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Abstract. In power markets one frequently encounters a risk premium being positive in
the short end of the forward curve, and negative in the long end. Economically it has been
argued that the positive premium is reflecting retailers aversion for spike risk, wheras in the
long end of the forward curve the hedging pressure kicks in as in other commodity markets.
Mathematically, forward prices are expressed as risk-neutral expectations of the spot at
delivery. We apply the Esscher transform on power spot models based on mean-reverting
processes driven by independent increment (time-inhomogeneous Lévy) processes. It is
shown that the Esscher transform is yielding a change of mean-reversion level. Moreover,
we show that an Esscher transform together with jumps occuring seasonally may explain
the occurence of a positive risk premium in the short end. This is demonstrated both
mathematically and by a numerical example for a two-factor spot model being relevant
for electricity markets.

1. Introduction

The purpose of the present paper is to investigate some relations between the risk pre-
mium and the change of measure in electricity markets. More precisely we shall focus our
attention on a peculiar feature of the risk premium, the sign change. In power markets, the
usual pricing approach based on the construction of an equivalent martingale measure is
not viable any more. Electricity, for example, is a non-storable commodity, so it does not
make neither sense to trade in the underlying nor to use hedging arguments. However, since
the forward contracts need to have a price dynamics being arbitrage-free, these prices can
still be considered to be discounted expectations of the final value of the underlying, but
with respect to any equivalent probability measure. Alternatively, it is possible to think
about forward prices in terms of risk premium: this is defined as the difference between
the forward prices computed with respect to the risk-neutral measure and with respect
to the objective measure, respectively (see Geman [19]). Once the probability measure
with respect to which the discounted prices must be calculated has been chosen, then the
risk premium is defined in a unique way. The peculiarities of the risk premium in energy
markets have been thoroughly investigated during the past few years and many evidences
have been collected on its behavior. The theory of normal backwardation suggests that
producers of a commodity wish to hedge their revenues by selling forwards, so they accept
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a discount on the expected spot price. Thus, we should have the forward prices of a com-
modity less than the expected value with respect to the objective probability measure. So,
in this context, the risk premium should be negative. On the other hand, several authors
found evidence of a positive risk premium for contracts with a short time to maturity:
Geman and Vasicek [20] investigated the Pennsylvania-New Jersey-Maryland electricity
market and justified the existence of a positive risk premium by the market’s aversion for
the high volatility and consequently willingness to pay high prices to ensure delivery. In
the same study, for contracts with longer maturities, the sign of the risk premium changes.
Longstaff and Wang [26] perform a non-parametric study of the same market obtaining
evidence of a positive risk premium for the short-term contracts. Their study has been
extended by Diko, Lawford and Limpens, who analyse risk premia in the three markets
EEX, Powernext and Dutch market APX [14]. A term structure for the risk premium is
found there, which varies significantly from the short-term maturities to long-term matu-
rities. A recent study with a systematic investigation on the short-term maturity Nord
Pool market has been provided by Lucia and Torrò [28] who extend a previous study by
Botterud, Bhattacharya and Ilic [9]: they find evidence of time-varying risk premium and
of its positivity for short maturities. Benth, Cartea and Kiesel [3] provide an interpreta-
tion of the risk premium in electricity market in terms of the certainty equivalent principle
and jumps in the spot price dynamics, whereas Benth and Meyer-Brandis [6] provide an
information-based approach for explaining the risk premium.

In this paper we are going to provide the mathematical evidence of the risk premium
sign change on the basis of the most popular models available in the literature and of the
most natural probability measure change: the Esscher transform. This measure change,
introduced by Esscher [17] in an actuarial context, has been extensively applied in derivative
pricing since the pioneering work by Gerber and Shiu [21], who extended the original idea
by Esscher to a Lévy framework. It has been further extended to semimartingale modelling
by Kallsen and Shiryaev [24], and its popularity in the Lévy framework is due to two very
important reasons: the first is that it enjoys some relevant optimality properties; its close
relationship with the minimal entropy martingale measure has been thoroughly investigated
in the papers by Esche and Schweizer [16] and by Hubalek and Sgarra [22]; the second, the
most important for the present purposes, is that it preserves the independent increment
property. This important feature of the Esscher transform, which has been proved for the
linear Esscher martingale transform for Lévy processes, still holds when the increments
are not stationary any more. This is the main reason to justify our choice of the Esscher
Transform as a reference measure change: if the structure of the spot dynamics it is not
preserved by the measure change, it is almost impossible to obtain relevant information on
the forward prices and in particular any explicit formulas for evaluation. In the framework
of spot price dynamics described by independent increment processes we shall show that
a measure change performed via the Esscher transform can justify the sign change of the
risk premium between short and longer maturities.

We obtain general results on the application of the Esscher transform to power markets.
Our spot model cover many of the important cases applied in practice and theory, and
we show that the choice of pricing measure provided by the Esscher transform yields
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analytically tractable models for forward pricing. We treat both geometric and arithmetic
models, the latter is also sufficiently flexible for allowing for pricing of power forwards which
deliver the underlying over a period. Moreover, it is proven that the Esscher transform
corresponds to a change in the mean-reversion level for the spot, much in line with the
classical Girsanov transform with a constant drift. In this respect, the Esscher transform is
a true generalization of the Girsanov transform to processes with independent increments.
The constant Girsanov change of measure seems to be the standard choice in the power
markets. The explicit forward prices obviously imply analytical expressions for the risk
premia. We analyse the particular case of a two-factor spot model, with the first factor
modelling the base component of the prices, while the second is the spike component. Spikes
are large sudden price increases being fastly reverted back. We discuss the consequences of
different choices of the market price of risk, being the parameters in the Esscher transform.
As it turns out, spikes occurring seasonally may explain the occurrence of a positive risk
premium in the short end, while in the long end we can have a negative premium. If
we are close to a period with high spike intensity, the premium may become positive,
while if the spiky period is far in the future, we see a risk premium being negative, or
backwardated. However, spike periods are related to bumps in the risk premium curve.
Taking into account that the premium is scaled by the current states of the factors driving
the spot price, we find that the risk premium can vary stochastically, and that it can have
periods of a positive premium in the short end and negative in the long. In fact, the
Esscher transform provides a large degree in flexibility even for constant market prices of
risk.

Our results are presented as follows. Section 2 will recall the basic modelling framework
we are going to assume: we shall introduce two classes of models based on independent
increment processes: the geometric and the arithmetic models. In the third section we
shall resume the essential features of the Esscher transform for independent increment
processes. Furthermore, we present the forward prices obtained in both the geometric
and the arithmetic models. Evidence of the risk premium sign change is shown in the
main Section 4, where we also provide models explaining the change of risk premium as
coming from seasonally varying spike intensities. We consider also forwards delivering
over a period (so-called flow forwards), and the question of the Esscher transform being a
martingale measure. Finally, in section 7 we conclude and outline some futures perspectives
of the present work.

2. General Models for Power Spot Prices

The electricity market models we are going to consider in this paper belong to a wide
class of models based on additive or time-inhomogeneous Lévy processes (sometimes called
Sato) processes, i.e. stochastic processes with independent increments (II from now on).
They can be grouped in two subclasses, the geometric and the arithmetic models.

Suppose that (Ω,F , {Ft}t≥0, P ) is a complete filtered probability space. On this space we
have defined independent Brownian motions Bk, k = 1, . . . , p and independent II processes
Ij , j = 1, . . . , n. We briefly recall that the II process I(t) admits the Lévy-Kintchine
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representation of with cumulant function ψ: For a continuous function θ and s ≥ t we have

(2.1) E

[
exp

(
i

∫ s

t

θ(u) dI(u)

)]
= exp (ψ(s, t; θ(·))) ,

with

ψ(s, t; θ(·)) = i

∫ s

t

θ(u) dγ(u)−
1

2

∫ s

t

θ2(u) dC(u)

+

∫ s

t

∫

R

{
eiθ(u)z − 1 − iθ(u)z1|z|≤1

}
ℓ(dz, du) ,(2.2)

where the quantities γ, C, ℓ(dz, du) are the semimartingale characteristics of the II process
(see for example Shiryaev [23]). We remark in passing that usually one states the cumulant
function ψ for a constant θ, but in our framework it will be convenient to have the slightly
more general notation introduced here. Due to strong seasonality effects like for instance
the spike occurrence in power markets, it is reasonable to consider jump processes being
time-inhomogeneous. This allows for modeling for example the spikes observed in the
winter period in the Nordic electricity spot market Nord Pool.

Both classes of models we are going to discuss are described by Ornstein-Uhlenbeck
processes driven by an II, eventually including one or more Wiener processes Bk.

The geometric models describe the dynamics of electricity prices in the following way:

(2.3) lnS(t) = ln Λ(t) +
m∑

i=1

Xi(t) +
n∑

j=1

Yj(t),

where, for i = 1, ...m,

(2.4) dXi(t) = (µi(t) − αi(t)Xi(t)) dt+

p∑

k=1

σik(t)dBk(t)

and, for j = 1, ..., n,

(2.5) dYj(t) = (δj(t) − βj(t)Yj(t)) dt+ ηj(t)dIj(t)

The deterministic seasonal price level is modelled by the function Λ(t), which is assumed
to be positive and continuously differentiable, while the coefficients µi, αi, δj , βj, ηj are
assumed to be continuous functions of t. From the modelling viewpoint it looks quite
natural to choose µi = 0 and δj = 0, since the Ornstein-Uhlenbeck processes should
ideally revert toward zero in order to have the seasonality function Λ(t) as the mean price
level; moreover it is also reasonable to assume constant speed of mean reversions, i.e. to
assume the coefficients αi, βj to be constant, and moreover, non-negative. For the sake of
generality, we shall stick with the time-dependent coefficients in our analysis. We remark
that similar general multi-factor models have been proposed and applied to pricing power
and commodity derivatives by Benth et al. [2] and Crosby [11].



THE RISK PREMIUM AND THE ESSCHER TRANSFORM IN POWER MARKETS 5

In this model both S(t) and lnS(t) are semimartingale processes. By assuming that the
initial conditions for Xi and Yj are such that:

m∑

i=1

Xi(0) +

n∑

j=1

Yj(0) = lnS(0) − ln Λ(0),

an explicit representation of S(t) is given by:

(2.6) S(t) = Λ(t) exp

(
m∑

i=1

Xi(t) +
n∑

j=1

Yj(t)

)
,

where, for i = 1, ..., m,

(2.7) Xi(t) = Xi(0)e−
∫ t

0
αi(s) ds +

∫ t

0

µi(u)e
−
∫ t

u
αi(s) dsdu+

p∑

k=1

∫ t

0

σik(u)e
−
∫ t

u
αi(s) dsdBk(u)

and, for j = 1, ..., n,

(2.8) Yj(t) = Yj(0)e−
∫ t

0 βj(s) ds +

∫ t

0

δj(u)e
−
∫ t

u
βj(s) dsdu+

∫ t

0

ηj(u)e
−
∫ t

u
βj(s) dsdIj(u) .

We remark that many models proposed for electricity market belong to the class just
introduced: the one-factor model of Schwarz [30] is a particular case with p = m = 1, n = 0,
that is,

S(t) = Λ(t) exp(X1(t)) ,

with dX1(t) = (µ1 − α1X1(t)) dt + σ1 dB1(t). The coefficients of the model are constant.
A jump process version of the Schwartz model has been applied to oil and gas spot price
modelling in Benth and Saltyte-Benth [7]. The model takes the form (m = 0, n = 1)

S(t) = Λ(t) exp(Y1(t)) ,

with a constant-coefficient jump-process dynamics dY1(t) = (δ1 −β1Y1(t) dt+dI1(t). Here,
I1 is a normal inverse Gaussian Lévy process (see Barndorff-Nielsen [1] for more on the
normal inverse Gaussian Lévy process). Similarly the model introduced by Cartea and
Figueroa [10] corresponds to the choice of I1(t) as the sum of a Brownian motion and a
compound Poisson processs. Their model was fitted to electricity data in the UK market
using ingenious filtering techniques including both spot and forward price data. In Lucia
and Schwarz [27] a two-factor model is applied to the Nordic electricity market Nord Pool.
The model can be recognized to belong to our proposed class with m = p = 2, n = 0, that
is, two Brownian motion driven factors:

S(t) = Λ(t) exp(X1(t) +X2(t)) ,

where the long-term variations are controlled by the process dX1(t) = (µ1 − α1X1(t) dt+

σ1 (ρ dB1(t)+
√

1 − ρ2 dB2(t)) and the short-term variations by dX2(t) = (µ2−α2X2(t)) dt+
σ2 dB1(t). The coefficients are supposed to be constant in their model, and the long-term
level a non-stationary process, which is achieved in our set-up by letting α1 = 0. Also note
that the noises in the two processes are correlated by ρ. The model proposed by Eberlein
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and Stahl [15] is a slight modification of the Lucia and Schwartz dynamics, letting the
short-term variations be modelled by a jump process instead. We obtain their model by
setting m = n = p = 1, with the mean-reversion α1 = 0, and letting I1(t) be a Lévy process
of hyperbolic type. The model was analysed empirically on data observed in the German
electricity market EEX with the purpose of Value-at-Risk calculations.

The second subclass on which we shall focus our attention is represented by the arith-
metic models. The commodity dynamics in these models is described by the following
expression:

(2.9) S(t) = Λ(t) +

m∑

i=1

Xi(t) +

n∑

j=1

Yj(t) ,

whereXi(t), Yj(t), i = 1, . . . , m, j = 1, . . . , n are given as before and the seasonality function
satisfies the same conditions required for geometric models. The process S(t) is again a
semimartingale and assuming now the initial conditions verifying:

m∑

i=1

Xi(0) +

n∑

j=1

Yj(0) = S(0) − Λ(0),

the explicit representation of S(t) will be obtained simply inserting the expressions of
Xi(t), Yj(t) given before into equation (2.9).

Arithmetic models has not gained the same popularity as the geometric models in order
to describe the commodity behavior in energy markets and this is to a large extent due to
the possibility to obtain negative prices in this framework. On the other hand, negative
prices can sometimes arise in energy markets. It is not uncommon in electricity spot
markets since produced power cannot be stored. But even in gas markets one has observed
short periods where one get paid for consuming, see Financial Times [18] for an article on
such an incident.

A model recently proposed included in the arithmetic class is that introduced by Benth,
Kallsen and Meyer-Brandis [4], in which the probability to reach negative prices is zero.
This model is obtained by setting m = 0, and by interpreting the seasonality function
Λ(t) as a floor towards which the processes Yj(t) revert. Moreover, the II processes Ij(t)
are assumed to be pure jump increasing process. By letting δj = 0 for j = 1, ..., n,
Y1(0) = S(0) − Λ(0) and Yj(0) = 0 for j = 2, ..., n, we obtain the following explicit
representation of the spot price dynamics:

(2.10) S(t) = Λ(t) +
n∑

j=1

Yj(t)

Such a model was fitted to spot price data observed at the German electricity market EEX
by Benth, Kiesel and Nazarova [5] (see also Meyer-Brandis and Tankov [25]).

We shall assume an integrability condition for the processes Ij(t) in order to apply the
Esscher transform measure change. The condition we will assume is the following:
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Condition 1. For each j = 1, ..., n there exists a constant cj > 0 such that:

(2.11)

∫ T

0

∫ ∞

1

{ecjz − 1} ℓj(dz, du) <∞

These exponential integrability conditions on the jump measures ℓj ensure the existence
of exponential moments of the II processes Ij(t) driving the dynamics for the Y ’s. This
makes it possible to define the Esscher transform for these processes, since the transform
is based on an exponential tilting of the distribution. We shall later be more specific on
the constants cj, which will differ slightly depending on the model we consider.

3. The Esscher Transform for II Processes and forward prices

The first fundamental theorem of asset pricing states that in a market model the no-
arbitrage requirement is equivalent to the existence of at least one equivalent probability
measure which turns into local martingales all the tradeable (discounted) asset processes.
The arbitrage-free price of any of them can be calculated as the discounted expectation
of its payoff with respect to one of these probability measures (see Delbaen and Schacher-
mayer [12]-[13]). On the other hand, according to the second fundamental theorem of asset
pricing the equivalent martingale measure is unique when the market model is complete.
The models introduced in the previous section exhibit incompleteness. Theoretically, they
are incomplete because we have jumps and multidimensional Brownian motions driving the
dynamics. Moreover, as it was already pointed out in the introduction, the non-storability
of the underlying commodity gives the electricity market some peculiar features. This fact
rules out the possibility to hedge derivatives by trading in the underlying. Hence, in this
context any measure Q equivalent to the objective (or market) probability P is risk-neutral,
and the underlying asset process (since it is not tradeable) does not need to be a martingale
with respect to the risk-neutral measure. This makes the class of potential pricing mea-
sures rather wide and some restrictions must be imposed in order to perform calculations.
A natural choice is the Esscher transform, which has been extensively applied in different
pricing models, and whose optimal properties have been thoroughly investigated in the
Lévy framework.

The crucial property which makes the Esscher transform an interesting measure change is
the structure preservation of the model dynamics. The semimartingale characteristics of an
II process are changed after the transformation, but the independence of the increments is
preserved. When working in incomplete market models the usual approach is based on the
construction of a measure change which turns the price process into a martingale, and the
parameters must be chosen such that the martingale requirement is satisfied. For general
semimartingales models two kinds of Esscher martingale transform exist: one turning into
a martingale the ordinary exponential process, the other turning into a martingale the
stochastic exponential process: the first has been called by some authors the exponential

Esscher martingale transform, the second the linear Esscher martingale transform. In
the electricity market framework the Esscher martingale transform is not required, simply
because the electricity price process need not to be a martingale under the transformed
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measure, and the Esscher transform is just the most natural way to construct a measure
change in which the new measure is equivalent to the old one and the process with respect
to the new measure has different parameters, but still enjoys the independent increment
property.

Let us define the Esscher transform for II processes. Let θ(t) be a (p+ n)−dimensional
vector of real-valued continuous functions on [0, T ]:

(3.1) θ(t) =
(
θ̂1(t), . . . , θ̂p(t), θ̃1(t), . . . , θ̃n(t)

)
.

Define the stochastic exponential by the following relation:

(3.2) Zθ(t) :=

p∏

k=1

Ẑθ
k(t) ×

n∏

j=1

Z̃θ
j (t),

where, for k = 1, ..., p,

(3.3) Ẑθ
k(t) = exp

(∫ t

0

θ̂k(u)dBk(u) −
1

2

∫ t

0

θ̂2
k(u)du

)
,

and, for j = 1, ..., n,

(3.4) Z̃θ
j (t) = exp

(∫ t

0

θ̃j(u)dIj(u) − φj(0, t; θ̃j(·)),

)
,

where the functions φj are defined by

(3.5) φj(t, s; θ̃j(·)) := ψj(t, s,−iθ̃j(·))

with ψj being the cumulants of Ij (see (2.2)). Observe that for constant θ̃j , φj is the
log-moment generating function of Ij.

If the following condition holds:

(3.6) sup
0≤t≤T

|θ̃j(t)| ≤ cj ,

where cj is a constant granting that Condition 1 is satisfied, it follows immediately by

Ito’s formula that Z̃θ
j (t) is a positive local martingale with expectation equal to one, so

it is a martingale process. With a similar consideration, if θ̂k(u) is a continuous function,

the Novikov condition holds, implying that Ẑθ
k(t) is a martingale as well. Hence we can

define an equivalent probability measure Qθ such that Zθ(t) is the density process of the
Radon-Nikodym derivative dQθ/dP :

(3.7)
dQθ

dP
|Ft

= Zθ(t) =

p∏

k=1

Ẑθ
k(t) ×

n∏

j=1

Z̃θ
j (t)

Remark that the Esscher transform for II processes is parametrized by a deterministic
(vector) function of time θ(t), while for general semimartingales it is a stochastic process,
see Kallsen and Shiryaev [24].

The following proposition describes how the characteristics of B and I change under the
application of the Esscher transform:
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Proposition 3.1. With respect to the probability measure Qθ the processes

Bθ
k(t) = Bk(t) −

∫ t

0

θ̂k(u)du

are Brownian motions for k = 1, ..., p and 0 ≤ t ≤ T . Moreover, for each j = 1, ..., n, Ij(t)
is an independent increment process on 0 ≤ t ≤ T with drift:

γj(t) +

∫ t

0

∫

|z|<1

z
{

eθ̃j(u)z − 1
}
ℓj(dz, du) +

∫ t

0

θ̃2(u) dC(u) ,

and predictable compensator measure eθ̃j(t)z ℓj(dz, dt).

Proof. The proof can be found in [8], page 98. �

We see that the change of measure with respect to the Brownian motions will lead to a
new mean-reversion level in the dynamics of the processes Xi. In fact, the Qθ-dynamics of
Xi, i = 1, . . . , m becomes

dXi(t) =

(
µi(t) +

p∑

k=1

σik(t)θ̂k(t) − αi(t)Xi(t)

)
dt+

p∑

k=1

σik(t) dB
θ
k(t) .

Here, the mean-reversion level is adjusted by the volatilities and the choice of functions θ̂k.
In the next proposition we show that the Esscher transform of the II processes Ij in fact
also leads to a change in mean-reversion level of Yj.

Proposition 3.2. With respect to the probability measure Qθ, the dynamics of Yj for

j = 1, . . . , n is

dYj(t) = (δj(t) − βj(t)Yj(t)) dt+ ηj(t) dΦj(t, θ̃j(·)) + ηj(t) dĨj(t) ,

where Ĩj(t) := Ij(t)−EQθ [Ij(t)] is a Qθ-martingale II process and Φj(t, θ̃j(·)) = ∂
∂θ
φj(0, t; θ̃j(·)) =

EQθ [Ij(t)].

Proof. Note that since Ij is an II process, it is a martingale whenever it has mean zero.
Thus, it is sufficient to subtract its mean under Qθ in order to make it a Qθ-martingale.
It is simple to see that by the definition of the Esscher transform and the log-moment
generating function φ(t, s; θ) that

EQθ [Ij(t)] =
∂

∂θ
φj(0, t; θ̃j(·)) .

Denoting Ĩj(t) := Ij(t) −
∂
∂θ
φ(0, t; θ̃j(·)), we have proven the proposition. �

Note that from the definition of ψj in (2.2), we have for a constant θ

∂

∂θ
φj(0, t; θ) = γj(t) − γj(0) + θ(Cj(t) − Cj(0)) +

∫ t

0

∫

R

z
{
eθz − 1|z|<1

}
ℓj(dz, ds) .
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Thus, dΦj(t, θ̃j(·)) is the measure

dΦj(t, θ̃j(·)) = dγj(t) + θ̃j(t) dCj(t) +

∫

R

z
{

eθ̃j(t)z − 1|z|<1

}
ℓj(dz, dt) .

For most interesting cases we will have that dΦj is absolutely continuous with respect to
the Lebesgue measure, for example, when Ij is a Lévy process. Thus, we can write

dΦj(t, θ̃j(·)) = Φ̃j(t, θ̃j(·)) dt ,

for some nicely behaving function Φ̃j . In that case we have that the mean-reversion level

of Y under Qθ is δj(t) + ηj(t)Φ̃j(t, θ̃(·)). Letting θ̃j = 0, we recover the P -dynamics of Yj

since this is corresponding to no change of measure in that coordinate. Hence, the mean-

reversion level under P will be δj(t) + ηj(t)Φ̃j(t, 0). This shows how the mean-reversion
level is changing under an Esscher transform in a similar fashion as for the deterministic
Girsanov change of Bk considered here. In the general case when dΦj is not absolutely
continuous, we also have a change in the mean-reversion level, but now it is only expressible
via the differentials.

Let us consider an I(t) being a compound Poisson process. Then, the jump measure ℓ
is given by

ℓ(dz, dt) = λ(t)PJ(dz) ,

where PJ is the jump size distribution and λ(t) is the jump intensity. Letting θ̃ be a
constant, we have that the jump measure of I(t) under Qθ becomes

ℓQθ(dz, dt) =

{∫

R

eθ̃zPJ(dz)λ(t)

}
eθ̃zPJ(dz)∫
R

eθ̃z PJ(dz)
.

Thus, we see that under the new probability Qθ, I(t) is again a compensated Poisson
process, with intensity

λQ(t) =

∫

R

eθ̃zPJ(dz)λ(t) ,

and jump size distribution

PQ(dz) =
eθ̃zPJ(dz)∫
R

eθ̃z PJ(dz)
.

The Esscher transform is thus changing the jump intensity and the jump size under the
new probability Qθ. We can choose parameters which imply an increasing jump intensity
and shifting of the jump size distribution towards the big jumps, that is, emphasising the
risk.

The parameter θ is usually called the market price of risk, and, as we shall see, is closely
related to the risk premium. By our choice of measure transform, we have divided into
a market price of risk for the normal spot price variations given by the Xi factors, and a
market price for jump risk for the spike regimes Yj.
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The definition of the forward price f(t, τ) at time t ≥ 0 for a contract delivering at time
τ ≥ t is defined as (see Benth et al. [8])

(3.8) f(t, τ) = EQ[S(τ) | Ft] ,

for some pricing probability Q being equivalent to P . By using the Esscher transform
Q = Qθ as the risk-neutral measure, it is possible to obtain the prices of forward contracts
on electricity in a closed form.

Let us examine the geometric case first. We recall the following proposition, the proof
of which can be found in Benth et al. [8], page. 105:

Proposition 3.3. Suppose that S(t) is the geometric spot price model given by (2.3) and

that Condition 1 holds for j = 1, ..., n with

sup
0≤t≤τ

|ηj(t)e
−
∫ τ

t
β(u) du + θ̃j(t)| ≤ cj .

Then the forward price f(t, τ) is given by:

f(t, τ) = Λ(τ)Θg(t, τ ; θ(·)) × exp

(
m∑

i=1

∫ τ

t

µi(u)e
−
∫ τ

u
αi(s) ds du

)

× exp



1

2

p∑

k=1

∫ τ

t

(
m∑

i=1

σik(u)e
−
∫ τ

u
αi(s) ds

)2

du





× exp

(
n∑

j=1

∫ τ

t

δj(u)e
−
∫ τ

u
βj(s) ds du

)
×

× exp

(
m∑

i=1

e−
∫ τ

t
αi(s) dsXi(t) +

n∑

j=1

e−
∫ τ

t
βj(s) dsYj(t)

)
,

where Θg(t, τ ; θ(·)) is defined as:

ln Θg(t, τ ; θ(·)) =
n∑

j=1

[φj(t, τ ; ηj(·)e
−
∫ τ

·

β(s) ds + θ̃(·)) − φj(t, τ ; θ̃(·))]

+
m∑

i=1

p∑

k=1

∫ τ

t

σik(u)θ̂k(u)e
−
∫ τ

u
αi(s) dsdu .(3.9)

For the arithmetic models the price of forward contracts is determined according to the
following proposition, the proof of which can be found again in [8]:

Proposition 3.4. Suppose the spot price dynamics is given by the arithmetic model (2.9)
and there exists ε > 0 such that Condition 1 holds with, for j = 1, ..., n,

sup
0≤t≤τ

|θ̃j(t)| + ε ≤ cj .
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The forward price for 0 ≤ t ≤ τ is then given by:

f(t, τ) = Λ(τ) + Θa(t, τ ; θ(·)) +

m∑

i=1

∫ τ

t

µi(u)e
−
∫ τ

u
αi(s) ds du+

n∑

j=1

∫ τ

t

δj(u)e
−
∫ τ

u
βj(s) ds du

+
m∑

i=1

e−
∫ τ

t
αi(s) dsXi(t) +

n∑

j=1

e−
∫ τ

t
βj(s) dsYj(t) ,

where

Θa(t, τ ; θ(·)) =
m∑

i=1

p∑

k=1

∫ τ

t

σik(u)θ̂k(u)e
−
∫ τ

u
αi(s) ds du+

n∑

j=1

∫ τ

t

ηj(u)e
−
∫ τ

u
βj(s) ds dΦj(u, θ̃j(·)) .

The measure dΦj is defined in Prop. 3.2.

4. The risk premium

We want to study the risk premium implied by the Esscher transform. The risk premium
in forward markets is measured in terms of the difference between the forward price and
the prediction of the spot at delivery (see e.g. Geman [19]).

Mathematically, we define the risk premium as the difference between the expectation
of the underlying prices calculated with respect to the risk-neutral measure Q and the
objective measure P , respectively:

(4.1) R(t, τ) := EQθ [S(τ)|Ft] − E [S(τ)|Ft] .

We can observe that the first term appearing in the definition is nothing more than the
forward price calculated according to the risk neutral dynamics and the second the same
forward price calculated with respect to the objective dynamics. In both the geometric
and arithmetic classes of models a close relationship turns out to exist between the risk
premium and the quantity Θ(t, τ ; θ(·)), not surprisingly.

For the geometric models an explicit calculation of the risk premium provides the fol-
lowing result:

Proposition 4.1. Under the conditions of Prop. 3.3, the risk premium R(t, τ) in (4.1)
implied by the Esscher transform for the geometric model is

R(t, τ) = Λ(τ) (Θg(t, τ ; θ(·)) − Θg(t, τ ; 0)) exp

(
m∑

i=1

∫ τ

t

µi(u)e
−
∫ τ

u
αi(s) ds du

)

× exp


1

2

p∑

k=1

∫ τ

t

(
m∑

i=1

σik(u)e
−
∫ τ

u
αi(s) ds

)2

du




× exp

(
n∑

j=1

∫ τ

t

δj(u)e
−
∫ τ

u
βj(s) ds du

)
×
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× exp

(
m∑

i=1

e−
∫ τ

t
αi(s) dsXi(t) +

n∑

j=1

e−
∫ τ

t
βj(s) dsYj(t)

)
,

Proof. The result follows directly by Prop. 3.3 using that θ = 0 corresponds to Qθ = P . �

It is obvious from the expression in the proposition above that the sign of R(t, τ) is
exclusively determined by the difference

Θg(t, τ ; θ(·)) − Θg(t, τ ; 0) ,

since the other terms are all positive. Moreover, we see that the risk premium is depending
on the seasonal function at time of delivery τ and mean-reversion weighted averages of the
levels and volatility of the various factors from current time to delivery. Finally, the current
state of the spot price (or, more precisely, its factors discounted by the respective mean-
reversion speeds) enter into the risk premium. Hence, the risk premium varies stochastically
with time, but the sign will be given deterministically.

To further gain insight into the sign of the risk premium, we can equivalently look at the
sign of the quantity ln EQθ [S(τ)|Ft] − ln E [S(τ)|Ft], which is simpler to analyse; in fact
we have from (3.9) that:

ln EQθ [S(τ)|Ft] − ln E [S(τ)|Ft]

= ln Θg(t, τ ; θ(·)) − ln Θg(t, τ, 0)

=
n∑

j=1

φj(t, τ ; ηj(·)e
−
∫ τ

·

β(s) ds + θ̃j(·)) − φj(t, τ ; ηj(·)e
−
∫ τ

·

β(s) ds) − φj(t, τ ; θ̃j(·))

+

m∑

i=1

p∑

k=1

∫ τ

t

σik(u)θ̂i(u)e
−
∫ τ

u
αi(s) ds du .

The sign of the risk premium is obviously deterministically determined, and cannot change
stochastically as a function of the factors in the model. The levels µi and δj and the
seasonal function Λ will not affect the risk premium sign either, but only the speeds of
mean-reversion αi and βj, and the volatilities σik and ηj. Depending on the specification
of these parameters in the spot model and the choice of θ in the risk-neutral probability,
we can get quite flexible risk premium structures, however, being deterministic.

We next consider the simple setting of m = n = p = 1 with a constant measure change,

that is, θ = (θ̂, θ̃), and suppose that all parameters in the spot model are constant. Further,
we suppose that the II process I is a compound Poisson process with a time-dependent jump
intensity λ(t), mimicking a seasonally varying spike process. The log-moment generating
function becomes

φ(t, τ ; θ̃) =

∫ τ

t

(
eφJ (θ̃) − 1

)
λ(s) ds ,

where φJ is the log-moment generating function of the jump size distribution of I and λ
its jump frequency. Finally, we assume η = 1. Now, from the representation above we find

ln Θg(t, τ ; θ)− ln Θg(t, τ ; 0)
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=

∫ τ−t

0

[
eφJ (θ̃+e−βs) − eφJ (e−βs) − eθ̃ + 1

]
λ(τ − s) ds+

σθ̂

α
(1 − e−α(τ−t))

= λ

∫ τ−t

0

E

[(
eθ̃J − 1

)(
ee−βsJ − 1

)]
λ(τ − s) ds+

σθ̂

α
(1 − e−α(τ−t)) .

Now, observe that whenever J > 0, exp(e−βsJ)− 1 is positive, and non-positive otherwise.

Further, if θ̃ > 0, then exp(θ̃J) − 1 is positive whenever J is, and non-positive otherwise.

Hence, for θ̃ > 0, we will have that the expectation inside the integral will be strictly
positive, and thus gives a strictly positive contribution. Since the jump intensity is non-

negative, the integral term will give a positive contribution to the risk premium. If θ̂

is positive as well, we will have a positive risk premium. When θ̃ < 0, we get that

(exp(θ̃J) − 1)(exp(e−βsJ) − 1) is negative whatever J is, and therefore we get a negative

contribution. Hence, for negative parameters θ̃, θ̂ we get a negative risk premium.
We may explain the results above by looking at the level change induced by the Esscher

transform. For simplicity, let λ(t) = λ, a constant. Note that

Φ(t, θ̃) =
∂

∂θ̃
φ(t, τ ; θ̃) = λ

∫

R

zeθ̃ PJ(dz) t ,

and thus the level change for the process Y when going from P to Qθ is given by

Φ(t, θ̃) − Φ(t, 0) = λ

∫

R

z(eθ̃z − 1)PJ(dz) t ,

where PJ is the distribution of J . We observe that when θ̃ > 0, z(exp(θ̃z) − 1) is positive

for all z. On the other hand, if θ̃ < 0, then it is negative for all z. Hence, choosing θ̃
positive yields an upward shift of the mean-reversion level of the jump process Y , while

a negative choice of θ̃ pushes it down. We see this reflected in the risk premium being
positive or negative, respectively.

The intuition and experience from the market propose a long-term negative risk premium

and a short term positive premium. One could obtain this by choosing θ̃ > 0 and θ̂ < 0.
The shape of the risk premium is determined by the factor Θg(t, τ ; θ) − Θg(t, τ ; 0), which
becomes

Θg(t, τ ; θ) − Θg(t, τ ; 0) = exp

(∫ τ−t

0

eφJ (θ̃+e−βs) − eφJ (θ̃)λ(τ − s) ds+
σθ̂

α
(1 − e−α(τ−t))

)

− exp

(∫ τ−t

0

(eφJ (e−βs) − 1)λ(τ − s) ds

)
.

The reason for a positive risk premium in the short end is explained by Geman and Va-
sicek [20] as a result of the consumers/retailers in the market being willing to hedge the
spike risk. Consider now Y modeling the spikes in electricity prices. Naturally, J > 0,
that is, a price process which may jump only upwards. On the other hand, β should be
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reasonably large so as to kill off the spikes quickly. It is straightforwardly seen that for

θ̃ > 0, we will have
∫ τ−t

0

(
eφJ (θ̃+e−βs) − eφJ (θ̃)

)
λ(τ − s) ds >

∫ τ−t

0

(
eφJ (e−βs) − 1

)
λ(τ − s) ds .

If θ̂ = 0 and λ(t) constant, we observe that the risk premium increases fastly from zero

up to a constant positive level as a function of time to maturity. However, if θ̂ < 0, there
will be a competing term in the expression for the risk premium which will force it down

and eventually to a fixed level. If θ̂ is big enough, the risk premium may be pushed below
zero to a negative level in the long end of the forward curve (that is, for large τ , times

of maturity). How fast the influence of θ̂ comes in is depending on the speed of mean-
reversion α, which one would expect to be slower than β. Hence, we should get a small
“bump-shaped” positive premium in the short end, whereas it becomes negative in the
long end of the market. This depends also on the choice of parameters.

Let us discuss how a time-dependent jump intensity may influence the sign. We consider
a toy example of a market where the spikes occur during a specific period of the year, in
January say, while we do not observe any spikes in the remaining part of the year. This
means that λ(t) is zero except for the month of January, where we suppose it is constant
for the sake of simplicity. In the Nord Pool market, the spikes are most frequently observed
in January and February, being the coldest period of the year and thus with the highest
demand for heating. Let us assume that we are in July, looking at the forward curve one
year ahead. Since the jump intensity is zero all the way up to January, the shape of the
risk premium will only be given by

Θg(t, τ ; θ) − Θg(t, τ ; 0) = exp

(
σθ̂

α
(1 − e−α(τ−t))

)
− 1 ,

for contracts maturing before January. Hence, the risk premium will, for θ̂ < 0, be down-

ward sloping towards the asymptote σθ̂/α as τ−t approaches January. Then, for contracts
maturing in January, we will gradually get more and more contribution from the jump term.
Next, for contracts maturing after January, the influence from the jump term will decay
slowly, with time to maturity. The reason is that the integral will integrate the constant
intensity over January, however, the function

s 7→ φJ(θ̃ + e−βs) − φ(θ̃)

is decreasing. Thus, the farther the maturity is away from January, the smaller function
we integrate against, yielding a decreasing contribution. By appropriately scaling the
market price of risks, we can see a risk premium which is decreasing up till January, and
then increasing to something positive, before it decreases again to a negative level, possibly
higher than the previous. We may also have a risk premium which is decreasing till January,
then increasing before it decreases again, without crossing to positivity.

Let us now suppose that we are in the beginning of January. Then the picture will be
as follows. We will now get full influence of the jump term for the contracts maturing



16 BENTH AND SGARRA

in January, and we will immediately see a positive premium for appropriate choice of the
market price of risk. For later maturing contracts, the influence of the jumps in January
will become smaller, and eventually we will cross zero and have a negative premium in the
long end. In fact, depending on the speeds of mean-reversion, this crossing to negative
premia may happen very quick.

From these considerations, we see that for a seasonally dependent spike intensity, we
can have a negative risk premium structure which is downward sloping with small bumps
along the curve in periods where the spike risk is high. In such periods, one may even get
a positive premium. If present time corresponds with a high intensity period for spikes, we
may have a positive premium in the short end, and negative in the long. The risk premium
curve will be further scaled by the current level of the spike Y and base component X.
Running over the year, the risk premium structure can go from negative all over, to positive
in the short end, and negative in the long, appropriately scaled by the current spike level Y
and base component X. Note that the spike component normally contributes in the short
end since β is usually fast, while X, the base component has a longer range of influence
since it is associated with a slow mean-reversion α.

We illustrate the situation discussed above with a numerical example. Measuring time t
in days, we assume that β = 0.3466. This corresponds to a fast mean-reversion yielding a
half-life of 2 days. Further, we consider exponentially distributed jump sizes with a mean
equal to 0.5. To mimic seasonally occurring jumps, we suppose that the spikes only occur
in January, where the frequency is 5, that is, on average 5 spikes during January. For the
rest of the year we let the frequency be zero. The base component has a speed of mean
reversion α = 0.099, which is a half-life of 7 days, and the volatility is supposed to be
σ = 0.0158, that is, 30% annually. In the example, we calculate the contribution to the
risk premium coming from the term Θg(t, τ ; θ) − Θg(t, τ ; 0), which we recall is the factor
deciding the sign of the risk premium. We assume that the spike risk is positive, and

the base component has a negative premium, here given as θ̃ = 0.95 and θ̂ = −4, resp.
Calculating this for various times over the year, for a time-to-maturity ranging up to 220
days, we obtain the curves in Figs. 1 and 2. In the example, we have standardized each
month to be 30 days long.

In Fig. 1 we have plotted the curves seen from the first day in July, October, December
and January. For the three first curves, they are all dropping downwards from a negative
value, however, having a bump when the time-to-maturity is crossing over the month of
January. We observe a negative premium overall, since the contribution from the base
component is the strongest. When we consider the curve from January 1, the picture is
changing. In the short end of the curve, we get a positive contribution, before becoming
negative in the long end. This is a reflection of a strong contribution from the spike
component which now pushes the premium above zero, reflecting the aversion to spike
risk. Note that by increasing the spike size distribution and/or the frequency, we may
even obtain positive premium in the bump along the curve. Looking at Fig. 2, this is
even more distinct. By considering the curve seen from January 15, we get an even more
positive contribution, however, lasting shorter since only half of the spike period is taken
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Figure 1. Contribution to the risk premium curve from the term
Θg(t, τ, θ) − Θg(t, τ, 0), for 4 different choices of t and 220 days of time-to-
maturity.

into account. The kink in the curve around 15 days to maturity is a reflection of the spike
period being constrained to only January. The risk premium is obtained by scaling the
curves by positive factors which size is given by the mean-reversion discounted states of X
and Y . Hence, if we get a spike Y (t), then the influence on the risk premium is relatively
small if we are in July compared to January. Getting a spike in January, will immediately
scale up the positive part in the short end. An increasing value of X(t), on the other hand,
will scale up a bigger part of the curve since the mean-reversion is slower. The seasonality
function will also play an important role by an overall seasonal scaling of the curve. The
example clearly demonstrates that seasonally occurring jumps are responsible for bumps
in the risk premium and a positive premium in the short end, as long as we are in a period
of high spike intensity. By applying the Esscher transform, we can obtain a risk premium
which goes from being negative downward sloping, to having a positive short end. The
numerical calculations were performed using Matlab and the built-in numerical integration
routing quad, which is an implementation of a recursive adaptive Simpson quadrature
method.
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Figure 2. Contribution to the risk premium curve from the term
Θg(t, τ, θ) − Θg(t, τ, 0) seen form middle of January.

For reasons of comparison, consider a one-factor model m = 0, n = 1, where the II
process I(t) is given by

I(t) = σB(t) + L(t) ,

that is, a sum of a Brownian motion and a jump component. We let the jump component
L((t) be a compound Poisson process as in the example above. In this model the spikes
and normal variation components of the log-prices mean-revert at the same speed, and the
model is analogous to the Merton model is stock markets [29], and applied by Cartea and
Figueroa [10] to model UK electricity spot prices. We easily find by a similar computation
as above that

ln Θg(t, τ ; θ) − ln Θg(t, τ ; 0) = λ

∫ τ−t

0

E

[(
eθ̃J − 1

)(
ee−βsJ − 1

)]
ds+

σ2θ̃

α
(1 − e−α(τ−t)) .

We remark in passing that the appearance of σ2 is not a mistake, but reflecting the fact that
the Esscher transform applied to the process I(t) is a Girsanov transform of the process
σB(t), and not just B(t). Contrary to the two-factor model, we can now only have either a

positive or a negative risk premium, by choosing θ̃ positive or negative, resp. Hence, we do
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not obtain the flexibility of a sign change by imposing different market prices of risk to each
component. However, this can easily be mended by redefining the model. One may rewrite
the model into two factors, where both factors have the same speed of mean-reversion,
but one is driven by the Brownian component and the other by the compound Poisson
process. This means that we consider the two processes B and L separately, rather than
coming from the same II process. We can then do a Girsanov transform on the Brownian
component, and an Esscher on the jump process, and we get the possibility to have a
sign change of the risk premium. We remark in passing that Cartea and Figueroa [10]
did a change of measure only with respect to the Brownian component, and estimated a

negative market price of risk θ̂ for the UK electricity market. Thus, their model predicts a
downward sloping risk premium, or, in other words, a backwardated market. By including

a constant market price of jump risk θ̃ in their calibration study, one could possibly obtain
a positive risk premium in the short end of the curve, since the market shows significant
signs of spikes, in particular over the colder period of the year.

For the arithmetic class of models the calculation of the risk premium provides the
following result:

Proposition 4.2. Under the conditions of Prop. 3.4 we have that the risk premium is

given by

R(t, τ) = Θa(t, τ ; θ(·)) − Θa(t, τ, 0) ,

where Θa is defined in Prop. 3.4.

Proof. This follows directly from Prop. 3.4, noticing that Qθ = P when θ = 0. �

We observe that risk premium in the arithmetic case corresponds exactly to the change

in mean-reversion level of the processes Xi and Yj when going from P to Qθ. If we specify
n = m = p = 1 with constant parameters as in the example for the geometric case above,

we reach the same conclusions that constant specifications of θ̃ and θ̂ implies a positive
risk premium, and negative in the opposite case. The mixed case can yield a sign change
depending on the parameter specifications.

Let us focus for a moment on the model proposed by Benth, Kallsen and Meyer-
Brandis [4] where m = 0, δj = 0, and the speed of mean-reversions βj and jump volatilities
ηj are positive constants for j = 1, . . . , n. Furthermore, the II processes are subordinators,
that is, having only positive jumps, and we suppose that they are driftless with log-moment
generating functions

φj(t, τ, θ̃j(·)) =

∫ τ

t

∫ ∞

0

(eθ̃(s)z − 1) ℓj(dz, ds) .

This includes the compound Poisson processes considered above, but with positive jump

sizes only. Observe that now Φj(t, θ̃) =
∫ t

0

∫∞

0
zeθ̃z ℓj(dz, ds), and the risk premium takes

the form.

R(t, τ) =
n∑

j=1

∫ τ

t

∫ ∞

0

e−
∫ τ

u
βj(v) dvz

(
eθ̃jz − 1

)
ℓj(dz, du) .
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Each term will, using similar arguments as above, contribute positively or negatively de-

pending on θ̃j being positive or negative, respectively.
In applications of this model, one has usually chosen two factors, that is, n = 2 (see

Benth, Kiesel and Nazarova [5]). The first component models the base signal, and the
second factor the spike process. The latter has a high speed of mean-reversion, whereas the
base signal reverts at a slower speed, so naturally we would have β2 > β1. The consumers

are afraid of spikes, and the hedging pressure they imply may give a positive θ̃2. Since the
spikes are quickly killed by mean-reversion, this would have an effect for contracts on the
short term, that is, with short time to maturity. The second term in the risk premium
would then dominate in the short end of the forward curve, producing a positive premium.
The producers are interested in securing production in the long term, and would therefore
accept a lower price for the production, which means that we must have a negative choice

of θ̃1. Due to the slower reversion of the first factor, this would then have the largest
impact on the long term, and thus giving a negative risk premium. This can be reflected in

the expression above as well. For given choices of θ̃1 and θ̃2, we can calculate the time-to-
maturity where we will have a sign change in the risk premium (at least numerically). This
will be a deterministic time point which will not change according to market conditions,
but only according to the parameters of the spot model and the current time t. This
shows that the Esscher transform may produce a sign change in the risk premium, and
also produce the right risk premium structure by appropriately choosing the parameters
θ. In fact, the example for the geometric case can be applied in the arithmetic situation
as well, showing the even in this situation we can go from a market with a sign change to
a case where the risk premium is either reflecting backwardation or contango. Contrary to
the geometric model, the risk premium will not be stochastic, but only deterministically
evolving over time.

As is well-known, the electricity and gas markets trade in forward contracts which deliver
the underlying energy over a period rather than at a fixed maturity. For geometric models
it is in general difficult to provide any explicit expressions for the price of such forwards,
which we shall refer to as flow forwards. However, flow forward prices are attainable when
supposing that the spot price dynamics is given by the arithmetic model. We discuss this
in more detail next.

We consider the simple example of a forward contract delivering power over a time
interval [τ1, τ2], where payment takes place at the final delivery date. In Benth et al. [8] it
is shown that the forward price F (t, τ1, τ2), 0 ≤ t ≤ τ1 < τ2 is defined as

F (t, τ1, τ2) = EQ

[
1

τ2 − τ1

∫ τ2

τ1

S(t) dt | Ft

]
=

1

τ2 − τ1

∫ τ2

τ1

f(t, τ) dτ .(4.2)

Here, Q is some equivalent probability measure. The latter representation comes from the
definition of the forward price f(t, τ), whereas in the former equality we use the standard
market convention that the price is denominated per Mega Watt hour (MWh), for elec-
tricity. Using the model in Benth, Meyer-Brandis and Kallsen [4], and assuming that Q is
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determined by the Esscher transform, we obtain the flow forward price

F (t, τ1, τ2) =
1

τ2 − τ1

∫ τ2

τ1

{
Λ(u) +

n∑

j=1

∫ u

t

∫ ∞

0

ηj(u)e
−αj(u−s)z ℓ̃(dz, ds)

}
du+

+

n∑

j=1

Yj(t)

αj(τ2 − τ1)

(
e−αj(τ1−t) − e−αj(τ2−t)

)

where ℓ̃ is the compensated jump measure with respect to the Esscher transform. For
notational simplicity, we have assumed that the speed of mean-reversions αj, are constants.

The risk premium for flow forwards can naturally be defined as

(4.3) RFF (t, τ1, τ2) = F (t, τ1, τ2) − E

[
1

τ1 − τ2

∫ τ2

τ1

S(t) dt | Ft

]
.

We immediately see that

(4.4) RFF (t, τ1, τ2) =
1

τ2 − τ1

∫ τ2

τ1

R(t, τ) dτ .

Hence, the risk premium of flow forwards becomes the average of the risk premium R(t, τ)
over the delivery period of the flow forward. This means that even for geometric models
we can say something about the sign and value of the risk premium for flow forwards.
However, for arithmetic models we can go further and provide explicit expressions.

Subtracting the corresponding value of the flow forward calculated with respect to the
historical probability measure, one obtains the risk premium:

RFF (t, τ1, τ2, θ̃) =
1

τ2 − τ1

∫ τ2

τ1

∫ u

t

∫ ∞

0

ηj(s)e
−αj(u−s)z

{
ℓ̃(dz, ds) − ℓ(dz, ds)

}
du

=
1

τ2 − τ1

∫ τ2

τ1

(∫ u

t

∫ ∞

0

ηj(s)e
−αj(u−s)z

{
eθ̃j(s) − 1

}
ℓ(dz, ds)

)
du.

We recognize the factors exp(θ̃j(s)) − 1 as the determinants of the risk premium sign and

we can conclude that negative values of θ̃j will give a negative contribution, while positive
values will give a positive contribution. The discussions above hold for the flow forward as
well.

To conclude this section, we discuss the issue of martingale dynamics for the spot. As
already mentioned, electricity is a non storable commodity, so its spot price process need
not be a (local) martingale under the risk-neutral measure. In constructing the measure
change based on the Esscher transform we have in fact not required any martingale condi-
tion. This is in contrast with the usual approach followed in the stock market framework,
where the Esscher martingale transform is in use in general. As it turns out, there exists

no choice of θ̃ that can turn the (discounted) spot price into a martingale. To choose θ̃
time-dependent will not change this fact. This is due to the mean-reverting models that
we consider.
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To see this, let us consider m = 0 and n = 1, and for the sake of simplicity we assume
Λ(t) = 1, δ = 0, η = 1, β positive constant and zero risk-free interest rate, r = 0. In order
for the Esscher transform to be a martingale transform, we must have

E
Qθ̃

[
eY (t) |Fs

]
= eY (s) ,

for all t ≥ s ≥ 0. But, since

Y (t) − Y (s) = −Y (s)(1 − e−β(t−s)) +

∫ t

s

e−β(t−u) dI(u) ,

we find that

E
Qθ̃

[
eY (t) |Fs

]
= eY (s)

E
Qθ̃

[
eY (t)−Y (s) , |Fs

]

= eY (s)e−Y (s)(1−e−β(t−s))
E

Qθ̃

[
e
∫ t

s
e−β(t−u) dI(u)

]
,

where we have used the independent increment property of I in the last equality. We see
that the Esscher transform of I will only contribute with a deterministic term no matter

the choice of θ̃, and therefore cannot “kill off” the term exp(−Y (s)(1 − exp(−β(t − s)))
which is stochastic. In conclusion, the martingale property of the spot price can not be
achieved by an Esscher transform for these models.

Letting β = 0 changes the matters, as we now discuss. Choosing zero mean-reversion
speed corresponds to a non-stationary process Y . This resembles the case considered in
Hubalek and Sgarra [22]. A direct calculation reveals that

EQθ

[
eY (t) | Fs

]
= exp

(
Y (s) − φ(s, t; θ̃(·)) + φ(s, t; θ̃(·) + 1)

)
,

for 0 ≤ s ≤ t ≤ T . Hence, the martingale property is obtained if an only if there exists a

function θ̃ such that

(4.5) φ(s, t; θ̃(·) + 1) = φ(s, t; θ̃(·)) ,

for all 0 ≤ s ≤ t ≤ T . This is a simple extension of the results in Hubalek and Sgarra [22].
Let Y (t) be driven by a time-inhomogeneous Compound Poisson process I(t) with time-

dependent intensity λ(t). Recall the cumulant being,

ψ(s, t; θ̃(·)) =

∫ t

s

(
eφJ (θ̃(u)) − 1

)
λ(u) du .

Observe for a constant choice of θ̃, we get the martingale condition (4.5) satisfied as long
as

φJ(θ̃) = φJ(θ̃ + 1) .

For example, choosing a normally distributed jump size J with mean µ and variance η2,
we get the equation

θ̃µ+
1

2
θ̃2η2 = (θ̃ + 1)µ+

1

2
(θ̃ + 1)2η2 ,

which has the solution θ̃ = −µ/η2 − 1/2. Observe that as long as µ > η2/2, we have that

θ̃ is negative, and therefore the risk premium for the martingale Esscher transform is in
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fact also negative. We finally remark that when the jump process only has positive jumps,
that is, the outcomes of J is supported on the positive real line, then we cannot find any

θ̃ ensuring the martingale property. The reason is that the moment generating function is
increasing in this case. For a process with only negative jumps, the conclusion is the same
due to a decreasing moment generating function.

5. Conclusions

In this paper we have provided the mathematical evidence of the risk premium sign
change in electricity market. The empirical evidence of this sign change has been given
and discussed in several papers mentioned in the introduction. We have proved that in
a wide framework represented by both classes of geometric and arithmetic models based
on independent increments processes, when an Esscher change of measure is performed in
order to construct the risk-neutral pricing measure, the sign change of the risk premium
can be analysed explicitly. Indeed, we show that the a risk premium being positive in the
short end and negative in the long end may be explained by the appearence of jumps,
and appropriately chosen market prices of risk. The risk premium in the short end being
positive and negative depending on the time of year, can be traced back to seasonally
occuring spikes.

Different measure changes can be introduced, however, the Esscher transform seems to
be the easiest and the most natural to apply due to its properties. In fact, several difficulties
arise when the measure change does not guarantee the model structure preservation. The
main advantage of using the Esscher transform is namely that the model structure is
preserved, in the sense that the driving noises in the factors of the spot price dynamics
are still independent increment processes after the measure change. This ensures that we
can derive closed form expressions for forward prices and the risk premium, where we may
intepret the results in terms of the parameters of the model and measure change.

Since the transform is not state-dependent, it can not reproduce the martingale property
of the spot price process. This is contrary to stock market models where the Esscher
transform can be specified so that the spot price is a martingale after discounting. Although
this is not any drawback in the incomplete power markets, it is showing that the Esscher
transform has very little flexibility, and more general measure changes could be worthwhile
investigating.

A possible further progress of this work will be to obtain the parameter function θ̃(t) in
the Esscher Transform by a calibration procedure from the traded forward prices and then
to examine the agreement of the sign change between the empirical and the theoretical
results obtained. This would enforce the use of the Esscher change of measure as a risk-
neutral measure for electricity and, more in general, energy derivatives valuation. This is
already the subject of new investigations currently in progress.

References

[1] Barndorff-Nielsen, O.E. (1998). Processes of normal inverse Gaussian type. Finance Stoch, 2(1), 41–68.



24 BENTH AND SGARRA

[2] Benth, F.E., Ekeland, L., Hauge, R., and Nielsen, B.F. (2003). On arbitrage-free pricing of forward
contracts in energy markets. Appl. Math. Finance, 10(4), 325–336.

[3] Benth, F.E., Cartea, A., and Kiesel, R. (2008). Pricing forward contracts in power markets by the
certainty equivalence principle: explaining the sign of the market risk premium. J. Banking Finance,
32(10), 2006–2021.

[4] Benth, F.E., Kallsen J., and Meyer-Brandis T. (2007). A non-Gaussian Ornstein-Uhlenbeck process
for electricity spot price modelling and derivatives pricing. Appl. Math. Finance, 14(2), 153–169.

[5] Benth, F.E., Kiesel, R., and Nazarova, A. (2009). A critical empirical study of two spot price models
for electricity. E-print, University of Oslo.

[6] Benth, F.E., and Meyer-Brandis, T. (2009). The information premium in electricity markets. J. Energy

Markets, 2(3).
[7] Benth, F.E., and Saltyte-Benth, J. (2004). The Nornal Inverse Gaussian distribution and spot price

modeling for energy markets. Int. J. Theor. Appl. Finance, 7(2), 177–192.
[8] Benth, F.E., Saltyte Benth, J., and Koekebakker, S. (2008). Stochastic Modelling of Electricity and

Related Markets. World Scientific, Singapore.
[9] Botterud, A., Bhattacharya, A.K., and Ilic, M. (2002). Futures and Spot Prices- an Analysis of the

Scandinavian Electricity Market. Proceedings of the 34th Annual North American Power Symposium.
October 2002, Tempe, Arizona, USA.

[10] Cartea, A., and Figueroa, M.G. (2005). Pricing in electricity markets: a mean reverting jump diffusion
model with seasonality. Appl. Math. Finance, 12(4), 313–335.

[11] Crosby, J. (2008). A multi-factor jump-diffusion model for commodities. Quantit. Finance, 8(2), 181–
200.

[12] Delbaen, F., and Schachermayer, W. (1994). A General Version of the Fundamental Theorem of Asset
Pricing. Math. Annalen, 300, 463–520.

[13] Delbaen, F., and Schachermayer, W. (1998). The Fundamental Theorem for Unbounded Processes.
Math. Annalen, 312, 215–250.

[14] Diko, P., Lawford, S., and Limpens, V. (2006). Risk premia in electricity for-
ward prices. Stud. Nonlinear Dyn. Econom., 10(3) article 7. (Electronic publication:
http://www.bepress.com/snde/vol10/iss3/art7).

[15] Eberlein, E., and Stahl, G. (2003). Both sides of a fence: A statistical and regulatory view of electricity
risk. Energy Risk, 8, 34–38.

[16] Esche, F., and Schweizer, M. (2005). Minimal entropy preserves the Lévy property: how and why.
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