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Abstract. We study the optimal exercise of a swing option in electricity markets. To this end, we set up

a model in terms of a stochastic control problem. In this model, the option can be exercised in continuous

time and is subject to a total volume constraint. We analyze some fundamental properties of the model and

carry out a numerical analysis. Finally, the results are illustrated numerically.

1. Introduction

Swing options are contracts sold on deregulated electricity markets1. These contracts are designed to

address some of the problems caused by the non-storability of electricity. Abrupt fluctuations in generation

and demand cause spikes in prices and swing options can be used to hedge against such risk. Typically, a

swing option consists of two parts, namely the forward and the swing part. The forward part is a conventional

forward contract guaranteeing the delivery of electricity on a given period for a given price. The swing part is

a multiple strike option with a given number of exercises (i.e, swings). When exercised, the swing part gives

the holder (issuer) a right to buy (sell) electricity for a given strike price. This form of contract yields a hedge

against the spikes, which is quite fitting in comparison to, say, multiple American or European options.

We study in this paper the swing part of the contract and henceforth call it the swing option. From

the modeling point of view, the pricing of a swing option can be seen as a particular type of a stochastic

control problem. One way of formalizing the valuation problem is to write it as a multiple strike American or

Bermudan option. Here, the admissible exercise policies are of sequential type. Methodologies used to tackle

these problems vary. In [3], the authors study the multiple strike American option formulation in a fairly

general setting using martingale theory and propose a numerical scheme based on Malliavin calculus. The

Bermudan formulation is adopted in, e.g., [8] and [11]. In [8], the authors use a multi-level lattice method

to analyze the valuation of a swing option on natural gas whereas [11] relies on partial integro-differential

equations (PIDE) and Fourier techniques in the analysis of an affine jump diffusion pricing model. A jump

diffusion model is compared to regime switching and negative inverse Gaussian models in [7] using a Monte

Carlo algorithm. In [9], the authors apply the Schwartz model to the oil price and carry out a comparison

between a least-square Monte Carlo and a finite difference method. The swing option pricing can also be

1Swing contracts are sold also on other commodity markets. In this paper, we will focus on the electricity market.
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studied via the dual formulation of the optimization problem. This approach is adopted in, e.g., [1] and [2],

where the dual problem is studied using a combination of martingale and Monte Carlo simulation techniques.

In [4] and [5] the authors propose and study a diffusion model, where, under some technical conditions on

the diffusion parameters, the pricing problem can be solved via a set of quasi-variational inequalities.

In the study at hand, we will formalize the swing option such that it can be exercised in continuous

time. Now, the total amount of the swings used follows a non-decreasing and continuous process (a monotone

follower). The upper limit on swing rights is now set in terms of a total volume constraint. This formulation

has appeared in the literature before. In [10], the author studies hedging of a swing option using this model

under a liquid forward contract and European call options market. A viscosity solution theory for this model

is developed in [15]. A similar model appears also in [12] for swing option pricing and in [14] for gas storage

valuation. These studies are concerned mostly with the issue of pricing. However, it is important, especially

from the holders point of view, to understand how the option should be exercised optimally. In this study,

we address this question from both the analytical and numerical side. We set up a diffusion model for

the electricity price. Based on this, we formulate the value process as the maximal expected present value

of the cumulative exercise payoff which is attainable using an admissible exercise policy. Using Hamilton-

Jacobi-Bellmann (HJB) techniques, we propose an economically reasonable characterization of the optimal

exercise policy in terms of the marginal exercise payoff and lost option value. Furthermore, we study some

basic quantitative properties of the marginal lost option value in order to shed more light on the optimal

policy. We present also a numerical analysis of the problem for geometric Ornstein-Uhlenbeck processes. Our

numerical scheme is based on the finite difference method coupled with a detailed discussion on the delicate

issue of boundary conditions.

The reminder of the study is organized as follows. In Section 2 we formulate the pricing model as a

monotone follower problem. In Section 3 we present and prove our main analytical results on the pricing

problem. Section 4 is devoted to the numerical analysis of the model and in Section 5 we carry out numerical

illustrations. The study is concluded in Section 6.

2. The pricing model

Before going into the formal description of the pricing model, we set up a stochastic modeling framework

for the underlying electricity price. Let (Ω,F ,F,P), where F = {Ft}t≥0, be a complete filtered probability

space satisfying the usual conditions. We assume that W is a Wiener process defined on (Ω,F ,F,P) and

taking values in R. We assume that the electricity price follows a strongly unique solution of the Itô stochastic
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differential equation

(2.1) dPt = µ(t, Pt)dt+ σ(t, Pt)dWt

with P0 = p, where the functions µ and σ are sufficiently well behaving Lipschitz-continuous functions – for

details, see, e.g., [13], pp. 66.

Having the underlying dynamics set up, we formulate the pricing problem as a bounded variation control

problem with total volume constraints. This control problem is supposed to approximate a class of swing

options commonly traded in electricity markets, where the holder has the right to buy a volume of electricity

at specified times over a time interval (a year, say), and where the exercise times constitute a significant

portion of time interval. These options are often coined flexible load contracts. The class of admissible

exercise policies consists of processes Z, which admit the representation

(2.2) Zt =

∫ t

0

usds,

where u is progressively measurable with respect to F and satisfies the constraints us ∈ [0, ū] for all s ∈ [0, T ]

and

(2.3) ZT ≤ M,

for some M > 0. Denote as U the class of processes u giving rise to admissible exercise policies Z. Let

S := [0, T ]× [0,M ]×R

and define the value functional V on S as the remaining discounted option value, i.e., let

(2.4) V (t, Zt, Pt) = sup
u∈U

E

[
∫ T

t

e−r(s−t)(Ps −K)usds

∣
∣
∣
∣
Ft

]

,

with the final value V (T, ZT , PT ) = 0. Here, r > 0 is the constant rate of discounting and K > 0 is the strike

price. One objective of this paper is to study a potentially unique optimal exercise policy Z∗ =
∫ ·

0
u∗
sds for

which

sup
u∈U

E

[
∫ T

t

e−r(s−t)(Ps −K)usds

∣
∣
∣
∣
Ft

]

= E

[
∫ T

t

e−r(s−t)(Ps −K)u∗
sds

∣
∣
∣
∣
Ft

]

,
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for all t ∈ [0, T ]. We remark that the value functional V admits an alternative representation which is explicit

in terms of Z. By applying the Itô formula to the process t 7→ e−rt(Pt −K)Zt, we find that

e−rT (PT −K)ZT = e−rt(Pt −K)Zt +

∫ T

t

e−rs(µ(s, Ps)− r(Ps −K))Zsds

+

∫ T

t

e−rs(Ps −K)usds+

∫ T

t

e−rsσ(s, Ps)ZsdWs,

(2.5)

and, consequently, the value V can be rewritten as

(2.6)

V (t, Zt, Pt) = (K − Pt)Zt + sup
u∈U

E

[

e−r(T−t)(PT −K)ZT +

∫ T

t

e−r(s−t)(r(Ps −K)− µ(s, Ps))Zsds

∣
∣
∣
∣
Ft

]

.

3. On the option price and optimal exercise boundary

Having the pricing problem set up, we start the analysis of the model. As the first case, we consider

Problem (2.4) in the absence of an effective final volume constraint, i.e., the case M ≥ ūT , where the total

constraint dominates the largest possible amount that can be consumed during the lifetime of the contract.

Proposition 3.1. In the absence of an effective final volume constraint, i.e., when M ≥ ūT , the optimal

exercise policy Z∗ =
∫ ·

0
u∗
sds is given by

(3.1) u∗
t =







ū, Pt > K,

0, Pt ≤ K,

for all t ∈ [0, T ].

Proof. Let u ∈ U and t ∈ [0, T ]. Then we observe that

E

[
∫ T

t

e−r(s−t)(Ps −K)usds

∣
∣
∣
∣
Ft

]

= E

[
∫ T

t

e−r(s−t)(Ps −K)us1{Ps≤K}ds

∣
∣
∣
∣
Ft

]

+E

[
∫ T

t

e−r(s−t)(Ps −K)us1{Ps>K}ds

∣
∣
∣
∣
Ft

]

≤ E

[
∫ T

t

e−r(s−t)(Ps −K)u∗
sds

∣
∣
∣
∣
Ft

]

.

On the other hand, since u∗ gives rise to an admissible exercise policy, the claimed result follows. �

Proposition 3.1 states an intuitively obvious result. Indeed, if there is no effective limit on the total

volume, then it is optimal to use the option whenever the swing yields a positive payoff.
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Lemma 3.2. In the absence of an effective final volume constraint, i.e., when M ≥ ūT , the marginal value

Vz ≡ 0.

Proof. Let M ≥ ūT and t ∈ [0, T ]. We proved in Proposition 3.1 that the option value can be written as

V (t, Zt, Pt) = ūE

[
∫ T

t

e−rt(Ps −K)1{Ps−K>0}ds

∣
∣
∣
∣
Ft

]

.

Since the right hand side of this expression does not depend on the variable Z, the claimed result follows. �

Lemma 3.2 states another intuitively obvious result. In fact, if there is no effective limit on the total

volume, then the usage of the option does not decrease the value as it depends only on the time to maturity

and the price of the electricity. On the other hand, when M < ūT , we have the following result.

Proposition 3.3. In the presence of an effective total volume constraint, i.e., when M < ūT , the marginal

value Vz ≤ 0.

Proof. First, recall the alternative characterization of V from (2.6). Using this, we express the marginal value

Vz as

Vz(t, Zt, Pt) = (K − Pt)

+ lim
ε→0

1

ε

{

sup
uε

E

[

e−r(T−t)(PT −K)Zε
T +

∫ T

t

e−r(s−t)(r(Ps −K)− µ(s, Ps))Z
ε
sds

∣
∣
∣
∣
Ft

]

− sup
u

E

[

e−r(T−t)(PT −K)ZT +

∫ T

t

e−r(s−t)(r(Ps −K)− µ(s, Ps))Zsds

∣
∣
∣
∣
Ft

]}

= (K − Pt)

+ lim
ε→0

1

ε







sup
uε

E

[

e−r(T−t)(PT −K)Zε
T +

∫ T

t

e−r(s−t)(r(Ps −K)− µ(s, Ps))Z
ε
sds

∣
∣
∣
∣
Ft

]

︸ ︷︷ ︸

:=Iε

− sup
u

E

[

e−r(T−t)(PT −K)(ZT + ε) +

∫ T

t

e−r(s−t)(r(Ps −K)− µ(s, Ps))(Zs + ε)ds

∣
∣
∣
∣
Ft

]

︸ ︷︷ ︸

:=I0







+E

[

e−r(T−t)(PT −K) +

∫ T

t

e−r(s−t)(r(Ps −K)− µ(s, Ps))ds

∣
∣
∣
∣
Ft

]

,

(3.2)
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where uε, ε ≥ 0, varies over admissible exercise rates under the condition that the associated cumulative

control is at time t in state Zt + ε and Zε denotes the resulting cumulative control on the interval (t, T ]. To

proceed, consider an arbitrary admissible s 7→ Zε
s on (t, T ] and define an associated Ž as

(3.3) Žs = Zε
s − ε,

for all s ∈ (t, T ]. Using (3.3), we can map each functional Iε for arbitrary Zε to the functional I0 given

by Ž, i.e., the functionals Iε can be embedded into the set of functionals I0. This allows us to identify the

optimization problem supuε Iε as a subproblem of supu I0 in the sense that the optimization is done over a

subset of admissible controls. Thus, we conclude that

sup
uε

Iε − sup
u

I0 ≤ 0,

and, consequently, that

Vz(t, Zt, Pt) ≤ (K − Pt) +E

[

e−r(T−t)(PT −K) +

∫ T

t

e−r(s−t)(r(Ps −K)− µ(s, Ps))ds

∣
∣
∣
∣
Ft

]

= 0,

where the final equality follows by first applying the Itô formula to t 7→ e−rt(Pt −K) and then conditioning

up to time t. �

Proposition 3.3 states yet another intuitively obvious result, namely that in the presence of an effective

total volume constraint, the usage of the swing option will lower its value.

Proposition 3.4. The value V is concave in z.

Proof. Denote as Z1
t and Z2

t two different states of the control Z at time t ≥ 0 and let u1 and u2 be arbitrary

admissible exercise policies corresponding to these states. Define the process ũ on [0, T ] as

ũs :=
u1
s + u2

s

2
.

First, we observe that ũs ∈ [0, ū] for all s and
∫ T

0 ũsds ≤ M . Moreover, ũ corresponds to the case where

the state of the cumulative control Z at time t is
Z1

t +Z2
t

2 . Since this construction holds for arbitrary ui, we

conclude that

V

(

t,
Z1
t + Z2

t

2
, Pt

)

−
V (t, Z1

t , Pt) + V (t, Z2
t , Pt)

2
= sup

u

E

[
∫ T

t

e−r(s−t)(Ps −K)usds

∣
∣
∣
∣
Ft

] ∣
∣
∣
∣
∣
Zt=

Z1
t
+Z2

t
2

−

1

2






sup
u1

E

[
∫ T

t

e−r(s−t)(Ps −K)u1
sds

∣
∣
∣
∣
Ft

] ∣
∣
∣
∣
∣
Zt=Z1

t

+ sup
u2

E

[
∫ T

t

e−r(s−t)(Ps −K)u2
sds

∣
∣
∣
∣
Ft

] ∣
∣
∣
∣
∣
Zt=Z2

t






≥ 0,



ON OPTIMAL EXERCISE OF SWING OPTIONS IN ELECTRICITY MARKETS 7

proving the claimed result. �

In economical terms, Proposition 3.4 states that exercising the option will lower the option value more

for a low level of option reserve than for high level.

3.1. Necessary conditions. To study Problem (2.4) under an effective total volume constraint, we first

derive the associated HJB-equation. Assume first that the optimal value exists. The starting point of the

derivation is the Bellman principle of optimality. This principle can now be expressed as follows: for all times

0 ≤ t < w ≤ T , the condition

(3.4) V (t, Zt, Pt) = sup
u

E

[∫ w

t

e−r(s−t)(Ps −K)usds+ e−r(w−t)V (w,Zw, Pw)

∣
∣
∣
∣
Ft

]

must hold, where the supremum is taken over u ∈ U such that
∫ t

0
usds = Zt ≤ M . First, rewrite (3.4) as

(3.5) sup
u

E

[∫ w

t

e−rs(Ps −K)usds+
(
e−rwV (w,Zw, Pw)− e−rtV (t, Zt, Pt)

)
∣
∣
∣
∣
Ft

]

= 0.

To proceed, we assume that V is smooth enough, i.e., in C1,1,2(S), and use the Itô formula to the process

t 7→ e−rtV (t, Zt, Pt). Since dZt = utdt, we find that

ertd(e−rtV (t, Zt, Pt)) = (Vt(t, Zt, Pt)− rV (t, Zt, Pt) + utVz(t, Zt, Pt)) dt

+ Vp(t, Zt, Pt) (µ(t, Pt)dt+ σ(t, Pt)dWt) +
1

2
σ2(t, Pt)Vpp(t, Zt, Pt)dt.

Using this, we can rewrite (3.5) as

(3.6) sup
u

E

[
1

w − t

∫ w

t

e−rs((Ps −K)us + (L − r)V (s, Zs, Ps) + usVz(s, Zs, Ps))ds+ (Yw − Yt)

∣
∣
∣
∣
Ft

]

= 0,

where the linear operator L is defined on C1,1,2(S) as

(3.7) LF (t, z, p) = Ft(t, z, p) + µ(t, p)Fp(t, z, p) +
1

2
σ2(t, p)Fpp(t, z, p),

and the local martingale Y is defined as

Yt =

∫ t

0

e−rsσ(s, Ps)Vp(s, Zs, Ps)dWs.

We assume that the functions σ and V are regular enough for the process Y to be a true martingale. Then

we know that

E

[
1

w − t

∫ w

t

e−rs((Ps −K)us + (L − r)V (s, Zs, Ps) + usVz(s, Zs, Ps))ds

∣
∣
∣
∣
Ft

]

≤ 0,
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for each admissible u. Furthermore, if there exists an optimal admissible policy u∗ with which the supremum

is attained, then

E

[
1

w − t

∫ w

t

e−rs((Ps −K)u∗
s + (L − r)V (s, Zs, Ps) + u∗

sVz(s, Zs, Ps))ds

∣
∣
∣
∣
Ft

]

= 0.

Now, under appropriate regularity conditions on V , see e.g., [6], we can pass to the limit w → t in (3.6) and,

consequently, end up into the HJB-equation

(3.8) Vt(t, z, p) +
1

2
σ2(t, p)Vpp(t, z, p) + µ(t, p)Vp(t, z, p)− rV (t, z, p) + sup

u

{u(t)(p−K + Vz(t, z, p))} = 0,

where u varies over the set of functions defined on [0, T ] satisfying the conditions 0 ≤ u(t) ≤ ū,
∫ t

0 u(s)ds = z,

and
∫ T

0 u(t)dt ≤ M . We remark that if the value V does not satisfy the required smoothness conditions, it

can still be identified as a viscosity solution of (3.8) – for details, see [15].

Intuitively, we can interpret the quantity Vz in equation (3.8) as the (marginal) lost option value. From

(3.8) it seems clear that the boundary p −K = −Vz(t, z, p) plays a key role when determining the optimal

exercise rule. Indeed, if p − K > −Vz(t, z, p) for t ∈ [0, T ], that is, payoff dominates the lost option value,

then

sup
u

{u(t)(p−K + Vz(t, z, p))} = ū(p−K + Vz(t, z, p)).

On the other hand, if p−K ≤ −Vz(t, z, p), then supu {u(p−K + Vz(t, z, p))} = 0. Define now the admissible

exercise policy Ẑ =
∫ ·

0 ûtdt via

(3.9) ût =







ū, Pt −K > −Vz(t, Zt, Pt),

0, Pt −K ≤ −Vz(t, Zt, Pt),

for all t ∈ [0, T ]. We remark that whenM ≥ ūT , the marginal value Vz ≡ 0 (see Lemma 3.2) and, consequently,

the exercise policy Ẑ coincides with the optimal policy Z∗ described in Proposition 3.1. In the presence of

an effective total volume constraint, we proved in Proposition 3.3 that the marginal value Vz is non-positive.

Thus, the introduction of the total volume constraint to the model postpones the optimal exercise of the

swing option. Furthermore, we note that if V satisfies (3.8), then

û(t) ≧ 0 ⇐⇒ (L − r)V (t, z, p) ≦ 0,

for all (t, z, p) ∈ S.
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3.2. Sufficient conditions. In the previous section, we derived necessary conditions for the option value V

defined in (2.4). As a result, we proposed the candidate û for the optimal exercise policy. In this section,

we study the conditions under which this candidate is indeed optimal. A set of such conditions are stated in

the following verification theorem. This verification theorem also ensures that the HJB-equation (3.8) is the

correct one for the original optimization problem (2.4).

Theorem 3.5. Assume that a function F : S → R satisfies the following conditions

(i) F (T, ·, ·) ≡ 0 and F ∈ C1,1,2(S),

(ii) (L − r)F (t, z, p) + u(t) (Fz(t, z, p) + (p−K)) ≤ 0 for all (t, z, p) ∈ S and u ∈ U , where the operator

L is defined in (3.7),

(iii) the process Y : t 7→
∫ t

0
e−rsσ(s, Ps)Fp(s, Zs, Ps)dWs is a martingale.

Then F (t, Zt, Pt) ≥ V (t, Zt, Pt) for all t and ω. In addition, if there exist an admissible uo such that

(L − r)F (t, z, p) + sup
u

(u(t) (Fz(t, z, p) + (p−K))) =

(L − r)F (t, z, p) + uo(t) (Fz(t, z, p) + (p−K)) = 0,

(3.10)

for all (t, z, p) ∈ S, then uo = u∗ and the function F coincides with the value function V .

Proof. Let u ∈ U and t ∈ [0, T ]. First, we find using the Itô formula to the process t 7→ e−rtF (t, Zt, Pt) that

d(e−rtF (t, Zt, Pt)) = e−rt [(L − r)F (t, Zt, Pt) + utFz(t, Zt, Pt) + σ(t, Pt)Fp(t, Zt, Pt)dWt] .

Using assumption (i) and conditioning up to time t, we find that

0 = e−rtF (t, Zt, Pt) +E

[
∫ T

t

e−rs(L − r)F (s, Zs, Ps)ds

∣
∣
∣
∣
Ft

]

+E

[
∫ T

t

e−rsFz(s, Zs, Ps)usds

∣
∣
∣
∣
Ft

]

+E
[
(YT − Yt)

∣
∣Ft

]
.

Now, assumptions (ii) and (iii) imply that

(3.11) 0 ≤ e−rtF (t, Zt, Pt)−E

[
∫ T

t

e−rs(Ps −K)usds

∣
∣
∣
∣
Ft

]

,

for all ω, which is equivalent to the first claim.
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Assume now that there exist an admissible uo such that the condition (3.10) holds. Then with exactly

the same calculation as above we find that

(3.12) 0 = e−rtF (t, Zt, Pt)−E

[
∫ T

t

e−rs(Ps −K)uo
sds

∣
∣
∣
∣
Ft

]

,

for all ω. �

4. A numerical solution of the HJB-equation

In this section we present a numerical scheme for solving the HJB-equation (3.8). More precisely, we

present a finite difference approximation of V (t, z, p) which solves the equation

(4.1) Vt(t, z, p)+
σ2

2
Vpp(t, z, p)+µVp(t, z, p)− rV (t, z, p)+ sup

u

{u(p−K + Vz(t, z, p)))} = 0, (t, z, p) ∈ S ,

with given boundary and terminal conditions. These conditions will be stated later.

In the numerical examples, we assume that the underlying price process Pt follows a geometric Ornstein-

Uhlenbeck process. However, the numerical approach applied here will be valid for a much more general class

of diffusion process. Only the boundary conditions on the truncated boundary must be changed, since, as

we shall see, they will depend crucially on the properties of the price process chosen. In this section we

will first give a description of the boundary conditions and then describe how to compute a finite difference

approximation of (4.1).

4.1. The boundary conditions. In order for the HJB–equation to be well posed we need sufficient boundary

conditions. The terminal condition at t = T and the condition for no optionality left z = M are both zero

since the option contract in those cases are worthless. We have,

V (T, z, p) = 0, (z, p) ∈ [0,M ]×R, and V (t,M, p) = 0, (t, p) ∈ [0, T ]×R.(4.2)

The last boundary conditions which need to be imposed are at the endpoints in the p−direction. De-

pendent on the upper and lower bounds on the underlying process these endpoints could be unbounded. The

Ornstein–Uhlenbeck process is unbounded from below and above, but the exponential Ornstein–Uhlenbeck

process is unbounded from above and bounded by zero from below.

We will in the following assume that we have chosen pmin and pmax so small and large, respectively, that

the process Pt is unlikely to be outside the interval (pmin, pmax). For the exponential Ornstein-Uhlenbeck

process, one could naturally choose pmin = 0, but we keep the general view here. We will assume that pmin
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is so small that the dominating behavior of the log-price process ln(Pt) until the time of maturity T is to

increase due to mean-reversion, while pmax is so large that the process is dominated by a decreasing behavior.

The idea now is to use these assumptions to determine how the holder will optimally use her optionality,

i.e. determine the optimal control us. Inserting this into (2.4), we can compute

(4.3) V (t, Zt, Pt) = E

[
∫ T

t

e−r(s−t)Psusds

∣
∣
∣
∣
Ft

]

,

and thereby obtain boundary conditions for our HJB-equation also in the price direction.

The optimal operational behavior when p = pmax is to use as much as possible of the option until z = M .

This is because pmax is much larger than the long time expectation and the price is then expected to decrease

until maturity. Thus

us =







ū, s ∈ (t, t+ M−z
ū

)

0, s ∈ (t+ M−z
ū

, T )
.(4.4)

Then the price can be calculated

(4.5) V (t, Zt, pmax) = ūE

[
∫ t+M−z

ū

t

e−r(s−t)Psds

∣
∣
∣
∣
Ft

]

.

Similarly for the case of p = pmin, the optimal behavior of the operator is to wait as long as possible

before exercising. This is because pmin is much smaller than the long time expectation and the price is then

expected to increase until maturity. Thus

us =







0, s ∈ (t, T − M−z
ū

)

ū, s ∈ (T − M−z
ū

, T )
,(4.6)

and the price can be calculated by

(4.7) V (t, Zt, pmin) = ūE

[
∫ T

T−M−z
ū

e−r(s−t)Psds

∣
∣
∣
∣
Ft

]

.

In Appendix A we compute the expectations in (4.5) and (4.7) explicitly for the case of Pt being an

exponential Ornstein–Uhlenbeck process. The conclusion of these derivations is Dirichlet boundary conditions

on the form

V (t, z, pmin) = g1(t, z), V (t, z, pmax) = g2(t, z),
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where g1 and g2 are defined in Appendix A. It may be desirable to have Neumann conditions instead, and

they will take the form

Vp(t, z, pmin) = ĝ1(t, z), Vp(t, z, pmax) = ĝ2(t, z),

for function ĝ1 and ĝ2 derived in Appendix A.

The computations in Appendix A are valid only if the underlying price follows an exponential Ornstein–

Uhlenbeck process. Similar calculations might be harder to carry out for other price processes. In such cases

Monte Carlo simulations might be used to calculate (4.5) and (4.7).

In other works studying swing options, a second order boundary condition is used on the truncated

boundary. In e.g. [11] the condition

Vpp(t, z, pmin) = 0, Vpp(t, z, pmax) = 0.(4.8)

We have two objections to such boundary conditions. The first is that it seems a little unmotivated, and in

general it should not be approximately correct for large and small values of pmax and pmin. This could be

fixed by doing calculations similar to those in Appendix A, or a corresponding Monte Carlo simulation. The

other problem with such a second order boundary condition is that even though a specific numerical scheme

might be stable, the problem is not well posed from the PDE point of view. The scheme presented below,

with a discrete version of (4.8) is stable and is implemented for comparison.

We point out that no boundary conditions are needed on the boundaries z = 0 and z = ūt. The reason

for this is that the transport of (4.1) is towards these boundaries. Thus, in some sense, these boundary

conditions are taken care of by the HJB–equation itself.

4.2. The numerical scheme. For the finite difference scheme we use a uniform grid in both t− and z−

directions defined as follows. The t−dimension is divided into N uniform intervals, i.e. 0 = t0 < t1 < · · · <

tN = T , where the interval length is ∆t = tn − tn−1. The z−dimension is similarly divided into Nz uniform

intervals, i.e. 0 = z0 < z1 < · · · < zNz
= M , where the interval length is ∆z = zi − zi−1. In our numerical

approximation of the value function, we truncate the p-direction to the interval p ∈ (pmin, pmax). To be

able to choose pmin small and pmax large without increasing the number of grid points too much we use

an adaptive grid in the p−direction, i.e. pmin = p0 < p1 < · · · < pNp
= pmax, where the interval length

∆pj = pj − pj−1 may vary.

The numerical scheme will be defined by a first order backward time-stepping scheme where we use a

nearly second order approximation of the p-derivatives and a first order approximation of the z-derivative.
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The terms including p-derivatives are solved implicitly in time, the other terms are solved explicitly. More

precisely, let V n
i,j denote the approximation of V (tn, zi, pj). We then use the approximations

Vt(tn, zi, pj) ≈
V n+1
i,j − V n

i,j

∆t
,

Vz(tn, zi, pj) ≈
V n+1
i+1,j − V n+1

i,j

∆z
,

Vp(tn, zi, pj) ≈
1

∆pj+1 +∆pj

(

−
∆pj+1

∆pj
V n
i,j−1 +

(
∆pj+1

∆pj
−

∆pj

∆pj+1

)

V n
i,j +

∆pj

∆pj+1
V n
i,j+1

)

,(4.9)

Vpp(tn, zi, pj) ≈
2

∆pj+1 +∆pj

(
1

∆pj
V n
i,j−1 +

(

−
1

∆pj+1
−

1

∆pj

)

V n
i,j +

1

∆pj+1
V n
i,j+1

)

;(4.10)

see Appendix B for a further analysis of these approximations. Inserting these into (4.1) and approximating

V (tn, zi, pj) ≈ V n
i,j and p ≈ pj we get

V n+1
i,j − V n

i,j

∆t
+

(σn
j )

2

∆pj+1 +∆pj

(
1

∆pj
V n
i,j−1 +

(

−
1

∆pj+1
−

1

∆pj

)

V n
i,j +

1

∆pj+1
V n
i,j+1

)

+
µn
j

∆pj+1 +∆pj

(

−
∆pj+1

∆pj
V n
i,j−1 +

(
∆pj+1

∆pj
−

∆pj

∆pj+1

)

V n
i,j +

∆pj

∆pj+1
V n
i,j+1

)

−rV n
i,j + un+1

i,j

(

pj −K +
V n+1
i+1,j − V n+1

i,j

∆z

)

= 0, ∀i, j, n(4.11)

where un+1
i,j = H(pj −K +

V
n+1

i+1,j
−V

n+1

i,j

∆z
)ū and H(·) denotes the Heaviside function.

This scheme is numerically stable for any choice of the ∆pj ’s. However, the CFL condition requires the

following relation on ∆z and ∆t for the numerical scheme to be stable

∆tū ≤ ∆z .

In Appendix B we study the truncation error of the numerical scheme, and it is seen that truncation error

converges to zero as the discretization parameters goes to zero. Thus the scheme is consistent. Now, according

to the Lax–Richtmyer Equivalence Theorem, the finite difference approximation will converge to the original

partial differential equation since the scheme is both consistent and stable.

The numerical scheme defined in (4.11) should be solved recursively and backward in time. When solving

(4.11) for a given time level n, all values with super-index n + 1 are known. Since the discretization of Vz

is done at time level n + 1, there is no implicit coupling in the z−direction in the numerical scheme. This

means that we only have to solve a tridiagonal linear system for each value of n and i.

As described in the terminal condition below, the last time level is known in advance, i.e. V N
i,j , ∀i, j

are known initially. Further, the boundary conditions give the solution at the edges of the grid, V n
Nz,j

, ∀j, n,
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V n
i,0, ∀i, n, and V n

i,Np
, ∀i, n. Together with (4.11), this is sufficient to find the solution in all points given by

i = 0, 1, . . .Nz, j = 0, 1, . . .Np and n = 0, 1, . . .N .

An important observation is that this scheme corresponds to a finite difference approximation of a

Bermudan swing option, that is, a swing option with finite discrete exercise times (c.f. [11]) and where the

number of exercise times is N . As mentioned earlier in the introduction, a continuous-time formulation of

the control can be considered as an approximation of a contract with a very high number of exercise rights.

Thus, we solve in fact numerically the options we are in practice interested in. On the other hand, the

continuous-time framework puts us in a situation where nice stochastic control theory may be applied.

The terminal and boundary conditions described in (4.2) are incorporated into the scheme by

V N
i,j = 0, ∀i, j, and V n

Nz ,j
= 0, ∀j, n .

On the truncated boundary the Dirichlet conditions are,

V n
i,0 = g1(tn, zi), ∀i, n, and V n

i,Np
= g2(tn, zi), ∀i, n .

Choosing Neumann conditions instead, we will have

Vp(tn, zi, p0) = ĝ1(tn, zi), ∀i, n, and Vp(tn, zi, pNp
) = ĝ2(tn, zi), ∀i, n ,

where Vp(tn, zi, pj) is approximated by (4.9). In Appendix C we present the complete numerical scheme with

these boundary conditions incorporated.

5. Numerical experiments

In this section we present a numerical example analyzing a so-called flexible load contract (FLC). This

type of contract is much used in the electricity market, and gives the holder the right to buy up to a certain

volume of electricity at fixed prices over a large amount of exercise times in a period. In fact, in many

circumstances these exercise dates can fill up more than 80-90% of the total amount of days in the period.

Typical for many of these contracts in the market place is that K = 0, so the holder faces the problem of

picking the most favorable prices at the provided exercise times. We run an experiment with M = 1
2 and

ū = 1, that is, a contract where the holder can buy 1MWh of electricity every year, but only 50% of the total

time interval being set to one year T = 1. For simplicity, we choose the risk-free interest rate equal to zero,

r = 0.
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For the dynamics for P we use the exponential Ornstein–Uhlenbeck process

Pt = exp(Xt) , dXt = κ(µ−Xt)dt+ σdWt.(5.1)

The parameters are shown in Table 1 The parameters κ and σ are approximately the same as the estimated

Table 1. The parameters in the exponential Ornstein–Uhlenbeck process

Parameters κ σ µ

0.4 0.55 3.5

parameters in the paper [16], and µ = ln 40 − σ2

4κ ≈ 3.5 corresponds to a long time expectation of 40

EUR/MWh.

In order to find a sufficiently fine grid for the numerical solution we have first solved the problem on a

very fine mesh. This solution is then used as a reference for comparison. To define a criterion for determining

what solution is accurate enough, we study the optimal exercise curves, c.f. Figure 2. We consider these

curves as a function of z. Denote the numerical solution Ph(z) and the ”exact” solution Pe(z). Then we say

that the solution is accurate enough if the average error, in the L1-norm sense, is less than 0.01 EUR/MWh,

i.e.

1

M

∫ M

0

|Ph(z)− Pe(z)|dz < 0.01.

At Nordpool the prices are given with 2 digits.

In the presented experiments we have used a mesh defined by Np = 180, Nz = 225 and N = 450. We

create the grid for p to be sparse close to the endpoints and dense near the optimal exercise curves. In more

details the grid is created the following way. Let {xi}
Np

i=1 be a uniform grid with Np = 180 grid points. The

grid {pi}
Np

i=1 is defined by pi = exp(f̂(xi)), where f̂(·) is the normal inverse cumulative distribution function

with expectation = µ and variance ≈ 0.15, such that pmin = 21.6 and pmax = 73.9. The grid in the three

dimensions was determined by trial and error.

In Figure 1 we depict the value function V (t, z, p) for t = 0.5, as a function of z and p, using the above

grid. We observe that it is decreasing in z as Prop. 3.3 predicts. The numerical solution is also concave,

however, very close to be linear in z.

Figure 2 shows the optimal exercise curves at different times as functions of z and p. The curves are

moving downwards with decreasing times, and it is optimal to not use the control (or the exercise right) when

you are to the left of such a curve. Once the price Pt is hitting the curve, it is optimal to start using the
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Figure 1. The option price

control. As functions of p, the curves are increasing. At a fixed time, the more we have used of our control

(the higher value of z, that is), the higher price we must have before we are willing to exercise. For a given

level of z, on the other hand, the price level to exercise is decreasing with time, which is intuitive since we

have less time left for using our rights, and thus are willing to interfere at lower prices. Note that the optimal

exercise curves are stopping when z > ūt, for which the option does not exist. We point out that the exercise
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Figure 2. The exercise curves. For prices to the right of the curve it is optimal to exercise the option.

curves for t = 0.5 and 0.75 cut off at both ends. This is due to the chosen resolution of the numerical grid.

Indeed, if we use higher resolution, then the curves would continue further to both left and right.

In Table 2 we show the accuracy of the three schemes using each type of boundary condition. The tests

are done in MatlabTM implementations of the schemes on a laptop from 2010 with Intel Core i7 processor
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Table 2. Numerical tests for the three types of boundary conditions

Boundary condition Neumann Dirichlet Vpp = 0

Average error in P 0.0099 EUR/MWh 0.0110 EUR/MWh 0.0115 EUR/MWh
Computation time ≈ 15 sec ≈ 15 sec ≈ 1 sec

with 2.66 GHz core speed (with dual core, but MatlabTM uses only one core). The extra time needed for the

Neumann and Dirichlet conditions is because of the integrals to calculate the boundary conditions.

It is also interesting to know the accuracy in option price V . For the Neumann conditions the average

error in V for P ∈ (30, 55) and z ∈ (0, 12 ) is ≈ 0.045 EUR/MWh.

Comparing the numerical solutions for V for all the three boundary conditions, it can be verified that

the calculations for the Dirichlet and Neumann conditions are right, i.e.

V (t, z, pmin) ≈ g1(tn, zi), and V (t, z, pmax) ≈ g2(tn, zi),

Vp(t, z, pmin) ≈ ĝ1(tn, zi), and Vp(t, z, pmax) ≈ ĝ2(tn, zi).

The fact that gk(tn, zi) and ĝk(tn, zi) for k = 1, 2 are calculated in different way from the PDE solver, gives

us a verification that the code is correct. Verifications like this are often omitted when PDEs are solved

numerically.

As mentioned before the presented discretization scheme of the discussed contracts, namely swing options

with continuous time exercise, can be viewed as a finite difference approximation of a Bermudian swing option

with N exercise opportunities, where N is the number of discretization points in time. In this paper we have

shown that for an exponential Ornstein–Uhlenbeck model with realistic parameters it is enough to have

N = 450. Notice that the original FLC–contracts might have hourly exercises during one year, which means

that N = 8760. Thus we conclude that the continuous exercise approximation of the FLC–contracts is a very

accurate approximation.

We end this section by including two plots to describe the sensitivity in the optimal exercise curves w.r.t.

the parameters σ and κ.

6. Concluding comments

We studied in this paper the optimal exercise of a swing option. To this end, we formulated the pricing

model as a bounded variation control problem under a total volume constraint. We proved some basic

qualitative properties of the model which are intuitively appealing. First we studied the model in the absence

of an effective volume constraint as a limiting case. In this case, we found the optimal exercise policy and
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Figure 3. When the volatility is increased, the holder should require higher prices before
exercising. The average change in P (z) is 0.17 EUR/MWh for the 1% change and 0.86
EUR/MWh for the 5% change.

proved that the lost marginal option value is zero. In the presence of an effective total volume constraint we

found that the value function is decreasing and concave in the direction of the cumulative control (z, that is).

This means that the option loses more value when the volume reserve is low in comparison to high reserve.

We derived a candidate for the optimal exercise policy and value for the option using an HJB-equation. In
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Figure 4. When the speed of mean reversion is increased, the holder should exercise for
lower prices. The change measured in L1 is is 0.088 EUR/MWh for the 1% change and 0.42
EUR/MWh for the 5% change.

particular, we characterized the associated trigger rule as as simple comparison principle between the instant

exercise payoff and the lost option value. We proved also a verification theorem, which gives a set of sufficient

conditions when a given function coincides with the value function.
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We carried out also a numerical analysis of the model and, in particular, discussed the issue of boundary

conditions. We set up a numerical scheme for solving the HJB-equation and illustrated it with an exponential

Ornstein-Uhlenbeck process. Finally, we concluded that, given some assumption on the underlying price

process, the continuous time exercise swing option is an accurate approximation of flexible load contracts,

which is Bermudan swing options with high number of exercise opportunities.
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Appendix A. Boundary conditions at the truncated boundary

We recall that the solution of the Langevin-type SDE

dXt = κ(µ−Xt)dt+ σdWt

at time s, given the state at time t < s, is

Xs = (Xt − µ)e−κ(s−t) + µ+ σ

∫ s

t

eκ(u−s)dWu.

We next calculate the stochastic integrals defined by the boundary conditions on the truncated boundary,

i.e. we compute

V (t, z, pmax) = ūE

[∫ τ1

t

e−r(s−t)eXsds

∣
∣
∣
∣
Ft

]

,

V (t, z, pmin) = ūE

[
∫ T

τ2

e−r(s−t)eXsds

∣
∣
∣
∣
∣
Ft

]

,

for the case Ps = exp(Xs), where τ1 = t+ M−z
ū

and τ2 = T − M−z
ū

. We find

g2(t, z) = V (t, z, pmax) = ūE

[∫ τ1

t

e−r(s−t)eXsds

∣
∣
∣
∣
Ft

]

= ūert+µ+σ2

4κ

∫ τ1

t

exp

[

−rs+ (ln(pmax)− µ)e−κ(s−t) −
σ2

4κ
e−2κ(s−t)

]

ds,

g1(t, z) = V (t, z, pmin) = ūE

[
∫ T

τ2

e−r(s−t)eXsds

∣
∣
∣
∣
∣
Ft

]

= ūert+µ+σ2

4κ

∫ T

τ2

exp

[

−rs+ (ln(pmin)− µ)e−κ(s−t) −
σ2

4κ
e−2κ(s−t)

]

ds,

and the corresponding Neumann conditions are

ĝ1(t, z) = Vp(t, z, pmax) = p−1
maxūe

(r+κ)t+µ+σ2

4κ

∫ τ1

t

exp

[

−(κ+ r)s+ (ln(pmax)− µ)e−κ(s−t) −
σ2

4κ
e−2κ(s−t)

]

ds,

ĝ2(t, z) = Vp(t, z, pmin) = p−1
minūe

(r+κ)t+µ+σ2

4κ

∫ T

τ2

exp

[

−(κ+ r)s+ (ln(pmin)− µ)e−κ(s−t) −
σ2

4κ
e−2κ(s−t)

]

ds.

These integrals are calculated numerically.
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Appendix B. The local truncation error for the numerical scheme

In this appendix we investigate the local truncation error for the numerical scheme presented in Section

4. We will observe that the approximations for Vp and Vpp are nearly second order accurate. Using Taylor

expansion we see that (we skip the t and q dependency for notational ease):

V (pj+1) = V (pj) + ∆pj+1Vp(pj) +
∆p2j+1

2
Vpp(pj) +

∆p3j+1

6
Vppp(pj) +O(∆p4j+1),

V (pj−1) = V (pj)−∆pjVp(pj) +
∆p2j

2
Vpp(pj)−

∆p3j

6
Vppp(pj) +O(∆p4j ).

Putting this expansion into the approximation for Vp we get

Vp(tn, zi, pj) ≈
1

∆pj+1 +∆pj

(
∆pj

∆pj+1
V n
i,j+1 +

(
∆pj+1

∆pj
−

∆pj

∆pj+1

)

V n
i,j −

∆pj+1

∆pj
V n
i,j−1

)

= Vp(pj) +O((∆pj+1 +∆pj)
2).

This is a second order accurate approximation. The local truncation error for the approximation of Vpp is

Vpp(tn, zi, pj) ≈
2

∆pj+1 +∆pj

(
1

∆pj+1
V n
i,j+1 +

(

−
1

∆pj+1
−

1

∆pj

)

V n
i,j +

1

∆pj
V n
i,j−1

)

= Vpp(pj) +O((∆pj+1 +∆pj)
2,∆pj+1 −∆pj).

We see that this is second order accurate if ∆pj+1 − ∆pj = O((∆pj+1 + ∆pj)
2). This means that if two

neighboring discretization intervals in the p−direction are always almost at the same size, then we have second

order accuracy in the approximation. We may call this property quasi-uniform grid.

Appendix C. Boundary conditions in the numerical scheme

Now over to the implementation of the boundary conditions in the numerical scheme. We denote the

Dirichlet conditions with g1(t) and g2(t) or discretely in time

gn1 = V (tn, z, pmin), gn2 = V (tn, z, pmax).

Inserting this into (4.11) for j = 0 and j = Np we obtain an equation to be solved for each time step on the

form

(I −∆tA)V n = V n+1 +∆tGn+1 +BCn,(C.1)
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where A = σ2

2 D2 + µD1 − rI, I is the identity matrix, ek is the k−th unit vector and

BCn =
∆t

∆p2 +∆p1

(

(σn
1 )

2

∆p1
−

µn
1∆p2

∆p1

)

gn1 e1 +
∆t

∆pN +∆pN−1

(
(σn

N−1)
2

∆pN
+

µn
N−1∆pN−1

∆pN

)

gn2 eN−1,

Gn+1
j = un+1

i,j

(

pj −K +
V n+1
i+1,j − V n+1

i,j

∆z

)

,

D2 =









2
∆p2+∆p1

(

− 1
∆p2

− 1
∆p1

)
2

∆p2+∆p1

1
∆p2

0

2
∆pj+1+∆pj

1
∆pj

2
∆pj+1+∆pj

(

− 1
∆pj+1

− 1
∆pj

)
2

∆pj+1+∆pj

1
∆pj+1

0 2
∆pNp+∆pNp−1

1
∆pNp−1

2
∆pNp+∆pNp−1

(

− 1
∆pNp

− 1
∆pNp−1

)









∈ RN−1,N−1,

D1 =








1
∆p2+∆p1

(

∆p2

∆p1
−

∆p1

∆p2

)

1
∆p2+∆p1

∆p1

∆p2
0

−

1
∆pj+1+∆pj

∆pj+1

∆pj

1
∆pj+1+∆pj

(

∆pj+1

∆pj
−

∆pj

∆pj+1

)

∆pj

(∆pj+1+∆pj)∆pj+1

0 −

∆pNp

(∆pNp
+∆pNp−1)∆pNp−1

1
∆pNp

+∆pNp−1

(

∆pNp

∆pNp−1
−

∆pNp−1

∆pNp

)








∈ RN−1,N−1.

D1 and D2 are matrices approximating the first and second order differential operators.

We use the same notation for the Neumann conditions ĝ1(t) and ĝ2(t) or discretely in time

ĝn1 = Vp(t
n, z, pmin), ĝn2 = Vp(t

n, z, pmax).

By introducing the shadow points V n
i,−1 and V n

i,Np+1 and inserting this into (4.11) for j = 0 and j = Np

we obtain an equation to be solved for each time step on the form

(I −∆tA)un = un+1 +∆tGn +∆tBCn,(C.2)

where A = σ2

2 D2 + µD1 − rI and

BCn =

(

−
(σn

0 )
2

h0
+ µn

0

)

ĝn1 e1 +

(

(σn
Np

)2

hNp

+ µn
Np

)

ĝn2 eN+1,

D2 =









− 2
∆p2

1

2
∆p2

1

0

2
∆pj+1+∆pj

1
∆pj

2
∆pj+1+∆pj

(

− 1
∆pj+1

− 1
∆pj

)
2

∆pj+1+∆pj

1
∆pj+1

0 2
∆p2

Np

− 2
∆p2

Np









∈ RN+1,N+1,

D1 =








0 0 0

−

∆pj

(∆pj+1+∆pj)∆pj+1

1
∆pj+1+∆pj

(

∆pj+1

∆pj
−

∆pj

∆pj+1

)

1
∆pj+1+∆pj

∆pj+1

∆pj

0 0 0








∈ RN+1,N+1.
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D1 and D2 are still matrices approximating the first and second order differential operators, but now with

Neumann conditions incorporated. Above it is implicitly assumed that the shadow points are located such

that ∆p−1 = ∆p0 and ∆pNp+1 = ∆pNp
.
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