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Abstract

This thesis is about research and implementation on a distributed object-
oriented programming language called Emerald on smartphones. Our
goal is to couple smartphones seamlessly to the cloud where we span
the gap between apps and cloud services. We therefore want to use a
distributed object-oriented programming language that has object mobility
to allow moving both programs and data seamlessly across the spectrum of
smartphones, near and far clouds. We have ported the Emerald language
on Android thereafter we have experimented with various use cases and
performed an evaluation.

The evaluation includes benchmarking of the Android implementation
of Emerald and more subjective evaluation of the chosen use cases. We
also present some limitations of what Android can provide when it comes
to distributing objects and how far we are willing to go to make it work.
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Chapter 1

Introduction

The motivation for our project is to move cloud computing across the
spectrum from a near to far cloud. That is why we have moved Emerald
to the edge device to make it happen. In other words, we want to distribute
objects as far as we can to any devices spread over the spectrum where we
use the Emerald programming language. The apps today can not do such
computation and does not move to the very edge of the cloud which they
are useless in doing so. That is why we want to build a layer on top of
Emerald in a smart device environment where the Emerald language does
the distribution all the way down to the handset. Our interest for porting
the Emerald language to a smartphone is because Emerald is an on-the-
fly fine-grained mobility language where the Emerald objects can be small
data objects or process objects that can be moved to any machine at any
time[17]. We want our smartdevices to receive, compute and move the
object to another device or even cloud servers.

1.1 Motivation

In the 1980s, Eric Bartley Jul, Norman Hutchinson, Andrew Black and
Henry Levy created a distributed object-oriented programming language
known as Emerald[18]. The Emerald language is a way to move objects
to another machine in a distributed way where it is lightweight and fine-
grained mobile. We only need to write one line of code to move an object
to a specific area we have chosen. Their solution to the Emerald language
was built in C and the compiler was built in Emerald language. Emerald
can run seamlessly on any machines (MAC, Windows, Linux etc.) but we
want to extend Emerald to smartphones so that we have the possibility to
distribute objects at the edge of the cloud.

Android smartphones are not a full linux as each phone has rooting
privilege security making it not possible to execute any binary files at all.
That is why we build an app that acts as a layer on top of Emerald to prevent
us from rooting any phones at all because we can then add any privileges for
the user to send commands through the app to the Emerald compiler[13].

In figure 1.1, we illustrate how the seamless computation works. Seam-
less means that any data can move freely everywhere without worrying to
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see what is happening in the background. Seamless is similar to trans-
parency in distributed systems where we do not need to know what is hap-
pening in the background at the users point of view[27]. Seamless makes it
possible to do a Near-Far cloud modeling as inside the cloud infrastrucutre
we have several different machines that could either be a near or a far cloud
and at the edge of the cloud we have either an Android smartphone or a
Data Center.

The advantage of a Near-Far cloud based on figure 1.1, is that we can
take the computation to move closer for lower latency from the Data Center
while on the other side where the smartphone is, we can take the very near
cloud and move it further to access cheap and compute services that has
lower latency. We want to avoid doing any computation on the smartphone
because we could use a lot of battery power when computing data[34].

Figure 1.1: A seamless computation model
We demonstrate such model from figure 1.1 using P2P approach and the

statement is explained on the result section.

1.2 Goal

The goal of our research to is to enable seamless computation using
Emerald. Emerald does not go on to the edge and our main goal is to get it
to do it.

1.3 Approach

We take an existing language and port it to smartphones, where this
language is fine-grained, and enable it across the spectrum to enable
mobility. Finally we evaluate how well it worked with some case studies
we have done.

1.4 Work done

We have ported the Emerald compiler source to Android and measured
how good it is to run any Emerald programs on the phone and distributing
across the spectrum. To actually run the compiler, we have built an app
which acts as a layer on top of the Emerald compiler where with this app,
we demonstrate the seamlessly mobility model.
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1.5 Results

We have ported the Emerald to the Android phones and have proven that
the concept of near-far cloud by using Emerald as our approach.

• Performance results: Using Emerald to move data back and
forth on the thin client from near to far cloud proved to be more
efficient when having a powerful machine available nearby rather
than distributing directly to the data center. The advantage is the low
latency between a near cloud that can do the computation or moving
data onwards to other clouds that are further away.

• Seamless results: Using Emerald to move data from the thin client
to a near cloud for computation and storage is more efficient and gives
less latency than distributing to far clouds directly. It is more optimal
to have a closer server than having to ship data directly to a further
cloud server.

1.6 Contributions

We have contributed on the following points:

• Porting Emerald on Android Smartphones

• Created an app that would use Emerald

• Evaluate the performance on Smartphones

• Limitations in the Emerald Implementation

1.6.1 Porting Emerald on Android Smartphones

We have ported the Emerald compiler to Android phones. However, there
are many different types of CPU architecture that each smartphone has.
The first step is to cross-compile the Emerald compiler to the specific
architecture that the phone uses so that it can be executed on the phone.
However, a major challenge when it comes to porting any executable
binaries on Android is that the phone has a tight security privileges which
makes it impossible to execute any binary files at all.

1.6.2 Created an app that would use Emerald

We have created an app for Android smartphones where the implementa-
tion is specialized for the Emerald compiler. The app acts as a terminal em-
ulator where the operation command that is typed at the application level
sends it to the lower level so that the binaries can be executed.
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1.6.3 Evaluate the performance on Smartphones

We have evaluated the performance of distributing objects to near clouds
using smartphone to be efficient. The smartphones do not need to do heavy
loads of computation, but rather let a more powerful cloud server do its
work and provide the result back to the phone.

1.6.4 Limitations in the Emerald Implementation

We have looked, tested and discovered limitations on the Emerald compiler
on the Android phones.

1.7 Conclusion

The research we did with porting Emerald on Android phones worked as
creating a Near-Far cloud model can actually be done with a programming
language that supports mobility. We discovered that most smartphones
have different CPU architectures that we need to consider when porting
Emerald to any smartphones and also we have to build an app that can run
the Emerald compiler so we avoid rooting the phones.

1.8 Outline

The thesis is divided into Chapters and at the end there is an appendix. The
four first Chapters describes more of what background material we should
know for this thesis.

Chapter 1: Introduction Gives a brief introduction of what we have
done.

Chapter 2: Background Explains about the general concept of tradi-
tional cloud computing, Near-Far cloud model, Peer-to-Peer (P2P)
model, distributed systems, why distributed systems are popular re-
search topic and how this created the paradigms of distributed objects
and the history of how smartphone became what it is today.

Chapter 3: Distributed Objects Is an overview of what is Distributed
Objects and explains what Emerald Programming Language is.

Chapter 4: Android - the Smartphone OS Explains the general An-
droid Stack, Android NDK and Google cloud messaging.

Chapter 5: Porting Emerald Covers the general steps of testing of
porting Emerald into Android phones.

Chapter 6: The Application - Emerald-Lite Explains how the app is
implemented and what classes are important to form the app. The
most notable with our implemented app is that it is specialized for
the Emerald compiler.
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Chapter 7: Performance & Evaluation Covers the result from differ-
ent testbeds done and if it was a good solution for each of them.

Chapter 8: Conclusion This Chapter is the conclusion of the project
and the contributions to the work that has been done.

Chapter A: Future Works Explains what should be improved and what
should be changed with the app or even the Emerald implementation.

Chapter B: Code Shows where you can find the source code, APK file and
full version of the relevant codes that has been described from the
previous Chapters.
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Part II

Background
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Chapter 2

Background

This Chapter describes how a Traditional cloud server is, the Near-Far
cloud model, a small history of distributed systems, distributed objects,
Planetlab and how smartphones became what they are today. We list up
the actual smartphones that we are using for the research, and what kind of
performance we can expect each phone has.

2.1 Traditional Cloud Computing

Traditional Cloud computing is where we have a thin client, which can be
any machine or device that is accessing a large data center that is far away
from the location of where the thin client is, like Google or Amazon[24].
Such cloud computing uses a typical client/server model where the cloud
uses HTTP protocol to access the server. The main concept of the cloud
computing is that from the thin client, we push an IP packet and pop it to
a cloud server to handle the data containing in the packet. Afterwards the
server itself pushes the result into another IP packet back to the thin client.
In such model there should be no computation or storage on the thin client
or the data center. For an illustration, the concept of such computing, look
at figure 2.1 where we have a smartphone sending packets through the cloud
to a data center where it sends the result to the thin client through the cloud
infrastructure.
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Figure 2.1: The Traditional Cloud Computing Model

The advantage is the economy of scalability as each available service
is spread over the continent. The disadvantages are latency, jitter, unstable
performance in the data center, and the cost of transferring data to a service
that is located far away from the thin client. Such model does not have any
computation or storage in between the thin client or the data center.

2.2 Near-Far Cloud Model

Near-Far cloud is a new Cloud Computing Model where there exists a device
or a machine that is closer to the user that has storage and computation
capabilities at the edge of the cloud. These machines are not far from the
data center and the main purpose of having this Near-Far model is to avoid
high latency between the data center and the thin client, so why not have
a near cloud that can do the computation? Each near clouds are placed
between the thin client and the data center to make sure that it is close
enough to the edge of the cloud infrastructure. With such model, we have
now more availability of services that are spread across the spectrum where
the thin client communicates with the near cloud and the near cloud can
communicate with a far cloud or the data center.

An example of a Near-Far Cloud model is on figure 2.2 where the
smartphone can communicate directly to the near cloud and the near cloud
can communcate to the data center.
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Figure 2.2: The Near-Far Cloud Model

The advantages for such cloud model are low latency where the near
cloud can communicate to the data center rather than the thin client doing
it directly, good performance and efficiency as the thin client do not need
to use a lot of battery for the connection to the near cloud. The challenge
for having such a model is that we need to consider the cost of deployment
when it comes to computation and storage resources.

2.3 Peer-to-Peer Model (P2P)

For our project, we have built a P2P model to illustrate a Near-Far descrip-
tion. A peer communicates to another peer through the spectrum[6]. The
communication link between each peer must be setup according to the clos-
est to the furthest location of where they reside. We use the Emerald pro-
gramming language to make the model because the language itself is spe-
cialized for mobility[17]. Emerald is a distributed object-oriented language
and is much easier to program and setup than any other languages that
exist, when it comes to mobility[14].
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Figure 2.3: A simple P2P model

We illustrate the P2P model by looking at figure 2.3 where the thin
client can move either programs or data across the spectrum to any near
or far cloud. The near clouds are the local machines (IFI) and, while far
clouds are the Planetlab hosts. Planetlab is a network testbed where we can
experiment shipping data across the world.

2.4 Distributed Systems

Distributed systems is an old and most popular research topic since the
late 1970s. A system that is distributed has several definitions where one
of them, from George Coulouris[6], defined distributed system as a system
where the hardware or the software components are located at computers
that have network capability for these computers can communicate and
coordinate their actions by using message passing. Our definition is that
a distributed system is where you have several machines connected with
each other, forming a network where each machines are independent,do
their own work and have the functionality to communicate with each other
or share resources.

The reason why we are so interested in distributed systems till now
is because of the advantages we get from having such system integrated.
Examples of distributed systems are massively multiplayer online games
(MMOGs), Financial systems, Web search, health care systems, smart
homes, bus/train ticket systems and many more. The goals of distributed
systems are according to[1]:

• To share resources: Every machine must have the function to
share and use resources anywhere at any place and almost at any time.

• To be more open: If a machine follows a standard protocol for
accessing an open interface, then the open distributed system can be
extended and improved.
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• To be scalable: The system should allow to be increased in number
of users without much loss of response time due to increased data
traffic.

• To tolerate failures: Even though machines fail, the system has to
make sure that it is still available and tolerate that failures occurs.

• To be transparent: Distributed systems are complex to learn. For
the users, the system should be viewed as a single system and the
application where all the technical distributed technologies are well
hidden.

• To be heterogenous: In a distributed system, there are many
different machines that have been produced by other companies, we
might want to have to find a communication between these machines
for example an Apple Mac OS X should communicate with a Packard
Bell Windows 8.

Although distributed systems sounds like a really good idea to deploy
and use, there are many challenges such system faces as unreliablility, se-
curity, heterogeneous, topology issues, latency, bandwidth, transportation
cost and administration.

The concept of distributed systems, object-oriented programming
language and software engineering altogether led to the motivation of
creating a technology to make an object-oriented distributed programming
language which is now called Distributed objects[6]. Distributed objects
are based on objects where in a distributed system environment, each
machine has the ability to send objects to another machine where it does
the workload for the one that sent the object. In other words, we want the
code to be processed remotely through remote procedure call (RPC) or just
provide resource sharing in an easy and abstract way[7].

2.5 Planetlab

Planetlab is a collection of computers that we are using for network testbed
or distributed system research. The machines are distributed all over
the world where we can get an account and by having an account, we
hava access to all machines and get a slice allocated. The machines are
uniformed, which means if you compile on one machine then you can run
on every machine in Planetlab. Planetlab has slices where each is a part of a
project where it has a collection of nodes that we can use for our benchmark.
The nodes can reside either in USA, France, Poland, China, New Zealand
etc. A node represents a host that you can use the host by remotely logging
to it. Planetlab provides distributed nodes and modeling facilities[10].

Planetlab is a global research network that supports the development
of new network services. Since the beginning of 2003, more than
1,000 researchers at top academic institutions and industrial research labs
have used PlanetLab to develop new technologies for distributed storage,
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network mapping, Peer-to-Peer systems, distributed hash tables, and query
processing[26].

Figure 2.4: The nodes spread across the world[26]

2.6 The Smartphones

Nowadays in year 2013-2014, we are in an era where we have small
mobile and ubiquitous devices that are communicating through wireless
connectivity. Which means that we have now for example devices that are
so called ’smart’ phones, this type of phone is acting as a small pc you can
have in your pocket[6].

The very first smartphone that was invented stems from the date
16th August 1994 where this phone was named International Machines
Corporation (IBM) Simon. the reason why this phone was considered
"smart" was that it could not only call and receive calls from other phones,
but it hade the functionality of creating and sending fax, e-mails and
cellular pages. Not only did it have these functionalities, the phone itself
also had address book, calendar, world time clock, electronic notepad and
keyboard screen like we have on our smartphones as of today[11].

Because of the concept of IBM Simon, many cellphone companies such
as Nokia, Apple, etc. began to make such smartphones where each of these
devices would now have an operating system (OS) integrated in the phones.
The one that is most known and popular mobile OS is Android[21]. The
idea behind Android was invented by Andy Rubin where the main goal
was to have an operating system for cellphones according to[16]. The
idea of Andy became a hit target for Google, so in 2005 they bought the
Android Inc where they made Andy the head director of mobile platforms
for Google[16]. In 5th November 2007, Android was now a part of the
Open Handset Alliance. In 2008-2010 it became a more dominant mobile
platform worldwide.

Android has now become the most popular mobile operating system
platform where the system has now increasingly been updated and has a
huge benefit for the consumer as the phone itself is strong enough to run

16



small applications which are now called apps. Some applications do not
necessarily process data on the phone itself, but might send the information
to the cloud server so the phone itself acts as a thin client. That is because
phones might use a lot of battery consumption to get the processing of the
data to be complete, so why not process the data on a more powerful server
or another smartphone that does not use much battery and gets the result
back? Why not distribute an object to another smartphone and just process
it at that machine locally?

2.7 The Actual Smartphone Usage

The actual Android smartphones that we use are:

• Samsung Galaxy SIII : 8.11 s

• Samsung Galaxy Mini S 2 : 17.12 s

• Samsung Galaxy Fame : 12.15 s

The time shown on each phone describes the performance result which
is taken from table 7.1.

2.8 Summary

We described how a typical traditional cloud computation works, Near-Far
cloud, P2P model, distributed systems, Planetlab and smartphones. There
are no computation on either the thin client or the data center. What we
want to focus on is the Near-Far cloud model. We have a computation and
storage facility in between or further away. To illustrate an example of such
model, we proposed a P2P model that would explain in detail how it works.
In the next Chapter, we describe more in detail the distributed objects.

17



18



Chapter 3

Distributed Objects

In this Chapter, we describe what a distributed object is, the concept of
how it works and we give an introduction of the Emerald programming
language.

The term object means that it encapsulates the data. The operations
for extracting the data are called methods and these methods are available
on an interface. An interface is a collection of methods where an object
is said to invoke methods that are available on the interface. Objects
may implement many interfaces and several objects may also offer an
implementation to it[1].

Objects are commonly used everywhere because we want to illustrate
and model the real world with a combination of the behavior and state of
how this object would act in the environment. To distribute objects makes
the programming easier, easier to maintain and reduces the complexity
of knowing low-level in detail like in C. Where objects have a set of
description (known as attributes) and the functionality of these objects is
later described (known as methods). Machines and software are complex
in general so that is why we use an object-oriented programming paradigm
to build a simple environment of the real world for simplification.

The overall functionality of a distributed object should do each of the
following steps: Referencing remote objects, provide remote interfaces,
distribute actions, handling exceptions in a distributed environment and
perform distributed garbage collection in the background[6].

A general model of a distributed object concept is based on the client-
server model, where we can place an interface at one machine and the
object resides on another machine. Figure 3.1 shows a typical model of
how distribution of objects works with the general client-server model
concept. The client has a proxy which is the interface it binds to. The proxy
acts as a stub for the client, and the main goal is to marshal the remote
method invocation into a message packet and unmarshal it when the client
gets a reply which contains the result of the invocation the client made.
Marshalling is a way of taking the object and convert it into a data stream
which has to correspond to the same as a network packet. Unmarshalling
is the opposite. It takes the data stream and tries to convert it back to an
object[6].
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The object resides on the server-side where it has the same interface as
the client-side. The stub that is known as skeleton on the server-side does
the same operation as the proxy at the client-side. The skeleton unmarshals
the message that it receives and does the invocation at the object’s interface.
When done the skeleton marshals the reply back to the client-side.

Figure 3.1: The client-server model example of how distribution of objects
are set up

The motivation behind using distributed objects when we want to
transmit data from a smartphone to another, is that we want to do a remote
procedure call to another machine without any large latency. Common
Object Request Broker Architecture (CORBA)[1] is one of the most known
architectures for setting up a distributed object technology where there are
many programming languages running on many machines, and follows an
Interface Definition Language (IDL)[1] which describes how the objects
are presented. CORBA solves a portion of the heterogeneity problem
where it makes sure that it ignores the lower layer of the machines, as to
communicate, it only takes for the two interfaces to look alike[6]. Setting up
CORBA is really complex as we have to hard-code who we want to connect
to, which representation and methods we need to use and to setup the IDL.

In this Chapter, we present a distributed object-oriented programming
language which is more lightweight than CORBA. The language is called
Emerald.

3.1 Emerald Programming Language

Emerald is a distributed object-oriented programming language that was
developed by Eric Bartley Jul, Norman Hutchinson, Andrew Black and
Henry Levy. The concept of Emerald was influenced by Algol, Simula and
Smalltalk.

The ideas of Emerald were to[17]:

• Try to get a uniform object model for both local and distributed
computation.

• Fine-grained mobility.
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• Support language for mobility to achieve an efficient implementation.

Another goal of Emerald is to efficiently execute node-local. When it
comes to efficiency, Emerald obtained it by[17]:

• integration of the object concept including mobility

• Relying on cooperation between the compiler and the runtime system

• Implementing all objects on each node within a single address space.

Emerald is not an enterprise programming language, this means that
Emerald is not a complete programming language as it does not consid-
eration large amount of data representations for primitives over 32 bits
of data or different functions the ones Java has (import java.util.*, import
java.rmi.* etc). We can do a workaround to build such functionalities and
data representations however, some of the built-in objects do miss some
functions as there is a problem to convert a Character to an Integer. This
limitation does not prevent Emerald to be usable because it was meant to
support mobility.

So why mobility? The reasons are[17]:

Load sharing: We have the possibility to move a process to another
machine and use the resources on that machine.

Communication performance: In Emerald, there is a possibility to
move one entity to a node for the duration of an ongoing interaction
for reducing the communication cost. Making the object local
increases performance rather than having remote communication.

Availability: The language provides a way to move data to different
locations to provide availability where we can find the data elsewhere
rather than just one machine.

Reliability: If a machine crashes or is under maintenance, we have
replicas available data to that it can be moved to other machines.

User mobility: When the data has been moved, the program can easily
migrate to the new machine it has moved to.

Utilize special capabilities: An object that is moved can use the re-
sources available on the hardware or the software of the node it has
integrated to.

3.1.1 Objects and Types in Emerald

An Emerald object has a location where it currently resides, may be
immutable and usually has[17]:

• A unique network-wide identity.

• A representation which can be data local to the object.
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• A set of operations. If the operations are exported, then they can be
used outside of the object (think of it as public in Java).

• Optionally, it can include the initially clause which initializes vari-
ables before the object is invoked.

• Optionally, it can include the process clause which executes specific
instructions in the clause.

An example of creating an Emerald object is shown in figure 3.2

1 const PizzaBoy <− o b j e c t PizzaBoy
2 var name : S t r i n g
3 var id : I n t e g e r
4 var orders : Array . of [ S t r i n g ]
5
6 export operat ion GivePizza [ s : S t r i n g ]
7
8 f o r i : I n t e g e r <− 0 while i < orders . upperbound + 1 by i <− i

+ 1
9 i f s = orders . getElement [ i ] then

10 stdout . p u t s t r i n g [ " Pizza d e l i v e r e d to : " | | s | | " \n" ]
11 end i f
12 end f o r
13 end GivePizza
14
15 i n i t i a l l y
16 name <− " Endri Hysenaj "
17 id <− 2000
18 orders <− Array . of [ S t r i n g ] . empty
19 orders . addupper [ "Khiem−Kim Ho Xuan" ]
20 orders . addupper [ " S t i g Halvorsen " ]
21 end i n i t i a l l y
22
23 process
24 PizzaBoy . GivePizza [ "Khiem−Kim Ho Xuan" ]
25 PizzaBoy . GivePizza [ " S t i g Halvorsen " ]
26 end process
27 end PizzaBoy

Figure 3.2: A simple Emerald object creation

The Emerald object has a const which is the object constructor that
defines the content and behavior of an object and we need const to help
us create and execute our object[15]. Arrays in Emerald are dynamically
expandable[17]. To get the specific element, we call upon the getElement[i]
to get the element on the index of the array. We should also note that
clause is where you add items like a queue. Here you add the element,
and the latest element that arrives to the array is added as the currently last
element.

Types are more like an interface for the objects. This means that if every
object follows every operations in a type, then the object conforms to the
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type[17]. Conformity uses the symbol "*>" and we have to stress the point
that conformity is not symmetric, but transitive and reflexive.

1 const Bank <− t y p e o b j e c t Bank
2 operat ion de po s i t [ i : I n t e g e r ]
3 operat ion withdraw−> [ i : I n t e g e r ]
4 end Bank
5
6 const DepositBank <− t y p e o b j e c t Bank
7 operat ion de po s i t [ i : I n t e g e r ]
8 end Bank
9

10 const WithdrawBank <− t y p e o b j e c t Bank
11 operat ion withdraw −> [ i : I n t e g e r ]
12 end Bank
13
14 const ConformTest <− o b j e c t ConformTest
15 process
16
17 i f Bank *> DepositBank then
18 stdout . p u t s t r i n g [ "Bank conforms to DepositBank \n" ]
19 end i f
20
21 i f Bank *> WithdrawBank then
22 stdout . p u t s t r i n g [ "Bank conforms to WithdrawBank\n" ]
23 end i f
24 end process
25 end ConformTest

Figure 3.3: A type conformity example

Figure 3.3 shows that we have three types, Bank, DepositBank and
WithdrawBank where we check if either DepositBank or WithdrawBank has
any of the methods from the Bank. We can now say that the Bank conforms
to either DepositBank or WithdrawBank, but not the opposite. If a type T
is going to conform to another type S, then T must have all operations that
S has and for each operation in T must correspond to the operation in S.
Conformity is explained in detail by[14].

With this Type checking, we would solve the heterogeneity problem
for example in a network we can think of having different objects with
different meanings and if they conform to a specific interface, they can
still understand and communicate with each other. We can view an object
during run time using the view as. This might widen or narrow the
operations the object has itself. Before we view the object, we have to use
conformity check to confirm if it is possible to use view[17].

3.1.2 Distribution Of Objects

When we have distributed an object, we can get the objects location by using
the locate operator which returns the current location of the object. It is
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more as a reference to the node object for the node[17]. For each node
objects, you can get the information about the node like the id, what host it
is in or even the date/time of day of the machine it resides in.

The primitives that are used to move objects in Emerald are described
in table 3.1

Table 3.1: The primitives used for mobility in Emerald
Primitive Usage Description
move move X to Y move the object X to where the object Y is
fix fix X at Y move the object X atomically to where Y is.

After that you can not move X
unfix unfix X make object X mobile again after a fix
refix refix X at Z use unfix and then fix to the new destination

Z

Figure 3.4 shows that we move the object Kilroy to nodes around the
network and the program measures how long it took to travel to several
nodes and come back again to where the object originally resided.

1 const K i l r o y <− o b j e c t K i l r o y
2 process
3 const home <− l o c a t e s e l f
4 var there : Node
5 var startTime , d i f f : Time
6 var a l l : NodeList
7 . . .
8 f o r i : I n t e g e r <− 1 while i <= a l l . upperbound by i <− i + 1
9 there <− a l l [ i ] $theNode

10 move K i l r o y to there
11 . . .
12 end f o r
13 move K i l r o y to home
14 . . .
15 end process
16 end K i l r o y

Figure 3.4: Kilroy program - moving itself to all Emerald nodes that are
available

3.1.2.1 The Call Parameter Passing Semantics

A motivation for moving the object physically to another node and do local
call on that machine is that we would reduce the number of call-backs back
and forth. Figure 3.5 from [17] illustrates the parameter call-back problem
where we have two nodes. The object A is going to do a call where the object
X resides in another node. The parameter contains another object B that
also has another operation. When doing a remote procedure call, we see
that B still resides on node 1 and what happens is that the node 2 must do
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a call-back to do operations on object B which is inefficient because we do
not want uneccessary back and forth calls.

Figure 3.5: The Call-back problem[17]

The main goal of mobility in Emerald is to reduce these uneccessary
call-backs. Figure 3.6 from [17] is an example to avoid such problems.
The object B is moved along when object A does a remote call. This is
to avoid the call-back problem where B is moved to node 2 as a local
object. Emerald introduces two parameter passing semantics for avoiding
call-back problems, call-by-move and call-by-visit[17]. Call-by-move the
object is moved inside the parameter to the remote node that treats the
object as a local. The object however does not return to the caller. If you
want the object to return after moving the object, we use call-by-visit where
the object gets moved along to the remote node and after the operation
is done, the result is returned along with the object that was moved. The
object just "visits" the remote machine.

Figure 3.6: Avoiding Call-back problem[17]
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3.2 Discussion

Emerald was created at the University of Washington by four PhD students
back in the 80s. Emerald is still a prototype which has not been updated,
but the concept is still a great advantage. In Emerald you write move X to
Y to specify where you want to move the object to, and this node does the
local procedure call. Types is to find out if an object conforms to a type
or a type conforms to a type. With this functionality, we can make sure
that the object can communicate with another machine that might have a
different representation of the object, but follow the same type, solving the
heterogeneity problem.

3.3 Summary

The focus of this Chapter is the concept of distributed objects. Distributed
objects need some sort of client/server model to send objects back and forth
to each other. Where we have to setup interfaces, proxies, skeleten etc.
to let each of the end machines understand each other. However, using
Emerald avoids such complex setup. We also look into how Emerald works,
how we move objects, what semantics exist for moving objects, what is
conformity, the call-back problem and why Emerald is much more different
and simpler than setting up CORBA or using Java RMI.
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Chapter 4

Android - the Smartphone
OS

This Chapter introduces the Android OS where we discuss how Android is
built up, how the activities lifecycle is and how it acts when we interact
with more than one activity on our everyday smartphones. We also go
into depths of how Android NDK works and a small introduction of Google
Cloud Messaging (GCM)[8].
Android is a mobile OS where the technology is based on open source
platform for mobile devices such as Linux distros and Java. Detailed
specification of android is shown in table 4.1

Table 4.1: Table of specs for Android smartphones
Company/developer Google, Open Handset Alliance, Android

Open Source Project
Developed in C(core), C++, Java(UI)
Operating System Unix
Working state Current
Source model Open Source
Initial release September 23th 2008
Latest stable release 4.4 KitKat/October 30th 2013
Marketing target Smartphones, Tablets
Package manager Google Play/APK
Supported Platforms ARM, MIPS, x86
Kernel type Monolithic (modified Linux kernel)
Default user interface Graphical
License Apache License 2.0, Linux kernel patches

under GNU GPL v2
Official website www.android.com

So what are the difference between Android SDK and Java SDK? Figure 4.1
shows what happens when we compile from Java and what happens when
we compile from android. In Android, you write the same Java code,
compile it to the same compiler and get class files where you recreate the
class files to .dex which is our runnable files that the Dalvik VM runs[23].
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Dalvik VM is covered in the next section where we describe the software
stack in Android.

Figure 4.1: Java vs. Android

The motivation for knowing and using Android for this thesis is to find out if
there is any way to distribute data objects from a near to a far cloud through
smartphone devices.

4.1 Software Stack

Figure 4.2: The Android Software Stack

The Android Software Stack is composed of a collection of elements that we
can form into a stack[22]. Each element from the stack(from bottom to top)
is the Linux Kernel, Libraries, Android Run Time, Application Framework
and Application Layer. Figure 4.2 shows how the Android Software Stack
is built.

4.1.1 Linux Kernel

The lowest part of the Android Software stack is the kernel. Figure 4.3
shows what components are available at the kernel stack. The kernel
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provides the hardware services like drivers, managing memory, network,
power and security as well as it provides an abstraction between the
hardware and the higher level of the stack[22]. The abstraction makes
sure that the developer does not know that the android is actually running
on Linux and how complex it is because they only have the view of the
application on the top element of the stack.

Figure 4.3: The Linux Kernel in the Android Software Stack

The main difference with the linux kernel is that when developing an app,
there restrictions have been set where the user can not go and reconfigure
the hardware. There is also no virtual memory swapping to the application
so the kernel has a killer that reaps out and cleans the application that has
been not used for awhile[36].
Another thing we should point out is that the kernel has a C library called
Bionic[36]. Bionic is a license free, light-weighted GNU C library (glibc)
that is more suitable to less powerful devices[23].

4.1.2 Libraries

This layer runs on top of the Linux kernel stack element. Where here, we
can use C/C++ libraries to make our applications more efficient.

Figure 4.4: The Libraries in the Android Software Stack

4.1.3 Android runtime

The runtime layer forms the basis for the application framework and makes
sure that the Android device is not a mobile versioon of the Linux kernel[9,
22].
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Figure 4.5: The Android run time in the Android Software Stack

4.1.3.1 Core Libraries

The core libraries gives most of the functions in the core Java libraries and
also the Android specific libraries[22].

4.1.3.2 The Dalvik Virtual Machine

Even though the coding looks like Java, have similiar creation of objects,
structures etc, Android does not support Java Virtual Machine (VM). It has
instead the Dalvik VM where this VM is more optimized for mobile devices
when it comes to battery consumption and the CPU. Dalvik is dependent
on the Linux Kernel to do the threading and manage memory[22]. Dalvik
has stripped off most of the libraries because of the license conflict with
oracle[19].

4.1.4 Application Framework

This layer creates the classes that are needed for the Android application.
This layer also provides an abstraction for accessing hardware or even
manage the user interface and the application resources[22].

Figure 4.6: The Application Framwork in the Android Software Stack

4.1.5 Application Layer

All our application runs through this layer and uses the services and classes
that are given by the application framework[22].

30



Figure 4.7: The Application Layer in the Android Software Stack

4.2 Application Components

The application components are the building blocks of an Android appli-
cation[3]. An android application consist of components that are loosely
coupled. They are bounded in an xml file known as the AndroidMani-
fest.xml[22] The binding makes it possible for each components to com-
municate or invoke each other when necessary. The event that are invoked
is called an Intent[22].
The components are Activity, Service, Broadcast receiver and Content
provider.

4.2.1 Activity

The activity is the graphical user interface of the application itself[3].
An example of an activity could be Instagram where we have the user
interface that shows us your album, pictures, videos and how many likes
and comments you have on each item. An example of implementing a
subclass of Activity looks like this:

1 p u b l i c c l a s s ExampleActivi ty extends A c t i v i t y {
2 //Code not i n s e r t e d
3 }

Figure 4.8: Implementing an Activity class

4.2.2 Service

Service is the component that runs in the background where they either
perform a long running tasks, broadcast intents or notifies events to other
components. The service can also provide work for remote processes and
other components can start the service to either bind or interact with it[3].
An example of a service could be when your device plays music in the
background while you are interacting with another app.
An example of implementing a subclass of a Service looks like this:
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1 p u b l i c c l a s s ExampleService extends S e r v i c e {
2 //Code not i n s e r t e d
3 }

Figure 4.9: Implementing a Service class

4.2.3 Content provider

The content providers are the components that manage persistent applica-
tion data between the components. The data could be stored in a file sys-
tem, the SQLite database,the web, or any other persistent storage location
where your application can access it. An example of a content provider is
the contact information where you could read,query or edit the information
of your contacts[3]. An example of implementing a subclass of a content
provider looks like this:

1 p u b l i c c l a s s ExampleContentProvider extends ContentProvider {
2 //Code not i n s e r t e d
3 }

Figure 4.10: Implementing a ContentProvider class

4.2.4 Broadcast receiver

Broadcast receiver is the component that has the ability to send or
receive broadcasted data. The announcement does not display any user
interface and does not do any big work as it is only a gateway for the
other components[3]. An example of a broadcast is when an application
broadcasts to other applications that there might be a newly updated data
that can be downloaded to their devices or even a broadcast can also be an
announcement to tell your device that you battery is low.

1 p u b l i c c l a s s ExampleBroadcastReceiver extends BroadcastReceiver {
2 //Code not i n s e r t e d
3 }

Figure 4.11: Implementing a BroadcastReceiver class

4.2.5 Additional components

The additional components are just helping to bind and construct the four
main components that has been mentioned[33]. The given additional
components are:
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Fragments This is just a piece of the applications user interface or
behavior of the Activity

Views The user interface elements that are displayed for example, but-
tons, forms, textfield etc.

Layouts This gives the appearance of the view

Intents Intents are meant to bind the components together where each
component can interact with each other

Resources resources are elements that are external for example, pictures,
strings or context.

Manifest Manifest is the configuration file that, as mentioned above,
binds the components and also specifies the hardware requirements,
what platform requires to support the application or even permission
setup.

4.3 The Activity Lifecycle

An activity has three states it can be on; either it is active or running, it has
been paused or it has stopped.
Figure 4.12 from[2] illustrates how the life cycle looks like. When the
application is active or running, it has to be in the foreground of the screen
which is the top of the activity stack. When the application is paused, it has
lost focus but is still visible for the user. This means that there is another
activity that sits on top of the paused one and the paused activity might get
killed if there is no more memory space. An application is stopped if it is
obscured by another activity and is no longer visible to the user.

Figure 4.12: The activity lifecycle[2]
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The Android OS must notify the application if there is going to go from one
state to the other. The events to control an applications state changes are
these methods:

OnCreate() This method is needed to create the Activity itself and is
called if the activity needs to be started again.

OnStart() When the Activity has been created, the method makes sure
that the Activity is about to become visible for the user.

OnResume() This is the method that makes sure the Activity is going to
be visible for the user.

OnPause() The current activity is going to be paused, so another Activity
is triggered.

OnStop() The Activity is no longer visible for the user, it has stopped, but
is still alive in memory.

OnDestroy() The Activity is going to get destroyed. This means the
activity will ble cleaned from memory and will not be restored by the
system.

4.3.1 The Activity Stack

Now we just mentioned one activity lifecycle, but how does the system set
up for many activities? Well, all activities are scheduled in an activity stack.
Figure 4.13 illustrates what the Activity stack might look like based on[4].

Figure 4.13: The activity stack[4]

An Activity that is running is usually on top of the stack while the onces that
are not active are below the running activity. The current Activity that is
running can be terminated if the user for example pushes the "back" button
or closes the activity so the next element on the stack becomes the active
one.
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4.4 Android Native Development Kit (NDK)

Android NDK is about integrating C/C++ files with Java. We could call it a
hybrid application where the Java code is run on the Dalvik VM while the
C/C++ code is compiled and run directly on the hardware. The reason why
a hybrid implemented app is feasible is because we might want to increase
performance when it comes to processing large amounts of data. We need
an interface to somehow to connect these two different languages together,
the one that does it is the Java Native Interface (JNI)[20].
To illustrate the relationship, Figure 4.14 from[20] shows an example of
the relationship where the JNI is integrated into the Dalvik VM, where it is
possible for the Native code to invoke and access methods or fields in the
Java Code and visa versa forming a two-way communication[20].

Figure 4.14: The relationship of Java and native code through JNI[20]

When creating a native application, we can classify the the application itself
shown in figure 4.15[30].

Figure 4.15: Hybrid application of Dalvik and Android NDK app, two types
of Android application fused[30]
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The application classifications from figure 4.15 are:

Dalvik Application Where this application does all the standard An-
droid SDK development and creates an APK file.

Android NDK Application Where all the C/C++ or assembly codes
are compiled into a dynamic link library and is used by the Dalvik
Application source code through the JNI interface

When we want to run an executable binary that works on linux distros, we
have to recompile again. This is known as cross-compiling. In Android, we
have something called standalone-toolchain which has the ability to cross-
compile sources to Android embedded systems. Cross-compiling means
that you create an executable file for another platform rather than itself. We
have to be cautious over what type of Application Binary Interface (ABI)
we cross compile to. ABI defines type of CPU architecture which are[20]:

• ARM.

• Intel x86.

• MIPS.

To cross compile C files into an executable and push them directly to
an embedded device requires that you have rooted your phone to run
executable files and that you must not use any gcc at all. You have to
for example, use arm-linux-androideabi-gcc. A detailed explanation of
standalone toolchain can be found in docs/standalone-toolchain.html from
the android-ndk directory when you have extracted it onto your pc.
To avoid permission restriction, the only way to get your executable
binaries to work on non-rooted phones is to make an app and use the
functions of the binary file. This is more challenging as you have to create
Java threads for the user interface and the progress of the data processing
on the app.

4.5 Google Cloud Messaging (GCM)

The main idea of the cloud server from Google is to send message (push
message) to the cloud and either distribute the message to other phones or
just receive the results back. The model of GCM follows a typical client-
server model. The previous version was called Android Cloud to Device
Messaging (C2DM), but is now deprecated[12]. To begin communicating
with the GCM server, the application client must register a Sender ID
(project number) where with this ID, the client can receive the Registration
ID back from the server as this ID is used for telling the GCM where to send
messages to. The messages are more or less preferred to use to notify clients
that an updated date is available. Figure shows 4.16 how the interaction
between the phone, GCM server and our server works, each arrow shows
how the interaction works stepwise.
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Step 1 The client that runs the app sends an activation request

Step 2 The client receives a response with the Registration ID.

Step 3 Client sends the Registration ID to the app server where the ID is
used to send data to the phone

Step 4 When the server has any data that has been updated, it sends a
request to the GCM server using the Registration ID.

Step 5 The GCM server "pushes" updated notification of data to the client.

Figure 4.16: The interaction in GCM model

4.6 Discussion

it is not always a beneficial to do everything on the application. Sometimes
we might want to process data directly and efficiently on the hardware.
Android NDK gives the opportunity to use C/C++ with the usual Java
known as hybrid. For these two programming languages to communicate,
there is a need for an interface known as JNI which makes sure that either
the Java side sends calls to the C/C++ to process data, or that C/C++ side
sendscommands to the Java side either requesting data or give the result
output to the Java side.
Sometimes there is a need to cross compile C/C++ program so that the
binary can be executed on Android OS. These are known as standalone-
toolchain. There is a way to make an executable binary file and run it on the
phone, you need to have root access to do that. That is why we have to build
a wrapper around the executable binaries which is the app that gives the
privileges which are described on the manifest xml file rather than having
to root the phone.
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4.7 Summary

This chapter is a brief overview of the Android OS on the smartphone where
most of the topics that has been described are relevant for implementing
Emerald on the smartphone. Android is based on linux for mobile devices
and is developed by Open Handset Alliance. What was most notable is
how the software stack is built up and what each element represents and
how they interact with each other to prioritize the layers on top of them.
The Activity components was also covered to see how each component
interact and what their functionalities were when we ran our application.
The Activity lifecycle and Activity stack was also covered to see how each
Activity behaved during their lifecycle and how all Activities are stored and
what happens when the current running Activity is terminated or paused.
We also described how Android NDK works where we have some way to
do a hybrid application of Java and C/C++ communicating with each other
through an interface known as JNI. The last topic that was presented was
about GCM where the most important part is how the phones can push the
message up in the cloud and distribute the message to other phones or just
get the result back.
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Part III

Porting Emerald
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Chapter 5

Porting Emerald

In this chapter, we introduce how we first came into the idea of why we
have to port Emerald to our smartphones rather than just try to execute the
already executable source of Emerald to begin with. We first investigate,
test and make the Emerald compiler run as a service on the smartphones.
The first test was to download a terminal emulator on a non-rooted phone
because with this app, it makes the phone act as a linux shell where we
wanted to just download the emerald-0.99 version to run the commands
that were emc which compiles the source code and emx that would execute
our Emerald program. The second test was to use standalone-toolchain to
cross compile and port the Emerald compiler sources to the Android phone
and find out and conclude if it worked or not. The last test was to try to run
Emerald programs on smartphones with the specific architectures that are
used on the device.
However, we faced many challenges such as NAT issues, bandwidth latency,
Emerald nodes not recognizing other Emerald nodes and that the Emerald
nodes crashed due to segmentation fault and synchronization problems
related to much simulatenous network communcation.

5.1 Running Emerald on the Terminal Emulator
IDE app

Android smartphones do not usually have a terminal available, but we can
use a shell by connecting it to a PC and use the Android Debugging Bridge
(adb) to start the shell terminal on PC or just download a terminal emulator
app.
The first attempt to test out Emerald on Android was to install the Terminal
Emulator IDE which made it possible to run a terminal shell like we have
in our linux distros. The reason why we use Terminal IDE rather than adb
shell is that we can add permissions on the app so the Emerald compiler can
receive packets and make sure it can listen to multiple machines. What the
Terminal IDE offered was many features we have in our linux, for example
vim, bash, git, gcc and even Java compilers. But unfortunately, they did not
offer us root permissions. Since our smart phones are implemented in the
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linux kernel, most of the functionalities where there but that depended on
which type of terminal emulator we installed on our phones.

5.1.1 Results

Figure 5.1: The painful limitation of our smart phones

This was a failed attempt to test the Emerald compiler by simply moving
the directory containing the compiler and executable binaries. We wanted
to test if it was possible to not just use the Emerald compiler as it is now
rather than cross compiling.
The reason why every smartphone has set a restriction that the phone itself
is because each user should not have the possibility to manage the memory,
CPU etc. They might even delete the OS itself!
Figure 5.1 was several hours of testing to see if there was a way to make sure
we run the Emerald without cross compiling and using the command su to
give permission to run the Emerald compiler, or the the one that is going
to execute the program. That was not successful and what we came to is
that, to make our phones support and run Emerald on terminal, we need
to have root privileges to get full access to the device itself as each device
is a PC and should act as one. With the Terminal IDE we do not need root
access to execute binary files as long as busybox is installed. However, for
an Android phone to execute any binaries at all, the source code must be
cross compiled into a specific CPU architecture. The most common CPU
Architecture for Android is ARM[35]. It would be an advantage for future
OS that there was an option to make the user to have root access from a
developers point of view. Running the Emerald with just the terminal IDE
app would make it easier to distribute objects around each device so that it
could form a network or even pushing data to the cloud.
The advantage of rooting the phone is that you get the possibility to move
apps to the sd card instead of the internal memory, this saves some space
for the internal memory of the phone. Another advantage is that you can
customize the Read-Only Memory to speed up the process of the phone or
even change the user interface of the phone to your liking[25].
That does not mean that rooting would solve our problem, as we still
need to re-compile the Emerald compiler to the CPU architecture of the
smartphone. What that means is that we need to cross compile the Emerald
compiler to make it executable on the Android phone. Even if we root our
phones,we still get permission denied, or that the Android itself can not
execute the binary file.
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We developers find this annoying and not the huge benefit when we want
to gain full access and do whatever we want. The only thing we can do to
not brick the phone, is to make an app which acts as a layer on top for the
Emerald binary resources.

5.1.2 Discussion

Having an Android Terminal which acts like a Linux shell terminal would
be a huge advantage for us computer scientists as it gives us the opportunity
to test different programming languages in small constraint devices such
as smartphones. By cross compiling the Emerald binary file, we can still
use it on the Terminal app, but not on adb where we need root access
to execute binary files at all. Although we could modify and remove the
restriction, it is not a big problem to give our smart phones root access,
but that would not guarantee that our phones are in a good condition
which means that it might be jailbreaked, bricked or we would break the
rule of the warranty for our phones as well as there is also security issues
that needs to be considered[25]. Even though we root our phones we still
need to cross compile the Emerald compiler to make it executable on our
phones. We can not just copy a binary executable file on Android because of
the architecture differences and resource constraints. These specified app
compilers mentioned are implemented with Android NDK and have used
standalone-toolchain.

5.2 Android NDK and Standalone-toolchain

The developers that made the Terminal IDE and C4Droid where suggesting
me to use standalone-toolchain on the Emerald compiler:

Khiem-Kim (Me): I am trying to add the Emerald compiler so that it can
compile Emerald programs on Android. It seems however that I am
restricted due to licensing problems as Android uses bionic

Spartacus Rex99: Yes, bionic definitely causes a few problems.

I would try and compile emerald with the latest NDK. Build a stand
alone toolchain , shows how in the NDK docs, and use that.

it is quite powerful now, 8 incarnations later.

n0n3m4: Just use arm-linux-gnueabi toolchain (you can build it with
crosstool-ng) with "-static" flag for GCC and your program builds
properly

From the two app developers point of view, Spartacus Rex99 has a point!
We need to use standalone toolchain to cross compile and try running the
binary executable on Android. n0n3m4 tips was unfortunately not useful
because, when using arm-linux-gnueabi, the binary file does not execute at
all on Android phones. The Android OS itself has restricted us to actually
use it as a fully distributed device, so in this case, we try to go "native"
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and cross compile the Emerald source. Running Emerald with Terminal
Emulator was a failed attempt, but we moved on and in this chapter we
are going to go in depth of how we can make a "hybrid" application run a
compiler and still give a relatively good user interface with slightly better
performance due to the fact that we have to use native calls to retrieve
results from the commands or executing a binary and display the output to
the user. The most interesting about NDK is what are the limitations when
we already know that Android itself does not fully support glibc, which
means some of the source code of the compiler must be changed to support
the specific CPU architecture the smartphone has.
We first describe how the user interface interact with the native to get
information from it. Then afterwards we test out the standalone-toolchain
if it went well to cross compile the Emerald source and execute the binaries
on the phone.

5.2.1 The User interface for the Emerald compiler

We have to consider that we want the compiler to run when executed
by normal users, and even though we have cross compiled the Emerald
compiler, it can not be executed on our phones because of the restrictions
which has been mentioned previously. Implementing a wrapper for the
Emerald compiler such as a feasible user interface would then make it
possible to use the compiler and execute programs[20].
One of the main purposes of creating a user interface that uses the Emerald
compiler is that the app would then grant permissions which are specified
on the manifest xml file. The most notable permissions that we should
consider are the CHANGE network states, where it makes it possible to
receive data from other phones.
A typical manifest file that are needed for using such an app is:

1 <uses−sdk
2 android : minSdkVersion="8"
3 android : targetSdkVers ion=" 17 " />
4
5 <uses−permission android : name=" android . permission . INTERNET" />
6 <uses−permission android : name=" android . permission .

WRITE_EXTERNAL_STORAGE" />
7 <uses−permission android : name=" android . permission .WAKE_LOCK"

/>
8 <uses−permission android : name=" android . permission .

ACCESS_SUPERUSER" />
9 <uses−permission android : name=" android . permission .

ACCESS_NETWORK_STATE" />
10 <uses−permission android : name=" android . permission .

ACCESS_WIFI_STATE" />
11 <uses−permission android : name=" android . permission .

CHANGE_WIFI_MULTICAST_STATE" />
12 <uses−permission android : name=" android . permission .

CHANGE_NETWORK_STATE"/>
13 <uses−permission android : name=" android . permission .

CHANGE_WIFI_STATE"/>
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We need to specify what version of Android can run the app where minS-
dkVersion describes the early version we can support while targetSdkVer-
sion says the highest version of the Android OS we can support, as long as
any phones have an OS that is between or like the version specified, they
can then run the app. We also specify typical permissions we can give the
app, this makes it possible to connect to the network and retrieve the ad-
dress used to initiate a node in Emerald. When we install the app on our
phones, we create a UI thread where all activities are run inside this thread.
A single thread inside an activity can not access UI elements and to access
UI elements, we need to define a handler[20].
The application itself must have a background processing thread which can
process and give the result of the execution to the UI thread[20].
So to illustrate the concept, look at figure 5.2 where we have the UI/Worker
thread model. The Application layer has a handler that is either processing
or updating messages to the user interface. The Worker thread is where
we can execute any shell commands or binaries. The UI thread sends
the given commands so that the worker thread runs the specific execution
of command that is prompted from the UI. While the Worker thread is
executing, the UI should still respond even though there is an execution
in the background and when the Worker thread is done, it flushes out the
updated data to the handler in the UI thread so it can display the result on
the UI screen.

Figure 5.2: The UI/Worker thread model

5.2.1.1 Sending messages back and forth

An example of interacting with the worker thread in the background could
be for example like this:

1 @Override
2 p u b l i c void onClick ( View v ) {
3 i f ( ! typeCommand . getText ( ) . t o S t r i n g ( ) . matches ( " " ) ) {
4
5 Thread WorkerThread = new Thread (new Runnable ( ) {
6
7 p u b l i c void run ( ) {
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8 threadMsg ( execCommands ( typeCommand . getText ( ) .
t o S t r i n g ( ) ) ) ;

9 }
10
11 p r i v a t e void threadMsg ( S t r i n g msg) {
12 // c r e a t e a message and pass i t over to the handler
13 }
14
15 p u b l i c S t r i n g execCommands ( S t r i n g command) {
16 S t r i n g B u i l d e r b u i l d S t r i n g = new S t r i n g B u i l d e r ( ) ;
17 t r y {
18 //Can use ProcessBui lder and Runtime in Java

l i b r a r y to execute commands
19 // Best s o l u t i o n i s to use n a t i v e c a l l s , c r e a t i n g

process and output the r e s u l t
20
21 } catch ( Exception e ) {}
22 return b u i l d S t r i n g . t o S t r i n g ( ) ;
23
24 }
25
26 // Define the Handler t h a t r e c e i v e s messages from the
27 // thread and update the progress
28 p r i v a t e f i n a l Handler handler = new Handler ( ) {
29
30 p u b l i c void handleMessage ( Message msg) {
31 // Handle the message t h a t i s r e c e i v e d and do some

a c t i o n to i t
32
33 }
34 } ;
35
36 } ) ;
37 // S t a r t the worker Thread
38 WorkerThread . s t a r t ( ) ;

What happens is that, when we type in a specific button, we create a
workerthread where this thread executes the command given, create a
message and pass it onwards to the handler where this handler makes sure
that the output of the result is displayed to the user.
This is not so efficient and can lead to complexity in the native code[20], the
best way to execute any binaries or linux commands is to go native where
we have to use p_threads or creating processes by using fork() in C.
In Java, we could call sendMessage() method to send messages to the
handler. When it comes to native, we need to create a method that calls
from native code through the JNI so from JNI, the message is sent to the
handler at the UI thread.
The UI shows only the output of the running program. The user only needs
to consider which node(ip address and port number) to communicate with
and what program it wants to run to distribute the object. In our app, we try
to avoid that the UI "freezes" by calling native functions where these creates
processes that runs the execution of Emerald or any other shell commands
in the background. The process acts as a worker thread and when they are
finished, the result is shown to the UI thread.
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5.2.2 Cross compiling the Emerald source

First of all, using standalone-toolchain require us to setup the correct
environment path of what kind of CPU architecture should be used.
Usually, Android phones has ARM as their CPU. To cross compile the
Emerald source, I chose to use the arm-linux-androideabi-gcc which is
available when you download the Android NDK tools.
An example of a script that can be run on the Emerald compiler source
code:

1 NDK=~/adt−bundle−l inux −x86−20130917/ android−ndk−r9 /
2 SYSROOT=$NDK/ plat forms / android −9/arch−arm/
3 CROSS_PATH=$NDK/ t o o l c h a i n s /arm−l inux −androideabi −4.8/ p r e b u i l t /

l inux −x86/ bin
4
5 export CFLAGS="− f p i c −fno−b u i l t i n −memcpy −fno−b u i l t i n −memset −fno−

b u i l t i n −memchr −fno−b u i l t i n −s t r l e n \
6 − f f u n c t i o n −s e c t i o n s \
7 −fs igned −char "
8
9 export RANLIB="$CROSS_PATH/arm−l inux −androideabi−r a n l i b "

10 export CC="$CROSS_PATH/arm−l inux −androideabi−gcc −4.8 −−s y s r o o t=
$SYSROOT − s t a t i c "

11 . / c o n f i g u r e −− t a r g e t =arm−l inux −androideabi −−host=i686− l i n u x −−
enable− s t a t i c =true −−p r e f i x =/home/kkho/em_output

Before configuring and creating makefiles, we specify what type of CPU
architecture we want to use as our compiler instead of using the classical
gcc. For our app, we use the arm-linux-androideabi-gcc-4.8 and has a
path that is specified in the CROSS_PATH variable. Although we could
also use other types of CPU architecture compilers that are available on the
android ndk toolchain directory like MIPS or x86. It is also appropriate to
define the sysroot so that the compiler looks for libraries and headers inside
the sysroot directory. We also specify flags where these are actually an
environment variable such that CFLAGS specifies the compiler flag. We can
specify the location of where the binaries are stored, to do that we include
the –prefix to indicate the location.
To run the executable binary itself (which is the first step to do to find out
if it works on Android or not), we need root permissions. We rooted the
emulator itself to find out if emx works. In Android, running a shell script
does not work, so we can not just type ec and emc, we have to include sh
before typing in emc or ec for example: sh emc. We also have to make sure
to change the script so that it can run correctly, but we do not want the user
of the app to type in sh each time to compile a program file. Therefore we
made an ARM binary executable version of emc.

5.2.3 Compiling and executing Emerald files

First of all, the binary file emx works when porting to Android. There are
no errors when executing a binary file.
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After cross compiling and trying to run to compile an Emerald file, we
notice that an error occured where we got a yacc stack overflow. This
exception appears when the compiler complains about <EOF> of the source
file, which is shown on the example above. To avoid that, we add "-fsigned-
char" on the CFLAGS variable. This variable makes sure that the characters
are signed. Before cross compiling the Emerald sources, the chars are
represented as signed, but might be represented as unsigned on the ARM
architecture[29]. The yyps usually starts in -1, but in ARM it starts with
255 which causes the yacc stack overflow problem.
An Emerald object does not necessarily represent the same object informa-
tion but as long as it conforms to a type, it can still use the operation where
each machines would understand its operation.

5.2.4 Result

Porting Emerald to Android was successful, you have to type in ./emx to
execute the binary, and to run emc you have to type in sh emc. Using ec
does not work, the shell can not find the command tr from the ec script.
To execute a binary on the Android phone, we need root access unless we
implement an app which acts like a layer on top of the Emerald sources. To
avoid typing "./" everytime you want to execute a binary, we modified the
Terminal IDE where this app offers bashrc so that we can add environment
paths and avoid the root permission issue. Adding a path where Emerald is
would then make sure that we can simply run emx or emc (as long as both
are binary files).
We have to keep in mind that in the ARM architecture they translate char as
unsigned automatically, and for chars to be signed, they need to be forced
as signed with the variable "-fsigned-char" so that the compiler can be used.

5.2.5 Discussion

Having a framework ready to build the app for Android is a good thing, as
having UI thread run and let the user type in different buttons rather than
the UI has to wait for respond of the executing commands for the Emerald.
That is why we need to have a Worker thread that runs in the background
and provide the execution load off from the UI and we have to implement
a handler which can receive several thread messages if it was a successful
operation or not.
Android NDK provides us with standalone toolchain that makes it possible
to cross compile an already implemented C/C++ code so that we can port
this to our phones. Our achievement of porting Emerald to Android made
sure that we can execute an Emerald binary file where it is understood by
the phone. Executing emx directly through adb shell requires root access
which is why we need to have the app as a top layer for the Emerald binaries
(emx and emc) to make the Emerald work for non rooted phones.
Porting the Emerald compiler was a success, using standalone-toolchain to
port Emerald on Android works perfectly, but there had to be some changes
with paths and signed vs unsigned chars. The Emerald can now be used to

48



run on most smartphones that has the Android but as long as they have the
ARM as their CPU. You have to either root the phone and use adb shell to
run Emerald, or you have to build a UI with permissions and utilities to run
Emerald on non-rooted phones.

5.3 Summary

This chapter explains in detail of what we do to port the Emerald by first
copy the sources and try to run the compiler on the phone and cross-
compile the Emerald compiler and what challenges we face when it comes
to recompiling it to a specific architecture. We also discovered that we
have to make an app that needs to be a top layer for the Emerald compiler
because any executable binaries can not be executed by any users than those
that have the root privileges on the phone.
There were also major challenges such as NAT, bandwidth and latency
issues as well as Emerald nodes not recognizing other Emerald nodes at
all.
The next chapter describes our app, the Emerald-Lite which is specialized
for compiling or running any Emerald programs.
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Chapter 6

The Application -
Emerald-Lite

In this chapter, we describe how the app is implemented. The app itself
acts as a layer on top of the Emerald compiler where the user types in the
commands at the application level and sends it to the lower level where we
have the privileges to execute any C/C++ binaries. The app is an emulation
of a terminal and since a phone that is not rooted can not directly execute
any binaries, we have to create a terminal emulator that simulates a real
terminal as in any Linux distros.
We want to make sure that any smartphones have the possibility to use
Emerald to go on to the edge without rooting the device itself.
We make the code and the UML model as abstract as possible and include
the method, variables and classes that are the most important to propose.
The app is a modified version of the Terminal IDE[31] which is an open
source developed app. This app offers many utilities like .bashrc file where
we can add environment paths for where the Emerald sources reside. The
apps name is Emerald-Lite which is just a name to indicate that this app
run Emerald programs on Android phones.

6.1 Main menu

The main menu displays buttons where we either run the Terminal, install
the utilities that includes the Emerald source or shutdown the program so
you actually kill the Activity. The UML diagram below which is figure 6.1
describes how the Main menu acts and what occurs when you want to run
the Terminal.
When the app is launched, the Start object initializes and acts as the
Activity and use the same functionalities, methods, etc. like Introscreen
has. Although the Start object is a subclass of Introscreen, for simplification
we use the object rather than the superclass. The Introscreen object
is dependent on TermService and Term object because it uses both of
them to either create an Intent or start an Activity as it is an Activity
itself. The Term object needs to create and instantiate the TermService
and TermViewFlipper object where the TermService acts as a Service
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compontent. The TermViewFlipper is a subclass of ViewFlipper where this
subclass acts as an iterator for view objects. The view objects that we use for
our app is the EmulatorView. The EmulatorView displays the text which is
outputted to the screen

Figure 6.1: UI Main menu class diagram

and the current cursor position of the TerminalEmulator object which is
our main function of the app to run Emerald on an emulated terminal. The
TerminalEmulator object contains the most appropriate functionalities and
states a typical terminal it usually has. TermService is dependent on Start
object because it creates a service and makes sure that the app is running
in the background with the same state as it was before. The TermService
also intializes amount of TermSessions where a TermSession consist of
TerminalEmulator.

6.1.1 Implementation in Android

To implement the Main menu in Android, we need to consider all the
objects presented in the UML diagram plus other features which has
been abstracted away. We can ignore showing how Start object is cre-
ated. We are more interested to show what each object does. We
introduce most of the objects from the UML diagram which is: In-
troscreen,TermService,TermSession, Term, EmulatorView, and Termi-
nalEmulator.
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6.1.1.1 Introscreen

The Introscreen uses the TermService as a service and the object also have
buttons that is used to choose either to start the Terminal, start the installer
utilties or close the app and we do all this on the onCreate() method. Since
the introscreen implements an OnClickListener(), we define the onClick()
on the activity itself to start the Term object.

1 p u b l i c c l a s s I n t r o s c r e e n extends A c t i v i t y implements
OnCl ickListener {

2 . . .
3 @Override
4 p u b l i c void onCreate ( Bundle i c i c l e ) {
5 super . onCreate ( i c i c l e ) ;
6 // S t a r t the S e r v i c e and i n i t i a l i z e the i n t e n t f o r the s e r v i c e
7 . . .
8 }
9 . . .

10 p u b l i c void onClick ( View zButton ) {
11 i f ( zButton == findViewById (R. id . main_start ) ) {
12 // Check i f system i s i n s t a l l e d
13 } e l s e {
14 // S t a r t the Terminal
15 s t a r t A c t i v i t y ( newIntent ( I n t r o s c r e e n . t h i s , Term . c l a s s ) ) ;
16 }
17 . . .
18 }
19 . . .
20 }

6.1.2 TermService

The TermService goal is to create a Service for the Introscreen Activity
where not only makes sure to run in the background, but also initiates
bashscript and a list of TermSessions. When we want to "destroy" the
Service, we have to make sure to clean up the Session on the onDestroy()
method. To create a TermSession, we can define that in the initSessions()
method that would call on the method createTermSession().

1 p u b l i c c l a s s TermService extends S e r v i c e implements
SharedPreferences . OnSharedPreferenceChangeListener {

2
3 . . .
4 @Override
5 p u b l i c void onCreate ( ) {
6 // i n i t i a l i z e termsessions and put the s e r v i c e in the

foreground ,
7 // s t a r t a n o t i f i c a t i o n i n t e n t and i n i t i a l i z e d s e s s i o n s at the

i n t e r n a l memory path of the app
8 . . .
9 F i l e home = g e t F i l e s D i r ( ) ;

10 i f (home!= n u l l ) {
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11 i n i t S e s s i o n s (home) ;
12 }
13 . . .
14 }
15
16 p r i v a t e void i n i t S e s s i o n s ( F i l e zHome) {
17 . . .
18 // Create i n i t i a l Terminals
19 }
20 . . .
21 @Override
22 p u b l i c void onDestroy ( ) {
23 // c l e a r out the termsessions and stop the foreground
24 . . .
25 }
26 . . .
27 }

6.1.3 TermSession

TermSession creates a TerminalEmulator object to actually flush out the
result of the input and output to it. We use FileOutputStream and
FileInputStream to make it possible to flush out. We also need to initialize
a handler and threads which read any messages from process childs. To
create a process, we use the methods in the Exec object which is static and
native (Exec is covered in the next section).

1 p u b l i c c l a s s TermSession {
2 p r i v a t e UpdateCallback mNotify ;
3 p r i v a t e i n t mProcId ;
4 p r i v a t e F i l e D e s c r i p t o r mTermFd;
5 p r i v a t e FileOutputStream mTermOut ;
6 p r i v a t e Fi leInputStream mTermIn ;
7 p r i v a t e TerminalEmulator mEmulator ;
8 p r i v a t e ByteQueue mByteQueue ;
9 p r i v a t e byte [ ] mReceiveBuffer ;

10 p r i v a t e S t r i n g mHomeFilesDir ;
11 p r i v a t e boolean mIsRunning = f a l s e ;
12
13 p r i v a t e Handler mMsgHandler = new Handler ( ) {
14
15 @Override
16 p u b l i c void handleMessage ( Message msg) {
17 i f ( ! mIsRunning ) {
18 return ;
19 }
20
21 i f (msg . what == NEW_INPUT) {
22 readFromProcess ( ) ;
23 }
24 }
25 } ;
26
27 p u b l i c TermSession ( S t r i n g zHomeFilesDir , TermSettings s e t t i n g s ,

UpdateCallback n o t i f y , S t r i n g initialCommand ) {
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28 mSettings = s e t t i n g s ;
29 mNotify = n o t i f y ;
30 mHomeFilesDir = zHomeFilesDir ;
31 i n t [ ] processId = new i n t [ 1 ] ;
32
33 createSubprocess ( processId ) ;
34 mProcId = processId [ 0 ] ;
35 mTermOut = new FileOutputStream (mTermFd) ;
36 mTermIn = new FileInputStream (mTermFd) ;
37 mEmulator = new TerminalEmulator ( . . . ) ;
38
39 mIsRunning = true ;
40 . . .
41 }
42
43
44 p u b l i c void w r i t e ( S t r i n g data ) {
45 // f l u s h out the terminal ourtput you get from the terminal

f i l e d e s c r i p t o r
46 . . .
47 }
48
49 p r i v a t e void createSubprocess ( i n t [ ] processId ) {
50 . . .
51 mTermFd = Exec . createSubprocess ( arg0 , arg1 , arg2 , processId ) ;
52 }
53
54 p u b l i c void updateSize ( i n t columns , i n t rows ) {
55 Inform the attached pty of our new s i z e , update the emulator

s i z e
56 }
57 . . .
58 /* *
59 * Look f o r new input from the p t t y , send i t to the terminal

emulator .
60 */
61 p r i v a t e void readFromProcess ( ) {
62 // read inputs and f l u s h out to the TerminalEmulator
63 }
64
65 p u b l i c void f i n i s h ( ) {
66 // c lean up and e x i t a l l execprocesses e t c .
67 }
68 }

6.1.4 Term

The Term object is an activity where we can swipe to change to another
terminal, which we can define more terminals at onCreateContextMenu().
In the onCreate() method, we set the TermService as our intent and we also
have a collection of TermViewFlipper so that we initiate a context view for
our view flipper. To actually create more terminals, we have to base on our
mTermSessions ArrayList where we add the TermSession element and the
method for doing that is the onCreateContextMenu(). When we want to
destroy the activity, we have to make sure to clean all created views on the
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onDestroy() method.

1 p u b l i c c l a s s Term extends A c t i v i t y {
2 /* *
3 * The ViewFlipper which holds the c o l l e c t i o n of EmulatorView

widgets . */
4 p r i v a t e TermViewFlipper mViewFlipper ;
5
6 /* *
7 * The name of the ViewFlipper in the resources .
8 */
9 p r i v a t e s t a t i c f i n a l i n t VIEW_FLIPPER = R. id . v i e w _ f l i p p e r ;

10 p r i v a t e ArrayList <TermSession> mTermSessions ;
11 p r i v a t e I n t e n t TSIntent ;
12 . . .
13
14 @Override
15 p u b l i c void onCreate ( Bundle i c i c l e ) {
16 super . onCreate ( i c i c l e ) ;
17 . . .
18 TSIntent = new I n t e n t ( t h i s , TermService . c l a s s ) ;
19 . . .
20 setContentView (R. l a y o u t . v i e w _ f l i p p e r ) ;
21 mViewFlipper = ( TermViewFlipper ) findViewById (VIEW_FLIPPER

) ;
22 . . .
23 }
24
25 @Override
26 p u b l i c void onDestroy ( ) {
27 super . onDestroy ( ) ;
28 mViewFlipper . removeAllViews ( ) ;
29 }
30 . . .
31
32 @Override
33 p u b l i c void onCreateContextMenu ( ContextMenu menu , View v ,

ContextMenuInfo menuInfo ) {
34 super . onCreateContextMenu (menu , v , menuInfo ) ;
35 //Show a l i s t of windows
36 menu . s e t H e a d e r T i t l e ( " Terminals " ) ;
37 menu . add (0 , 0 , 0 , " Terminal 1 " ) ;
38 // add more terminals
39 }
40 . . .
41 }

6.1.5 EmulatorView

The EmulatorView gives us a possible way to show the transcript and a
TerminalEmulator. Here, the most important thing is what data we receive
from the TerminalEmulator which is the FileOutputStream. To receive data
from any remote processes.
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1 p u b l i c c l a s s EmulatorView extends View implements GestureDetector .
OnGestureListener {

2
3 p r i v a t e TermSettings mSettings ;
4 p r i v a t e TermViewFlipper mViewFlipper ;
5 p r i v a t e TermSession mTermSession ;
6 . . .
7 /* *
8 * Used to render t e x t */
9 p r i v a t e TextRenderer mTextRenderer ;

10
11 . . .
12 /* *
13 * Our terminal emulator . We use t h i s to get the current

cursor p o s i t i o n . */
14 p r i v a t e TerminalEmulator mEmulator ;
15 . . .
16 /* *
17 * Used to r e c e i v e data from the remote process . */
18 p r i v a t e FileOutputStream mTermOut ;
19
20 . . .
21
22 /* *
23 * Our message handler c l a s s . Implements a p e r i o d i c c a l l b a c k .

*/
24 p r i v a t e f i n a l Handler mHandler = new Handler ( ) ;
25
26 . . .
27 p u b l i c EmulatorView ( Context context , TermSession sess ion ,

TermViewFlipper viewFlipper , DisplayMetr ics metr ics ) {
28 super ( context ) ;
29 . . .
30 }
31 . . .
32 p r i v a t e void sendText ( CharSequence t e x t ) {
33 i n t n = t e x t . length ( ) ;
34 t r y {
35 //map c h a r a c t e r s and send i t to the remote process
36 }
37 mTermOut . f l u s h ( ) ;
38 } catch ( IOException e ) {
39 }
40 }
41
42 . . .
43
44 /* *
45 * C a l l t h i s to i n i t i a l i z e the view .
46 *
47 * @param s e s s i o n The terminal s e s s i o n t h i s view w i l l be

d i s p l a y i n g */
48 p r i v a t e void i n i t i a l i z e ( TermSession sess ion , TermViewFlipper

viewFl ipper ) {
49 // i n i t i a l i z e the value given and use s e s s i o n to i n i t i a l i z e other

g l o b a l v a r i a b l e s .
50 }
51 . . .
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52 }

6.1.6 TerminalEmulator

The TerminalEmulator acts as a terminal in Linux. Which means that
the object itself renders the text to the screen. The most important here
is how we set the cursor for row and columns, how the characters are
stored on the screen and how we send data to a process. With the help
of FileOutputStream, we can then have the possibility to send data to the
shell process.

1 p u b l i c c l a s s TerminalEmulator {
2
3 /* *
4 * The cursor row . Numbered 0 . .mRows−1 . */
5 p r i v a t e i n t mCursorRow ;
6
7 /* *
8 * The cursor column . Numbered 0 . . mColumns−1 . */
9 p r i v a t e i n t mCursorCol ;

10
11 /* *
12 * The number of c h a r a c t e r rows in the terminal screen . */
13 p r i v a t e i n t mRows;
14
15 /* *
16 * The number of c h a r a c t e r columns in the terminal screen . */
17 p r i v a t e i n t mColumns ;
18
19 /* *
20 * Used to send data to the remote process . Needed to

implement the var ious
21 * " r epor t " escape sequences . */
22 p r i v a t e FileOutputStream mTermOut ;
23
24 /* *
25 * Stores the c h a r a c t e r s t h a t appear on the screen of the

emulated terminal . */
26 p r i v a t e Screen mScreen ;
27 . . .
28
29 /* *
30 * Construct a terminal emulator t h a t uses the suppl ied screen
31 *
32 * @param screen the screen to render c h a r a c t e r s i n t o .
33 * @param columns the number of columns to emulate
34 * @param rows the number of rows to emulate
35 * @param termOut the output f i l e d e s c r i p t o r t h a t t a l k s to the

pseudo− t t y .
36 */
37 p u b l i c TerminalEmulator ( Screen screen , i n t columns , i n t rows ,
38 FileOutputStream termOut ) {
39 mScreen = screen ;
40 mRows = rows ;
41 mColumns = columns ;
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42 mTabStop = new boolean [mColumns ] ;
43 mTermOut = termOut ;
44 . . .
45 }
46
47 p u b l i c void updateSize ( i n t columns , i n t rows ) {
48 // update the screen s i z e of the terminal
49 }
50
51 p u b l i c f i n a l i n t getCursorRow ( ) {
52 return mCursorRow ;
53 }
54
55 p u b l i c f i n a l i n t getCursorCol ( ) {
56 return mCursorCol ;
57 }
58 . . .
59
60 /* *
61 * Send data to the s h e l l process
62 * @param data
63 */
64 p r i v a t e void w r i t e ( byte [ ] data ) {
65 t r y {
66 mTermOut . w r i t e ( data ) ;
67 mTermOut . f l u s h ( ) ;
68 } catch ( IOException e ) {
69 // We do not r e a l l y care i f the r e c e i v e r i s not

l i s t e n i n g .
70 // We j u s t make a best e f f o r t to answer the query .
71 }
72 }
73 }
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6.2 Interacting C++ code through JNI

The Exec object does native calls where it has to communicate with the
TermExec which is a C++ file. To do that, each of them has to go through
the JNI.

Figure 6.2: class diagram for native calls

The UML diagram on figure shows an example 6.2 of how both of them can
communicate with each other. We see the methods have similar names but
in the C++ file, we have to specify the path of where Exec.java lies so that
both of them understand what method it is talking about. If we wrote a
wrong path before the name of the method, our app would crash.

6.3 Implementation in Android

To make Exec Java class understand that it does native calls, each method
must have a native modifier written after public and static modifier before
the method name. We must also load the library within a static clause.
The code below shows how Exec looks like:

1 p u b l i c c l a s s Exec
2 {
3 s t a t i c {
4 System . loadLibrary ( " androidterm " ) ;
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5 }
6
7 /* *
8 * Create a subprocess . D i f f e r s from j av a . lang . ProcessBui lder

in
9 * t h a t a pty i s used to communicate with the subprocess .

10 *
11 * @param cmd The command to execute
12 * @param arg0 The f i r s t argument to the command, may be n u l l
13 * @param arg1 the second argument to the command, may be n u l l
14 * @param processId A one−element array to which the process

ID of the
15 * s t a r t e d process w i l l be w r i t t e n .
16 * @return the f i l e d e s c r i p t o r of the s t a r t e d process .
17 *
18 */
19 p u b l i c s t a t i c n a t i v e F i l e D e s c r i p t o r createSubprocess (
20 S t r i n g cmd , S t r i n g arg0 , S t r i n g arg1 , i n t [ ] processId ) ;
21
22 /* *
23 * Set the widow s i z e f o r a given pty . Allows programs
24 * connected to the pty l e a r n how l a r g e t h e i r screen i s .
25 */
26 p u b l i c s t a t i c n a t i v e void setPtyWindowSize ( F i l e D e s c r i p t o r fd ,
27 i n t row , i n t col , i n t xpixe l , i n t y p i x e l ) ;
28
29 /* *
30 * Causes the c a l l i n g thread to wait f o r the process

a s s o c i a t e d with the
31 * r e c e i v e r to f i n i s h execut ing .
32 *
33 * @return The e x i t value of the Process being waited on
34 *
35 */
36 p u b l i c s t a t i c n a t i v e i n t waitFor ( i n t processId ) ;
37
38 /* *
39 * Close a given f i l e d e s c r i p t o r .
40 */
41 p u b l i c s t a t i c n a t i v e void c l o s e ( F i l e D e s c r i p t o r fd ) ;
42
43 /* *
44 * Send SIGHUP to a process group .
45 */
46 p u b l i c s t a t i c n a t i v e void hangupProcessGroup ( i n t processId ) ;
47 }

The most important for Exec is to load the library needed which is the
androidterm so that the object knows that it is going to do native calls.
As mentioned before, we need to define native before writing the whole
method name.
All these methods are used to create, close or other functions for a child
process.
The code below shows how TermExec looks like:
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1 s t a t i c j c l a s s c l a s s _ f i l e D e s c r i p t o r ;
2 s t a t i c j f i e l d I D f i e l d _ f i l e D e s c r i p t o r _ d e s c r i p t o r ;
3 s t a t i c jmethodID m e t h o d _ f i l e D e s c r i p t o r _ i n i t ;
4 . . .
5
6 s t a t i c j o b j e c t android_os_Exec_createSubProcess ( JNIEnv *env ,

j o b j e c t c l a z z ,
7 j s t r i n g cmd , j s t r i n g arg0 , j s t r i n g arg1 , j i n t A r r a y

processIdArray )
8 {
9 // c r e a t e a subprocess and return a j o b j e c t . A t y p i c a l c r e a t i o n

i s using fork ( )
10 }
11
12
13 s t a t i c void android_os_Exec_setPtyWindowSize ( JNIEnv *env , j o b j e c t

c l a z z ,
14 j o b j e c t f i l e D e s c r i p t o r , j i n t row , j i n t col , j i n t xpixe l , j i n t

y p i x e l )
15 {
16 // s e t the pty windowsize
17 }
18
19 s t a t i c i n t android_os_Exec_waitFor ( JNIEnv *env , j o b j e c t c l a z z , j i n t

procId ) {
20 // return an answer i f i t was s u c c e s s f u l to make the process wait

.
21 }
22
23 s t a t i c void android_os_Exec_close ( JNIEnv *env , j o b j e c t c l a z z ,

j o b j e c t f i l e D e s c r i p t o r )
24 {
25 // r e t r i e v e the f i l e d e s c r i p t o r and c l o s e i t
26 }
27
28 s t a t i c void android_os_Exec_hangupProcessGroup ( JNIEnv *env ,

j o b j e c t c l a z z ,
29 j i n t procId ) {
30 // k i l l the process i t s e l f
31 }
32 . . .
33
34 /*
35 * This i s c a l l e d by the VM when the shared l i b r a r y i s f i r s t

loaded . */
36 . . .
37
38 j i n t JNI_OnLoad (JavaVM* vm, void * reserved ) {
39 . . .
40 j i n t r e s u l t = −1;
41 JNIEnv* env = NULL;
42 . . .
43 r e s u l t = JNI_VERSION_1_4 ;
44 }

In this file, we create a process, one example of creating process is using
fork(). Now there are many different primitives that are presented like
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jclass, jobject jfieldID, jmethodID, JNIEnv and JavaVM[20]. The most
important method that is needed is the JNIOnLoad where this method is
called by the virtual machine when the Exec java class has loaded the library
(in the static clause).

6.4 Summary

This chapter, we focus on our app, the Emerald-Lite where it is a modified
version of Terminal IDE[31]. The app is more of an emulator to virtualize
a terminal as they have on Linux distros so we have now made it possible
to have Emerald at the edge with the Emerald-Lite app. We avoid rooting
smartphones by using Emerald-Lite.

There was also a detailed explanation of the code and how the relations are
between them. The most interesting is how the Java code could interact
with C/C++ code through JNI. This is needed for executing the Emerald
compiler and run any Emerald programs while the output of the executions
are displayed for the user on the application level.

The next chapter describes the result of different use cases where we
distribute objects through Planetlab and on the Amazon server(s).
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Chapter 7

Performance & Evaluation

In this chapter, we discuss what we want to measure and evaluate. As
well as confirm the possibilities of having Emerald integrated into our
smartphones and let it represent our thin client distributing data to near,
far or edge clouds. For our evaluation, we use two different use cases
implemented in Emerald:

• Basic performance of Emerald on smartphones: We use
Emerald to do a Round Trip Time (RTT), call-by-visit and remote
procedure call.

• Seamless Near-Far cloud evaluation: We demonstrate how
moving objects to nearby clouds can save battery life and have better
computation than the thin client itself.

The basic performance has two cases, Kilroy and Break-Even Point.
The Kilroy which just travels around all the nodes that are available
and returns home again. The second program finds out the Break-Even
Point. Break-Even is the point where it is equally efficient to do a call-
by-move/visit (thus making the parameter object local) versus having the
invokee’s node do call-backs to the invoker.
The reason why we use Break-Even Point is to see if it is more efficient
to move an object from a local machine to a remote machine compared to
doing a remote procedure call.
In the Break-Even Point benchmark, we display the time it took to do
a remote procedure call and a call-by-visit. We are testing the same
operation 5 times and using the average of those results for objects ranging
from sizes 100-2,000 bytes. We do 20 remote procedure calls to see
at which point call-by-visit and remote procedure calls would be equally
efficient. We could have also used 1 remote procedure call, but call-by-visit
would always take more time to process than doing a remote procedure call.
The reason is because we have to move the object, as well as constructing
the network package to the remote machine, and move it back to the
original machine. While with 1 remote procedure call, we avoid the cost
of packing the whole object and simply call the remote machine (requiring
a small network package).
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In the experiment done by Jul[17], call-by-visit turned out to be more
efficient for objects above 1,800 bytes (with a single call-back invocation).
For sizes above 10,000 bytes, call-by-visit seems worthwhile if there is at
least one call-back per 1,600 bytes of data.
With the two example programs described, we used them to test it on four
different types of distribution testbeds which are: phone-to-phone, local
machines, phone-to-Planetlab and phone-to-Amazon.
When we are going to run break-even, we do not consider to run on
every node, we only run the program on 2 machines which is from the
phone-to-phone, phone-to-local machine, phone-to-Planetlab and phone-
to-Amazon.
The P2P model represents our Near-Far cloud model as explained in
chapter 1 where the main purpose is to see how good the computation is
having either a near cloud doing computation work or the far cloud to it.
We also want to prove, that even though the far cloud is a more powerful
machine than the near cloud. The near cloud is a better solution for
reducing latency between the thin client to a further away server.

7.1 The Testbeds - Distributing from thin client
to any possible clouds

For testing the app, we chose four different testbeds where each of them
should provide stable result as each of them has been tested physically
rather than simulating. Our main purpose of each testbed, is to allow our
thin client to distribute any data to Near or Far clouds and find out if it
was possible to do it. For evaluation and measurements, we use Samsung
Galaxy SIII, Samsung Galaxy Mini S 2 and Samsung Galaxy Fame For
distributing objects to all types of clouds.

• Phone-to-Phone: We distribute objects to another smartphone.
The motivation is to see how good the computations are for just
sending data to the other smartphone.

• Local machines: We try out to distribute data from the smartphone
to several local machines at the University of Oslo (UiO). The local
machines in general represent a near cloud where we can create a
near-near cloud relation.

• Planetlab: is a set of machines that are used for network testbed
which makes it highly recommended for our benchmark to find out
how well it went to distribute objects, not only to machines locally,
but to several other places in Europe, Asia and America[10]. The
Planetlab hosts in general represent a far cloud where we can create a
near-far cloud relation.

• Amazon EC2: is a cloud server known as an Infrastructure
as a Service (IaaS)[5] which gives us users virtual computers
which are either used for creating webpages or just using them for
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testbeds for distributed environments[28].The OS Amazon offers
either Windows, Linux or FreeBSD instances depending on what we
want, but for our measurements, we use Linux. We chose a free cloud
server because we want to try to distribute objects where the location
is in the US, Ireland, Asia Pacific and South America. The EC2 servers
in general represent as a far cloud where we can create a far-far cloud
relation.

There might have been several other testbeds that we could have chosen
to cover. However, four types of testing should be more than enough to
provide strong results if we could make our everyday smartphones to be
coupled in a fully distributed way.
Each of the testbed including the smartphone has a different CPU execution
time on any program. We need to find out what the benefit is for
distributing objects or do local calls to several different types of machines
or devices where each of them is either near or far cloud.
A simple code example written in Emerald for estimating the execution
time for any machine can be done like this:

1 . . .
2 export operat ion findExecutionTime
3 const localhome <− l o c a t e s e l f
4 var f inishedTime : Time
5 var startTime : Time <− localhome . getTimeOfDay
6 var counter : I n t e g e r <− 0
7
8 f o r i : I n t e g e r <− 0 while i < 10000000 by i <− i + 1
9 counter <− counter + i

10 end f o r
11
12 finishedTime <− localhome . getTimeOfDay − startTime
13 localhome$stdout . putStr ing [ "CPU Execution Time : " | |

f inishedTime . a s S t r i n g | | " \n" ]
14
15 end findExecutionTime
16 . . .

Table 7.1 shows each of the machines or devices execution time based on
running the code above. The time might vary based on how powerful the
device/machine is.
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Table 7.1: List of CPU execution benchmark of memory and CPU combina-
tion of the machine

Machines/Devices CPU Execution time
Samsung Galaxy S III 8.11 s
Samsung Galaxy Nexus 9.5 s
Samsung Galaxy Mini S 2 17.12 s
Samsung Galaxy Fame 12.15 s
Localmachines at the UiO 2.16 s
Planetlab hosts 2 - 22 s
Amazon EC2 cloud servers 2.50 - 3 s

We also want to find out how fast the local and remote invocation is when
we are going to attempt a phone-to-phone, phone-to-local machine, phone-
to-Planetlab and phone-to-Amazon. As well as local machine-to-local
machine, Plantelab-to-Planetlab and Amazon-to-Amazon where we want
to measure how fast or efficient the mobility was compared to distributing
from phone to several types of machines and from these machines to other
machines.
Table 7.2 shows the attempt we made for each of the given testbeds
following the call-back problem and avoidance which was described in
chapter 3. Here we find the result of doing local invocation and remote
invocation of distributing object. The devices and the machines that was
used for table 7.2 are Samsung Galaxy SIII, Samsung Galaxy Mini S
2, local machines at the UiO, Planetlab host from Poland and Italy and
Amazon server from Oregon and Virginia.

Table 7.2: List of each testbed, where we tried local and remote invocation
Testbeds Move +

Local in-
vocation

Remote
invoca-
tion

phone (Galaxy SIII)-to-phone (Mini S 2) 12 ms 19 ms
phone (Galaxy SIII)-to-local machine (UiO) 8 ms 14 ms
phone (Galaxy SIII)-to-Planetlab (Poland) 26 ms 38 ms
phone (Galaxy SIII)-to-Amazon (Virginia) 24 ms 37 ms
local machine (UiO)-to-local machine (UiO) 0.44 ms 0.98 ms
Planetlab (Poland)-to-Planetlab (Italy) 47 ms 71 ms
Amazon (Virginia)-to-Amazon (Oregon) 15 ms 24 ms

7.2 Discussion

Using near-near relation takes half milliseconds when moving the object
and doing a local invocation. Planetlab and Amazon are slower due to the
distance between the phone.. phone-to-phone takes longer time to do either
a local or a remote invocation. Which means, to get to the edge of the cloud
is slower. Phones are not so powerful than the local machines, Planetlab or
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any Amazon servers, and uses wireless network for communication which
makes it more slower to communicate with each other. It has much more
complex network packing routes than any machines that was tested in
table 7.2.
A simple code for testing local and remote invocation can be done like this:

1 const Main <− o b j e c t Main
2 %ignore v a r i a b l e s and p r i v a t e type and c l a s s
3 process
4 X <− A . c r e a t e
5 a l l <− home . getActiveNodes
6 o1 <− ObjectCreat ion . c r e a t e [ " Doing a remote c a l l " ]
7 o2 <− ObjectCreat ion . c r e a t e [ " Doing a l o c a l c a l l " ]
8
9 %Do a remote c a l l

10 move X to a l l [ 1 ] $theNode
11 startTime <− home . getTimeOfDay
12 X. doPrint [ o1 ]
13 endTime <− ( l o c a t e s e l f ) . getTimeOfDay
14 stdout . p u t s t r i n g [ "Remote c a l l took " | | ( endTime−startTime ) .

a s S t r i n g | | " seconds \n" ]
15
16 %do a l o c a l c a l l
17 startTime <− home . getTimeOfDay
18 move o2 to X
19 X. doPrint [ o2 ]
20 endTime <− ( l o c a t e s e l f ) . getTimeOfDay
21 stdout . p u t s t r i n g [ " Local c a l l took " | | ( endTime−startTime ) .

a s S t r i n g | | " seconds \n" ]
22 end process
23 end Main
24 . . .

7.3 Basic Remote Invocation Performance

This section describes the performance of a simple remote procedure call
on different machines and devices. We do not need to do from Amazon to
Planetlab, from Planetlab to Amazon and from Amazon to Amazon tests.
The RTT should be the same as doing a Planetlab to Planetlab test.
Table 7.3 shows each test where we do 1 single remote procedure call, and
list up results of how long it took to do a simple remote call. We use
Samsung Galaxy SIII, Samsung Mini S 2, local machines at UiO, Planetlab
and Amazon cloud servers for testing and measuring the results. Near
clouds are local machines, Planetlab from Poland and Italy and Amazon
from Ireland. Far clouds are Planetlab from Japan and China and Amazon
from Sao Paulo.

69



Table 7.3: List of each testbed, where we tried local and remote invocation
Testbeds Remote Procedure

Call in seconds (s)
phone (Galaxy SIII)-to-phone (Mini S 2) 0.144885 s
phone (Galaxy SIII)-to-local machine (UiO) 0.001979 s
phone (Galaxy SIII)-to-Planetlab (Poland) 0.038614 s
phone (Galaxy SIII)-to-Planetlab (Japan) 0.376195 s
phone (Galaxy SIII)-to-Amazon (Ireland) 0.044653 s
phone (Galaxy SIII)-to-Amazon (Sao Paulo) 0.292522 s
local machine (UiO)-to-local machine (UiO) 0:000361 s
local machine (UiO)-to-Planetlab (Poland) 0:035802 s
local machine (UiO)-to-Planetlab (Japan) 0:409746 s
local machine (UiO)-to-Amazon (Ireland) 0:042013 s
local machine (UiO)-to-Amazon (Sao Paulo) 0:270638 s
Planetlab (Poland)-to-Planetlab (Italy) 0:059384 s
Planetlab (Poland)-to-Planetlab (China) 0:420033 s
Planetlab (Japan)-to-Planetlab (China) 0.397667 s

7.3.1 Discussion

Phones are not a powerful computational device and use battery power
to compute. That makes them less useful than distributing data to local
machines, Planetlab and Amazon. The further away the services are, the
more latency we get. Based on table 7.3, we see that doing near-far, far-far
and phone-far tests is more expensive than doing a near-near and phone-
near tests.
There might be a variation of the result on table 7.3. The reason is the
bandwidth, packet loss, CPU and memory of the devices and machines.
Bandwidth is the most essential as if there is not good bandwidth link
between the location of the thin client and the near cloud, the latency might
increase.

7.3.2 Great Circle Distance

The dominant factor for remote procedure call is latency. We will estimate
the minimum RTT and calculate the Great Circle Distance.
Table 7.4 shows the geographically coordinated location of each device or
machine. We display them in longitude and latitude. We can get the
coordination by using the ip address for location.
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Table 7.4: List of Longitude and Latitude for each machine or device
Device/Machine Longitude (X) Latitude (Y)
smartphones 10.74609 59.91273
local machines 10.74609 59.91273
Planetlab Poland 17.95 50.66667
Planetlab Japan 139.6917 35.689506
Planetlab China 116.39723 39.9075
Planetlab Italy 11.12108 46.06787
Amazon Ireland -6.26719 53.34399
Amazon Sao Paulo -46.63611 -23.5475

Table 7.5 shows the distance and the minimum estimated RTT. To estimate
the round trip time, we divide the distance multiplied by 2 with the speed
of light. Speed of light is 300,000 km/s, and it is not going in a great circle
as the cable is not stretched out to the locations directly.

Table 7.5: List of Great Circle Distance and the estimated minimum round
trip time

Location to Destination Distance in km Round Trip La-
tency

Oslo-to-Poland 1124.95 km 0.0075 s
Oslo-to-Japan 8426.56 km 0.0561 s
Oslo-to-Ireland 1265.45 km 0.0084 s
Oslo-to-Sao Paulo 10605.21 km 0.0707 s
Oslo-to-Italy 1540.91 km 0.0103 s
Poland-to-Italy 718.81 km 0.0048 s
Poland-to-China 7231.70 km 0.0482 s
Japan-to-China 2097.83 km 0.0139 s

7.4 Evaluation Criteria

For each testbed mentioned, we evaluate if it was a wise choice to use
Emerald on each of them. What we are going to evaulate is:

Works We want to see if it was possible to use Emerald to distribute
objects to a specified device or host. Which means we want to evaluate
if we could make our everyday phones coupled.

Consistent The criteria here describes how stable the network is when
it comes to distributing data around the network, there might be a
slightl chance that a node crashes and that is why this criteria must
be evaluated.

Efficient Here is where we evaluate how fast the response we get from
distributing an object, doing local calls on the other machine and
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getting the result back or just distribute an object and how long it
took to return home again.

Useful We find out if using Emerald on smartphones was useful when
distributing data to different devices or host which gives a different
opinion based on the result we get.

Limitation and issues Even though the distribution works fine, there
might be issues where each node might not recognize the node that
is executing the program or the communication takes long time due
to the distance from each host or server which makes it less useful to
use Emerald.

Each criteria is specified in a table with the testbed. The most interesting
criteria is the Efficiency, Useful and Limitation and issues where we really
discover the usage of having Emerald on smartphones. But most of the
criterias are relevant to fully display the result whether it provided sufficient
result or not.
We also display the results and time measurements from using Kilroy
and Break Even programs where we want to find out how long it took to
distribute an object around the Emerald nodes and the difference between
doing a remote procedure call or call-by-visit.

7.5 Phone-to-Phone

The goal for this section is to see how efficient it is to compute, store or
migrate data to another phone.
Figure 7.1 shows a typical example of a a phone distributing object(s) to
another phone.

Figure 7.1: Two smartphones sending objects to each other
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7.5.1 Results

Criteria Phone-to-Phone Comments
Works Yes, sort of You can only distribute

objects to only one
phone and the port
must be opened

Consistent No You can only run a pro-
gram at a time.

Efficient Depends You get the objects ef-
ficient and fast. The
computation might not
be so good .

Useful Yes You can distribute to a
phone like a Peer-to-
Peer.

Limitaion and issues Yes We are limited to dis-
tribute objects to one
phone.

Table 7.6: Result if it was a good solution to distribute objects to another
smartphone based on the criterias

7.5.2 Discussion

Distributing objects to another smartphone is really fast, but the compu-
tation might take longer time because of the CPU on the phone. The re-
sult depends on how powerful each smartphone is, like doing a break even
would have a better result if the Samsung Galaxy SIII was the one that did
the computation rather than Samsung Galaxy Mini 2.

7.5.3 Distribution measurements

The results below was tested using Samsung Galaxy SIII, Samsung Galaxy
Fame and Samsung Galaxy Mini 2 to distribute in objects in both ways.
Kilroy was tested with all three phones while break-even point was tested
with Galaxy SIII and Galaxy Mini 2.

Kilroy

Communication RTT
SIII - to - Mini 2 21 ms
SIII - to - Fame 17 ms
Mini 2 - to - SIII 12 ms
Mini 2 - to - Fame 15 ms
Fame - to - SIII 15 ms
Fame - to - Mini 2 20 ms

Table 7.7: Running the Kilroy program on phones and check how long it
took to get back

73



There might be a variation of the result on table 7.7 and table 7.8. The
reason is the bandwidth, packet loss, CPU and memory of the phone.
Bandwidth is the most essential as if there is not good bandwidth link
between the location of the thin client and the near cloud, the latency
might increase. We could have also used 1 remote procedure call, but
call-by-visit would always take more time to process than doing a remote
procedure call. The reason is because we have to move the object, as well
as constructing the network package to the remote machine, and move it
back to the original machine. While with 1 remote procedure call, we avoid
the cost of packing the whole object and simply call the remote machine
(requiring a small network package).

Break-Even Point in seconds (s), Phone-to-Phone

Remote Procedure Calls Call-by-Visit

Amount of Calls 20 20
100 Bytes 0.088 s 0.019 s
500 Bytes 0.086 s 0.014 s
1000 Bytes 0.085 s 0.013 s
2000 Bytes 0.453 s 0.083 s

Table 7.8: Doing Break Even Point on Phone-to-Phone

7.6 Localmachines

We do not want to make the thin client to only communicate with
themselves, we want them to distribute objects to local machines that also
act as nodes. Having Emerald ported on the smartphone and distribute
objects across a spectrum of different devices, servers or machines is a
postitive step to solve heterogeneity as long as each of them acts as an
Emerald node so they understand the object that is getting transferred.
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Figure 7.2: Smartphone distributing objects to a local machine where this
machine passes it onwards to other machines

7.6.1 Results

Table 7.9: Result if it was a good solution to distribute objects from phone
to local machines based on the criterias

Criteria Localmachines Comments
Works Yes All the machines works

fine. No problems oc-
curs.

Consistent Yes Each machine does not
crash so easily.

Efficient Yes Distributing objects to
machines locally goes
extremely fast.

Useful Yes Object distribution to
several machines effi-
ciently is useful.

Limitaion and issues Depends Nodes might crash due
to hardware faults or
unstable communica-
tion.

7.6.2 Discussion

To let several phones distribute to many local machines works. The local
machines recognizes the collection of nodes and continues distributing the
object to the other machines.
Distributing objects to the local machines is fast and efficient, we get a
quick response and we can have as many machines as we can to act as
an Emerald node. However, the problem lies on the network, there might
be an occasion where you are in a wireless network area where a firewall
has been setup to prevent any phones to receive data at all. Which means,
the local machines might have problems not finding an initiated Emerald
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node on the phones if the machines are from a network with a tight security
(closed ports, firewall etc.).

7.6.3 Distribution Measurements

The results below were tested using Samsung Galaxy SIII to distribute to
several machines at the UiO.

Table 7.10: Running the Kilroy program on local machine hosts and check
how long it took to get back

Kilroy

Communication RTT
Phone-to-LocalMachines 6 active nodes: 0.016 s
LocalMachines-to-LocalMachines 6 active nodes: 0.006 s

We see that there is a variation on the time in table 7.10 and table 7.11 where
the reason is the bandwidth, packet loss, location of the local machines
and the thin client or caching of data. We could have also used 1 remote
procedure call, but call-by-visit would always take more time to process
than doing a remote procedure call. The reason is because we have to
move the object, as well as constructing the network package to the remote
machine, and move it back to the original machine. While with 1 remote
procedure call, we avoid the cost of packing the whole object and simply
call the remote machine (requiring a small network package).

Table 7.11: Doing Break Even Point on different local machines

Break-Even Point in seconds (s), ifi.uio.no machines

Remote Procedure Calls Call-by-Visit

Amount of Calls 20 20
<local machine>.ifi.uio.no
100 Bytes 0.0529 s 0.010 s
500 Bytes 0.048 s 0.007 s
1000 Bytes 0.048 s 0.008 s
2000 Bytes 0.0377 s 0.012 s

7.7 Planetlab

We use these Planetlab nodes for our benchmark:

1. pandora.we.po.opole.pl (Poland)

2. planetlab2.science.unitn.it (Italy)

3. pl1.pku.edu.cn (China)
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4. planetlab-01.kusa.ac.jp (Japan)

5. planetlab1.cs.cornell.edu (US)

Each node initiate and listens so they can understand and receive objects
when the phone is distributing data. The nodes also distributes to one
another and we see how fast they send and receive objects. We first run
Kilroy from the phone to all the nodes and then use break-even to run on
one of the hosts at a time. The Emerald nodes are formed from the closest
country to the furthest so we can find out how much time it takes to do RTT
for transferring an object in a single link for each closest country to the
furthest. The arrows in figure 7.3 represents the RTT for transferring an
object forward and back on each country from the phone or to each clouds.

Figure 7.3: Smartphone distributing object to several Planetlab hosts and
these host also distribute objects on other hosts that is closest[32]

7.7.1 Results

Table 7.12: Result if it was a good solution to distribute objects from phone
to Planetlab host(s) based on the criterias
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Criteria Planetlab Comments
Works Yes Every node recognizes

each other and we can
distribute to how many
we want.

Consistent Yes Each Emerald node
does not easily crash
on Planetlab.

Efficient Depends It depends on the
location of the host
and how many nodes
we are communicating
with.

Useful Yes We can distribute and
do local calls on objects
to several places fast.

Limitaion and issues Yes Depending on the net-
work bandwidth and
latency.

7.7.2 Discussion

Distributing to several Planetlab hosts works where each and every host
can act as an Emerald node and communicate with each other. We should
take notice that a host can be unavailable at a given time due to update or
maintenance. For a phone to distribute to many Planetlab hosts is efficient
and fast but it also depends on the number of nodes we communicate with
and how far the location is on each host.
It is very useful for a phone to push its workload to any hosts and let
it process the work and get the result back from a specific location, but
the limitations are the network bandwidth and the latency. However, the
Planetlab hosts can not communicate with any phones at all if the ports in
the wireless network you are in are closed.
In general, distributing objects from a phone to several Planetlab hosts is
useful if you want anyone in the world to receive the object or do a local call.

7.7.3 Distribution Measurements

The results below was tested using Samsung Galaxy SIII to distribute to a
Planetlab host, and this host distributes to the nearest country to measure
the RTT. The network link between the countries are individually linked
from the closest to the furthest country. This is to make sure that Kilroy
visits each node from the nearest countries first.

Table 7.13: Doing Kilroy from phone to Planetlab hosts where Kilroy travels
to each individual link and return back to the phone
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Kilroy

Communication RTT
phone-to-Planetlabs Global visiting (6 active nodes):

0.65 - 1.46 s

Table 7.14: Doing Kilroy from phone to each Planetlab host and check how
long it took to get back.

Kilroy

Planetlab host RTT
pandora.we.po.opole.pl 0.078 - 0.082 s
planetlab2.science.unitn.it 0.13 - 0.16 s
pl1.pku.edu.cn 0.67 - 0.75 s
planetlab-01.kusa.ac.jp 0.83 s
planetlab1.cs.cornell.edu 0.24 - 0.26 s

We see that there is a variation on the time in table 7.13, table 7.14 and
table 7.15 where the reason is the bandwidth, packet loss, location of the
servers and the thin client or caching of data. We could have also used 1
remote procedure call, but call-by-visit would always take more time to
process than doing a remote procedure call. The reason is because we
have to move the object, as well as constructing the network package to
the remote machine, and move it back to the original machine. While with
1 remote procedure call, we avoid the cost of packing the whole object and
simply call the remote machine (requiring a small network package)
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Table 7.15: Doing Break Even Point on each Planetlab hosts
Break-Even Point in seconds (s), Planetlab hosts

Remote Procedure Calls Call-by-visit

Amount of Calls 20 20
pandora.we.po.opole.pl
100 Bytes 0.865 s 0.137 s
500 Bytes 0.874 s 0.1438 s
1000 Bytes 0.881 s 0.1322 s
2000 Bytes 0.854 s 0.147 s

planetlab1.science.unitn.it
100 Bytes 1.353 s 0.173 s
500 Bytes 1.188 s 0.178 s
1000 Bytes 1.159 s 0.263 s
2000 Bytes 1.211 s 0.176 s

pl1.pku.edu.cn
100 Bytes 12.937 s 2.024 s
500 Bytes 16.586 s 3.127 s
1000 Bytes 14.558 s 2.522 s
2000 Bytes 13.239 s 1.882 s

planetlab-01.kusa.ac.jp
100 Bytes 8.341 s 1.189 s
500 Bytes 8.752 s 1.336 s
1000 Bytes 8.565 s 1.156 s
2000 Bytes 8.460 s 1.252 s

planetlab1.cs.cornell.edu
100 Bytes 2.659 s 0.4322 s
500 Bytes 2.667 s 0.438 s
1000 Bytes 2.652 s 0.434 s
2000 Bytes 2.655 s 0.415 s
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7.8 Amazon EC2 server

When we have created instances for the cloud server, we need to set security
privileges(open ports, open to receive any packets, etc.) where the server
can receive data from other sources. If we do not do that, the server blocks
any attempt for our phones to communicate with it.
When all setup is done, we can type in ssh to login to the server remotely,
install the Emerald compiler (the original source, not the cross compiled)
and initiate a node.
For this testbed, we use instances from different places in the world and
each instance acts as a node:

• Virginia

• Oregon

• California

• Ireland

• Tokyo

• Sao Paulo

We first run Kilroy from the phone to all the nodes and then use break-
even to run on one of the servers at a time. Figure 7.4 illustrates our
phone distributing objects to several cloud servers at a time. The arrows in
figure 7.4 represents the RTT for transferring an object forward and back
on each country from the phone or to each clouds.

Figure 7.4: Smartphone distributes object to Virginia EC2 and it passes
onwards to the rest of the EC2 cloud servers[32]
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7.8.1 Results

Table 7.16: Result if it was a good solution to distribute objects from phone
to Amaxon EC2 cloud server based on the criterias

Criteria Amazon EC2 cloud
server

Comments

Works Depends The limit of distribut-
ing an object to servers
is 1.

Consistent Yes The servers are up and
you terminate it manu-
ally.

Efficient Depends Phone distributing to
only one EC2 server is
efficient.

Useful Depends If you want to dis-
tribute to only one
cloud server then yes.

Limitaion and issues Yes Firewall and port
issues with the smar-
phones and location
of hosts, servers has
node recognizition
problems.

7.8.2 Discussion

Distributing objects to Amazon EC2 cloud servers is not sufficient. The only
usefuleness is when you only communicate with 1 server using only one
phone. When it comes to efficiency, it depends on the thin clients location
and where in the world the far cloud is. We are limited to test on only one
cloud server so we can not distribute the object around the world as we did
with Planetlab hosts.
The most hopeless case here is to get each of the servers to listen to the first
Emerald node that initiated. It takes a lot of time until everyone begins to
initialize and generate a port due to the location of each server for example,
an Emerald node in Tokyo takes some time to contact another Emerald
node in Ireland.
In general, this is not a good solution for distributing objects to many cloud
servers as for some reason the nodes do not know about the phone at all or
any other cloud servers than the ones that it is listening to and itself.

7.8.3 Distribution Measurements

The results below was tested using Samsung Galaxy SIII to distribute
objects to several Amazon EC2 servers from USA, Ireland, Brazil and
Japan.
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Table 7.17: Doing Kilroy on each server and check how long it took to get
back

Kilroy

EC2 Server RTT
Tokyo 0.63 s
Virginia 0.23 s
Oregon 0.38 s
California 0.37 s
Ireland 0.098 s
Sao Paulo 0.63 - 0.73 s

There might have been some variation on the time in table 7.17 table 7.18
where the reason is the bandwidth, packet loss, location of the EC2 servers
and the thin client or caching of data. We could have also used 1 remote
procedure call, but call-by-visit would always take more time to process
than doing a remote procedure call. The reason is because we have to
move the object, as well as constructing the network package to the remote
machine, and move it back to the original machine. While with 1 remote
procedure call, we avoid the cost of packing the whole object and simply
call the remote machine (requiring a small network package).
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Break-Even Point in seconds (s), Amazon EC2 Cloud Servers

Remote Procedure Calls Call-by-visit

Amount of Calls 20 20
Tokyo
100 Bytes 6.840 s 1.114 s
500 Bytes 6.746 s 1.088 s
1000 Bytes 6.828 s 1.010 s
2000 Bytes 6.831 s 1.088 s

Virginia
100 Bytes 2.400 s 0.398 s
500 Bytes 2.390 s 0.363 s
1000 Bytes 2.396 s 0.363 s
2000 Bytes 2.386 s 0.366 s

Oregon
100 Bytes 4.34 s 0.799 s
500 Bytes 4.33 s 0.665 s
1000 Bytes 4.333 s 0.658 s
2000 Bytes 4.319 s 0.663 s

California
100 Bytes 3.894 s 0.654 s
500 Bytes 3.865 s 0.599 s
1000 Bytes 3.958 s 0.586 s
2000 Bytes 3.862 s 0.608 s

Ireland
100 Bytes 0.970 s 0.155 s
500 Bytes 0.996 s 0.147 s
1000 Bytes 0.941 s 0.152 s
2000 Bytes 0.957 s 0.154 s

Sao Paulo
100 Bytes 6.714 s 1.056 s
500 Bytes 6.609 s 1.105 s
1000 Bytes 6.739 s 1.003 s
2000 Bytes 6.713 s 1.08 s

Table 7.18: Doing Break Even Point on each Amazon EC2 servers
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7.9 Seamless Near-Far Cloud Evaluation

In this section, we describe the seamless near-far cloud model where we use
Emerald to do seamless computation and storage. We chose to describe the
model at the end because we want to test and measure out different testbeds
to see what we can use as for our model and the limitations each machine
or device has when using Emerald to distribute data.
For this case model, we do as figure 2.3 where our thin client is our
smartphones (the thin clients are our edge clouds), the near clouds are the
local machines at the UiO and the far clouds are the Planetlab hosts. We
build such a model to prove that mobility of either storing or computing
data can be a benefit when it comes to performance.
For simplicity, we setup the connection from our thin client to 3 Near clouds
and 3 Far clouds (the nearest to the furthest away based on the distance)
We can illustrate a more detailed example from figure 7.5 below where local
machines are the Near clouds while the Planetlab hosts are the Far clouds:

Figure 7.5: Near-Far cloud model, each machines inside the clouds are
either Near or Far, depending on the distance

With Emerald-Lite, we can have several terminals where one can represent
the communication between several Near-Far Clouds while the other
terminal can represent the two-way communication to another smartphone
that represents our Edge cloud. The P2P model application has two
mobility operations that we are interested to measure:

• Compute: Each peer has the possibility to compute any data that it
receives from the thin client (The peer is either the Near or Far cloud,
but could also be the thin client itself)

• Store: The thin client has the possibility to distribute data to either a
Near or Far cloud for storage. For our test, we only create an object
that has a content and a data size.

Each Peer object represents either a thin client, near or a far cloud where
each of them have the possibility to compute or store data. For simplicity,
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the thin client is the only one that can distribute data(we represent our
data as 1000 bytes and the result distributing the data object is shown at
table 7.19 where each machine types are based on figure 7.5) to the clouds
or to any other smartphones in our application.

Table 7.19: Measuring the computation and storage performance in either
Near of Far cloud

Machine type Computation Storage
Smartphone 2 10 s 0.23 s
Near cloud 1 5.35 s 0.017 s
Near cloud 2 5.4 s 0.017 s
Near cloud 3 6 s 0.018 s
Far cloud 1 (Italy) 127 s 0.2 s
Far cloud 2 (China) 1466 s 1.46 s
Far cloud 3 (Japan) 850 s 1.22 s

Figure 7.6: The Cost of doing Computation and Storage in a Seamless Near-
Far cloud model

7.10 Discussion

Figure 7.6 shows a line graph with indicator where we have from the
smartphone to near and far clouds as our X- axis where the Y-axis are the
time in seconds. What we see is the time of computation and storage where
the optimal point is to have a near cloud close by so we do not lose time on
waiting to finish on either of the mobility operations.

7.11 The Data object

The code below shows the object that we are going to use for distributing to
the different cloud types:

1 const Data <− c l a s s Data [ content : Str ing , d : I n t e g e r ]
2 var bytes : Array . of [ I n t e g e r ] <− Array . of [ I n t e g e r ] . c r e a t e [ d ]
3 . . .
4 end Data
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7.12 The Peer object

The code below shows how the Peer object which distributes to each of the
clouds where each Peer can either compute or store data.

1 %a peer can s t o r e or compute any information i t g e t s
2 const Peer <− c l a s s Peer [ id : Integer , name : S t r i n g ]
3 %c r e a t e an array of Data
4 var storageData : Array . of [ Data ] <− Array . of [ Data ] . empty
5 %when computing , remember to move the data
6 export operat ion compute [ d : Data ]
7 var randNumber : I n t e g e r
8 s e l f . srandom
9 var dataArray : Array . of [ I n t e g e r ] <− d . getDataBytes

10
11 f o r i : I n t e g e r <− 0 while i <= dataArray . upperbound by i <− i

+1
12 randNumber <− s e l f . random . abs # 2147483647
13 dataArray [ i ] <− randNumber
14 end f o r
15
16 end compute
17
18 export operat ion s t o r e [ d : Data ]
19 storageData . addUpper [ d ]
20 end s t o r e
21 . . .
22
23 end Peer

7.13 Summary

We have shown it is possible to have Emerald integrated into our
smartphones and shown two use cases, basic performance and seamless
Near-Far cloud evaluation. Basic performance has two use cases we
focus on, Kilroy and Break-Even Point. To demonstrate and evaluate the
seamless Near-Far cloud, we made a simple P2P application to illustrate
a thin client distributing computation or store data to either Near or Far
cloud. We have proven that distributing data to a Near cloud is more
efficient than distributing to a Far cloud even though the cloud that is
further has stronger computation than a Near cloud, the latency and the
bandwidth is also a motivation for having a cloud in the middle.
Figure 7.6 shows that it pays to move calculation away from smartphones
than doing the computation on the phone.
To summarize, using the phone as our thin client to distribute objects to
any machines or smartphones that is either a Near or Far cloud is efficient.
It does not cause a lot of work to the client itself, which is not what the client
should do, because of battery power to do the computation.
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Part IV

Conclusion

89





Chapter 8

Conclusion

In conclusion, we have now implemented a way to use Emerald to go on
to the edge of the cloud and can now run Emerald on smartphones that
has Android as their OS. Although most smartphones have different CPU
architectures, we need to cross compile to the correct CPU to be able to
run Emerald on the phone. To avoid to root the phone, we had to build an
app that would be a layer on top of the Emerald compiler where this app
emulates a terminal as the same as Linux has.

8.1 Contributions

Here is what I evaluate my contributions for the project

• Porting Emerald on Android Smartphones

• Created an app that would use Emerald

• Evaluate the Performance on Smartphones

• Limitations in the Emerald Implementation

8.1.1 Porting Emerald on Android Smartphones

Using standalone toolchain helped us port the Emerald compiler without
any big problems. We have to choose the right compiler for the CPU the
smartphone has, in order to make it work on the smartphone. For example
an ARM executable file do not work on MIPS CPU phones. Since we needed
to cross-compile, we have to consider that each architecture might translate
a signed into an unsigned which leads to small minor issues and to avoid
such problems, we need to specify flag variables. There are two ways to
execute binary files, either you have to root the phone or create an app
where the binaries must be stored in the apps internal memory and the
app itself acts as a wrapper for the binaries.
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8.1.2 Created an app that would use Emerald

We modified the existing app called Terminal IDE where our app is more
suited for compiling and executing any Emerald programs. The app is like a
terminal where from the application level it sends information to the lower
level to execute any binary files. Creating an app solves the problem of
executing binaries directly. We have implemented an app that acts as a top
layer above the binary files.

8.1.3 Evaluate the Performance on Smartphones

We have proven that having a nearby cloud between the thin client and
the data center is efficient. Even though the far cloud might be a much
stronger and powerful machine than a near cloud, we have to consider the
latency between the thin client and the clouds as well as the bandwidth.
That is why we wanted to port the Emerald programming language into
the smartphones to create a Near-Far cloud model program that would
distribute to either one of the different clouds and measure if it was a good
idea to have a cloud in the middle. The smartphones do not need to do
much work than to distribute the data to nearby clouds and let them do the
computation. This saves a lot of battery power for the phone as well as less
latency to commmunicate with a server.

8.1.4 Limitations in the Emerald Implementation

Emerald is still a prototype. It is not an enterprise programming language
as Java where the main challenge is when we have a bad bandwidth and a
program that does a lot of processing. The Emerald nodes get a memory
exception. Another issue is that Emerald have connection issues when it
comes to communicating to Emerald nodes which was proven in chapter
6 when we tested using Emerald on phones and on the Amazon EC2
cloud servers. There might be a case where some Emerald nodes does not
recognize the other Emerald nodes than itself and the other node it got in
contact with. This problem do not have to do with firewall or closed port
as each pair of phone or cloud server can get in contact with each other,
but can not form a network with many of each devices. There are limited
functions and built-in objects that we have to consider making most of the
functions on our own rather than depending on many utilities that exists
such as C#, C/C++ or Java provides.
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Appendix A

Future works

The Emerald programming language has many advantages than any other
languages when it comes to distributing objects efficiently. However, the
Emerald runtime system needs a lot of improvements. The implementation
of the language should increase the heap size of the virtual machine
because there is a case when there are too many nodes that are initialized
and listens, and you begin distributing objects when you have a bad
bandwidth, you get a memory exception. The Emerald binary executables
should also support 64 bits machines because we might get problems with
understanding 32 bits binaries in a 64 bits system.

The app Emerald-Lite is still a prototype, which means this is not as user-
friendly because most users should have some linux knowledge to use such
app. What can be improved is to make a similar one that C4Droid has
made. Another thing that should be improved is to create a more "code-
friendly" soft keyboard because the app uses the soft keyboard that the
phone already has.
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Appendix B

Code

The source code and the apk file is available at:

http:// code.google.com/p/master-thesis-emerald/source/browse/

Note that most of the source code is a modified version of Terminal
IDE[31] where this version supports Emerald compiler. You can change,
modify and redistribute as much you want because my code follows the
GNU GPL 2.0
Also a wiki page is available for explaining how we cross-compile the
Emerald source code, install the Emerald compiler on any linux machines
and how to run and distribute Emerald objects on our smartphones: https:
// code.google.com/p/master-thesis-emerald/w/ list

If you find any difficulties or bugs at all, please contact me:
kkho@ifi.uio.no.

The code presented in this appendix shows the full version of the relevant
codes presented in this thesis. I have chosen to put them here as all of the
codes did not have any more space when describing these two codes. The
Android implementation code that was presented in chapter 6 is not shown
here as you can find them on the link of where the source code is.

B.1 Kilroy

The code below is an example of distributing an object to all available
Emerald nodes. In this section, I will show the rest of the codes in this
section.

1 const K i l r o y <− o b j e c t K i l r o y
2 process
3 const home <− l o c a t e s e l f
4 var there : Node
5 var startTime , d i f f : Time
6 var a l l : NodeList
7
8 home$stdout . PutStr ing [ " S t a r t i n g on " | | home$name | | " \n" ]
9 a l l <− home . getActiveNodes
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10 home$stdout . PutStr ing [ ( a l l . upperbound + 1 ) . a s S t r i n g | | " nodes
a c t i v e . \ n" ]

11 startTime <− home . getTimeOfDay
12
13 f o r i : I n t e g e r <− 1 while i <= a l l . upperbound by i <− i + 1
14 there <− a l l [ i ] $theNode
15 move K i l r o y to there
16 there$stdout . PutStr ing [ " K i l r o y was here \n" ]
17 end f o r
18 move K i l r o y to home
19 d i f f <− home . getTimeOfDay − startTime
20 home$stdout . PutStr ing [ " Back home . Tota l time = " | | d i f f .

a s S t r i n g | | " \n" ]
21 end process
22 end K i l r o y

B.2 CPU Execution Time

The code below shows how long it takes to compute a function. For
simplicity, we only count up in the for-loop and measure the time before
the loop and after to find out the finishing time of the function. I will show
the rest of the codes in this section.

1 const CPUTime <− o b j e c t CPUTime
2 export operat ion findExecutionTime
3 const localhome <− l o c a t e s e l f
4 var f inishedTime : Time
5 var startTime : Time <− localhome . getTimeOfDay
6 var counter : I n t e g e r <− 0
7
8 f o r i : I n t e g e r <− 0 while i < 10000000 by i <− i + 1
9 counter <− counter + i

10 end f o r
11
12 finishedTime <− localhome . getTimeOfDay − startTime
13 localhome$stdout . putStr ing [ "CPU Execution Time : " | |

f inishedTime . a s S t r i n g | | " \n" ]
14
15 end findExecutionTime
16
17 process
18 CPUTime . findExecutionTime
19
20 end process
21 end CPUTime

B.3 Local vs. Remote Invocation

The code below is an example of checking what is the difference between
the local and remote invocation. This code shows an example of how the
call-back problem occurs and how to avoid it (described more in chapter
3). I will show the rest of the codes in this section.
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1 const Main <− o b j e c t Main
2 var X : I
3 const home <− l o c a t e s e l f
4 var there , tmp : Node
5 var startTime , endTime : Time
6 var a l l : NodeList
7 var o1 , o2 : ObjectCreat ion
8
9 const I <− t y p e o b j e c t I

10 operat ion doPrint [ s : ObjectCreat ion ]
11 end I
12
13 const A <− c l a s s A
14 export operat ion doPrint [ s : ObjectCreat ion ]
15 ( l o c a t e s e l f ) $stdout . p u t s t r i n g [ s . g e t P r i n t | | " \n" ]
16 end doPrint
17 end A
18
19 const ObjectCreat ion <− c l a s s ObjectCreat ion [ s : S t r i n g ]
20
21 export operat ion g e t P r i n t [ ] −> [ c : S t r i n g ]
22 c <− s
23 end g e t P r i n t
24
25 end ObjectCreat ion
26
27 process
28 X <− A . c r e a t e
29 a l l <− home . getActiveNodes
30 o1 <− ObjectCreat ion . c r e a t e [ " Doing a remote c a l l " ]
31 o2 <− ObjectCreat ion . c r e a t e [ " Doing a l o c a l c a l l " ]
32
33 %Do a remote c a l l
34 move X to a l l [ 1 ] $theNode
35 startTime <− home . getTimeOfDay
36 X. doPrint [ o1 ]
37 endTime <− ( l o c a t e s e l f ) . getTimeOfDay
38 stdout . p u t s t r i n g [ "Remote c a l l took " | | ( endTime−startTime ) .

a s S t r i n g | | " seconds \n" ]
39
40 %Do a l o c a l c a l l
41 startTime <− home . getTimeOfDay
42 move o2 to X
43 X. doPrint [ o2 ]
44 endTime <− ( l o c a t e s e l f ) . getTimeOfDay
45 stdout . p u t s t r i n g [ " Local c a l l took " | | ( endTime−startTime ) .

a s S t r i n g | | " seconds \n" ]
46 end process
47 end Main
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B.4 P2P model - a Near-Far Cloud Model ap-
proach

B.4.1 The Data object

The code below shows how we have chosen our data object is represented.
We use this object to distribute to either a Near or a Far cloud.

1 %The data t h a t w i l l be used to d i s t r i b u t e around nodes
2 const Data <− c l a s s Data [ content : Str ing , d : I n t e g e r ]
3 var bytes : Array . of [ I n t e g e r ] <− Array . of [ I n t e g e r ] . c r e a t e [ d ]
4 export operat ion getContent [ ] −>[s : S t r i n g ]
5 s <− content
6 end getContent
7
8 export operat ion getDataBytes [ ] −> [ a : Array . of [ I n t e g e r ] ]
9 a <− bytes

10 end getDataBytes
11
12 end Data

B.4.2 The Peer object

The code below shows how each Peer is represented in a Near-Far cloud
environment. Each Peer has the possibility to either store or compute a
data object. We should however represent each Data object as a type for
securing "loose coupling".

1 %a peer can s t o r e or compute any information i t g e t s
2 const Peer <− c l a s s Peer [ id : Integer , name : S t r i n g ]
3 %c r e a t e an array of Data
4 var storageData : Array . of [ Data ] <− Array . of [ Data ] . empty
5 %when computing , remember to move the data
6 export operat ion compute [ d : Data ]
7 var randNumber : I n t e g e r
8 ( l o c a t e s e l f ) $stdout . p u t s t r i n g [ " I w i l l do the computation \n" ]
9 %f o r now , the data o b j e c t have i n te g er , j u s t f i l l va lues f o r

the bytes of array
10 s e l f . srandom
11
12 var dataArray : Array . of [ I n t e g e r ] <− d . getDataBytes
13
14 f o r i : I n t e g e r <− 0 while i <= dataArray . upperbound by i <− i

+1
15 randNumber <− s e l f . random . abs # 2147483647
16 dataArray [ i ] <− randNumber
17 end f o r
18
19 end compute
20
21 export operat ion s t o r e [ d : Data ]
22 ( l o c a t e s e l f ) $stdout . p u t s t r i n g [ " I w i l l s t o r e the data \n" ]
23 storageData . addUpper [ d ]
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24 end s t o r e
25
26 export operat ion getName [ ] −>[s : S t r i n g ]
27 s <− name
28 end getName
29
30 export operat ion getId [ ] −>[ i : I n t e g e r ]
31 i <− id
32 end getId
33
34 export operat ion pr intInformat ion [ ]
35 ( l o c a t e Peer ) $stdout . p u t s t r i n g [ " The node id : " | | ( id ) .

a s s t r i n g | | " and the host name : " | | name | | " \n" ]
36 end printInformat ion
37
38 export f u n c t i o n getStorage [ ] −> [ a : Array . of [ Data ] ]
39 a <− storageData
40 end getStorage
41
42 export operat ion random −> [n : I n t e g e r ]
43 p r i m i t i v e "NCCALL" "RAND" "RANDOM" [n] <− [ ]
44 end random
45
46 export operat ion srandom
47 const here <− l o c a t e s e l f
48 const now <− here$timeofday
49 const usec <− now$microseconds
50 p r i m i t i v e "NCCALL" "RAND" "SRANDOM" [ ] <− [ usec ]
51 end srandom
52
53 end Peer

B.4.3 Main Object

The Main object is the thin client itself, however a thin client is also a Peer.
So the first Peer object is also a thin client so we do not necessarily need
to move the first Peer as we can just let it reside on the smartphone. The
code below is a good example of a Main object that has the possibility to
distribute data objects to either a Near or a Far cloud. Our application is
limited, because the Emerald language is not complete and lacks several
operations for example converting a Character to an Integer.

1 const Main <− o b j e c t Main
2 const home <− l o c a t e s e l f
3 var there : Node
4 var startTime , d i f f : Time
5 var a l l : NodeList
6 var Peers : Array . of [ Peer ]
7
8 i n i t i a l l y
9 Peers <− Array . of [ Peer ] . empty

10 a l l <− home . getActiveNodes
11 end i n i t i a l l y
12
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13 process
14 %assume we have 1 smartphone node , 1 i f i node and
15 %1 p l a n e t l a b node
16 i f a l l . upperbound+1 >= 2 then
17 %here i s reserved f o r only 2 smartphones !
18 Main . ini tNodes [ a l l ]
19
20 %i n i t i a l i z e s h e l l
21 ( l o c a t e s e l f ) $stdout . p u t s t r i n g [ " t h i n c l i e n t @ s h e l l : " ]
22 loop
23 Main . S h e l l [ ]
24 end loop
25 e l s e
26 home$stdout . PutStr ing [ " I n i t i a l i z e 2−4 Emerald nodes ! \ n" ]
27 end i f
28
29 end process
30
31 %i n i t i a l i z e a l o t of nodes ,
32 export operat ion initNodes [ a : NodeList ]
33 var p : Peer
34 var pId : I n t e g e r
35 f o r i : I n t e g e r <− 0 while i <= a . upperbound by i <− i + 1
36 pId <− a [ i ] $theNode$lnn / 65536
37 p <− Peer . c r e a t e [ pId , a [ i ] $theNode$name ]
38 Peers . addUpper [ p ]
39 move Peers . GetElement [ i ] to a l l [ i ] $theNode
40 end f o r
41 end initNodes
42
43
44 %check i f you want to compute , s t o r e data on the peer , i n f o or

peer
45 export operat ion commandList [ s : S t r i n g ]
46 i f s = " compute " then
47 s e l f . doCompute
48 end i f
49
50 i f s = " s t o r e " then
51 s e l f . doStoreData
52 end i f
53
54 i f s = " i n f o " then
55 s e l f . pr intAvai lableNodes
56 end i f
57
58 i f s = " help " then
59 s e l f . printHelp
60 end i f
61
62
63 end commandList
64
65 operat ion S h e l l [ ]
66 ( l o c a t e s e l f ) $stdout . f l u s h
67 ( l o c a t e s e l f ) $stdout . p u t s t r i n g [ " t h i n c l i e n t @ s h e l l : " ]
68
69 var s : S t r i n g <− ( l o c a t e s e l f ) $stdin . g e t S t r i n g
70 %c r e a t e substr ing , s l i c e the newline
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71 s <− s . g e t s l i c e [0 , s . upperbound ]
72 s e l f . commandList [ s ]
73
74 end S h e l l
75
76
77 operat ion doCompute
78 ( l o c a t e s e l f ) $stdout . p u t s t r i n g [ "Which Node? ( 1 i s the

t h i n c l i e n t ) : " ]
79 ( l o c a t e s e l f ) $stdout . f l u s h
80 var i : Character <− ( l o c a t e s e l f ) $stdin . getChar
81
82 i f ! i . i s d i g i t then
83 ( l o c a t e s e l f ) $stdout . p u t s t r i n g [ " wrong data input , t r y again \

n" ]
84 return
85 end i f
86
87 %c r e a t e data
88 var i n t e r : I n t e g e r <− s e l f . intFromChar [ i ]
89
90 i f i n t e r > Peers . upperbound then
91 ( l o c a t e s e l f ) $stdout . p u t s t r i n g [ " The value i s higher than

what Peers e x i s t s \n" ]
92 return
93 end i f
94
95 var d : Data <− Data . c r e a t e [ " Contains data " ,1000]
96
97
98 move d to Peers . getElement [ i n t e r ]
99

100 startTime <− ( l o c a t e s e l f ) . getTimeOfDay
101 Peers . getElement [ i n t e r ] . compute [ d ]
102 move d to Peers . getElement [0]
103 d i f f <− ( l o c a t e s e l f ) . getTimeOfDay − startTime
104
105 ( l o c a t e s e l f ) $stdout . PutStr ing [ " Computation took : " | | d i f f .

a s S t r i n g | | " \n" ]
106 Peers . getElement [ 0 ] . getStorage . addupper [ d ]
107
108 end doCompute
109
110 export operat ion doStoreData
111 ( l o c a t e s e l f ) $stdout . p u t s t r i n g [ "Which Node? ( 1 i s the

t h i n c l i e n t ) : " ]
112 ( l o c a t e s e l f ) $stdout . f l u s h
113 var i : Character <− ( l o c a t e s e l f ) $stdin . getChar
114
115 i f ! i . i s d i g i t then
116 ( l o c a t e s e l f ) $stdout . p u t s t r i n g [ " wrong data input , t r y again \

n" ]
117 return
118 end i f
119
120 i f Peers . getElement [ 0 ] . getStorage . empty then
121 ( l o c a t e s e l f ) $stdout . p u t s t r i n g [ "Compute data f i r s t , then

c a l l s t o r a g e \n" ]
122 return
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123 end i f
124
125 %c r e a t e data
126 var i n t e r : I n t e g e r <− s e l f . intFromChar [ i ]
127
128 i f i n t e r > Peers . upperbound then
129 ( l o c a t e s e l f ) $stdout . p u t s t r i n g [ " The value i s higher than

what Peers e x i s t s \n" ]
130 return
131 end i f
132
133 ( l o c a t e s e l f ) $stdout . p u t s t r i n g [ i n t e r . a s s t r i n g | | " \n" ]
134
135 var d : Data <− Peers . getElement [ 0 ] . getStorage . removeUpper
136 startTime <− ( l o c a t e s e l f ) . getTimeOfDay
137 move d to Peers . getElement [ i n t e r ]
138 Peers . getElement [ i n t e r ] . s t o r e [ d ]
139 d i f f <− ( l o c a t e s e l f ) . getTimeOfDay − startTime
140 ( l o c a t e s e l f ) $stdout . PutStr ing [ " Stor ing took : " | | d i f f .

a s S t r i n g | | " \n" ]
141
142 end doStoreData
143
144 operat ion printHelp
145 ( l o c a t e s e l f ) $stdout . p u t s t r i n g [ "−−−−−−−−−−− Commands

−−−−−−−−−−−−−\n" ]
146 ( l o c a t e s e l f ) $stdout . p u t s t r i n g [ " compute − Ask any Near or Far

cloud to do the computing or do i t i t s e l f \n" ]
147 ( l o c a t e s e l f ) $stdout . p u t s t r i n g [ " s t o r e − Ask any Near or Far

cloud to s t o r e data or l e t i t s t o r e i t s e l f \n" ]
148 ( l o c a t e s e l f ) $stdout . p u t s t r i n g [ " i n f o − get a l i s t of id and

names of the t h i n c l i e n t , Near and Far clouds \n" ]
149 ( l o c a t e s e l f ) $stdout . p u t s t r i n g [ " help − p r i n t s out commands

a v a i l a b l e f o r the P2P Model\n" ]
150
151 end printHelp
152
153 operat ion printAvai lableNodes
154 ( l o c a t e s e l f ) $stdout . p u t s t r i n g [ "Remember , The f i r s t Peer i s

the t h i n c l i e n t ! \n" ]
155 ( l o c a t e s e l f ) $stdout . p u t s t r i n g [ "

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n" ]
156 f o r i : I n t e g e r <− 0 while i <= Peers . upperbound by i <− i + 1
157 ( l o c a t e s e l f ) $stdout . p u t s t r i n g [ " Peer : " | | ( i +1) . a s s t r i n g | | " id

: " | | Peers . getElement [ i ] . getId . a s s t r i n g | | " name : " | |
Peers . getElement [ i ] . getName | | " \n" ]

158 end f o r
159 ( l o c a t e s e l f ) $stdout . p u t s t r i n g [ "

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n" ]
160 end printAvai lableNodes
161
162
163 f u n c t i o n intFromChar [ c : Character ] −>[ i : I n t e g e r ]
164 %b r u t a l l y funct ion , l u c k i l y 7 nodes only
165 i f c = ’ 1 ’ then
166 i <− 1
167 end i f
168 i f c = ’ 1 ’ then
169 i <− 0
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170 end i f
171 i f c = ’ 2 ’ then
172 i <− 1
173 end i f
174 i f c = ’ 3 ’ then
175 i <− 2
176 end i f
177 i f c = ’ 4 ’ then
178 i <− 3
179 end i f
180
181 i f c = ’ 5 ’ then
182 i <− 4
183 end i f
184 i f c = ’ 6 ’ then
185 i <− 5
186 end i f
187 i f c = ’ 7 ’ then
188 i <− 6
189 end i f
190
191 end intFromChar
192 end Main
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