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Abstract

This paper generalizes the integration theory for volatility modulated Brow-
nian-driven Volterra processes onto the space G∗ of Potthoff–Timpel distribu-
tions. Sufficient conditions for integrability of generalized processes are given,
regularity results and properties of the integral are discussed. We introduce a
new volatility modulation method through the Wick product and discuss its
relation to the pointwise-multiplied volatility model.
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1 Introduction

Recently, Barndorff-Nielsen et al. (2012) developed a theory of stochastic integration
with respect to volatility modulated Lévy-driven Volterra processes (VMLV), that
are stochastic integrals of the form

∫ t

0

Y (t) dX(t), where X(t) =

∫ t

0

g(t, s)σ(s) dL(s). (1.1)

Here, g is a deterministic kernel, σ is a stochastic process embodying the volatility
and L(t) is a Lévy process. When L(t) = B(t) is the standard Brownian motion,
the process X(t) is termed a volatility modulated Brownian-driven Volterra process
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(VMBV), and this is the class of processes that we will concentrate our attention
on in this paper; so from now on we fix L = B in Equation (1.1).

Barndorff-Nielsen et al. (2012) use methods of Malliavin calculus to validate the
following definition of the integral:
∫ t

0

Y (s) dX(s) =

∫ t

0

Kg(Y )(t, s)σ(s) δ
MB(s) +

∫ t

0

DM
s (Kg(Y )(t, s))σ(s) ds, (1.2)

where

Kg(Y )(t, s) = Y (s)g(t, s) +

∫ t

s

(Y (u)− Y (s)) g(du, s),

δMB(s) denotes the Skorohod integral and DM
t is the Malliavin derivative. The

superscript M is used above to stress that the operators are defined in the Malliavin
calculus setting, but as we will show, the only difference between these operators and
the ones used in the forthcoming sections is the restriction of the domain. The only
results needed to establish the above definition are the Malliavin calculus versions
of the “fundamental theorem of calculus” and the “integration by parts formula.”

Before we begin the theoretical discussion, let us review some of the literature
that is closely related to the problems addressed in this paper. The results presented
in the following sections are extending the results from the already mentioned work
of Barndorff-Nielsen et al. (2012) and those results are in turn generalizing (among
others) the results of Alòs et al. (2001); Decreusefond (2002, 2005). Note that the
operator Kg(·) used by Barndorff-Nielsen et al. (2012) is the same as the operator
used by Alòs et al. (2001), however the definition of the integral is different. The
latter authors keep only the first integral in the right-hand side of Equation (1.2)
thus making sure that the expectation of the integral is zero. The choice between
the two definitions should be based on modelling purposes, but one has to keep in
mind that requiring zero-expectation in the non-semimartingale setting might be
unreasonable.

It should be noted, that the VMLV processes are a superclass of the Lévy semis-
tationary processes (LSS) and a subclass of ambit processes (more precisely, null-
spatial ambit processes). In order to obtain an LSS process from the general form
of VMLV process, we take g to be a shift-kernel, that is g(t, s) = g(t−s). Examples
of such kernels include the Ornstein–Uhlenbeck kernel (g(u) = e−αu, α > 0) and a
function often used in turbulence (g(u) = uν−1e−αu, α > 0, ν > 1/2). On the other
hand, if g(t, s) = c(H)(t−s)H−1/2+c(H)

(
1
2
−H

) ∫ t

s
(u−s)H−3/2

(
1− (s/u)1/2−H

)
du,

where c(H) = (2HΓ(3/2−H))1/2 (Γ(H + 1/2)Γ(2− 2H))−1/2, with H ∈ (0, 1) then

X(t) =

∫ t

0

g(t, s) dB(s)

is the fractional Brownian motion with Hurst parameter H .
As pointed out by Barndorff-Nielsen et al. (2012) and illustrated above, the

class of VMLV processes is very flexible as it has already been applied in mod-
elling of a wide range of naturally occurring random phenomena. VMLV pro-
cesses have been studied in the context of financial data (Barndorff-Nielsen et al.,
2013+, 2011; Veraart and Veraart, 2013+) and in connection with turbulence
(Barndorff-Nielsen and Schmiegel, 2008, 2009).
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As mentioned in Barndorff-Nielsen et al. (2012), there are several properties of
the integral defined in Equation (1.2) that one might find important in applications.
Firstly, the definition of the integral does not require adaptedness of the integrand.
Secondly, the kernel function g(t, s) can have a singularity at t = s (for example the
shift-kernel used in turbulence and presented above.) Finally, the integral allows
for integration with respect to non-semimartingales (as illustrated above by the
fractional Brownian motion.)

Our approach allows to treat less regular stochastic processes than the approach
of Barndorff-Nielsen et al. (2012) because we are not limited to a subspace of square-
integrable random variables. The price we have to pay with the white noise approach
is that the integral might not be a square-integrable random variable. However, the
choice of the G∗ space as the domain of consideration has its advantages, as we can
approximate any random variable from G∗ by square-integrable random variables.
We discuss the properties of the spaces we work on in the forthcoming sections.

We consider the definition of the integral in Equation (1.2) in the white noise
analysis setting. We concentrate mostly on the so-called Potthoff–Timpel space
G∗ and it is important to note here that this space is much larger than the
space of square-integrable random variables and thus our results extend those of
Barndorff-Nielsen et al. (2012) considerably. We review the relevant parts of white
noise analysis in Section 2. In Section 3 we show that the Malliavin derivative DM

t

can be generalized to an operator Dt : G∗ → G∗ as can the Skorohod integral. More-
over, we obtain a version of the “fundamental theorem of calculus” and “integration
by parts formula” in the new setting, making it possible to retrace the steps taken
by Barndorff-Nielsen et al. (2012) in the heuristic derivation of the definition of the
VMBV integral.

In Section 4 we first examine regularity of the operator Kg(·) in the white noise
setting. Next, we consider the case without volatility modulation, that is σ = 1. In
Section 5 we introduce the volatility modulation in two different situations. Namely,
we consider σ to be a test stochastic process that multiplies the kernel function g. We
also study the VMLV processes in which volatility modulation is introduced through
the Wick product. This allows us to consider generalized stochastic processes as
the volatility. In the case that the volatility is a generalized process that is strongly
independent of Kg(Y ), we show the equivalence of the definition of the integrals using
the Wick and pointwise products. In all three cases, we establish mild conditions
on the integrand that ensure the existence of the integral and obtain regularity
results. In Section 6 we explore the properties of the integral and in Section 7 we give
an example which cannot be treated with the methods of Barndorff-Nielsen et al.
(2012).

2 A brief background on white noise analysis

In this section we present a brief background on Gaussian white noise analysis.
We will discuss only the relevant parts of this vast theory, and refer an interested
reader to standard books Hida et al. (1993); Holden et al. (2010); Kuo (1996) and
references therein for a more complete discussion of this topic.

In order to simplify the exposition of what follows, we recall some standard
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notation that will be used throughout this paper. We denote by (·, ·)H and |·|H an
inner product and a norm of a Hilbert space H, and by ·̂ the symmetrization of
functions or function spaces.

Let S(R) denote the Schwartz space of rapidly decreasing smooth functions and
S ′(R) be its dual, that is the space of tempered distributions, and let 〈·, ·〉 denote
the bilinear pairing between S ′(R) and S(R). By the Bochner–Minlos theorem,
there exists a Gaussian measure µ on S ′(R) defined through

∫

S′(R)

ei〈x,ξ〉 dµ(x) = e
− 1

2
|ξ|2

L2(R) , ξ ∈ S(R).

From now on, we take (Ω,F , P ) := (S ′(R),B(S ′(R)), µ) as the underlying probabil-
ity space, where B(S ′(R)) is the Borel σ-field of subsets of S ′(R).

Observe that we can reconstruct the spaces S(R) and S ′(R) as nuclear spaces.
We recall this construction briefly, as a similar one will be used in the definition of
spaces of test and generalized random variables G,G∗, (S) and (S)∗. Start with a
family of seminorms |·|p, with p ∈ R, defined by

|f |p := |(A)pf |L2(R), f ∈ L2(R),

where A = − d2

dx2 + (1 + x2) is a second order differential operator densely defined
on L2(R). We denote by Sp(R) the space of those f ∈ L2(R) that have finite |·|p
norm. The Schwartz space of rapidly decreasing functions is the projective limit
of spaces {Sp(R) : p > 0} and the space of tempered distributions is its dual, or
the inductive limit of spaces {S−p(R) : p > 0}. Note that we have the inclusions
S(R) ⊂ L2(R) ⊂ S ′(R).

Let (L2) = L2(S ′(R), µ). By the Wiener–Itô decomposition theorem, for any

ϕ ∈ (L2) there exists a unique sequence of symmetric functions ϕ(n) ∈ L̂2(Rn) such
that

ϕ =

∞∑

n=0

In(ϕ
(n)), (2.1)

where In is the n times iterated Wiener integral. Moreover, the (L2) norm of ϕ can
be expressed as

‖ϕ‖2(L2) =
∞∑

n=0

n!
∣∣ϕ(n)

∣∣2
L2(Rn)

.

Let us remark, that we will keep the convention of naming the kernel functions of
the chaos expansion of ϕ by ϕ(n).

Next, we recall two types of spaces of test and generalized random variables.
The construction of these spaces follows the construction of the Schwartz spaces of
test and generalized functions. The first pair we discuss below are the Hida spaces.

For any ϕ ∈ (L2) and p ∈ R define the following norm

‖ϕ‖2p :=
∞∑

n=0

n!
∣∣(A⊗n)pϕ(n)

∣∣2
L2(Rn)

and a corresponding space

(S)p := {ϕ ∈ (L2) : ‖ϕ‖p <∞}.
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It is easy to show that for p > q the following inclusion holds (S)p ⊂ (S)q. We
define the Hida space of test functions (S) as the projective limit of {(S)p : p > 0}
and the Hida space of generalized functions as its dual (S)∗. Note that (S)∗ can also
be defined as the inductive limit of the spaces {(S)−p : p > 0}. The bilinear pairing
between spaces (S)∗ and (S) is denoted by 〈〈·, ·〉〉 and we have

〈〈Φ, ϕ〉〉 :=
∞∑

n=0

n!〈Φ(n), ϕ(n)〉.

The second pair of function spaces are the spaces that were studied (among
others) by Potthoff and Timpel (1995) and are denoted by G and G∗. These spaces
are constructed through (L2) norms with exponential weights of the number operator
(sometimes also called Ornstein–Uhlenbeck operator). The number operator N can
be defined through its action on the chaos expansion. It multiplies the n-th chaos
by n, that is if ϕ =

∑∞
n=0 In(ϕ

(n)), then Nϕ =
∑∞

n=0 nIn(ϕ
(n)).

For any λ ∈ R define the norm

‖ϕ‖2λ :=
∥∥eλNϕ

∥∥2
(L2)

=

∞∑

n=0

n!e2λn
∣∣ϕ(n)

∣∣2
L2(Rn)

and a corresponding space

Gλ := {ϕ ∈ (L2) : ‖ϕ‖λ <∞}.

The space of test random variables G is the projective limit of spaces {Gλ : λ > 0}
and the space of generalized random variables G∗ is its dual, or the inductive limit
of {G−λ : λ > 0}. As in the case of the Hida spaces, we denote the bilinear pairing
between G∗ and G by 〈〈·, ·〉〉.

It is a well known fact (see e.g. Kuo (1996); Potthoff and Timpel (1995)), that
we have the following proper inclusions

(S) ⊂ G ⊂(L2) ⊂ G∗ ⊂ (S)∗,
(S) ⊂ (S)p ⊂ (S)q ⊂(L2) ⊂ (S)−q ⊂ (S)−p ⊂ (S)∗, 0 ≤ q ≤ p,

G ⊂ Gλ ⊂ Gλ′ ⊂(L2) ⊂ G−λ′ ⊂ G−λ ⊂ G∗, 0 ≤ λ ≤ λ′.

Note that, unlike with the space (S)∗, truncation of an element of G∗ is always
in (L2). This happens because the kernel functions of G∗ are elements of L2(Rn),
and so

ΦN =
N∑

n=0

In(Φ
(n)) ∈ (L2) (2.2)

because
∣∣Φ(n)

∣∣
L2(Rn)

<∞ and a finite sum of such norms is finite, so ‖ΦN‖(L2) <∞.

Thus we can approximate any G∗ random variable by (L2) random variables by
truncating the chaos expansion as in Equation (2.2). This is not the case with the
Hida space S∗ because the kernels of Hida random variables are elements of a much
larger Schwartz space S ′(R) and might have infinite L2(R) norms.
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Remark 2.1. Note that if ϕ ∈ (S), then ‖ϕ‖p < ∞ for any p > 0 and if Φ ∈ S∗,
then for some q > 0 we have ‖Φ‖−q <∞. In this case,

|〈〈Φ, ϕ〉〉| ≤ ‖Φ‖−q‖ϕ‖q.

Similarly, if ϕ ∈ G, then ‖ϕ‖λ < ∞ for any λ > 0 and if Φ ∈ G∗, then for some
λ0 > 0 we have ‖Φ‖−λ0

<∞. And again,

|〈〈Φ, ϕ〉〉| ≤ ‖Φ‖−λ0
‖ϕ‖λ0

.

An important tool in white noise analysis is the S-transform which we define
below.

Definition 2.2. For any Φ ∈ (S)∗ and ξ ∈ S(R), we define the S-transform of Φ
at ξ as

S(Φ)(ξ) :=
〈〈
Φ, e

〈·,ξ〉− 1
2
|ξ|2

L2(R)

〉〉
.

Note that e
〈·,ξ〉− 1

2
|ξ|2

L2(R) ∈ G∗ for any ξ ∈ S(R), so for any Φ ∈ G∗, the func-
tion SΦ is everywhere defined on S(R) (see Potthoff and Timpel, 1995, Example
2.1).The importance of the S-transform is well illustrated by the fact that it is an
injective operator (see Hida et al. (1993); Kuo (1996) for details.) Therefore we have
the following useful result.

Theorem 2.3. If Φ,Ψ ∈ (S)∗ and SΦ = SΨ then Φ = Ψ.

Thus a generalized function can be uniquely determined by its S-transform.
Making use of this fact, we can define the Wick product ⋄ of two distributions.

Definition 2.4. For Φ,Ψ ∈ (S)∗, we define the Wick product of Φ and Ψ as

Φ ⋄Ψ := S−1(SΦ · SΨ).

Alternatively, the Wick product can be expressed in terms of the chaos expansion
by

Φ ⋄Ψ =
∞∑

n,m=0

In+m

(
Φ(n)⊗̂Ψ(m)

)
=

∞∑

n=0

In

(
n∑

m=0

Φ(n−m)⊗̂Ψ(m)

)
. (2.3)

The following is an important fact stating that all of the spaces considered in this
paper, namely G,G∗, (S) and (S)∗ are closed under the Wick product.

Fact 2.5. If Φ,Ψ ∈ G (or G∗, (S), (S)∗) then Φ ⋄ Ψ ∈ G (or G∗, (S), (S)∗, respec-
tively).

This is the advantage of using the Wick product instead of the pointwise prod-
uct, as the latter is usually not defined on spaces G∗ and (S)∗. However, under
strong independence of Φ and Ψ, the Wick and pointwise products coincide (see e.g.
Benth and Potthoff (1996) for details.)

Definition 2.6. We say that Φ,Ψ ∈ G∗ are strongly independent if there are two
measurable subsets IΦ, IΨ of R such that Leb(IΦ ∩ IΨ) = 0 and for all m,n ∈ N we
have suppΦ(n) ⊂ (IΦ)

n and suppΨ(m) ⊂ (IΨ)
m.
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From Benth and Potthoff (1996, Proposition 2) we know that strong indepen-
dence and regular independence of random variables are closely related. Namely,
if X, Y ∈ (L2) are two independent random variables measurable with respect to
σ{B(s) : a ≤ s <∞}, a ∈ R, then Y has a version Ỹ ∈ (L2) such that Ỹ and X are
strongly independent.

The next theorem states which products of generalized random variables are well-
defined. The first part (which is a standard result) deals with the product of gener-
alized and test random variables and the second part takes advantage of the strong
independence assumption. For the proof of the second part see Benth and Potthoff
(1996).

Theorem 2.7. i. For Φ ∈ (S)∗ (or G∗) and ϕ ∈ (S) (or G) the product ϕ · Φ is
well-defined through

〈〈ϕ · Φ, ψ〉〉 = 〈〈Φ, ψ · ϕ〉〉 , for all ψ ∈ (S) (or G respectively).

ii. If Φ,Ψ ∈ G∗ are strongly independent, then the product Φ · Ψ is well-defined,
and

Φ ·Ψ = Φ ⋄Ψ.

Next, we state several results that are used to establish some norm estimates in
the following sections of this paper. First, we recall an estimate on the norm of a
product of two test random variables given in Potthoff and Timpel (1995, Proposi-
tion 2.4).

Proposition 2.8. Let λ0 := 1
2
ln(2 +

√
2) and assume that λ > λ0 and ϕ, ψ ∈ Gλ.

Then, for all ν > λ0, ϕ · ψ ∈ Gλ−ν and there is a constant Cν so that

‖ϕ · ψ‖λ−ν ≤ Cν‖ϕ‖λ‖ψ‖λ.

Using Proposition 2.8, we can establish a norm estimate of a pointwise product
of generalized and test random variables.

Theorem 2.9. Let λ0 :=
1
2
ln(2 +

√
2) and assume that λ > λ0 Suppose that σ ∈ G

and Φ ∈ G−λ+ν ⊂ G∗, where ν > λ. Then there is a constant Cν such that

‖σ · Φ‖−λ ≤ Cν‖Φ‖−λ+ν‖σ‖λ.

Proof. Consider, for any ϕ ∈ G,

|〈〈σ · Φ, ϕ〉〉| = |〈〈Φ, σ · ϕ〉〉|
≤ ‖Φ‖−λ+ν‖σ · ϕ‖λ−ν

≤ C̃ν‖Φ‖−λ+ν‖σ‖λ‖ϕ‖λ.

Since the above holds for any ϕ ∈ G, there is a constant dependent only on ν such
that

‖σ · Φ‖−λ ≤ Cν‖Φ‖−λ+ν‖σ‖λ.
Hence the theorem holds.
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Next, we recall an estimate of the norm of a Wick product of two generalized
random variables from Potthoff and Timpel (1995, Proposition 2.6).

Proposition 2.10. Let Φ,Ψ ∈ Gλ, λ ∈ R. Let λ0 = λ − 1
2
, and λ′ < λ0. Then

Φ ⋄Ψ ∈ Gλ′ and
‖Φ ⋄Ψ‖λ′ ≤ Cλ,λ′‖Φ‖λ‖Ψ‖λ,

where Cλ,λ′ = (2(λ− λ′)− 1)−
1
2 eλ−λ′−1.

Finally, let us review the Pettis-type integral in the white noise setting. Suppose
that (T ,B, m) is a measure space and Φ(t) : T → (S)∗ is a generalized stochas-
tic process. We say that Φ is Pettis-integrable if the following two conditions are
satisfied:

i. Φ is weakly measurable, that is t→ 〈〈Φ(t), ϕ〉〉 is a measurable function for all
ϕ ∈ (S);

ii. Φ is weakly integrable, that is

∫

T

|〈〈Φ(t), ϕ〉〉| dm <∞,

for all ϕ ∈ (S).

For a Pettis-integrable generalized process Φ, we define its Pettis integral
∫
T
Φ(t) dm

by 〈〈∫

T

Φ(t) dm, ϕ

〉〉
:=

∫

T

〈〈Φ(t), ϕ〉〉 dm.

Note that we can derive the chaos expansion of the Pettis white noise integral (see
Hida et al. (1993); Kuo (1996) for details), as

∫

T

Φ(t) dm =
∞∑

n=0

In

(∫

T

Φ(n)(t) dm

)
,

where the integrals in the chaos expansion are understood as Pettis integrals on
the spaces S ′(Rn) (see Pettis, 1938). Note that the white noise Pettis integral is
defined for processes in the (S∗) space. However, due to the fact that (S) ⊂ G and
G∗ ⊂ (S∗), we say that a G∗-valued process is Pettis-integrable if it is integrable
as an (S)∗-valued process and the result of integration is a G∗ random variable.
Alternatively, we can restate the above definitions requiring that Φ(t) ∈ G∗ and
ϕ ∈ G.

In what follows, the fact that Pettis integral and S-transform are interchangable
operations is important.

Proposition 2.11. For all Φ ∈ (S)∗ and ξ ∈ S(R),

S
(∫ t

0

Φ(s) ds

)
(ξ) =

∫ t

0

S(Φ(s))(ξ) ds.
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3 Calculus in G∗ and (S)∗

3.1 Stochastic differentiation

Before we present the definition of the stochastic derivative that we use in the
remainder of this paper, we motivate our choice by showing how it fits with other
definitions that can be found in Malliavin calculus and white noise analysis.

Let us first recall that the Malliavin derivative is defined on a subset of (L2),
namely

D1,2 :=

{
ϕ ∈ (L2) :

∞∑

n=0

n · n!
∣∣ϕ(n)

∣∣2
L2(Rn)

<∞
}
.

For ϕ ∈ D1,2 we define the Malliavin derivative by its chaos expansion as

DM
t ϕ :=

∞∑

n=0

nIn−1(ϕ
(n)(·, t)). (3.1)

Observe that D1,2 is chosen in such a way that DM
t ϕ ∈ (L2) whenever ϕ ∈ D1,2.

In Potthoff and Timpel (1995), the authors define an operator Dh for any h ∈
L2(R) as the Gâteaux derivative in direction h. It can be shown that Dh can be
described in terms of its chaos expansion as

Dhϕ =

∞∑

n=0

nIn−1

(
(h, ϕ(n))L2(R)

)
,

where (·, ·)L2(R) is the L2(R) inner product, that is

(h, ϕ(n))L2(R)(u
(n−1)) :=

∫

R

h(s)ϕ(n)(u(n−1), s) ds, u(n−1) ∈ Rn−1.

Note that, since ϕ(n) can be assumed to be symmetric, it does not matter which of
the coordinates is chosen as s in the formula above.

For Dt and Dh to be equal, we need h to be a function satisfying

(h, ϕ(n))L2(R) = ϕ(n)(·, t), ∀ϕ(n) ∈ L2(Rn).

But there is no h ∈ L2(R) that satisfies the above condition. It is a well-known fact
though, that the Dirac delta – a generalized function on R – has this exact property.
We cannot formally take h(s) = δt(s), but we can do it informally to obtain

Dδtϕ =
∞∑

n=0

nIn−1

(
(δt, ϕ

(n))L2(R)

)

=

∞∑

n=0

nIn−1(ϕ
(n)(·, t))

= Dtϕ.

Note that for the above to hold, we need ϕ(n)(u(n−1), ·) ∈ S(R) (with u(n−1) ∈ Rn−1),
as the Dirac delta is a continuous linear operator on S(R). However, since S(R)
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is a dense subset of L2(R), the Dirac delta can be uniquely extended to a densely
defined, unbounded linear functional on L2(R). As we will show later, DδtΦ ∈ G∗

for all Φ ∈ G∗.
In Benth (1999), we encounter yet another differentiation operator. This time it

is defined on the Hida space (S)∗ as DΦ = Φ ·W − Φ ⋄W , where (with ω ∈ S ′(R)
and f ∈ S(R)) W (f)(ω) = 〈ω, f〉 is the coordinate process sometimes also called
a smoothed white noise. In this case, the operator D should be understood as a
functional on the product space S(R)× (S), with its action given by

DΦ(f, ϕ) = (Φ ·W − Φ ⋄W )(f, ϕ) = 〈〈Φ ·W (f)− Φ ⋄W (f), ϕ〉〉 .

In Benth (1999, Proposition 3.3), it is shown that operator D can be expressed
in terms of the chaos expansion of the distribution it acts on – much in the same
way as the Malliavin derivative is defined. In order to see this, for Φ(n) ∈ Ŝ ′(Rn),

ϕ(n) ∈ Ŝ(Rn) and g ∈ S(R), define Φ(n)(·, g) by

〈Φ(n)(·, g), ϕ(n)〉 := 〈Φ(n), ϕ(n)⊗̂g〉.

Now, the chaos expansion of DΦ(g) is given by

DΦ(g) =

∞∑

n=0

nIn−1(Φ
(n)(·, g)).

It is enough to justify that fixing the n-th functional coordinate of the functional
Φ(n) : S(R) → S ′(R) at a certain g is equivalent to fixing the n-th variable in the
function Φ(n). Suppose that Φ =

∑∞
n=0 In(Φ

(n)) ∈ G∗. Then, for all n ≥ 0 the
functions Φ(n) are elements of L2(Rn) and can be viewed as functions of n variables
or, due to the Riesz representation theorem, as linear operators acting on L2(Rn).

With ϕ(n−1),Φ(n) and g as above, we have that ϕ(n−1)⊗̂g ∈ Ŝ(Rn) ⊂ L̂2(Rn),
so the bilinear pairing can be viewed as an inner product in L2(R). Thus,

with notation x(n) = (x1, x2, . . . , xn), x
(n)
6k = (x1, x2, . . . , xk−1, xk+1, . . . , xn) and

dx(n) = dx1dx2 . . . dxn we have

〈
Φ(n)(·, g), ϕ(n−1)

〉
=
(
Φ(n)(·, g), ϕ(n−1)

)
L2(Rn)

=
1

n

n∑

k=1

∫

R

n

Φ(n)(x(n))ϕ(n−1)(x
(n−1)
6k )g(xk) dx

(n).

Taking, again informally, g(x) = δt(x) and using the symmetry of ϕ(n) and Φ(n), we
have

〈
Φ(n)(·, g), ϕ(n−1)

〉
=

1

n

n∑

k=1

∫

R

n

Φ(n)(x(n))ϕ(n−1)(x
(n−1)
6k )δt(xk) dx

(n)

=
1

n

n∑

k=1

∫

R

n

Φ(n)(x
(n)
6k , xk)ϕ

(n−1)(x
(n−1)
6k )δt(xk) dxk dx

(n)
6k

=
1

n

n∑

k=1

∫

R

n

Φ(n)(x
(n)
6k , t)ϕ(n−1)(x

(n−1)
6k ) dx

(n)
6k

10



=

∫

R

n

Φ(n)(x(n−1), t)ϕ(n−1)(x(n−1)) dx(n−1)

=
(
Φ(n)(·, t), ϕ(n−1)

)
L2(Rn−1)

.

Thus we have the following informal equality

DtΦ = DδtΦ = DΦ(δt).

Therefore, we can regard the derivative defined by Equation (3.1) as a restriction
of D defined in Benth (1999) to the space G∗, an extension of the Malliavin deriva-
tive DM

t onto a larger domain, and an extension of the derivative Dh defined in
Potthoff and Timpel (1995). This motivates the following definition.

Definition 3.1. For any Φ ∈ G∗ with chaos expansion given by Φ =
∑∞

n=0 In(Φ
(n))

we define the stochastic derivative of Φ at t by

DtΦ =

∞∑

n=1

nIn−1(Φ
(n)(·, t)).

Theorem 3.2 assures that the stochastic derivative is in fact a well-defined func-
tional acting on G∗.

Theorem 3.2. For any Φ ∈ G∗, we have DtΦ ∈ G∗ for almost all t ∈ R. Moreover,
if for some λ > 0, Φ ∈ G−λ then for any ε > 0 there is a constant Cε, such that

∫

R

‖DtΦ‖2−λ−ε dt ≤ Cε‖Φ‖2−λ <∞, (3.2)

and in consequence DtΦ ∈ G−λ−ε for almost all t ∈ R.

Proof. It is enough to show that Equation (3.2) holds because G∗ =
⋃

λ>0 G−λ. In
order to do this, we need the following fact: for any ε > 0, there exists x0 > e such
that f(x) = lnx

x
< ε for all x > x0. This is a consequence of the fact that f(x) is

decreasing on the interval (e,∞) and limx→∞ f(x) = 0.
Let Φ =

∑∞
n=0 In(Φ

(n)) be an element of G−λ, and consider

∫

R

‖DtΦ‖2−λ−ε dt =

∫

R

∞∑

n=0

n(n!)e−2(λ+ε)n
∣∣Φ(n)(·, t)

∣∣2
L2(Rn)

dt

=
∞∑

n=0

n(n!)e−2(λ+ε)n

∫

R

∣∣Φ(n)(·, t)
∣∣2
L2(Rn)

dt

=

∞∑

n=0

n(n!)e−2(λ+ε)n
∣∣Φ(n)

∣∣2
L2(Rn+1)

.

By the fact stated at the beginning of this proof, we have that for any ε > 0
there is a k ∈ N0 such that for all n ≥ k we have lnn

n
< 2ε. This ensures that

ne−2(λ+ε)n ≤ e−2λn. Hence

∞∑

n=k

n(n!)e−2(λ+ε)n
∣∣Φ(n)

∣∣2
L2(Rn+1)

<
∞∑

n=k

(n!)e−2λn
∣∣Φ(n)

∣∣2
L2(Rn+1)

11



≤ ‖Φ‖2−λ

Now, for any n ∈ {0, 1, . . . , k − 1} there is a constant cn,ε such that ne−2(λ+ε)n <
cn,εe

−2λn. Let C̃ε = max(cn,ε : n ∈ {0, 1, . . . , k − 1}). We have

k−1∑

n=0

n(n!)e−2(λ+ε)n
∣∣Φ(n)

∣∣2
L2(Rn+1)

≤ C̃ε

k−1∑

n=0

(n!)e−2(λ)n
∣∣Φ(n)

∣∣2
L2(Rn+1)

.

Thus we have shown that
∫

R

‖DtΦ‖−λ−ε dt ≤ C̃ε‖Φ‖2−λ + ‖Φ‖2−λ ≤ Cε‖Φ‖2−λ.

Therefore ‖DtΦ‖−λ−ε <∞ for almost all t as required.

The above theorem improves the result of Aase et al. (2000, Lemma 3.10), where
it was shown that if Φ ∈ G−λ, then DtΦ ∈ G−λ−1 for almost all t. The notation used
in Aase et al. (2000) differs from ours, but the definitions of the spaces G and G∗ as
well as the definitions of the stochastic derivative are equivalent.

Recall that Definition 3.1 of the stochastic derivative is exactly the same (in
terms of chaos expansion) as the definition of the Malliavin derivative. The drawback
of the Malliavin derivative is that it is defined on a smaller space D1,2 so that
the derivative takes values in the (L2) space for almost all t. Since we define the
derivative on a larger space G∗ ) D1,2, the result of differentiation also falls into a
larger space, namely G∗ ) (L2). Thus the derivative of a random variable from G∗ is
no longer an element of (L2), but rather a generalized stochastic process. However,
taking derivative of any test random variable ϕ ∈ G results in a test stochastic
process that is in G ( (L2) for almost all t ∈ R, as can be seen from Theorem 3.2.

3.2 Properties of the stochastic derivative

Now we turn our attention to some of the properties of the stochastic derivative Dt

of Definition 3.1. All of the formulas presented below are well-known in the setting
of Malliavin calculus. We include them for the sake of completeness and give only
sketches of the proofs or omit the proofs completely.

Proposition 3.3. If Φ is deterministic, that is Φ = I0(Φ
(0)), Φ(0) ∈ R, then DtΦ =

0.

Proof. This is a direct consequence of the definition of the stochastic derivative.

Proposition 3.4. If Φ,Ψ ∈ G∗, then

Dt(Φ ⋄Ψ) = Dt(Φ) ⋄Ψ+ Φ ⋄DtΨ. (3.3)

Proof. This follows from straightforward but tedious explicit operations on the chaos
expansion and comparison of the chaos expansions of the left- and right-hand sides
of the Equation (3.3). The computations are the same as in the Malliavin deriva-
tive case, as the formulas defining the derivatives are the same and only the do-
main differs. Existence of both sides of Equation (3.3) follows from Theorem 3.2
and Proposition 2.10

12



Similarly, we can show the pointwise product rule with the restriction that we
operate on smooth random variables only.

Proposition 3.5. If ϕ, ψ ∈ G, then

Dt(ϕ · ψ) = Dt(ϕ) · ψ + ϕ ·Dtψ.

Since pointwise product is not well-defined for random variables in G∗, we cannot
generalize the above result to all Φ,Ψ ∈ G∗. However, there are two cases of interest
for which the product rule makes sense. First, under an additional assumption of
strong independence of Φ and Ψ, application of Theorem 2.7 and the fact that the
stochastic derivative preserves strong independence yields:

Proposition 3.6. If Φ,Ψ ∈ G∗ are strongly independent, then

Dt(Φ ·Ψ) = Dt(Φ) ·Ψ+ Φ ·DtΨ.

Finally, since ϕ ∈ G implies that Dtϕ ∈ G for almost all t, and the product of
test and generalized random variables is well defined, we obtain:

Proposition 3.7. If ϕ ∈ G∗ and Ψ ∈ G, then

Dt(ϕ ·Ψ) = Dt(ϕ) ·Ψ+ ϕ ·DtΨ.

Finally, following Hida et al. (1993, Equation (5.17)), we give the formula for the
S-transform of the Malliavin derivative. In the spirit of completeness, we first recall
the definition of the Fréchet functional derivative that appears in the formula for the
S-transform of the stochastic derivative. We say that a real-valued function f defined
on an open subset U of a Banach space B is Fréchet differentiable at x if there exists
a bounded linear functional δf

δx
: B → R such that |f(x+y)−f(x)− δf

δx
(y)| = o(‖y‖)

for all y ∈ B.

Proposition 3.8. For all Φ ∈ (S)∗ and ξ ∈ S(R),

S (DtΦ) (ξ) =
δ

δξ(t)
S(Φ)(ξ),

where δ
δξ(s)

is the Fréchet functional derivative.

3.3 Stochastic integration

In this section we introduce the Skorohod integral for processes in G∗. In Malliavin
calculus, the Skorohod integral can be defined through the chaos expansion as

ϕ(t) =

∞∑

n=0

In
(
ϕ(n)(·, t)

)
=⇒ δM (ϕ) =

∞∑

n=0

In+1

(
ϕ̂(n)

)
. (3.4)

The domain of δM consists of all those processes whose Skorohod integral results in
a random variable in (L2), namely

Dom
(
δM
)
=

{
ϕ ∈ (L2) :

∞∑

n=0

(n + 1)!
∣∣ϕ̂(n)

∣∣2
L2(Rn+1)

<∞
}
.

We extend the Skorohod integral in the same manner as we extended the Malliavin
derivative.
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Definition 3.9. For Φ(t) =
∑∞

n=0 In(Φ
(n)(·, t)) ∈ G∗, we define the Skorohod inte-

gral by

δ(Φ) =

∫

R

Φ(t) δB(t) :=
∞∑

n=0

In+1

(
Φ̂(n)

)
,

whenever
∑∞

n=0(n+ 1)!e−2(n+1)λ|Φ̂(n)|L2(Rn+1 <∞ for some λ > 0.

The next result gives sufficient conditions for Φ(t) to be Skorohod-integrable and
provides a norm estimate on δ(Φ) under the assumption of square-integrability of
the norm ‖δ(Φ)‖−λ.

Theorem 3.10. If Φ(t) ∈ G−λ for all t ∈ R and
∫

R

‖Φ(t)‖2−λ dt <∞,

then for any ε > 0 there is a constant Cε such that

‖δ(Φ)‖2−λ−ε ≤ Cε

∫

R

‖Φ(t)‖2−λ dt.

Thus δ(Φ) ∈ G−λ−ε and in particular, δ(Φ) ∈ G∗.

Proof. Fix an arbitrary ε > 0. Keeping in mind that the L2(Rn+1) norm of Φ(n)(·, t)
and its symmetrization Φ̂(n)(·, t) are equal, consider

‖δ(Φ)‖−λ−ε =
∞∑

n=0

(n + 1)!e−2(λ+ε)n
∣∣Φ(n)

∣∣2
L2(Rn+1)

=

∞∑

n=0

(n + 1)n!e−2(λ+ε)n

∫

R

∣∣Φ(n)(·, t)
∣∣2
L2(Rn)

dt

=

∫

R

∞∑

n=0

(n+ 1)n!e−2(λ+ε)n
∣∣Φ(n)(·, t)

∣∣2
L2(Rn)

dt. (3.5)

By the linearity of the integral, it is enough to show that for k large enough, the
following integral converges

∫

R

∞∑

n=k

(n+ 1)n!e−2(λ+ε)n
∣∣Φ(n)(·, t)

∣∣2
L2(Rn)

dt.

Note that for any ε > 0 there is a k ∈ N0 such that for any n ≥ k we have
(n + 1)e−2(λ+ε)n < e−2λn. This follows from the fact that f(x) = x+1

x
is strictly

decreasing in the interval (0,∞) and limx→∞ f(x) = 0. Hence, for k large enough,
we have

∫

R

∞∑

n=k

(n+ 1)n!e−2(λ+ε)n
∣∣Φ(n)(·, t)

∣∣2
L2(Rn)

dt

≤
∫

R

∞∑

n=k

n!e−2λn
∣∣Φ(n)(·, t)

∣∣2
L2(Rn)

dt
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≤
∫

R

∞∑

n=0

n!e−2λn
∣∣Φ(n)(·, t)

∣∣2
L2(Rn)

dt

≤
∫

R

‖Φ(t)‖2−λ dt

Note that we can treat the first n elements of the sum in Equation (3.5) as in the
proof of Theorem 3.2, so ‖δ(Φ)‖−λ−ε ≤ Cε

∫
R

‖Φ(t)‖2−λ dt <∞, as required.

It is a well known fact, that in the setting of Hida spaces (S), (S)∗ the Skorohod
integral can be interpreted as a white noise integral. Namely, for Φ(t) ∈ (S)∗ we
can view the following integral as the extension of the Skorohod integral

∫

R

∂∗tΦ(t) dt,

where the integral is understood in Pettis sense and ∂∗t : (S)∗ → (S)∗ is the white
noise integration operator, that is the adjoint to ∂t, the Gâteaux derivative in the
direction δt. We have an explicit expression for the chaos expansion of the above
integral, given by (e.g. Kuo, 1996; Hida et al., 1993)

∫

R

∂∗tΦ(t) dt =
∞∑

n=0

In+1

(∫

R

δt⊗̂Φ(n)(t) dt

)
. (3.6)

As in the case of stochastic derivative, with the same notation as previously, it is
straightforward to check that for Φ(n)(·, t) ∈ L2(Rn) we have

∫

R

δt⊗̂Φ(n)(t) dt =
1

n

n∑

k=0

Φ(n)(x
(n)
6k , xk) = Φ̂(n)(·, t).

Thus this integral is an actual extension of the stochastic integral defined in
Equation (3.4).

Recall, that the same integral can be defined (in the (S)∗ setting) as

∫

R

Φ(t) ⋄Wt dt,

and the chaos expansion of this generalized random variable is the same as the one
in Equation (3.6). Note however, that Wt = I1(δt) ∈ (S)∗ is not an element of G∗

because δt /∈ L2(R). But the above reasoning justifies Definition 3.9 as a Skorohod
integral of processes in G∗ and Theorem 3.10 gives sufficient conditions for the result
of integration to be an element of G∗.

3.4 Properties of the stochastic integral

First, we state some properties that are readily seen directly from Definition 3.9 of
the Skorohod integral.

Theorem 3.11. i. The Skorohod integral is linear;
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ii.
∫ b

a
0 δB(t) = 0;

iii.
∫ b

a
1 δB(t) = B(b)− B(s);

iv. If a < b < c then
∫ b

a
Φ(t) δB(t) +

∫ c

b
Φ(t) δB(t) =

∫ c

a
Φ(t) δB(t);

Next we present a “fundamental theorem of calculus” in our setting. The proof
of this result follows closely the proof in the Malliavin calculus setting, which is
natural, as the definitions coincide on the intersection of the domains.

Theorem 3.12. Suppose that Φ(t) ∈ G∗ is Skorohod-integrable over T , and DtΦ(s)
is Skorohod-integrable for almost all t ∈ T . Then

Dt

(∫

T

Φ(s) δB(s)

)
= Φ(t) +

∫

T

DtΦ(s) δB(s). (3.7)

Proof. Note that since Φ(t) ∈ G∗ for all t ∈ T , by Theorem 3.2 the stochastic
derivative DtΦ(s) exists for almost all t ∈ T and its norm is square-integrable,
hence DsΦ(s) is Skorohod-integrable by Theorem 3.10. It remains to show that
Equation (3.7) holds.

Let Φ(t) =
∑∞

n=0 In
(
Φ(n)(·, t)

)
, where Φn(·, t) ∈ L̂2(Rn) for all t ∈ T . The

left-hand side of Equation (3.7) is given by

Dt

(∫

T

Φ(s) δB(s)

)
= Dt

(
∞∑

n=0

In+1

(
Φ̂(n)

))

=

∞∑

n=0

(n+ 1)In
(
Φ(n)(·, t)

)
.

On the other hand, we can write out the right-hand side of Equation (3.7) as

Φ(t) +

∫

T

DtΦ(s) δB(s) =
∞∑

n=0

In
(
Φ(n)(·, t)

)
+ δ

(
Dt

(
∞∑

n=0

In
(
Φ(n)(·, t)

)
))

=
∞∑

n=0

In
(
Φ(n)(·, t)

)
+ δ

(
∞∑

n=0

nIn−1

(
Φ(n)(·, s, t)

)
)

=
∞∑

n=0

In
(
Φ(n)(·, t)

)
+

∞∑

n=0

nIn

(
Φ̂(n)(·, t)

)

=

∞∑

n=0

In
(
Φ(n)(·, t)

)
+

∞∑

n=0

nIn
(
Φ(n)(·, t)

)

=

∞∑

n=0

(n + 1)In
(
Φ(n)(·, t)

)
.

So the two sides of Equation (3.7) are equal and the theorem holds.

When comparing the above result with its Malliavin calculus counterpart (see
Barndorff-Nielsen et al., 2012, Proposition 1), we see that we are not required to
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assume the existence of the stochastic derivative of Φ because it is ensured by the
properties of the derivative in the space G∗.

Next, we present an “integration by parts formula” for the stochastic derivative
and integral. Note that we cannot use the pointwise product freely as its result
might be undetermined for generalized random variables. However, we can always
take a product of test and generalized random variables.

Theorem 3.13. Suppose that ϕ ∈ G and Φ(t) ∈ G∗ for all t. If for some λ > 0 and
ν > 1

2
ln(2 +

√
2) ∫ T

0

‖Φ(t)‖2−λ+ν dt <∞,

then ∫ T

0

ϕΦ(t) δB(t) = ϕ

∫ T

0

Φ(t) δB(t)−
∫ T

0

Φ(t)Dtϕdt. (3.8)

Proof. First we show that all components of Equation (3.8) are elements of G∗. By
Theorem 3.10, for the integral on the left-hand side of Equation (3.8) to be well-

defined it suffices that
∫ T

0
‖ϕΦ(t)‖2−λ dt <∞. By Theorem 2.9 and our assumption,

we have

∫ T

0

‖ϕΦ(t)‖2−λ dt ≤ C2
ν‖ϕ‖λ

∫ T

0

‖Φ(t)‖2−λ+ν dt

<∞.

Thus ϕΦ(t) is Skorohod-integrable.
The integral in the first component on the right-hand side of Equation (3.8)

is also well-defined by our assumption on square-integrability of the norm. Since
ϕ ∈ G, the first product on the right-hand side is an element of G∗.

Finally, the Pettis integral on the right-hand side of Equation (3.8) exists because
for any ψ ∈ G

∫ T

0

|〈〈Φ(t)Dtϕ, ψ〉〉| dt

≤
∫ T

0

‖Φ(t)Dtϕ‖−λ+ε‖ψ‖λ−ε dt

≤ ‖ψ‖λ−εCν

∫ T

0

‖Φ(t)‖−λ+ε+ν‖Dtϕ‖λ−ε dt

≤ ‖ψ‖λ−εCν

(∫ T

0

‖Φ(t)‖2−λ+ε+ν dt

) 1
2
(∫ T

0

‖Dtϕ‖2λ−ε dt

) 1
2

<∞.

The first integral in the last statement above is finite by assumption and monotonic-
ity of the norms ‖·‖−λ. The second integral is finite by Theorem 3.2. Above we have
also used Theorem 2.9 and Remark 2.1.

Finally, although very tedious, it is straightforward to check that the chaos ex-
pansions of both sides of Equation (3.8) agree. In order to see this, one might start
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with Φ = In(Φ
(n)(t)) and ϕ = Im(ϕ

(m)) as linear combinations of variables of this
form are dense in G∗ and G respectively. This choice of ϕ,Φ significantly simplifies
the computations as one can use the product formula

ϕ · Φ =

∞∑

n=0

∞∑

m=0

m∧n∑

k=0

k!

(
m

k

)(
n

k

)
Im+n−2k

(
Φ(n)⊗̂kϕ

(m)
)
,

where ⊗̂k is the symmetrized tensor product on k variables.

The last well-known property of the Skorohod integral that we use in the forth-
coming sections is the form of its S-transform.

Proposition 3.14. For all Φ ∈ (S)∗ and ξ ∈ S(R),

S
(∫ t

0

Φ(s) δB(s)

)
=

∫ t

0

S (Φ(s)) (ξ) · ξ(s) ds.

4 Integration for Volterra processes

As we have already mentioned, in order to define an integral with respect to VMBV
process, we follow Barndorff-Nielsen et al. (2012). We define the integral

∫ t

0

Φ(s) dX1(s), where X1(t) =

∫ t

0

g(t, s) dB(s), (4.1)

with the use of the following operator

Kg(Φ)(t, s) := Φ(s)g(t, s) +

∫ t

s

(Φ(u)− Φ(s)) g(du, s). (4.2)

The definition of the integral in Equation (4.1) is given by

∫ t

0

Φ(s) dX1(s) :=

∫ t

0

Kg(Φ)(t, s) δB(s) +

∫ t

0

Ds {Kg(Φ)(t, s)} ds. (4.3)

Before we discuss the integral defined above, we have to turn our attention to
the study of the properties of the operator Kg which is a main building block of the
integral itself.

4.1 Properties of the operator Kg

In this section, we study the regularity of the operator Kg. That is we wish to find out
for which γ > 0 does Kg(Φ)(t, s) ∈ G−γ when Φ(t) ∈ G−λ for all t. First of all, from
Equation (4.2), we see that Φ(u) − Φ(s) has to be Pettis–Stieltjes-integrable with
respect to g(du, s) on [s, t] for 0 ≤ s < t ≤ T . Using previously introduced notation,
we have (T ,B, m) = ([s, t],B([s, t]), mg), where mg is the Lebesgue–Stieltjes measure
associated to g(·, s). In order to consider integrability of Φ with respect to g(du, s),
and later, for the existence of Kg(Φ)(t, s) we need the following assumptions.
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Assumption A. Suppose that

i. For any 0 ≤ s < u < v < T the function u 7→ g(u, s) is of bounded variation
on [u, v];

ii. The mapping [0, T ] ∋ t 7→ Φ(t) ∈ G∗ is weakly measurable;

iii. For any 0 ≤ s ≤ t ≤ T
∫ t

s

‖Φ(u)− Φ(s)‖2−λ |g|(du, s) <∞.

Assumption A Item i ensures that we can define a Pettis–Stieltjes integral with
respect to g(du, s). Under Assumption A Item ii, the mapping u 7→ Φ(u)− Φ(s) is
weakly measurable, as are all mappings considered in the remainder of this paper.

Proposition 4.1. Under Assumption A, the integral
∫ t

s

(Φ(u)− Φ(s)) g(du, s) (4.4)

exists as a Pettis–Stieltjes integral. Moreover, if Φ(t) ∈ G−λ, λ > 0 for all 0 ≤ t ≤ T ,
then for any 0 ≤ s < t ≤ T ,

∥∥∥∥
∫ t

s

(Φ(u)− Φ(s)) g(du, s)

∥∥∥∥
−λ

<∞, (4.5)

that is the integral in Equation (4.4) is an element of G−λ.

Proof. In order to prove integrability in the Pettis sense, consider
∣∣∣∣
〈〈∫ t

s

(Φ(u)− Φ(s)) g(du, s), ϕ

〉〉∣∣∣∣

=

∣∣∣∣
∫ t

s

〈〈(Φ(u)− Φ(s)), ϕ〉〉 g(du, s)
∣∣∣∣

≤
∫ t

s

|〈〈Φ(u)− Φ(s), ϕ〉〉| |g|(du, s)

≤
∫ t

s

‖Φ(u)− Φ(s)‖−λ‖ϕ‖λ |g|(du, s)

= ‖ϕ‖λ
∫ t

s

‖Φ(u)− Φ(s)‖−λ |g|(du, s)

≤ ‖ϕ‖λ
(∫ t

s

‖Φ(u)− Φ(s)‖2−λ |g|(du, s)
)1

2
(∫ t

s

1 |g|(du, s)
)1

2

<∞,

where we have used the Hölder inequality, Assumption A and Remark 2.1.
To prove that the norm in Equation (4.5) is finite, consider

∥∥∥∥
∫ t

s

(Φ(u)− Φ(s)) g(du, s)

∥∥∥∥
2

−λ
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=
∞∑

n=0

n!

∣∣∣∣
∫ t

s

(Φ(n)(u)− Φ(n)(s)) g(du, s)

∣∣∣∣
2

−λ

≤ V t
s [g(·, s)]

∞∑

n=0

n!

∫ t

s

∣∣Φ(n)(u)− Φ(n)(s)
∣∣2
−λ

|g|(du, s)

= V t
s [g(·, s)]

∫ t

s

∞∑

n=0

n!
∣∣Φ(n)(u)− Φ(n)(s)

∣∣2
−λ

|g|(du, s)

= V t
s [g(·, s)]

∫ t

s

‖Φ(u)− Φ(s)‖2−λ |g|(du, s)

<∞,

where V t
s [f ] denotes the total variation of f on the interval [s, t], which by

Assumption A is finite.

Theorem 4.2. If Assumption A holds and Φ(t) ∈ G−λ for all 0 ≤ t ≤ T , then
Kg(Φ)(t, s) ∈ G−λ for all 0 ≤ s ≤ t ≤ T .

Proof. As in the proof of the Proposition 4.1, it is enough to establish that
‖Kg(Φ)(t, s)‖−λ <∞. Consider

‖Kg(Φ)(t, s)‖−λ =

∥∥∥∥Φ(s)g(t, s) +
∫ t

s

(Φ(u)− Φ(s)) g(du, s)

∥∥∥∥
−λ

≤ ‖Φ(s)g(t, s)‖−λ +

∥∥∥∥
∫ t

s

(Φ(u)− Φ(s)) g(du, s)

∥∥∥∥
−λ

= |g(t, s)|‖Φ(s)‖−λ +

∥∥∥∥
∫ t

s

(Φ(u)− Φ(s)) g(du, s)

∥∥∥∥
−λ

<∞.

Thus the result holds

As we will see in the forthcoming sections, the fact that the operator Kg(·)
preserves the regularity of Φ is of crucial importance in the derivation of regularity
properties of the integrals defined below.

4.2 The integral

Now we go back to the study of the integral defined in Equation (4.1). Since we
have established sufficient conditions for Kg(Φ)(t, s) ∈ G−λ, we can now look at the
Skorohod integral of Kg(Φ)(t, s). By Theorem 3.10, it is enough to show that

∫ T

0

‖Kg(Φ)(t, s)‖2−λ ds <∞

in order to establish Skorohod integrability of Kg(Φ)(t, s). We will show that this is
the case under the following assumptions.

Assumption B. Suppose that
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i. ∫ T

0

|g(t, s)|2‖Φ(s)‖2−λ ds <∞;

ii. For any 0 ≤ s < t < T

∫ t

0

∥∥∥∥
∫ t

s

(Φ(u)− Φ(s)) g(du, s)

∥∥∥∥
2

−λ

ds <∞.

Remark 4.3. Notice that in what follows, Assumption B Items i and ii can be
substituted with the weaker assumption that

∫ t

0
‖Kg(Φ)(t, s)‖2−λ ds < ∞ for all t ∈

[0, T ].

Proposition 4.4. Suppose that Assumptions A and B hold. If Φ(t) ∈ G−λ for all
0 ≤ t ≤ T , then for any ε > 0,

∫ t

0

Kg(Φ)(t, s) δB(s) ∈ G−λ−ε.

Proof. Using our assumptions and Hölder’s inequality we obtain

∫ t

0

‖Kg(Φ)(t, s)‖2−λ ds

=

∫ t

0

∥∥∥∥Φ(s)g(t, s) +
∫ t

s

(Φ(u)− Φ(s)) g(du, s)

∥∥∥∥
2

−λ

ds

≤
∫ t

0

(
‖Φ(s)g(t, s)‖−λ +

∥∥∥∥
∫ t

s

(Φ(u)− Φ(s)) g(du, s)

∥∥∥∥
−λ

)2

ds

≤ 2

∫ t

0

‖Φ(s)g(t, s)‖2−λ ds+ 2

∫ t

0

∥∥∥∥
∫ t

s

(Φ(u)− Φ(s)) g(du, s)

∥∥∥∥
2

−λ

ds

<∞.

Hence the result follows by Theorem 3.10.

Next, we consider Pettis-integrability of DsKg(Φ)(t, s).

Proposition 4.5. Suppose that Assumptions A and B hold. If Φ(t) ∈ G−λ, then for
any ε > 0, ∫ t

0

DsKg(Φ)(t, s) ds ∈ G−λ−ε.

Proof. We will show that DsKg(Φ)(t, s) is weakly in L1([0, t]), that is for all ϕ ∈ G we
have 〈〈DsKg(Φ)(t, s), ϕ〉〉 ∈ L1([0, t]) . Observe that if Φ(t) ∈ G−λ, then Kg(Φ)(t, s) ∈
G−λ and in consequence DsKg(Φ)(t, s) ∈ G−λ−ε for any ε > 0. Consider

∫ t

0

|〈〈DsKg(Φ)(t, s), ϕ〉〉| ds ≤
∫ t

0

‖DsKg(Φ)(t, s)‖−λ−ε‖ϕ‖λ+ε ds

= ‖ϕ‖λ+ε

∫ t

0

‖DsKg(Φ)(t, s)‖−λ−ε ds
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≤ ‖ϕ‖λ+εt

∫ t

0

‖DsKg(Φ)(t, s)‖2−λ−ε ds

<∞.

Above we have used Remark 2.1, Hölder’s inequality and Theorem 3.2.

Putting Propositions 4.4 and 4.5 together yields the main result of this section.

Theorem 4.6. Suppose that Assumptions A and B hold. If Φ(t) ∈ G−λ for all
t ∈ [0, T ], then for any ε > 0

∫ t

0

Φ(s) dX1(s) ∈ G−λ−ε.

Remark 4.7. Recall that G ⊂ Gλ ⊂ (L2) ⊂ G−λ ⊂ G∗ for any λ > 0. So the above
theorem assures that

i. if Φ ∈ Gλ for some λ > 0 then the integral is an (L2) process;

ii. if Φ ∈ G then the integral is a G process again;

iii. if Φ ∈ (L2), then the integral is a G−ε process for any ε > 0, thus in a certain
sense it is very close to (L2).

5 Integration for volatility modulated Volterra pro-

cesses

In this section, we introduce stochastic volatility in the integrator process X(t). In
the defining Equation (1.2) we see that the volatility is multiplying the integrands
on the right-hand side of Equation (1.2). This is an ordinary operation when consid-
ering non-generalized stochastic processes, however the product of two generalized
random variables from G∗ does not have to be an element of G∗. We overcome
this difficulty in two different approaches. In the first part of this section, we take
Σ(s) = σ(s) to be a test stochastic process, that is σ(s) ∈ G for all s ∈ [0, T ].
In the second part of this section, we use the Wick product to introduce volatility
modulation as this operation is well defined for all Σ ∈ G∗. Note that under strong
independence (see Definition 2.6 or Benth (2001); Benth and Potthoff (1996)) this
is equivalent to the pointwise product case.

5.1 Pointwise product with smooth volatility

In this subsection, we assume that the volatility process σ is a smooth stochastic
process and study the following integral

∫ t

0

Φ(s) dXσ(s), where Xσ(t) =

∫ t

0

g(t, s)σ(s) dB(s). (5.1)
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Let us remark that the assumption that the volatility is a stochastic test process
is not as restrictive as it appears. For example, Brownian-driven Volterra processes
are test stochastic processes because

σ(t) =

∫ t

0

h(t, s) dB(s) = I1
(
1[0,t]h(t, ·)

)
.

So if h(t, ·) ∈ L2(R), then ‖σ(t)‖λ < ∞ for all t ∈ [0, T ] and λ > 0, hence σ(t) ∈ G
for all t ∈ [0, T ].

As we will show, the sufficient conditions for the integral in Equation (5.1) to be
well-defined are the following.

Assumption C. Suppose that

i. For all t ∈ [0, T ] we have σ(t) ∈ G;

ii. ∫ T

0

‖σ(s)‖2λ ds <∞;

iii. For any 0 ≤ s < t ≤ T

∫ t

0

|g(t, s)|2‖Φ(s)‖2−λ+ν‖σ(s)‖
2
−λ ds <∞.

iv. For any 0 ≤ s < t ≤ T

∫ t

0

∥∥∥∥
∫ t

s

(Φ(u)− Φ(s)) g(du, s)

∥∥∥∥
2

−λ+ν

‖σ(s)‖2−λ ds <∞.

Remark 5.1. As previously, in what follows, Assumption C Items iii and iv can be
substituted with the weaker assumption that

∫ t

0
‖Kg(Φ)(t, s)‖2−λ+ν‖σ(s)‖

2
λ ds < ∞

for all t ∈ [0, T ].

Theorem 5.2. Under Assumptions A and C the integral

∫ t

0

Φ(s) dXσ(s) (5.2)

is well-defined in the sense of Pettis. Moreover, if Φ(t) ∈ G−λ+ν where ν > 1
2
ln(2 +√

2), then for any ε > 0 ∫ t

0

Φ(s) dXσ(s) ∈ G−λ−ε.

Proof. First we establish the existence of the Skorohod integral. By Theorem 3.10
it suffices to show that

∫ t

0

‖Kg(Φ)(t, s) · σ(s)‖2−λ ds <∞.
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This follows immediately from Theorem 2.9 and Assumption C:
∫ t

0

‖Kg(Φ)(t, s) · σ(s)‖2−λ ds

≤ C2
ν

∫ t

0

‖Kg(Φ)(t, s)‖2−λ+ν‖σ(s)‖
2
λ ds

≤ 2C2
ν

∫ t

0

|g(t, s)|2‖Φ(s)‖2−λ+ν‖σ(s)‖
2
λ ds

+ 2C2
ν

∫ t

0

∥∥∥∥
∫ t

s

Φ(u)− Φ(s) g(du, s)

∥∥∥∥
2

−λ+ν

‖σ(s)‖2λ ds

<∞.

The existence of the Pettis integral follows from Remark 2.1, Theorems 2.9
and 3.2, and Assumption C. We have to show that 〈〈Ds (Kg(Φ)(t, s)) · σ(s), ϕ〉〉 is
integrable for any ϕ ∈ G:

∫ t

0

|〈〈Ds (Kg(Φ)(t, s)) · σ(s), ϕ〉〉| ds

≤
∫ t

0

‖DsKg(Φ)(t, s) · σ(s)‖−λ‖ϕ‖λ ds

≤ Cν‖ϕ‖λ
∫ t

0

‖DsKg(Φ)(t, s)‖−λ+ν‖σ(s)‖λ ds

≤ Cν‖ϕ‖λ
(∫ t

0

‖DsKg(Φ)(t, s)‖2−λ+ν ds

) 1
2
(∫ t

0

‖σ(s)‖2λ ds
) 1

2

<∞.

Finally, suppose that Φ(t) ∈ G−λ+ν . Then Kg(Φ)(t, s) ∈ G−λ+ν and consequently,
Kg(Φ)(t, s) · σ(s) ∈ G−λ. Thus for any ε > 0 we have δ (Kg(Φ)(t, s) · σ(s)) ∈
G−λ−ε. Also, DsKg(Φ)(t, s) ∈ G−λ+ν−ε and so DsKg(Φ)(t, s) · σ(s) ∈ G−λ−ε, hence∫ t

0
DsKg(Φ)(t, s) · σ(s) ds ∈ G−λ−ε. So the theorem holds.

In comparison with the results of Barndorff-Nielsen et al. (2012), the above re-
sult allows integration of a larger class of processes, however it restricts the class
of volatility modulators. We present the extension of the latter class in the next
subsection.

5.2 Wick product with generalized volatility

Below, we consider the generalized stochastic process as the volatility. Since the
volatility is introduced through multiplication and the pointwise product of two
generalized stochastic processes does not have to be well-defined, we use the Wick
product instead. It is worth noting that the choice between the pointwise and Wick
products should be based on modeling considerations as the two products coincide
only under special circumstances. We give an example of an additional assumption
on the volatility process that ensures the equality of the Wick and pointwise products
in the definition given below.
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We define the integral with respect to a Wick–VMBV as

∫ t

0

Φ(s) dX⋄Σ(s) :=

∫ t

0

Kg(Φ)(t, s) ⋄ Σ(s) δB(s) +

∫ t

0

Ds (Kg(Φ)(t, s)) ⋄ Σ(s) ds,
(5.3)

where X⋄Σ(t) =
∫ t

0
g(t, s)Σ(s) δB(s). In what follows, we show that the following

are sufficient conditions for the integral in Equation (5.3) to be well-defined.

Assumption D. Suppose that

i. ∫ T

0

‖Σ(s)‖2−λ ds <∞;

ii. For any 0 ≤ s < t ≤ T

∫ t

0

|g(t, s)|2‖Φ(s)‖2−λ‖Σ(s)‖
2
−λ ds <∞.

iii. For any 0 ≤ s < t ≤ T

∫ t

0

∥∥∥∥
∫ t

s

(Φ(u)− Φ(s)) g(du, s)

∥∥∥∥
2

−λ

‖Σ(s)‖2−λ ds <∞.

Remark 5.3. As in Remarks 4.3 and 5.1, in what follows, Assumption D Items ii

and iii can be substituted with the weaker assumption that for all t ∈ [0, T ] we have∫ t

0
‖Kg(Φ)(t, s)‖2−λ‖Σ(s)‖

2
−λ ds <∞.

Theorem 5.4. Under Assumptions A and D the integral in Equation (5.3) is well-
defined. Moreover, if Φ(t) ∈ G−λ for all t ∈ [0, T ], then for any ε > 0

∫ t

0

Φ(s) dX⋄Σ(s) ∈ G−λ− 1
2
−ε.

Proof. For the Skorohod integral in Equation (5.3) to exist, it is enough to show
that ∫ t

0

‖Kg(Φ)(t, s) ⋄ Σ(s)‖2−λ ds <∞.

Applying Proposition 2.10, with ε > 0 we have

∫ t

0

‖Kg(Φ)(t, s) ⋄ Σ(s)‖2−λ− 1
2
−ε ds

≤ C2
ε

∫ t

0

‖Kg(Φ)(t, s)‖2−λ‖Σ(s)‖
2
−λ ds

≤ C2
ε

∫ t

0

|g(t, s)|2‖Φ(s)‖2−λ‖Σ(s)‖
2
−λ ds

+ C2
ε

∫ t

0

∥∥∥∥
∫ t

s

(Φ(u)− Φ(s)) g(du, s)

∥∥∥∥
2

−λ

‖Σ(s)‖2−λ ds
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<∞.

Thus the Skorohod integral in Equation (5.3) exists and is an element of G−λ− 1
2
−ε.

Now, using arguments similar to the ones used in the case of σ = 1, we show
that under Assumption D the Pettis integral in Equation (5.3) also exists. Below
we apply Proposition 2.10. For any ϕ ∈ G and ε > 0 consider

∫ t

0

|〈〈Ds (Kg(Φ)(t, s)) ⋄ Σ(s), ϕ〉〉| ds

≤
∫ t

0

‖Ds (Kg(Φ)(t, s)) ⋄ Σ(s)‖−λ− 1
2
−ε‖ϕ‖λ+ 1

2
+ε ds

≤ Cε‖ϕ‖λ+ 1
2
+ε

∫ t

0

‖DsKg(Φ)(t, s)‖−λ−ε‖Σ(s)‖−λ−ε ds

≤ Cε‖ϕ‖λ+ 1
2
+ε

(∫ t

0

‖DsKg(Φ)(t, s)‖2−λ−ε ds

) 1
2
(∫ t

0

‖Σ(s)‖2−λ−ε ds

) 1
2

<∞.

The finiteness of the first integral above is a consequence of Theorem 3.2 and finite-
ness of the second integral is ensured by Assumption D Item i.

Recall from Theorem 2.7 that if Φ,Ψ ∈ G∗ are strongly independent, then Φ ·
Ψ = Φ ⋄ Ψ. Using this fact, we see that under an additional assumption of strong
independence of Kg(Φ) and Σ, we have the following result.

Corollary 5.5. Suppose that Kg(Φ)(t, s) and Σ(s) are strongly independent for all
0 ≤ s ≤ t ≤ T . Under Assumptions A and D the integral

∫ t

0

Φ(s) dXΣ(s) :=

∫ t

0

Kg(Φ)(t, s) ·Σ(s) δB(s) +

∫ t

0

Ds (Kg(Φ)(t, s)) ·Σ(s) ds (5.4)

is well-defined and equal to the one in Equation (5.3). Moreover, if Φ(t) ∈ G−λ for
all t ∈ [0, T ], then for any ε > 0

∫ t

0

Φ(s) dXΣ(s) ∈ G−λ− 1
2
−ε.

Note that we cannot assume that Φ(t) and Σ(t) are strongly independent as the
operator Kg(·) does not preserve the support, that is supp

(
Φ(n)

)
6= supp

(
Kg(Φ

(n))
)
.

However, in applications one often works with the volatility that is an (L2) process
independent of “everything else” in the model. This case is covered by Corollary 5.5
and it turns out that we can interchange the Wick and the pointwise product making
this a very flexible setup. Observe that this case is in general not applicable in the
setup of the previous section, as the space G is much smaller than the space (L2).
Thus this extension of the class of volatility modulators is important.
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6 Properties of the integral

First of all, recall that the definition of the stochastic derivative is the same as
the definition of the Malliavin derivative that is used in Barndorff-Nielsen et al.
(2012) and the only difference is the domain of the derivative. Also, the Skorohod
integral in our setting is defined through the same formula as the Skorohod integral
in Barndorff-Nielsen et al. (2012) but on a larger domain. These two observations
allow us to state the following.

Proposition 6.1. The integrals defined by Equations (4.1), (5.1) and (5.4), and the
one defined in Barndorff-Nielsen et al. (2012) are equal on the intersection of their
domains.

Proof. This follows immediately from the definition of the stochastic derivative and
Skorohod integral that we use and the fact that the Pettis integral is an extension
of the Lebesgue integral to Banach space valued integrands.

Proposition 6.2. The integrals defined in Equations (4.1), (5.1), (5.3) and (5.4)
are all linear.

Proof. First observe that directly from the definition of the stochastic derivative and
Skorohod integral we know that both of these operations are linear. This, with the
linearity of operator Kg and the fact that (aΦ) ⋄ Ψ = a(Φ ⋄ Ψ) and (Φ + Ψ) ⋄ Σ =
Φ ⋄Σ+Ψ ⋄Σ gives us linearity of the integral in all the cases considered above.

Proposition 6.3. If Φ is integrable with respect to X1, (Xσ, X⋄Σ, XΣ respectively)
on the interval [0, T ] then for any S ∈ [0, T ] it is also integrable on the interval
[0, S]. Moreover, the following holds

∫ T

0

Φ(t)1[0,S](t) dX∗(t) =

∫ S

0

Φ(t) dX∗(t),

where ∗ ∈ {1, σ,Σ, ⋄Σ}
Theorem 6.4. Suppose that ϕ ∈ G and Φ(t) is dX1 or dXσ-integrable on [0, T ].
Then for t ∈ [0, T ] ∫ t

0

ϕ · Φ(t) dX∗ = ϕ ·
∫ t

0

Φ(t) dX∗, (6.1)

where ∗ ∈ {1, σ}.
Proof. Our arguments follow closely those in the proof of (Barndorff-Nielsen et al.,
2012, Proposition 8). First, note that the case with σ(s) 6= 1 will differ from the
one with σ(s) = 1 only in the norm estimates as seen in the previous sections. It is
enough to establish that Equation (6.1) holds in one of the cases. Observe that

Kg(ϕ · Φ)(t, s) = ϕ · Kg(Φ)(t, s). (6.2)

Next, by Equation (6.2), Proposition 3.7, and Theorem 3.13, we have
∫ t

0

ϕΦ(s) dXσ(s)

=

∫ t

0

Kg(ϕΦ)(t, s)σ(s) δB(s) +

∫ t

0

Ds {Kg(ϕΦ)(t, s)}σ(s) ds
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=

∫ t

0

ϕKg(Φ)(t, s)σ(s) δB(s) +

∫ t

0

Ds {ϕKg(Φ)(t, s)}σ(s) ds

=

∫ t

0

ϕKg(Φ)(t, s)σ(s) δB(s)

+

∫ t

0

(ϕDs {Kg(Φ)(t, s)}+Kg(Φ)(t, s)Ds {ϕ})σ(s) ds

= ϕ

∫ t

0

Kg(Φ)(t, s)σ(s) δB(s)−
∫ t

0

Ds{ϕ}Kg(Φ)(t, s)σ(s) ds

+ ϕ

∫ t

0

Ds {Kg(Φ)(t, s)}σ(s) ds+
∫ t

0

Kg(Φ)(t, s)Ds {ϕ} σ(s) ds

= ϕ

∫ t

0

Kg(Φ)(t, s)σ(s) δB(s) + ϕ

∫ t

0

Ds {Kg(Φ)(t, s)} σ(s) ds

= ϕ

∫ t

0

Φ(s) dXσ(s).

So the theorem holds.

All of the above properties are quite straightforward and generalize the results of
Barndorff-Nielsen et al. (2012). In the white noise analysis setting, the S-transform
(see Definition 2.2) plays a central role and we next discuss it in the context of the
integrals we defined in the following subsection.

6.1 The S-transform

We can apply some of the well known facts about the S-transform and use the
properties of the operator Kg to find the S-transform of the integral with respect
to a VMBV process. Below we present two formulas for the S-transform of the
integrals in the case with no volatility modulation and with modulation introduced
through Wick product. We give explicit formulas depending on the S-transform of
the integrand only.

Theorem 6.5. If Φ(s) is integrable with respect to dX1(s) on the interval [0, t], then

S
(∫ t

0

Φ(s) dX1(s)

)
=

∫ t

0

Kg(S(Φ)(ξ))(t, s)ξ(s) ds

+

∫ t

0

δ

δξ(s)
{Kg(S(Φ)(ξ))(t, s)} ds.

(6.3)

Proof. It is easy to see that S(Kg(Φ))(ξ) = Kg(S(Φ)(ξ)) because the S-transform
is linear and the Lebesgue measure in Proposition 2.11 can be substituted by any
measure. Now, Equation (6.3) is a simple consequence of Propositions 3.8 and 3.14.

Theorem 6.6. If Φ(s) is integrable with respect to X⋄Σ(s) on the interval [0, t], then

S
(∫ t

0

Φ(s) dX⋄Σ(s)

)
=

∫ t

0

Kg(S(Φ)(ξ))(t, s) · S(Σ(s))(ξ)ξ(s) ds

+

∫ t

0

δ

δξ(s)
{Kg(S(Φ)(ξ))(t, s) · S(Σ(s))(ξ)} ds.

(6.4)
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Proof. This follows from a reasoning similar to the one in the proof of Theorem 6.5
with the additional use of the fact that S(Φ ⋄Ψ) = S(Φ) · S(Ψ).

Remark 6.7. Observe that Equation (6.4) holds also in the case of strong indepen-
dence discussed in Corollary 5.5.

6.2 Chaos expansion

In this section, we give explicit chaos expansions in both cases, of no volatility
modulation and with the volatility introduced through the Wick product. It is
possible to find the chaos expansion for the dXσ integral, however the complexity
of the formula renders it almost useless.

Theorem 6.8. If Φ(s) is dX1(s)-integrable on the interval [0, t], then
∫ t

0

Φ(s) dX1(s) =

∫ t

0

Kg(Φ
(1))(t, s) ds

+

∞∑

n=1

In

(
Kg(Φ

(n−1))(t, ·) + (n+ 1)

∫ t

0

Kg(Φ̃
(n+1))(t, s) ds

)
,

where Φ̃(n+1)(x1, . . . , xn, s) = Φ(n+1)(x1, . . . , xn, s, s).

Proof. Suppose that Φ(t) =
∑∞

n=0 In(Φ
(n)(t)). It is not difficult to see that with the

application of the stochastic Fubini theorem we have

Kg(Φ)(t, s) =

∞∑

n=0

In(Kg(Φ
(n))(t, s)).

Hence we have the following
∫ t

0

Kg(Φ)(t, s) δB(s) =
∞∑

n=0

In+1(Kg(Φ
(n))(t, ·))

=

∞∑

n=1

In(Kg(Φ
(n−1))(t, ·)). (6.5)

Also,

DsKg(Φ)(t, s) =

∞∑

n=0

nIn−1(Kg(Φ̃
(n))(t, s))

= Kg(Φ̃
(1))(t, s) +

∞∑

n=1

(n+ 1)In(Kg(Φ̃
(n+1))(t, s)),

where Φ̃(n)(x1, . . . , xn−1, s) = Φ(n+1)(x1, . . . , xn−1, s, s), because the stochastic
derivative is taken in s and Φ already depends on s. Hence,

∫ t

0

DsKg(Φ)(t, s) ds =

∫ t

0

Kg(Φ̃
(1))(t, s) ds

+
∞∑

n=1

In

(
(n+ 1)

∫ t

0

Kg(Φ̃
(n+1))(t, s) ds

)
,

(6.6)
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where we have again used the stochastic Fubini theorem. Putting Equations (6.5)
and (6.6) together, we obtain the desired result.

Theorem 6.9. If Φ(s) is dX⋄Σ(s)-integrable on the interval [0, t], then

∫ t

0

Φ(s) dX⋄Σ(s) =

∫ t

0

Kg(Φ
(1))(t, s)⊗̂Σ(0)(s) ds

+
∞∑

n=0

In

(
n−1∑

m=0

Kg(Φ
(n−1−m))(t, s)⊗̂Σ(m)(s)

+ (n+ 1)
n∑

m=0

∫ t

0

Kg(Φ
(n+1−m))(t, s)⊗̂Σ(m)(s) ds

)
.

Proof. We can establish the formula above using the same arguments as in the
proof of Theorem 6.8 with the addition of the formula for the Wick product given
in Equation (2.3).

Remark 6.10. The above holds in the case of strong independence discussed in
Corollary 5.5.

6.3 Stability

In this section, we show that strong convergence of Φn to Φ implies strong conver-
gence of

∫ t

0
Φn(s) dX1(s) to

∫ t

0
Φ(s) dX1(s).

Theorem 6.11. Suppose that Φn,Φ are dX1-integrable. Suppose also that for some
λ > 0 and almost all t ∈ [0, T ] we have ‖Φn(t)−Φ(t)‖−λ → 0 and ‖Φn(t)−Φ(t)‖−λ ≤
h(t), where h ∈ L1([0, T ]) . Then for any ε > 0

lim
n→∞

∥∥∥∥
∫ t

0

Φn(s) dX1(s)−
∫ t

0

Φ(s) dX1(s)

∥∥∥∥
−λ−ε

= 0.

Proof. By linearity of the integral and the triangle inequality we have

∥∥∥∥
∫ t

0

Φn(s) dX1(s)−
∫ t

0

Φ(s) dX1(s)

∥∥∥∥
−λ−ε

=

∥∥∥∥
∫ t

0

Φn(s)− Φ(s) dX1(s)

∥∥∥∥
−λ−ε

≤
∥∥∥∥
∫ t

0

Kg(Φn − Φ)(t, s) δB(s)

∥∥∥∥
−λ−ε

+

∥∥∥∥
∫ t

0

DsKg(Φn − Φ)(t, s) ds

∥∥∥∥
−λ−ε

It is enough to show that both of the norms above converge to zero as n → ∞.
First, we estimate the square of the norm of Kg(Φn−Φ) as n→ 0 as it will be useful
later. Below, we use a part of the proof of Proposition 4.1, where we have shown
that

∥∥∥∥
∫ t

s

Φ(u)− Φ(s) g(du, s)

∥∥∥∥
2

−λ

≤ V t
s [g(·, s)]

∫ t

s

‖Φ(u)− Φ(s)‖2−λ |g|(du, s).
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Now, consider

‖Kg(Φn − Φ)(t, s)‖2−λ

=

∥∥∥∥g(t, s)(Φn(s)− Φ(s)) +

∫ t

s

[
(Φn(u)− Φ(u))− (Φn(s)− Φ(s))

]
g(du, s)

∥∥∥∥
2

−λ

≤ 2|g(t, s)|2‖Φn(s)− Φ(s)‖2−λ

+ 2

∥∥∥∥
∫ t

s

[
(Φn(u)− Φ(u))− (Φn(s)− Φ(s))

]
g(du, s)

∥∥∥∥
2

−λ

≤ 2|g(t, s)|2‖Φn(s)− Φ(s)‖2−λ

+ 2V t
s [g(·, s)]

∫ t

s

‖(Φn(u)− Φ(u))− (Φn(s)− Φ(s))‖2−λ |g|(du, s)

≤ 2|g(t, s)|2‖Φn(s)− Φ(s)‖2−λ

+ 4V t
s [g(·, s)]

∫ t

s

[
‖Φn(u)− Φ(u)‖2−λ + ‖Φn(s)− Φ(s)‖2−λ

]
|g|(du, s)

→ 0, as n→ ∞,

by Lebesgue’s dominated convergence theorem because ‖Φn(t)− Φ(t)‖−λ → 0 for
almost all t.

Now, by Theorem 3.10, there is a constant Cε such that
∥∥∥∥
∫ t

0

Kg(Φn − Φ)(t, s) δB(s)

∥∥∥∥
−λ−ε

≤ Cε

∫ t

0

‖Kg(Φn − Φ)(t, s)‖2−λ dt

→ 0

as n→ ∞.
Finally, by Hölder’s inequality and Theorem 3.2, we have
∥∥∥∥
∫ t

0

Ds(Kg(Φn − Φ)(t, s)) ds

∥∥∥∥
−λ−ε

≤
∫ t

0

‖Ds(Kg(Φn − Φ)(t, s))‖−λ−ε ds

≤ t

∫ t

0

‖Ds(Kg(Φn − Φ)(t, s))‖2−λ−ε ds

≤ tC̃ε‖Kg(Φn − Φ)(t, s)‖2−λ

→ 0

as n→ ∞. Thus the result holds.

The following two theorems restate the above result in the setting with smooth
volatility and the volatility introduced through the Wick product. We omit the
proofs as they follow the same argument as the proof of the results above with
additional use of some of the norm estimates from previous section.

Theorem 6.12. Suppose that Φn,Φ are dXσ-integrable. Suppose also that for some
λ > ν = 1

2
ln(2+

√
2) and almost all t ∈ [0, T ] we have ‖Φn(t)−Φ(t)‖−λ+ν → 0 and

‖Φn(t)− Φ(t)‖−λ+ν ≤ h(t), where h ∈ L1([0, T ]) . Then for any ε > 0

lim
n→∞

∥∥∥∥
∫ t

0

Φn(s) dXσ(s)−
∫ t

0

Φ(s) dXσ(s)

∥∥∥∥
−λ−ε

= 0.
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Theorem 6.13. Suppose that Φn,Φ are dX⋄Σ-integrable. Suppose also that for some
λ > ν = 1

2
ln(2+

√
2) and almost all t ∈ [0, T ] we have ‖Φn(t)−Φ(t)‖−λ+ν → 0 and

‖Φn(t)− Φ(t)‖−λ+ν ≤ h(t), where h ∈ L1([0, T ]) . Then for any ε > 0

lim
n→∞

∥∥∥∥
∫ t

0

Φn(s) dX⋄Σ(s)−
∫ t

0

Φ(s) dX⋄Σ(s)

∥∥∥∥
−λ− 1

2
−ε

= 0.

7 An example – the Donsker delta function

In this section, we present an example of a generalized process that cannot be inte-
grated in the setting of Barndorff-Nielsen et al. (2012). We study the integrability of
the Donsker delta function with respect to a Brownian-driven Volterra process built
upon an Ornstein–Uhlenbeck kernel function g. The importance of the Donsker
delta function is well-illustrated in Aase et al. (2001), where the authors use the
Donsker delta function to compute hedging strategies.

It is well-known that the Donsker delta function, that is δ0(B(t)), is not
an (L2) stochastic process, however it is a process in G−λ for any λ > 0 (see
Potthoff and Timpel, 1995, Example 2.2) and it has a chaos expansion given by

δ0(B(t)) =
1√
4πt

∞∑

n=0

I2n

(
(−1)n

(2t)nn!
1

⊗2n
[0,t)

)
.

We also have the following formula for the norm of δ0(B(t))

‖δ0(B(t))‖2−λ =
1

2πt

∞∑

n=0

(2n)!

4n(n!)2eλ4n
,

where the sum converges for any λ > 0. Therefore

‖δ0(B(t))‖2−λ =
1

t
Cλ,

where Cλ is a constant depending only on λ.
Now, we take g(t, s) = e−α(t−s), and will show that for any ε > 0, Φ(t) =

1[ε,∞)(t)δ0(B(t)) is dX1(t)-integrable. We need to avoid 0 as δ0(B(0)) does not
exist. It can be easily verified that Assumption A Items i and ii are satisfied with
our choice of Φ and g. In order to show that Assumption A Item iii holds, take
ε < s < t < T for some 0 < ε < T and consider

∫ t

s

‖Φ(u)− Φ(s)‖2−λ |g|(du, s) ≤ 2

∫ t

s

(
‖Φ(u)‖2−λ + ‖Φ(s)‖2−λ

)
|g|(du, s)

≤ 4

∫ t

s

‖Φ(s)‖2−λ |g|(du, s) (7.1)

= 4Cλ
1

s

(
1− e−α(t−s)

)

<∞,

where we have used monotonicity of function 1
t
.
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To show that Assumption B holds, one can apply arguments similar to the ones
used above together with some of the properties of the exponential integral function
Ei =

∫ x

−∞
et

t
dt. We omit these computations because they are straightforward but

rather tedious.
So 1[ε,∞)(t)δ0(B(t)) is dX1(t)-integrable. Moreover, since 1[ε,∞)(t)δ0(B(s)) ∈ G−λ

for any λ > 0, by Theorem 4.6, we have that

∫ t

0

1[ε,∞)(t)δ0(B(s)) dX1(s) ∈ G−λ (7.2)

for any λ > 0.
Since the chaos expansion of the integral in Equation (7.2) is rather long and

complex, we give the chaos expansion of Kg(δ0(B))(t, s) to show an intermediate
step in the derivation of the complete chaos expansion of the integral. And so

Kg(Φ)(t, s) =
1

4π

∞∑

n=0

I2n

(
αe−α(t−s) + e−α(t−s) − 1

αsn+1
1

⊗2n
[0,s)(v1 . . . v2n)

+ eαsαn (Γ(−n, αs)− Γ(−n, α ·min{t, v1, . . . v2n}))
)
,

where Γ(ν, x) =
∫∞

x
tν−1e−t dt is the incomplete Gamma function.

Note that with a different Volterra kernel, it may be possible to balance the
infinite norm of the Donsker delta at zero without resorting to an explicit cut-off
function like 1[ε,∞)(t). Looking at Equation (7.1), an obvious and rather trivial
example is a Volterra kernel of the form g(t, s) = a(t)b(s), where b(s) and a(s)b(s)
are functions that are decaying to 0 at an at most linear rate as s→ 0+. Also from
Equation (7.1) we see that it is impossible to find a shift-kernel such that δ0(B(s))
is dX1(s)-integrable on [0, ε] for any ε > 0.

8 Conclusions

We have extended the theory of integration with respect to volatility modulated
Brownian-driven Volterra processes first discussed in Barndorff-Nielsen et al. (2012)
onto the space of generalized Potthoff–Timpel distributions G∗. We have employed
the white noise analysis tools to show the properties of the stochastic derivative and
Skorohod integral in the space G∗ as well as numerous properties of the VMBV
integral without volatility modulation and with modulation introduced in two dif-
ferent ways, through the pointwise product and through the Wick product. We also
show that under strong independence, the two volatility modulation approaches
are equivalent. Our approach allows to integrate, for example, the Donsker delta
function which is not an element of (L2) and thus not tractable in the setting of
Barndorff-Nielsen et al. (2012). Moreover, the theory presented in this paper al-
lows for integration with respect to non-semimartingales (e.g. fractional Brownian
motion) and for integration of non-adapted stochastic processes.

There are still some questions that are left without an answer. For instance, it
is natural to ask whether this approach can be generalized to the setting of Hida
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spaces (S) and (S)∗. Another such question is that of the change of the driving
process. In Barndorff-Nielsen et al. (2012), the authors discuss not only Brownian
motion as the driver of the Volterra process, but also a pure-jump Lévy process,
thus it is interesting to see whether our approach can be applied in that setting.

Another possible generalization opportunity comes from the fact that for
now, the domain of integration is a finite interval, namely [0, T ]. Recently
Basse-O’Connor et al. (2013+) studied integration theory on the real line that may
be used to define integrals with respect to processes of the form

X(t) =

∫ t

−∞

g(t, s)σ(s) dL(s). (8.1)

Such processes are interesting both from theoretical and practical perspective and
it would be useful to extend the theory discussed in the present paper in the setting
of Equation (8.1).
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