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Abstract

With the new regulations of Basel III and Solvency II there is a necessity to have tools

that can measure different types of financial and insurance risk in a portfolio. Stochas-

tic Duration is such a measure. This new type of measure, which is for the first time

implemented in this thesis, can be used to analyze the sensitivity of complex portfolios

of interest rate derivatives with respect to the stochastic fluctuation of the entire term

structure of interest rates or the yield surface without assuming as in the classical case

(Macaulay duration) flat or piecewise flat interest rates. It is conceivable that this con-

cept will serve as an important tool within risk management and replace the classical

Macaulay duration.

Moreover, using the concept of immunization strategies based on stochastic duration we

will be able to hedge the expected uncertainty due to the changes in the forward rate in

complex bond portfolios.

Keywords: Stochastic Duration, Immunization Strategy, HJM-modeling, Vasicek, Hull-

White, CIR.
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A.5 Brownian motion and Itô Integral . . . . . . . . . . . . . . . . . . . . . . 105
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L[0,T ](H,K) Itô Integrable Integrands w.r.t. CBM

Hw Consistent Hilbert Space

Df̂ Malliavin Derivative w.r.t. the centered forward curve f̂

xi





Chapter 1

Introduction

The main objective in this master thesis is the analysis and implementation of the Stochas-

tic Duration applied to bond portfolios. But in order to work with the Stochastic Duration

we need some elementary understanding of Interest Rate Theory.

Chapter 2: Short Rate Models

In this chapter we go through the most elementary tools and thoughts within interest

rate theory. The interest is in deriving prices on a ZCB, using different short rate models.

For a more thorough review [1] is recommended.

Chapter 3: A First Look at the HJM-model

Instead of modeling the short rate, an alternative, presented by Heath, Jarrow and Mer-

ton, is to model the instantaneous forward rate. With such a model we obtain that

the arbitrage free drift only depends on the volatility structure. Later on we extend the

model, using the Musiela parametrization. The parametrization exhibits some interesting

properties we want to study [2].

Further we aim at discussing a calibration procedure that we later want to use in con-

nection with a practical example. To read more about the subject [3] is recommended.

Chapter 4: Infinite Dimensional Stochastic Analysis

1



2 Interest Rate Theory and Stochastic Duration

A market observation is that there exists time-to-maturity specific risk. With a possible

infinite time-to-maturity we need infinite dimensions of noises. This part is mainly build

on [4].

Chapter 5: Generalized HJM framework

Through the generalized HJM model we include the possibility of ZCB’s having infinite

time-to-maturity. The generalized HJM model is used in the paper [5], where Stochastic

Duration is presented and constructed.

Chapter 6: Stochastic Duration

The concept of Stochastic Duration is presented in this chapter. We go through several

examples and provide a program for the stochastic duration on a simulated portfolio.

When we have calculated the stochastic duration of a portfolio we can use the immuniza-

tion strategy to hedge the interest rate risk. Read more about Stochastic Duration in [5]

and [6].

Chapter 7: Stochastic Duration an Example

In the last chapter we import data of the US Treasury yield curve and a Future contract

on a 2 year Treasury Note. The data are collected from www.quandl.com. We go through

a principal component analysis and use the estimated parameters to derive the stochastic

duration on a portfolio of a 2 year Treasury Note.

Appendix A: Mathematical Tools

The appendix goes through the most important mathematical tools used in chapter two

and three in this thesis.



Chapter 2

Short Rate Models

Our main interest in this chapter is to derive a price on a zero-coupon bond (ZCB).

Definition 2.1 (Zero-Coupon Bond [1]):

A zero-coupon bond with maturity date T , also called a T -bond, is a contract which

guarantees the holder 1 dollar to be paid on the date T . The price at time t of a bond

with maturity date T is denoted by P (t, T ).

We are going to treat the ZCB price as a derivative w.r.t. the instantaneous short rate

as the underlying process. But, as we will encounter later, we don’t necessarily need to

provide a dynamic on the short rate (also called overnight rate). We can e.g. use the

relation between the instantaneous forward rate and short rate to deduce a dynamic of

the short rate given the dynamics on the forward rate. The latter is referred to as the

HJM-framework.

In all cases we would like to have a model that creates an arbitrage free price. An arbitrage

means that with initial portfolio value at time 0 of zero we, P-a.s., have a portfolio at a

later time T that is bigger or equal than zero, with a probability bigger than 0 for the

value of the portfolio being bigger than zero. Basically a non-risky portfolio with just the

up-side.

3



4 Interest Rate Theory and Stochastic Duration

Theorem 2.2 (First Fundamental theorem [1]):

A market is arbitrage free if there exist a probability measure Q(A) that is an equivalent

Martingale measure (EMM) to P(A) s.t. the normalized asset price is a Martingale.

A proof is provided in [1]. The second fundamental theorem is about completeness in the

market. Given that we find a model of our normalized market that is arbitrage free, then

the market is complete iff the Martingale measure is unique1. The question is whether our

dynamics creates a model which is both arbitrage free and complete. In fact the question

is; yes we find a model for an arbitrage free price; but no, the market isn’t complete. This

leads us to what is called Martingale modeling.

2.1 Zero-Coupon Market

We are going to assume that there exist a ”risk less” asset referred to as the Normalizer,

and a zero-coupon bond following the assumptions

Assumption 2.3 (Regular Market):

We have the following assumption of a regular market

1. There exist a market for T -bonds for each T

2. P (t, t) = 1 for all t (if not there is an arbitrage possibility)

3. For a fixed t, the bond price P (t, T ) is differentiable w.r.t. time-of-maturity T .

Definition 2.4 (Normalizer):

The normalizer process is defined as

Bt = exp
{∫ t

0

rsds
}
, (2.1)

which is the solution of the SDE  dB(t) = rtB(t)dt

B(0) = 1.

1This is not the case in the infinite dimensional model.
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2.2 Short rate models

The short rate is defined as the limit, T → t, of the instantaneous forward rate.

Definition 2.5 (Instantaneous Short Rate):

Let the instantaneous forward rate with maturity T , contracted at time t be defined as

f(t, T )
def
= −∂ log(P (t, T ))

∂T
, (2.2)

then the instantaneous short rate at time t is defined as f(t, t)

rt
def
= f(t, t) = lim

T→t
f(t, T ). (2.3)

By (2.2) and (2.3) we derive the following relation between the instantaneous short rate,

rt, and the ZCB price, P (t, T ),

P (t, T ) = exp
{
−
∫ T

t

rsds
}
. (2.4)

Clearly P (t, t) = 1 for all t ∈ R+.

Still we haven’t chosen the model for rt. It might be deterministic, but this relies on the

future to be certain. Due to liquidity risk, default risk, competitive bond market where

the prices are based on supply and demand, and of course company ratings, a better

approach is to model rt on the filtered probability space (Ω,F , {Ft}t≥0,P). Then by the

relation (2.4) we see that the price of P (t, T ) is stochastic w.r.t. the underlying process

rt. But what is a fair price?

From a mathematical point of view the fair price is the expected arbitrage free price.

Recall the First Fundamental theorem: An arbitrage free price is equivalent with the

existence of an Equivalent Martingale measure (EMM) to P in the normalized market.

We define the normalization of the ZCB price (also commonly called the discounted ZCB

price).
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Definition 2.6 (Normalized ZCB price):

The normalized ZCB price is defined as

P̃ (t, T ) =
P (t, T )

B(t)
. (2.5)

By the First Fundamental theorem we would like the normalized ZCB price to be a

Martingale under the EMM Q. I.e. from the definition of the Martingale we have that

P̃ (s, T ) = EQ
[
P̃ (t, T )|Fs

]
, (2.6)

for t ≥ s. This leads us to the price of the ZCB

P (s, T ) = B(s)EQ
[
P̃ (t, T )|Fs

]
. (2.7)

Putting in for P̃ (t, T ) yields

P (s, T ) = B(s)EQ

[
exp
{
−
∫ T

0

ru du
}
|Fs
]
.

We can in fact derive the SDE of the ZCB. Using the Martingale representation theorem

we know that the dynamics of the normalized ZCB price is

dP̃ (t, T ) = σtdW
Q
t

for some function σt ∈ L2(Q)(existence of second moment). If we assume that the Gir-

sanov transform between the Equivalent Martingale measure Q and the observed proba-

bility measure P was on the form

dWQ
t = −λtdt+ dW P

t ,
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then by Itô’s formula we derive the dynamics of the ZCB price as

dP (t, T ) = d(B(t)P̃ (t, T )) = P̃ (t, T )dB(t) +B(t)dP̃ (t, T )

= P (t, T )rtdt+ P (t, T )σtdW
Q

= P (t, T )rtdt+ P (t, T )σt(−λtdt+ dW P)

= P (t, T )(rt − σtλt)dt+ P (t, T )σtdW
P.

Based on the last equation we are in the ”core” of Martingale modeling. The function

λt isn’t unique in the ZCB market. This comes from the fact that we are working within

incomplete markets. Therefore it is common to define the models directly via the Q-

dynamics.

2.2.1 The Portfolio Setup

We want to model the arbitrage free ZCB price based on a short rate dynamics. Assume

that under the objective probability measure P the dynamics of rt is the solution of a

SDE of the form

drt = µ(t, rt)dt+ σ(t, rt)dW
P
t , (2.8)

where we recall that the dynamics of the normalizer is

dB(t) = rtB(t)dt.

The idea is to let the risk free asset B(t) be the benchmark. Then under the EMM Q

the expected return should be equal to the benchmark, B(t). Assume that the price of a

ZCB takes the form

P (t, T ) = F (t, rt;T ), (2.9)

where we assume that F is a smooth function of three variables. Since P (T, T ) = 1 we

have the obvious relation that F (T, rT ;T ) = 1 for all rT .
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We create a portfolio based on the two assets; the Normalizer and the ZCB with the

corresponding stock holding, αZCB and αB. Then the portfolio value at time t is

Vt;T = αBB(t) + αZCBP (t, T ),

and by linearity we derive the SDE

dVt;T = d[αB(t)B(t)] + d[αZCB(t)P (t, T )]

(Self-Financing) = αBdB(t) + αZCBdP (t, T )

when we assume self-financing portfolios. A self-financing portfolio is a portfolio choice

where the the stock holding doesn’t change during the portfolio time. Hence, αB(t) ≡ αB.

Let ηB and ηZCB be the weights of the portfolio. I.e.

ηB(t) =
αB(t)B(t)

αB(t)B(t) + αZCB(t)P (t, T )
.2 (2.10)

Then we deduce that the portfolio weights can be written as

αZCB = Vt;T
ηZCB(t)

P (t, T )
.

Plugging into the portfolio value dynamics we derive that

dVt;T = Vt;T
(ηB(t)

B(t)
dB(t) +

ηZCB(t)

P (t, T )
dP (t, T )

)
.

Earlier we assumed that P (t, T ) = F (t, rt;T ), and from the dynamics of the short rate

model we have, using the Itô’s formula, that

dP (t, T ) = dF (t, rt;T ) = [F t(t, rt;T ) + µF r(t, rt;T ) +
1

2
σ2F rr(t, rt;T )]dt

+σF r(t, rt;T )dW P
t ,

2Similar for the ZCB
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where e.g. F r = ∂F
∂r

etc. By plugging in the portfolio process

dVt;T = Vt;T
( ηB
B(t)

B(t)rt +
ηZBC

F (t, rt;T )
[F t(t, rt;T ) + µF r(t, rt;T ) +

1

2
σ2F rr(t, rt;T )]

)
dt

+Vt;TηZCBσF
r(t, rt;T )dW P

t .

Using Girsanov’s theorem,

dWQ
t = −λtdt+ dW P

t ,

we change our portfolio to be a dynamic under the risk-neutral measure Q

dVt;T = Vt;T
(
ηBrt +

ηZBC
F (t, rt;T )

[F t(t, rt;T ) + (µ− σλ)F r(t, rt;T ) +
1

2
σ2F rr(t, rt;T )]

)
dt

+Vt;TηZCBσF
r(t, rt;T )dWQ

t .

Under the risk neutral measure Q, the drift of the ZCB portfolio must be equal to the

Benchmark(Normalizer)3. The Portfolio process holding just the Benchmark is equivalent

to having a portfolio weight of ηB(t) ≡ 1. By the property ηB(t)+ηZCB(t) = 1 ηZCB(t) ≡

0. Hence

Vt;T
(
ηBrt +

ηZBC
F (t, rt;T )

[F t(t, rt;T ) + µF r(t, rt;T ) +
1

2
σ2F rr(t, rt;T )]

)
dt = Vt;T rtdt,

which leads to

ηZBC [F t(t, rt;T ) + (µ− σλ)F r(t, rt;T ) +
1

2
σ2F rr(t, rt;T )] + F (t, rt;T )rt(ηB − 1) = 0.

Using the property, ηB + ηZCB = 1, again

F t(t, rt;T ) + (µ− σλ)F r(t, rt;T ) +
1

2
σ2F rr(t, rt;T )− F r(t, rt;T )rt = 0.

Recall the boundary condition F (T, rT ;T ) = 1. Then we have found what is called the

term structure equation.

3Under the risk neutral measure the Brownian motion should fluctuate around the path of the Nor-
malizer (the risk free asset)
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Proposition 2.7 (Term structure equation):

In an arbitrage free market F (t, rt;T ) will satisfy the term structure equation

F t(t, rt;T ) + (µ− σλ)F r(t, rt;T ) + 1
2
σ2F rr(t, rt;T )− F (t, rt;T )rt = 0,

F (T, rT ;T ) = 1.

We can in fact generalize this equation to all T-claims, where we have the boundary

condition F (τ, rτ , T ) = Φ(rτ ), for a contract Φ. Here we see what was meant by the view

of a ZCB price being the financial derivative w.r.t. the underlying process rt and the

contract Φ(rτ ) = 1.

We generalize the Proposition (2.7) for all T-claims and apply the Feynman-Kac stochastic

representation formula.

Proposition 2.8:

Let a T-claim be contracted as Φ(rτ ). Then in an arbitrage free market the price of the

contract at time t is

p(t; Φ) = F (t, r(t);T ),

where the functional 4 F solves the boundary condition

F t(t, rt;T ) + (µ− σλ)F r(t, rt;T ) + 1
2
σ2F rr(t, rt;T )]− F (t, rt;T )rt = 0,

F (τ, rτ ;T ) = Φ(rτ ).

Further more by the Feynman-Kac stochastic representation, F is solved by

F (t, r;T ) = B(t)−1EQ

[
B(τ)Φ(rτ )|Ft

]
,

where rt is Ft-adapted stochastic process with the following Q-dynamics

drt = [µ(t, rt)− λtσ(t, rt)]dt+ σ(t, rt)dW
Q
t .

4A functional is a function of a function
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As long as we have a finite dimension of noises the normalizer (risk free asset) could in

fact be an ZCB with maturity S 6= T (see [1]).

Martingale modeling

It is common to define the rt dynamics under the Q-measure. This is in literature, [1],

referred to as Martingale modeling. This means that instead of having an representation

of the Q-dynamics in the following way

drt = [µ(t, rt)− λtσ(t, rt)]dt+ σ(t, rt)dW
Q
t ,

we neglect5 the second term in the drift and define models through the dynamics

drt = µ(t, rt)dt+ σ(t, rt)dW
Q
t .

2.2.2 Affine Term Structure Models

Affine term structure models are a family of models that have a certain ”nice” solution

to ZCB prices. All of the models presented in the upcoming section have an Affine Term

Structure.

Definition 2.9 (Affine Term Structure Models):

If the solution to the term structure equation (prop. 2.7) F (t, rt;T ) is on the form

F (t, rt;T ) = exp
{
A(t, T )−B(t, T )rt

}
, (2.11)

where A(t, T ) and B(t, T ) are deterministic functions, then the model possesses an Affine

term structure.

5More precisely neglect the procedure of going from P-dynamics to Q-dynamics
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Given an affine term structure, the term structure equation6 have the following form

At(t, T )− rtBt(t, T )− µ(t, rt)B(t, T ) +
1

2
σ(t, rt)

2B(t, T )2 − rt = 0. (2.12)

In order for the solution to satisfy the boundary value condition in the term structure

equation the functions A and B need to satisfy the boundary values

A(T, T ) = 0,

B(T, T ) = 0.

Assume that the drift and the volatility structure have the following form [1],

µ(t, rt) = α(t)rt + β(t),

σ(t, rt) =
√
γ(t)rt + δ(t),

and put them into the term structure equation (2.11). Then

At(t, T )− rtBt(t, T )− (α(t)rt + β(t))B(t, T ) +
1

2

(√
γ(t)rt + δ(t)

)2
B(t, T )2 − rt = 0.

Because the term structure equation holds for every rt we get, by dividing the terms w.r.t.

rt-relations, following two systems to solve

At(t, T )− β(t)B(t, T ) + 1
2
δ(t)B(t, T )2 = 0,

rt
(
−Bt(t, T )− α(t)B(t, T ) + 1

2
γ(t)B(t, T )2

)
= rt.

This leads us to the following proposition.

Proposition 2.10 (Affine Term Structure):

Assume that µ and σ are given as

µ(t, rt) = α(t)rt + β(t),

σ(t, rt) =
√
γ(t)rt + δ(t),

6Remember that we are using Martingale modeling



Chapter 2. Short Rate Models 13

then we have a solution of the term structure on the form

F (t, rt;T ) = exp
{
A(t, T )−B(t, T )rt

}
, (2.13)

where B(t, T ) and A(t, T ) are solved through the differential equations Bt(t, T ) + α(t)B(t, T )− 1
2
γ(t)B(t, T )2 = −1

B(T, T ) = 0

and  At(t, T )− β(t)B(t, T ) + 1
2
δ(t)B(t, T )2 = 0

A(T, T ) = 0

respectively.

This type of differential equation is commonly referred to as Riccati equations.

2.2.3 Some specific short rate models

We are going to present three short rate models. The three models are well known as the

Vasicek, Cox-Ingersoll-Ross and Hull-White model [7];

Vasicek: drt = k[θ − rt]dt+ σdWQ
t ,

CIR: drt = k[θ − rt]dt+ σ
√
rtdW

Q
t ,

Hull-White: drt = [θt − atrt]dt+ σtdW
Q
t .

All models have their pros and cons. From a mathematical educational point of view,

showing the approach rather than finding the dynamics fitted perfectly in the market is

important. The Vasicek model deficiency is that it allows, with probability (or the to

high probability) bigger than zero of having negative interest rates. But in methodical

research the model is very nice because of the simple structure, and we find analytical

solution to both ZCB prices and option-prices easily.
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The CIR model is a non-negative short rate model. Its deficiency is that it doesn’t provide

a satisfying noise term, and that it is difficult to deal with, although it provides analytical

solutions to the most important derivatives7.

The Hull-White model is similar (extension) to the Vasicek model with the exception

of possible t dependence in the parameters. This improvement provides a consistency

relation with today’s term structure (or yield curve observed today).

Vasicek Model

As we defined earlier the Vasicek model have the following Q-dynamics,

drt = k[θ − rt]dt+ σdWQ
t . (2.14)

We can solve the SDE quite easily by using Itô’s formula on the function g(t, x) = ektx,

where the underlying process is rt. We derive

dek trt = k ek t rt dt+ ek tdrt

(The dynamics) = θ ek tdt+ ek t σ dWQ
t .

Solving this equation over the interval [s, t] yields

rt = e−k (t−s) rs + θ (1− e−k(t−s)) +

∫ t

s

σ e−k (t−u) dWQ
u . (2.15)

See Figure 2.1 for an example of a possible trajectory of rt using exact discretization.

From equation (2.15) we see that the only element from the filtration Fs we need in order

to say something about the future value of rt is rs. This is the Markov property, which,

heuristically, is the property that the future trajectory is only dependent on today’s state.

To derive the ZCB price we are going to use this useful fact.

There is two ways of deriving a pricing formula. One way is to use the fact that a Vasicek

model is within the Affine model framework and solve the term structure equation. This

7Recall that the ZCB-price is seen as a derivative w.r.t. the contract Φ(rT )
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T = 2; s = 0; r = 0.03; q = 0.06; k = 0.01; s = 0.04; d = 0.01;

sum@d_, T_, s_, s_D := TableBs Exp@-k tD RandomVariate@NormalDistribution@0, Sqrt@dDDD, :t, T - s

d
>F ;

Accsum = Accumulate@sum@d, T, s, sDD;
shortrate@T_, s_, r_, q_, k_, d_D := TableBr Exp@-k tD + q H1 - Exp@-k tDL + AccsumBB IntegerPartB t

d
F FF,

8t, s + d, T, d<F;
Interestratecurve = Transpose@8Table@i, 8i, 0, T, d<D, Prepend@shortrate@T, s, r, q, k, dD, rD<D;
ListLinePlot@Interestratecurve, ImageSize Æ Large, PlotRange Æ 880, T<, 80, 0.07<<, LabelStyle Æ Bold,
PlotStyle Æ Black, FrameStyle Æ ThickD

0.0 0.5 1.0 1.5 2.0
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 2.1: Program for one possible path of the Vasicek model

approach we use for the CIR model, while for the Vasicek we use the Feynman-Kac

representation formula. Let the contract be Φ(rT ) = 1. Then from Proposition 2.8 the

ZCB price P (t, T ) can be derived by solving the expectation

P (t, T ) = EQ

[ Bt

BT

1 | Ft
]
. (2.16)

By putting in for the normalizer, Bt, and the short rate, rt, we derive the following

integrand, using the Markov property

P (t, T ) = EQ

[
exp

{
−
∫ T

t

[ek (t−s) rt +
1

k
θ (1− ek(t−s)) +

∫ s

t

σ ek (u−s) dWQ
u ]ds

}
|rt
]
.
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Because of the first part being Ft-measurable and deterministic we simplify the solution

to

P (t, T ) = exp
{
−
∫ T

t

ek (t−s) rt+
1

k
θ (1−ek(t−s))ds

}
EQ

[
exp

{
−
∫ T

t

∫ s

t

σ ek (u−s) dWQ
u ds

}]
.

The first integral is easily solvable. We therefore approach the solution of the second

term. To find an solution we need to use the stochastic Fubini theorem and the moment

generating function for a Gaussian distributed random variable. Firstly, by the stochastic

Fubini theorem, we can rewrite the stochastic-deterministic integral as

∫ T

t

∫ s

t

σ ek (u−s) dWQ
u ds =

∫ T

0

∫ T

0

1[t,T ](s)1[t,s](u)σ ek (u−s) dWQ
u ds

(S.Fubini) =

∫ T

0

∫ T

0

1[t,T ](s)1[t,s](u)σ ek (u−s) ds dWQ
u ,

where we change the integrand in the following matter

1[t,T ](s)1[t,s](u) = 1[t,T ](s)1[t,s](u)1[t,T ](u) = 1[t,T ](s)1[u,∞)(s)1[t,T ](u).

Hence,

∫ T

0

∫ T

0

1[u,T ](s)1[t,T ](u)σ ek (u−s) ds dWQ
u =

∫ T

t

∫ T

u

σ ek (u−s) ds dWQ
u .

The next procedure is to use the moment generating function. The moment generating

function for a Gaussian distributed r.v. X is given by

MX(t)
def
= E[eXt] = etE[X]+ 1

2
t2V ar[X].

Letting t = 1 and X =
∫ T
t

∫ T
u
σ ek (u−s) ds dWQ

u , which clearly is Gaussian distributed

due to the definition of the Itô integral and the deterministic integrand, we find the

expectation to be zero8 and variance

V arQ[−
∫ T

t

∫ T

u

σ ek (u−s) ds dWQ
u ] =

∫ T

t

(∫ T

u

σ ek (u−s) ds
)2

du.

8The expectation of a Itô integral is zero
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Rewriting the integral yields

2

∫ T

t

∫ T

u

∫ v

u

σ2 ek (u−s)ek (u−v) ds dv du = −σ
2

k
B(t, T )2 − σ2

k2
(B(t, T )− T + t),

where B(t, T ) = 1
k

(
1− e−k(T−t)).

Then we have derived the price of the ZCB given the Vasicek model.

P (t, T ) = exp
{
A(t, T )−B(t, T ) rt

}
, (2.17)

where

A(t, T ) =
(θ
k
− σ2

2k2

)
(B(t, T )− T + t)− σ2

4k
B(t, T )2.

We see that the ZCB price given the Vasicek model have an Affine structure.

Example 2.1:

Let the time-interval; [t = 0.2, T = 1], interest rate at time t; rt = 0.03, the long run

interest rate; θ = 0.06, the speed of the mean reversion; k = 0.01 and the volatility be;

σ = 0.02. Then by the program in Figure 2.2 we find the price of the ZCB. P (t, T ) =

0.957893.

B@t_, T_D :=
1

k
H1 - Exp@-k HT - tLDL

A@t_, T_D :=
q

k
-
s2

2 k2
HB@t, TD - T + tL - s2

4 k
B@t, TD2

P@t_, T_, r_D := Exp@A@t, TD - B@t, TD rD
T = 1; t = 0.2; r = 0.03; q = 0.06; k = 0.01; s = 0.02;
P@t, T, rD
0.957893

Figure 2.2: Program for finding the ZCB price using the Vasicek model

Cox-Ingersoll-Ross model

The Q-dynamics of the CIR model is

drt = k[θ − rt]dt+ σ
√
rtdW

Q
t .
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The model is constructed s.t. the short rate doesn’t become negative. This comes from

the fact that the CIR model is connected to a squared Ornstein-Uhlenbeck process

dXt = −αXtdt+ βdWt.

We show this fact by using Itô formula for g(t, x) =
√
x, with the underlying process

x = rt. Then

d
√
r(t) =

1

2
r(t)−

1
2 dr(t)− 1

4
r(t)−

3
2 (dr(t))2

=
1

2
r(t)−

1
2 ( k[θ − r(t)]dt+ σ

√
r(t)dWQ

t )− 1

4
r(t)−

3
2 σ2r(t)dt

=
1

2
r(t)−

1
2 (k θ − 1

2
σ2)dt+

1

2

(
− k
√
r(t)dt+ σdWQ

t

)
(k θ =

1

2
σ2) =

1

2

(
− k
√
r(t)dt+ σdWQ

t

)
.

This is obvious an Ornstein-Uhlenbeck process for Xt =
√
rt, α = 1

2
k and β = 1

2
σ. Since

an Ornstein-Uhlenbeck obvious is Gaussian distributed we have that the CIR model is

some form of a non-central χ2 distributed r.v. .

Using the fact that the CIR model has an affine term structure,

α(t) = −k, β(t) = kθ, γ(t) = σ2, δ(t) = 0,

we use Proposition 2.10 to derive the ZCB price. Hence we have the following two systems

to solve

Bt(t, T )− kB(t, T )− 1
2
σ2B(t, T )2 = −1

B(T, T ) = 0,

and

At(t, T ) = k θB(t, T )

A(T, T ) = 0.

In this case we are going to use (Mathematica) to help us. By Appendix B.1.1 we find

that

B(t, T ) =
2(eh(T−t) − 1)

2h+ (k + h)(eh(T−t) − 1)
, (2.18)
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and

A(t, T ) =
kθ(h+ k)(T − t) + 2 log[2h]− 2 log[h− k + (h+ k)eh(T−t)]

σ2
. (2.19)

In the same manner as the Vasicek section we provide a program for pricing the ZCB via

the CIR-model.

Example 2.2:

Here is a program scheme for the price of a ZCB with the CIR-model as the underlying

short rate process. Let the time interval; [t = 0.2, T = 1], short rate at time t; rt = 0.03,

mean reversion parameter θ = 0.06; speed of convergence; k = 0.01, and the volatility

be; σ = 0.02. Then the price of the ZCB is 0.976193 by Figure 2.3.

B2@t_, T_, h_D :=
2 HExp@h HT - tLD - 1L

2 h + Hk + hL HExp@h HT - tLD - 1L
A2@t_, T_, h_D :=

2 k q Ih T + k T + 2 LogA„-h T I„h T Hh - kL + „h T Hh + kLMEM
Hh - kL Hh + kL -

2 k q IHh + kL t + 2 LogA„-h t I„h t Hh - kL + „h T Hh + kLMEM
Hh - kL Hh + kL

P@t_, T_, h_, r_D := Exp@A2@t, T, hD - B2@t, T, hD rD
T = 1; t = 0.2; r = 0.03; q = 0.06; k = 0.01; s = 0.02;

PBt, T, k2 + 2 s2 , rF
0.976193

Figure 2.3: Program for finding the ZCB price using the CIR model

Example 2.3:

For the Vasicek model we provided a plot of the trajectory to the short rate using ex-

act discretization. Instead of exact discretization we are going to use an Euler type of

stochastic discretization. The approximation improves for smaller ∆t. The scheme is

shown in Figure 2.4.

Hull-White model

The Hull-White model is an extension of the Vasicek model where the parameters have

time dependence. Recall that the Q-dynamics when using the Hull-White model is on

the form

drt = [θt − atrt]dt+ σtdW
Q
t . (2.20)
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Dt = 0.1; r = 0.03; q = 0.06; k = 0.05; s = 0.02; m = 1000;
r = Table@r, 8i, m<D;
DoB
DW = RandomVariate@NormalDistribution@0, DtDD;
Dr = k Hq - r@@i - 1DDL Dt + H*Exp@-kHDt iLD*Ls r@@i - 1DD DW;
r@@iDD = r@@i - 1DD + Dr;
, 8i, 2, m<F

time = Table@i Dt, 8i, 0, m - 1<D;
rt = Transpose@8time, r<D;
ListLinePlot@rt, ImageSize Æ Large, PlotStyle Æ Black, FrameStyle Æ Thick, LabelStyle Æ Bold,
PlotRange Æ 80, 0.08<D

0 20 40 60 80 100

0.02

0.04

0.06

0.08

Figure 2.4: A short-rate trajectory using the CIR model

The main benefit of this model is that the initial forward (θt) and volatility curve (σt)

can be fitted. But the flexibility has it defiance in no analytical solutions in general

[3]. Therefore it is normal to reduce the model to time dependency only on θt when

investigating the model;

drt = [θt − a rt]dt+ σdWQ
t (2.21)

We easily see that the Hull-White model have affine term structure since we can choose

α(t) = a, β(t) = θt, γ(t) = 0 and δ(t) = σ. Solving the first part of the term structure

equation yields

B(t, T ) =
1

a
+ eatC1,

where, by solving w.r.t. the boundary value B(T, T ) = 0, we derive following solution

B(t, T ) =
1

a

(
1− e−a(T−t)).



Chapter 2. Short Rate Models 21

To find A(t, T ) we integrate or solve the second term structure equation,

A(t, T ) =

∫ T

t

θsB(s, T )ds− 1

2
σ2

∫ T

t

B(s, T )2ds. (2.22)

We want to choose θt s.t. it follows the initial forward curve. By the relation,

f(0, T ) =
∂ logP (0, T )

∂T
,

and knowing that the Hull-White model has an affine term structure we derive that

f(0, T ) =
∂

∂T

(
A(0, T )− r(0)B(0, T )

)
. (2.23)

Plugging in for A(0, T ) and B(0, T )

f(0, T ) =
∂

∂T

( ∫ T

0

θsB(s, T )ds− 1

2
σ2

∫ T

0

B(s, T )2ds− r(0)
1

a

(
1− e−aT

))
=

∂

∂T

∫ T

0

θsB(s, T )ds− 1

2a2
σ2e−2aT

(
eat − 1

)2 − r(0)e−aT

(Appendix B.1.2.1) =

∫ T

0

θs
∂

∂T
B(s, T )ds− 1

2a2
σ2e−2aT

(
eat − 1

)2 − r(0)e−aT .

Define

ψ(T )
def
=

∫ T

0

∂

∂T
θsB(s, T )ds− r0e−aT

and

h(T )
def
=

1

2a2
σ2e−2aT

(
eat − 1

)2
.

Then

ψ(T ) = f(0, T ) + h(T ).

By further calculation in appendix B.1.2.2 we derive that

∂

∂T
ψ(T ) = θT − aψ(T ).
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Putting in for ψ yields that

θT =
∂

∂T

[
(f(0, t) + h(T ))

]
+ a(f(0, T ) + h(T )).

In order to calculate θT we need to fit the initial forward curve e.g. by a parametric

model, and estimate a and σ.

Example 2.4:

We fit the initial forward using the Svensson family. The Svensson family parametric

model is defined as [8]

fS(x, z) = z1 + (z2 + z3x)e−z4x + z5xe−z6x. (2.24)

Since we observe the yield curves, we use the defined relation

Y (t, T )
def
=

1

T − t

∫ T

t

f(t, s)ds,

and estimate the parameters. We see by Figure 2.5 that we get a fairly good estimate

of the parameters. Calculating θT , we derive a price for the ZCB given that a = 0.3,

σ = 0.02, t = 0.2, T = 2.2 and the short rate at time 0 is r0 = 0.0128. From Figure 2.6

we see that the price of the ZCB is 0.981973.
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fS@T_, 8z1_, z2_, z3_, z4_, z5_, z6_<D := z1 + Hz2 + z3 TL Exp@-z4 T D + z5 T Exp@-z6 TD
YieldCurve@T_, 8z1_, z2_, z3_, z4_, z5_, z6_<D :=

1

T
T z1 +

z2 - „-T z4 z2

z4
+
z3 I1 - „-T z4 H1 + T z4LM

z42
+
z5 I1 - „-T z6 H1 + T z6LM

z62

Y = 81.24, 1.31, 1.32, 1.28, 1.42, 1.73, 2.20, 2.67, 2.91, 3.01< ê100;
TtoM = TableBi , :i, : 3

12
,

6

12
,

9

12
, 1, 1 +

2

12
, 3 +

2

12
, 5 +

2

12
, 7 +

2

12
, 9 +

2

12
, 10>>F;

Ymin = NMinimizeASumAHYieldCurve@TtoM@@iDD, 8z1, z2, z3, z4, z5, z6<D - Y@@iDDL2, 8i, Length@YD<E,
8z1, z2, z3, z4, z5, z6<E;

First@YminD
1.06656¥10-6

ZEst = 8z1, z2, z3, z4, z5, z6< ê. Last@YminD;
Show@Plot@YieldCurve@T, ZEstD, 8T, 0, 10<, ImageSize Æ Large, PlotStyle Æ BlackD,
ListPlot@Transpose@8TtoM, Y<D, PlotStyle Æ BlackD, PlotRange Æ 80, 0.035<, AxesOrigin Æ 0,
LabelStyle Æ BoldD
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Figure 2.5: Estimating the Svensson Curve

a = 0.03; s = 0.02; r = 0.0128;

h@T_D :=
1

2 a2
s2 Exp@-2 a TD HExp@a TD - 1L2

q@T_D := D@fS@T, ZEstD + h@TD, TD + a H fS@T, ZEstD + h@TDL
B@t_, T_D :=

1

a
H1 - Exp@-a HT - tLDL

A@t_, T_D := Integrate@q@sD B@s, TD, 8s, t, T<D - 1

2
s2 IntegrateAB@s, TD2, 8s, t, T<E

P@t_, T_D := Exp@A@t, TD - r B@t, TDD
P@0.2, 2.2D
0.981973

Figure 2.6: ZCB price using the Hull-White model with the Svensson Family
describing the initial forward curve





Chapter 3

A first look at the HJM-model

The HJM-Model describes the instantaneous forward rate rather than the short rate.

This means that the SDE have the following form under the Q-measure,

df(t, u) = α(t, u)dt+ σ(t, u)dWQ
t ,

or equivalent,

f(t, u) = f(0, u) +

∫ t

0

α(s, u)ds+

∫ t

0

σ(s, u)dWQ
s .

Definition 3.1 (Instantaneous forward rate [1]):

The instantaneous forward rate with maturity T , contracted at time t, are defined as

f(t, T )
def
= −∂ logP (t, T )

∂T
(3.1)

3.1 HJM no-arbitrage drift condition

Using Definition 3.1 the forward rate1

P (t, T ) = exp
{
−
∫ T

t

f(t, u)du
}
.

1Instantaneous forward rate

25
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By the First Fundamental theorem we would like the normalized ZCB price, P̃ (t, T ), to

be a Martingale under the Q-dynamics. Plugging in for the forward rate the normalized

ZCB price have the following path

P̃ (t, T ) = exp
{
−
( ∫ t

0

f(s, s)ds+

∫ T

t

f(t, u)du
)}
,

where f(s, s) = rs (definition 3.5). Using Fubini and Stochastic Fubini we derive that

∫ t

0

f(s, s)ds =

∫ t

0

f(0, s) +

∫ s

0

α(v, s)dv +

∫ s

0

σ(v, s)dWQ
v ds

(Fubini) =

∫ t

0

f(0, s)ds+

∫ T

0

∫ T

0

1[0,t](s)1[0,s](v)α(v, s) ds dv

+

∫ T

0

∫ T

0

1[0,t](s)1[0,v](u)σ(v, s)dsdWQ
v

=

∫ t

0

f(0, s)ds+

∫ t

0

∫ t

v

α(v, s) ds dv +

∫ t

0

∫ t

v

σ(v, s) ds dWQ
v ,

since

1[0,t](s)1[0,s](v) = 1[0,t](v)1[0,t](s)1[v,∞](s) = 1[0,t](v)1[v,t](s),

and

∫ T

t

f(t, u)du
fub.
=

∫ T

t

f(0, u)du+

∫ t

0

∫ T

t

α(v, u)dudv +

∫ t

0

∫ T

t

σ(v, u)dudWQ
v .

Adding the two integrals together yields

∫ T

t

f(t, u)du+

∫ t

0

f(u, u)du =

∫ T

0

f(0, u)du

+

∫ t

0

(∫ T

t

α(v, u)du+

∫ t

v

α(v, u)du
)
dv

+

∫ t

0

(∫ T

t

σ(v, u)du+

∫ t

v

σ(v, u)du
)
dWQ

v ,

which result in the equation

∫ T

0

f(0, u)du︸ ︷︷ ︸
Constant

+

∫ t

0

∫ T

v

α(u, v)dudv +

∫ t

0

∫ T

v

σ(v, u)dudWQ
v . (3.2)
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The first term is known (observed in the market), and the two last terms we define as

Xt, yielding the dynamics

dXt = α̃T (t, t)dt+ σ̃T (t, t)dWQ
t ,

where α̃ and σ̃ are defined as the integrands in equation (3.2). If we take a look at the

dynamics of the normalized ZCB price,

P̃ (t, T ) = e−(C+Xt),

we find, using Itô’s formula, that

dP̃ (t, T ) = −P̃ (t, T )dXt +
1

2
P̃ (t, T )(dXt)

2

= −P̃ (t, T )(α̃T (t, t)dt+ σ̃T (t, t)dWQ
t ) +

1

2
P̃ (t, T )σ̃T (t, t)2dt

= P̃ (t, T )
(1

2
σ̃T (t, t)2 − α̃T (t, t)

)
dt− P̃ (t, T )σ̃T (t, t)dWQ

t .

By the First Fundamental theorem the normalized ZCB price need to be a Martingale

since we assume arbitrage free prices. Hence

1

2
σ̃T (t, t)2 − α̃T (t, t) = 0,

yielding the no arbitrage drift condition,

α(t, T ) = σ(t, T )

∫ T

t

σ(t, u)du, (3.3)

when differentiating w.r.t. T on both sides.

Theorem 3.2 (HJM no-arbitrage condition):

If we assume no arbitrage, then by the First Fundamental theorem the risk neutral dy-

namics of f(t, u) is on the form

f(t, u) = f(0, u) +

∫ t

0

α(s, u)ds+

∫ t

0

σ(s, u)dWQ
s , (3.4)
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where

α(t, T ) = σ(t, T )

∫ T

t

σ(t, u)du, (3.5)

referred to as the HJM no-arbitrage condition.

3.2 The Musiela Parametrization

Instead of using the parametrization time-of-maturity, T , Musiela proposed to use time-

to-maturity, x = T − t. This yield a slight difference in the forward rate dynamics.

Define

ft(x)
def
= f(t, t+ x) (3.6)

Because of the Musiela parametrization we get a t-dependence in the second variable.

Let ∂
∂T

stand for differentiating w.r.t. to the second variable. Then formally

dft(x) = df(t, t+ x) = df(t; t+ x) +
∂

∂T
f(t, t+ x)dt

= α(t, t+ x)dt+ σ(t, t+ x)dWQ
t +

∂

∂T
f(t, t+ x)dt.

We observe that

df(t, T ) = dft(T − t)

= dft(x)− ∂

∂x
ft(T − t)dt

= α(t, t+ x)dt+ σ(t, t+ x)dWQ
t +

∂

∂T
f(t, t+ x)dt− ∂

∂x
ft(T − t)dt,

which we know is equal to

α(t, t+ x)dt+ σ(t, t+ x)dWQ
t .

Hence,
∂

∂T
f(t, t+ x)dt =

∂

∂x
ft(T − t)dt.
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Proposition 3.3 (The Musiela Equation):

Assume that we have the forward rate dynamics under Q given as

df(t, T ) = α(t, T )dt+ σ(t, T )dWQ
t . (3.7)

Then by the Musiela parametrization ft(x) = f(t, t+ x) we have the following dynamic

dft(x) =
[( ∂
∂x
ft(T − t) + αt(x)

)
dt+ σt(x)dWQ

t

]
x=T−t

, (3.8)

commonly referred to as the Musiela equation, where

σt(x) = σ(t, t+ x),

αt(x) = σt(x)

∫ x

0

σt(u)du.

3.3 Choices of Volatility structure

In the forthcoming we are going to show some choices of volatility structure. We start

with the Vasicek and Hull-White because the choices of volatility structure are identical

in the non t-dependence case. In fact, then the Vasicek model is a specific choice of the

initial forward rate.

3.3.1 Vasicek and Hull-White

Assume that σ(t, T ) = σe−k(T−t). Then the arbitrage-free drift condition provide the

following drift

α(t, T ) = σ(t, T )

∫ T

t

σ(t, s)ds

= σe−k(T−t)
∫ T

t

σe−k(s−t)ds

= −σe−k(T−t) 1

k

[
σe−k(s−t)

]T
s=t

=
σ2

k
e−k(T−t)(1− e−k(T−t)).
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Putting into the forward rate yields

f(t, T ) = f(0, T ) +

∫ t

0

σ2

k
e−k(T−s)(1− e−k(T−s))ds+

∫ t

0

e−k(T−s)σdWs

(Integrating) = f(0, T ) +
σ2

k2
e−kT

(e−kT
2
− 1− e2kt−kT

2
+ ekt

)
+

∫ t

0

e−k(T−s)σdWs.

Using the relation rt = f(t, t) we deduce that

rt = f(0, T ) +
σ2

2k

(
e−2kt − 2e−kt− 1 + 2

)
+

∫ t

0

e−k(t−s)dWs

= f(0, t) +
σ2

2k2

(
1− e−kt

)2
+

∫ t

0

e−k(t−s)σdWs.

Define φ(t)
def
= f(0, t) + σ2

2k2

(
1− e−kt

)2
and Xt =

∫ t
0
σeksdWs. Then

rt = φ(t) + e−ktXt.

Using Itô’s formula, with Xt as the underlying process yields

drt = (φ′(t)− kXt)dt+ e−ktdXt

= (φ′(t)− k(r(t) + φ(t))dt+ σdWt

= k
(φ′(t)− kφ(t)

k
− r(t)

)
+ σdWt

def
= k

(
θ(t)− r(t)

)
dt+ σdWt.

This is the Hull-White model. The Vasicek model is the specific choice of θ(t) = θ. From

earlier deductions we know that, given the specific choice of mean reversion,

rt = e−ktr0 + θ(1− e−kt) +

∫ t

0

σe−k(t−u)dWu.

Hence if we choose

f(0, t) = r0e
−kt + θ(1− e−kt)− σ2

2k2

(
1− e−kt

)2



Chapter 3. A first look at the HJM-model 31

we derived the Vasicek model. An another way of deriving the same initial forward rate

is provided in appendix B. There we solve the differential equation

θ(t) = θ

w.r.t. the initial forward rate.

3.3.2 CIR

Letting σ(t, T ) = e−k(T−t)
√
r(t)σ we derive the CIR-model when specifying the initial

forward rate structure. Using the arbitrage-free drift condition the drift in the model

becomes

α(t, T ) = σ(t, T )

∫ T

t

σ(t, u)du

= e−k(T−t)
√
r(t)σ

∫ t

0

e−k(u−t)
√
r(t)σdu

= e−k(T−t)r(t)σ2 1

k
(1− e−k(T−t)).

Putting in for the the drift we find the forward rate,

f(t, T ) = f(0, T ) +

∫ t

0

e−k(T−s)rs
σ2

k

(
1− e−k(T−s))ds+

∫ t

0

e−k(T−s)σ
√
r(s)dWs,

and the short-rate,

rt = f(0, t) +

∫ t

0

e−k(t−s)rs
σ2

k

(
1− e−k(t−s))ds+

∫ t

0

e−k(t−s)σ
√
r(s)dWs.

Defining

φ(t) = f(0, t) +

∫ t

0

e−k(t−s)r(s)
σ2

k

(
1− e−k(t−s))ds

and letting

Xt =

∫ t

0

eksσ
√
r(s)dWs
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yields the same procedure as above. By Itô’s formula

dr(t) = k
(θ′(t)− kθ(t)

k
− r(t)

)
dt+

√
r(t)σdWt.

Then solving the differential equation

θ′(t)− kθ(t)
k

= θ

w.r.t. the initial forward rate yields the CIR model.

3.4 Calibration of the forward curve: An introduc-

tion

In the market we observe bond prices. The first task is to derive the yield-to-maturity

(YTM) curve. The YTM is the annual return of holding a bond. To calculate the YTM

we need (in parentheses Norway)

• Maturity date

• Settlement date (trade date + 3 working days)

• Bond prices

• Face Value (100)

• Coupon rate

• Coupon interval (Annual)

• Day convention (Actual/365)

Then the YTM is the solution of

PVB =
FV

(1 + Y TM)
M−1

I
+ n

365

+
M−1∑
i=0

CiFV

I(1 + Y TM)
i
I

+ n
365

,
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where PVB is the present value of the bond(observed price), FV is the face value, Ci is

the coupon rate, I is the coupon interval, M is the number of payments until maturity

and n is the number of days until the first payment. When we are solving w.r.t. Y TM ,

numerical approaches is preferable.

When the YTM is calculated we want to find the continuously compounded spot rate

defined as

Y (t, T ) = − log[P (t, T )]

(T − t)
,

where P (t, T ) is the ZCB price. The reason we want to find the continuously compounded

spot rate is because of the relation

Y (t, T ) =
1

T − t

∫ T

t

f(t, s)ds.

When we have found the Y TM ’s we can easily calculate the related ZCB price by

PVZCB =
1

(1 + Y TM)
m
365

,

where m is the number of days between the settlement date and maturity date. Having

the ZCB price we derive the observed continuously compounded spot rate

Y obs = − log[PVZCB]
m

365

.

A first time calibration:

Recall that the forward rate is the solution

f(t, T ) = f(0, T ) +

∫ t

0

α(s, T )ds+

∫ t

0

σ(s, T )dWQ
s ,

where α(t, T ) follow the arbitrage-free drift condition. Because of the arbitrage drift

condition we only need to calibrate the initial forward curve f(0, T ) and the volatility

structure σ(t, T ). We calibrate the initial forward rate due to today’s forward curve, using
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e.g. smoothing splines, Svensson curve or Nelson-Siegel curve. In Norway the Svensson

curve is used [3].

Because of Girsanov’s theorem the volatility structure is equal under the objective proba-

bility measure P and under the Equivalent Martingale measure Q. Therefore the volatility

structure σ(t, T ) can be estimated through historical data. We have observed the contin-

uously compounded spot rate

Y (t, T ) =
1

T − t

∫ T

t

f(t, s)ds.

Putting in for the forward rate yields

=
1

T − t

∫ T

t

(
f(0, s) +

∫ t

0

α(u, s)du+

∫ t

0

σ(u, s)dWu

)
ds.

After calculating the continuously compounded spot rate for the time-to-maturity τk we

have a data set

xj(τk) = Y (tj, tj + τk),

for each time of observation t1, t2, . . . , tJ . Then it is two ways of estimating the volatility

structure. If the time-series {xj(τk)}Jj=1 have a small auto-correlation we can use the

pure observations. But if there are a clear auto-correlation, a common approach [3] is to

estimate the volatility structure w.r.t. the increments

∆xj(τk) = xj+1(τk)− xj(τk),

where tj+1 = tj + δ.

If there is a small auto-correlation we see that the volatility structure of the continuously

compounded spot rate is

V ar[Y (t, T )] =
1

(T − t)2
V ar[

∫ t

0

∫ T

t

σ(u, s)dWuds].
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Using stochastic Fubini theorem

=
1

(T − t)2
V ar[

∫ t

0

∫ T

t

σ(u, s)dsdWu]

=
1

(T − t)2

∫ t

0

E
[( ∫ T

t

σ(u, s)ds
)2]

du,

which for a deterministic volatility structure is

1

(T − t)2

∫ t

0

(∫ T

t

σ(u, s)ds
)2

du.

Example 3.1:

Assume the Vasicek/Hull-White volatility structure. Then

σ(u, s) = σe−k(s−u).

Integrating the inner integral yields

∫ T

t

σ(u, s)ds = −1

k
σ
(

e−k(T−u) − e−k(t−u)
)
.

By squaring the inner integral and integrating the outer integral,

∫ t

0

1

k2
σ2(e−k(T−u) − ek(t−u))2du =

σ2

2k3
e−2k(T+t)(e2kt − 1)(ekT − ekt)2,

we find the variance of the continuously compounding spot rate that we are estimating,

V ar[Y (t, T )] =
1

(T − t)2

σ2

2k3
e−2k(T+t)(e2kt − 1)(ekT − ekt)2

Note that, if we have day-to-day observations of the volatility, t = 1
365

.

�

If there are some auto-correlation we continue estimating the volatility structure based

on the increments of the observed continuously compounded spot rate. On increment
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form the continuously compounded spot rate take the form [1]

dY (t, T ) =
1

T − t

(
rt dt+

∫ T

t

α(t, s)ds dt+

∫ T

t

σ(t, s)ds dWt

)
.

Discretizing the time-steps yields

∆xj(τ) =
1

τ

(
rtj∆tj +

∫ tj+τ

tj

α(tj, s)ds∆tj +

∫ tj+τ

tj

σ(tj, s)ds∆Wtj

)
,

where ∆tj = δ. We then find that

V ar[∆xj(τ)] = V ar
[1

τ

(
rtj∆tj +

∫ tj+τ

tj

α(tj, s)ds∆tj +

∫ tj+τ

tj

σ(tj, s)ds∆Wtj

)]
=

1

τ 2

(∫ tj+τ

tj

σ(tj, s)ds
)2

V ar[∆Wtj ]

=
1

τ 2

(∫ tj+τ

tj

σ(tj, s)ds
)2

∆tj,

for a deterministic volatility structure.

Estimating procedure using PCA

The estimating procedure of the volatility structure is as follows:

• Use Principal Component Analysis to find an approximation (the important com-

ponents) of time-to-maturity specific risk

• Choose and fit volatility structures for the important volatility components

A market observation is that there are time-to-maturity specific risk. In the forthcoming

chapters we are going to present models of possible infinite time-to-maturity. If we follow

the market observation we then have infinite dimension of noise. Clearly we need to reduce

the amount of dimensions, and our tool is Principal Component Analysis. Principal

Component Analysis within interest rate theory is presented in both [3] and [8]. PCA is

based on the spectral decomposition theorem.
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Assume that we can decompose the vector into

X = µ+ AY = µ+
∑
i≥1

Yiai,

where

E[X] = µ and Cov[X] = Q = ALAT ,

E[Y ] = 0 and Cov[Y ] = L,

and ALAT is the spectral decomposition with L as the diagonal matrix of eigenvalues,

DiagM{λi}i≥1. Estimating the covariance matrix Q based on K time-to-maturities we

have by the spectral decomposition that

Q =
K∑
k=1

λiaia
T
i ,

where ai’s are the vector elements in matrix A. A good property of the decomposition

presented is that the total variance of X is equal to the total variation of Y

K∑
k=1

V ar[Xk] =
K∑
k=1

V ar[Yk] = tr[L].

This means that for a d ≤ K we describe

∑d
k=1 V ar[Yk]

tr[L]

amount of the total variation by the d first components. Observing that the d first com-

ponents describe more than e.g. 99% of the variance we can approximate the covariance

matrix

Q ≈ Qapprox =
d∑
i=1

λiaia
T
i .

We estimate the volatility structure of d-th component minimizing e.g. by the least square

K∑
k=1

(√
λkakaTk −

1

τk

∫ tj+τk

tj

σ(tj, s)ds
)2

→ min
σ
.
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Hence we approximate the infinite dimension of noise term by

df(t, T ) = α(t, T )dt+ σ1(t, T )dW 1
t + σ2(t, T )dW 2

t + · · ·+ σd(t, T )dW d
t ,

where W k
t , for k = 1, . . . , d, are independent Brownian Motion. Then the arbitrage drift

condition is

α(t, T ) =
d∑

k=1

σk(t, T )

∫ T

t

σ(t, s)ds.

Within interest rate theory three components is usually sufficient for an good approxi-

mation of the volatility structure. A code for the Principal Component Analysis for the

first example in [8] is presented in Chapter 7.



Chapter 4

Infinite Dimensional Stochastic

Analysis

There are two aspects concerning infinite dimensional modeling of the term structure.

The first aspect is modeling of the dynamics in time and space with time-to-maturity as

the space variable. Then we get an infinite maturity horizon. This problem we already

approached under the first view of HJM-modeling through the Musiela parametrization.

A market view is that there exists maturity specific noise. With an infinite maturity

horizon we need infinitely many sources of noise. This actually leads to the field of

infinite dimensional stochastic analysis.

The finite dimensional stochastic model has the following shortcoming from the viewpoint

of a fixed trader. From a complete market1 point of view we can by a finite dimension

of noises perfectly hedge (i.e. replicate) a, e.g., call option on a bond with x = 5 years

by means of a bond with x = 30 years. This contradicts market observations. The risk

we don’t take into account is the ”maturity specific risk”. Hence we would like to model

the maturity specific risk. The solution is a stochastic partial differential equation with

infinite dimensional noise. I.e. the instantaneous forward rate is modeled in the following

1We have an incomplete market and make it complete through using internal relations between the
same type of bonds(e.g. ZCB with its derivatives and maturities)

39
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way

dft(x) =
( ∂
∂x
ft(x) + αt(x)

)
dt+

∑
i∈N

σ
(i)
t (x)dW

(i)
t , (4.1)

where {W (i)
t }i≥1 are independent Brownian motions and each represent ”maturity specific

risk”.

4.1 Cylindrical Brownian Motion (CBM)

In this part we want to generalize infinite dimensional stochastic partial differential equa-

tions on the form

dX(t) = (drift)dt+
∑
i∈N

σ
(i)
t (x)dW

(i)
t . (4.2)

E.g. choosing σ
(i)
t ≡ 1 the variance

V ar[X(t)] ≥ V ar[

∫ t

0

∑
i∈N

σ(i)
s (x)dW (i)

s ]

=
∑
i∈N

V ar[W i
t ]

=
∑
i∈N

t =∞.

Therefore we need to introduce a framework for the study of SPDE’s. The solution

space for SPDE’s is a separable Hilbert space, on which we are going to put additional

constraints.

Definition 4.1 (Hilbert Space):

A Hilbert space H is a vector space with an inner product

〈·, ·〉 : H ×H 7→ R,

where the inner product has the following properties

1. 〈x+ y, z〉H = 〈x, z〉H+〈y, z〉H where x, y, z ∈ H (Linearity 1)

2. 〈αx, z〉H = α〈x, z〉H where x, z ∈ H and α ∈ R (Linearity 2)



Chapter 4. Infinite Stochastic Analysis 41

3. 〈αx, z〉H = 〈αz, x〉H where x, z ∈ H,

s.t. H is complete w.r.t. the norm

‖x‖ def=
√
〈x, x〉.

We remark that if H is complete then for each Cauchy sequences there exists an x ∈ H

which the sequence converges too. I.e. if ‖xn − xm‖ → 0 is a Cauchy sequence there

exists an x ∈ H s.t. ‖xn − x‖ → 0 when n→∞.

Definition 4.2 (Separable Hilbert Space):

A Hilbert space H is called separable if it exists a dense countable subset {y1, y2, . . . } of

H s.t. for all ε > 0 and all x ∈ H there exists y ∈ {y1, y2, . . . } s.t. ‖y − x‖H < ε.

The choice of Hilbert space becomes clear when we define the Cylindrical Brownian

motion. The reason for adding the separability is because we would prefer the Borel

σ-algebra2, B(H)3, to be equal the σ-algebra generated by ”balls”. This property is

preferable because the σ-algebra generated by the balls simplifies some of the proves. We

are not going through those, but rather refer to [8]4.

Theorem 4.3 (ONB Representation theorem):

Let H be a Hilbert space. Then there exists an orthonormal basis (ONB) uk, k ≥ 1 of H,

i.e.

〈ui, uj〉H =

 1, i = j

0, i 6= j,

s.t. for all x ∈ H we have the representation

x =
∑
k∈N

〈x, uk〉Huk.

2Sometimes referred as σ-field when working with random variable that is an element of R
3The Borel σ-algebra is the smallest σ-algebra generated by open balls. A existence of a dense

countable subset means that we can create balls that equal the Borel σ algebra
4Chapter 3
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Furthermore Parseval’s equality provides

‖x‖2
H =

∑
i∈N

〈x, ui〉2.

Before we use the definition of Brownian motion and Theorem (4.3) to define the Cylin-

drical Brownian motion we define the Cylindrical Gaussian measure.

Definition 4.4 (Cylindrical Gaussian Measure (CG) [4]):

Let H be a real separable Hilbert space, then the r.v. X : H 7→ L2(Ω,F ,P) on the

probability space (Ω,F ,P) is a Cylindrical Standard Gaussian if

1. The mapping X(h) is linear; i.e. X(αk + βh) = αX(k) + βX(h)

2. For an arbitrary h ∈ H, X(h) is a Gaussian r.v. with mean zero and variance ‖h‖2
H

3. If h, h′ ∈ H are orthogonal, i.e. 〈h, h′〉H = 0, then the r.v.s X(h) and X(h′) are

independent.

We note that by Theorem (4.3), letting {uj}j≥1 be an orthonormal basis in H and h ∈ H,

we can represent X(h) as a P-a.s. convergent series (by kolmogorov three series5)

X(h) = X
(∑
j∈N

〈h, uj〉Huj
)

=
∑
j∈N

〈h, uj〉HX(uj),

where in the last equality we used the linearity property in Definition (5.4).

Definition 4.5 (Cylindrical Brownian motion [4]):

A family {Wt}t≥0 defined on a filtered probability space (Ω,F , {Ft}t≥0,P) is called a

Cylindrical Brownian motion in a Hilbert space H if

1. For an arbitrary t ≥ 0 the mapping Wt : H 7→ L2(Ω,F ,P) is linear.

2. For an arbitrary h ∈ H, Wt(h) is an Ft-Brownian motion

(a) W0(h) = 0 P-a.s.

5[4]
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(b) For 0 ≤ t1 ≤ · · · ≤ tn = t we have that

Wt1(h),Wt2(h)−Wt1(h), . . . ,Wt(h)−Wtn−1(h)

are independent of each other.

(c) For t ≥ s we have that

Wt(h)−Ws(h)
d
= Wt−s(h)

are equally distributed, where Wt−s(h) ∼ CG
[
0, (t− s)‖h‖2

H

]
3. For arbitrary h, h′ ∈ H and t ≥ 0, E[Wt(h)Wt(h

′)] = t〈h, h′〉H

Because of the linearity we can represent the Cylindrical Brownian motion as a P-a.s.

convergent series

Wt(h) =
∑
j∈N

〈h, uj〉HWt(uj),

where {uj}j≥1 is an ONB in H and W1(uj), for j ≥ 1, is a sequence of independent

standard Gaussian distributed random variables.6

In the forthcoming we are going to work with the completed filtration generated by the

Cylindrical Brownian motion. I.e.

Ft = N ∪ σ{Wu; 0 ≤ u ≤ t},

where N stands for the P-null sets.

4.2 Itô integral w.r.t. Cylindrical Brownian Motion

Our class of function is going to be a subset of Hilbert-Schmidt operators. Therefore we

define the Hilbert-Schmidt operators first.

6‖uj‖2H = 1
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Definition 4.6 (Hilbert-Schmidt operators):

Let H and K be two Hilbert spaces. Then the operator

A : H −→ K

with the condition that
∑

l≤1‖A(ul)‖2
K < ∞ for an ONB ul, l ≥ 1 in H, is called a

Hilbert-Schmidt operator. The class of Hilbert-Schmidt operators from H to K is denoted

HS(H,K).

Definition 4.7:

Let L(H,K) = L[0,T ](H,K) be the class of functions f(t,ω) ∈ HS(H,K), i.e.

f(t,ω) : R+ × Ω −→ HS(H,K),

with the following properties

1. (t, w) 7→ f(t,ω) is B(R+) ⊗ F -measurable where B denotes the Borel σ-algebra and

h 7→ f(·,·)(h) is B(HS(H,K))-measurable

2. f(t,ω) is Ft-adapted

3. Existence of second moment: E
[ ∫ T

0
‖ft‖2

HS(H,K)dt
]
<∞

In the forthcoming we are going to make sense of the integral

IC [f ](ω) =

∫ T

0

f(t,ω)dWt, (4.3)

where f(t,ω) ∈ L(H,K). Firstly we construct the Itô integral w.r.t. CBM through defining

Itô integral w.r.t. CBM on elementary functions7. Then expand and show that the

elementary function can approximate the functions in L(H,K). After the procedure we

logically define the integral (4.3).

7Sometimes called elementary process
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An elementary function φ ∈ L(H,K) is defined as

φ(t,ω) = e0(w)10(t) +
n∑
j=1

ej(ω)1(tj ,tj+1](t), (4.4)

where 0 ≤ t1 ≤ · · · ≤ tn. We observe that ej must be Ftj -adapted. For an h ∈ H we

define the Itô integral w.r.t. the CBM in a Hilbert space K8 for elementary function as

(

∫ t

0

φ(t,ω)dWt)(h)
def
=

n∑
j=1

Wtj+1∧t[ej(h)]−Wtj∧t[ej(h)].

Using this definition we derive the Itô-isometry for elementary functions.

Lemma 4.8 (Itô-isometry):

If φ(t,ω) ∈ L(H,K) is a bounded elementary function then

E
[(( ∫ t

0

φsdWs

)
[h]
)2]

=

∫ T

0

E[‖φs(h)‖2
K ]ds <∞ (4.5)

Sketch of proof. Firstly we use the definition of the Itô integral w.r.t. CBM,

E
[(( ∫ t

0

φsdWs

)
[h]
)2]

= E
[( n∑

j=1

Wtj+1∧t[ej(h)]−Wtj∧t[ej(h)]
)2]

,

and divide the summation into two parts,

E
[ n∑
j=1

(
Wtj+1∧t[ej(h)]−Wtj∧t[ej(h)]

)2
]

+ E
[ n∑

(j 6=i)=1

(
Wtj+1∧t[ej(h)]−Wtj∧t[ej(h)]

)(
Wti+1∧t[ei(h)]−Wti∧t[ei(h)]

)]
.

Using the linearity property of expectation, and the property of the CBM we derive the

first expectation

E
[(
Wtj+1∧t[ej(h)]−Wtj∧t[ej(h)]

)2
]

= (tj+1 ∧ t− tj ∧ t)E
[
‖ej(h)‖2

K

]
.

8In [4] they have been proper with the definition of CBM and the space that the CBM is defined on.
This is why they need to work with adjoint operators
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When deriving the second expectation we use the rule of double expectation,

E
[
E
[(
Wtj+1∧t[ej(h)]−Wtj∧t[ej(h)]

)(
Wti+1∧t[ei(h)]−Wti∧t[ei(h)]

)
|Ftj∨ti

]]
.

Then i∧ j9-term is Ftj∨ti-measurable since i∧ j+ 1 ≤ j ∨ i when i 6= j, and the i∨ j-term

is independent of Ftj∨ti . Hence

E
[
E
[(
Wtj∨i+1∧t[ej∨i(h)]−Wtj∨i∧t[ej∨i(h)]

)]︸ ︷︷ ︸
=0 by CBM

rest
]

= 0.

Letting n→∞ we find that

n∑
j=1

(tj+1 ∧ t− tj ∧ t)E
[
‖ej(h)‖2

K

]
−→

∫ t

0

E[‖φ(h)‖2
K ]ds,

using linearity properties of the norm.

The next step is to approximate all functions in L(H,K) by an bounded elementary

function. This is proved through a three steps proof similar to [9].

Proposition 4.9 (The function space):

If f ∈ L(H,K), then there exists a sequence of bounded elementary functions φn, n ≤ 1

approximating f in L(H,K), i.e.,

‖φn(s)− fs‖L(H,K)2 = E
[ ∫ T

0

‖φn(s)− fs‖2
HS(H,K)dt

]
−→ 0

as n→∞.

Proof. [4]

It is possible to extend the class L(H,K) to P(H,K) where the main difference is that

instead of assuming existence of second moment we are weakening this property (def.4.7.3)

and assume

P
[ ∫ T

0

‖ft‖2
HS(H,K)dt <∞

]
= 1.

9∧ = inf , ∨ = sup
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The assumption create a local Itô integral w.r.t Cylindrical Brownian motion, where

clearly the relation L ⊂ P holds. In addition we need to work with progressive measurable

stochastic process where stopping times is a necessary concept (for a stopped process we

know that the second moment exists).

Itô integral w.r.t. independent CBM

Assume that Wt is a CBM in a Hilbert Space K, and let {ul}l≥1 ⊂ K be a sequence of

ONB in K. Then we have showed that for a k ∈ K

Wt(k) =
∑
l∈N

〈k, ul〉KWt(ul).

We clearly see that Wt(ul) is independent and distributed CG(0, t〈ul, ul〉) = CG(0, t)

which is identical in distribution to a Brownian motion. For simplicity we define Wt(ul) =

W l
t and refer it as a Brownian motion.

Let ft ∈ L(H,K) and h ∈ H, then we know that there exists a bounded elementary

function φt s.t. ( ∫ t

0

fsdWs

)
(h)

approx
=

( ∫ t

0

φsdWs

)
(h).

From the definition of the Itô integral w.r.t. Cylindrical Brownian motion

( ∫ t

0

φsdWs

)
(h) =

n∑
j=1

Wtj+1∧t[ej(h)]−Wtj∧t[ej(h)].

Since ej(h) ∈ K we use the ONB representation theorem (See 4.3) and rewrite the

elementary function for an ONB ul, l ≥ 1, as

ej(h) =
∑
l∈N

〈ej(h), ul〉Kul.
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Using the linearity property of the Cylindrical Brownian motion the sum is

=
n∑
j=1

∑
l∈N

〈ej(h), ul〉K(Wtj+1∧t[ul]−Wtj∧t[ul])

=
∑
l∈N

n∑
j=1

〈ej(h), ul〉K(W l
tj+1∧t −W

l
tj∧t).

Since φt ∈ L(H,K) we obviously have that 〈φt(h), ul〉K ∈ V [0, T ]. Let φlt(h)
def
= 〈φt(h), ul〉K .

Then φlt(h) ∈ V is an elementary function since

φlt = 〈φt(h), ul〉K = 〈e0(h)10(t)〉K +
n∑
j=1

〈ej(h)1(tj ,tj+1], ul〉K

(Inner product prop.) = 〈e0(h)10(t), ul〉K +
n∑
j=1

〈ej(h)1(tj ,tj+1](t), ul〉K

(Elementary function) = 〈e0(h), ul〉K10(t) +
n∑
j=1

〈ej(h), ul〉K1(tj ,tj+1](t)

def
= el0(h)10(t) +

n∑
j=1

elj(h)1(tj ,tj+1].

Let f lt ∈ V be approximated by φlt. Then

=
∑
l∈N

n∑
j=1

elj(h)
(
W l
tj+1∧t −W

l
tj∧t
)

(1-dim. Itô integral) =
∑
l∈N

∫ t

0

φls(h)dW l
s

(Approx.) =
∑
l∈N

∫ t

0

f ls(h)dW l
s.

Hence for an ft ∈ L(H,K), there exists an f lt ∈ V [0, T ] s.t.

( ∫ t

0

ftdWt

)
(h) =

∑
l∈N

∫ t

0

〈ft(h), ul〉KdW l
s (4.6)

=
∑
l∈N

∫ t

0

f ls(h)dW l
s. (4.7)
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4.3 Infinite Dimensional Itô Integral w.r.t. CBM

Let H,K be separable Hilbert spaces, ft ∈ L(H,K), Wt a CBM in the Hilbert space

K, and {gj}j≥1 ⊂ H be an ONB in H. Since ft ∈ L(H,K) there exists an elementary

function φt ∈ L(H, k) s.t. it approximate ft. Then

E
[(∑

i∈N

∫ t

0

φsdWs(gi)
)2
]
indp
=
∑
i∈N

E
[( ∫ t

0

φsdWs(gi)
)2
]

(Multip. with 1) =
∑
i∈N

E
[( ∫ t

0

φsdWs(gi)〈gi, gi〉H
)2
]

(Scalar) =
∑
i∈N

E
[〈 ∫ t

0

φsdWs(gi)gi, gi
〉2

H

]
.

On the other hand, by the Itô isometry deduced from the Itô integrals w.r.t. CBM, we

know as well that

∑
i∈N

E
[( ∫ t

0

φsdWs(gi)
)2
]

= E
[ ∫ t

0

∑
i∈N

‖φs(gi)‖2
Kds

]
= E

[ ∫ t

0

‖φs‖2
HS(H,K)ds

]
<∞

= ‖φs‖2
L(H,K).

The latter implies that E
[〈 ∫ t

0
φsdWs(gi)gi, gi

〉2

H

]
<∞. Using Parseval’s equality we have

that

E
[〈 ∫ t

0

φsdWs(gi)gi, gi
〉2

H

]
= E

[∥∥ ∫ t

0

φsdWs(gi)gi
∥∥2

H

]
.

From this point of view it is suitable to define the infinite dimensional Itô integral w.r.t.

CBM for an elementary processes as

∫ t

0

φsdWs
def
=
∑
i∈N

( ∫ t

0

φsdWs

)
(gi)gi

Clearly, by the calculations above
∫ t

0
φsdWs ∈ L2(P, H). We state the infinite dimensional

Itô isometry through the following proposition.
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Proposition 4.10 (Infinite Dimensional Itô Isometry):

Let φt ∈ L(H,K) be a bounded elementary function, then

‖
∫ t

0

φsdWs‖L2(Ω,H) = ‖φs‖L(H,K).

Proof. The calculations above.

Recall that a function ft ∈ L(H,K) can be approximated by a bounded elementary

function φt ∈ L(H,K). Using the definition of the Itô integral w.r.t. CBM we derive

that for a bounded elementary function

∑
i∈N

(

∫ t

0

φsdWs)(gi)gi =
∑
i∈N

n∑
j=1

(
Wtj+1∧t[ej(gi)]−Wtj∧t[ej(gi)]

)
gi

We see that the infinite dimensional Itô integral is a linear function. Using this property

we can derive the Itô integral w.r.t. CBM. For a function ft ∈ L(H,K) and h ∈ H we

have that

( ∫ t

0

fsdWs

)
(h) =

(∑
i∈N

( ∫ t

0

φsdWs

)
(gi)gi

)
(h)

(Linearity) =
〈∑
i∈N

( ∫ t

0

φsdWs

)
(gi)gi, h

〉
H

=
〈∑
i∈N

∑
l∈N

∫ t

0

〈φs(gi), ul〉KdW l
s gi, h

〉
H

(Scalar linearity) =
〈∑
l∈N

∫ t

0

∑
i∈N

〈φs(gi), ul〉KgidW l
s, h
〉
H

(Adjoint operator) =
〈∑
l∈N

∫ t

0

∑
i∈N

〈gi, φ∗s(ul)〉HgidW l
s, h
〉
H

(ONB representation thm.) =
〈∑
l∈N

∫ t

0

φ∗s(ul)dW
l
s, h
〉
H

(Scalar, Linearity) =
∑
l∈N

∫ t

0

〈φ∗s(ul), h〉HdW l
s

=
∑
l∈N

∫ t

0

〈φ(h), ul〉KdW l
s.
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4.4 Itô’s formula

Here we mainly use Theorem (2.10) in [4], but we work with the Itô integral w.r.t CBM

instead of the local version.

Definition 4.11 (Infinite-dimensional Itô process):

Let H and K be separable Hilbert spaces, and {Wt}0≥t≥T be a K-valued Cylindrical

Brownian motion on the filtered probability space (Ω,F , {Ft}0≥t≥T ,P). Then the infinite-

dimensional Itô process is a stochastic process Xt on (Ω,F , {F}0≥t≥T ,P) of the form

Xt = X0 +

∫ t

0

U(s,ω)ds+

∫ t

0

V(s,ω)dWs,

where X0 is an F0-measurable H-valued r.v., V(s,ω) ∈ L(H,K) and U(s,ω) is an H-valued

Fs-measurable process s.t.10

P
[ ∫ T

0

‖U(s,ω)‖Hds < 1
]

= 1.

Given the infinite dimensional Itô process we can approach Itô’s formula.

Theorem 4.12:

Let Xt, an infinite-dimensional Itô process, be the solution to the SDE

dXt = Udt+ V dWt.

Further assume that a function F : [0, T ]× 7→ R is continuous and its partial derivatives11

Ft, Fx, Fxx are continuous and bounded on a bounded subset of [0, T ] × H. Then the

following, Itô formula, holds

F (t,Xt) = F (0, X0) +

∫ t

0

Fs(s,X(s)) + 〈Fx(s,Xs), U(s)〉H +
1

2
tr[Fxx(s,Xs)V (s)V (s)T ]ds

+

∫ t

0

〈Fx(s,X(s)), V (s)dWs〉H

10Bochner integrable
11Frechet partial derivative
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P-a.s. for all t ∈ [0, T ].

Proof. The proof is a special case of the proof provided in [4]. Note that we are working

with V ∈ L(H,K), while the generalized proof work with V ∈ P(H,K).

4.5 Martingales and Martingale Representation the-

orem

Heuristically, if a process consist with the property that the best prediction in the future

is today’s state, the process has the Martingale property. This property is going to be

the main subject when we define Martingales in Hilbert spaces.

Definition 4.13 (Martingales in Hilbert Spaces [4]):

Let H be a separable Hilbert Space, measurable w.r.t. its Borel σ-algebra B(H). Fix

T > 0 and let (Ω,F , {Ft}t≤T ,P) be a filtered probability space. Let {Mt}t≤T be an H-

valued process adapted to the filtration {Ft}t≤T and E[‖Mt‖H ] <∞. Then Mt is called

a Martingale if for any 0 ≤ s ≤ t,

E[Mt|Fs] = Ms.

Let F lt = σ{Ws(ul) : s ≤ t} for an ONB {ul}l≥1 ⊂ K be the smallest filtration generated

by the independent CBMs Ws(ul). Further define FWt
def
= ∪l≥1F lt . This is the filtration

generated by all the CBMs. Using this filtration we are ready to present the Martingale

representation theorem w.r.t. CBMs.

Theorem 4.14 (Martingale Representation theorem w.r.t. CBMs):

Let K and H be a separable Hilbert space, Wt a CBM in the Hilbert Space K, and Mt a

scalar FWt -Martingale s.t. E[M2
0 ] < ∞ for all t ≥ 0. Then there exists a unique process

ft ∈ L(H,K) s.t.

Mt = E[M0] +
( ∫ t

0

ftdWt

)
(h) (4.8)

for an h ∈ H.
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Recall that this is equivalent with the existence of f lt(h)
def
= 〈ft(h), ul〉, where f lt ∈ V , s.t.

Mt = E[M0] +
∑
i∈N

f lt(h)dW l
t . (4.9)

Sketch of proof. Because the linear span12,

span
{

e
∫ t
0 h(t)dWt(uj)− 1

2

∫ t
0 h(t)dt : h ∈ L2([0, T ],R), l = 1, 2, 3, . . .

}
,

is dense in L2(Ω,FWt ,P) we can use the Martingale representation theorm

Mt = E[M0] +
∑
j∈N

∫ t

0

f ls(h)dW l
s,

where

E[M2
t ] = E[M0]2 + E[

∫ t

0

‖fs(h)‖2
K ]ds <∞.

The latter is because of the assumption that ft ∈ L(H,K), using the Itô isometry.

Using the Martingale representation theorem w.r.t. CBM we derive the Martingale rep-

resentation theorem for Martingales in a Hilbert space H.

Theorem 4.15 (Martingale Representation theorem in a Hilbert space):

Let H and K be separable Hilbert Spaces, Wt a CBM in the Hilbert space K, and Mt an

H-valued continuous FWt -Martingale s.t. E[‖Mt‖2
H ] <∞ for all t ≥ 0. Then there exists

a unique process ft ∈ L(H,K) s.t.

Mt = E[M0] +

∫ t

0

fs dWs.

Sketch of proof. Since Mt is an H-valued Martingale s.t. E[‖Mt‖2
H ] <∞, we can choose

a ONB {gj}j≥1 ⊂ H and represent the Martingale w.r.t CBM as

〈Mt, gi〉H = E[〈M0, gi〉H ] +
∑
l∈N

∫ t

0

〈fs(gi), ul〉dW l
s.

12[4],[9]
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Assuming that E[‖Mt‖2
H ] <∞ we have by Parseval’s equality that E[

∑
j≥1〈Mt, gj〉2H ] <

∞. This implies existence of an inner product and we clearly work in a Hilbert space.

Hence we can represent

Mt =
∑
j∈N

〈Mt, gj〉gj.

Therefore

Mt =
∑
j∈N

E[〈M0, gj〉Hgj] +
∑
j∈N

∑
l∈N

∫ t

0

〈fs(gj), ul〉dW l
s gj.

Since E[‖Mt‖2
H ] <∞ for all t, we use the Parseval’s equality again and find that

E[
∑
j∈N

〈M0, gj〉Hgj] = E[M0].

The stochastic sum we have by definition

∑
j∈N

∑
l∈N

∫ t

0

〈fs(gj), ul〉dW l
sgj =

∑
j∈N

( ∫ t

0

fsdWs

)
(gj)gj

=

∫ t

0

fsdWs.

Hence

Mt = E[M0] +

∫ t

0

fsdWs

for fs ∈ L(K,H).

4.6 Girsanov’s theorem

To extend Girsanov’s theorem for Cylindrical Brownian motion, we mainly extend the

Novikov condition.

Theorem 4.16 (Girsanov’s theorem w.r.t. CBM):

Let H and K be a separable Hilbert space and Wt be a CBM in the Hilbert space K. Then

Wt(ul), l ≥ 1 is a sequence of independent Brownian motions for an ONB {ul}l≥1 ⊂ K.
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Further let qt ∈ HS(H,K) s.t.

E
[

exp
{1

2

∫ t

0

‖qt‖2
HS(H,K)ds

}]
<∞,

referred to as the extended Novikov condition. Define the probability measure

Q(A)
def
= E[1AZT ], A ∈ FWT ,

where for an h ∈ H the likelihood process

Zt(h)
def
= exp

{∑
l∈N

∫ t

0

qls(h)dW l
s −

1

2

∫ t

0

‖qs(h)‖2
Kds

}
.

Then the process

Ŵ l
t

def
= W l

t −
∫ t

0

qls(h)ds

is an independent Brownian motion w.r.t. the new probability measure Q.

Proof. Because of the extended Novikov condition we know that ZT is a Martingale.

Then the rest follows from the finite dimensional Girsanov’s theorem.

4.7 Stochastic Fubini

We state the stochastic Fubini theorem for infinite dimensional Cylindrical Brownian

motion. The stochastic Fubini is used in the calculations of finding the arbitrage free

drift-condition in the generalized HJM-model.

Theorem 4.17 (Stochastic Fubini theorem):

Let Wt be an infinite dimensional CBM on a filtered probability space (Ω,F , {Ft}t≤T ,P).

Then if ∫
G

‖Φ(·, ·, g)‖L(H,K)µ(dx) <∞

for a finite measurable space (G,G, µ), where

Φ :
(
[0, T ]× Ω×G,B([0, T ])⊗Ft<≤T ⊗ G

)
7−→ (H,B(H))
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is a measurable map, and for every g ∈ G, the process Φ(·, ·, g) is {Ft}t≤T -adapted,

∫
G

(∫ T

0

Φ(t, ·, g)dWt

)
µ(dx) =

∫ T

0

(∫
G

Φ(t, ·, g)µ(dx)
)
dWt.

Proof. Theorem (2.8) and Corollary (2.3) in [4].

4.8 Stochastic Differential Equations

Let Wt be an infinite dimensional Cylindrical Brownian motion in the separable Hilbert

space K on a filtered probability space (Ω,F , {Ft}t≤T ,P). We are going to study (semi-

linear) stochastic partial differential equation of the form

 dXt = [AXt + F (t,Xt)]dt+B(t,Xt)dWt

X0 = x0,

where

F : Ω× [0, T ]× C([0, T ], H) 7−→ H,

B : Ω× [0, T ]× C([0, T ], H) 7−→ HS(H,K),

and A is the generator of a strongly continuous semigroup. Recall that under the Musiela

parametrization the left shift provides an extra dt term. The operator in front of ft(x),

d
dx

can be shown to be the generator of the left shift operator. But in order to get an

solution we need the left shift operator holding the conditions of a strongly continuous

semigroup.

Definition 4.18 (Strongly continuous semi-group):

Consider a family of linear functions St : K 7→ K, where K is a separable Hilbert space,

s.t.

1. S0(f) = f
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2. Ss(St(f)) = Ss+t(f), s, t ≥ 0, f ∈ K

3. ‖St(f)− f‖K
t→0+−→ 0, f ∈ K

4. sup‖f‖K≤1‖St(f)‖K <∞, t ≥ 0

Then St,t ≥ 0 is called a strongly continuous semi-group.

A strongly continuous semi-group generate a operator A of the stochastic process Xt. We

define the generator in the following way.

Definition 4.19 (Infinitesimal generator):

Let St, t ≥ 0 be a strongly continuous semigroup on K. Define the space D ⊆ K by

D
def
=
{
f ∈ K : lim

t→0+

St(f)− f
t

<∞ w.r.t. ‖·‖K
}
.

Then the infinitesimal generator of St is defined by

A(f)
def
= lim

t→0+

St(f)− f
t

, f ∈ D.

If we let A be the generator of St, then the solution, X(t), of the stochastic partial

differential equation  dXt = [AXt + F (t,Xt)]dt+B(t,Xt)dWt

X0 = x0,

given the conditions

P
(∫ t

0

‖X(t)‖Hdt <∞
)

= 1

P
(∫ t

0

‖F (t,Xt)‖Hdt <∞
)

= 1

E
[ ∫ t

0

‖B(t,Xt)‖2
HS(H,K)

]
<∞,
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is called a mild solution if

X(t) = Stx0 +

∫ t

0

St−sF (s,Xs)ds+

∫ t

0

St−sB(s,Xs)dWs

Remark 4.20:

One shows that there is a unique solution to Xt if

‖F (t, x)− F (t, y)‖K + ‖B(t, x)−B(t, y)‖HS(H,K) ≤ C‖x− y‖K

for all x, y ∈ K and t ∈ [0, T ].



Chapter 5

Generalized HJM framework

We are going to present the HJM framework which follows the market observation, time-

to-maturity specific risk. Because we are assuming possible infinite time-to-maturity, we

use the framework of Cylindrical Brownian motion. Still we assume that the ZCB price

are given by

P (t, T ) = exp
{
−
∫ T

t

f(t, s)ds
}
,

where f(t, T ) is the instantaneous forward rate. In the forthcoming we want to model

the forward curves,

x 7→ ft(x)
def
= f(t, t+ x),

using the following Hilbert space of functions K = Hw, profoundly specified by [2].

5.1 The Generalized HJM framework

Definition 5.1 (Consistent Hilbert space):

Let w : [0,∞) 7→ (0,∞) be increasing functions s.t.

∫ ∞
0

x2

w(x)
dx <∞.

Then the space Hw defined as the space of functions f : [0,∞) 7→ R with the properties
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1. Absolutely continuous

2.
∫∞

0
( d
dx
f(x))2w(x)dx <∞

is a Hilbert space with the inner product

〈f, g〉Hw

def
= f(0)g(0) +

∫ ∞
0

∂

∂x
[f(x)]

∂

∂x
[g(x)]w(x)dx

for function f, g ∈ Hw.

Properties 5.2 (Hw):

The space Hw has following important properties

1. The linear function (Evaluation functional) δx : Hw 7→ R is bounded. I.e.

|f(x)| ≤ C‖f‖Hw = C
(
f(0)2 +

∫ ∞
0

(
∂

∂x
[f(x)])2w(x)dx

)1/2

for all f ∈ Hw; δx[f ] = f(x)

2. The linear function (Integration functional) Jx : Hw 7→ R is bounded. I.e.

|Jx[f ]| = |
∫ x

0

f(s)ds| ≤ C‖f‖K

for all f ∈ Hw; Jx[f ] =
∫ x

0
f(s)ds.

3. The left shift operator St : Hw 7→ Hw defined by

(Stf)[x] = f(t+ x)

is a strongly continuous semigroup where the generator of St is A = d
dx

.

4. f(∞)
def
= limx→∞ f(x) exists for all f ∈ Hw since

f(∞) = f(0) +

∫ ∞
0

d

dx
[f(x)]dx <∞
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5. Consider the subspace H0
w ⊆ Hw given by

H0
w

def
=
{
f ∈ Hw : f(∞) = 0

}
.

Define the operation ? by

(f ? g)
def
= f(x)

∫ x

0

g(s)ds.

Then

‖f ? g‖Hw ≤ C‖f‖Hw‖g‖Hw

for all f, g ∈ H0
w

The properties enable us to set up the following model for the forward rate ft(x) with

time-to-maturity specific risk.

Let H be a separable Hilbert space, and Wt a CBM in Hw on the filtered probability

space (Ω,F , {Ft}t≤T ,Q). Then we define the infinite dimensional HJM model under the

Musiela parametrization as the mild solution of the SPDE

dft = [Aft + αt(·, ft)]dt+ σt(·, ft)dWt, · ∈ Ω,

where

α : [0,∞)× Ω×Hw 7−→ H,

σ : [0,∞)× Ω×Hw 7−→ HS(H,Hw),

and A is the generator of the left shift operator St. By property (3), St being a strongly

continuous semi-group, we know that the forward rate process satisfies

ft = Stf0 +

∫ t

0

St−sαs(fs)ds+

∫ t

0

St−sσs(fs)dWs. (5.1)
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For simplicity let αs
def
= αs(fs) and σs

def
= σs(fs). Because of the linearity property of the

evaluation functional

δx(ft) = δx[Stf0] +

∫ t

0

δx[St−sαs]ds+

∫ t

0

δx[St−sσs]dWs

= δx[Stf0 +

∫ t

0

St−sαsds+

∫ t

0

St−sσsdWs],Q-a.s.,

not knowing what happens with the Q-null sets.

Assume that the initial forward rate is an element of Hw. Recall that by the definition

of the infinite dimensional HJM model as the mild solution of (6.1)

Q
(∫ t

0

‖fs‖Hds <∞
)

= 1,

Q
(∫ t

0

‖αs‖Hds <∞
)

= 1,

and σt ∈ L(H,Hw).

In the forthcoming we are going to work with a bond market consisting of a ZCB, priced

P (t, T ) = exp
{
− JT−t[ft]

}
,

and a risk free normalizer

B(t) = exp
{∫ t

0

δ0(fs)ds
}
.

5.2 The Arbitrage-free Drift Condition:

By the First Fundamental theorem the discounted bond prices are Martingales under the

risk neutral probability measure Q. Because of the existence of a Girsanov transform, we

define the HJM-model directly under the Q-measure1.

1Martingale Modeling
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Fix t and time-of-maturity T. Then by the linearity property of the integration functional

− log[P (t, T )] = JT−t[Stf0] +

∫ t

0

JT−t[St−sαs]ds+

∫ t

0

JT−t[St−sσs]dWs

(JT−s = JT+s − JT−s) = JT [f0]− Jt[f0] +

∫ t

0

JT−s[αs]− Jt−s[αs]ds

+

∫ t

0

JT−s[σs]− Jt−s[σs]dWs

(Reorganize) = (JT [f0] +

∫ t

0

JT−s[αs]ds+

∫ t

0

JT−s[σs]dWs)

− (Jt[f0] +

∫ t

0

Jt−s[αs]ds+

∫ t

0

Jt−s[σs]dWs)

def
= I1 − I2,

where we use the relation JT−t(Ss) = JT+s−Jt+s. Since the integration functional JT−s
by the property (2) is a bounded, deterministic linear operator, JT−s(σs) ∈ HS(H,Hw).

Furthermore, knowing that σs ∈ L(H,Hw) implies IT−s(σs) ∈ L(H,Hw).

We take some extra interest in I2, since we, in fact, can show that it is equal to the

risk-free normalizer. Define u = x+ s, then

I2 = Jt[δuf0] +

∫ t

0

Jt−s[δuαs]ds+

∫ t

0

Jt−s[δuσs]dWs

(Ssδx = δu) = Jt[δuf0] +

∫ t

0

Jt−s[Ssδxαs]ds+

∫ t

0

Jt−s[Ssδxσs]dWs

(Left-shift) = Jt[δuf0] +

∫ t

0

J[s,t][δxαs]ds+

∫ t

0

J[s,t][δxσs]dWs

(Indicator) = Jt[δuf0] +

∫ t

0

Jt[δx(αs1[s,t])1[0,t](s)]ds+

∫ t

0

Jt[δx(σs1[s,t])1[0,t](s)]dWs.

From earlier we know that

1[0,t](s)1[s,t](x) = 1[0,t](x)1[x,t](s).
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Using Fubini and Stochastic Fubini

(Fubini) = Jt[δu(f0)] + Jt[
∫ u

0

δxαsds] + Jt[
∫ u

0

δxσsdWs]

(x = u− s) = Jt
[
δu(f0) +

∫ u

0

δu−sαsds+

∫ u

0

δu−sσsdWS

]
(Left-shift) = Jt

[
δ0

(
Su +

∫ t

0

Su−sαsds+

∫ u

0

Su−sσsdWs

)]
= Jt[δ0(fu)] = log[B(t)].

Then we derive the logarithm of the discounted ZCB price as

log[P̃ (t, T )] = log
[P (t, T )

B(t)

]
= log[P (t, T )]− log[B(t)]

= −(I1 − I2)− log[B(t)]

= −I1 + log[B(t)]− log[B(t)]

= −I1.

Using Itô’s formula on the discounted ZCB price yields

P̃ (t, T ) = P̃ (0, T )−
∫ t

0

JT−s[αs]P̃ (s, T )ds−
∫ t

0

JT−s(σs)P̃ (s, T )dWs

+
1

2

∫ t

0

‖IT−s(σs)‖2
Hw(L(H,Hw))P̃ (s, T )ds.

By the First Fundamental theorem P̃ (t, T ) is a Martingale under the Q-measure. Hence

JT−s(αs) =
1

2
‖JT−s(σs)‖2

Hw
.

Differentiating on both sides, and applying property 4. and 5., we find the arbitrage free

drift condition

αs = σs ? σs = σsJx[σs].

If we in addition assume that

‖σt(f)− σt(g)‖HS(H,Hw) ≤ C‖f − g‖Hw
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we have a unique, continuous solution to

dft = [Aft + αt(ft)]dt+ σt(ft)dWt

in the no-arbitrage case [8]2.

An unexpected property of this model is that the long rates never fall.

Theorem 5.3 (Long rates never fall):

Assume that we work with the framework presented above and especially consider property

4. . If we define the long rate as

`t
def
= ft(∞) = lim

x→∞
ft(x),

then

`s ≤ `t

for 0 ≤ s ≤ t.

Sketch of Proof. The discounted ZCB price P̃ (t, T ) under the Musiela parametrization

has the following relation

P̃ (t, T ) = exp
{
−
∫ t

0

fs(0)−
∫ T−t

0

ft(x)dx
}
,

where ft(x) = δxft. Consider

(
P̃ (t, T )

) 1
T = exp

{
− 1

T

( ∫ t

0

fs(0) +

∫ T−t

0

ft(x)dx
)}
.

Letting T →∞ then

1

T

∫ t

0

fs(0)ds→ 0,

1

T

∫ T−t

0

ft(x)dx→ `t.

2(Proposition 6.2)
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Hence

lim
T→∞

(P̃ (t, T ))
1
T = e−`t .

Then, by following the proof of [8] using the Hölder’s inequality3,

E
[
|X||Y ||F

]
≤ E[|X|p|F ]1/pE[|Y |q|F ]1/q,

for p, q ≥ 1 and 1
p

+ 1
q

= 1, and Fatou’s lemma

E[lim inf
n→∞

Xn|F ] ≤ lim inf
n→∞

E[Xn|F ],

where we remark that limn→∞Xn = lim infn→∞Xn = lim supn→∞Xn when the limit

exist, we derive that

e−`s ≥ e−`t .

Hence `t ≥ `s for t ≥ s.

5.3 Generalized Bond Portfolios

We are going to consider portfolios where the investor is allowed to own bonds of any

maturity. In order to define a reasonable notion of trading strategy for portfolios with

bonds of possible infinite time-to-maturity we would like to redefine the discounted bond

price to follow the Musiela parametrization. For a time-to-maturity x, using properties

that we have gone through, we can reparameterize the discounted bond price using a left

shift operator following the third property.

Definition 5.4 (Generalized model for the discounted ZCB):

Define

P̃t(x)
def
= P̃ (t, t+ x),

3Recall that the expectation is an integral
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and let σlt(f, x) ∈ V [0, T ], l ≥ 1, f, g ∈ Hw, t, x ≥ 0, be a sequence of real valued processes

satisfying

(1)
∑
l∈N

‖σlt(f, x)− σlt(g, x)‖2
Hw
≤ C‖f − g‖2

Hw

(2) σlt(f, 0) = 0

(3)
∑
l∈N

|σlt(f, x)|2 ≤ C|f(x)|2.

Then in a arbitrage free market the generalized discounted bond price, P̃t(x), is given by

the strictly positive, unique mild solution of the SPDE

P̃t(x) = P̃0(x) +

∫ t

0

AP̃s(x)ds+
∑
l∈N

∫ t

0

σls(P̃s(x), x), dW l
s,

where W l
t , l ≥ 1, is a sequence of independent risk neutral CBMs, assuming that P̃0 ∈ Hw,

and δxP̃t = P̃t(x).

Through the second condition we assume that the volatility of the discounted bond price

vanish at time-to-maturity x = 0, while the third condition ensures that the discounted

bond price is strictly positive. The latter comes from σlt(x, f) given condition 3. is linear

w.r.t f 4. Further the choice of the discounted bond price process being the mild solution

of the SPDE above ensures that the non-Musiela parametrization, P̃ (t, T ), is a Martingale

w.r.t. the risk neutral measure Q.

The next step is to generalize the portfolio process, finishing with generalizing the self-

financing trading strategy.

5.3.1 Generalized Portfolio Process

Let c1, c2, . . . , cN be the stock-holding of bonds with the corresponding time-to-maturity

x1, x2, . . . , xN owned by an investor at time t. Then the portfolio value Vt(π) for the

4σl
t(x, f) = σl

t(x)ft(x), which is an obvious relation when we look at discounted ZCB deduced earlier.
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strategy π = (c1, c2, . . . , cN) at a time t is

Vt(π) =
N∑
i=1

ciPt(xi).

This is equivalent to

Vt(π) = (
N∑
i=1

ciδxi)[Pt],

where δx is the evaluation functional. By the relation presented it seem reasonable to

define the generalized portfolio process for a portfolio strategy π as

Vt(π)
def
= πt(Pt),

where πt : Hw → R is a linear functional satisfying

sup
‖f‖Hw≤1

|πt(f)| <∞,

and πt(f) is Ft-adapted for all f . By the linearity assumption we deduce that

Vt(π) = πt(Pt) = 〈πt, Pt〉Hw .

Furthermore the discounted portfolio process

Ṽt(π)
def
= B(t)Vt(π) = B(t)πt(Pt)

(Linearity) = πt(B(t)Pt)

= πt(P̃t)

is equal to the portfolio strategy of the discounted ZCB price.

5.3.2 Generalized Self-Financing trading strategy

Under a self-financing strategy the portfolio strategy is decided at time 0 and invariant

w.r.t. t > 0. Therefore it is reasonable to define the Generalized Self-Financing trading

strategy as the following.
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Definition 5.5 (Generalized Self-Financing strategy):

Let πt : Hw 7→ R be a portfolio strategy

Vt(π) = πt(Pt)

s.t. ∑
l∈N

E
[ ∫ t

0

|πs(σls(P̃ ))|2ds
]
<∞.

Then {πt}t≥0 is Self-Financing if πt = π0
def
= π for all t ≥ 0.

From the definition we deduce that the discounted portfolio value at time t is the solution

Ṽt(π) = V0(π) +
∑
l∈N

∫ t

0

π[σls(P̃s)]dW
l
s (5.2)

for a V0 ∈ R, where we note that V0 = Ṽ0. If two portfolios are identical for all t and

the corresponding portfolio strategy is self-financing, we can show that the two portfolio

strategies must be equal. This leads to the theorem about uniqueness of hedging strategy.

Theorem 5.6 (Uniqueness of hedging strategy):

Assume that we are working with the framework presented. Define

H def
= {g ∈ Hw : g(0) = 0}.

For two self-financing portfolio strategies π1
t , π

2
t , 0 ≤ t ≤ T , assuming that

ṼT (π1) = ṼT (π2),

then π1 = π2.

Proof. Let π1
t and π2

t be two self-financing portfolio strategies and define the strategy

τT
def
= π1 − π2. Assuming that ṼT (π1) = ṼT (π2) we have that

0 = ṼT (τ) = V0(π1)− V0(π2) +
∑
l∈N

∫ T

0

τ(σls(P̃s))dW
l
s (5.3)
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Since we know that the portfolio value is going to be zero, the expectation must be equal

to zero. Knowing that the expectation of an Itô integral is equal to zero we deduce that

0 = E[ṼT (τ)] = V0(π1)− V0(π2).

But if V0(π1)− V0(π2) = 0, then by equation (6.3)

∑
l∈N

∫ T

0

τ(σls(P̃s))dW
l
s = 0.

Because W l
s, l ≥ 1, is independent CBM, the Itô isometry yields

∑
l∈N

E
[ ∫ T

0

[τ(σls(P̃s))]
2ds
]

= 0.

The only solution is that the integrand is equal to zero, hence

τ(σls(P̃s)) = 0.

On the other hand we know by the Itô isometry that for a function g ∈ H there exists a

sequence αl, l ≥ 15, s.t.

{
∑
l∈N

αlσ
l
t(f) :

∑
l∈N

α2
l <∞, αl ∈ R, t ≤ 0, f ∈ Hw} = {f ∈ Hw : f(0) = 0}.

Then

τ(g) = τ(
∑
l∈N

αlσ
l
s(P̃s))

(Linearity) =
∑
l∈N

αl τ(σls(P̃s))

=
∑
l∈N

αl 0 = 0,

implying that τ(g) = 0 for all g ∈ H.

5Comes from the definition of the Consistent Hilbert Space letting f(0)=0
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Let f ∈ Hw and define g
def
= f − f(0) ∈ H. Then

0 = τ(g) = τ(f)− τ(f(0)1)

(Linearity) = τ(f)− f(0)τ(1),

implying

τ(f) = f(0)τ1.

If we put P̃s in for f we find that

0 = Ṽs(τ) = τ(P̃s) = P̃s(0)τ(1).

We deduced that τ(1) = 0 which implies that τ(f) = 0 for all f ∈ Hw. Hence τ = 0 and

we have proved that π1 = π2.

The bond market presented is incomplete even if there exists a unique risk neutral prob-

ability measure, Q. This means that we cannot replicate our possible portfolio. However

our bond market is approximately complete in the sense that for all ε > 0 there exists an

approximate trading strategy πε such that the L2-distance between the portfolio value

and the claim is smaller than ε. Hence the market have under this conditions a unique

Equivalent Martingale measure, Q. This we are going to use in the upcoming chapter;

Stochastic Duration.





Chapter 6

Stochastic Duration

Duration is a well known concept within interest rate theory [5]. Until now it is based

on deterministic interest rates. For a complex bond portfolio with options, swaps, caps,

and other interest rate derivatives, the duration deterministic based sensitivity analysis

is not satisfying since the classical duration concept (Macaulay duration) requires flat

or piecewise flat interest rates for its computation and is only applicable to portfolios

composed of rather simple interest rate derivatives as e.g. zero-coupon bonds or swaps.

In the forthcoming we are going to introduce a concept called Stochastic Duration, which

can be in contrast to the Macaulay duration used to measure the sensitivity of complex

bond portfolios with respect to stochastic fluctuations of the entire term structure of

interest rates or the yield surface. As a special case of this concept we will present the

Stochastic Duration based on the Vasicek model. Later on we will derive a numerical

estimate of the stochastic duration and provide an immunization strategy for a portfolio.
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6.1 Macaulay duration

For a given portfolio of one ZCB contracted with interest rate r, at time t and maturity

T , the present value is the discounted future price1

pvt = e−
∫ T
t rdy = e−r(T−t).

An infinitesimal change in r yields

∂

∂r
pvt = −(T − t)e−r(T−t).

Dividing on the present value we derive what is called the Macaulay Duration in contin-

uous time
∂
∂r
pvt

pvt
= −(T − t).

Note that this is the same as taking the derivative of the logarithm of the portfolio. We

see that the Macaulay Duration is the time-to-maturity. Therefore the name duration.

Because of a linearity property, the duration of the portfolio is the sum of weighted

durations of bonds in the portfolio. By this reasoning we can interpret the Macaulay

duration as the mean time-to-maturity.

Example 6.1:

Assume that we have two ZCBs in our portfolio, contracted with equal interest rate, but

different time-to-maturity, T1, T2. Further assume that the stock holding in the ZCBs is

α1 and α2 respectively. Then the present value of our portfolio is

pv = α1pv1 + α2pv2.

1Recall that by definition the future price of ZCB is equal to one
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We derive the Macaulay duration of the portfolio

dMac
1,2 =

d

d r
log[pv] =

d

d r
log[α1pv1 + α2pv2]

=
1

pv
[−α1pv1T1 − α2pv2T2]

= η1d1 + η2d2,

where the portfolio weight ηi is defined as

ηi =
αi pvi
pv

and di = −Ti, for i = 1, 2.

Given that we have an portfolio with the duration −T1, and would like a portfolio with an

another, specified, duration, how can we change the portfolio s.t. we have the duration we

want? Actually, by simple algebraic operation we find a so called immunization strategy.

Example 6.2:

Assume that we want a duration of −T1,2. Then the immunization strategy would be to

find the portfolio weight of a ZCB 2 in the market s.t. the portfolio duration is −T1,2.

By simple algebraic operation we derive the portfolio weight needed

η2 =
d1,2 − η1d1

d2

.

If the portfolio weight is negative we interpret the result as the portion we need to sell of

ZCB 2 in order to immunize our initial portfolio. This means that we go short in ZCB 2.

6.2 Stochastic Duration

In the forthcoming we are going to assume that the forward rate under the Musiela

parametrization is the mild solution. That is ft solves

ft = Stf0 +

∫ t

0

St−sαsds+

∫ t

0

St−sσsdWs,
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where σs is a deterministic process of Hilbert-Schmidt operators with existing inverse σ−1
s

a.e., and where αs satisfies the HJM-no arbitrage condition (see Chapter 3 and 5). In

what follows we may for convenience assume that the risk premium is zero.

The concept of stochastic duration serves as a tool to measure the changes of complex

bond portfolios due to changes of the yield curve or forward curve. By the latter equation

we see what is affecting the changes in the forward rate. Using Girsanov transform

(Section 4.6) we can combine all the changes into a new Brownian Motion

dŴt = dWt − α̃tdt,

under a probability measure P̃, where

α̃t = σ−1
t (αt)

satisfies the Novikov condition in Theorem (4.16). Recall that the volatility structure

doesn’t change under the change of measure.

The centered forward curve f̂t is given by

f̂t = ft − f0 =

∫ t

0

St−sσsdŴs

and a Gaussian random field under P̃. Then it would be suitable to define the stochastic

duration as the derivative w.r.t. f̂ . Because of stochasticity we cannot use the standard

calculus derivative. We need to work within the framework of Malliavin Calculus w.r.t.

the centered forward curve f̂t. In order to be able to apply this theory (see [4]) we shall

in the sequel assume - also in view of a more general framework w.r.t. αt - that the SDE

dXt = αtdt+ dWt

has a unique strong solution.

The latter implies in connection with the properties of the left-shift operator St and the

diffusion coefficient σt that the filtrations generated by Wt and f̂t coincide.
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The fundamental theorem of calculus for a Malliavin derivative w.r.t. the Brownian

motion, Wt, is

DW

∫ t

0

usdWs = us1[0,t](s) +

∫ t

s

DW (us)dWs

with adequately chosen properties on the functions and functionals [10, Chapter 3]. Using

the same theory2, presented in the paper [5] in the case of strong solutions ft, we get the

same fundamental theorem for the Malliavin derivative w.r.t. the centered forward curve

in the risk neutral world (i.e. under P̂):

Df̂

∫ t

0

usdf̂t = us1[0,t](s) +

∫ t

s

Df̂ (us)df̂s. (6.1)

The latter is called in this master thesis the Stochastic Duration. Note the trivial fact

that for an deterministic function, us, the stochastic duration is

Df̂

∫ t

0

usdf̂t(x) = us1[0,t](s).

We are going to present the theory using the Vasicek model. The volatility function for

the Vasicek is deterministic and we use the last property shown. For the CIR model we

need to take into account that it is stochastic w.r.t. the short rate.

Definition 6.1 (Stochastic Duration [5]):

Let F be a square integrable functional of the forward curve f̂ w.r.t. the P̃-measure.

Assume that F is Malliavin differentiable w.r.t. f̂ . Then the stochastic duration of F is

the stochastic process

Df̂ F ∈ L
2(Ω, F̃ , P̃;H).

In the next example we need an auxiliary result.

Lemma 6.2 (Chain Rule):

Let F be Malliavin differentiable random variable w.r.t. f̂ . Further suppose that g :

R 7→ R is continuously differentiable with bounded derivative. Then g(F ) is Malliavin

differentiable w.r.t f̂ and

Df̂ g(F ) = g′(F )Df̂F,

2Itô-Wiener Chaos Expansion, Skorohod Integral, Malliavin Calculus
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where g′ is the derivative of g.

Proof. [5]

Example 6.3:

Assume that we are going to buy a ZCB contracted at time t. What is the stochastic

duration of buying a future on the ZCB. Let the price of the ZCB at time t (future) be

denoted by Pt(x). By the definition of the instantaneous forward rates we know that the

price of a ZCB at time t is

Pt(x) = exp
{
−
∫ x

0

ft(y)dy
}
.

First by applying the chain rule,

Df̂Pt(x) = Pt(x)Df̂

∫ x

0

ft(y)dy,

and then finding the stochastic duration of the integral,

Df̂

∫ x

0

ft(y)dy =

∫ x

0

Df̂ft(y)dy

=

∫ x

0

Df̂ (f0(y) + f̂t(y))dy

=

∫ x

0

(0 + 1[0,t](s))dy

= x 1[0,t](s),

we derive the stochastic duration of the future ZCB price Pt(x)

Df̂Pt(x) = x 1[0,t](s)Pt(x).

Remark that Pt(x) is stochastic up to time t where the price is settled. This means

that the stochastic duration is stochastic. Therefore it would be suitable to talk about

expected stochastic duration. We then see that

E[Df̂Pt(x)] = x 1[0,t](s)E[Pt(x)]
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6.2.1 Generalized Portfolio

The stochastic duration of a portfolio of stochastic interest rate derivatives; like bond

options or swaps, is the main subject for this section. Let us assume that the bond

portfolio value at time τ is a square integrable functional of our forward curve. Then

we know (see [5]) that this portfolio value has a chaos decomposition w.r.t. f̂t, which

actually can be interpreted as a Taylor expansion (on some locally convex space) in

infinite dimensions.

In what follows we aim at studying the first order approximation of the chaos decompo-

sition, that is I0(f0) + I1(f1), where I0(f0) ∈ R and

I1(f1) =

∫ τ

0

gτs (Sτ−sσs)dŴs

for a deterministic process gτs of (continuous) linear functionals on our Hilbert space. So

using Girsanov’s theorem we see that the portfolio value is approximately

I0(f0) +

∫ τ

0

gτs (Sτ−sαs)ds+

∫ τ

0

gτs (Sτ−sσs)dWs

under the original probability measure.

The main underlying process of the portfolio is the forward curve. Therefore we may

assume that our portfolio take the form

Zx(τ) = zv +

∫ τ

v

gτs (Sτ−sαs)ds+

∫ τ

v

gτs (Sτ−sσs)dWs.

We are watching the portfolio at time v, where x is the set of time-to-maturities in the

portfolio.

We want to work with the Vasicek model by using implicitly a 1-dimensional Brownian

motion as an approximation for Ws. The (approximated) stochastic duration of our
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portfolio is given by

Df̂Zx(τ) = Df̂ (I0(f) + I1(f1))

= Df̂ (I1(f1))

= f1,

where

f1(t, x) = E[f̂t(x)I1(f1)]

=

∫ t

0

(St−sσs)(x) gτs (Sτ−sσs)ds

by the construction of the stochastic integral, I1(f1) (see [4]).

Approximating the g function

The function is presented in the paper [6]

We interpret the g-function as the total volatility structure of the portfolio. This structure

we approximate with series of step functions. Assume that

gτs (·) =
N∑
n=1

an(τ)bn(s, ·),

where ai(τ) approximate the τ -dependence in the g-function and bi(s, ·) evaluates the

variable function within g and approximate the process up to τ .

The a-function is assumed to be an integral with step functions as integrands. I.e.

an(τ) =

∫ τ

0

hn(s)ds,

where

hn(s) =
M∑
n=1

γn,m1(tm−1,tm](s).
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The b-function is divided into an evaluation function and a time dependent function

bn(s, ·) =
K∑
k=1

bn,k(s)δxk(·),

where bn,k(s) is approximated by the step function

bn,k(s) =
M∑
m=1

βn,k,m1(tm−1,tm](s).

Putting in for g in the stochastic part of the portfolio process yields

∫ t

0

gτs (Sτ−sσs)dWs =
N∑
n=1

∫ τ

0

an(τ)bn(s, Sτ−sσs)dWs

=
N∑
n=1

an(τ)

∫ τ

0

bn(s, Sτ−sσs)dWs

=
N∑
n=1

∫ τ

0

hn(s)ds

∫ τ

0

bn(s, Sτ−sσs)dWs

=
N∑
n=1

∫ τ

0

bi(s, Sτ−sσs)hn(s)dWs +

∫ τ

0

∫ s

0

bn(u, Sτ−uσu(·))dWu hn(s)ds.

This means that our portfolio is decomposed as

Z(τ) = drift+
N∑
n=1

∫ τ

0

bi(s, Sτ−sσs)hn(s)dWs.

We also assume here that Zv = Zv(τ) is absolutely continuous w.r.t τ . If we define

θ(s)
def
=

N∑
n=1

bi(s, Sτ−sσs)hn(s),

we see that the quadratic variation of the portfolio is

QVτ
def
= [Z,Z]τ =

∫ τ

0

(θ(s))2ds.
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By elementary computation the quadratic variation at τi is

QV g
τi

=
M−1∑
m=1

N∑
n,l=1

K∑
k,j=1

βn,k,mβj,l,mγm,nγm,l δxj
σs
Cσ
δxk

σs
Cσ

(
λτi,tm [σs]− λτi,tm−1 [σs]

)
+

N∑
n,l=1

K∑
k,j=1

βn,k,mβj,l,mγm,nγm,l δxj
σs
Cσ
δxk

σs
Cσ

(
λτi,τi [σs]− λτi,tM−1

[σs]
)
,

where

λτ,t[σs] =

∫ t

0

(δτ−sσs)
2ds,

and Cσ are the constants w.r.t. x in the volatility function. Note that

• M is the number of discretized time-steps approximating the time of the observations

• K is the number of different time-to-maturities in the portfolio

• N is the number of different types of a- and b-functions

At the times τi we observe the portfolio values Zobs
t,T (τi) and estimate the quadratic vari-

ation

QV obs
τi

=
i∑

j=1

(
Zobs
t,T (τj)− Zobs

t,T (τj−1)
)2

.

The idea is to estimate the βn,k,m, γn,m’s by minimizing the least square of the quadratic

variation function and the observed quadratic variation. Assume that we have more than

N3 +N2 observations, then we minimize

≥N3+N2∑
i=1

(
QV g

τi
−QV obs

τi

)2

−→ min
β,γ

.

We end this section with an simulation example.

Example 6.4:

For simplicity we assume that the volatility structure follows the Vasicek/Hull-White

model

σs(x, f) = σ exp{−ax}.
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Then we derive that

λτ,t[σs] =

∫ t

0

(
σ exp{−a(τ − s)}

)2
ds

=
σ2

2a
(exp{−2a(τ − t)} − exp{−2a(τ)}).

By the telescope we obtain

QV g
τi

=
M−1∑
m=1

N∑
n,l=1

K∑
k,j=1

βn,k,mβj,l,mγm,nγm,l e
−axje−axk

(σ2

2a
e−2a(τi−tm) − σ2

2a
e−2a(τi−tm−1)

)
+

N∑
n,l=1

K∑
k,j=1

βn,k,mβj,l,mγm,nγm,l e
−axje−axk

[σ2

2a
e−2a(τi−τi) − σ2

2a
e−2a(τi−tM−1)

]
=

M−1∑
m=1

N∑
n,l=1

K∑
k,j=1

βn,k,mβj,l,mγm,nγm,l
σ2

2a
e−a(xj+xk+2τi)

(
e2atm − e2atm−1

)
+

N∑
n,l=1

K∑
k,j=1

βn,k,mβj,l,mγm,nγm,l
σ2

2a
e−a(xj+xk+2τi)

[
e2aτi − e2atM−1

]
.

In this example we are also looking at the simulated portfolio. The main interest is in

constructing a reasonable program for calculating the stochastic duration. The program

will serve as a tool for understanding the ”non-analysis” part of the concept.

Initial Values

We need the following initial values: the standard deviation of the portfolio; σport,

the Vasicek parameters; σc and ac, the number of functions; N1, the number

of time-to-maturity in the portfolio; K, and the number of time-discretization;

M . The number of time-discretization is divided into the integer time length L and the

number of time steps between each integer, δ, yielding the time set t. This results in the

parameters; β and γ, which must be estimated. In order to estimate the parameters we

need to observe at least M × L × N1 = Length[EstPar] of the quadratic variation of

the portfolio. The observation times are τc. The last initial value need is the time-

to-maturities in the portfolio; x. For contracts that have a maturity before the ZCB
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portfolio starts (futures, options) the x’s are constants, while e.g. in the second hand

market, the x’s vary due to t.

N1 = 1; K = 2; d = 5; L = 3; M = L d; H*Creates the amount of parameters; here we can change*L
sport = 0.08; sc = 0.08; ac = 0.08; Icap = 40;H* Initial conditions: sc and ac is known from the Vasicek model,
Icap is the initial capital Hportfolio value*L
b = Table@beta@i, j, lD, 8i, N1<, 8j, M<, 8l, K<D;
g = Table@gamma@i, lD, 8i, N1<, 8l, M<D;
EstPar = EstPar = DeleteCases@DeleteCases@Flatten@Join@b, gDD, _IntegerD, _RealD;
t = TableB i

d
, 8i, 0, M <F; H*Time*L

tc = TableB i

d Length@EstParD M, 8i, 0, Length@EstParD<F;
x = RandomVariate@UniformDistribution@8L, L + 5<D, KDH*Table@10,8j,K1<D;*L
86.02923, 7.69865<

Simulating the Portfolio

When we simulate the portfolio many choices of structures can be made. The program

provides a simple Brownian motion with the volatility structure equal to the Vasicek

model. Recall that

V ar
[ ∫ τ

0

σe−axdWs

]
= σ2e−2axV ar[Wτ ]

= σ2e−2axτ

When we have simulated the portfolio we easily calculate the observed quadratic variation.

SimPortfolio =
Icap + Accumulate@Table@RandomVariate@NormalDistribution@0, sport Exp@-ac Htc@@i + 1DD - tc@@iDDLD DD,8i, 1, Length@EstParD<DD;

SimPortfolio = Prepend@SimPortfolio, IcapD;
QVobs = AccumulateATableAHSimPortfolio@@j + 1DD - SimPortfolio@@jDDL2, 8j, 1, Length@SimPortfolioD - 1<EE;

The Quadratic Variation Function

We define the volatility structure (Vasicek) and the quadratic variation function.
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s@s_, sc_, ac_D := sc Exp@-ac sDH*Volatility Function*L
q@t_, sc_, ac_, b_, g_, N_, K_, M_, t_, x_D :=
Sum@ Sum@g@@nDD@@mDD g@@nDD@@mDD HMin@t@@m + 1DD, tD - Min@t@@mDD, tDL HMin@t@@m + 1DD, tD - Min@t@@mDD, tDL,8m, M<, 8m, M<D

Sum@
Integrate@Sum@b@@nDD@@mDD@@kDD b@@nDD@@mDD@@kDD b@@nDD@@mDD@@kDD b@@nDD@@mDD@@kDD
s@t - s + x@@kDD, sc, acD s@t - s + x@@kDD, sc, acD , 8k, K<, 8k, K<D,8s, Min@t@@mDD, tD, Min@t@@m + 1DD, tD<D, 8m, M<D

, 8n, N<, 8n, N<DH*Quadratic Variation Function*L

Minimization

A simple strategy is to minimize the distance between QV obs and QV g through a least

square. Note that the least square distance isn’t a good estimate on how good the esti-

mation is due to possible stochastic volatility functions in the portfolio. In this example

the distance is rather small

sum = SumB qB j
M
, sc, ac, b, g, N1, K, M, t, xF - QVobs@@jDD 2

, 8j, Length@QVobsD<F;
Mbg = NMinimize@sum, EstParD; H*FindMinimum,NMinimize,Minimize*L
First@MbgD
best = b ê. Last@MbgD;
gest = g ê. Last@MbgD;
8.30575¥10-7

EstQVobs = TableBqB j

d L
, sc, ac, best, gest, N1, K, M, t, xF, 8j, Length@QVobsD<F;

In Figure 6.1 we see a plot of the quadratic variation function and the observed quadratic

variations.

Figure 6.1: QVobs vs. QV-function
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The g-function

Before we calculate the stochastic duration we take a look at the g-function that estimates

the volatility function of the portfolio. The changes aren’t radical in this case, but that

is due to choices of initial values.

a@t_, n_, M_, g_D := Sum@g@@nDD@@mDD HMin@t@@m + 1DD, tD - Min@t@@mDD, tDL, 8m, M<D
b@t_, s_, n_, 8sc_, ac_<, x_, M_, K_, b_D :=
Sum@b@@nDD@@mDD@@kDD Boole@t@@mDD £ s < Min@t@@m + 1DD, tDD s@x + t - s, sc, acD, 8k, K<, 8m, M<DH*s@x@@kDD+t-s,sc,acD*L

g@t_, s_, 8sc_, ac_<, x_, M_, K_, N_, b_, g_D :=
Sum@a@t, n, M, gD b@t, s, n, 8sc, ac<, x, M, K, bD, 8n, 1, N<D

t221 = TableB820 t , 20 s, g@t, s, 8sc, ac<, Mean@xD, M, K, N1, best, gestD<, :t, 0, 3,
30

365
>,

:s, 0, 3,
30

365
>F;

By Figure 6.2 the function g have stochastic changes as s increases, while for the obser-

vation time there are changes due to the step function.

Figure 6.2: The g-function
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Stochastic Duration

Recall that the stochastic duration of the portfolio is

Df̂Zx(τ) = f1,

where

f1(t, x) =

∫ t

0

(St−sσs)(x)gτs (Sτ−sσs)ds.

Therefore

f1@v_, y_D := NIntegrate@s@y + v - s, sc, acD g@tc@@-1DD, s, 8sc, ac<, y, M, K, N1, best, gestD, 8s, 0, v<D
t222 = TableB820 v , y, f1@v, yD<, :v, 30

365
, 3,

30

365
>, :y, 30

365
, 3,

30

365
>F;

Figure 6.3: The Stochastic Duration

�
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Figure 6.4: The Stochastic Duration

6.3 Immunization Strategy

The immunization strategy is based on the paper [11], where the main idea is to minimize

the stochastic duration in time and space (time-to-maturity). Assume that we have a

portfolio Vx(τ) with it’s estimated stochastic duration

Df̂Vx(τ).

Then we want to minimize our risk using the hedging strategy Ht with the stochastic

duration

DfHx(τ).

The latter stochastic duration is ”most likely” stochastic and it will be sensible to mini-

mize the expected stochastic duration. Let, e.g., the hedging strategy be of αZCB shares

of a Future and αcall shares of a call option on a ZCB. Then the immunization strategy

would be

E
[ ∫ x

0

∫ t

0

(Df̂Vt −Df̂H
α
t )2 ds dy

]
−→ min

α

w.r.t. αZCB and αcall (under some boundary conditions).
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The stochastic duration on the future is already derived in an example. We therefore

derive the stochastic duration on a call option of a ZCB

(
P (t, T )−K

)+
.

Example 6.5:

Let F =
(
P (t, T )−K

)+
then

F = 1[K,∞)

[
P (t, T )

]
(P (t, T )−K).

Using Example 2.2 in [5] we have that

Df̂F = 1[K,∞)

[
P (t, T )

]
Df̂ (P (t, T )−K)

= 1[K,∞)

[
P (t, T )

]
(−(T − t)P (t, T )− 0)

= −1[K,∞)

[
P (t, T )

]
(T − t)P (t, T ).

�





Chapter 7

Stochastic Duration an Example

As a major example we are going to calculate the stochastic duration for a Future portfo-

lio on a two year Treasury Note1. The data are collected from www.quandle.com, which

refer further to Chicago Mercantile Market and US Treasury From this website the fol-

lowing data collection was used; (Treasury Yield Curve Rates) and (2 Year Treasury Note

Futures, March 2013, TUH2013, CBOT).

Since we are working with a possible infinite dimensional noise, we need to reduce the

dimensions. Using PCA2 to reduce the dimension, we estimate a Vasicek model for the

total covariance of the important components. This is a strong simplification since a

better approach would be to estimate a volatility structure for each of the important

components. But for the purpose here it is well enough.

Furthermore we use the program presented in Chapter 6, using the parameters that are

estimated by means of the PCA procedure.

1A Note is equal a Bond with time-to-maturity of 2-10 years [8]
2presented in Chapter 3

91
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7.1 Principal Component Analysis

As earlier noticed we are going to use a PCA procedure. Firstly we need to import the

(Treasury Yield Curve Rates) from 01.10.93 until 31.07.20013. An issue with this data

set is that the numbers are interpolations of observations s.t. we have observation for the

time-to-maturities (0.25, 0.5, 1, 2, 3, 5, 7, 10, 20, 30). This means that there will be some

variation in the data set from the real observations.

dataimport =
Import@
"http:êêwww.quandl.comêapiêv1êdatasetsêUSTREASURYêYIELD.csv?&trim_start=1993-10-01&trim_end=2001-07-31&

sort_order=desc", "Data"D;
TtM = Table@i, 8i, 80.25, 0.5, 1, 2, 3, 5, 7, 10, 20, 30<<D;
Wdata = TableB dataimport@@iDD@@jDD

100
, 8i, 3, Length@dataimportD<, 8j, 83, 4, 5, 6, 7, 8, 9, 10, 11, 12<<F;

Length@WdataD
1960

We have 1960 observations that is provided in percentage. Hence we need to divide by

100.

With the new data set we estimate the covariance, and use the spectral decomposition

theorem.

CovarianceWd = Covariance@WdataD;8u, w, v< = SingularValueDecomposition@CovarianceWdD;
u.w.Transpose@vD ä CovarianceWd

True

By Figure 7.1 we see that we can approximate the covariance matrix by the three first

components, (99.7%).

Therefore we approximate the covariance by the covariance of the three first components.

Comparing the diagonal on the approximated covariance and the estimated covariance

we see that the difference is small.

3The reason why this dates are used is because of an example in [8]
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Figure 7.1: The important components of the Yield Curve

Sum@Diagonal@wD@@iDD Outer@Times, Transpose@vD@@iDD, Transpose@vD@@iDDD, 8i, Length@Diagonal@wDD<D ä
CovarianceWd

EstCov = Sum@Diagonal@wD@@iDD Outer@Times, Transpose@vD@@iDD, Transpose@vD@@iDDD, 8i, 3<D;
Diagonal@EstCovD
Diagonal@CovarianceWdD
True

80.0000559628, 0.000059144, 0.0000613263, 0.0000644055, 0.0000635025,
0.0000612088, 0.0000551678, 0.0000578492, 0.0000467664, 0.0000510921<

80.0000562036, 0.0000593128, 0.0000617063, 0.000064502, 0.0000635427,
0.0000613593, 0.0000553911, 0.0000580185, 0.0000470086, 0.0000513019<

Performing PCA on this data set, [8], means that we are assuming the auto-correlation

to be small. Because of a simplified example, we don’t put concerns on this issue. We

recall from Example 3.1 that we need to estimate the parameters using the relation

V ar[Y (t, T )] =
1

(T − t)2

σ2

2k3
e−2k(T+t)(e2kt − 1)(ekT − ekt)2,

where, since we observe day-to-day changes in the volatility structure, t = 1
365

. Using

least square we estimate the parameters in the Vasicek model to be σ = 0.1495 and

k = 0.00816.

VarVasicek@T_, t_, s_, k_D :=
1

HT - tL2

s2

2 k3
Exp@-2 k HT + tLD HExp@2 k tD - 1L HExp@k TD - Exp@k tDL2

t =
1

365
; TtM;

minsk = NMinimizeASumAHVarVasicek@TtM@@iDD + t, t, s, kD - Diagonal@EstCovD@@iDDL2, 8i, Length@TtMD<E, 8s, k<E
estsk = 8s, k< ê. Last@minskD;
91.13759¥10-10, 8s Æ 0.149521, k Æ 0.00815519<=
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Using the estimated parameters we are ready to calculate the Stochastic Duration of an

portfolio of (2 Year Treasury Note Futures, March 2013, TUH2013, CBOT).

7.2 Stochastic Duration of the Portfolio

Clearly finding the Stochastic Duration for a future TUH2013, isn’t comparable with the

estimation of the volatility structure for the period (1993-2001). But the procedure is the

same as we show in this chapter.

Firstly we import the data. The data of interest are the settlement data and the date of

the transaction.

portdata =
Import@
"http:êêwww.quandl.comêapiêv1êdatasetsêCMEêTUH2013.csv?&auth_token=LqWy2oLARYBxWdmoFX25&trim_start=2011-12-

30&trim_end=2013-03-28&sort_order=desc", "Data"D;
portdata@@1DD
8Date, Open, High, Low, Last, Change, Settle, Volume, Prev. Day Open Interest<
Wport = portdata@@2 ;; 116DD;
m = Length@WportD;
settle = Transpose@WportD@@7DD;
date = Transpose@WportD@@1DD;

Initial Values

We use the initial values derived from the PCA procedure, and divide the time into three

main time steps with an discretization of five per time step. Since we are working with a

portfolio of only 2 year Treasury Notes the time-to-maturity is x = {2}.

K = 1; d = 5; M = 15; N1 = 1; sc = estsk@@1DD; ac = estsk@@2DD;
b = Table@beta@i, j, lD, 8i, N1<, 8j, M<, 8l, K<D;
g = Table@gamma@i, lD, 8i, N1<, 8l, M<D;
EstPar = EstPar = DeleteCases@DeleteCases@Flatten@Join@b, gDD, _IntegerD, _RealD;
t = TableB i

d
, 8i, 0, M<F;

x = 82<;
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The Portfolio

We want to do some transaction on each of the days. The total stock holding is decided

by a Uniform(20, 40), which means that we at least have 20 stocks and at most have 40

stocks in the Future TUH2013. Using the settlement values as the value of one stock in

the Future, we derive the Quadratic Variation

SimPortfolio = Table@RandomVariate@UniformDistribution@820, 40<D D settle@@-iDD, 8i, 60<D;
QVobs = AccumulateATableAHSimPortfolio@@j + 1DD - SimPortfolio@@jDDL2, 8j, 1, Length@SimPortfolioD - 1<EE;

Minimization

The next step in the procedure is to minimize the Quadratic Variation function using the

program in chapter 6.

s@s_, sc_, ac_D := sc Exp@-ac sD
q@t_, sc_, ac_, b_, g_, N_, K_, M_, t_, x_D :=
Sum@ Sum@g@@nDD@@mDD g@@nDD@@mDD HMin@t@@m + 1DD, tD - Min@t@@mDD, tDL HMin@t@@m + 1DD, tD - Min@t@@mDD, tDL,8m, M<, 8m, M<D

Sum@
Integrate@Sum@b@@nDD@@mDD@@kDD b@@nDD@@mDD@@kDD b@@nDD@@mDD@@kDD b@@nDD@@mDD@@kDD
s@t - s + x@@kDD, sc, acD s@t - s + x@@kDD, sc, acD , 8k, K<, 8k, K<D,8s, Min@t@@mDD, tD, Min@t@@m + 1DD, tD<D, 8m, M<D

, 8n, N<, 8n, N<D

sum = SumB qB j

20
, sc, ac, b, g, N1, K, M, t, xF - QVobs@@jDD 2

, 8j, Length@QVobsD<F;
Mbg = FindMinimum@sum, EstParD;
First@MbgD
best = b ê. Last@MbgD;
gest = g ê. Last@MbgD;
FindMinimum::cvmit : Failed to converge to the requested accuracy or precision within 100 iterations.á

2.25028¥1013

EstQVobs = TableBqB j

20
, sc, ac, best, gest, N1, K, M, t, xF, 8j, Length@QVobsD<F;

Here we get a hugh least square estimate, 2.25× 1013, but we see by Figure 7.2, that the

fit is rather good.

The g-function

As in Chapter 6 we define the g-function through the estimated a- and b-function.
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Figure 7.2: The Quadratic Variation function vs. the observed Quadratic
Variation

a@t_, n_, M_, g_D := Sum@g@@nDD@@mDD HMin@t@@m + 1DD, tD - Min@t@@mDD, tDL, 8m, M<D
b@t_, s_, n_, 8sc_, ac_<, x_, M_, K_, b_D :=
Sum@b@@nDD@@mDD@@kDD Boole@t@@mDD < s £ Min@t@@m + 1DD, tDD s@x + t - s, sc, acD, 8k, K<, 8m, M<D

g@t_, s_, 8sc_, ac_<, x_, M_, K_, N_, b_, g_D := Sum@a@t, n, M, gD b@t, s, n, 8sc, ac<, x, M, K, bD, 8n, 1, N<D
t221 = TableB820 t , 20 s, g@t, s, 8sc, ac<, 2, M, K, N1, best, gestD<, :t, 0, 3,

30

365
>, :s, 0, 3,

30

365
>F;

By Figure 7.3 and Figure 7.4 we see the estimated path of the g-function. Recall that

the g-function describes the portfolio volatility structure.

Figure 7.3: The volatility structure of the portfolio, g
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Figure 7.4: The volatility structure of the portfolio, g

Stochastic Duration

Using the volatility structure of the portfolio, we find the stochastic duration. Recall that

the stochastic duration describes the changes in the portfolio value due to changes in the

forward curve.

f1@v_, y_D := NIntegrate@s@y + v - s, sc, acD g@t@@-1DD, s, 8sc, ac<, y, M, K, N1, best, gestD, 8s, 0, v<D
t222 = TableB820 v , y, f1@v, yD<, :v, 30

365
, 3,

30

365
>, :y, 30

365
, 3,

30

365
>F;

We find the Stochastic Duration in time and space.
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Figure 7.5: The Stochastic Duration



Appendix A

Mathematical Tools

The short rate r is not deterministic. This means that we can’t with exact mathematical

analysis predict the path of r, which brings us into the field of probability theory. A way

to model r is to define it as an r.v. on the probability space

(Ω,F ,P),

where Ω denotes the sample space, F denotes the σ-algebra on the sample space, and P

the probability measure(distribution).

Definition A.1 (Sample space):

A set Ω 6= ∅ representing the collection of all possible outcomes of a random experiment

is called sample space.

Knowing the possible outcomes of r, Ω, we would like to figure out which family of

outcomes that are reasonable to put a probability measure on. The definition of σ-algebra

ensures some good properties of the family.

Definition A.2 (σ-algebra):

A family F of subsets of Ω is called σ-algebra on Ω if

1. ∅ ∈ F

99
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2. A ∈ F =⇒ AC ∈ F 1

3. A1, A2, · · · ∈ F =⇒ ∪i≥1 ∈ F

The last element of the probability space, the probability measure, tells us to which

degree the different measurable outcomes occur. There are several such measure (χ2,

Log-Gaussian, Pareto), but the most common within financial theory is the Gaussian

distribution. With the probability measure we get a set of working tools; moments,

characteristic function (the Fourier transform of an r.v.), etc.

Definition A.3 (Probability measure):

A function

P : F 7→ [0, 1]

is called a probability measure on (Ω,F), if

1. P(∅) = 0, P(Ω) = 1

2. A1, . . . , An, · · · ∈ F with Ai
⋂
Aj = ∅ 2 =⇒ P(

⋃
i≥1Ai) =

∑
i≥1 P(Ai)

3

Heuristically, for an event A ∈ F , P(A) is the probability that event A occurs.

Properties A.4 (Properties of the probability measure):

We have following properties of the probability measure

1. A ⊆ B =⇒ P(A) ≤ P(B)

2. P(
⋃
i≥1Ai) ≤

∑
i≥1 P(Ai)

3. limi→∞ P(Ai) = P(A) if A =
⋃
i≥1Ai

In some cases an event has probability zero. This sets are referred to as the P-null sets4.

1AC def
= Ω−A

2Ai and Aj is disjoint
3In the literature this is called σ-additivity
4Of course given that we are working with the probability measure P
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Definition A.5 (P-null sets):

An event A ∈ F s.t. P(A) = 0 is called a P-null set.

On the other side we may have some events that have probability one. In this case the

event have the P-a.s. property.

Definition A.6 (P-almost surely):

We say that an event holds P-almost surely (a.s.) if there exist a P-null set N ∈ F s.t.

the event holds for all ω ∈ NC = Ω−N .

A.1 Random Variable

Working with the outcomes isn’t always easy, especially if the events aren’t numbers.

For example could we categorize sections in companies into {1, 2, 3, 4, 5, ...} instead of

the HR-section, Actuary-section, etc. By doing so we can define expectations and other

statistical tools that relay on number theory. For this type of purpose we need a mapping

function, and the mapping function is commonly referred to as the random variable or

stochastic variable.

Definition A.7 (Random Variable):

Let X be the function

X : Ω 7→ E,

where E ⊆ R. Then X is called a (E, E)-random variable (r.v.) on (Ω,F ,P), where E is

the measurability of X s.t., for an A ∈ E , the inverse image of the r.v. X−1(A) ∈ F .

Note that the Ω might be equal to E, like it is for dices. A special case of E is real valued

random variables. Then

X : Ω 7−→ R

is a r.v. on the probability space (Ω,F ,P) if the set

A
def
= {ω ∈ Ω : X(ω) < x}
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is an event for all x ∈ R. I.e. A ∈ F . If the random variable have two or more dimension

we call it a random vector (r.v).

Definition A.8 (Random Vector):

A function

X : Ω 7→ Rn

with

X(ω) = (X1(ω), X2(ω), . . . , Xn(ω))T

is called a random vector, if X1, . . . , Xn are r.v.’s.

A.2 Expectation

The most common statistic is the expectation which is defined as the Lebesgue integral

w.r.t. the probability measure P. The reason why we are working with Lebesgue integral

is because the random variable might be discrete. In discrete case the Riemann integral

is equal to zero due to it’s definition.

Definition A.9 (Expectation w.r.t. P):

Let X ≥ 0 be a positive r.v. Then the expectation (integral) is defined as

E[X]
def
=

∫
Ω

X(ω)P(dω).

For a general X we define

E[X]
def
=

∫
Ω

X(ω)P(dω)
def
= E[X+]− E[X−],

where X+ = max(x, 0) and X− = max(−x, 0). If E[X+], E[X−] < ∞ then X is called

P-integrable.

Properties A.10 (Properties of the expectation):

Let X and Y be two r.v. and α, β ∈ R5

5R is an example of a field
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1. E[αX + βY ] = αE[X] + βE[Y ] (Linearity)

2. If X ≤ Y P-a.s. then E[X] ≤ E[Y ]

A.3 Conditional probability and expectation

In many cases there would be interesting to understand what properties a random variable

have given knowledge. E.g. for a stochastic process, defined later, it is interesting to

understand the process given knowledge about the process up to a certain time s. The

field is conditional probability and expectation.

Let X be a r.v. on the probability space (Ω,A,P), and A ⊆ A. Then the conditional

probability,

P(X|A)
def
=

P(1A(ω)X(ω))

E[1A(ω)]
,

where 1A(ω) is the indicator function

1A(ω) =

 1 if ω ∈ A

0 else,

can be interpreted as the probability of X knowing that ω ∈ A, and 1A = Ω. In the same

way the conditional expectation,

E[X|A]
def
=

E[1A(ω)X(ω)]

E[1A(ω)]

can be interpreted as the expectation of X given that ω ∈ A. A more formal definition

of the conditional expectation is provided.

Definition A.11 (Conditional expectation w.r.t. A):

Let X be a r.v. s.t. E[|X|] < ∞. Then the expected value of X given A is the unique

r.v. Y s.t.

E[1AX] = E[1AY ]
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for all A ∈ A, and {Y ≤ q} ∈ A for all q ∈ R. The r.v. Y is denoted by E[X|A].

Properties A.12 (Conditional Expectation):

Let X,Y be two r.v., α, β ∈ R and A,B be two σ-algebras. Then

1. E[αX + βY |A] = αE[X|A] + βE[Y |B] (Linearity)

2. E[E[X|A]] = E[X] (Rule of double expectation)

3. E[X|A] = X, if X is independent of A

4. E[X|A] = E[X], if X is a r.v. on (Ω,A,P)

5. E[X|A] = E[E[X|B]|A] if A ⊆ B

A.4 Stochastic processes

The short rate change by time. Therefore the most general way to define the short rate

is as a stochastic process rt. But in order to define a stochastic process we need to know

the measurability for each time t. The measurability for each time t is controlled by the

filtration.

Definition A.13 (Filtration):

Let {Ft}0≤t≤T be a family of σ-algebras on (Ω,F ,P) s.t.

Ft1 ⊂ Ft2 ⊂ . . . | ⊂ F

for all 0 ≤ t1 < t2 ≤ ... ≤ T . Then {Ft}0≤t≤T is called the filtration on the probability

space (Ω,F ,P).

The smallest necessary information from the path is called a Markov process. A Markov

process have the property that the forthcoming trajectory only depends on today’s state.

This means that we can reduce the filtration Ft to today’s observation rt.
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Definition A.14 (Stochastic Process):

Let T 6= ∅ be the parameter space. Then the collection

{rt}t∈T

of random variables is called Stochastic Process on the filtered probability space (Ω,F , {Ft},P).

Example A.1 (Parameter Space):

E.g. could the parameter space be T = [0, T ] or T = {1, 2, . . . , n}.

Definition A.15 (The Markov Property; 1-dim.):

Assume that a one dimensional stochastic process rt starts at x. Then rt has the Markov

family property if

Ex[f(rt+h)|Ft] = Ert [f(rh)],

for all bounded and Borel-measurable functions f .

A.5 Brownian motion and Itô Integral

One of the most used stochastic processes is called Brownian motion. This is a process

that fluctuates due to a Gaussian distribution. With the properties of independent,

stationary increments and stochastic continuity6, Brownian motion is an element in a

broader class of stochastic processes. Namely the Levy Processes.

Definition A.16 (Brownian motion):

A stochastic process (Wt)0≤t≤T on the probability space (Ω,F , {Ft}0≤t≤T ,P) is called a

Brownian motion if the process has the following properties

1. W0 = 0 P-a.s.

2. Independent increments: i.e. for 0 ≤ t1 ≤ · · · ≤ tn

Wt1 ,Wt2 −Wt1 , . . . ,Wtn −Wtn−1

6Stochastic continuity is a condition that preserves jumps at fixed time. But in fact Brownian motion
Wt has a continuous version which means no jumps. Hence it follow the Stochastic continuity condition.
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are independent of each other

3. Stationary increments: i.e. Wt −Ws is equally distributed as Wt−s

Wt −Ws
d
= Wt−s

4. Gaussian distributed7: Wt−s ∼ Gaussian(0, t− s),

where the filtration Ft is the smallest σ-algebra containing the path of the process Wt up

to time t

Ft
def
= σ(Wu; 0 ≤ u ≤ t)

Because of the independence8 and stationary9 property, the Brownian motion is a process

without memory. Hence a Brownian motion is a Markov process.

The stochastic integral w.r.t. a Brownian motion, Wt, also called an Itô integral, is defined

on the set of processes, f ∈ V [0, T ] as

I[f ] =

∫ t

0

fsdWs,

where the set of processes V [0, T ] have the following requirements: A function f ∈ V [0, T ]

is the mapping

f : Ω× [0, T ] 7−→ R,

where

• f is measurable w.r.t. F ⊗ B([0, T ])

• ft is Ft-adapted

• E
[ ∫ T

0
f 2
s ds
]
<∞

7The Gaussian distribution is the same distribution as the well known Normal distribution
8Independent on the past
9The past doesn’t change the distributional properties
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The last requirement ensure the existence of the Itô-isometry

E
[
(

∫ T

0

fsdWs)
2
]

= E
[ ∫ T

0

f 2
s ds
]

Properties A.17 (Itô integral):

The stochastic integral w.r.t. a Brownian motion have the following properties

1. (Linearity)
∫ T

0
αfs + βgsdWs = α

∫ T
0
fsdWs + β

∫ T
0
gsdWs

2. E
[ ∫ T

0
fsdWs

]
= 0

3. (Itô Isometry) V ar
[
(
∫ T

0
fsdWs)

2
]

= E
[ ∫ T

0
f 2
s ds
]

4. There exists a continuous version of Yt
def
=
∫ t

0
fsdWs

By property 4. we may assume that the process Yt is continuous.

A.6 Itô’s Lemma

Assume that Xt is an Itô process, i.e. that

Xt = X0 +

∫ t

0

hsds+

∫ t

0

fsdWs,

where fs ∈ V [0, T ] and t ∈ [0, T ], and hs is Ft-adapted with the property

E[

∫ t

0

|hs|ds] <∞.

Then, which form does the function,

g(t,Xt),

take? The answer is Itô’s Lemma.
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Theorem A.18 (Itô’s Lemma):

Let Xt be an Itô process and g ∈ C2([0,∞] × R)10. Then the function g(t, x) is an Itô

process for x = Xt as the underlying process, where

g(t,Xt) = g(0, X0) +

∫ t

0

∂

∂t
g(s,Xs)ds+

∫ t

0

∂

∂x
g(s,Xs)dWs +

1

2

∫ t

0

∂2

∂x2
g(s,Xs)(dXs)

2,

using that (dWt)
2 = dt and dWt dt = dt dWt = dt dt = 0.

Note that the stochastic differential equation (SDE) of the Itô process is

dXt = ht ds+ ft dWt.

A.7 Stochastic Differential Equations

Assume we have a SDE on the form

dXt = h(t,Xt)dt+ f(t,Xt)dWs.

Then the solution is defined as the processXt, in the filtered probability space (Ω,F , {Ft}t≥0,P),

satisfying the equation

Xt = x0 +

∫ t

0

h(s,Xs)ds+

∫ t

0

f(s,Xs)dWs,

where h : [0, T ]× R→ R and f : [0, T ]× R→ R are given. If

|h(t, x)|+ |f(t, x)| ≤ C(1 + |x|)

and

|h(t, x)− h(t, y)|+ |f(t, x)− f(t, y)| ≤ D|x− y|
10For a g ∈ C2([0,∞)× R), the function is twice differentiable on (0,∞)× R
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for all x, y ∈ R and t ∈ [0, T ], the solution Xt exist and is unique. Knowing that a

solution is unique makes us being able to do certain transformations in order to derive

an appealing solution. See the Vasicek model present earlier.

A.8 Important Financial Tools

One crucial modeling assumption is that the discounted financial market is following an

Martingale. It’s an assumption of fair price. Heuristically the Martingale property is the

model assumption that the best predicted value in the future is today’s value.

Definition A.19:

Let Xt be a stochastic process on the filtered probability space (Ω,F , {Ft}t≤0,P). Further

assume that E[|Xt|] <∞ for all t ∈ [0, T ] and

E[Xt|Fs] = Xs

for all s ∈ [0, t]. Then Xt is called a Ft-Martingale.

For a stochastic process following the path of a stochastic integral w.r.t. a Brownian

motion the Martingale representation theorem is an important tool in understanding the

process under arbitrage free (fair) prices.

Theorem A.20 (Martingale Representation theorem):

Let Wt be an Brownian motion, and assume that Mt ∈ L2(P) is a Ft-Martingale. Then

there exists a unique stochastic process f ∈ V [0, t] for all t ≥ 0 s.t.

Mt = E[M0] +

∫ t

0

fs dWs.

Note that assuming Mt ∈ L2(P) is the same as assuming existence of the second moment.

This condition can be relaxed. Then we are working with local Martingales, where the

main difference is that we need to work with stopping times, knowing that for a stopped

process the second moment exist.
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In most of the cases the financial process have a drift under the objective probability

measure P. But a necessity in financial modeling is that the discounted financial asset

is priced due to a Martingale. We therefore need a change of measure. Using Girsanov

transform we replace the objective probability measure by an appropriate chosen prob-

ability measure Q. The transform will remain a Brownian motion and we choose this

measure s.t. the process is a Martingale.

Theorem A.21 (Girsanov’s theorem):

Let W̃t be an Itô process on the form

W̃t = Wt −
∫ t

0

hsds.

We define the likelihood process as

Zt(ht) = exp
{∫ t

0

hsdWs −
1

2

∫ t

0

h2
sds
}

for t ∈ [0, T ]. Further assume that ht satisfies the Novikov condition

E
[

exp
{1

2

∫ t

0

h2
tds
}]

<∞

and that the Girsanov transformation Q of the measure P is defined by the probability

measure

Q(A)
def
= EP[1AZT ].

Then W̃t is a Brownian motion under Q.

Generally, the Brownian motion under the ”risk neutral” measure Q will be denoted WQ
t .

Under the risk neutral measure we are going to derive several partial differential equation

of the solution to the arbitrage free price of ZCB (also applied in deriving arbitrage

free price for an option on the underlying process of a ZCB). An auxiliary tool is the

Feynman-Kac proposition.
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Proposition A.22 (Feynman-Kac):

Let Xt be the solution of the stochastic differential equation

dXt = h(t,Xt)dt+ f(t,Xt)dW
Q
t ,

where X0 = x0. Then for an risk free interest rate r the solution F (t, x) of the boundary

value problem

∂F

∂t
(t, x) + h(t, x)

∂F

∂x
(t, x) +

1

2
f(t, x)2 ∂

2

∂x2
(t, x)− rF (t, x) = 0

F (T, x) = φ(x)

is

F (t, x) = e−r(T−t)EQ[φ(XT )|Ft],

given that the second moment exist for the integrand in the stochastic part of F (t,Xt).

The integrability condition ensure that the stochastic integral is equal to zero. Feynman-

Kac is used in the portfolio setup, Chapter 2.

The last theorem is very often used in this thesis. The Stochastic Fubini theorem serve

in the same way as the Fubini theorem. It’s a change of inner integrands.

Theorem A.23 (Stochastic Fubini theorem):

Consider a stochastic process f(u, s) ∈ V [0, T ]. Then

∫ T

0

∫ T

0

f(u, s)dWuds =

∫ T

0

∫ T

0

f(u, s)dsdWs.

Proof. Theorem (6.2) in [3], where the assumption of f(u, s) ∈ V [0, T ] is a special case of

the proof.

For a more thorough review I refer to [9] and [1].
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B.1 Calculations

B.1.1 Deriving the CIR zero-coupon price

First we find the function B(t, T ). We solve the first differential equation
Clear@BD
DSolveBD@B@t, TD, tD - k B@t, TD - 1

2
s2 B@t, TD2 ä -1, B@t, TD, 8t, T<,

GeneratedParameters Æ HSubscript@c, D &LF

::B@t, TD Æ
-k + -k2 - 2 s2 TanB 1

2
Kt -k2 - 2 s2 + 2 -k2 - 2 s2 c1@TDOF

s2
>>

w.r.t to the boundary condition B(T, T ) = 0

SolveB -k2 - 2 s2 TanB 1
2

T -k2 - 2 s2 + 2 -k2 - 2 s2 c1 F ä k, c1F

::c1 Æ ConditionalExpressionB 1
2

-T +

2 ArcTanB k

-k2-2 s2
F + p C@1D

-k2 - 2 s2
, C@1D Œ IntegersF>>

Since this applies for all C[1], element in the integers, we choose the constant equal to

zero. By transforming the equation to exponential functions and simplifying it by using

that
√
−k2 − 2σ2 = i

√
k2 + 2σ2 = ih 1,

1i
def
=
√
−1

113
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we end up with the following function for B(t, T ),

B(t, T ) =
2(eh(T−t) − 1)

2h+ (k + h)(eh(T−t) − 1)
. (B.1)

The next thing would be to check if we in fact have the correct answer. The analytical

tools of Mathematica provid a satisfying answer.

B@t_, T_D := I2 IExpAHT - tL SqrtAk2 + 2 s2EE - 1MM ë
I2 SqrtAk2 + 2 s2E + Ik + SqrtAk2 + 2 s2EM IExpAHT - tL SqrtAk2 + 2 s2EE - 1MM

FullSimplifyBD@B@t, TD, tD - k B@t, TD - 1

2
s2 B@t, TD2F

-1

B@T, TD
0

The second differential equation we solve in the same way or just integrate kθB(t, T ) over

t. We derive the following simplified solution

A(t, T ) =
kθ(h+ k)(T − t) + 2 log[2h]− 2 log[h− k + (h+ k)eh(T−t)]

σ2
, (B.2)

where we still have defined h =
√
k2 + 2σ2. By rearrenging and using the same definition

of an affine term structure as [7] the result is equal.
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B.1.2 Calculations; the Hull-White model

B.1.2.1

Recall that B(s, T ) = 1
a

(
1− e−a(T−s)). Then

∂

∂T

∫ T

0

θsB(s, T )ds =
∂

∂T

∫ T

0

θs
1

a

(
1− e−a(T−s))ds

(Linearity) =
∂

∂T

[ ∫ T

0

θs
1

a
ds− e−aT

∫ T

0

θs
a

e−asds
]

= θT
1

a
− ∂

∂T

[
e−aT

∫ T

0

θs
a

easds
]

(Product rule) =
θT
a

+ ae−aT
∫ T

0

θs
a

e−asds− e−aT
1

a
θT eaT

=

∫ T

0

θse
−a(T−s)ds

=

∫ T

0

∂

∂T
θs

1

a

(
1− e−a(T−s))ds

=

∫ T

0

∂

∂T
θsB(s, T )ds.

B.1.2.2

Recall that

ψ(T ) = f(0, T ) + h(T ),

where

ψ(T )
def
=

∫ T

0

∂

∂T
θsB(s, T )ds− r0e−aT

and

h(T )
def
=

1

2a2
σ2e−2aT (eaT − 1)2.

From Appendix B.1.2.1

ψ(T ) =

∫ T

0

θse
−a(T−s)ds.
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Then

∂

∂T
ψ(T ) =

∂

∂T
(e−aT

∫ T

0

θse
asds+ r0e

−aT )

(Product rule) = −ae−aT
∫ T

0

θse
asds+ e−aT θT eaT + ar0e−aT

= θT − aψ(T )

B.1.3 Deriving the Vasicek model by means of the forward rate

An another way of deducing the same initial forward rate structure is by solving the

differential equation
φ′(t) + kφ(t)

k
= θ

w.r.t. the initial forward rate f(0, t)

q@t_D := f@tD + s2
2 k2

H1 - Exp@-k tDL2

DSolveB D@q@tD, tD + k q@tD
k

ä f, f@tD, tF

::f@tD Æ

„-k t - „-k t s2

k
-

„k t Js2-2 k2 fN
k

2 k
+ „-k t C@1D>>

Simplifying the expression

f(0, T ) = θ − σ2(1 + e−2T )

2k2
+ e−ktC1

and solving the initial condition f(0, 0) = r0,

SolveB „
-k 0 - „

-k 0 s2

k
-
„k 0 Is2-2 k2 fM

k

2 k
+ „-k 0 c1 ä r, c1F

::c1 Æ
k2 r + s2 - k2 f

k2
>>

we derive the same specified initial forward rate

f(0, t) = r0e
−kt + θ(1− e−kt)− σ2

2k2

(
1− e−kt

)2
.
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Remark B.1:

In the program it was necessary to split between the constant and function. Therefore in

the program φ(t) = θ(t) and θ = φ.
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