language to this date. It became a W3C recommendation in 2004. Today
a lot of people who are modeling ontologies are using OWL 2 which is just
an extension of the former OWL. Today people just use the term OWL 1 for
OWL 2 which is backwards compatible so that everything that were allowed
in OWL 1 is allowed in OWL 2. Like RDF, OWL is a concept of how to
define sets of things as classes, properties and instances. This means that
OWL syntax can be written in different ways. With RDF we had syntaxes
like RDF/XML, TURTLE, N3 and so on. The same is for OWL. There are
several ways to write OWL syntax and the most common one is OWL/RDF.

11

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix : <http://www.example.org/> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .

:hasNickname rdf:type owl: DatatypeProperty .
:hasViewer rdf:type owl: ObjectProperty

:Adam :hasNickname "Ellohime"""xsd:string .
:Adam :hasViewer :Magnus .

:Magnus :hasNickname "Primstav"*"xsd:string .

Listing 2.5: OWL properties

Here OWL is written in RDF syntax where one states the triples and their
relations except adding the OWL vocabulary. Another way of writing OWL
is in OWL/XML, which is a non-RDF XML format.

OWL overwrites some relations from RDF and RDFS, an example is
that rdfs:Class is replaced by owl:Class. Also rdf:Property is not used
in OWL. This is because OWL introduced different types of properties,
owl: DatatypeProperty, owl:ObjectProperty and owl:AnnotationProperty.
These different property relations describes and dictates the object in a
relation. DatatypeProperty links resources to data values like xsd:string,
ObjectProperty links resources to other resources and AnnotationProperty
is used to annotate a resource. Annotation properties will be ignored by
reasoners since it is not important for deriving new information. It is
mostly used for labeling resources so that it can be more readable by hu-
mans. In Listing there is an example to illustrate the different proper-
ties in OWL. An important thing to make notice about these three property
relations is that they are mutually disjoint which means that a property can
not be more declared to be both an ObjectProperty and a DatatypeProperty.

Most of the RDFS relations are carried on in OWL, like rdfs:subClassOf,
rdfs:subPropertyOf etc. This allows one to use some of the familiar syntax
to describe class hierarchy, range/domain to properties and property
hierarchy. With OWL one can now express things that were not possible
with RDFS. In OWL one can for instance describe symmetric and inverse
relations without having to construct specified relations like one would
have to do in RDFS. This is also present when reasoning on RDFS and OWL.
RDFS is sound, but not complete while OWL are both. This is why OWL is
used to model new ontologies. One can, with a correctly modelled ontology,
derive exactly the triples one would want with reasoning. There is also no
trouble to extend the vocabulary with ones own relations like seen in basic
RDF.

2.3.4 SPARQL

SPARQL, SPARQL Protocol And RDF Query Language, is as the name
implies a language for querying RDF graphs. SPARQL first emerged
as a working draft in 2004, but in 2008 it became an official W3C
recommendation. It resembles SQL (Structured Query Language), which is

12

the main query language for working on relational databases, and TURTLE
syntax. Some similar terms in SPARQL and SQL are SELECT, WHERE
and ORDER BY. The big difference between the two query languages is the
querying. The way SPARQL queries an RDF graph is by matching triples
in a query with triples in the RDF. This means that it is necessary to get a
complete match if one wants to get a value in return. A SPARQL query is
written in the same way one writes triples in TURTLE syntax except in a
query one is allowed to add variables. A variable in SPARQL is represented
by a question mark(?) before a name. An example is shown in Listing
where the subject and the predicate must match to a subject and a predicate
in the RDF, but the object can be whatever which matches with the whole
triple.

PREFIX dbpedia: <http://dbpedia.org/resource/>
PREFIX dbp-ont: <http://dbpedia.org/ontology/>

SELECT ?capital

WHERE {
dbpedia:Norway dbp-ont:capital ?capital
)

Listing 2.6: A SPARQL query to find the capital of Norway

In SPARQL there are other functionalities which are important for making
good queries. Filter is one of those functionalities. It is used for filtering
the result by checking a filter-clause. Here one can check if the capital of
Norway starts with an "O", or it contains over 600 000 people. In Listing
one can see a query which filters on the population of Norway. That
query will return the literal “50000000” since it fulfills the filter-clause.

PREFIX dbpedia: <http://dbpedia.org/resource/>
PREFIX dbp-ont: <http://dbpedia.org/ontology/>

SELECT ?population

WHERE {
dbpedia:Norway dbp-ont:populationTotal ?population .
FILTER (?population > 4500000)

Listing 2.7: A SPARQL FILTER example

Other important functionalities in SPARQL would be UNION and OP-
TIONAL. UNION is used to take the union of graph patterns. This is done
by writing the wanted triples in the first query then writing "UNION" and
then write the triples in the second query. Just remember to surround the
first and the second query with curly brackets. OPTIONAL is used to spe-
cify optional information. An example would be if one is searching for a
person in a FOAF(Friend of a friend) file. The example is shown in Listing

2.8l

2.3.5 GoodRelations

GoodRelations is a web vocabulary for e-commerce and was launched in
2008. Over 10000 businesses and web sites are using GoodRelations. Some

13

PREFIX rdf: <http://www.w3.o0rg/1999/02/22—-rdf-syntax-—ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?person ?name

WHERE. {
?person rdf:type foaf:Person .
OPTIONAL{
?person foaf:name ?name .
}
}

Listing 2.8: A SPARQL OPTIONAL example

of them are Google, Yahoo! and BestBuy. [2] GoodRelations can be used
for detailed information about products to be sold online. It uses an
Agent-Promise-Object principle which means than an agent or a user gets
a promise about an object. A promise might be a service or transfer of
ownership while the object can be anything that can be sold or done for
the agent. For instance if a user wants to buy a car. Then the promise is
that the ownership of the car, the object, will be transferred from the store
to the user. This allows one to use the same vocabulary for offering services
and items. Under one can see some of the classes found in GoodRelations.

« gr:BusinessEntity

« gr:Offering

e gr:ProductOrService
- gr:Location

o gr:QualitativeValue
« gr:QuantitativeValue

These four classes can describe the Agent-Promise-Object principle. The
gr:Offering class represents an offer to sell, repair, lease or to express
interest in a service or an item. This functions as the promise. The
gr:ProductOrService is as the name implies the service or the product the
offering describes, the object. The agent is just the user which access this
information and is in need of a service or an item. The next two classes
are represent the information about the seller. Here gr:BusinessEntity
describes a company or an individual while gr:Location describes where
the offering can be obtained.

The two last classes represent values in GR. A qualitative value is a
predefined value for a product characteristic. Product color is a qualitative
value. If we want to represent that our coffee mug is green, we should wrap
itin a gr:QualitativeValue. A quantitative value can be a numerical value or
interval that represents the range of a certain product or feature. Number
of grams our coffee mug weights is another example. This should then be
wrapped in a class gr:QuantitativeValue. [|29]

GoodRelations uses the three different owl properties, object property,
datatype property and annotation property. Under there is a small snippet

14

:CoolComp a gr:BusinessEntity;

gr:legalName "The Cool Company";

:address [:streetAddress "Cool Street 5a";
:postalCode "12345";
:addressLocality "Oslo, Norway"];

:telephone "004712345678";

:email "contact@awesome.org";

gr:Offers :Offer

:Offer a gr:Offering;
gr:name "SuperBall 2000";
gr:description """The ultimate football""";
gr:hasBusinessFunction gr: Sell;

" "

gr:condition "new

Listing 2.9: GoodRelations example

of the properties used in GoodRelations and which property they are a
subPropertyOf.

» Datatype Properties

— gr:name
— gr:serialNumber

« Object Properties

— gr:owns
— gr:acceptedPaymentMethods

« Annotation Properties

— gr:displayPosition
— gr:relatedWebService

In addition to all the properties and classes there are some individuals
GoodRelations has default added. Those are mostly individuals describing
payment companies, delivery companies and weekdays. An example is
gr:MasterCard which is an individual describing “Payment by credit or
debit cards issued by the MasterCard network”. [3]]

There is an example on how GoodRelations is used in Listing It
shows how a business entity is represented with additional information.
Also with a business entity there can also be offers which will link to an
individual offer. The “SuperBall 2000” is an offer. It also has additional
information like name, description, condition and that it is for sale. There
is a lot of additional information which could have been added, for instance
if it was a book it would have been relevant to add the ISBN number.

This may be why some major companies, which are dealing with online
merchandise, is using GoodRelations.

15

2.3.6 Linked data

Linked data is about using the Web to create links between data from
different sources. [27] The data may be as diverse as heterogeneous
databases. Linked data refers to data published on the web and that are
machine readable, which means that its meaning is defined. Tim Berners-
Lee proposed in an article (2006) four rules for publishing data on the web,
a ruleset for linking your data. [[12]]

Use URIs as names for things

Use HTTP URIs so that people can look up those names.

« When someone looks up a URI, provide useful information, using the
standards (RDF*, SPARQL)

Include links to other URISs. so that they can discover more things.

These rules were proposed to define a basic recipe for publishing data
on the web. The rules are meant as guidelines and breaking those rules
will have no consequence other than making the data less useful to others.
It would make it easier for several actors to share and enhance their data
in conjunction with others. Linked data is also reliant on the Hypertext
Transfer Protocol (HTTP) and Uniform Resource Identifiers, URIs. The
linked data term can be split into two sub groups, Linked Open Data and
Linked Enterprise data.

Linked open data

Linked open data (LOD) can be described as a part of linked data. LOD
is the amount of data which is open to the public. Tim Berners-Lee made
a 5 star rating system for LOD. [12] One would get 1 star for each of the
criterias for LOD he presented. The rating is incremental so one would
need to satisfy the first in order to move on to criteria 2. Under we see the
5 criterias.

+ 1. Available on the web (whatever format) but with an open license,
to be Open Data

2. Available as machine-readable structured data (e.g. excel instead
of image scan of a table)

3. As (2) plus non-proprietary format (e.g. CSV instead of excel)

+ 4. All the above plus, Use open standards from W3C (RDF and
SPARQL) to identify things, so that people can refer to your data

5. All the above, plus: Link your data to other people’s data to provide
context

16

ciences
o ™ N $
N/ As of September 2010 @ ® @

Figure 2.3: Illustration of how the linked open data cloud looks like

Today the data is often published via SPARQL endpoints for third party
applications or persons to access. Dbpedia is an example of linked open
data with an SPARQL endpoint. Dbpedia is everything in Wikipedia
stored as RDF triples. There are other companies and organizations
which publishes their data on different formats. Renault has published
their data with an API to extract information about the range of cars that
Renault manufactures. This way of publishing data is done because Renault
has a huge amount of possibilities of extracting their data, so that they
have hidden the reasoning on their side. This is to relieve the pressure
of performance and speed on the client. In Figure we can see an
illustration of how the LOD cloud interacts.

Linked enterprise data

Linked enterprise data (LED) is the same as LOD except where it is
published and where it is visible. LED is data published within a
community, company or organization. Often one talks about LED when
opening data within a company over department borders. For instance
could LED at the University of Oslo be that the department of informatics
would publish their data for the whole of Univerity to benefit from, but
no one else. This could be used to maybe track computer activity over the
whole University etc.

2.3.7 Ontology alignment

Ontology alignment, or ontology matching, is in semantic web a process to
determine equality between concepts and is mostly used when linking data
from multiple LOD clouds. As described in the section about LOD, LOD

17

clouds are often used to enrich data on the web. This is often done with
a link between an entity used by an application to an entity in the cloud.
To do this one often needs ontology alignment, but some LOD clouds may
offer an easier solution for instance freebase.com. They offer an API for
querying their cloud where they can suggests similar entities and concepts
to make it easier to enrich the data. [4]]

Manual and automatic alignment

There are two main ways of aligning ontologies. One can do it manually
or automatically. Manually its most often used when resources in two or
more ontologies are hard to identify by general knowledge. The automatic
aligners often use public databases for their alignment, like freebase and
dbpedia. In OWL there are different properties for linking equivalent
classes, properties and resources. We will focus on manual alignment since
it is the approach we chose to use later on in this thesis.

OWL axioms are a regular approach to align ontologies or parts of
ontologies. There are three different alignment properties. With these
three properties one can align classes, properties and resources.

« owl:sameAs
» owl:equivalentClass
« owl:equivalentProperty

The equivalent properties are used for aligning classes and properties
defined in the ontology, while owl:sameAs is used for stating equivalence
between resources. For instance might one want to say that petrol is the
same as gasoline. One often uses these three in conjunction with reasoning
to obtain wanted result.

SPARQL Construct is another way of aligning ontologies. This is
a more practical way of obtaining the result. With a SPARQL contruct
one identifies the wanted triples and then one can change the current RDF
graph by either altering the triples or adding new triples. In Listing we
see a contruct which alters the name property from "foaf:name" to a new
name property. SPARQL contructs are more powerful than OWL axioms,
but are not so easy to make generic for more than one case.

PREFIX foaf: <http://xmlns.com/foaf/spec/#term_>
PREFIX p: <http://www.newNameBank.com/term#>
CONSTRUCT {

?somePerson p:name ?name .
} WHERE {

?somePerson foaf:name ?name.

¥

Listing 2.10: SPARQL Construct example

18

2.3.8 Jena

Apache Jena is a free and open source java framework for building
Semantic Web and Linked Data applications. It was created by the Apache
Software Foundation which also have other known projects like Maven,
Hadoop etc. Apache Jena is made for the programming language Java. It
can easily be added to a regular java program either just as a jar-file or
through Maven.

Jena is a large framework which consists of several components which
can be divided into three different categories.

 RDF

— RDF API
— ARQ

« Triple Store

— TDB

— Fuseki
« OWL

— Ontology API

— Inference API

RDF

The first category, RDF, contains the RDF API which can build the
foundation of almost any semantic web application. This is because it is the
core API for creating and reading RDF graphs. It has support for reading
the most common RDF serialization like TURTLE, RDF/XML, N3 etc. [43]
With the RDF API one represent the wanted RDF graph in a Model. It can
be done by using classes and functions within Jena to extract an RDF graph
and contain it in a model as we see in the example below.

Model model =
FileManager. get ().loadModel (" http://uk.co.rplug.renault.com/docs#this");

The second big part of the RDF category is ARQ, A SPARQL Processor for
Jena. ARQ is a query engine for Jena that supports SPARQL 1.1. This
means that Jena has full SPARQL support and that one can do any type
of SPARQL query against a given model. [11]

Triple Store

The second category, as the name implies, is about storing RDF triples in
different ways. TDB is Jena’s own triple store, which means that one can
store RDF on a single machine with high performance. This also opens for
querying triples in the DB. [42]

If one does not want to store their triples locally one can use Fuseki. It
is Jena’s own SPARQL server. This means that one can set up their own

19

SPARQL endpoint so that everybody can access their data through HTTP.
This provides REST-style|interaction with RDF data. [23]]

OWL

In the last category there are the Ontology API and the Inference API. The
Ontology API one can say is an extension of the RDF API. It adds RDFS
and OWL semantics to the RDF data. This opens for a lot more triples and
more ways of connecting data with the new semantics. When representing
complex data it is not sufficient enough to only use the RDF semantics,
which means that RDFS and especially OWL comes in handy. [|32]]

The last part of Jena is the Inference API. This adds reasoning to Jena.
The Inference API has several in-built reasoners like RDFS reasoners and
other OWL reasoners. The use depends on what kind of reasoning task one
wants done. It also allows for adding custom reasoners if there is some
reasoning need that is not met with the in-built ones or that one wants to
optimize a reasoner for faster results. [|39]

Structure

Figure [2.4 on the next page| shows how the different parts of Jena interact
with both an application and their internal structure. It can be broken
down to almost 4 independent parts. The RDF API is the basic structure for
creating or extracting an RDF graph. The ontology API and ARQ depends
on functionality within the RDF API. Both the storage units can be used
outside the RDF API. This is because one only need an RDF graph to persist
in order to use them. The Inference API is also seen as an independent
unit. This API is not used for anything unless one have an application using
the RDF API, but it has no dependencies in the RDF API. It only applies
different rules to a model and infer new triples from them.

2http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

20

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

application code

HTTP

application code

direct Java
invocation

;‘Dﬂf”‘ML parsers Ontology AP | SPARQL API
Nl-ltrI:Ias and RDF API
RDFa writers

Inference API

- built-in rule . external
. feasoner | [feasoner

Stare API

~in-memory

= = :
SQL native
database tuple
store

options

options

Figure 2.4: The interaction between the different APIs in Jena

21

22

Chapter 3

Ontologies

In this chapter the structure of the three ontologies used in this thesis will
be described. All of the ontologies have a large number of properties and
classes which means that only the most important ones will be described.
For the rest, we will refer to their documentation.

3.1 Vehicle Sales Ontology - VSO

The vehicle sales ontology is a web vocabulary for describing cars, boats and
other vehicles on the web. This is particularly meant for e-commerce to use
in sales. The vocabulary is written by Martin Hepp, who also is the founder
of GoodRelations. VSO is designed to be used in combination with GR. It
is a way to describe the vast amount of specifications a vehicle can have,
and to increase the visibility of a sale on the web. The vocabulary supports
both new and used vehicle for sale. The ontology is meant to only represent
instances of vehicles, for instance if one wants to sell their old Volvo V4o0.
The classes and properties are described based on the definitions found in
the VSO vocabulary as of 10th February 2014. [30]

3.1.1 Classes

The vehicle sales ontology got 28 classes from Automobile to Water-
craft. [31] Here some of the most important ones will be presented.

Motorized road vehicle

A motorized road vehicle is a wheeled land vehicle whose main
propulsion is provided by an engine or motor]

This is the super class to all land driven motorized vehicle like motorcycles,
cars, etc. This is a subclass of vso:Vehicle which in turn is a subclass
of gr:ProductOrService. This means that every vehicle is considered a
product which in GoodRelations terms can be offered in an e-commerce
environment.

! Definition taken from the Vehicle Sales Ontology vocabulary [30]]

23

Automobile

An automobile, motor car, or car is a wheeled motor vehicle
used for transporting passengers, which also carries its own
engine or motor.

This class is the most important one for this use case. It is a subclass
of vso:MotorizedRoadVehicle. Also it is the domain of a large amount of
properties which will be described in further detail later.

3.1.2 Properties

VSO has a lot of properties, most of them are object properties and here
a small subset of the properties relevant for this thesis. The properties
described below are all object properties and can be divided in two groups,
properties defining qualitative values and properties defining quantitative
values. More about these types of values can be found in Section

Acceleration

This property describes the acceleration of a vehicle. A common
measurement for acceleration is how many seconds a vehicle uses
from o0 to 100 kilometres per hour. To define the acceleration
one uses the annotation vso:acceleration. It is a sub-property of
gr:quantitativeProductOrServiceProperty which implies that this object
should have specified quantitative characteristics, which were described in
Section [2.3.5 on page 13l The vso:Acceleration has a domain which in-
cludes all vehicles found in the VSO vocabulary.

Fuel type

Fuel type is represented as vso:fuelType. It describes what type of fuel is
suitable for the engine of the vehicle. The range of this object property is
the class vso:FuelTypeValue, but one can also use dbpedia resources.

Total amount of gears

With the vso:gearsTotal one can specify the number of gears a vehicle has.
This is also a sub-property of gr:quantitativeProductOrServiceProperty.

Transmission

Almost every vehicle has a transmission. That can be represented with
vso:transmission. It is quite similar to fuel type because the standard val-
ues are dpedia resources which describes manual and automatic transmis-
sion, but one can also define their own transmission type with the class
vso: TransmissionTypeValue.

24

Example

All of these properties and classes plus many more are used to describe
sales of used and new vehicles. In Listing 3.1/ one can see them used in a
minimalistic example. In the example it is used the unit of measurement
Cé62. It is the ISO standard for describing that a value is unitless, that it is
only a number. [38]

<http://folk.uio.no/magnudae/daimler#31806> a vso:Automobile ;
rdfs:label "A 250 Sport" ;
gr:isVariantOf daim:AClassBase ;
vso:acceleration [a gr:QuantitativeValueFloat ;
rdfs:label "Acceleration o-100 km/h" ;
gr:hasUnitOfMeasurement "s"*”"xsd:string ;
gr:hasValueFloat "6.6"""xsd: float] ;

vso:fuelType [a gr:QualitativeValue ;
gr:valueReference dbpedia:Manual_transmission ;
gr:name "Manual Gearbox"@en 1;
vso:gearsTotal [a gr:QuantitativeValuelnteger ;
rdfs:label "Forward gears (total number)" ;
gr:hasUnitOfMeasurement "C62"""xsd:string ;
gr:hasValuelnteger "7"""xsd:int] ;
vso:transmission dbpedia:Automatic_transmission .

Listing 3.1: Example data about VSO

3.2 Car Options Ontology - COO

With the vehicle sales ontology in mind, there was also made another
ontology for e-commerce. The car options ontology (COO) is a vocabulary
which describes available configuration options for car models. It was
constructed by Martin Hepp in collaboration with Volkswagen. The
ontology was made to help navigate through all the configurations a car may
have, to help the user define a partially defined product (PDP). COO has
the option of setting compatibility, dependency and inclusion information.
Like VSO, COO also extends the GoodRelations ontology and it was made to
be combined with VSO. COO is meant to describe car models, not instances
of them. The classes and properties are described based on the definitions
found in the COO vocabulary as of 10th of February 2014. [28]]

3.2.1 Classes

COO has three important classes which defines different types of car
models.

Base model

As the name implies it is the basic model. It can be defined with
coo:BaseModel and can contain standard information about that particular
car model. This can be height, weight, number of wheels etc.

25

ex: GolfBaseModel a coo:BaseModel, vso:Automobile ;
rdfs:label "Golf"@en ;
vso:fuelType ex:Diesel .

ex:GolfS a coo:Trim, vso:Automobile ;
rdfs:label "Golf S"@en ;
gr:variantOf ex:GolfBaseModel ;
vso:gearsTotal [a gr:QuantitativeValue ;
gr:hasValue "6"""xsd:integer] .

ex: GolfSRacingEdition a coo:Derivative, vso:Automobile ;
rdfs:label "Golf S Racing Edition"@en ;
gr:variantOf ex:GolfS ;
vso:speed [a gr:QuantitativeValue ;
gr:hasValue "280"""xsd:integer] .

Listing 3.2: Larger example with base model, trim and derivative

Trim

A trim is an entry configuration of a base model. Here one might specify all
the features this car may have and other features, like transmission, fuel,
etc. An example would be that a Volkswagen Golf S is a trim of the regular
Golf. To specify that a model is a trim one uses the coo:Trim class. It should
inherit the features from a base model. This is done with gr:isVariantOf.

Derivative

A derivative model should have specified configurations and compatibilit-
ies. Trim and derivative is very similar except that the derivative model
should specify compatibilities and constraints between configurations. For
instance it could describe that getting the model in silver is not compat-
ible with getting an AM/FM radio installed. One specifies that a model is
a derivative with the class coo:Derivative. The derivative also inherits all
the features specified from its trim with the gr:isVariantOf as seen in dia-
gram

In Listing we see a larger example of how the three model classes
interact. Here, the base model only contains the information about the
fuel type. The trim inherits the information from the base model through
gr:isVariantOf, which means that it also has the fuel type Diesel even
though it does not have a specific triple stating it. It is the same with the
derivative. It inherits all information from the trim, which in our case is
number of gears and the fuel type from base model.

3.2.2 Properties

The properties in COO are mostly about representing different choices one
can have on a car.

26

Compatibility

There are several ways of representing compatibility with COO. One way is
to pair compatible or incompatible resources. This can be done with either
coo:compatibleWith or coo:incompatibleWith.

ex:CarModel1 vso:fuelType ex:Manual_Transmission ,
ex:Automatic_Transmission .
ex:Manual_Transmission coo:incompatibleWith ex:Automatic_Transmission .

Both properties are defined as owl:SymmetricalProperty?, which means
that in this example Automatic transmission is also incompatible with
Manual tranmission. The incompatibility property has nothing to do with
owl:incompatibleWith which defines ontology incompatibility.

Another way of representing compatibility is with the property
coo:compatibility. With this property one need a ConfigurationInfo re-
source to state that a sequence of specifications are either valid or invalid.

ex:CarModel1 coo:compatibility ex:TransmissionCompatibility .
ex:TransmissionCompatibility a coo:ConfigurationInfo ;
coo:includesChoices ex:Manual_Transmission,
ex:Automatic_Transmission ;
coo:valid "false"~"xsd:boolean .

Available - & Default choice

Each derivative of a car can have a set of choices or components. The
coo:availableChoice and coo:default are used within a item collection.
These properties state which specifications comes as default and which can
be chosen to a car which contains this item collection.

ex: ColorCollection a coo:SpecltemCollection ;
coo:default ex:Red ;
coo:availableChoice ex:Blue, ex:Green

3.3 COO & VSO

Both these ontologies can easily be used in conjunction with each other.
This is because COO is designed to fit with both GoodRelations and Vehicle
Sales Ontology. It is COO which brings the complexity to the ontologies
since it is only COO which handles the compatibility issues. This is
one thing that make VSO alone insufficient to represent the amount of
specification possibilities. One big difference is when VSO is used alone
it represent instances of cars, but when it is used in combination with COO
it helps enrich data about car models. This is because with COO there
are often several ways to define a car. In Figure [3.1 on page 32| we have
a diagram showing how the two ontologies are used in conjunction. The
previous section described the different types of models. In the diagram we
see that the three types form a subclass hierarchy. Even though a Derivative

Zhttp://www.w3.0rg/TR/owl-ref/#SymmetricProperty-def

27

http://www.w3.org/TR/owl-ref/#SymmetricProperty-def

:Diesel a co:Specification ;
rdfs:label "Diesel"@en ;

Listing 3.3: Specification example

is not a subclass of Trim, it will inherit all the features added to the trim
which in reality makes it an extension of the Trim. The same is true about
the relationship between Trim and BaseModel. The diagram also shows
that there are two different types of values to represent, QuantitativeValue
and QualitativeValue. Each of the VSO properties has the range of either
one of those values.

3.4 Configuration Ontology

Here we will present a quick overview of the Configuration Ontology
(CO). It is a generic ontology for describing different configurations of a
product model. It is supposed to be able to represent any kind of PDPs or
customizable product models. The configuration ontology can be enriched
with the GoodRelations ontology framework or other ontologies if it is
applicable to the data. The classes and properties are described based on
the definitions found in the CO vocabulary as of 25th January 2014. [20]

3.4.1 Classes

In the CO there are several classes and they can be separated into two
main groups. The first three classes in this section describe the product
model itself, components and other features. The two last classes describe
compatiblity and how each product model can be created.

Specification

A specification represents a real world object which can be a Diesel fuel,
the color red, etc. Instances of this class contains the actual value of the
specification. It can also be a subclass of either gr:QualitativeValue or
gr:QuantitativeValue which makes it easier to integrate with GoodRela-
tions. In Listing[3.3 we can see an example of how a specification resource
could look like.

Configuration Variable

A configuration variable is a class which should describe a type of
specification, like fuel type or transmission. It should contain a link to
one or more specifications and a label stating what type it is describing.
In Listing[3.4]we can see an example on how it can be used. We can see that
it contains a label describing the specification type and it has a property
linking to a specification instance with this type.

28

:FuelType a co:ConfigurationVariable ;
rdfs:label "Fuel Type"@en ;
co:hasValue :Diesel

Listing 3.4: Configuration variable example

Lexicon

Alexicon is a recipe for a product. It is as the name implies, used as a lookup
table for finding specifications a product may have. Each product model
will have their own unique lexicon. As the documentation states today,
the lexicon should be a URI linking to an RDF graph containing several
configuration variables and even more specifications. A lexicon may look

like Listing[3.3|and [3.4] combined.

Configuration & ConfigurationLink

The next two classes are used to add compatiblity to the ontology. They
are interdepenent which is why we will present them together. When using
both classes they form a tree structure. The configurations is simlar to the
nodes while the configuration links are similar to the edges.

A configuration can be defined by co:Configuration. It represent a valid
partially defined product and can contain links to several previously defined
configurations, alternative configurations and possible new configurations.
It should also have a link to a unique lexicon. This means that a
configuration has access to its own recipe. When creating the knowledge
base for CO one need a starting point which means that there is a need for a
list of starting components to choose from. In Listing[11we can see that the
starting component is fuel types. The starting configuration can be seen as
the root of the configuration tree.

To move to a new configuration one need a configuration link and it
can be defined by co:ConfigurationLink. It is used to represent the edge
between configurations. A configuration link should contain a link to a
configuration aswell as a link to a choosable specification. In Listing
we have chosen the specification Diesel and have then moved to a new
configuration through a configuration link. In this next configuration we
have the opportunity to choose the transmission of the car model, but also
if we regret our previously chosen specification, we have an alternative. We
can choose Petrol instead, but then we have to move to a new configuration
which has Diesel removed as a specification. In Figure [3.2 on page 33/ we
can see a visual approximation of the interaction between configurations
and configuration links.

29

ex:StartingConfiguration a co:Configuration ;
co:lexicon ex:VolveV4oLexicon ;
co:possible [a co: ConfigurationLink ;
co:linkedConf ex:DieselConfiguration ;
co:specToBeAdded ex:Diesel
15
co:possible [a co:ConfigurationLink ;
co:linkedConf ex:PetrolConfiguration ;
co:specToBeAdded ex:Petrol
1

Listing 3.5: Starting configuration

ex:DieselConfiguration a co:Configuration ;

co:lexicon ex:VolveV4oLexicon ;

co:alternative [a co:ConfigurationLink ;
co:linkedConf ex:PetrolConfiguration ;
co:specToBeAdded ex:Petrol
co:specToBeDiesel ex:Diesel
15

co:possible [a co: ConfigurationLink ;
co:linkedConf ex:AutomaticConfiguration ;
co:specToBeAdded ex:Automatic_Transmission
15

co:possible [a co:ConfigurationLink ;
co:linkedConf ex:ManualConfiguration ;
co:specToBeAdded ex:Manuel_Transmission

1

Listing 3.6: The next configuration

3.4.2 Properties
Values

Configuration variables should link to its specifications with the co:hasValue
property. There are no specific property in CO to represent actual qualit-
ative or quantitative values. One can either use another ontology or use
rdfs:label.

Properties around configurations and specification

There are several properties to define the way through the configuration
tree. co:possible and co:alternative are used to refer to a configuration link
which represents the edge to a new configuration. Both of them have the
domain co:Configuration and the range co:ConfigurationLink. Inside the
configuration link we find the property co:linkedConf which describes the
new configuration.

co:chosenSpec and co:impliedSpec both links to a specification. As the
name implies they describe either specifications that are already chosen or
specifications that are implied at this configuration. They have the domain
co:Configuration and the range co:Specification.

The last two important properties are co:specToBeAdded and
co:specToBeRemoved. They are both used in a configuration link to
describe the specification that has to be added or removed in order to move

30

ex:DieselConfiguration a co:Configuration ;

co:chosenSpec ex:Diesel ;

co:impliedSpec ex:4x4Drive ;

co:impossible ex:2Seats ;

co:alternative [a co:ConfigurationLink ;
co:linkedConf ex:PetrolConfiguration ;
co:specToBeAdded ex:Petrol ;
co:specToBeRemoved ex:Diesel] ;

co:possible [a co:ConfigurationLink ;
co:linkedConf ex:AutomaticConfiguration ;
co:specToBeAdded ex:Automatic_Transmission] ;

co:possible [a co:ConfigurationLink ;
co:linkedConf ex:ManualConfiguration ;
co:specToBeAdded ex:Manuel_Transmission] .

Listing 3.7: The next step in the configuration process

to the configuration. They have the domain co:ConfigurationLink and the
range co:Specification.

In Listing we can see a full example on how all properties are
used. Here we have chosen Diesel as a specification and now have the
possibility to choose transmission. The same process has to be done for
every specification we want to add to our product model. This is similar
to traversing a tree. We move from node to node until we are satisfied with
the results. This is how compatibility is solved in CO. The configurations we
can get to with the configuration links are only valid configurations. This
means that we will not have the possibility to choose a specification that
are not valid with something we already have chosen. The co:impossible is
used as an extra insurance.

Each configuration is unique and is linked to one product model. This
means that the process of choosing specifications has to be done for each
product model if the goal is to search through all models. In Figure
[page 34]we have a diagram describing the classes and properties of CO that
are relevant to the prototype. It is smaller than the diagram about COO
and VSO. That is because there you see the whole graph just by looking
at the classes and properties. Some of the properties were left out of the
diagram because they have the same range and domain, like co:possible
and co:alternative. With CO the representation will produce a large graph
with resources for every possible way to a fully defined product.

31

@prefix gr : http://purl.org/goodrelations/v1#
@prefix coo : http:/ipurl.org/coo/ns#
@prefix vso : http://purl.org/vso/ns#

gr:ProductOrServiceModel

AN

[dfs: subCIassOﬁ

rdfs:subClassO coo:BaseModel

coo:hasTrim i
rdfs:subClassOF 1| rdfs:label : String
*

[

rdfs:label : String

coo:Trim f A
\Lza:hasDerivative— 1—grisVarlamC)

*

| coo:Derivative ? \
1—gr:i5Var\amOf

rdfs:label : String

coo:hasSpecltems

Out
1 1
0..
vso:fuelType ; -
vso-transmission coo:SpecltemCollection
vso:meetsEmissionStandard []
vso:bodyStyle 1.% 1.*
vso:height ; .
vsorwidth ——————) coo:availableChoice
vso:length
vso:fuelConsumption
vse‘fueITanl_(anume 0 coo:d
vso:weight -
vso:weightTotal | gr:QualitativeValue |

vso:gearsTotal
vso:seatingCapacity
daim:emission

gr:name : String |

*

efault

| coo:ChoiceOrComponent ID‘ N

- | I

gr:QuantitativeValue

gr:hasValue : int/float
gr:hasUnitOfMeasurement : String

Figure 3.1: Diagram showing how COO and VSO interact

32

() = ConfigurationLink

StartingConfiguration

= Configuration

inkedConf
linkedCon

PetrolConfiguration DieselConfiguration

linkedConf

alternative

linkedConf linkedConf

AutomaticConfiguration ManualConfiguration

Figure 3.2: Visual approximation of the CO representation

33

@prefix co: http://purl.org/configurationontology#

co:Configuration

co:linkedConf———

1
| co:ConfigurationLink

(
0.4\ 0.x

co:lexicon

i

co:Lexicon

co:lexicon

0.*

| ca:ConfigurationVariable

co:confVarld : String

co:possible:

co:specToBeAdded

*

co:Specification |

*
1 m:has\!a\ue%‘}‘

rdfs:label : String ’

Figure 3.3: Chart describing the Configuration ontology

34

Chapter 4

Prototype

Ultimately one wants to use semantic technologies in various applications
and tools. In this chapter we will take a look at a prototype that has
been designed and built in order to make a comparison of the ontology
approaches presented earlier. This chapter will also take a look at how
the different ontologies represent their data, interact with each other and
are presented. Since the purpose of this thesis were to test the two
ontology approaches, it has not been taken into account the scalability and
robustness of the application because that would be solely a programming
issue.

To create a test environment for the thesis we needed data from
different sources. Today there is only Renault, of all the car manufacturers,
which has opened their data using semantic technologies. Volkswagen
had their data published until the start of 2013, but unfortunately they
canceled their semantic web project and the data were removed. However,
their ontologies are still open for the community to use. After some time
searching for data and contacting other car manufacturers, Daimler came
through and offered data about their A- and B-class cars.

In this chapter there will be a lot of information around models and
lexicons. A lexicon refers to the configuration ontology definition of a
lexicon, that was described in the Section [3.4.1 on page 29| This is only
used to describe car models from the Renault RDF graph.

4.1 Overview

There were several ways to make a functional application using the data
we were provided. One could use the data to make a auto-complete
system. One would choose a car model or a specification and the application
would slowly fill out the form on behalf of the user. Often the auto-
complete functionality would not finish before the user had added several
specifications due to the possibility that several car models have the same
specifications.

Another possible application would be a car chooser application. With
this application there are two main approaches:

+ Choosing several or all specifications and then search for model

35

» Choose one after one specification until one have a smaller set of
wanted models

The first option demands a lot more from the ontology structure than the
latter. This is because a car can contain a lot of different specifications and
searching through a graph of specifications can be time-consuming. This is
if the graph is huge or if there is not enough information to determine which
way to traverse in the graph. We chose to create an application where a user
choose several or all specifications, the first option. We chose this because
it allowed us to test the performance of big operations on the two ontology
approaches. This would most likely give us a more significant result and
revealing weak parts in both ontologies.

4.1.1 Programming languages

The first issue we faced before making the application was what kind of
programming language we would use. There are a vast amount of possible
languages to chose from, but it came down to JavaScript or Java in the end.
This is mainly because we had previous experience dealing with both these
languages, and both had good support for several semantic frameworks.

JavaScript

Our first thoughts were to make the application with NodeJS which is
a back-end JavaScript solution. [5] This would let us make a fast web
application without needing to set up any large back-end structure.

After working on the data provided, we quickly understood that
JavaScript was not the suitable language for our task. There are a lot of RDF
frameworks for JavaScript like rdfstore-jsTand rdfQuery? but the problem
was that JavaScript is not a suitable language for handling big operations. 3|
Another reason for not using JavaScript were that none of the frameworks
we wanted to use had full SPARQL support which meant that we would
have to use another language for some tasks.

Java

Another language for programming semantic technologies is Java. It is
maybe the most used programming language for semantic technologies and
a common framework around this is Apache Jena [7]. Other frameworks
similar to Apache Jena are Sesame[fland OWL APIP|

Jena has full SPARQL support which was needed for our use case. It also
has support for using different kinds of RDF serialization and working

Thttps://github.com/antoniogarrote/rdfstore-js

2https://code.google.com/p/rdfquery/

3Several tests done by Debian shows that JavaScript is slower than java on big operations
(ol

4http://www.openrdf.org/

Shttp://owlapi.sourceforge.net/

36

http://www.openrdf.org/
http://owlapi.sourceforge.net/

with different ontology models. In the list below one can see which other
frameworks were used in the prototype.

« Apache Maven
» Spring
» Apache Tomcat

In the end, Java were chosen as the main language because we had previous
experience with both the language itself and the semantic web framework
Jena.

4.1.2 Code

Beneath we can see the most important Java classes from the prototype. All
code can be found in appendix [D|

o CarData - The search module

IndexController - Handling HTTP request to the application

« FormBean - The form that contains the incoming data

Settings - The class for doing all pre-computations

Quantitative- and QualitativeValue - To represent the different values
from the form.

« PartialCar - To represent every partially defined product

The application present users with a web interface where they can input
values for any specification they might want to search for. In Figure
ithe following page/we can see how the application initially looks for a user.
Here the user can input values for the different specifications, for instance
fuel type or CO, emission. After a user is done choosing specifications
he can execute the actual car model search. The application extracts the
data from the form and comprises it into another format that can easily be
used later on. The next step begins in the search module. Here it starts a
thread for each possible car model to execute each individual search. In the
end the user is presented with a set of valid models to choose from, which
contain the chosen specifications. In Figure|4.2 on the next page}, we can see
what the user is presented with after a successful query execution, in this
case seventeen different models. In this run, the user have searched for a
model with diesel fuel, automatic transmission, four or more gears and a
maximum of six seats. We also have the values and URIs for each of these
valid models, which means that the application could present the user with
more information than it does today.

There are done some pre-computations to make the application a little
more effective. This includes extracting all the model names from both
ontologies, initiate all possible partially defined products as a PartialCar

37

Car chooser 3000

Car width :]:]

: 1
)

Top speed

Euro emission
standard

Transmission
type

Curb weight

-
Seating capacity s
Fuel) [—”—]
-

Nr. of doors

Ontology to use High/low precision

Update Renault information

CR—T

Car height

Car length

Max weight
Acceleration
Fuel tank
capacity

co2
emission(g/km)

Figure 4.1: Initial view for a user

Thanks for picking a car

Fuel type Diesel

Car width C]AC]
-]

Nr. of gears

Top speed

Euro emission
standard

L[]

Ontology to use High/low precision

A 220 CDI

A 200 CDI

A 220 CDI (BEL)

A 180 CDI (7G-DCT)
B 220 CDI

B 200 CDI

B 220 CDI (BEL)

B 180 CDI

Master Passenger
Mégane Coupé-Cabriolet
New Scénic

Captur

Mégane Coupé
Mégane Sport Tourer
New Clio

Mégane Hatch

New Scénic XMOD

Transmission Automatic
type

Seating capacity s

::::;umption C]C]
-]

Nr. of doors

3

Car height
Car length
Max weight
Acceleration

Fuel tank
capacity
co2

(g/km)

Figure 4.2: The view after a search

38

object and creating some internal structure. These pre-computations were
done so that it would be possible to present the user with the name of each
car model, not just the URI. We will also describe more in depth how the
car model search is done later on.

4.2 Daimler

Daimler is a German multinational automotive corporation| In this thesis
only a small part of the car domain at Daimler has been used.

4.2.1 Choosing ontology

Since the data we received from Daimler came on a non RDF serialization,
we had to do semantic lifting[/} This meant that we also needed an ontology
to structure the data. As shown in Listing|4.2 on page 41, we chose to use
the ontology Volkswagen had made for this purpose, using both VSO and
COO to represent the data. VSO, as stated earlier, was made by Martin
Hepp as a car extension on top of GoodRelations. COO on the other
hand was made in collaboration between Martin Hepp and Volkswagen
to make a specific car specification ontology. The previous technical lead
for Volkswagen’s web pageﬁ, William Greenly, said in an interview in 2011
“This car options ontology is relevant to any car manufacturer”. [48] Since
Renault and Volkswagen are the only car manufactures who have published
their data by using semantic web at some point, it was easy to choose the
work of those car manufactures for comparison. Unfortunately Volkswagen
canceled their project and removed their data which lead us to parsing the
data from Daimler into Volkswagen’s ontologies.

4.2.2 Lifting the data

Daimler provided the thesis with data about their A-Class and B-Class cars.
The format of the data was on Extensible Markup Language(XML) in two
different files, one for A-Class and one for B-Class. The information in the
XML files can be divided into these main groups.

« Technical data

« Dimension drawings
« Color materials

» Tourque curves

» Equipment lists

6http://en.wikipedia.org/wiki/DaimIer_AG

7Semantic lifting refers to the process of associating content items with suitable
semantic objects as metadata to turn “unstructured” content items into semantic knowledge
resources. [14]

8volkswagen.co.uk

39

http://en.wikipedia.org/wiki/Daimler_AG
volkswagen.co.uk

« Equipment and validity
« Pictures and text descriptions

The most important groups from these are Technical data and Equipment
and validity. These two groups contain the information about each model
and what kind of specifications these models may have. Unfortunately there
were no distinct information about compatibility between specifications in
their data. These sections also contained information about what extra
equipment came as standard and what was optional. It also described what
extra equipment that was not valid.

In this thesis extracting the technical data and specifications were
emphasized. This means that from the list of groups, Technical data
and Equipment and validity were the sections that were used for our
investigations.

XML parsing tools

To continue our investigation, we needed an XML parsing tool to parse the
Daimler XML. In almost every programming language there is a module to
parse XML. In Java there is domgj, in C there is Expat and in python there
is ElementTree. There are of course many more than just one XML parser
in each of those languages, but these three are the most renown ones.

W3C also has their own XML transformation language. In 1999,
Extensible Stylesheet Language Transformations (XSLT) became a W3C
recommendation. XSLT is a functional programming language used to
specify to convert an input XML document into another text document.
This can be used to convert an XML document to another XML document,
but it can also be used to transform XML documents into any other
format. [18]] It is easy to use and one do not need any prior programming
language knowledge to use it. One only need knowledge about how an XML
file is structured and some XSLT functions. XSLT it very useful for making a
general converting document for a large amount of documents on the same
format.

Daimler XML

Daimler delivered two XML files with around 100k lines each. One about
A-Class cars and one about B-Class cars.

The task at hand was to use semantic lifting to add semantics to the data
from Daimler. We needed to get the data on an RDF serialization. We chose
Turtle as the RDF serialization because it can contain more information
on less lines than RDF/XML. This would prove to be useful with the large
amount of data from Daimler. This made it more human readable which
helped understanding the data while we were parsing them. In appendix[A]
you can find a link to both RDF graphs which were parsed out of the XML
files about A-Class and B-Class car models. In Listing |4.1and |4.2| one can
see a small snippet from the XML and what it is equivalent to in the RDF

40

<td_model pit_id="33795">
<td_model_series uniquename="ti161500fo30_2837">
<![CDATA[176011]] >
</td_model_series>
<td_model_designation uniquename="t161500fo30_2837_1">
<![CDATA[A 160 CDI]]>
</td_model_designation>
</td_model>
<td_item line_title="Fuel" line_id="70050">
<term uniquename="t163600f033_2837_12">
<![CDATA[Fuel]] >
</term>
<value uniquename="t163600fo21_2837_12">
<![CDATA[Diesel fuell]l>
</value>
<unit uniquename="t163600f034_2837_12">
<![CDATA[]] >
</unit>
</td_item>

Listing 4.1: Small snippet from the Daimler XML file about A-Class cars

daim:A160CDI a coo:Derivative, vso:Automobile
daim:A160CDI rdfs:label "A 160 CDI"
daim:A160CDI vso:fuelType dbpedia: Diesel

Listing 4.2: The RDF equivalent to the Daimler XML snippet

serialization. As we see in these listings the amount of lines gets shortened
quite a bit without losing any relevant information.

As presented earlier, there were a lot of options when it came to parsing
the XML data from Daimler. The deciding factor was that the parsing was
only needed once and it had to be done fast without many lines of code.
This is why we did not chose to use XSLT because there was no need to
parse more than two documents once. There were also a lot of redundant
information in the XML files that we did not need. It was because of these
reasons we chose to use python and the ElementTree package. [44] It was
easy to use and allowed us to parse the XML fast with a small amount of
code. Our prior knowledge with python was also a deciding factor since
we did not need to use any time learning new semantics. The downside
was that the python script became hard coded which meant that it would
only work for an XML file on this particular format. This means that if there
were any changes in the XML structure, we would need to change the script.
The upside was that both XML files provided by Daimler came on the same
format, which meant that the script worked for both.

Added functionality

We chose not to represent all the information found in the XML file.
This was because there were a lot of information which did not have any
corresponding information in the Renault data set and would not be useful
for our application with this use case. An example would be what kind of
engine oil cooler a car model could have. This is just an assumption since

41

daim:emission a owl:ObjectProperty ;
rdfs:label "CO2 emission"@en ;
rdfs :comment "The amount of CO2 a
motorized vehicle emits.
Typical unit code(s):
g/km grams per kilometre"@en ;
rdfs:isDefinedBy <http://folk.uio.no/magnudae/daimler#> ;
rdfs:range gr:QuantitativeValueFloat ;
rdfs :subPropertyOf gr:quantitativeProductOrServiceProperty

daim : A180CDI daim:emission
[a gr:QuantitativeValueFloat ;
rdfs:label "CO2 emission" ;
gr:hasValueFloat "105"""xsd: float ;
gr:hasUnitOfMeasurement "g/km"”"xsd:string
1.

Listing 4.3: OWL definition of daim:emission and example of use.

it is probably some users which find this relevant and it can be easily added
to the data set at any time in the future.

Even though COO and VSO covers most of the functionality a car may
have, it did not cover all the information found in the Daimler XML.
This is why we chose to create and add some functionality. VSO offers
some classes for creating resources to cover alternative information. In
our case this was used for representing emission standard. Here we
used vso: EmissionStandardValue to create a resource for representing the
emission standard, for instance that a car model has emission standard
Euro 5. Furthermore, there was no way of representing the amount CO,
emission for each car model. Listing[4.3|shows the OWL property which we
had to create to represent these values and an example of how it is used.

The data from Daimler also lacked compatibility between features
which meant that before we could make the prototype and test it, we would
have to add compatibility between specifications in the Daimler data. In
Listing|4.4 on the next page| we can see the compatibility triples for the car
model "B 180". We chose the pairwise way to add compatibility with COO,
because that was the most human readable representation and was easy
to query against. A minus with this way is that it demands reasoning to
be effective because without reasoning the coo:incompatibleWith will not
yield all invalid triples.

Data representation

The data from Daimler was represented in an RDF graph for each base
model. This means with the current data there is one RDF graph for all
A-class car models and one for all B-class car models. The compatibility
triples were created in a separate RDF graph because they were created
manually. In appendix[Alone can find all three RDF graphs.

42

daim:B180_transmission_automatique coo:incompatibleWith daim:B180_emission_144_o0 ,
daim:B180_emission_139_0 ,
daim:B180_emission_134_0 .
daim: B180_transmission_mA®©canique coo:incompatibleWith daim:B200_emission_144_o0,
daim:B180_emission_149_0 ,
daim:B180_emission_154_0 .
daim:B180_speed_190_0 coo:incompatibleWith daim:B18o_gearsTotal_6 ,
daim: B180_gearsTotal_5 .
daim:B180_speed_160_0 coo:incompatibleWith daim:B180_gearsTotal_7 .
daim: B180_weightTotal_1950_0 coo:incompatibleWith daim:B18o_fuelConsumption_7_2 ,
daim: B180o_fuelConsumption_6_9 ,
daim: B180o_fuelConsumption_6_2.
daim:B180_weightTotal _2010_0 coo:incompatibleWith daim:B18o_fuelConsumption_5_ 4 ,
daim: B18o_fuelConsumption_5_7 .
daim:B180_meetsEmissionStandard_Euro_4 coo:incompatibleWith daim:B1807transmission7m[&©canique .
daim: B180_acceleration_10_4 coo:incompatibleWith daim:B180_fuelConsumption_5_ 4 ,
daim: B180_fuelConsumption_5_7 ,
daim:B180_speed_160_0.
daim: B180_acceleration_8_4 coo:incompatibleWith daim:B180_fuelConsumption_7_2 ,
daim: B180_fuelConsumption_6_9 ,
daim:B180_speed_190_o0 .
daim: B180_acceleration_6_2 coo:incompatibleWith daim:B18o_fuelConsumption_5_4 ,
daim:B180_speed_202_o0.
daim: B180_acceleration_5_4 coo:incompatibleWith daim:B180_speed_202_o0 .

1.

Listing 4.4: Added compatibility triples.

4.2.3 Issues
Data issues

During the semantic lifting we found some issues and weakness with the
data. The XML provided by Daimler had a good structure for setting
up the models. However, all the properties like weight, height and fuel
consumption used a line ID which were not used anywhere else. The only
way to identify the important properties within each model was to read
the XML and manually note every place which corresponded to a property
in COO or VSO. Another weakness was that there were no compatibility
information linked to any specifications. This meant that we had to
construct all compatibility triples manually.

Ontology issues

One issue was that the structure of the Daimler data did not fully align
with COO. This was because every model from Daimler did not have any
clear base model or trim. Every model had a set of possible specifications
and features, but they were no derivations of another model or set. This
meant that coo: BaseModel and coo: Trim were only needed to keep the data
valid in the COO ontology, not to keep any extra information. In the COO
definitions they only refer to a derivative that it should have a trim and
a trim should have a base model as a guideline. [28] This would affect the
distribution of the data and the possibility to let the derivatives inherit data.
This could have been used to let models share data and could help to limit
the search for a faster result. This will be further discussed in Chapter

page /3|

43

4.3 Renault

Renault have data about their car models published on the web today. This
is done via an API on the web. They have decided to represent their data
as a graph which their APT helps third party application traverse. [22] It
is because of the vast number of specifications a car model may contain.
By Renault’s calculations they have around 10?° different combinations of
specifications which yield a valid car model. [21] This is why they have
chosen to represent their data as an API.

The API is a way to traverse the RDF graph of possibilities and find a
smaller result set of cars. This also allows Renault to handle the reasoning
on their side, which can be a big operation with 10?° of combinations.
They also state that hiding the reasoning in their API could relieve a lot
of performance pressure from applications wanting to use their data. This
decision was built upon observations that the environments wanting to use
their data are still young and do not have the reasoning capabilities which
would be expected.

They have represented their data with the Configuration Ontology (CO).
The ontology focuses on building an RDF graph to represent all valid
configurations for a product model with component constraints. It is also
made so that it is not needed to do any reasoning to get a valid result set.
They call it a traversal of Configurations which will end up with a Partially
Defined Products (PDP)’} Their thoughts of how it is meant to be used is
for a user to choose configurations on the fly. This means that for each
selection the user gets one step closer to a fully defined product.

All possible specifications for a car model has a finite set of options.
For instance with fuel type where the options to choose from are gasoline,
diesel, electric and gasoline-electric hybrid. [20] With this it is possible to
create a GUI where one iteratively choose the specifications one wants in a
car. Renault has a prototype on how this user interface could look like and
act on their Configuration Ontologies site'°} but it has been non-operative
since December 2013. When it was operative it first presented the user
with an option to choose which car model he or she desired. After that
there were several options to choose from, like fuel type, transmission and
other specifications. The data would then exclude or include new data as
the user chose the specifications. Renault are also working on allowing to
query their API with a list of specifications as seen below.

configServicelchosenSpec = specl&chosenSpec = spec2

Here two specifications are chosen. This query will return the list of
specifications which are valid after these two were chosen.

9Partially Defined Product is a way of defining a product without using all of the features.
For instance a car which may have many features, but we describe it as a car with mp3 and
sunroof.
1Ohttp://www.semanlink.net/2012/cold/configurator.html

44

4.3.1 Data representation

Here we will take a look at how Renault have chosen to represent their data
about car models and their specifications. Since there is a underlying graph
through all the configuration possibilities, there is also a default starting
point.

http://uk.co.rplug.renault.com/docs#this

The road to a fully defined car

At the default starting point one will be presented with all the car
models Renault has present in their API, one can for instance find
the Renault Captur here. There are also links to each individual car
model’s lexicon. In each lexicon one can choose between different
specifications which may lead to a valid configuration. Here one can
choose a specification and then check in the current configuration if it is
a valid specification for the particular model. In the current configuration
there are several possible specifications to choose from which will link
to new configurations. There are also stated if some specifications are
impossible in the current configuration. These are represented by either
the co:possible or co:impossible property. In our prototype the user can
choose all specifications at once, which mean that we can end up with a
composition of specifications that a lot of car models do not support. To
validate this, we first check the lexicon if the car has the possibility for that
specification value, then we check if that particular value can lead to a valid
configuration. This is an iterative process until all the wishes of the user are
tested against all the models.

Resource values

To choose a specification one will be presented with some options of values.
For instance that one can choose which kind of gearbox, how much CO,
emission and many other specifications. In the Renault representation
there is only one way to determine which specification is representing for
instance fuel type. That has to be done with string comparison. In the
data there is two ways of finding a specification. All configuration variables
have a label indicating what specification they represent. They also have
a property co:confVarld which contain a string ID that determines what
specification type it contains. In Listing it is shown the configuration
variable for fuel type in one car model’s lexicon. Further, one has to match
the value from the specification with what the user may have chosen. This is
done within a specification instance which holds the particular value. Here
the actual specification value is stored in another label as seen in Listing[4.6]
If we save this specification’s URI we can use this to check if there is a valid
configuration link in the current configuration. In Listing we can see
that there is a possible link to a new configuration if we choose the fuel type
Diesel. This will then lead us to a new configuration, or state, in the graph.

45

:var_PT1628

a owl:Class , co:ConfigurationVariable ;

rdfs:label "Fuel Type"@en ;

co:confVarld "PT1628" ;

co:hasValue
<http://uk.co.rplug.renault.com/spec/BAm/PT1628_diesel#this> |,
<http://uk.co.rplug.renault.com/spec/BAm/PT1628_unleaded_petrol#this> ;

co:lexicon :this ;

owl : oneOf

(<http://uk.co.rplug.renault.com/spec/BAm/PT1628_diesel#this >

<http://uk.co.rplug.renault.com/spec/BAm/PT1628_unleaded_petrol#this >) |

Listing 4.5: One car model’s Configuration Variable representing Fuel Type

<http://uk.co.rplug.renault.com/spec/BAm/PT1628_diesel#this >
a co:Specification , :var_PTi1628 ;
rdfs:label "Diesel"@en ;
co:specld "PT1628_diesel" .

Listing 4.6: One car model’s Specification representing Diesel fuel

After this we can start the process of choosing a new specification and do
the same again, but this time with a smaller set of specification options.

In both these listings the resources have their own ID. These two
ID properties were earlier not mentioned in the Configuration Ontology
reference, but were later on added to the reference. [|20] These IDs identify
what a Configuration Variable and a Specification contains. For instance
if a configuration variable has the ID "PT1628“ it contains specifications
about fuel type.

In the ontology’s reference it is mentioned that it is possible to represent
each variable in different ways than with their classes. One example they
show is with the use of the Vehicle Sales Ontology. Since the ontology
is generic one could use any kind of ontology to describe the desired
specification.

In Figure |4.3 on the next page, we can see an example of how the
data interact within the Renault data graph. The figure shows us that
every configuration have a lexicon which keeps tracks of all the possible
specifications. This lexicon is the same for every configuration about this
particular model. The configuration also has several edges to possible
configuration links. The figure only shows the graph that unfolds when
picking one specification from a configuration. At this point one would have
to choose a specification from the lexicon and then check if there was a valid
link in the current configuration. One possibility here is to choose the fuel
type Diesel. If we do, we will end up in another configuration which has

<http://uk.co.rplug.renault.com/c/BAm/AAl#this >
cold: possible
[a cold: ConfigurationLink ;
cold:linkedConf <http://uk.co.rplug.renault.com/c/BAm/AAIZA#this> ;
cold :specToBeAdded <http://uk.co.rplug.renault.com/spec/BAm/PT1628_diesel#this>
1.

Listing 4.7: Showing a possible configuration link if Diesel is chosen

46

@prefix lex: http://uk.co.rplug.renault.com/speccats/BADr#
@prefix co: http:/ipurl.org/configurationontology#

http://uk.co.rplug renault.com/chADrfMOngDrdf type co:Configuration

co:possible

;

co:Lexicon
if:type

coilexicon co:specToBeAdded

lex:var_PT1628

co:confVarld

co:lexicon

co:linkedConf

"Fuel Type'@en rdfs:label df:type co:ConfigurationVariable

"PT1628"

co:hasValue

"Diesel'@en \

rdfs

label
http:f/uk.co.rplug.renault.com/product/gen/spec/PT1628_diesel/-#this

o:gpecld

"PT1628_Diesel"

!’

co:Specification

Figure 4.3: RenaultValueChart

several new possibilities, but only possibilities which are compatible with
the fuel type Diesel.

In comparison to the ontology diagram in Figure|3.3 on page 34/we can
see that the actual data representation that Renault has on their end is a lot
bigger and complicated than the ontology implies.

4.4 Alignment

Before making the search feature in the application we had to align the data
so that we would not need to make two different applications. First we had
to decide which way to align. Would it be satisfactory to align from CO to
VSO and COO or would it be better to do it the other way around.

47

daim:A200CDI_gearsTotal_5 a gr:QuantitativeValue ;
co:confVarld "PT47" ;
rdfs:label "Forward gears (total number)" ;
gr:hasValue "5"""xsd:int ;
gr:hasUnitOfMeasurement "C62"""xsd:string

Listing 4.8: Daimler specifications after alignment attempt

4.4.1 VSO/COO -> CO

Our first guess was to align from VSO and COO to CO by adding the right
configuration variable ID to each value. To manage this we could not use
OWL axioms since we had to search the Daimler graph for properties and
then add a literal value. That is why we chose to use SPARQL constructs
since it had the functionality needed to do the alignment.

After the first alignment attempt we ended up with these triples in the
Daimler graph as seen in Listing At the first glance this looked correct,
but then we realized that each specification is identified with co:specld not
co:confVarld. This meant that if we wanted to align the specifications we
would have to access the value within each specification to create the correct
ID. That is because Renault makes their IDs by adding the value to the
configuration variable ID as seen in the example below:

<http://uk.co.rplug.renault.com/product/gen/spec/PT1628_diesel/—#this>
a cold: Specification , :var_PT1628 ;
rdfs:label "Diesel"@en ;
cold:specld "PT1628_diesel" .

This made it impossible to either use OWL axioms or SPARQL constructs
since we would have to generate complex IDs. It would need a program-
ming solution to be feasible, but even then the alignment would not yield
any good results because it still would demand string comparison to find
similar instances.

4.4.2 CO->VSO/CO0O

After trying for some time to figure out the best possible alignment option, it
occurred to us that Configurations Variables were just the same as the VSO
properties except one was a class and one was a property. A configuration
variable was just a place holder for one or more specifications and the
type of the specifications. This would be the same as having several
specifications in the range of a VSO property. In the example below one
can see a configuration variable and a VSO property represent the same
thing, and that was what we would try to align.

#CO representation of fuel type
:var_PT1628 a co:ConfigurationVariable , owl:Class ;
rdfs:label "Fuel Type"@en ;
co:confVarld "PT1628" ;
co:hasValue <http://uk.co.rplug.renault.com/product/gen/spec/PT1628_diesel/—#this> .

#VSO representation of fuel type
daim: A200CDI vso:fuelType daim:A200CDI_fuelType_Diesel_fuel .

To do this we used SPARQL constructs to add properties from the
lexicon to each specification. We made one construct and then split it

48

CONSTRUCT {

?lexicon vso:fuelType ?fuel

?fuel a gr:QualitativeValue

?lexicon vso:gearsTotal ?gears

?height a gr:QuantitativeValue

} WHERE {

[co:lexicon ?lexicon ;
co:confVarld "PTi1628" ;
co:hasValue ?fuel]

[co:lexicon ?lexicon ;
co:confVarld "PT47" ;
co:hasValue ?gears |

h

Listing 4.9: A snippet from the construct used in aligning the ontologies

into two to make the workload a little smaller. We did this because
there were a lot of different resources to match since each configuration
variable had their own URL. In the first construct the Cartesian product™]
became so large that the construct never ended within a reasonable
time. In Listing we see a small snippet from the resulting two
constructs. Here we detect the variables for fuel type and the number
of gears. Then we added the property vso:fuelType and vso:gearsTotal,
and linked them to the proper specifications. This could be done
because vso:fuelType means the same as co:hasValue combined with
the configuration variable ID "PT1628". We also added the classes
QuantitivativeValue and QualitativeValue to the proper specifications to
satisfy the range of the VSO properties. In Figure|4.4 on the next pagel, we
can see how the ontology looked after the alignment. In comparison to the
Figure[3.3 on page 34]we can see that the configuration variable is gone and
instead we got VSO properties linking directly to the specifications. This
means that instead of four triples defining a specification, we only need
one because each VSO property is defined in the ontology. This also makes
the search more universal because the property has the same URI for all
models. Before the alignment one would have to detect each configuration
type with string comparison of the label and not the URI. This makes the
data more machine readable which is one of the key concepts of semantic
technologies.

In the end, we can see that the ontology definition became bigger after
the alignment, but the in the actual representation there would be fewer
triples and they would be more understandable.

Whttp://en.wikipedia.org/wiki/Cartesian_product

49

http://en.wikipedia.org/wiki/Cartesian_product

@prefix co: http://purl.org/configurationontology#

co:linkedConf

co:Configuration

1

| co:ConfigurationLink

o.M Jor

co:possible

co:lexicon

co:Lexicon

vso:height
vso:width
vso:length
vso:fuelConsumption
vso:fuelTankVolume
vso:weight
vso:weightTotal
vso:gearsTotal
vso:seatingCapacity

gr:QuantitativeValue

co:specTo
co:specToBeAdded

0.

daim:emission

gr:QualitativeValue

rdfs:label : String

vso:fuelType
vso:transmission
vso:meetsEmissionStandard
vso:bodyStyle

rdfs:label : String é

Figure 4.4: Figure showing CO after alignment

50

BeAdded

4.5 From data to application

As stated before, we chose to use the programming language Java and
the framework Jena to develop the application. We used 2/3 of the main
components in Jena. The only component that was not used was the Triple
Store component, which contain Fuseki and TDB. We needed the two other
components to do SPARQL queries, handle RDF graphs, do reasoning and
to get full RDFS and OWL support. The application took about a month
with a full time workload to finish. The application contains approximately
1350 lines of Java code distributed over these packages:

« controllers: =250 LoC
« matching: ~ 800 LoC
« utils: =300 LoC

To manage all the files and packages we used Apache Maven, a software
project management and comprehension tool. [8]] We wanted the applica-
tion to be able to handle different HTTP requests so that it would be as real-
istic as possible to an application on the web today. To realize this we chose
to use Spring, which is a framework for making fast, simple and flexible
JVM-based systems and applications. [[9] Our application uses the MVC,
model-view-controller, part of spring which is the component for devel-
oping a web application and using the HTTP protocol. Further on in this
section we will take a look at how the application execute the data search
and query building.

4.5.1 Post to form

First a user has to perform a HTTP post to the service with a form. This
form can contain everything from a full form with all specifications declared
to a form with only one declared specification. The data from Renault
is at this point ready for queries, but the data from Daimler needs to
be reasoned over before it can be queried. The possibilities are either
forward or backward reasoning. In the application we chose to do forward
reasoning due to the simplicity. This is done so that all incompatibility
triples are inferred. In the example shown in Listing we see a code
snippet from the reasoning in the application. We chose to use the OWL
reasoner contained in Jena because it had the functionality we needed
from a reasoner. One could have used a specialized reasoner to get better
performance since the OWL reasoner applies more rules than needed. This
results in more inferred triples. This will be discussed in more detail later
on.

After reasoning and loading in the data models, the application
proceeds to do the actual search. To do the actual search we programmed
it so that every car model had their own thread. This was done to
make the experiments faster than they initially were. This would not
affect the performance comparison between the ontologies because it was
programmed identical for both.

51

Model model = FileManager.get ().loadModel(<Data Model>);
model.add(FileManager. get ().loadModel(<Compatibility triples >));
model.add(FileManager. get ().loadModel(<COO ontology >));
InfModel inferredModel =

ModelFactory. createInfModel (ReasonerRegistry.getOWLReasoner (), model);

Listing 4.10: How reasoning was done in the application

SELECT ?specification ?vsoValue

WHERE {
<http://folk.uio.no/magnudae/daimler#B200> vso:fuelType ?specification .
{ ?specification gr:hasValue ?vsoValue . }

UNION

{ ?specification gr:name ?vsoValue . }

FILTER NOT EXISTS {
?specification coo:incompatibleWith

<http://folk.uio.no/magnudae/daimler#B200_transmission_automatique> .

Listing 4.11: Query for data in the VSO/COO graph

4.5.2 Queries

Each thread iterates through the form of defined specification and queries
the RDF graph for each iteration. The queries for both ontologies were
almost the same after the alignment, but with some exceptions. One
exception was that the queries for VSO/COO has a FILTER NOT EXIST
clause at the end of the query to check for incompatibilities. In Listing[4.11]
we can see a query from VSO/COO where transmission is already chosen
and at this point we are querying for fuel type. We chose to save both the
value and the specification URI. The value was saved because we needed
a way to check if the value in this model was valid with the data the user
declared. It was easier to do the value matching in the application than
in the query due to the diversity of values in the RDF graph and that we
wanted an interval search. The specification URI was saved because it was
needed to check compatibility in later queries. This was also different from
the CO query. In Listing we can see a query against the CO data.
Here it was not needed to save the specification URI. This was because
the compatibility check was not done in the car lexicon itself. Another
exception was that when querying the CO data for a value, we had to query
for rdfs:label and not gr:hasValue or gr:name.

SELECT ?value

WHERE {
?lexiconURI vso:transmission ?specification .
?specification rdfs:label ?value .

}

Listing 4.12: Query for data in the CO graph

52

4.5.3 Compatibility

There were a big difference in how the ontologies had solved the compat-
ibility constraints. This was an issue when programming a solution for it
in the application. As we saw in Listing[4.11} the compatibility issue in the
VSO and COO ontology was easily solved with adding a FILTER NOT EX-
IST clause in the SPARQL query. The only thing the application had to
do was to save the previous chosen specifications. With the CO ontology it
had to be done differently because each lexicon did not have any inform-
ation about the compatibility. As described earlier the compatibilities in
CO are handled with configuration links. This means that for each chosen
specification one has to move one step along in the configuration graph. At
each configuration in the graph there are several possibilities and a chosen
specification from the lexicon has to be a possibility in the configuration to
proceed. This is how the compatibility is handled in the CO ontology.

In the application we then had to collect the value from the lexicon with
one SPARQL query. Then do another query in the current configuration
to check if it was a valid value. If the value was valid we would also
with that query get the new configuration through co:linkedConf, as seen
in Listing |3.7 on page 31 In order to proceed after choosing a manual
transmission, we had to save the new configuration as the next step in the
search process. Each step was identified with an URI which we stored in a
list. This list represent one path in the graph. This was because when we
encountered a specification that was not valid in the current configuration
we had to be able to restore the last configuration and try the next valid
option.

4.5.4 Finalizing

In both ontologies, the specification search was done through a recursive
function called recursiveCompatibilityCheck. It iterated through the form
of specification and did the querying described in this previous sub-section.
When the function had matched all values in the form, it saved the
specifications found as a valid way to build this car model. Then it went
on iterating to find other valid ways to build the car model through the
recursive function.

The user was in the end presented with all the car models which had at
least one valid configuration of itself with the user’s defined specifications.
In figure [4.2 on page 38| we can see what the user was presented after a
successful search for these specifications:

« Fuel type = Diesel
« Transmission = Automatic
« Nr. of gears > 4

« Seating capacity < 6

53

VSO0/COO average values

Specification Average value Nr. of values
Weight 1451.25 =39

Weight Total 1981.25 ~2.6

Nr. of Gears ~6.105 ~2.3

Seating capacity 4.0625 1.625
Emission 128.6875 3.75

Fuel consumption 5.33125 3.75

Doors 5 1

Fuel type NaN 1
Transmission NaN ~1.3

CO average values

Specification Average value Nr. of values
Weight ~ 1381.96 =5.2

Weight Total ~2115.1 ~4.24

Nr. of Gears ~5.72 ~1.2

Seating capacity ~5.01 ~1.3

Emission ~140.43 ~6.4

Fuel consumption =5.61 ~5.8

Doors ~4.24 1.3

Fuel type NaN ~1.54
Transmission NaN =~ 1.6

Table 4.1: Data mined from the VSO/COO and CO RDF graph

4.6 Data mining

The last thing we did with our application was to mine the ontologies for
data that were useful for the experiments and discussion, which we will take
a closer look on in the remaining chapters. This included finding average
values and number of values. It was a simple task which involved querying
the RDF graphs for values and aggregating them. In Table we can see
the data mined from the RDF graphs. For fuel type and transmission there
were no average value due that these specifications are qualitative values.

54

Chapter 5

Results

The results and evaluation of the experiments on the ontologies are
presented in this chapter. The experiments are the backbone of the
discussion and conclusion. To do this evaluation wecould have used the
practice of benchmarking which is widespread as a appropriate way of
testing an application. It would often consist of several micro benchmarks,
which intend to do different tasks against an application and measure
performance. This performance testing often consists of testing several
factors around application performance like, scalability, throughput and
accuracy. Depending on what is important for that particular use case.

This is common approach and works great for application studies, but
we are more interested in finding the significant factors which affects the
ontologies. With this in mind benchmarking comes across as not precise
enough to handle the amount of factors which might affect the end result.
We could set up several benchmarks and be happy with the results, but
unless we test every case, which would be inefficient, we can not be sure
that these results are right. In the industry it is sufficient with results
which indicate what is right and what is wrong, but in a paper by Kjernsmo
and Tyssedal (2013) they argues that benchmarking is flawed as empirical
research. [|33] This is why we have chosen to employ techniques from the
field of statistics known as Design of Experiments(DoE).

In this chapter we will describe the background for our experimental
approach. We will also present all our findings after using the application
we created to test the ontologies. We will present the small scale
experiments first before moving onto the more larger experiment done
against the application.

5.1 Design of Experiments

In this section we will take a look at some techniques from DoE that are
relevant to our experiments.

55

5.1.1 Planning the experiment

As other approaches, there are several steps in doing experiments with
DoE. First one has to state an objective which is important to give the
experiment a purpose. The next step is to choose a response. The response
is the experimental outcome or observation. There may be multiple
responses in an experiment. In this experiment there will be one response
and that is the response time on a HTTP post against the application. These
first two steps are the same for all the experiments in this thesis.

The next two steps of planning an experiment is specific to each
experiment itself. This means that these steps will be described more in
depth in each experiment because it may vary depending on the actual
experiment. The third step in planning an experiment is choosing factors
and levels. This is a key part of DoE. A factor is a variable that is studied
in the experiment, and to be able to study this factor it is needed to use two
or more values of this factor. These values are referred to as levels. This
varies from benchmarking because often these levels are not required to do
proper benchmarking. The levels will allow us the check each factor for its
significance. It is important to identify the key factors in the planning stage.
This is to get the maximum effect out of the experiment. Factors may be
quantitative or qualitative. Quantitative factors are often numerical values
that represent an interval. For instance the weight of a car is considered
a Quantitative value. Qualitative factors are predefined values within a
known set of values. In our case a Qualitative factor can be the type of
fuel, for instance Diesel.

The fourth step in planning is to choose the experimental plan. Here
we will use one specific approach. The approach is called full factorial
experiment which we will go into more detail about in the next sub-section.
There are other approaches like fractional factorial experiment, but they
were not applicable or relevant to this thesis. The last three steps of
planning the experiment are performing the experiment, analyzing the
output and in the end drawing conclusions. More about these steps will
be taken individually at each experiment. [45]]

5.1.2 Full factorial experiment

A full factorial experiment is when one got k factors and » amount of levels.
This means that there is n* factorial designs which result in n* designs
to execute. In the thesis every experiment will only have two levels, but
the factors may vary. This means that we will use a 2¥ full factorial design
for every experiment. The experiments consist of 2¢ combinations with &
factors. For instance if we have three factors where every factor got two
levels we get 23 designs, also called runs. In Table |5.1 we can see all the
possible runs we get from 3 factors. The + and - represent the level for each
factor. When running the actual experiment one should use a planning
matrix to display the actual runs in the experiment. In Table[5.2|we can see
the same table as before, just that now it is filled out with actual factors and
their different levels.

56

Factori1 Factor2 Factor 3
+ + +
- + +
+ - +
- - +
+ + -
- + -
+ - -

Table 5.1: 23 possible runs

Run | Fuel type Transmission Speed
1 Diesel Automatic 100
2 Petrol Automatic 100
3 Diesel Manual 100
4 Petrol Manual 100
5 Diesel Automatic 200
6 Petrol Automatic 200
7 Diesel Manual 200
8 Petrol Manual 200

Table 5.2: A filled planning matrix with 3 factors

57

Two key properties of full factorial designs are balance and orthogonal-
ity. Balance means that each factor level appears the same amount of times
in all the runs. For instance that the factor Diesel appears the same amount
of runs as Petrol. Orthogonal means that two factors level combinations
will appear in the same number of runs. As an example will Diesel fuel
combined with Automatic transmission appear in the same number of runs
as Petrol fuel with manual transmission. We can see in Table [5.2|that both
these level combinations appear two times. Diesel and automatic appears
in run 1 and 5, while Petrol and manual appears in run 4 and 8.

Experiments like this can also be replicated, which just means that the
experimental plan is run more than one time. It is not always efficient
to replicate an experiment. Sometimes it can be too expensive to run it
more than one time. According to Wu and Hamada(2009) replication is
unnecessary for computer experiments because repeated computer runs
with the same input give the same output. If it is replicated the plan should
be randomized to get the best result. One reason for randomizing is to
identify and get rid of lurking variables. A lurking variable is a factor that
is not taken into account when doing an experiment and that might affect
the outcome of the experiment. For instance if one is doing an experiment
outside. The outdoor temperature might be a affecting the experiment if
not taken into account. [46]]

5.2 Experiments

In this section we will present several experiments with different amount
of factors. The objective is to find out how the ontologies will perform
in comparison and identifying which factors affect the outcome of each
experiment. We did the ontology alignment and development of the
application to prevent the loss of precision with either ontology.

In the experiments the definition for VSO/COQO is -vso and for CO is -
co. These two definitions stand for which ontology are tested in a particular
run. In practice this means that when we send in the keyword -vso we
only run the specification search against the car models represented by
VSO/COO, in our case the data from Daimler. This is referred to as the
ontology factor in each experiment and is a factor in all the experiments
which are presented in this thesis. The ontology factor represents the
difference in how the data are represented and how the ontologies are
structures, and with this factor we want to determine how this affects the
overall performance. We have programmed the application so that the
querying of the ontologies are done as similar as possible on both levels.
This was done to eliminate any interference from the application. There are
some differences in the programming due that the ontologies were different
and they will be discussed later on. In Chapter |4, the application and its
differences are explained in depth.

Before starting on the experiment we had to find a way to do the actual

experiment. We wanted to first create the planning matrix and then execute
each run as a HTTP post. To do this we needed to make a small script to

58

calculate the 2% runs and perform the HTTP posts. We chose to use the
programming language python to do this. That was because python was a
familiar language and it also had a package for DoH!| With the DoE package
we just declared the amount of factors and the matrix was created. At that
point the matrix looked more like Table |5.1, which meant that we had to
substitute the + and - with the levels of each factor. Further in the script we
used the package request?|to do the HTTP posts in python. Below one can
see the line of code executing the request.

r = requests.post(http://localhost:8080/linkedopendata-magnudae/index’,
data=payload)

The payload is a dictionary of all the values to post to the application. After
the request we saved the response which contained the response time of a
run. After each request we saved the run plus the response time and wrote
it to file on CSV format. To evaluate the result we used the programming
language R with the packages DoE.base [24], FrF2 [25] and BsMD [16]. R
allowed us to parse the CSV files created from the experiments and output
them in two types of graphs. A similarity with all the experiments were that
they all contained at least the factors ontology, transmission and fuel type.
To evaluate the graphs we have used a method in the FrF2 R package
called DanielPlot. This method assumes that the estimated effects are
normally distributed with means equal to the effects. The means of all
estimated effects are zero. Resulting in a plot where the estimated effect
would end up on a straight line. This plot is then testing whether all the
estimated effects have the same distribution. All deviations of the straight
line indicates a significant factor. In our results we have used the absolute
value of the effects, also called a half-normal plot. The advantages of using
the half-normal plot is that all large estimated effects will end up in the top
right corner. This means that the highest performance significance will end
up in the top right corner. [47]
Here is a quick explanation of the axes shown in each graph. The X axis
will show the absolute effect of each factor, shown in time. The values on
the X axis is represented in seconds which means that the a plot will have a
significance measured in seconds. The Y axis shows the half-normal scores.
There are two way of representing the graph and that is with either half-
normal plots or normal plots. With half-normal the effects on the X axis are
shown with the absolute effect. This means that all factors are placed with a
positive half-normal score. This is to avoid visual misleading scores because
with the normal scores, deviations from the line on negative scores might
confuse the reader who are evaluating the charts. The scores them selves
are a measure for which factor that is the most significant. We have also set
the alpha to 0.05 which means that we will tolerate a false percentage of 5%.
All of the planning matrices, graphs and results will be presented
with each experiment later on in this section. The discussion and
interpretation of the results will be presented in Chapter[6] Before starting
the experiments we will present abbreviations for each factor because their
full name made the graphs totally illegible. These abbreviations will be used

Thttp://pythonhosted.org/pyDOE/
2http://requests.readthedocs.org/en/latest/

59

in the graphs and tables further on in this section. The results from all the
experiments can be found in appendix|[C

+ Ontology = O

« Fuel Type = FT

e Transmission =T

+ Weight =W

» Total Weight = WT

« Emission = E

« Nr. of Gears = G

« Seating Capacity = SC
 Fuel Consumption = FC

e Doors=D

5.2.1 Experiment with three factors

The first experiment that was done, was the experiment with only three
factors. The goal here was to see how the ontologies behave with a small
amount of querying and factors. Table show the different factors and
their levels. We chose to start with a small experiment using only simple
factors which had few possible values. That is why we chose transmission
and fuel type as factors as well as the ontology factor. With these three
factors we got 23 number of runs. This meant that we had 8 runs to execute
against our application. This experiment was also replicated four times to
get the most accurate results. The experiment was small so the replication
did not cause any issues. The results were calculated by finding the average
response time for each run between all four replications.

The next step was to create the planning matrix for this experiment.
As mention in the beginning of this section we used a package in
python to create and fill out the planning matrix. Table shows
all the 8 runs for the experiment with three factors. We also ran a
randomized version the experiment to check whether the randomization
would influence the experiment. The results were almost equal which
eliminated randomization as a factor. Both results can be found in
appendix[C] After each run the response time were logged to that particular
run. The response time were then used to check for significant effect when
the experiment were evaluated

Like the rest of the experiments we used DanielPlot to evaluate and a
package in R to visualize the result. The Figure|5.1 on the next page|shows
the results. Here we see no significant factors. Still there are small effects
from several factors. In Table|5.5 on page 66| we can see the time effects
from largest to smallest. We see that the ontology factor has the largest

60

Half Normal Plot for time, alpha=0.05

£o)
Ty)
o
*
(%]
o
S
(8]
=)
© A |
€ *
<]
T
=
e
o)
S *
*
*
T T T T I
0.5 1.0 15 2.0 2.5

absolute effects

Figure 5.1: Resulting graph for the three factor experiment

effect on approximately 2.2 seconds which means that one of the ontologies
overall is 2.2 seconds faster. By reading the results from the linear model it
is the factor level -vso which has an overall faster response time.

5.2.2 Experiment with four factors

The goal with this experiment was to find the turning point of the ontology
factor. Here we also chose to use simple factors like fuel type, transmission
and nr. of gears. By simple factors we mean that each car model in the
ontologies did not have many values of each factor. We chose to use 6
gears as the middle value for number of gears due that the average number
of gears value was closest to 6 from both the Daimler data and Renault.
We also chose 6 because a car can not have 5.72 gears. The other values
were the same as the experiment for three factors. There is also another
difference with the nr. of gears factor. The difference is that that factor is a
quantitative value, which means that in our application it can have an upper
limit or a lower limit. That is represented with less than(<) and the greater
than(>) signs. In further experiments there will be more quantitative values
were they will be using the same notation. With quantitative value we chose

61

to use the average as an upper and lower limit to hit as many values as
possible in the RDF graphs. This was done because there was only feasible
to run a 2-level experiment.

In this experiment we had four factors which resulted in 2% runs. In
Table 5.6 on page 67/ we can see the planning matrix with all the 16 runs.
This experiment was replicated four times because it was not too expensive
to run and finished within a feasible time frame. Similar to the three
factor experiment, it was also randomized and the results were similar. The
results from both the randomized and the non-randomized experiment can
be found in appendix

In the Figure|5.2 on the facing page|we can see the graph representation
of the results. Here we got two points that are deemed significant. The first
one is the ontology. Here the factor ontology have jumped far up on the
top right. If we take a look at the Table |5.7 on page 67 we can see that it
is approximately a 3.3 seconds difference between the ontologies, meaning
the average difference of all the runs. To find out which ontology that were
3.3 seconds faster we checked the linear model behind the graph. It showed
the factor level -vso, which means VSO/COO, had a faster response time.
There were also some other significant plots in the graph. The interaction
between ontology and transmission was deemed significant. As we see
in Table |[5.7 on page 67| the performance difference with that interaction
was minimal, but it indicates that more than just the ontology will affect
the results. We also see some other factors and factor interactions being
deemed significant, but the effect in time is minimal. By just adding another
factor we got some significant results. Furthermore, we will present the
results for both a six factor experiment and ten factor experiment.

5.2.3 Experiment with six factors

With this experiment we wanted to further pressure the ontologies to show
us how many factors could be searched at once. In addition to the factors
used in the four factor experiment, we added emission and total weight. We
wanted to add factors that were more the opposite of the factors in the first
two experiments. These two factors have more possible values to search
through, which could affect the performance. This was an important aspect
to test and a goal for this experiment.

With six factors we got 26 runs. The planning matrix, which contains
these 64 runs, is shown in Table[5.8 on page 68 We used the same values
for the factors that were present in the four factor experiment. The value
for total weight was the average between the values in VSO/COO and CO,
(2115 +1981)/2 = 2048, as seen in Table The same procedure
was used to calculate the emission value. There the average value was 134.

In the graph |5.3 on page 70| we can see the results from running this
experiment. Here we got three different stages. In the first stage there are
a lot of factor interactions that do not have any significant effect on the
experiment. The majority of interactions are found here. In the second
stage we got some significant factor interactions and the factors them
selves. We see that there are a majority of interactions around between

62

half-normal scores

2.0

15

1.0

0.5

0.0

Half Normal Plot for time, alpha=0.05

#T

OFT:T

FT:T

FT
O FT

*

* Ok k% %k ¥

0 1 2 3 4
absolute effects

Figure 5.2: Resulting graph for the four factor experiment

63

the ontology factor and others. For instance the interaction between
ontology and emission. We see three factors playing a role here. Those are
transmission(T), emission(E) and total weight(WT). Emission is standing
out as the most significant factor of those three. In Table[5.9 on page 69|we
can see that in the 15 significant interactions, emission is present in 8 out
of 15. Most of them are high on the effects list. In the last group seen in the
graph, there is one lonely significant factor. That is the ontology factor. It
stands out as the absolute most significant factor. The effect ontology has
twice as much as the next on the list which is emission. If we compare this
graph to the other two we do see a pattern that the ontology will affect the
performance, depending on the amount of factors.

The linear model, which the results are visualized from, tells us that it
is the factor level option -vso, that gives the fastest response time.

5.2.4 Experiment with ten factors

The last experiment we did was a ten factor experiment. The goal here was
to see which factors would be deemed significant in a complete car model
search. With the results from this experiment we could discuss several
aspects of using the different ontologies. Here we added 4 new factors in
comparison to the six factor experiment. The newly added factors were
weight, nr. of doors, nr. of seats and fuel consumption. We used the same
approach here as in the previous experiments to calculate the average value
for the new factors. The average values can be seen in the planning matrix
in appendix[B} With 10 factors the amount of runs were 2'0. This results in
1024 number of runs which made the planning matrix too big to show here.

In the graph we can see the results from running all the
1024 runs. We can see that there are a lot of significant effects present here.
There are more than any of the previous experiments, but it is also more
factors and factor interactions. Unfortunately there are so many significant
factors that there are some of them that are illegible, but most of them have
a low impact on the significance graph. Like the six factor experiment we
also see here that there are three groups of significant factors. The first
group where most of them are placed range from around 2 seconds effect
to 11. Here there are a lot of factor interactions and why they are there will
be explained in the discussion. The second group is very like the second
group we saw in the six factor experiment, the only difference is that the
total weight (WT) factor is substituted with fuel consumption (FC). The last
group is the same for all the experiments, except the two factor experiment.
Here we find the ontology factor. In Table|5.10 on page 69| we can see the
top twenty absolute effects. This includes all the significant factors from the
last group and the second one, but also 5 from the first group. We can see
that emission also here are present in a lot of the entries, but so is ontology
as well. The new thing here is the fuel consumption has entered the most
significant factors, and is by itself higher than emission. The linear model
again tells us that the option -vso has a significantly lower response time
than -co

When we accumulated the results from all the runs we ended up with

64

the total amount of response time to be approximately 30095 seconds,
which is 8 hours, 21 minutes and 35 seconds. This were the total response
time after running all the runs. This did not take into account all the
other steps during the experiments which took time, like writing results
to file and initiating the application. This discouraged the replication of
the experiment due to the size and was also a reason why we did not do
experiments with more factors.

65

Factor Level 1 Level 2

Ontology VS0 -Co

Fuel type Diesel Unleaded Petrol
Transmission | Manual Gearbox Automatic Gearbox

Table 5.3: Factors and levels for experiment 1

Run | Ontology Fuel type Transmission
1 -Vso Diesel Automatic Gearbox
2 -co Diesel Automatic Gearbox
3 -Vso Unleaded Petrol Automatic Gearbox
4 -co Unleaded Petrol Automatic Gearbox
5 -Vso Diesel Manual Gearbox
6 -co Diesel Manual Gearbox
7 -Vso Unleaded Petrol Manual Gearbox
8 -co Unleaded Petrol Manual Gearbox

Table 5.4: Planning matrix for experiment with three factors

Factors Absolute Effect
(0] 2.2463476

o:T 0.4536135
O:FT:T 0.4534723

T 0.4513712

FT:T 0.4499820

O:FT 0.1240831

FT 0.1189629

Table 5.5: Table of effects for the three factor experiment

66

Run | Ontology Fuel type Transmission Nr. of Gears
1 -Vso Diesel Automatic Gearbox 6<-
2 -co Diesel Automatic Gearbox 6<-
3 -Vso Unleaded Petrol Automatic Gearbox 6<-
4 -co Unleaded Petrol Automatic Gearbox 6<-
5 -Vso Diesel Manual Gearbox 6<-
6 -co Diesel Manual Gearbox 6<-
7 -Vso Unleaded Petrol Manual Gearbox 6<-
8 -co Unleaded Petrol Manual Gearbox 6<-
9 -Vso Diesel Automatic Gearbox -<6
10 -co Diesel Automatic Gearbox -<6
11 -VSo Unleaded Petrol Automatic Gearbox -<6
12 -co Unleaded Petrol Automatic Gearbox -<6
13 -Vso Diesel Manual Gearbox -<6
14 -co Diesel Manual Gearbox -<6
15 -Vso Unleaded Petrol Manual Gearbox -<6
16 -co Unleaded Petrol Manual Gearbox -<6

Table 5.6: Four factor experiment

Factors Absolute Effect
O 3.36425047
O:T 0.71360066
T 0.71319784
O:FT:T 0.44379428
FT:T 0.44038347
FT 0.31174941
O:FT 0.31029022
0:G 0.09871266
G 0.08849497
O:FT:T:G 0.08782691
FT:T:G 0.08316709
FT:G 0.08228584
O:FT.G 0.07596003
T:G 0.06858634
O:T:G 0.06607516

Table 5.7: Table of effects for the four factor experiment

67

Run | Ontology Fuel type Transmission Emission Total Weight Nr. of Gears
1 -Vso Diesel Automatic Gearbox 134<- 2048<- 6<-
2 -co Diesel Automatic Gearbox 134<- 2048<- 6<-
3 -VSo Unleaded Petrol ~ Automatic Gearbox 134<- 2048<- 6<-
4 -co Unleaded Petrol ~ Automatic Gearbox 134<- 2048<- 6<-
5 -VSO Diesel Manual Gearbox 134<- 2048<- 6<-
6 -co Diesel Manual Gearbox 134<- 2048<- 6<-
7 -Vso Unleaded Petrol Manual Gearbox 134<- 2048<- 6<-
8 -co Unleaded Petrol Manual Gearbox 134<- 2048<- 6<-
9 -VSO Diesel Automatic Gearbox -<134 2048<- 6<-
10 -co Diesel Automatic Gearbox -<134 2048<- 6<-
11 -Vso Unleaded Petrol ~ Automatic Gearbox -<134 2048<- 6<-
12 -co Unleaded Petrol ~ Automatic Gearbox -<134 2048<- 6<-
13 -VSo Diesel Manual Gearbox -<134 2048<- 6<-
14 -co Diesel Manual Gearbox -<134 2048<- 6<-
15 -VSo Unleaded Petrol Manual Gearbox -<134 2048<- 6<-
16 -co Unleaded Petrol Manual Gearbox -<134 2048<- 6<-
17 -Vso Diesel Automatic Gearbox 134<- -<2048 6<-
18 -co Diesel Automatic Gearbox 134<- -<2048 6<-
19 -VSO Unleaded Petrol ~ Automatic Gearbox 134<- -<2048 6<-
20 -co Unleaded Petrol ~ Automatic Gearbox 134<- -<2048 6<-
21 -VSO Diesel Manual Gearbox 134<- -<2048 6<-
22 -co Diesel Manual Gearbox 134<- -<2048 6<-
23 -VSo Unleaded Petrol Manual Gearbox 134<- -<2048 6<-
24 -co Unleaded Petrol Manual Gearbox 134<- -<2048 6<-
25 -VSo Diesel Automatic Gearbox -<134 -<2048 6<-
26 -co Diesel Automatic Gearbox -<134 -<2048 6<-
27 -VSo Unleaded Petrol ~ Automatic Gearbox -<134 -<2048 6<-
28 -co Unleaded Petrol ~ Automatic Gearbox -<134 -<2048 6<-
29 -Vso Diesel Manual Gearbox -<134 -<2048 6<-
30 -co Diesel Manual Gearbox -<134 -<2048 6<-
31 -VSo Unleaded Petrol Manual Gearbox -<134 -<2048 6<-
32 -co Unleaded Petrol Manual Gearbox -<134 -<2048 6<-
33 -VSO Diesel Automatic Gearbox 134<- 2048<- -<6
34 -co Diesel Automatic Gearbox 134<- 2048<- -<6
35 -VSO Unleaded Petrol ~ Automatic Gearbox 134<- 2048<- -<6
36 -co Unleaded Petrol ~ Automatic Gearbox 134<- 2048<- -<6
37 -VSo Diesel Manual Gearbox 134<- 2048<- -<6
38 -co Diesel Manual Gearbox 134<- 2048<- -<6
39 -Vso Unleaded Petrol Manual Gearbox 134<- 2048<- -<6
40 -co Unleaded Petrol Manual Gearbox 134<- 2048<- -<6
41 -VS0 Diesel Automatic Gearbox -<134 2048<- -<6
42 -co Diesel Automatic Gearbox -<134 2048<- -<6
43 -VSO Unleaded Petrol ~ Automatic Gearbox -<134 2048<- -<6
44 -co Unleaded Petrol ~ Automatic Gearbox -<134 2048<- -<6
45 -VSO Diesel Manual Gearbox -<134 2048<- -<6
46 -co Diesel Manual Gearbox -<134 2048<- -<6
47 -VS0 Unleaded Petrol Manual Gearbox -<134 2048<- -<6
48 -co Unleaded Petrol Manual Gearbox -<134 2048<- -<6
49 -Vso Diesel Automatic Gearbox 134<- -<2048 -<6
50 -co Diesel Automatic Gearbox 134<- -<2048 -<6
51 -Vso Unleaded Petrol ~ Automatic Gearbox 134<- -<2048 -<6
52 -co Unleaded Petrol ~ Automatic Gearbox 134<- -<2048 -<6
53 -Vso Diesel Manual Gearbox 134<- -<2048 -<6
54 -co Diesel Manual Gearbox 134<- -<2048 -<6
55 -VSo Unleaded Petrol Manual Gearbox 134<- -<2048 -<6
56 -co Unleaded Petrol Manual Gearbox 134<- -<2048 -<6
57 -VSo Diesel Automatic Gearbox -<134 -<2048 -<6
58 -co Diesel Automatic Gearbox -<134 -<2048 -<6
59 -Vso Unleaded Petrol ~ Automatic Gearbox -<134 -<2048 -<6
60 -co Unleaded Petrol ~ Automatic Gearbox -<134 -<2048 -<6
61 -Vso Diesel Manual Gearbox -<134 -<2048 -<6
62 -co Diesel Manual Gearbox -<134 -<2048 -<6
63 -Vso Unleaded Petrol Manual Gearbox -<134 -<2048 -<6
64 -co Unleaded Petrol Manual Gearbox -<134 -<2048 -<6

Table 5.8: Six factor experiment

68

Factors Absolute Effect
0] 26.606142437
E 13.677912625
O:E 13.647011375
E:WT 11.981633625
O:E:WT 11.949456000
O:T 11.701184688
T 11.655512437
O:T:E 0.149844500
T:E 0.116583125
WT 6.777984563
O:WT 6.749922313
O:T:E:ZWT 5.839090500
T:E:WT 5.810340250
O:T:WT 4.198654187
T:-WT 4.166891812

Table 5.9: The significant effects of the six factor graph

Factors Absolute Effect

0 58.1785542324229
E:FC 45.6971032050781
O:E:FC 45.5502538925781
FC 38.6140886777344
O:FC 38.5571969433593
O:E 35.3967871113281

E 35.3827083613282
O:T 33.1249425527344
T 33.1154579746093

O:T:E:FC 29.3077075019531
T:E:FC 20.2986405957031
O:T:FC 28.2420862089844

T:FC 28.2325333808593
O:T:E 25.3121093378906
T:E 25.3039236347656

WT:E 11.9101989902344
O:WT:E 11.8908780371094
O:WT:FC 11.7234715332032
WT:.FC 11.7140515488281
O:D:E 10.1241599902344

Table 5.10: The top twenty significant effects of the ten factor graph

69

half-normal scores

1.0

25

2.0

15

0.5

0.0

Half Normal Plot for time, alpha=0.05

0
£
OE
E:WT
O:EWT
O:T
5T
;9' E
o
)T T
. B
I I I I I I I
0 5 10 15 20 25 30

absolute effects

Figure 5.3: Resulting graph for the six factor experiment

70

half-normal scores

35

3.0

25

2.0

15

1.0

0.5

0.0

Half Normal Plot for time, alpha=0.05

absolute effects

Figure 5.4: Resulting graph for the ten factor experiment

71

0O
£:FC
O.E:FC
Be
@%ﬁ C
_ . o

T T T T T T T T
0 10 20 30 40 50 60 70

72

Chapter 6

Discussion

In this chapter we will discuss the results presented in the previous chapter.
We will take a look at similarities and differences between the two ontology
approaches, and also present possible ways to solve issues that we found in
both. In this chapter will use the two different terms, representation and
structure, to discuss the ontology approaches. The structure is the ontology
definitions from classes to properties. The representation is how the actual
data is represented with each ontology. For instance, how the fuel type
Diesel is represented. First we will take a look at the different experiments
and discuss the findings, then we will discuss the generic versus the specific
ontology aspect.

6.1 Evaluating the results

The ontologies are focused on defining a partially defined product (PDP),
which in our case is car models. The main difference between them is
that CO was made to be a generic ontology which could represent any
PDPs. The biggest ontology difference we found was their way of preserving
compatibility between components. This difference was the main focus for
our experiments and was explored to find out the strengths and weaknesses
of both ontologies. Compatibility information is what defines a PDP,
which means that this study will not necessarily be applicable to ontologies
defining simple products.

The two small experiments were replicated four times to ensure that
the results would be as correct as possible. The average response time
were calculated between the four replications. This was done to remove any
anomalies in the experiments. They were also randomized to check whether
the order of each run would affect the performance. There were a slight
difference in the -co runs with about some tenths of a second. This will be
discussed in Section The two large experiments were not replicated
because their workload were too big to replicate. Especially the ten factor
experiment was too expensive to run more than once.

The results presented here studies the ontologies based on use cases
similar to the one described in Chapter This means that the scope
of the discussion is based on the assumption that the ontologies should

73

manage to query more than one specification. The results show how the
data respond to this kind of big operations. The thesis did not investigate
every application use case, which is a weakness with this study. Regardless,
the use case that was chosen emphasized that the ontologies would need
to handle a large workload. This was a reasonable assumption we made
because when handling data from several sources, the ontology structure
and representation could have a large impact.

6.1.1 The small scale experiments

The first experiment, using only three factors, was done to simulate a small
workload on the ontologies. This can represent an application that present
the user for a specification one at the time. The configurator Renault has
on their web page does exactly that[f] Our application made the workload
on both ontologies to be as equal as possible. The only difference from
a programming perspective was that with CO we had to move to a new
configuration URI after each specification choice.

In the Figure we can see that there were no significant
effects, but there was one factor that was starting to move away from
the others. In the results data found in appendix |[C| we can see that the
Configuration Ontology was almost two seconds slower than the VSO/COO
runs. Three out of four CO runs kept the response time around two
seconds, but one run had to use approximately 3.5 seconds which resulted
in an average run time of ~ 2.3 seconds. In a study done to research the
amount of time a user would be willing to wait, they found out that the
tolerable waiting time for any information retrieval was approximately 2
seconds. [136]] This means that with three factors we were still within the
time frame for a good user experience.

One reason that CO was slower than VSO/COO for this experiment is
that all the car models represented with CO is placed in a separate RDF
graph. Each model had their own lexicon with all the information. This
means that an application has to retrieve in all 22 RDF graphs, the amount
of cars Renault has present in their API. These 22 retrievals are done right
after a HTTP post is detected. This differs from how the cars in VSO/COO
are represented. There it is one RDF graph per base model, which means
that there were only two RDF graphs to retrieve. In our application this
results in 20 more RDF graph retrievals with CO than VSO/COO and
because the three factor experiment was so small, it had a higher impact
than in the later experiments.

Another factor that would influence the results is the amount of values
the search has to iterate over. In Table we presented all the
average values and the average number of values present in the Daimler
and Renault data. We can see that CO have 0.54 more fuel types on average
to iterate over and 0.3 more transmissions. This is not a lot, but can account
for some delay in the response time.

Moving over to the experiment with just one more factor, we hoped for

Thitp://www.semanlink.net/2012/cold/configurator.html

74

http://www.semanlink.net/2012/cold/configurator.html

a more significant result. The Figure|5.2 on page 63|is looking very similar
to the figure from the three factor experiment. It is only the ontology factor
that sticks out from the line of other factors and factor interactions. In
Table[5.7 on page 67/we can see that the ontology gap is starting to increase.
Here the experiment gave results pointing to that VSO/COO had a ~ 3.4
seconds faster response time. If we take a look at the results in appendix
we see that VSO/COO is still keeping the response time below a second.
While CO has moved from average of ~ 2.3 seconds to an average of = 3.5
per run. This happened after introducing another factor, nr. of gears. The
average number of gears possible for one car model in CO is approximately
1.3 while in the VSO/COQO it is 2.3. We also see in the effect table that the
number of gears has a minimal significance, only a 0.11 second impact.
Another observation is that the ontology followed by transmission
interaction is almost deemed a significant factor. This is most likely a
combination of number of values and the order each specification is queried
by the application. This will be further explained and discussed in the
larger experiments where it becomes a bigger factor and we can see a bigger
significance. In the larger experiments the 22 graph retrievals done in a
HTTP post can be disregarded as a factor due that it will be insignificant.

6.1.2 The large scale experiments

The last two experiments we define as large scale experiments. This
is because the workload and time consumption were significantly larger
than the two previous experiments. Both of these experiments were done
to simulate a workload for an application were one could define all the
specifications at once. Defining all specifications means that a user can
query for all specifications that may be present in a product model. This
differs from the environment simulated with the two previous experiments.
Today there are no complete applications where one can do a car search
without defining one factor to start with, like car model or fuel type. Even
the application where one can define a car on Volkswagen’s homepages, one
first have to choose the model before defining the specifications?

The first of the large scale experiments were the one with six factors.
This experiment added two more factors to each run. In Figure
we can see that there are a lot more significant factors than the
earlier experiments. The absolute effects have increased by a significant
amount. Similar to the other experiments, this experiment also shows that
the ontology factor take the rank as the most significant effect. Another
observation is that the ontology factor has twice the effect than the closest
factor, as seen in Figure[5.9 on page 69| We see that the difference between
the ontologies have increased to 26.6 seconds effect. The average response
time for VSO/COO is ~ 0.23 seconds while the average response time for CO
is ~ 27 seconds. This is a significant amount of time used to query the CO
ontology and this difference will be discussed later on in a separate section.

We also got several other significant factors with the six factor exper-

Zhttp://www.volkswagen.co.uk/new/range

75

http://www.volkswagen.co.uk/new/range

iment. The closest one to the ontology factor was Emission (E). We also
have Total Weight (WT) and Transmission (T) in the group of significant
factors. Emission stands out as a most significant factor besides the onto-
logy because it has a larger number of values present in the RDF graphs. In
Table[4.1 on page 54] we can see that each car in the CO model has an aver-
age of 6.4 values of emission. This is the highest amount of values for any
of the factors. Within the VSO/COO models there are an average of 3.75
values. This means that with the emission factor we have to search over
more values than other factors. We see that total weight also has a lot of
values present in the CO ontology, but the effect is half the effect of emis-
sion. The order which each specification is queried also affects the result.
This is because a specification can narrow down the possible new values to
iterate over. The query order for the six factor experiment is as follows:

1. Gears (G)

2. Transmission (T)
3. Emission (E)

4. Total Weight (WT)
5. Fuel Type (FT)

E comes just before WT, which most likely narrows down the search. We
also see T as a significant factor. This is most likely because of the order
each specification is queried. T will be queried early and is the deciding
factor for which values that will be checked later on. We also see that G is
queried early, but has almost no impact on the experiment. This is most
likely because G does not narrow down the result as T is. The transmission
will most likely decide what the emission rate and fuel type can be, while the
nr. of gears will not. There are some factor interaction which are present on
the top absolute effect list because of both the query order and the number
of values.

Number of values in the RDF graph and the order of which each
specification is queried are linked together. The order especially, can be
altered with programming to make the performance better.

The last experiment done was the one with ten factors. This experiment
had four more factors than the six factor experiment. We chose to add
factors which represented specifications that were present in every car
model in each RDF graph. That was because some specifications like height
was not always declared in a car model and then would skew the results.
These incidents were present in CO’s RDF graphs.

In Figure [5.4 on page 71 we can see the results from this experiment.
There are unfortunately a lot of illegible significant factors, but these are
the less significant ones. In Table |5.10 on page 69| we see the top twenty
absolute effects and similar to all the other experiments, O is on top of
the list. The main difference between this experiment and the six factor
experiment is that it is a lot closer between the significant factors than
before. The impact of the ontology factor has increased from the last

76

experiment, but there are other factors that now have a much greater
impact than before. The average response time of a run done against CO
was =~ 58.5 seconds while a run against VSO/COO had an average response
time of ~ 0.3 seconds. This corresponds with the absolute effect of the O
factor to be 58 seconds.

If we take a look at the other factors, Fuel Consumption (FC) has taken
the top single factor spot on the list. This can be explained with the same
reason as when emission was topping the list in the six factor experiment.
Each car has a lot of possible FC values to iterate over. In CO, each car has
an average amount of values of approximately 5.8. For VSO/COOQ it is 3.75.
This is the second highest overall after emission. This by itself does not
explain why FC is on the top of the list, but when we take a look at when FC
is queried it becomes more clear. The order each specification is queried is
shown below. We can see that FC comes right before E which means that it
will have a greater impact on the amount of values checked later.

1. Gears (G)
2. Transmission (T)
Fuel Consumption (FC)

Emission (E)

@

Doors (D)

o

6. Total Weight (WT)
7. Fuel Type (FT)
8. Weight (W)

9. Seating Capacity (SC)

If we take another look at Table we see that there are only three
single factors except O that are in the top 15 significant factors. After the 15
significant factor the absolute effect drops significantly. The three factors
are E, FC and T. E and T are present because of the same reasons as in the
six factor experiment. We also see in the top 15 that there are only these
three factors present in all the factor interactions as well, which indicates
that T, FC and E affects each other. This is logical because if a car has a high
fuel consumption it also has a high emission rate. There are some possible
explanations for why there are so many significant factor interactions in
some of the experiments. The order will affect this as mention above.
Another explanation is that we chose an average value to be an upper and
lower limit of a factor. We used these as factor levels to avoid an unrealistic
high number of levels. This could have opened for more new specifications
to check on one level of the factor. As we see in the Table|5.10 on page 69|
E:WT is higher than WT itself. This might indicate that one of the levels of
E will open up for more values to traverse in one of the levels of WT. This is

77

a complex matter which will depend on each product model as well as the
interaction between the specifications.

In the next section we will focus on the ontologies and the work done
around them.

6.2 The ontology impact

The goal with this thesis was to study the use of a generic ontology versus a
product specific ontology to represent complex products. We also wanted to
try to work out a recommendation for further use. During the experiments
it became clear that the ontology structure as well as the data representation
had a major impact on the performance. In this section we will take a look
at several aspects on how the ontologies are used today and what can be
done differently.

6.2.1 Programming, point of view

An important aspect of the recommendation is how manageable the
ontologies are. Renault emphasizes in their paper about their ontology,
that simplicity for a third party user is a key factor in their choice of
solution. They argue that one can not expect strong reasoning capabilities
from client agents, and that is one of the reasons why they have chosen
to do all reasoning in their API. [22] This is why they chose to represent
their data as a graph where one chooses a model, then moves for each new
specification to a new valid configuration in the graph. This in theory is a
great solution, but this expects a user to start at a specific starting point in
the graph. Renault has made the assumption that the user wants to choose
the car model first, which is one way to solve it. The problem arises when
a user has little to no previous knowledge about the car models. Then it
might be better suited for a user to start specifying the fuel type before
choosing a model. This was one of the major issues working with the
Renault RDF graph. Our application wanted to let the user choose which
specification to begin with. This meant that we needed to have access to
anywhere in the graph. That was achieved through the lexicon of each
car, which is a recipe for the product model. Each lexicon had defined all
the specifications and had after our alignment VSO properties pointing at
them. Based on our investigations, we disagree with the statement made
by Renault (2013), that we can not expect any reasoning capabilities from
third party users. The third party users are not just an average person, but
most likely retailers and other online vendors wanting to enrich their data
with constraints directly from the manufacturer. This means that there is
already a need for a some computer science background in order to utilize
the data properly.

To get access to the lexicon was easy enough, but understanding the
data there were not the simplest task. In Listing |6.1 on the next page]
we can see a representation about the same specification, represented in
both CO and VSO/COO. We can see that both values are represented as

78

<http://uk.co.rplug.renault.com/product/gen/spec/PT1121_118_190_/—#this>
a gr:QuantitativeValue , co:Specification , :var_PTi121 ;
rdfs:label "118(190)"@en ;
co:specld "PT1121_118_190_"

daim: A180CDI_speed_190_0 a gr:QuantitativeValue ;
gr:hasValue "190.0"""xsd: float ;
gr:hasUnitOfMeasurement "km/h"~"xsd:string

Listing 6.1: Representation differences in CO and VSO/COO

string literals. The top speed specification in CO is represented as two
values in one specification. That is because they have chosen to store both
miles per hour and kilometres per hour in the same value. This makes
the interpretation of the variable ambiguous. Another problem is that this
specification does not have any indication on what it represent. One have to
go a step back into the configuration variable to find a label telling us that
it represent the top speed. One of the key concepts of semantic web is to
make the data more machine readable with properties and value indicators.
In the specification from VSO it is both used a property which defines the
literal to be a value and there is a value indication telling the machine that
this is a float value. There is a property from CO called hasValue, but
unfortunately it can not be used here. See paragraph [3.4.2 on page 30| for
information.

Another example of inconsistency with the literals is the use of the
decimal mark within the Renault representation. There are several floating
point values which are represented, but these are sometimes represented
with "." as a decimal mark and sometimes with ",". This seems like a minor
issue, but from a programming perspective there has to be a interpreter for
both.

These issues with the data representation can easily be altered just
by representing the data more consistently and in line with the semantic
principles.

The unit of measurement in CO is represented in the configuration
variable which is different from the VSO/COO representation. The
configuration variables were disregarded during the alignment due that
they had the same point of interest as the VSO properties. That is why unit
of measurement is lost in the representation after the alignment.

6.2.2 Ontology performance

Here we will try to find out why CO had a longer response time than
VSO/COO in the experiments. The overall performance against the Renault
data set were unsatisfactory.

We believe that the problem is based in the representation of the RDF
graph constructed by Renault and not necessary in the ontology structure.
We can take a look at the difference in how a query is executed against
both ontologies. The way to choose a specification is to find if it exist in
a car model, then check if that specification is valid with any previously

79

chosen specifications. The validity is determined based on the previous
specifications selection. In the Renault RDF graph this means for n
amount of cars we have to do n searches and then move n times for each
configuration. This is just for finding one specification. If we want to search
for m specifications the worst case scenario, with every specification being
compatible, will be O(m(2n)). This equation does not take into account
the number of values present in each specification. The complete equation
would have the number of values for each specification added. The result
from this calculation represent the number of SPARQL queries which are
done for one run of the application with m specifications. The amount of
queries that have to be executed to find a valid car in VSO/COO is O(m * n)
which in comparison is only the half of CO.

If every car model in both representations would have the same
amount of values for every specification the only theoretical difference
in performance would be the double searches. Unfortunately that is not
the case and it would unlikely occur in a real life scenario. If we take
another look at the Table 4.1 on page 54| which contains the average
number of values in each ontology representation, we can see that in CO
there are overall more values present. This will contribute to some of the
performance issues with the CO representation. That is because for each
valid value, it has two more SPARQL queries and retrievals to execute. It
should not alone be responsible for the effect of around 58 seconds in the
ten factor experiment. This in conjunction with the compatibility validation
is what delays the response time heavily within the Renault RDF graph.

There are some lurking variables in our experiments. One of them were
the performance of the Renault servers. It may have been performance
differences on their servers. This can be seen in the randomized and
non-randomized runs on the two smaller experiments. Even though the
difference was small, it indicates that servers will affect the performance.
Another lurking variable which affected the experiments was the order each
specification were queried. This was not taken into account as a factor in the
experiments. After analysing the experiments, the order has become a part
of the discussion of why there are so many significant factor interactions.

A possible bottleneck in the VSO/COO RDF graph is that it depends on
reasoning to be effective. In our case there were needed reasoning to get
all symmetrical properties around the compatibility. In the application this
was done with the in-built OWL reasoner in Jena. This reasoning job was
done after the HTTP post, which means that it affected the response time
of all -vso runs. This was necessary to check because reasoning was one of
the reasons why Renault chose to propose their API. In the experiments the
reasoning had small impact on the actual results, but we have been working
with small data sets from both Renault and Daimler. The computation
of the reasoning will increase as more car models are added to the RDF
graphs. The reasoning can be a hard computation. One solution can be
to contain all the compatibility information in a separate RDF graph or let
each product model have their own RDF graph with the information. This
may let the reasoner return more quickly with the inferred triples. With
reasoning there is the possibility of pre-computing the inferred triples.

80

This demands a bigger back-end for the third party user. If that is a too
big task for the user, one can do the reasoning in real time. Here one
can make a reasoner specific for the needs of the RDF graph. In our
case, we only needed to infer the rule of symmetrical properties because
coo:incompatibleWith is defined as owl:SymmetricalProperty. Another
solution would be to use the Semantic Web Rule Language, SWRIJ|, to
make some simple rules to apply to the RDF graphs. With SWRL we would
only need a rule to say that coo:incompatibleWith is symmetrical. It can
be seen below. This would make the operation of inferring triples less
complex.

incompatibleWith (?x, ?y) —> incompatibleWith(?y, ?x)

It has some drawbacks which is that SWRL is not supported directly
in Jena. This means that one would have to execute the SWRL rules with
Pellet, an OWL 2 reasoner, either through Jena or through Protege. This
also demands more than just basic knowledge about semantic technologies.
Maybe the easiest approach to this problem is to divide the compatibility
triples into separate RDF graphs before doing a general reasoning. Then
afterwards add the inferred triples to the RDF graph about the product
models to avoid inferring unnecessary information.

In both representations there are possible bottlenecks. Some of them
have shown themselves to be more severe than others. In Renault’s
representation the bottleneck was the way of representing compatibility
and in Daimler’s representation it was the reasoning. Both cases may result
in a loss of user experience, but this can be solved with more back-end
functionality and smarter, more aimed solutions in the application.

6.2.3 Generic versus product specific

Creating ontologies to represent data about complex products are a new
field of study. There are not many ontologies which can represent such
data in a good way. The biggest challenge is to represent component
constraints without losing precision. Renault presented a generic ontology
which they argue that can be used on any complex product, for example
cars or computers.

The ways of representing a specification is almost the same in both
ontology approaches. The class Specification in CO can be seen as equal
or as a sub class of either QualitativeValue or QuantitativeValue from
GoodRelations. The VSO representation is similar, but demands more
knowledge about the RDF graphs. This is because the two classes have
different properties to indicate the actual value contained, respectively
gr:name and gr:hasValue. Before acquiring the actual value one have
to get the correct specification which in VSO can be done by following
the correct property, like vso:speed. CO relies on instances of the class
ConfigurationVariable to declare in a string literal what specification it
contains. This is done to keep it totally generic. It is unfortunately not any
way to keep it generic without using string literals as identifications. This

3http://www.w3.org/Submission/SWRL/

81

http://www.w3.org/Submission/SWRL/

is not an ideal situation because it makes the data less machine readable
which is a step away from one of the key concepts of semantic web. In a
paper published in 2006, Tim Berners-Lee mention the importance of URIs
because it allows machines to process the data directly. [40]] In VSO there
are not until the application retrieves the actual value that it deals directly
with a literal.

One similarity between both ontologies are the way they represent
special equipment. Here both ontologies have to use a string literal as
identification. For instance if one wants to have an option on how many
cup holders there are possible in this particular car model. In VSO/COO it
is first wrapped in a coo:SpecltemCollection which then have URIs to each
possibility, represented as a class coo:ChoiceOrComponent. This is almost
the same as in CO where they use the same representation like all the other
specifications. First there are a co:ConfigurationVariable which contains
the ID of the component and URIs to all the possible specifications.

The generic ontology allows one to represent any data with some kinds
of constraints, but as we have discussed it adds more workload on the
actual representation. This is because in the ontology itself there are
few constraints and guidelines on how to set up your representation. It
means that if a user represent their data about car models and another
user does the same, it is not certain that they represent the same things
in the same way. With a product specific ontology one would often get
a more controlled representation of the data which removes ambiguous
information. The ranges and domains are more clearly specified. This can
also be too rigid when describing complex products. Sometimes one might
want to use another ontology to represent the actual values than the classes
from GoodRelations. An example could be if a third party user needs to
describe more than one type of product they would need an ontology for
each type of product.

6.3 Pros and cons

There are several ways of making an application handle PDPs. As
mentioned there can be differences in collecting data, presenting data
and using data. This means that a recommended ontology and data
representation needs to be robust. This means that it has to be able to
perform well under different scenarios. The ideal semantic situation would
not rely on string comparison, but with both ontologies one have to deal
with string literals eventually. A string literal is still the value a user is
presented with. It depends on how much of the data one wants machine
accessible and how much is for internal human reading.

The ontologies in this thesis are not made for tackling every possible
problem, but can perform well within their domain. The ontology structure
of CO in conjunction of the data representation, is made for one particular
scenario. That is to specify one specification after another, not all at once.
Here CO has several tools at disposal to make it easier trimming down the
result sets. The property co:impossible was to no use in our application

82

due that our application specified all specifications before searching. This
property lets the application remove possibilities if a user have chosen
some specifications. One would still has to use the lexicon as reference,
but could eliminate further possibilities. The property co:impliedSpec does
something similar and gives the user a list of specifications that are implied
and do not need to be searched for. COO have some of the same functions
and possibilities, but some of these has to be reasoned over to be useful.
One can produce the same functionality by using coo:incompatibleWith
with reasoning.

From the performance tests and programming, the product specific
ontology came out as the best. This, as discussed, is not solely due to
the ontology structure. In the generic ontology, many of the issues lies
within the representation. The generic ontology can easily be used to
represent different PDPs which will let the user stick to one ontology. Some
alterations to the representation is needed to make it more robust than
what Renault have done. They mention that reasoning is something a third
party user should be shielded from. We disagree because if the user can
choose when the reasoning is done they can avoid possible bottlenecks.
This means that for the representation to work properly we recommend
using a similar compatibility system to COO. Here one can add the triples to
each RDF graph of the product model and do reasoning here. This gives the
user freedom to choose whatever way of reasoning and storing they might
find most applicable, which could be to pre-compute any big reasoning
operations that may be unsuited for real time. This will remove all the
extra queries which has to be done to move through Renault’s large graph of
configurations. This representation puts more workload on the third party
user, but it will most likely decrease the response time drastically.

6.3.1 Alterations for the future

In addition to changing how the compatibility is done in CO, we would
also do some other alterations. We would still keep the string IDs for
every specification, but added a co:hasValue for value representation in
each specification. It could be called co:specValue. Then it would not
only be configuration variables which have a property like this to point
to all the specifications it contains. We would also add type to all the
literals. With RDF 1.1, W3C is trying to introduce a better literal standard
than before. [26]] Now every literal is at least typed as a string. If all
values were typed, one could easily determine if one is working on a
float or a string. Both these actions are done to make the representation
more human and machine readable. To keep the string IDs for each
specification one could use a lexicon of IDs or something similar to make
it easier for third party users to understand the data representation.
With these measures CO will become more similar to VSO/COO, but
still maintain the possibility of being a generic ontology. There is also
the possibility of using CO in conjunction with other ontologies. For
instance that one can use VSO properties/classes to define specifications
on cars and use the regular CO properties/classes to define computers.

83

CO should anyway be combined with GR. GR adds valuable functionality
that CO could benefit from. For instance the property for stating unit
of measurement, gr:hasUnitOfMeasurement and many more. This could
make the specifications more informative than they are today.

In VSO/COO there are not much room for alterations, but one can add
new properties and classes if it is necessary. As an example we added
the property daim:emission to be able to represent emission rates of a car
model, seen in Listing |4.3 on page 42| With VSO/COO one also get more
functionality in the ontology which can move some of the functionality
from the application to the representation. This will utilize semantic
technologies more efficient and will be more in line with the semantic
principles. With VSO/COO today one can use reasoning, SWRL rules or
other technologies to decrease the workload of an application. An example
would be that with COO a derivative can inherit features from a trim and a
base model with some simple SWRL rules. This can decrease the amount
of triples and take some workload of an application. With CO it is not that
easy with the representation they have today. This is because the properties
like co:impossible, co:impliedSpec and others are not meant to derive new
information, just exclude or include new information in each configuration
step. These properties are made as an alternative to reasoning to eliminate
the need to infer new information. This is done to hide reasoning from
the user. There would be possible to apply other semantic technologies
to try to derive new useful information, but due to the large amount of
configurations and configuration links that job would have been too huge
to manage. They state in their paper that they got more than 10%° valid car
configurations, which would be impossible to reason over because there is
a configuration instance for every valid state.

84

Chapter 7

Conclusion

Research around complex products and semantic web are a young field of
study. Today, there are not many vendors representing data like this, but
the possibilities are endless. With more and more information being loaded
to the internet, there is need for a way for both humans and machines to
understand the information. The main challenge has been to represent
component constraints about product models. Semantic web has been a
proposed solution to that problem and is more widely used todayf!}

In this thesis we have investigated the differences and possibilities
between a generic ontology versus a product specific ontology to represent
complex products.

In order to do this, we have used several ontologies and their ways of
representing data. The research was based on two alternative structures
and representations, CO and VSO in conjunction with COO. These ontolo-
gies used linked oped data from Renault and Daimler, and referred to car
models and their specifications. Furthermore, our investigation have been
based on experiments done against a prototype that represented a real life
application using the data from both car manufacturers.

We recommend that both alternatives should be used for representing
complex products. Using only CO there should be done some alterations
to reduce bottleneck issues. We would not recommend using the data
represented by Renault today, because it is not robust enough and has
a too long response time for bigger operations. It is also important that
the data representation is done properly to ensure readability for both
humans and machines. Today, the Renault representation is neither
very understandable for machine nor for human. This is reflected in
the discussion about the application development. The results from
the experiments done against the application shows that the current
representation is not feasible with today’s performance standards and user
expectations. This is the area where most of the workload is on the use of
the ontologies. This means that for a third party user VSO in conjunction
with COO are the best solution to work with product models. However,
this approach is limited to only represent data about car models. It would
also require some reasoning to be effective, but with the technology and

1Google Knowledge Graph. The expanding of data available on dbpedia and freebase.

85

knowledge today that should not be a to difficult issue. For other users
wanting to represent constraints between product models, CO can be a
viable options if the proper alterations is done. It can be very useful when
working with several data domains, but then the compatibility issue has
to be solved. One solution could be to use the compatibility approach
that COO offers. This would result in adding several new triples in each
lexicon to avoid the configuration traversals. It would also add the need for
reasoning to be effective, which is opposite of what Renault proposed. If
the compatibility issue is solved we believe the performance can be feasible
for almost every scenario. It will demand more from the third party user,
but can utilize more than just data about car models. To make it even
more effective, there should be done several other alterations to both the
representation and the ontology as discussed in Section|6.3.1

Our recommendation is based on giving the user freedom to query the
data in several ways. A future goal would be to do a more thorough test
of the ontologies for all possible scenarios, since the versatility of the on-
tologies are huge. We believe that ultimately the data from manufacturers
and others can be profitable for several online vendors and third party sites.
Other manufactures of complex product could profit from using semantic
technologies to represent their data.

Based on the investigations done in this thesis we conclude:

» Both ontology approaches can be useful, but the generic needs several
alterations to be more robust.

« The representation of the data is just as important as the ontology
structure.

« Data should be as machine readable as possible, and properties
denote more information, rather than classes if it is possible.

» To speed up the performance of the generic approach, the compat-
ibility issue has to be resolved. One solution is to use the approach
proposed in COO.

» Reasoning over the product models should be applied to increase
efficiency and versatility.

86

Chapter 8

Further research

This thesis just touches some of the issues with complex products and
semantic web. Our application, at this point, can only test the worst case
scenario with minimal pre-computations and local storage. This was done
to put most of the workload on each representation and the structure of
each ontology.

There are several things which can be further researched around this
field of study. Here are some of the possibilities we found during this thesis:

« Ontology structure and data representation

— Research more ways of representing data. This includes what is
the best way for both humans and machines to understand and
use the data. This means looking into how to represent ID’s,
values and constraints to avoid ambiguity.

— Research different ways of querying data. Researching which
order one should query for a complex product. In our application
there was room for making the performance better with a
smarter querying. This could be done by identifying the
specifications with a large number of values and constructing the
queries with the goal of checking the fewest number of values.

« Third party user

— Researching different ways of pre-computing and using local
storage to improve performance for end-users. There is room
for performance improvement with more pre-computations and
storing some information locally. This puts more workload on
the third party user. For further research one can take a look at
lightweight solutions to help third party users. A guideline to use
the linked open data.

Furthermore this field desperately needs more data. Today there is
only one manufacturer which has opened their data for the public and that
is Renault. Volkswagen had a project where they opened their data, but
that was canceled and the data was removed in early 2013. To get the full
potential out of applications using this data, everyone has to open up their

87

data and represent it in a way which is easy to acquire. It is needed that
not only the car manufacturers, but also other companies which makes and
sells complex products. We think there is a big possibility for third party
users in cooperation with the manufacturers to make applications around
these products which will make it easier for the costumers.

88

Bibliography

[1]

[2]

[3]

[4]

[5]
[6]

[7]
[8]
[o]
[10]

[11]

[12]

[13]

[14]

[15]

URL: http://wiki.goodrelations-vocabulary.org/References| (visited on
01/04/2013).

URL: http://wiki.goodrelations-vocabulary.org/References| (visited on
10/02/2014).

URL: http://www. heppnetz.de/ontologies/goodrelations/v1 . html#
MasterCard (visited on 10/02/2014).

URL: https://developers.google.com/events/io/sessions/351310959
(visited on 01/12/2013).

URL: http://nodejs.org/ (visited on 20/03/2013).

URL: http://benchmarksgame.alioth.debian.org/u32/javascript.php
(visited on 15/02/2014).

URL: http://jena.apache.org/ (visited on 15/03/2013).

URL: http://maven.apache.org/ (visited on 12/02/2014).

URL: http://spring.io/ (visited on 12/02/2014).

H. Afsarmanesh and M. Shafahi. ‘Specification and Configuration of
Customized Complex Products’. In: (2013). URL: http:/link.springer.
com/chapter/10.1007/978-3-642-40543-3_9#page- 1/ (visited on
20/02/2014).

ARQ - A SPARQL Processor for Jena. The Apache Software Founda-
tion, 2011 - 2013. URL: http://jena.apache.org/documentation/query/
index.html (visited on 15/03/2013).

2006. URL: http://www.w3. org/Designlssues/LinkedData . html
(visited on 10/03/2014).
D. Brickley and R. V. Guha. RDF Vocabulary Description Language

1.0: RDF Schema. World Wide Web Consortium, 2004. URL: http:
/Iwww.w3.0rg/TR/rdf-schema/ (visited on 02/04/2013).

IKS Semantic CMS Community. Semantic Lifting For Traditional
Content Resources. Lecture. 2012. URL: http ://www . slideshare .
net/IKS_Project.eu/lecture-semantic- liftingpresentation (visited on
19/03/2014).

R. V. Guha D. Brickley and Layman A. Resource Description
Framework(RDF) Schemas, Working Draft. World Wide Web
Consortium, 1998. URL: http://www.w3.org/TR/1998/WD - rdf -
schema-19980409/ (visited on 10/04/2013).

89

http://wiki.goodrelations-vocabulary.org/References
http://wiki.goodrelations-vocabulary.org/References
http://www.heppnetz.de/ontologies/goodrelations/v1.html#MasterCard
http://www.heppnetz.de/ontologies/goodrelations/v1.html#MasterCard
https://developers.google.com/events/io/sessions/351310959
http://nodejs.org/
http://benchmarksgame.alioth.debian.org/u32/javascript.php
http://jena.apache.org/
http://maven.apache.org/
http://spring.io/
http://link.springer.com/chapter/10.1007/978-3-642-40543-3_9#page-1
http://link.springer.com/chapter/10.1007/978-3-642-40543-3_9#page-1
http://jena.apache.org/documentation/query/index.html
http://jena.apache.org/documentation/query/index.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://www.slideshare.net/IKS_Project.eu/lecture-semantic-liftingpresentation
http://www.slideshare.net/IKS_Project.eu/lecture-semantic-liftingpresentation
http://www.w3.org/TR/1998/WD-rdf-schema-19980409/
http://www.w3.org/TR/1998/WD-rdf-schema-19980409/

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Ernesto Barrios based on Daniel Meyer’s code. BsMD: Bayes
Screening and Model Discrimination. R package version 2013.0718.
2013. URL: http://CRAN.R-project.org/package=BsMD.

W. Durant. Story of Philosophy. 1926.

W. S. Means E. R. Harold. XML in a nutshell. 3rd ed. O’'Reilly, 2004.
Chap. 24, pp. 469, 496.

R. Fielding et al. ‘Hypertext Transfer Protocol — HTTP/1.1’. In:
(1999). URL: http :// tools . ietf . org / html / rfc2616| (visited on
01/02/2014).

Edouard Chevalier Francois-Paul Servant. Configuration Ontology:
Modeling Product Customization as Linked Data. Renault. URL:
http://uk.co.rplug.renault.com/configurationontology (visited on
25/01/2014).

Edouard Chevalier Francois-Paul Servant. ‘Describing Customizable
Products on the Web of Data’. In: (2013). URL: http ://events.
linkeddata.org/Idow2013/papers/Idow2013-paper-11.pdf.

Edouard Chevalier Francois-Paul Servant. Product Customization
as Linked Data. Springer, 2012, pp. 603—618. URL: http ://link.
springer.com/chapter/10.1007/978-3-642-30284-8 47.

Fuseki: serving RDF data over HTTP. The Apache Software Found-
ation, 2011 - 2013. URL: http://jena. apache.org/documentation/
query/index.html (visited on 15/03/2013).

Ulrike Groemping. DoE.base: Full factorials, orthogonal arrays
and base utilities for DoE packages. R package version 0.25-3. 2013.
URL: |http://CRAN.R-project.org/package=DoE.base.

Ulrike Gromping. ‘R Package FrF2 for Creating and Analyzing
Fractional Factorial 2-Level Designs’. In: Journal of Statistical
Software 56.1 (2014), pp. 1-56. URL: http://www.statsoft.org/v56/
i01/.

W3C Working Group. What’s New in RDF 1.1. World Wide Web
Consortium, 2014. URL: http://www.w3.0org/ TR/rdf11-new/ (visited

on 19/03/2014).

Tom Heath, Christian Bizer and Tim Berners-Lee. ‘Linked Data - The
Story So Far’. In: (). URL: http://semanticweb.com/volkswagen-das-
auto-company-is-das-semantic-web-company_b23233.

Martin Hepp. Car Options Ontology. Hepp Research and Volkswa-
gen, 2010. URL: hitp://www.volkswagen.co.uk/vocabularies/coo/ns.
html (visited on 10/02/2014).

Martin Hepp. GoodRelations Language Reference. E-Business and
Web Science Research Group, 2011. URL: http://www.heppnetz.de/
ontologies/goodrelations/v1.html#classes (visited on 25/03/2014).

Martin Hepp. ‘Vehicle Sales Ontology’. In: (2010). URL: http://www.
heppnetz.de/ontologies/vso/ns (visited on 10/02/2014).

90

http://CRAN.R-project.org/package=BsMD
http://tools.ietf.org/html/rfc2616
http://uk.co.rplug.renault.com/configurationontology
http://events.linkeddata.org/ldow2013/papers/ldow2013-paper-11.pdf
http://events.linkeddata.org/ldow2013/papers/ldow2013-paper-11.pdf
http://link.springer.com/chapter/10.1007/978-3-642-30284-8_47
http://link.springer.com/chapter/10.1007/978-3-642-30284-8_47
http://jena.apache.org/documentation/query/index.html
http://jena.apache.org/documentation/query/index.html
http://CRAN.R-project.org/package=DoE.base
http://www.jstatsoft.org/v56/i01/
http://www.jstatsoft.org/v56/i01/
http://www.w3.org/TR/rdf11-new/
http://semanticweb.com/volkswagen-das-auto-company-is-das-semantic-web-company_b23233
http://semanticweb.com/volkswagen-das-auto-company-is-das-semantic-web-company_b23233
http://www.volkswagen.co.uk/vocabularies/coo/ns.html
http://www.volkswagen.co.uk/vocabularies/coo/ns.html
http://www.heppnetz.de/ontologies/goodrelations/v1.html#classes
http://www.heppnetz.de/ontologies/goodrelations/v1.html#classes
http://www.heppnetz.de/ontologies/vso/ns
http://www.heppnetz.de/ontologies/vso/ns

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Martin Hepp. ‘Vehicle Sales Ontology - Classes’. In: (2010). URL:
http ://www . heppnetz . de/ontologies/vso/ns #classes (visited on
10/02/2014).

Jena Ontology API. The Apache Software Foundation, 2011 - 2013.
URL: http://jena.apache.org/documentation/query/index.html (visited
on 15/03/2013).

Kjetil Kjernsmo and John S. Tyssedal. ‘Introducing Statistical Design
of Experiments to SPARQL Endpoint Evaluation’. In: (2013). URL:
http:/folk.uio.no/kjekje/2013/iswc.pdf (visited on 28/02/2014).

O. Lassila and R. R. Swick. Resource Description Framework (RDF)
Model and Syntax Specification. World Wide Web Consortium,
1999. URL: http://www.w3.0rg/TR/1999/REC-rdf-syntax- 19990222/
(visited on 02/04/2013).

M. Véron M. Aldanondo and H. Fargier. ‘Configuration in manufac-
turing industry requirements, problems and definitions’. In: (1999).
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp ?tp=&arnumber=
816691 (visited on 20/02/2014).

Fiona Fui-Hoon Nah. ‘A study on tolerable waiting time: How long
are Web users willing to wait?’ In: (2004). URL: http://cba.unl.edu/
research/articles/548/download.pdf (visited on 25/03/2014).

Natalya F. Noy and Deborah L. McGuinness. ‘Ontology Development
101: A Guide to Creating Your First Ontology’. In: (2000). URL:
http :// protege . stanford . edu/publications/ontology development/
ontology101-noy-mcguinness.html (visited on 13/03/2014).

Quantity units. IBM, 2014. URL: http://pic.dhe.ibm.com/infocenter/
wchelp/v7rOmO0/index.jsp?topic=/com.ibm.commerce.developer.doc/
concepts/cosquant.htm (visited on 31/03/2014).

Reasoners and rule engines: Jena inference support. The Apache
Software Foundation, 2011 - 2013. URL: http://jena.apache.org/
documentation/query/index.html (visited on 15/03/2013).

Nigel Shadbolt, Wendy Hall and Tim Berners-Lee. ‘The Semantic
Web Revisited’. In: (2006). URL: http://eprints.soton.ac.uk/262614/
1/Semantic_Web_Revisted.pdf (visited on 05/03/2014).

J. Hendler T. Berners-Lee and O. Lassila. “The Semantic Web: A new
form of Web content that is meaningful to computers will unleash
a revolution of new possibilities’. In: (2001). URL: http :// www .
nature.com/doifinder/10.1038/scientificamerican0501 - 34 (visited
on 14/11/2014).

TDB. The Apache Software Foundation, 2011 - 2013. URL: http://jena.
apache.org/documentation/tdb/index.html (visited on 15/03/2013).

The core RDF API. The Apache Software Foundation, 2011 - 2013.
URL: http://jena.apache.org/documentation/rdf/index.html (visited on
15/03/2013).

91

http://www.heppnetz.de/ontologies/vso/ns#classes
http://jena.apache.org/documentation/query/index.html
http://folk.uio.no/kjekje/2013/iswc.pdf
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=816691
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=816691
http://cba.unl.edu/research/articles/548/download.pdf
http://cba.unl.edu/research/articles/548/download.pdf
http://protege.stanford.edu/publications/ontology_development/ontology101-noy-mcguinness.html
http://protege.stanford.edu/publications/ontology_development/ontology101-noy-mcguinness.html
http://pic.dhe.ibm.com/infocenter/wchelp/v7r0m0/index.jsp?topic=/com.ibm.commerce.developer.doc/concepts/cosquant.htm
http://pic.dhe.ibm.com/infocenter/wchelp/v7r0m0/index.jsp?topic=/com.ibm.commerce.developer.doc/concepts/cosquant.htm
http://pic.dhe.ibm.com/infocenter/wchelp/v7r0m0/index.jsp?topic=/com.ibm.commerce.developer.doc/concepts/cosquant.htm
http://jena.apache.org/documentation/query/index.html
http://jena.apache.org/documentation/query/index.html
http://eprints.soton.ac.uk/262614/1/Semantic_Web_Revisted.pdf
http://eprints.soton.ac.uk/262614/1/Semantic_Web_Revisted.pdf
http://www.nature.com/doifinder/10.1038/scientificamerican0501-34
http://www.nature.com/doifinder/10.1038/scientificamerican0501-34
http://jena.apache.org/documentation/tdb/index.html
http://jena.apache.org/documentation/tdb/index.html
http://jena.apache.org/documentation/rdf/index.html

[44]

[45]

[46]

[47]

[48]

The ElementTree XML API. Python Software Foundation, 2013.
URL: http://docs.python.org/2/library/xml.etree.elementtree . html
(visited on 04/10/2013).

C. F. Jeff Wu and M. S. Hamada. Experiments: Planning, Analysis,
and Optimization. 2nd ed. John Wiley and Sons, Inc., 2009. Chap. 1,
pp- 4, 8.

C. F. Jeff Wu and M. S. Hamada. Experiments: Planning, Analysis,
and Optimization. 2nd ed. John Wiley and Sons, Inc., 2009.
Chap. 4.1 - 4.3, pp. 155, 169.

C. F. Jeff Wu and M. S. Hamada. Experiments: Planning, Analysis,
and Optimization. 2nd ed. John Wiley and Sons, Inc., 2009.
Chap. 4.8, pp. 177, 180.

Jennifer Zaino. ‘Volkswagen: Das Auto Company is Das Semantic
Web Company!” In: (2011). URL: http : / / semanticweb . com /
volkswagen-das- auto- company-is-das- semantic- web-company
b23233 (visited on 11/03/2014).

92

http://docs.python.org/2/library/xml.etree.elementtree.html
http://semanticweb.com/volkswagen-das-auto-company-is-das-semantic-web-company_b23233
http://semanticweb.com/volkswagen-das-auto-company-is-das-semantic-web-company_b23233
http://semanticweb.com/volkswagen-das-auto-company-is-das-semantic-web-company_b23233

Appendices

93

Appendix A
Daimler RDF

The RDF graph of the Daimler data are found in the URLs beneath. The
first two are about the A-Class cars and B-Class cars while the last one is
the compatibility triples for both RDF graphs.

« |http://folk.uio.no/magnudae/LinkedOpenData/daimlerVsoFictive.ttl
« |http://folk.uio.no/magnudae/LinkedOpenData/daimlerVsoFictive2.ttl
« http://folk.uio.no/magnudae/LinkedOpenData/compatibility Triples.ttl

They were too big to be displayed directly in the thesis.

95

http://folk.uio.no/magnudae/LinkedOpenData/daimlerVsoFictive.ttl
http://folk.uio.no/magnudae/LinkedOpenData/daimlerVsoFictive2.ttl
http://folk.uio.no/magnudae/LinkedOpenData/compatibilityTriples.ttl

96

Appendix B

Planning matrix for the
large experiment

The planning matrix for the thirteen factor experiment is found here http:
/[folk.uio.no/magnudae/LinkedOpenData/large Table.pdf. The table was way
to large to contain in the thesis so that is why I have placed it in a seperate
PDF on my homepage.

97

http://folk.uio.no/magnudae/LinkedOpenData/largeTable.pdf
http://folk.uio.no/magnudae/LinkedOpenData/largeTable.pdf

o8

Appendix C

Results from the
experiments

The results are found here http://folk.uio.no/magnudae/Results/ in csv
format. All files include header which indicates the factors used in the
experiment.

99

http://folk.uio.no/magnudae/Results/

100

Appendix D
Code base

All the code can be found on bitbucket here https://bitbucket.org/magnudae/
thesisprototype/src.

101

https://bitbucket.org/magnudae/thesisprototype/src
https://bitbucket.org/magnudae/thesisprototype/src

	Introduction
	Motivation
	Approach
	Goal
	How to evaluate
	Previous work

	Background
	History of semantic web technologies
	The beginning
	Today

	What is an Ontology?
	Frameworks and technologies
	Resource Description Framework
	Resourse Description Framework Schema & Reasoning
	Web Ontology Language
	SPARQL
	GoodRelations
	Linked data
	Ontology alignment
	Jena

	Ontologies
	Vehicle Sales Ontology - VSO
	Classes
	Properties

	Car Options Ontology - COO
	Classes
	Properties

	COO & VSO
	Configuration Ontology
	Classes
	Properties

	Prototype
	Overview
	Programming languages
	Code

	Daimler
	Choosing ontology
	Lifting the data
	Issues

	Renault
	Data representation

	Alignment
	VSO/COO -> CO
	CO -> VSO/COO

	From data to application
	Post to form
	Queries
	Compatibility
	Finalizing

	Data mining

	Results
	Design of Experiments
	Planning the experiment
	Full factorial experiment

	Experiments
	Experiment with three factors
	Experiment with four factors
	Experiment with six factors
	Experiment with ten factors

	Discussion
	Evaluating the results
	The small scale experiments
	The large scale experiments

	The ontology impact
	Programming, point of view
	Ontology performance
	Generic versus product specific

	Pros and cons
	Alterations for the future

	Conclusion
	Further research
	Appendices
	Daimler RDF
	Planning matrix for the large experiment
	Results from the experiments
	Code base

