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Abstract

The topic of this thesis is portfolio optimization under model ambiguity,
i.e. a situation when the probability distribution of the events in the sample
space is not known. The financial market studied is driven by a Brownian
motion: a continuous driving element, and a doubly stochastic Poisson
random process: a discontinuous driving element. What separates the
doubly stochastic Poisson random process from the standard Poisson case,
is that the jump intensity is a stochastic process. From a modeling point of
view, this adds more flexibility in capturing hidden random effects. Models
of this type appear in the literature of credit risk and in financial price
modeling in the class of stochastic volatility models. See e.g. [9] and [4],
respectively.

In this thesis we assume that the investing agent is ambiguity averse,
i.e. the agent does not take any risk with respect to the uncertainty of
the probability distribution, and thus relates to the worst case probability
distribution. A dynamic risk measure that respects the agents ambiguity
aversion is applied to quantify the risk of a hedging strategy, and the agent
wishes to make the risk vanish at all times.

The optimization problem takes the form of a stochastic differential
game, in which the agent minimizes the risk of the hedging strategy, while
the opponent drives in the opposite way proposing a probability distribu-
tion yielding the worst case scenario. This thesis entails two methods of
solving this stochastic differential game. First, through backward stochas-
tic differential equations (BSDEs), and then using the maximum principle.
In this thesis, the approach with BSDEs will give a solution of a price pro-
cess at all times in the give horizon, while the approach using the maximum
principle will give a solution at the initial time.

This approach of pricing is of great interest to insurers, as it gives
a supplement to Value-at-Risk and Estimated Shortfall calculations, and
gives a benchmark for capital needed to withstand extreme scenarios.

iii



iv



Contents

Page

Abstract iii

Preface vii

1 Introduction 1
1.1 Project description . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 My contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Historical introduction to model ambiguity . . . . . . . . . . . . . 3
1.4 A measure for the risk of ambiguity . . . . . . . . . . . . . . . . . 5

2 Preliminary theory 9
2.1 The mathematical framework . . . . . . . . . . . . . . . . . . . . 9
2.2 Stochastic integration and representation theorems . . . . . . . . 12
2.3 Backward stochastic differential equations . . . . . . . . . . . . . 16
2.4 Theory on the maximum principle . . . . . . . . . . . . . . . . . . 19

3 Financial model ambiguity and optimization 35
3.1 Equivalent probability measures . . . . . . . . . . . . . . . . . . . 35
3.2 The financial market and its self-financing portfolios . . . . . . . . 42
3.3 The optimization problem and the admissible controls ♣ . . . . . 44
3.4 Solution via BSDEs ♣ . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.1 Case I: Knowledge of the time-distortion . . . . . . . . . . 52
3.4.2 Case II: Standard information on the time-distortion . . . 59

3.5 Solution via the maximum principle . . . . . . . . . . . . . . . . . 69
3.5.1 Case I: Knowledge of the time-distortion . . . . . . . . . . 72
3.5.2 Case II: Standard information on the time-distortion . . . 76

3.6 Analysis and comparison of the solutions ♣ . . . . . . . . . . . . 81

3.6.1 Example: e
∫ T
0 r(t)dtF is FΛ

T−measurable . . . . . . . . . . . 81
3.7 Further research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Appendix 87
A Dynamic risk measures via g-expectations . . . . . . . . . . . . . 87
B Proofs of results in Section 2.2 . . . . . . . . . . . . . . . . . . . . 90
C BSDEs: existence and uniqueness . . . . . . . . . . . . . . . . . . 95
D Local martingales and quadratic variation . . . . . . . . . . . . . 104

References 107

v



vi



Preface

This thesis is for the degree of Master in Science, written under the Mathe-
matics program, with specialization mathematical finance, at the Department of
Mathematics, University of Oslo. The work of this thesis has been done at the
Mathematics Department, Blindern, lasting from fall 2013 to spring 2014, and
corresponds to 60 credits. The work has been done independently, but with the
guidance of my supervisor, Professor Giulia Di Nunno (Center of Mathematics
for Applications, University of Oslo).

Acknowledgments: Jeg vil først og fremst takke min veileder, Giulia, som
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1 Introduction

1.1 Project description

The material for my thesis originates mainly from two sources. Firstly, I used the
research paper BSDEs driven by time-changed Lévy noises and optimal control
by Giulia Di Nunno and Steffen Sjursen [8] to study doubly stochastic Poisson
random fields, and the stochastic analysis and BSDEs connected to such mea-
sures. Secondly, I used the book Backward stochastic differential equations with
jumps and their actuarial and financial applications by  Lukasz Delong [5] as in-
troductory reading on backward stochastic differential equations and their link
to optimization problems.

The progress of the project (as intended) was as follows:

1. Study the background on BSDEs driven by Gaussian and centered Poisson
noises.

2. Acquire basic knowledge about dynamic risk measures and their connection
with BSDEs. Link the use of risk measure to model ambiguity.

3. Understand the solution to the optimization problem

Y (t) = ess inf
π

ess sup
Q

EQ

[
− (e

∫ T
t r(s)dsXπ(T )−Xπ(t)− e

∫ T
t r(s)dsF )

∣∣∣∣Mt

]
,

for 0 ≤ t ≤ T, in the case of mixture of Gaussian and centered Poisson
noises, when (Mt)t∈[0,T ] = G and (Mt)t∈[0,T ] = F. (See equation (3.15) and
the corresponding section for details.)

4. Extend 3. to include the doubly stochastic Poisson noise.

1.-3. were used as an introduction to the subject, and 4. is the main contri-
bution of the thesis. In addition to the intended progress, I looked at another
approach to solve the problem, namely by the maximum principle for stochas-
tic differential games. Background theory for this approach is found in BSDEs
driven by time-changed Lévy noises and optimal control by Giulia Di Nunno and
Steffen Sjursen [8], and Maximum principle for stochastic differential games with
partial information by An Thi Kieu Ta and Bernt Øksendal [1].

Some challenges I experienced during the project was in the work beyond
centered Poisson noises, the study of the statistical properties, and the stochastic
calculus of such. Much of my work in this project has been to acquire knowledge
and extend results from Lévy noise to doubly stochastic Poisson noise in the
stochastic integration scheme, change of measure and optimization.
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1.2 My contributions

A main contribution of this thesis is the derivation of the dynamics of the price
processes and the solution of the optimization problem (3.18) for the setup with
information flow G and information flow F. See equation (3.35) (equation (3.54))
for the dynamics and page 58 (page 68) for a summary of the optimal solution
with information flow G (information flow F). In addition to the aforementioned
results, the following summarizes my contributions:

• Chapter 2:

– Section 2.4 is a fusion of the theory of the maximum principle in [8] in
a setup with Lévy process, and the theory of the maximum principle
in [1] in a setup with doubly stochastic Poisson random field.

– Theorem 2.17 (Maximum principle III, for the solution via the maxi-
mum principle) and its proof.

• Chapter 3:

– Theorem 3.1 and its proof are modifications of Theorem 1.35 in [14].
The modification is to extend the theorem from a Poisson measure to
a doubly stochastic Poisson random field. We prove that the Girsanov
change of measure preserves the property of martingale random fields
and the independence between the Brownian motion W θ and the ran-
dom jump measure H̃θ for some equivalent probability measures. (See
Section 3.1, Theorem 3.1 for details.)

– Corollary 3.2 (preservation of Poisson structure under Girsanov change
of measures) and its proof.

– The derivation of the optimization problem (Section 3.3).

– Theorem 3.8 (The optimization theorem II, for the solution via BS-
DEs) and its proof.

– The derivation of the dynamics of the price processes for the setup
with information flow G (3.35), along with the optimal solution (p.
58.)

– The proof of Lemma 3.12.

– The derivation of the dynamics of the price processes for the setup
with information flow F (3.54), along with the optimal solution (p.
68.)

– The analysis and the toy example in Section 3.6.

My contributions are marked with ♣ in the text.
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1.3 Historical introduction to model ambiguity

In 1954, Leonard J. Savage postulated a method in his book Foundations of
Statistics called the subjective expected utility, where he proposed that people’s
choices can be explained through a mathematical function. The theory of sub-
jective expected utility explains the relation between subjective assumptions and
choices, given that people act rationally. Rationality is here thought of as an
ability to rank in order all possible situations from worst to best and act upon
this. This is a seemingly fair assumption to make.

In order to give a swift mathematical explanation of this theory, we need a
utility function, u, and a probability distribution, P , for an uncertain event. It
must be emphasized that the utility function and the probability distribution
are subjectively chosen by an agent. The probability distribution is based on
beliefs of the acting agent. The agent is faced with a choice leading to different
sets of outcomes {xi} and {yi}, with subjective utilities {u(xi)} and {u(yi)} and
probabilities {P (xi)} and {P (yi)}. Which choice the agent prefers, according to
the theory of subjective expected utility, depends on which subjective expected
utility is higher. As an example, say

∑
i u(xi)P (xi) >

∑
i u(yi)P (yi), then the

agent will choose the option leading to the outcome {xi}. However, experiments
have been carried out that shows evidence that people do not act according to
the theory of subjective expected utility.

There is extreme complexity related to the optimization of the composition
of a portfolio. There is a long list of decisions that will affect the end result, such
as selection of statistical model, the amount of data available, how we choose to
estimate the parameters, the choice of optimization criteria, and we may even
have to approximate the solution numerically.

In other words, we most likely do not have the right model to explain the
financial market we are interested in modeling. It is even daring to suggest that
there actually exist such a model, meaning that the world is actually made up of
laws, and that the laws of nature are not just man made simplifications of the
world made for us to better understand it. This is a philosophic question this
paper will no further discuss, and we rather just accept that the model we choose
is most likely not the right one.

An investing agent in a financial market is exposed to model ambiguity from
the arguments above, or at least assumed to be in this thesis. The agent may
respond differently to this exposure, but the attitude towards this risk affects the
investments of the agent, and puts conditions on the portfolio optimization.

We will show evidence of this alleged aversion of ambiguity by a paradox by
Ellsberg in his 1961 paper Risk, Ambiguity, and the Savage Axioms. The para-
dox contradicts the postulate of Leonard J. Savage, about the rational agent,
thus there is evidence of deviation between what agents do and Savage says they
should do.
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Ellsberg’s paradox

There exists more than one version of this paradox, and here we choose to in-
troduce the one-urn problem with three different colored balls. The Ellsberg’s
Paradox is a paradox in decision theory, and is taken as evidence for existence of
ambiguity aversion. This contradicts Savage’s axioms, that a rational agent faced
with model ambiguity will maximize his utility with respect to one subjectively
chosen prior.

The experiment goes like this: Suppose we have an urn containing 90 balls of
three different colors; red, blue and yellow. We know for certain that there are
30 yellow balls, but we do not know the distribution of blue and red balls of the
remaining 60 balls. This is a problem in ambiguity as we defined it, as there is
no way to measure the risk exactly due to the uncertainty in the model.

What Ellsberg did, was to introduce two games of chance to the subjects. In
the first game, he asked whether they would bet on a yellow or a red ball being
pulled up from the urn. In the second game, he asked whether they would bet
on a yellow or blue ball, or if they would bet on a red or blue ball being pulled
up from the urn. Most subjects in his experiment, which later experiments have
confirmed, prefer to bet on the yellow ball in the first gamble and red or blue
in the second. Figure 1.1 provides an overview of the games of chance and the
preferences of the majority of the subjects.

Figure 1.1: Ellsberg’s experiment and the results. In the first game of chance, Situation A, most subjects
preferred the yellow ball over the red ball. This implies that the subjects think there are more yellow balls
than red balls. In the second game, Situation B, most subjects preferred the red or blue alternative, meaning
the subjects think there are more red and blue balls combined than yellow and blue. This contradicts the first
assumption, and leads to a paradox when assuming Savage’s axioms.
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According to the figure, most subjects preferred the yellow option in Situation
A, and the red or blue option in Situation B. So how does this contradict Savage’s
axioms? Well, the choice of most subjects in Situation A reflects that they think
there are more yellow balls than red balls in the urn. In order to make it easier to
keep up with the train of thought, say the subject believes there are 20 red balls,
which implies there are 40 blue balls. Then, making another bet on the same
urn, the logical choice of the alternatives red or blue and yellow or blue under
the same beliefs, is to bet on the yellow or blue option to be in line with Savage’s
axioms. This would give a 70/90 chance of winning, while the red or blue choice
will only give a 60/90 chance of winning. The result from the experiment shows
that most subjects prefer the red or blue bet to the yellow or blue, although this
contradicts their first choice according the theory of subjective expected utility.

Ambiguity aversion is a possible, and perhaps probable, explanation to this
phenomenon. Maximizing the expected payoff of the games with certainty is
impossible, so therefore one might go for robustness. The subjects seek for known
probabilities and known payoff, instead of going for one specific assumption of the
distribution of the colored balls. The specific strategy (Y,R/B) in the experiment
is robust in that no matter what the distribution of the colored balls is, the
expected payoff of the strategy is the same. This is a suboptimal solution with
respect to assumed probability distribution implied by the choice A in all cases
except for when the distribution is (30, 30, 30). But for players who treasure
certainty more than possible gain, this is an optimal solution.

This suboptimal solution is a robust solution in that the variation is small
under neighboring probability models. In contrast, non-robust decisions may
drop a lot in performance under neighboring probability models. As an example
of this, as mentioned above, the variation of the expected payoff of the strategy
(Y,R/B) is zero. The variation of the optimal subjective expected utility strategy
(Y,Y/B) (or (R,R/B) if one assumes R>Y) is ±1/3 of the payoff for picking the
right colored ball.

1.4 A measure for the risk of ambiguity

In this thesis, we take the perspective of an ambiguity averse agent who wishes
to hedge a contingent claim in a market driven by a Brownian motion and a
doubly stochastic Poisson random field. The degree of aversion may vary, but
in this thesis we assume the agent to be strongly ambiguity averse, in that the
agent wishes to evaluate the portfolio in the worst-case scenario and hence ob-
tain a robust suboptimal solution. With realistic applications in mind, such a
robust strategy is of great interest e.g. for insurers that want to put stress-test
on model parameters to ensure the company has enough capital to withstand
extreme scenarios.

The uncertainty in the market is captured by the distribution law of the
random space. The possible probability distributions of the random space are
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the equivalent probability measures of the measure under which the financial
market is defined.

The measure for the ambiguity aversion of the agent is a dynamic risk measure
ρt that measures the risk of a financial position ξ to be

ρt(ξ) := ess sup
Q∈Q

EQ[−ξ|Mt], 0 ≤ t ≤ T.

Negative ξ means loss, while positive ξ means profit. The set Q represents the
set of the possible distribution laws, and the minus sign inside the expectation in-
dicates that the risk measure measures losses positively. The essential supremum
over all losses evaluates ξ under the least favorable conditions. The conditional
expectations are stochastic variables, and must be evaluated almost everywhere,
thus we take the essential supremum. Mt denotes the information available
in the market at time t ∈ [0, T ], and in this thesis two information filtrations
are considered. ρt is a specific example of a dynamic risk measure. For more
information about dynamic risk measures see Appendix A.

Financially speaking, the agent has a liability of which he wants a “best
possible” replication, i.e. the best replication with respect to the ambiguity
aversion through the dynamic risk measure. The agent invests in a portfolio π in
the financial market, and choose a portfolio that hedges the liability under the
specified risk measure. Mathematically presented, the problem is to find π such
that

ess inf
π

ρt

(
e−

∫ T
t r(s)ds[Xπ(T )− F ]

)
= 0, 0 ≤ t ≤ T.

Here Xπ(t) is the value process of the portfolio, and F represents a financial
claim.

As mentioned above, two information filtrations are considered. The first is
the filtration generated by the natural filtrations of the Brownian motion, the
doubly stochastic Poisson process, and the stochastic intensity process of the
doubly stochastic Poisson random field. The second, is generated by the filtra-
tions of the Brownian motion and the doubly stochastic Poisson process, and at
all times contains the complete filtration of the stochastic intensity process. Re-
spectively, the filtrations is denoted F and G. The G−filtration is interesting for
its statistical properties, while the F−filtration is interesting from the modeling
point of view.

In Chapter 2, we introduce preliminary theory for the calculations that will come
in Chapter 3. In Appendix B there are more theoretical results to support and
elaborate the theory in Chapter 2. This theory is not necessary for the reading,
but included in the appendices for completion.

In Section 2.1, we define the jump process in the financial market, or more
precisely the random field of the jump process, and the random intensity process.
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In Section 2.2, we define the stochastic integration with respect to this random
field in a classical Itô integration scheme. In Section 2.3, a short introduction
to backward stochastic differential equations and a theorem for comparison of
solutions of such BSDEs are included. In Section 2.4 theory on the maximum
principle is introduced, and an optimization theorem for both filtrations F and
G is given.

In Section 3.1, we define the equivalent probability measures to the measure
under which the financial market is modeled. In Section 3.2, the financial market
is defined by the processes introduced in Chapter 2. In Section 3.3, we make
clear the optimization problem in order to do calculations via BSDEs, and we
also define the sets of admissible portfolios and equivalent probability measures.
In Section 3.4, we solve the optimization problem for both filtrations F and G
via BSDEs. In Section 3.5, we solve the optimization problem for both filtrations
F and G via the maximum principle at the initial time t = 0.

If the reader is in need of more introductory theory on stochastic processes
and statistical properties of such, the books [13] and [14] are suggested.
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2 Preliminary theory

2.1 The mathematical framework

In this section the statistical properties of the stochastic processes are introduced,
and in the upcoming sections, these statistical properties are used to build up
an integration scheme. The framework is a modification of the one in the paper
[8], in that there is not assumed any time-distortion on the continuous process in
this thesis, only in the jump process.

In this thesis we consider the complete probability space (Ω,FT ,P). We shall
define a doubly stochastic Poisson random field, and in order to do that we need to
define a distortion process. Let λ be a stochastic process such that the following
properties are satisfied:

(i) λ(t) ≥ 0 P− a.s. for all t ∈ [0, T ],

(ii) limh→0P(|λ(t+ h)− λ(t)|≥ ε) = 0 for all ε > 0 and almost all t ∈ [0, T ],

(iii) E[
∫ T

0
λ(t)dt] <∞.

Denote the space of processes satisfying (i)− (iii) by L.
We define a random measure on [0, T ]×R0 by

Λ(∆) :=

∫ T

0

∫
R0

1∆(t, z)ν(dz)λ(t)dt,

for all ∆ ∈ B[0,T ]×R0 . This measure is assumed to be non-atomic, meaning that
P(Λ({(t, z)}) = 0, for all (t, z) ∈ B[0,T ]×R0) = 1, to ensure certain needed prop-
erties of its natural filtration, which will be explained in more detail below. Here
ν is a deterministic, σ-finite measure on BR0 satisfying∫

R0

(1 ∧ z2)ν(dz) <∞.

We denote the σ−algebra generated by the values of Λ by FΛ
T , in particular

the σ−algebra generated by the values of Λ(∆), ∆ ∈ [0, t]×R0, by FΛ
t .

The driving noises in our market are a Brownian motion W := (W (t), 0 ≤
t ≤ T ), and a doubly stochastic Poisson random field.

Definition 2.1 W is a signed random measure on the Borel sets of [0, T ] satis-
fying

(i) P(W (∆) ≤ x) = Φ

(
x√∫ T

0 1∆(t)dt

)
, x ∈ R, ∆ ∈ [0, T ],

(ii) W (∆1) and W (∆2) are independent whenever ∆1 and ∆2 are disjoint sets.

9



Here Φ stands for the cumulative probability distribution function of a standard
normal random variable.

Definition 2.2 H is a random measure on the Borel sets of [0, T ]×R0 satisfying

(iii) P(H(∆) = k|FΛ
T ) = P(H(∆) = k|Λ(∆)) = Λ(∆)k

k!
e−Λ(∆),

(iv) H(∆1) and H(∆2) are conditionally independent given FΛ
T whenever

∆1 ∩∆2 = ∅.

In addition we assume that

(v) W and H are independent.1

Let the signed random measure H̃ := H − Λ be defined on the Borel sets of
[0, T ]×R0 by

H̃(∆) = H(∆)− Λ(∆), ∆ ∈ B[0,T ]×R0 .

This is a centered doubly stochastic Poisson random field. From Definition 2.2 we
can conclude that the conditional first and second moment of H̃ are given by

E[H̃(∆)|FΛ
T ] = 0

E[H̃(∆)2|FΛ
T ] = Λ(∆)

We call M(∆) := E[H̃(∆)2|FΛ
T ] = Λ(∆) the conditional variance measure, and

m(∆) := E[Λ(∆)] the variance measure.
Let FW and FH be the natural filtrations of the Brownian motion and the

doubly stochastic Poisson random field, respectively. By Theorem 2.8 in [8] we

have that FWt ∨ F H̃t = FWt ∨ FHt ∨ FΛ
t , t ∈ [0, T ]. Here our assumption on Λ

being non-atomic is crucial for this to be true. The result is proved in a more
general framework in [8], where Λ (α in [8]) is defined on X, a locally compact,
second countable Hausdorff topological space. We simply let X := [0, T ] × R,
and apply the result in our more specific framework. We define two filtrations
that will be important in our work:

F = {Ft, t ∈ [0, T ]}, Ft =
⋂
r>t

(
FWr ∨ F H̃r

)
G = {Gt, t ∈ [0, T ]}, Gt = Ft ∨ FΛ

T

1The work of this thesis could be considered with a conditional Brownian motion W with
respect to some time-distortion process ΛW . Then (i) and (ii) would be replaced to hold
conditionally to the natural filtration FΛW , and (v) would be replaced such that W and H are
conditionally orthogonal with respect to the filtration generated by Λ = ΛW + ΛH . This would
imply to extend the concept of [, ] and 〈, 〉 (see Appendix D) to conditional information.

10



F is right-continuous by definition, and G is right-continuous from the relation
with F. By definition of G we have that GT = FT . Note that G0 = FΛ

T , while F0

is trivial. From now on we set F = FT (= GT .)
W is a (G,P)−martingale by being a Brownian motion, and H̃ is a

(G,P)−martingale random field with conditionally orthogonal values in the sense
of [[6], Definition 2.1], i.e.

Definition 2.3 (Martingale Random Field) H̃ is a (G,P)−martingale ran-
dom field with conditionally orthogonal values if

(i) H̃ is G-adapted;

(ii) H̃ has the martingale property, i.e. for any t ∈ [0, T ] and any ∆ ∈ (t, T ]×R0

such that m(∆) <∞, we have

E[H̃(∆)|Gt] = E[H̃(∆)|Ft ∨ FΛ
T ] = E[H̃(∆)|FΛ

T ] = 0;

(iii) H̃ has a tight σ-finite variance measure m : R0 × [0, T ]→ R+ such that

m(∆) := E[H̃(∆)2], ∆ ∈ B[0,T ]×R0 ,

and m(R0 × {0}) = 0;

(iv) H̃ is additive, and σ−additive in L2(P), i.e. for pairwise disjoint sets
∆1,∆2, ... : Λ(∆k) <∞ P− a.s., K <∞

H̃(
K⋃
k=1

∆k) =
K∑
k=1

H̃(∆k),

and

H̃(
∞⋃
k=1

∆k) =
∞∑
k=1

H̃(∆k),

with convergence in L2(Ω,F ,P);

(v) H̃ has conditionally orthogonal values, i.e. for ∆1,∆2 ∈ (t, T ] × R0, ∆1 ∩
∆2 = ∅, then

E[H̃(∆1)H̃(∆2)|Gt] = E[H̃(∆1)|FΛ
T ]E[H̃(∆2)|FΛ

T ] = 0.

Remark. A measure is tight if for every δ > 0 there exists a compact Xδ such
that m(X \Xδ) < δ. 3

Remark. Note that since both W and H̃ are F−adapted, they are also an
(F,P)−martingale and an (F,P)−martingale random field. (iii) and (iv) are
the same, and (ii) and (v) can be deduced by applying the double expectation
rule. 3
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2.2 Stochastic integration and representation theorems

Given the martingale structure of the centered doubly stochastic Poisson ran-
dom field H̃ with respect to the filtrations F and G, we can construct a non-
anticipating stochastic integration of Itô type according to the classical scheme.

Since H̃ is a martingale random field for both the filtration F and G, one
may use one of the two as reference information flow in the integration. From
the modeling point of view, it would be a natural choice to build an integration
scheme around F, since this filtration represents no future insight on the time-
distortion. Still we want to build up an integration scheme around G, because this
integration scheme possesses an integration representation where all the processes
are known. This will be of great importance in solving our optimization problem
for the case of G−information.

Non-anticipating stochastic integration with respect to general martingale
random fields is treated in [6], and this theory can be adapted in the setup of
this thesis by specifying the spaces and processes involved. We present the main
features of the integration scheme, leading to an integral and a martingale rep-
resentation theorem as treated in [8]. The theory is presented in a shortened
version for quick reading. The missing links can be found in Appendix B.

To begin with, we introduce the integrands of the martingale random field as
integrator. The theory is from Section 3 in [6].

Let P be the G−predictable σ−algebra generated by sets of the form

F × (s, u]×B, F ∈ FHs ∨ FΛ
T , 0 ≤ s ≤ u ≤ T, B ∈ BR0 ,

and let P0 be the G−predictable σ−algebra generated by sets of the form

F × (s, u], F ∈ FWs ∨ FΛ
T , 0 ≤ s ≤ u ≤ T. (2.1)

Definition 2.4 A measurable function

γ : Ω× [0, T ]×R0 → R

is a simple integrand if it admits the following representation

γ(t, z) =
K∑
k=1

γkχ∆k
(t, z)

where ∆1, ...,∆K are pairwise disjoint sets of the form ∆k = (sk, uk] × Bk with
m(∆k) <∞, and the values γk are Gsk−measurable random variables satisfying

E[

∫
∆k

γ2
k(t, z)Λ(dt, dz)] <∞

12



Thus, the simple integrands are elements of

L2(P× Λ) := L2(Ω× [0, T ]×R0, (FHT ∨ FΛ
T )× B[0,T ] × BR0 ,P× Λ),

with the finite norm

‖γ‖L2(P×Λ):=

(
E[

∫ T

0

∫
R0

γ2(t, z)Λ(dt, dz)]

)1/2

.

Note that a simple integrand is a predictable function, i.e.

γ ∈ L2(P) := L2(Ω× [0, T ]×R0,P ,P× Λ).

Definition 2.5 A measurable function

γ : Ω× [0, T ]×R0 → R

is a (general) integrand if it can be represented as a limit γ = limn→∞ γn with
convergence in L2(P× Λ) of a sequence (γn)n≥1 of simple integrands.

Remark 3.1 in [6]. The set of general integrands corresponds to L2(P), that is
the subspace of elements in L2(P×Λ) admitting a predictable representative. 3

According to classical Itô integration scheme, for any integrand γ = limn→∞ γn,
we can define the non-anticipating integral J as the limit

J (γ) =

∫ T

0

∫
R0

γ(t, z)H̃(dt, dz) := lim
n→∞

∫ T

0

∫
R0

γn(t, z)H̃(dt, dz),

with convergence in L2(P). For this the Itô isometry is crucial:

E

[(∫ T

0

∫
R0

γ(t, z)H̃(dt, dz)

)2]
= E

[ ∫ T

0

∫
R0

γ2(t, z)Λ(dt, dz)

]
.

Moreover, the basic rules of calculus hold:

E

[∫
∆

γ(s, z)H̃(ds, dz)

∣∣∣∣Gt] = 0, (2.2)

E

[ ∫
∆

γ(s, z)H̃(ds, dz)

∫
∆

θ(s, z)H̃(ds, dz)

∣∣∣∣Gt]
=

∫
∆

E[γ(s, z)θ(s, z)|Gt]Λ(ds, dz),

E

[∫
∆1

γ(s, z)H̃(ds, dz)

∫
∆2

θ(s, z)H̃(ds, dz)

∣∣∣∣Gt] = 0, (2.3)

for ∆,∆1,∆2 ∈ B(t,T ]×R0 and ∆1 ∩∆2 = ∅.
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Remark 3.2 in [6]. Let γ ∈ L2(P). For any ∆ ∈ B[0,T ] × BR0 define

J (γ,∆) :=

∫
∆

γ(t, z)H̃(dt, dz).

From (2.2) and (2.3) we see that the stochastic measure J (γ,∆), ∆ ∈ B[0,T ]×BR0

is a martingale random field with corresponding conditional variance and variance
measures given by

Λ(γ,∆) =

∫
∆

γ2(t, z)Λ(dt, dz)

and

m(γ,∆) = E

[∫
∆

γ2(t, z)Λ(dt, dz)

]
.

Thus martingale random fields appear naturally after non-anticipating integra-
tion with respect to another martingale random field as integrator. 3

Next we give a proposition that holds for the integration scheme of information
flow G only. This is a critical result that separates the representation properties
for the integration scheme around G and F. This is Proposition 4.3 in [7].

Proposition 2.6 Consider the FΛ
T−measurable β ∈ L2(Ω,GT ,P) and

γ ∈ L2(P). Then
βJ (γ) = J (βγ),

if either side exists as an element of L2(Ω,GT ,P).

Proof: As in [7]. Assume γ is a simple integrand (Definition 2.4) and β is
bounded. Then, for every k, βγk is Gsk−measurable and

βJ (γ) =
K∑
k=1

βγkH̃((sk, uk]×Bk) = J (βγ).

The general case follows by taking limits. �

Until now, nothing has been said about the stochastic integration with respect
to the Brownian motion, but this follows from the same Itô calculus structure.
In particular the integrands of the integration with respect to the Brownian mo-
tion are elements of L2(P0), where we recall that P0 is a set of G−predictable
integrands. (See definition in (2.1).) Here we also use G as the information flow
and the corresponding result of Proposition 2.6 holds.
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Definition 2.7 Define the two spaces of integrands

IG := {θ = (θ0, θ1) | (θ0, θ1) ∈ L2(P0)× L2(P)},

and
IF := {θ = (θ0, θ1) | (θ0, θ1) ∈ IG, F−predictable}.

Clearly we have IF ⊂ IG.

Next we give an integral and martingale representation theorem for the in-
tegration scheme with respect to the information flow G. These representations
are nice in the way that they give an explicit representation without unknown
processes. See Appendix B for details on these results, or in the paper [8], where
the theory is taken from.

Theorem 2.8 (Integral Representation) Assume ξ ∈ L2(Ω,FT ,P). Then
there exists a unique θ ∈ IG such that

ξ = E[ξ|FΛ
T ] +

∫ T

0

θ0(t)dW (t) +

∫ T

0

∫
R0

θ1(t, z)H̃(dt, dz), (2.4)

where E[ξ|FΛ
T ] ∈ L2(Ω,FΛ

T ,P). Moreover, the E[ξ|FΛ
T ] and

∫ T
0
θ0(t)dW (t) +∫ T

0

∫
R0
θ1(t, z)H̃(dt, dz) are orthogonal in L2(P).

Proof: See Appendix B, or proof of Theorem 3.3 in [8].

Theorem 2.9 (Martingale Representation) Let M(t), t ∈ [0, T ], be a
(G,P)-martingale. Then there exists a unique θ ∈ IG such that

M(t) = E[M(T )|FΛ
T ] +

∫ t

0

θ0(s)dW (s) +

∫ t

0

∫
R0

θ1(s, z)H̃(ds, dz), t ∈ [0, T ],

(2.5)

where E[M(T )|FΛ
T ] ∈ L2(Ω,FΛ

T ,P). Moreover, E[ξ|FΛ
T ] and

∫ t
0
θ0(s)dW (s) +∫ t

0

∫
R0
θ1(s, z)H̃(ds, dz) are for all t ∈ [0, T ] orthogonal in L2(P).

Proof: See Appendix B.
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2.3 Backward stochastic differential equations

When considering information flow G, we work with BSDEs of the form

Y (t) = ξ +

∫ T

t

g(s, λ(s), Y (s), Z(s), U(s, z))ds−
∫ T

t

Z(s)dW (s)

−
∫ T

t

∫
R0

U(s, z)H̃(ds, dz), (2.6)

Here the random variable ξ ∈ L2(Ω,FT ,P) is the terminal condition, and the
function g is the generator of the BSDE. The stochastic process Z : Ω×[0, T ]→ R

and the stochastic field U : Ω× [0, T ]×R0 → R are predictable processes in IG.
Below we determine sufficient conditions on the couple (ξ, g) in order to have a
unique solution (Y, Z, U) to the BSDE (2.6). First we define the domain of the
solution Y .

Definition 2.10 The space (S2(P), ‖Y ‖2
S2

) defines a Banach space, where the

S2(P) := {Y : Ω× [0, T ]→ R | G−adapted, càdlàg, and E

[
sup
t∈[0,T ]

|Y (t)|2
]
<∞},

and

‖Y ‖2
S2

:= E

[
sup
t∈[0,T ]

eρt|Y (t)|2
]
,

for some ρ > 0.

In order to have a unique solution (Y, Z, U) ∈ S2(P) × IG to the BSDE (2.6),
the couple (ξ, g) must consist of standard parameters. Before we can define what
standard parameters are, we need to introduce the function space R:

Definition 2.11 Let R be space of functions u : R→ R that satisfy∫
R0

u2(x)ν(dx) <∞,

where ν is the jump measure of the compensator of the (doubly stochastic Poisson)
random measure.
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Definition 2.12 The couple (ξ, g) are standard parameters, with respect to G,
for a BSDE on (Ω,FT ,P) if ξ ∈ L2(Ω,FT ,P) and g : Ω× [0, T ]× [0,∞)× R×
R×R→ R satisfies, for some Kg > 0, the following:

(i) g(·, ·, λ, Y, Z, U(·)) is G-adapted for all λ ∈ L, Y ∈ S2(P), (Z,U) ∈ IG;

(ii) For all λ ∈ L we have g(·, ·, λ(·), 0, 0, 0) G-predictable and

E

[∫ T

0

g2(t, λ(t), 0, 0, 0)dt

]
<∞;

(iii) For all λ ∈ [0,∞), y1, y2, z1, z2 ∈ R and u1, u2 ∈ R we have

|g(t,λ, y1, z1, u1)− g(t, λ, y2, z2, u2)|≤

Kg

(
|y1 − y2|+|z1 − z2|+

√∫
R0

|u1(x)− u2(x)|2ν(dx)λ

)
.

With (ξ, g) being standard parameters, we know that there exists a unique solu-
tion to the equation (2.6) P× dt−a.e. by the next theorem.

Theorem 2.13 Let (ξ, g) be standard parameters. Then there exists a unique
triple (Y, Z, U) ∈ S2(P)× IG, P× dt−a.e. such that

Y (t) = ξ +

∫ T

t

g(s, λ(s), Y (s), Z(s), U(s, z))ds−
∫ T

t

Z(s)dW (s)

−
∫ T

t

∫
R0

U(s, z)H̃(ds, dz).

Proof: See Appendix B or Theorem 4.5 in [8].

Next, we state a comparison theorem from [8] that compares two solutions
of the BSDE (2.6) with two different sets of standard parameters. The theorem
states that for certain assumptions on the standard parameters, we can compare
the solutions P× dt−a.e:

Theorem 2.14 Let (ξ1, g1) and (ξ2, g2) be two sets of standard parameters for
the BSDEs with solutions (Y1, Z1, U1), (Y2, Z2, U2) ∈ S2(P)× IG. Assume that

g2(t, λ, y, z, u(·)) = f(t, y, zα(t),

∫
R0

β(t, x)u(x)ν(dx)
√
λ),

where (α, β) ∈ IG and satisfies 0 ≤ β(t, x) < Kx for x ∈ R0, and |α(t)|< K P×
dt−a.e. for some K > 0. Assume the function f : Ω× [0, T ]×R×R×R→ R

satisfies
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(i) |f(t, y, b, h)− f(t, y′, b′, h′)|≤ Kh(|y − y′|+|b− b′|+|h− h′|)

(ii) E
[∫ T

0
|f(t, 0, 0, 0)|2dt

]
<∞

If
ξ1 ≤ ξ2 P− a.s.

and

g1(t, λ(t), Y 1(t), Z1(t), U1(t, ·)) ≤ g2(t, λ(t), Y 1(t), Z1(t), U1(t, ·)) P× dt− a.e.,

then
Y 1(t) ≤ Y 2(t) P× dt− a.e.

Proof: See [8], Theorem 5.2.

Remark. It can be shown that f is indeed a standard parameter and satisfies
(i)− (iii) in Definition 2.12. 3
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2.4 Theory on the maximum principle

This section contains theory on the maximum principle, which later will be used
to find a solution to the optimization problem at the initial time t = 0. We
look at two different performance criteria: The performance of the optimization
problem at the initial time for the information flow G, and the performance of
the optimization problem at the initial time for the information flow F.

The theory is inspired by the paper [1]. The modifications from the original
paper is the following: Firstly, in the case of information flow G, the performance
criterion is in this thesis conditioned on G0 = FΛ

T . Secondly, the assumptions
on the processes are different. This is because the driving processes in [1] are
Brownian noises and Poisson noises, while in this thesis we have extended the
jump noise.

The two situations need their own theorem, but the processes involved have
the same form. The processes are different in the two situations in that the
parameters are adapted to different filtrations. We introduce the processes inde-
pendently of the situation of the information flow.

First, we introduce a general state process. π and θ = (θ0, θ1) are the control
parameters we wish to optimize:

dX(t) = b(t,X(t), λ(t), π(t), θ(t))dt+ σ(t,X(t), λ(t), π(t), θ(t))dW (t)

+

∫
R0

γ(t,X(t−), λ(t), π(t), θ(t), z)H̃(ds, dz) (2.7)

X(0) = x ∈ R

Here, b : [0, T ] × R × R+ × K3 → R, σ : [0, T ] × R × R+ × K3 → R and
γ : [0, T ]×R×R+×K3×R0 → R are given continuous functions, differentiable
in x, and K is a given closed, convex subset of R.

The performance criteria are given by:

Performance criterion for the information flow G

J1(π, θ) = E

[ ∫ T

0

f(s,X(s−), λ(s), π(s), θ(s))ds+ l(X(T ))

∣∣∣∣FΛ
T

]
.

Performance criterion for the information flow F

J2(π, θ) = E

[ ∫ T

0

f(s,X(s−), λ(s), π(s), θ(s))ds+ l(X(T ))

]
.

Here x 7→ f(t, x, λ, π, θ) is a real, differentiable function, and x 7→ l(x) is a
real concave differentiable function.
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Define the optimization problem by

J(π̂, θ̂) = ess inf
π∈A1

(
ess sup
θ∈A2

J(π, θ)

)
, (2.8)

where A1 and A2 are the admissible sets of controls. The admissible controls
(π, θ) ∈ A1×A2 are either G−predictable or F−predictable and we denote these
sets as AiG and AiF for i = 1, 2, respectively.

Define the Hamiltonian, H : [0, T ]×R× [0,∞)×K3 ×R2 ×R by

H(t, x, λ, π, θ, p, q, r) = f(t, x, λ, π, θ) + b(t, x, λ, π, θ)p+ σ(t, x, λ, π, θ)q

+

∫
R0

γ(t, x, λ, π, θ, z)r(z)ν(dz)λ (2.9)

Corresponding to (X, π, θ) is the solution (p, q, r) to the adjoint equation

p(t) = ∂xl(X(T )) +

∫ T

t

∂xH(s,X(s), λ(s), π(t), θ(t), p(s), q(s), r(s, ·))ds

−
∫ T

t

q(s)dW (s)−
∫ T

t

∫
R0

r(s−, z)H̃(ds, dz) (2.10)

For standard parameters (∂xH, ∂xl(X(T ))), there exists a unique solution to the
BSDE (2.10) by Theorem 2.13.

Now we state two theorems with slight differences. The first solves the control
problem of (2.8) for J1, i.e. solves

J1(π̂, θ̂) = ess inf
π∈A1

G

(
ess sup
θ∈A2

G

J1(π, θ)

)
, (2.11)

and the second solves the control problem of (2.8) for J2, i.e. solves

J2(π̂, θ̂) = inf
π∈A1

F

(
sup
θ∈A2

F

J2(π, θ)

)
. (2.12)

The following theorem is a slight modification of Theorem 2.1 in [1] in order
to fit the the problem in (2.11).

Notation: We use the notation Xπ(t) := Xπ,θ̂(t) and Xθ(t) := X π̂,θ(t).

Moreover, denote X̂(t) := X π̂,θ̂(t), and X(t) := Xπ,θ(t). We also abbreviate the
parameters, e.g. denote σ(t,X(t), λ(t), π(t), θ(t)) = σ(X(t), π(t), θ(t)), etc. This
makes the calculations more readable.
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Theorem 2.15 (Maximum principle I) Let (π̂, θ̂) ∈ A1
G×A2

G. Suppose there
exists a solution (p̂(t), q̂(t), r̂(t, z)) of the adjoint equation (2.10) such that, for
all π ∈ A1

G and θ ∈ A2
G, we have

E

[ ∫ T

0

|p̂(s−)σ(X̂(s−), π̂(s), θ(s))|2ds

+

∫ T

0

∫
R0

|p̂(s−)γ(Xθ(s−), π̂(s), θ(s), z)|2Λ(ds, dz)

∣∣∣∣FΛ
T

]
<∞,

E

[ ∫ T

0

|p̂(s−)σ(X̂(s−), π(s), θ̂(s))|2ds

+

∫ T

0

∫
R0

|p̂(s−)γ(Xπ(s−), π(s), θ̂(s), z)|2Λ(ds, dz)

∣∣∣∣FΛ
T

]
<∞,

E

[ ∫ T

0

|(X̂(s−)−Xπ(s−))q̂(s)|2ds

+

∫ T

0

∫
R0

|(X̂(s−)−Xπ(s−))r̂(s, z)|2Λ(ds, dz)

∣∣∣∣FΛ
T

]
<∞,

E

[ ∫ T

0

|(X̂(s−)−Xθ(s−))q̂(s)|2ds

+

∫ T

0

∫
R0

|(X̂(s−)−Xθ(s−))r̂(s, z)|2Λ(ds, dz)

∣∣∣∣FΛ
T

]
<∞,

P−a.s. Denote Ĥ by

Ĥ(X(t−), π(t), θ(t)) = H(t,X(t−), λ(t), π(t), θ(t), p̂(t−), q̂(t), r̂(t, ·)).

Suppose for all t ∈ [0, T ] the following holds P−a.s.:

ess inf
π∈A1

G

Ĥ(X̂(t−), π, θ̂(t))

= Ĥ(X̂(t−), π̂(t), θ̂(t)) (2.13)

= ess sup
θ∈A2

G

Ĥ(X̂(t−), π̂(t), θ).

(i) Suppose that, for all t ∈ [0, T ], l(x) is convex and

(x, π) 7→ Ĥ(x, π, θ̂(t)),

is convex. Then,

J1(π̂, θ̂) ≤ J1(π, θ̂), for all π ∈ A1
G, P− a.s.,

and
J1(π̂, θ̂) = ess inf

π∈A1
G

J1(π, θ̂).
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(ii) Suppose that, for all t ∈ [0, T ], l(x) is concave and

(x, θ) 7→ Ĥ(x, π̂(t), θ),

is concave. Then,

J1(π̂, θ̂) ≥ J1(π̂, θ), for all θ ∈ A2
G, P− a.s.,

and
J1(π̂, θ̂) = ess sup

θ∈A2
G

J1(π̂, θ).

(iii) If both (i) and (ii) hold, i.e. l is linear, then (π̂, θ̂) are optimal controls
and we have

ess sup
θ∈A2

G

(
ess inf
π∈A1

G

J(π, θ)

)
= ess inf

π∈A1
G

(
ess sup
θ∈A2

G

J(π, θ)

)
.
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Proof: We divide the problem in two. First assume that (i) holds. Choose
(π, θ) ∈ A1

G ×A2
G and consider

J1(π̂, θ̂)− J1(π, θ̂) = I1 + I2,

where

I1 = E

[ ∫ T

0

f(X̂(s−), π̂(s), θ̂(s))− f(Xπ(s−), π(s), θ̂(s))ds

∣∣∣∣FΛ
T

]
,

and

I2 = E

[
l(X̂(T ))− l(Xπ(T ))

∣∣∣∣FΛ
T

]
.

Since l is convex, we have by convex property

I2 = E

[
l(X̂(T ))− l(Xπ(T ))

∣∣∣∣FΛ
T

]
≤ E

[
(X̂(T )−Xπ(T ))∂xl(X̂(T ))

∣∣∣∣FΛ
T

]
= E

[
(X̂(T )−Xπ(T ))p̂(T )

∣∣∣∣FΛ
T

]
.

The dynamics of (X̂(t)−Xπ(t))p̂(t) are given by

d[(X̂(t)−Xπ(t))p̂(t)]

= (X̂(t−)−Xπ(t−))dp̂(t) + p̂(t−)(dX̂(t)− dXπ(t))

+ [σ(X̂(t−), π̂(t), θ̂(t))− σ(Xπ(t−), π(t), θ̂(t))]q̂(t)dt

+

∫
R0

[γ(X̂(t−), π̂(t), θ̂(t), z)− γ(Xπ(t−), π(t), θ̂(t), z)]r̂(t, z)Λ(dt, dz).

Thus,

I2 ≤ E
[
(X̂(0)−Xπ(0))p̂(0) +

∫ T

0

(X̂(s−)−Xπ(s−))dp̂(s)

+

∫ T

0

p̂(s−)(dX̂(s)− dXπ(s)) +

∫ T

0

[σ(X̂(s−), π̂(s), θ̂(s))

− σ(Xπ(s−), π(s), θ̂(s))]q̂(s)ds

+

∫ T

0

∫
R0

[γ(X̂(s−), π̂(s), θ̂(s), z)

− γ(Xπ(s−), π(s), θ̂(s), z)]r̂(s, z)Λ(ds, dz)

∣∣∣∣FΛ
T

]
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= E

[ ∫ T

0

(X̂(s−)−Xπ(s−)) · (−∂xĤ(X̂(s−), π̂(s), θ̂(s)))ds

∣∣∣∣FΛ
T

]
+ E

[ ∫ T

0

p̂(s−)(b(X̂(s−), π̂(s), θ̂(s))− b(Xπ(s−), π(s), θ̂(s)))ds

+

∫ T

0

[σ(X̂(s−), π̂(s), θ̂(s))− σ(Xπ(s−), π(s), θ̂(s))]q̂(s)ds

+

∫ T

0

∫
R0

[γ(X̂(s−), π̂(s), θ̂(s), z)

− γ(Xπ(s−), π(s), θ̂(s), z)]r̂(s, z)Λ(ds, dz)

∣∣∣∣FΛ
T

]
. (2.14)

Over to I1, we have by the definition of H in (2.9) the following relations

I1 = E

[ ∫ T

0

f(X̂(s−), π̂(s), θ̂(s))− f(Xπ(s−), π(s), θ̂(s))ds

∣∣∣∣FΛ
T

]
= E

[ ∫ T

0

[Ĥ(X̂(s−), π̂(s), θ̂(s))− Ĥ(Xπ(s−), π(s), θ̂(s))]ds

∣∣∣∣FΛ
T

]
− E

[ ∫ T

0

p̂(s−)(b(X̂(s−), π̂(s), θ̂(s))− b(Xπ(s−), π(s), θ̂(s)))ds

+

∫ T

0

[σ(X̂(s−), π̂(s), θ̂(s))− σ(Xπ(s−), π(s), θ̂(s))]q̂(s)ds (2.15)

+

∫ T

0

∫
R0

[γ(X̂(s−), π̂(s), θ̂(s), z)

− γ(Xπ(s−), π(s), θ̂(s), z)]r̂(s, z)Λ(ds, dz)

∣∣∣∣FΛ
T

]
.

Thus, combining (2.14) and (2.15) we have P−a.s.

I1 + I2 ≤ E
[ ∫ T

0

{
Ĥ(X̂(s−), π̂(s), θ̂(s))− Ĥ(Xπ(s−), π(s), θ̂(s))

}
−
{

(X̂(s−)−Xπ(s−)) · ∂xĤ(X̂(s−), π̂(s), θ̂(s))

}
ds

∣∣∣∣FΛ
T

]
(2.16)

By the convexity of H in x and π, we have P× ds−a.e.

Ĥ(X̂(s−), π̂(s), θ̂(s))− Ĥ(Xπ(s−), π(s), θ̂(s))

≤ ∂xĤ(X̂(s−), π̂(s), θ̂(s))(X̂(s−)−Xπ(s−))

+ ∂πĤ(X̂(s−), π̂(s), θ̂(s))(π̂(s)− π(s)). (2.17)

Since minimum of π 7→ Ĥ(Xπ(s−), π(s), θ̂(s)) is attained for π = π̂(t) by (2.13),
we get that

∂πĤ(X̂(s−), π̂(s), θ̂(s))(π̂(s)− π(s)) ≤ 0, P× ds− a.e. (2.18)
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Consequently, from (2.16), (2.17) and (2.18), we have

J1(π̂, θ̂)− J1(π, θ̂) = I1 + I2 ≤ 0, P− a.s. (2.19)

We therefore conclude that J1(π̂, θ̂) ≤ J1(π, θ̂), P− a.s., for all π ∈ A1
G.

Now assume (ii) holds. Following the same steps, but now with concavity of
H in x and θ, we obtain the inequality

J1(π̂, θ̂) ≥ J1(π̂, θ), P− a.s. for all θ ∈ A2
G. (2.20)

If both (i) and (ii) hold, then it follows from (2.19) and (2.20) that

J1(π̂, θ) ≤ J1(π̂, θ̂) ≤ J1(π, θ̂), P− a.s., (2.21)

for any (π, θ) ∈ A1
G ×A2

G. So by the second inequality in (2.21), we have

J1(π̂, θ̂) ≤ ess inf
π∈A1

G

J1(π, θ̂) ≤ ess sup
θ∈A2

G

(
ess inf
π∈A1

G

J1(π, θ)

)
On the other hand, by the first inequality in (2.21), we have

J1(π̂, θ̂) ≥ ess sup
θ∈A2

G

J1(π̂, θ) ≥ ess inf
π∈A1

G

(
ess sup
θ∈A2

G

J1(π, θ)

)
.

Now, due to the inequality

ess inf
π∈A1

G

(
ess sup
θ∈A2

G

J1(π, θ)

)
≥ ess sup

θ∈A2
G

(
ess inf
π∈A1

G

J1(π, θ)

)
,

we have

ess inf
π∈A1

G

(
ess sup
θ∈A2

G

J1(π, θ)

)
= ess sup

θ∈A2
G

(
ess inf
π∈A1

G

J1(π, θ)

)
. �
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The following theorem is a slight modification of Theorem 2.1 in [1] in order
to fit the the problem in (2.12).

Theorem 2.16 (Maximum principle II) Let (π̂, θ̂) ∈ A1
F × A2

F. Suppose
there exists a solution (p̂(t), q̂(t), r̂(t, z)) of the adjoint equation (2.10) such that,
for all π ∈ A1

F and θ ∈ A2
F, we have

E

[ ∫ T

0

|p̂(s−)σ(X̂(s−), π̂(s), θ(s))|2ds

+

∫ T

0

∫
R0

|p̂(s−)γ(Xθ(s−), π̂(s), θ(s), z)|2Λ(ds, dz)

]
<∞,

E

[ ∫ T

0

|p̂(s−)σ(X̂(s−), π(s), θ̂(s))|2ds

+

∫ T

0

∫
R0

|p̂(s−)γ(Xπ(s−), π(s), θ̂(s), z)|2Λ(ds, dz)

]
<∞,

E

[ ∫ T

0

|(X̂(s−)−Xπ(s−))q̂(s)|2ds

+

∫ T

0

∫
R0

|(X̂(s−)−Xπ(s−))r̂(s, z)|2Λ(ds, dz)

]
<∞,

E

[ ∫ T

0

|(X̂(s−)−Xθ(s−))q̂(s)|2ds

+

∫ T

0

∫
R0

|(X̂(s−)−Xθ(s−))r̂(s, z)|2Λ(ds, dz)

]
<∞.

Define
ĤF(X(t−), π(t), θ(t)) = E[Ĥ(X(t−), π(t), θ(t))|Ft].

We cannot decide in general whether H is F−adapted, since it depends on the
solution (p, q, r) of the adjoint equation. Suppose, for all t ∈ [0, T ], the following
holds P−a.s.:

ess inf
π∈A1

F

ĤF(X̂(t−), π, θ̂(t))

= ĤF(X̂(t−), π̂(t), θ̂(t)) (2.22)

= ess sup
θ∈A2

F

ĤF(X̂(t−), π̂(t), θ).

(i) Suppose that, for all t ∈ [0, T ], l(x) is convex and

(x, π) 7→ Ĥ(x, π, θ̂(t)),

is convex. Then,
J(π̂, θ̂) ≤ J(π, θ̂), for all π ∈ A1

F,
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and

J(π̂, θ̂) = inf
π∈A1

F

J(π, θ̂).

(ii) Suppose that, for all t ∈ [0, T ], l(x) is concave and

(x, θ) 7→ Ĥ(x, π̂(t), θ),

is concave. Then,

J(π̂, θ̂) ≥ J(π̂, θ), for all θ ∈ A2
F,

and

J(π̂, θ̂) = sup
θ∈A2

F

J(π̂, θ).

(iii) If both (i) and (ii) hold, i.e. l is linear, then (π̂, θ̂) are optimal controls
and we have

sup
θ∈A2

F

(
inf
π∈A1

F

J(π, θ)

)
= inf

π∈A1
F

(
sup
θ∈A2

F

J(π, θ)

)
.

Proof: The argumentation is as in the proof of the previous theorem. As-
sume that (i) holds, then the arguments of Theorem 2.15 are leading to the
corresponding of (2.16)

J2(π̂, θ̂)− J2(π, θ̂)

≤ E
[ ∫ T

0

{
Ĥ(X̂(s−), π̂(s), θ̂(s))− Ĥ(Xπ(s−), π(s), θ̂(s))

}
(2.23)

−
{

(X̂(s−)−Xπ(s−)) · ∂xĤ(X̂(s−), π̂(s), θ̂(s))

}
ds

]
By convexity of H in x and π, we have (2.17). Since the minimum of

π 7→ ĤF(Xπ(t−), π(t), θ̂(t)) is attained for π = π̂(t) by (2.22), and since π(t), π̂(t)
are Ft−measurable, we get

E

[
∂πĤ(X̂(s−), π̂(s), θ̂(t))(π̂(t)− π(t))

∣∣∣∣Fs]
= ∂πĤF(X̂(s−), π̂(s), θ̂(t))(π̂(t)− π(t))

≤ 0.

By the inequality above and (2.17), we see that (2.23) becomes
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J(π̂, θ̂)− J(π, θ̂)

≤ E
[ ∫ T

0

E

[
Ĥ(X̂(s−), π̂(s), θ̂(s))− Ĥ(Xπ(s−), π(s), θ̂(s))]

+ ∂xĤ(X̂(s−), π̂(s), θ̂(s))(X̂(s−)−Xπ(s−))

∣∣∣∣Fs]ds]
= E

[ ∫ T

0

ĤF(X̂(s−), π̂(s), θ̂(s))− ĤF(Xπ(s−), π(s), θ̂(s))]

+ ∂xĤF(X̂(s−), π̂(s), θ̂(s))(X̂(s−)−Xπ(s−))ds

]
≤ 0

(ii) is proved in a similar way, now with concavity. (iii) is proved as in the
proof of Theorem 2.15, now with infimum and supremum instead of essential
infimum and supremum. �
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The next result is a theorem that was formed in the study of the maximum
principle and by the desire to have an optimization theorem that did not require a
saddle point optimum. We do not use the theorem is this thesis, but the theorem
is included as a curiosity.

The theorem is for the filtration G, but a similar result can perhaps be found
for F, e.g. with a similar modifications as the one from Theorem 2.15 to Theorem
2.16.

Notation: We use the following notation in the next theorem:

pπ(t) = ∂xl(X
π(T )) +

∫ T

t

∂xH(s,Xπ(s−), λ(s), π(t), θ̂(t), pπ(s−), qπ(s), rπ(s, ·))ds

−
∫ T

t

qπ(s)dW (s)−
∫ T

t

∫
R0

rπ(s, z)H̃(ds, dz),

Theorem 2.17 (Maximum principle III ♣) Let (π̂, θ̂) ∈ A1
G ×A2

G. Suppose
there exists a solution (p̂(t), q̂(t), r̂(t, z)) of the adjoint equation (2.10) such that,
for all π ∈ A1

G and θ ∈ A2
G, we have

E

[ ∫ T

0

|p̂(s−)σ(Xπ(s−), π(s), θ̂(s))|2ds

+

∫ T

0

∫
R0

|p̂(s−)γ(Xπ(s−), π(s), θ̂(s), z)|2Λ(ds, dz)

∣∣∣∣FΛ
T

]
<∞,

E

[ ∫ T

0

|p̂(s−)σ(X̂(s−), π̂(s), θ̂(s))|2ds

+

∫ T

0

∫
R0

|p̂(s−)γ(X̂(s−), π̂(s), θ̂(s), z)|2Λ(ds, dz)

∣∣∣∣FΛ
T

]
<∞,

E

[ ∫ T

0

|(X̂(s−)−Xπ(s−))q̂(s)|2ds

+

∫ T

0

∫
R0

|(X̂(s−)−Xπ(s−))r̂(s, z)|2Λ(ds, dz)

∣∣∣∣FΛ
T

]
<∞,

P−a.s. In addition,there exists a solution (pπ(t), qπ(t), rπ(t, z)) of the adjoint
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equation (2.10) such that, for all π ∈ A1
G and θ ∈ A2

G, we have

E

[ ∫ T

0

|pπ(s−)σ(Xπ,θ(s−), π(s), θ(s))|2ds

+

∫ T

0

∫
R0

|pπ(s−)γ(Xπ,θ(s−), π(s), θ(s), z)|2Λ(ds, dz)

∣∣∣∣FΛ
T

]
<∞,

E

[ ∫ T

0

|pπ(s−)σ(Xπ(s−), π(s), θ̂(s))|2ds

+

∫ T

0

∫
R0

|pπ(s−)γ(Xπ(s−), π(s), θ̂(s), z)|2Λ(ds, dz)

∣∣∣∣FΛ
T

]
<∞,

E

[ ∫ T

0

|(Xπ,θ(s−)−Xπ(s−))qπ(s)|2ds

+

∫ T

0

∫
R0

|(Xπ,θ(s−)−Xπ(s−))rπ(s, z)|2Λ(ds, dz)

∣∣∣∣FΛ
T

]
<∞,

P−a.s. Denote Ĥ by

Ĥ(X(t−), π(t), θ(t)) = H(t,X(t−), λ(t), π(t), θ(t), p̂(t−), q̂(t), r̂(t, ·)),

and Hπ by

Hπ(X(t−), π(t), θ(t)) = H(t,X(t−), λ(t), π(t), θ(t), pπ(t−), qπ(t), rπ(t, ·)),

Suppose for all t ∈ [0, T ] the following holds P−a.s.:

ess sup
θ∈A2

G

Hπ(Xπ(t−), π(t), θ) = Hπ(Xπ(t−), π(t), θ̂(t)), for all π ∈ A1
G (2.24)

ess inf
π∈A1

G

Ĥ(X̂(t−), π, θ̂(t)) = Ĥ(X̂(t−), π̂(t), θ̂(t)).

(i) Suppose that, for all t ∈ [0, T ], l(x) is concave and

(x, θ) 7→ Hπ(x, π(t), θ), for all π ∈ A1
G,

is concave. Then,

J1(π, θ) ≤ J1(π, θ̂), for all π ∈ A1
G, P− a.s.,

and
J1(π, θ̂) = ess sup

θ∈A2
G

J1(π, θ) for all π ∈ A1
G, P− a.s.

(ii) Suppose that, for all t ∈ [0, T ], l(x) is convex and

(x, π) 7→ Ĥ(x, π, θ̂(t)),
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is convex. Then,
J1(π̂, θ̂) ≤ J1(π, θ̂), P− a.s.,

and
J1(π̂, θ̂) = ess inf

π∈A1
G

J1(π, θ̂).

(iii) If both (i) and (ii) hold, i.e. l is linear, then (π̂, θ̂) are optimal controls
and we have

J(π̂, θ̂) = ess inf
π∈A1

G

(
ess sup
θ∈A2

G

J(π, θ)

)
.

Proof: We divide the problem in two. First assume that (i) holds. Choose
(π, θ) ∈ A1

G ×A2
G and consider

J(π, θ)− J(π, θ̂) = I1 + I2,

where

I1 = E

[ ∫ T

0

f(Xπ,θ(s−), π(s), θ(s))− f(Xπ(s−), π(s), θ̂(s))ds

∣∣∣∣FΛ
T

]
,

and

I2 = E

[
l(Xπ,θ(T ))− l(Xπ(T ))

∣∣∣∣FΛ
T

]
.

Since l is concave, we have by concave property the following

I2 = E

[
l(Xπ,θ(T ))− l(Xπ(T ))

∣∣∣∣FΛ
T

]
≤ E

[
(Xπ,θ(T )−Xπ(T ))∂xl(X

π(T ))

∣∣∣∣FΛ
T

]
= E

[
(Xπ,θ(T )−Xπ(T ))pπ(T )

∣∣∣∣FΛ
T

]
. (2.25)

The dynamics of (Xπ,θ(t)−Xπ(t))pπ(t) are given by

d[(Xπ,θ(t)−Xπ(t))pπ(t)]

= (Xπ,θ(t−)−Xπ(t−))dpπ(t) + pπ(t−)(dXπ,θ(t)− dXπ(t))

+ [σ(Xπ,θ(t−), π(t), θ(t))− σ(Xπ(t−), π(t), θ̂(t))]qπ(t)dt

+

∫
R0

[γ(Xπ,θ(t−), π(t), θ(t), z)

− γ(Xπ(t−), π(t), θ̂(t), z)]rπ(t, z)Λ(dt, dz). (2.26)
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From (2.25) and (2.26), we get

I2 ≤ E
[
(Xπ,θ(0)−Xπ(0))pπ(0) +

∫ T

0

(Xπ,θ(s−)−Xπ(s−))dpπ(s)

+

∫ T

0

pπ(s−)(dXπ,θ(s)− dXπ(s)) +

∫ T

0

[σ(Xπ,θ(s−), π(s), θ(s))

− σ(Xπ(s−), π(s), θ̂(s))]qπ(s)ds

+

∫ T

0

∫
R0

[γ(Xπ,θ(s−), π(s), θ(s), z)

− γ(Xπ(s−), π(s), θ̂(s), z)]rπ(s, z)Λ(ds, dz)

∣∣∣∣FΛ
T

]
= E

[ ∫ T

0

(Xπ,θ(s−)−Xπ(s−)) · (−∂xHπ(Xπ(s−), π(s), θ̂(s)))ds

∣∣∣∣FΛ
T

]
+ E

[ ∫ T

0

pπ(s−)(b(Xπ,θ(s−), π(s), θ(s))− b(Xπ(s−), π(s), θ̂(s)))ds

+

∫ T

0

[σ(Xπ,θ(s−), π(s), θ(s))− σ(Xπ(s−), π(s), θ̂(s))]qπ(s)ds

+

∫ T

0

∫
R0

[γ(Xπ,θ(s−), π(s), θ(s), z)

− γ(Xπ(s−), π(s), θ̂(s), z)]rπ(s, z)Λ(ds, dz)

∣∣∣∣FΛ
T

]
. (2.27)

Over to I1, we have by the definition of H in (2.9) the following relations

I1 = E

[ ∫ T

0

f(Xπ,θ(s−), π(s), θ(s))− f(Xπ(s−), π(s), θ̂(s))ds

∣∣∣∣FΛ
T

]
= E

[ ∫ T

0

[Hπ(Xπ,θ(s−), π(s), θ(s))−Hπ(Xπ(s−), π(s), θ̂(s))]ds

∣∣∣∣FΛ
T

]
− E

[ ∫ T

0

pπ(s−)(b(Xπ,θ(s−), π(s), θ(s))− b(Xπ(s−), π(s), θ̂(s)))ds

+

∫ T

0

[σ(Xπ,θ(s−), π(s), θ(s))− σ(Xπ(s−), π(s), θ̂(s))]qπ(s)ds

+

∫ T

0

∫
R0

[γ(Xπ,θ(s−), π(s), θ(s), z) (2.28)

− γ(Xπ(s−), π(s), θ̂(s), z)]rπ(s, z)Λ(ds, dz)

∣∣∣∣FΛ
T

]
.
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From (2.27) and (2.28), we have P−a.s.

I1 + I2 ≤ E
[ ∫ T

0

{
Hπ(Xπ,θ(s−), π(s), θ(s))−Hπ(Xπ(s−), π(s), θ̂(s))

}
(2.29)

−
{

(Xπ,θ(s−)−Xπ(s−)) · ∂xHπ(Xπ(s−), π(s), θ̂(s))

}
ds

∣∣∣∣FΛ
T

]
.

By the concavity of Hπ in x and θ for all π ∈ A1
G, we have P× ds−a.e.

Hπ(Xπ,θ(s−), π(s), θ(s))−Hπ(Xπ(s−), π(s), θ̂(s))

≤ ∂xHπ(Xπ(s−), π(s), θ̂(s))(Xπ,θ(s−)−Xπ(s−)) (2.30)

+ ∂θHπ(Xπ(s−), π(s), θ̂(s))(θ(s)− θ̂(s)).

Since maximum of θ 7→ Hπ(Xπ(s−), π(s), θ(s)) is attained for θ = θ̂(s) for all
π ∈ A1

G by (2.24), we get that

∂θHπ(Xπ(s−), π(s), θ̂(s))(θ(s)− θ̂(s)) ≤ 0, P× ds− a.e.

Consequently, we get from (2.29) and (2.30) that

J1(π, θ)− J1(π, θ̂) = I1 + I2 ≤ 0, P− a.s.

We therefore conclude that J1(π, θ) ≤ J1(π, θ̂), P− a.s., for all π ∈ A1
G, θ ∈ A2

G.
A direct consequence, is that we have

ess sup
θ∈A2

G

J1(π, θ) ≤ J1(π, θ̂), P− a.s. for all π ∈ A1
G

Moreover, by the definition of essential supremum, we have

ess sup
θ∈A2

G

J1(π, θ) ≥ J1(π, θ̂), P− a.s. for all π ∈ A1
G

for some θ̂ ∈ A2
G. Hence,

ess sup
θ∈A2

G

J1(π, θ) = J1(π, θ̂), P− a.s. for all π ∈ A1
G (2.31)

Second, assume (ii) holds. Following the same steps, but now with convexity,
we obtain the inequality

J1(π̂, θ̂) ≤ J1(π, θ̂), P− a.s. for all π ∈ A1
G,

and in a similar manner as above, we show that

J1(π̂, θ̂) = ess inf
π∈A1

G

J1(π, θ̂), P− a.s., (2.32)

If both (i) and (ii) hold, then it follows from (2.31) and (2.32) that

J1(π̂, θ̂) = ess inf
π∈A1

G

J1(π, θ̂) = ess inf
π∈A1

G

{
ess sup
θ∈A2

G

J1(π, θ)

}
, P− a.s. ♣
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3 Financial model ambiguity and optimization

In this chapter we give a presentation of the optimization problem together with
the details of the processes involved. The problem can be written as a dynamic
stochastic differential game between the agent and the opponent, which here
will be called “the market”. By “the market” we mean to personify the source
of the model ambiguity as an opponent to the agent because of his ambiguity
aversion. We simulate the situation by pretending that “the market” finds the
worst possible admissible probability distribution for the portfolio of the agent.
The agent, on the other hand, finds the portfolio that minimize risk and hedge
the contingent claim.

First, we solve the problem directly through BSDEs by a comparison theorem.
This gives a dynamic solution of a price process where the problem is evaluated
at all times in the given horizon. Thereafter, we solve the problem using the
maximum principle. By the maximum principle we get a solution of the problem
evaluated at the initial time.

For both methods the problem is laid out in two ways: First, by find the
optimal solution when the controls are G−predictable, and then by assuming the
controls are F−predictable. Recall that F ⊂ G, such that the problem assuming
information flow F is in a way a problem of partial information, even though this
is a filtration of perfect information of the driving stochastic processes.

Before we formally define the optimization problem in Section 3.3 (equation
(3.18)), we introduce necessary concepts involved. In Section 3.1 we define the
equivalent probability measures of P, which serves as a base for the admissi-
ble controls of the “the market”. In Section 3.2 we define the financial market
(Definition 3.3), and its self-financing strategies, which serves as a base for the
admissible controls of the agent. The common admissible controls of the agent
(Definition 3.6), and the common admissible controls of “the market” (Definition
3.5) are defined in the end of Section 3.3 together with the optimization problem
(3.18).

Further, the optimization problem is solved dynamically via BSDEs for both
the information flow G (pp. 58) and F (pp. 68). Then the optimization problem
is solved via the maximum principle evaluated at the initial time for both the
information flow G (pp. 75) and F (pp. 80). An analysis and comparison of the
solutions follows.

3.1 Equivalent probability measures

We define a set of equivalent probability measures to P, and stochastic processes
which have the martingale property under these new probability measures with
respect to the filtration G. (Thus, these stochastic processes have also the mar-
tingale property with respect to the filtration F by double expectation. Recall
the second remark to Definition 2.3)
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We introduce the Radon-Nikodym density process. Define the process
(Z(t), 0 ≤ t ≤ T ) by

dZ(t)

Z(t−)
= θ0(t)dW (t) +

∫
R0

θ1(t, z)H̃(dt, dz), (3.1)

Z(0) = 1, θ ∈ I : θ1(t, z) > −1 P× Λ− a.e.

Note that we do not specify in which set of predictable integrands θ is. In fact,
we intend that it has to be predictable with respect to the given filtration of
reference, either G or F depending on the specific study.

The solution of the diffusion process (3.1) is obtained by application of the
Itô formula.

d(lnZ(t))

=
Z(t−)

Z(t−)
θ0(t)dW (t) +

1

2
(Z(t−)θ0(t))2(− 1

Z(t−)
)dt

+

∫
R0

[
ln(Z(t−) + Z(t−)θ1(t, z))− ln(Z(t−))− Z(t−)θ1(t, z)

Z(t−)

]
ν(dz)λ(t)dt

+

∫
R0

[
ln(Z(t−) + Z(t−)θ1(t, z))− ln(Z(t−))

]
H̃(dt, dz)

= θ0(t)dW (t)− 1

2
θ0

2(t)dt

+

∫
R0

[
ln(Z(t−)) + ln(1 + θ1(t, z))− ln(Z(t−))− θ1(t, z)

]
ν(dz)λ(t)dt

+

∫
R0

[
ln(Z(t−)) + ln(1 + θ1(t, z))− ln(Z(t−))

]
H̃(dt, dz)

= θ0(t)dW (t)− 1

2
θ0

2(t)dt+

∫
R0

[
ln(1 + θ1(t, z))− θ1(t, z)

]
ν(dz)λ(t)dt

+

∫
R0

[
ln(1 + θ1(t, z))

]
H̃(dt, dz).

From Z(0) = 1 we obtain

lnZ(t)− lnZ(0) =

∫ t

0

θ0(s)dW (s)−
∫ t

0

1

2
θ0

2(s)ds

+

∫ t

0

∫
R0

[
ln(1 + θ1(s, z))− θ1(s, z)

]
ν(dz)λ(s)ds

+

∫ t

0

∫
R0

[
ln(1 + θ1(s, z))

]
H̃(ds, dz).

36



Hence,

Z(t) = exp

(∫ t

0

θ0(s)dW (s)−
∫ t

0

1

2
θ0

2(s)ds

+

∫ t

0

∫
R0

[ln(1 + θ1(s, z))− θ1(s, z)]ν(dz)λ(s)ds

+

∫ t

0

∫
R0

[ln(1 + θ1(s, z))]H̃(ds, dz)

)
. (3.2)

Since we have assumed θ1(t, z) > −1 P × Λ−a.e. and the conditions on the
parameters, we know that ln(1 + θ1(s, z)) and the stochastic integration are well-
defined. A generalized version of the Novikov condition found in [10] ensure
uniformly integrability of Z.

Theorem 3.1 (Girsanov Theorem) ♣ Let W and H̃ be a P−Brownian mo-
tion and a (G,P)−centered Poisson random field, respectively. Assume that
(Z(t), 0 ≤ t ≤ T ), from (3.2) with θ ∈ IG, is a positive uniformly integrable
(G,P)−martingale with E[Z2(T )] < ∞, and define the probability measure Q
equivalent to P by

dQ

dP
= Z(T ).

Define the processes W θ and H̃θ by the dynamics

dW θ(t) := dW (t)− θ0(t)dt,

H̃θ(dt, dz) := H̃(dt, dz)− θ1(t, z)Λ(dt, dz),

Moreover, for any bounded predictable ψ such that
∫ T

0

∫
R0
ψ(t, z)Λ(dt, dz) < ∞,

P−a.s., define the process M(t, ψ) by

M(t, ψ) :=

∫ t

0

∫
R0

ψ(s, z)H̃θ(ds, dz), 0 ≤ t ≤ T.

Then W θ is a Q−Brownian motion, and M(ψ) is a (G,Q)−martingale, where
H̃θ is a compensated jump random field.

Moreover, if

EQ

[
sup
t∈[0,T ]

|[W θ,M(ψ)](t)|
]
<∞, (3.3)

for ψ(t, z) = 1∆(t, z), ∆ ∈ B[0,T ]×R0, then W θ and M(ψ) are strongly orthogonal

under Q, and H̃θ is a (G,Q)−martingale random field.
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Proof: ♣ With ε ∈ [0, 1], define

Xε(t) := εW θ(t) +M(ψ, t).

We have

dXε(t) = −εθ0(t)dt+ εdW (t)−
∫
R0

ψ(t, z)θ1(t, z)ν(dz)λ(t)dt+

∫
R0

ψ(t, z)H̃(dt, dz)

= −αε(t)dt+ εdW (t) +

∫
R0

ψ(t, z)H̃(dt, dz),

where

αε(t) = εθ0(t) +

∫
R0

ψ(t, z)θ1(t, z)ν(dz)λ(t).

From Lemma 1.27 in [14], we know that if Z(t)Xε(t) is a local (G,P)−martingale,
then Xε(t) is a local (G,Q)−martingale. From Definition 1.28 and Example 1.29
in [14], and recalling that

dZ(t) = Z(t−)

(
θ0(t)dW (t) +

∫
R0

θ1(t, z)H̃(dt, dz)

)
,

we get the following:

d(Z(t)Xε(t)) = Z(t−)dXε(t) +Xε(t
−)dZ(t) + dZ(t)dXε(t)

= Z(t−)

(
− αε(t)dt+ εdW (t) +

∫
R0

ψ(t, z)H̃(dt, dz)

)
+Xε(t

−)Z(t−)

(
θ0(t)dW (t) +

∫
R0

θ1(t, z)H̃(dt, dz)

)
+ Z(t−)εθ0(t)dt+ Z(t−)

∫
R0

ψ(t, z)θ1(t, z)H(dt, dz)

= Z(t−)

(
− αε(t) +

(
εθ0(t) +

∫
R0

ψ(t, z)θ1(t, z)ν(dz)λ(t)

))
dt

+ Z(t−)

(
εdW (t) +

∫
R0

ψ(t, z)H̃(dt, dz)

)
+Xε(t

−)Z(t−)

(
θ0(t)dW (t) +

∫
R0

θ1(t, z)H̃(dt, dz)

)
+ Z(t−)

∫
R0

ψ(t, z)θ1(t, z)H̃(dt, dz)

= Z(t−)

(
ε+Xε(t

−)θ0(t)

)
dW (t)

+ Z(t−)

∫
R0

(
Xε(t

−)θ1(t, z) + ψ(t, z) + ψ(t, z)θ1(t, z)

)
H̃(dt, dz)
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Thus, Xε(t) is a local (G,Q)−martingale for all ε ∈ [0, 1]. In particular, X0(t) =
M(t, ψ) is a local (G,Q)−martingale. Moreover, W θ(t) = X1(t)−M(t, ψ) is also
a local (G,Q)−martingale.

SinceW θ is a continuous local martingale, with quadratic variation [W θ,W θ](t) =
[W,W ](t) = t (the quadratic variation is invariant under equivalent measure
change), then W θ is a Q−Brownian motion by the Lévy characterization of Brow-
nian motion, see Theorem 39.II.[11].

As for M(ψ), we can see that its quadratic variation is

[M(ψ),M(ψ)](t) =

∫ t

0

∫
R0

ψ2(s, z)H(ds, dz).

Now, let ψ(t, z) = 1(0,t]×B(t, z) for t ∈ [0, T ] and B ∈ BR0 . Then

EQ[[M(ψ),M(ψ)](T )] = EQ

[ ∫ T

0

∫
R0

1(0,t]×B(t, z)H(dt, dz)

]
= E

[
Z(T )

∫ T

0

∫
R0

1(0,t]×B(t, z)H(dt, dz)

]
.

By Hölder’s inequality, we have that

EQ[[M(ψ),M(ψ)](T )] ≤ E[Z2(T )]1/2 · E
[(∫ T

0

∫
R0

1(0,t]×B(t, z)H(dt, dz)

)2]1/2

<∞. (3.4)

This is finite by the assumption on Z and the definition of H. H is a conditional
Poisson random variable, and its variance is finite. By Corollary D.5 in Appendix
D, M(ψ) is a (G,Q)−martingale.

Denote B a semi-ring generating BR0 . We can regard the σ−algebra B(0,T ] as
generated by the semi-ring of intervals of the form (s, t], where 0 ≤ s < t ≤ T.
The σ−algebra B(0,T ]×R0 is generated by the semi-ring of sets (s, t] × B, where
B ∈ B.

For an element (s, t]×B in the semi-ring, let ψ(t, z) = 1(0,t]×B(t, z). Then we
have

H̃θ((s, t]×B) =

∫ t

0

∫
R0

1B(z)H̃θ(du, dz)−
∫ s

0

∫
R0

1B(z)H̃θ(du, dz)

= M(t, ψ)−M(s, ψ). (3.5)

By (3.4) and (3.5) H̃θ is σ−finite on the semi-ring P−a.s. (equivalently Q−a.s.),
hence we can uniquely extend (3.5) to the σ−algebra B[0,T ]×R0 . See Theorem

11.3 and Theorem 10.3 in [2]. Hence, the compensated jump random field H̃θ
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has the (G,Q)−martingale property, conditionally orthogonal values with respect
to (G,Q), and the variance measure is σ−finite. H̃θ is clearly G−adapted by its
definition, and H̃θ is additive and σ−additive in L2(Q) by its integral form and
condition on θ1. In conclusion, H̃θ is a (G,Q)−martingale random field with
conditionally orthogonal values.

Finally, we show that W θ and M(ψ) are strongly orthogonal under Q. Recall
property (v) on page 10, i.e.〈

W,

∫ ·
0

∫
R0

H̃(dt, dz)

〉
(t) = 0.

From the Girsanov change of measure, the processes W θ and H̃θ are defined on
sharp brackets form (see e.g. proof of Lemma 2.2 in [3]) by

W θ(t) := W (t)−
〈
W,

∫ ·
0

θ0(s)dW (s)

〉
(t),∫ t

0

∫
R0

H̃θ(dt, dz) :=

∫ t

0

∫
R0

H̃(dt, dz)

−
〈∫ ·

0

∫
R0

H̃(ds, dz),

∫ ·
0

∫
R0

θ1(s, z)H̃(ds, dz)

〉
(t).

Now, set ψ(s, z) = 1(0,t]×R0(s, z). For this type of ψ, (3.5) becomes

H̃θ((0, t]×R0) = M(t, ψ).

The sharp bracket process of a martingale and a predictable process is zero, hence
by the bilinearity of the sharp bracket operator, we have the following〈

W θ,M(ψ)

〉
(t) =

〈
W,

∫ ·
0

∫
R0

H̃(dt, dz)

〉
(t) = 0.

From this we know that [W θ,M(ψ)](t) is a local martingale, and by (3.3) we
get from Theorem D.4 in Appendix D that [W θ,M(ψ)] is a uniformly integrable
martingale. By Definition D.8 W θ(t) and M(t, ψ) are strongly orthogonal square
integrable martingales for ψ(t, z) = 1(0,t]×R0(t, z). ♣

The following corollary to the Girsanov Theorem is a curiosity, and not nec-
essary for the upcoming calculations. It states sufficient conditions for H̃θ to be
a doubly stochastic Poisson random field under Q.

Corollary 3.2 ♣ Let H̃θ and Z be defined as in Theorem 3.1. If the stochastic
field θ1 is deterministic, then H̃θ is a (Q,G)−centered doubly stochastic Poisson
random field. Moreover, if θ1(t, z) = θ1(t) the new jump measure and the new
time distortion process are given by

νθ(dz) = ν(dz), λθ(ω, t) = {1 + θ1(t)}λ(ω, t).
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If θ1(t, z) = θ1(z) the new jump measure and the new time distortion process are
given by

νθ(dz) = {1 + θ1(z)}ν(dz), λθ(ω, t) = λ(ω, t).

Proof: ♣ Let ∆ ∈ B[0,T ]×R0 . We compare the conditional expectation of the

exponential of H̃(∆) with respect to FΛ
T under the probability measure P to

the same of H̃θ(∆) under the probability measure Q. By the Lévy-Khintchine
theorem for random variable H̃(∆) under P conditioned on FΛ

T , we have the
following:

E[eiuH̃(∆)|FΛ
T ] = e

∫
∆[eiu−1−iu]ν(dz)λ(s)ds

= e(eiu−1−iu)
∫
∆ ν(dz)λ(s)ds.

The characteristic function for H̃θ(∆) under Q given FΛ
T is given by

ϕ(u) = EQ[eiuH̃
θ(∆)|FΛ

T ] =
E[Z(T )eiuH̃

θ(∆)|FΛ
T ]

Z(0)

= E[e
∫ T
0

∫
R

ln(1+θ1(s,z))H̃(ds,dz)+
∫ T
0

∫
R

[ln(1+θ1(s,z))−θ1(s,z)]ν(dz)λ(s)dseiuH̃
θ(∆)|FΛ

T ]

= E[e
∫
∆ ln(1+θ1(s,z))H̃(ds,dz)+

∫
∆[ln(1+θ1(s,z))−θ1(s,z)]ν(dz)λ(s)dseiuH̃

θ(∆)|FΛ
T ]

= E[e
∫
∆ ln(1+θ1(s,z))H̃(ds,dz)+

∫
∆[ln(1+θ1(s,z))−θ1(s,z)]ν(dz)λ(s)ds

· e
∫
∆ iu(H̃(ds,dz)−θ1(s,z)ν(dz)λ(s)ds)|FΛ

T ]

= E[e
∫
∆[ln(1+θ1(s,z))+iu]H̃(ds,dz)+

∫
∆[ln(1+θ1(s,z))−θ1(s,z)(1+iu)]ν(dz)λ(s)ds|FΛ

T ]

If θ1 is deterministic, then by Lévy-Khintchine

E[e
∫
∆[ln(1+θ1(s,z))+iu]H̃(ds,dz)+

∫
∆[ln(1+θ1(s,z))−θ1(s,z)(1+iu)]ν(dz)λ(s)ds|FΛ

T ]

= e
∫
∆ eln(1+θ1(s,z))+iu−1−(ln(1+θ1(s,z))+iu)ν(dz)λ(s)ds+

∫
∆[ln(1+θ1(s,z))−θ1(s,z)(1+iu)]ν(dz)λ(s)ds

= e
∫
∆(1+θ1(s,z))eiu−1−(ln(1+θ1(s,z))+iu)+ln(1+θ1(s,z))−θ1(s,z)(1+iu)ν(dz)λ(s)ds

= e
∫
∆[(1+θ1(s,z))eiu−1−iu(1+θ1(s,z))−θ1(s,z)]ν(dz)λ(s)ds

= e
∫
∆[(1+θ1(s,z))eiu−(1+θ1(s,z))−iu(1+θ1(s,z))]ν(dz)λ(s)ds

= e
∫
∆(eiu−1−iu)(1+θ1(s,z))ν(dz)λ(s)ds

= e(eiu−1−iu)
∫
∆(1+θ1(s,z))ν(dz)λ(s)ds.

So the characteristic functions are on the same form, and thus they will have
the same kind of distribution. The compensator of H under Q is Λθ(dt, dz) =
(1 + θ1(t, z))ν(dz)λ(t)dt. Since H̃ is a doubly stochastic Poisson random field, so
will also H̃θ be. ♣
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3.2 The financial market and its self-financing portfolios

In this section we define the financial market (Definition 3.3), and solve the
dynamics of a value process of a self-financing portfolio in this market (3.11).
As anticipated in the introduction to this chapter, the self-financing portfolios
constitutes the base of the admissible portfolios of the agent, and a unique strong
solution to (3.11) will be required.

We start by defining the financial market. The specifications of the processes
and their stochastic properties were defined in Chapter 2.

Definition 3.3 (The Financial Market) We consider a market model with
two investment possibilities in a finite time horizon T > 0. The first investment
option is a risk-free bond, S0:

(i)

dS0(t)

S0(t)
= r(t)dt, S0(0) = 1, t ∈ [0, T ], (3.6)

The second investment option is a risky asset, S1, driven by the Brownian
motion W and the centered doubly stochastic Poisson random field H̃:

(ii)

dS1(t)

S1(t−)
= µ(t)dt+ σ(t)dW (t) +

∫
R0

γ(t, z)H̃(dt, dz), S1(0) > 0, t ∈ [0, T ].

(3.7)

The parameters r(t), µ(t), σ(t) and γ(t, z), t ∈ [0, T ], z ∈ R, are càglàd stochastic
processes and F−adapted. Moreover, |r(t)|< C, C > 0, γ(t, z) > −1, P×Λ−a.e.,
and

E

[ ∫ T

0

{|µ(t)|+|σ(t)|2+

∫
R0

|ln(1 + γ(t, z))− γ(t, z)|ν(dz)λ(t)}dt
]
<∞.

Let the value process of the investor’s portfolio be denoted by (Xπ(t), 0 ≤ t ≤ T ),
where (π(t), 0 ≤ t ≤ T ) denotes the portfolio that generates the value process.
Here we choose to let π(t) be the amount of wealth invested in the risky asset at
time t, thus (Xπ(t)− π(t)) will be the amount of wealth invested in the risk-free
bond at time t. We say that π is a self-financing strategy if

E

[ ∫ T

0

[|µ(t)− r(t)||π(t)|+|π(t)σ(t)|2+

∫
R0

|π(t)γ(t, z)|2ν(dz)λ(t)]dt

]
<∞,

(3.8)
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and if the dynamics of the value process of the portfolio are of the form

dXπ(t) =
π(t)

S1(t−)
dS1(t) +

Xπ(t)− π(t)

S0(t)
dS0(t). (3.9)

By (3.6) and (3.7), the dynamics (3.9) have following form

dXπ(t) =
π(t)

S1(t−)
dS1(t) +

Xπ(t)− π(t)

S0(t)
dS0(t)

= π(t)
dS1(t)

S1(t−)
+ (Xπ(t)− π(t))

dS0(t)

S0(t)

= π(t)

(
µ(t)dt+ σ(t)dW (t) +

∫
R0

γ(t, z)H̃(dt, dz)

)
+ (Xπ(t)− π(t)) r(t)dt (3.10)

Xπ(0) = x > 0

Here x is the initial wealth.
If there exists a unique strong solution to the dynamics in (3.10), then the

solution of the value process Xπ is given by

Xπ(t) = x · e
∫ t
0 r(u)du +

∫ t

0

e
∫ t
s r(u)duπ(s)(µ(s)− r(s))ds

+

∫ t

0

e
∫ t
s r(u)duπ(s)σ(s)dW (s) +

∫ t

0

∫
R0

e
∫ t
s r(u)duπ(s)γ(s, z)H̃(ds, dz)

(3.11)
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3.3 The optimization problem and the admissible controls
♣

In this section we formally define the optimization problem and the admissible set
of controls of the agent and “the market”, in our imagined stochastic differential
game between the two opponents.

The optimization problem is derived from the desire of the agent to hedge
himself from the risk of the contingent claim F , with respect to his ambiguity
aversion to the uncertainty in the market model.

The stochastic differential game is a zero-sum stochastic game, i.e. there is
balance between the gain and loss of the participants of the game. In other words,
the loss of the agent is the gain of “the market”, and vice versa.

The dynamic risk measure of the agent’s preferences is defined as follows:

Definition 3.4 If ξ ∈ L2(Ω,FT ,P) is a contingent claim, then we can measure
its risk at time t by the dynamic risk measure over all probability measures in the
set of admissible measures Q

ρt(ξ) := ess sup
θ∈Q

EQ[−ξ|Mt], (3.12)

where the filtration M := (Mt, 0 ≤ t ≤ T ) is the information available to the
manager. This risk measure is called the least favorable measure. (Also, worst
case scenario.)

For supplemental reading on dynamic risk measures via g−expectations, see Ap-
pendix A.

Recall the definition of the value process Xπ(t) in equation (3.10). This
is the value of the portfolio π(t) of the agent at time t. The agent wishes to
hedge the contingent claim F ∈ L2(Ω,FT ,P) at time t = T minimizing the risk
evaluated by the dynamic risk measure ρt at every time t ∈ [0, T ]. By discounting
the difference between the value process at maturity time and the claim F , the
random variable

ρt(e
−

∫ T
t r(s)ds(Xπ(T )− F )), t ∈ [0, T ],

is the risk of the portfolio π(t) at time t = t with time value of money considered.
The agent wants to make the expected terminal shortfall vanish at all times.
Formally, we can state the problem to be:
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The problem of the agent

The agent aims to find a portfolio π̂ in the set of admissible portfolios Π such
that

ρt(e
−

∫ T
t r(s)ds(X π̂(T )− F )) = ess inf

π∈Π
ρt(e

−
∫ T
t r(s)ds(Xπ(T )− F )) = 0, ∀t.

(3.13)

If the value process X π̂ is M−adapted, the price process of the optimal strategy
in the worst case scenario Y (t) := X π̂(t) is given by

Y (t) = X π̂(t)

= ρt

(
e−

∫ T
t r(s)ds(X π̂(T )− F )

)
+X π̂(t)

= ρt

(
e−

∫ T
t r(s)ds(X π̂(T )− F )−X π̂(t)

)
= ess inf

π∈Π
ρt

(
e−

∫ T
t r(s)ds(Xπ(T )− F )−Xπ(t)

)
, 0 ≤ t ≤ T. (3.14)

Here we used the translation invariance of the dynamic risk measure and the
optimality condition in (3.13). By definition of ρt, the equivalent of (3.14) is

Y (t) = ess inf
π∈Π

{
ess sup
θ∈Q

EQ[−(e−
∫ T
t r(s)dsXπ(T )−Xπ(t)− e−

∫ T
t r(s)dsF )|Mt]

}
.

(3.15)

The reason we say “filtration M”, is because we want to solve this problem both
under the F−filtration and under the G−filtration.

From the expression in (3.11) we expand the expression inside the expectation
of (3.15):

Xπ(t)− e−
∫ T
t r(s)dsXπ(T ) =(

xπe
∫ t
0 r(u)du +

∫ t

0

e
∫ t
s r(u)duπ(s)(µ(s)− r(s))ds+

∫ t

0

e
∫ t
s r(u)duπ(s)σ(s)dW (s)

+

∫ t

0

∫
R0

e
∫ t
s r(u)duπ(s)γ(s, z)H̃(ds, dz)

)
(3.16)

− e−
∫ T
t r(u)du

(
xπe

∫ T
0 r(u)du +

∫ T

0

e
∫ T
s r(u)duπ(s)(µ(s)− r(s))ds

+

∫ T

0

e
∫ T
s r(u)duπ(s)σ(s)dW (s) +

∫ T

0

∫
R0

e
∫ T
s r(u)duπ(s)γ(s, z)H̃(ds, dz)

)
.

Notice that

e−
∫ T
t r(u)due

∫ T
s r(u)du = e

∫ t
s r(u)du = e−

∫ s
t r(u)du,
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so (3.16) becomes

Xπ(t)− e−
∫ T
t r(s)dsXπ(T ) =

−
∫ T

t

e−
∫ s
t r(u)duπ(s)(µ(s)− r(s))ds−

∫ T

t

e−
∫ s
t r(u)duπ(s)σ(s)dW (s) (3.17)

−
∫ T

t

∫
R0

e−
∫ s
t r(u)duπ(s)γ(s, z)H̃(ds, dz).

Therefore, by inserting the expression in (3.17) into (3.15) we obtain the equiva-
lent of (3.15) and the expression of the optimization problem we are going to use
in the future calculations via BSDEs. See (3.18) below.

Next, we define the sets of admissible equivalent measures and admissible
portfolios, followed by the expression of the optimization problem we use for
calculations in this thesis.
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Summarizing the optimization problem

We define the common assumptions on the parameters for the two methods of
solving the optimization problem. In addition to these assumptions, both meth-
ods will need further conditions for technical reasons. These extra conditions are
defined in the start of the sections where they will be needed. Define the sets of
admissible equivalent probability measures to P by:

Definition 3.5 (Admissible equivalent probability measures) Let the pro-
cess (Z(t), 0 ≤ t ≤ T ) be a (G,P)−martingale defined by

dZ(t)

Z(t−)
= θ0(t)dW (t) +

∫
R0

θ1(t, z)H̃(dt, dz),

θ ∈ IM, Z(0) = 1, and θ1(t, z) > −1 P× Λ− a.e.,

such that Z ∈ L2(P) and (3.3) is satisfied. Define the sets of admissible equivalent
probability measures to P by

QG := {θ ∈ IG |
dQ

dP
= Zθ(T )},

and

QF := {θ ∈ IF |
dQ

dP
= Zθ(T )}.

A choice of θ ∈ QM induces an equivalent probability measure Q of P, for
M = F,G.

Define the sets of admissible portfolios by

Definition 3.6 (Admissible portfolios) A strategy π : [0, T ]×Ω→ R is called
admissible if:

(i) π(t)γ(t, z) > −1, a.s.

(ii) π is self-financing by (3.8) and (3.9), and in addition satisfies for all
Q ∈ QM

EQ

[ ∫ T

0

[|µ(t)− r(t)||π(t)|+|π(t)σ(t)|2+

∫
R0

|π(t)γ(t, z)|2ν(dz)λ(t)]dt

]
<∞,

and satisfies either

(iii) π is G−predictable such that there exist a unique strong càdlàg G−adapted
solution Xπ to the dynamics in (3.10) on [0, T ],

or
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(iv) π is F−predictable such that there exist a unique strong càdlàg F−adapted
solution Xπ to the dynamics in (3.10) on [0, T ].

Notation: We say that strategies that satisfies (i), (ii) with Q ∈ QG, and (iii)
belongs to ΠG. Strategies that satisfies (i), (ii) with Q ∈ QF, and (iv) belong to
ΠF. It is clear that ΠF ⊂ ΠG.

The optimal portfolio, π̂, of the agent, the parameter of the optimal
probability measure, θ̂, of “the market”, and the optimal price process,
Ŷ (t), 0 ≤ t ≤ T , induced by (π̂, θ̂), are the solutions of the following problem:

Y (t) = ess inf
π∈ΠM

{
ess sup
θ∈QM

EQ

[
e−

∫ T
t r(s)dsF −

∫ T

t

e−
∫ s
t r(u)duπ(s)(µ(s)− r(s))ds

−
∫ T

t

e−
∫ s
t r(u)duπ(s)σ(s)dW (s)

−
∫ T

t

∫
R0

e−
∫ s
t r(u)duπ(s)γ(s, z)H̃(ds, dz)

∣∣∣∣Mt

]}
.

(3.18)

48



3.4 Solution via BSDEs ♣
In this section we use the theory presented in Section 2.3. Recall the main defi-
nitions and theorems: The definition of standard parameters in Definition 2.12;
the existence and uniqueness of solutions for BSDEs with standard parameters
in Theorem 2.13; and the comparison of solutions of BSDEs, Theorem 2.14.

We look at two cases of the problem in equation (3.18): First, where M = G,
and the controls are in the G−predictable sets (π, θ) ∈ ΠG × QG, and secondly
where M = F, and the controls are in the F−predictable sets (π, θ) ∈ ΠF ×QF.
In both cases we find the controls that solves (3.18).

From the comparison theorem we form an optimization theorem, which pro-
vides sufficient conditions for obtaining an optimal solution to the problem. The
theorem and its proof are obtained from the paper [15].

In the method of the BSDEs, the admissible controls (π, θ) ∈ Π×Q must in
addition satisfy:

For K > 0:

|θ0(t)|< K, 0 ≤ θ1(t, z)
√
λ(t) < K · z, z ∈ R0, P× dt− a.e. (3.19)

We still call the sets by the same names ΠM and QM, for M = F,G.

Notation: First of all, denote g(π(t), θ(t)) = g(t, λ, y, z, u(·), π(t), θ(t)).
The solution of the BSDE (see Theorem 2.13) with the generator g(π(t), θ̂(t)),
where the θ̂ is an optimal process, is denoted by (Y π(t), Zπ(t), Uπ(t, ·)). Similar
notation is used for the solution of g(π(t), θ(t)) and g(π̂(t), θ(t)). The solution of
g(π̂(t), θ̂(t)) is denoted (Ŷ (t), Ẑ(t), Û(t, ·)).

Theorem 3.7 (Optimization Theorem I) Let (ξ, g) be standard parameters.
Suppose that for all (ω, t, λ, y, z, u(·)) ∈ Ω × [0, T ] × R+ × R × R × R there
exist π̂(t) = π̂(ω, t, λ, y, z, u(·)) and θ̂(t) = θ̂(ω, t, λ, y, z, u(·)) such that for all
admissible portfolios π and all admissible probability measures given by θ, we
have:

g(π̂(t), θ(t)) ≤ g(π(t), θ(t)) ≤ g(π(t), θ̂(t)), (3.20)

for a.a. (ω, t). Assume g satisfies the criteria of g2 in Theorem 2.14. Suppose π̂
and θ̂ are admissible. Suppose that for all admissible (π, θ) there exists a unique
solution to the BSDE with (ξ, g(π(t), θ(t))) as terminal condition and generator,
respectively. Then

Ŷ (t) = ess inf
π∈Π

Y π(t) = Y (t) = ess sup
θ∈Q

{
ess inf
π∈Π

Y π,θ(t)

}
= ess sup

θ∈Q
Y θ(t)
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Proof: By applying the comparison theorem to the solutions of the BSDEs
of the couples (F, g(π̂(t), θ(t))), (F, g(π(t), θ(t))), (F, g(π(t), θ̂(t))), by (3.20) we
get that Y θ(t) ≤ Y π,θ(t) ≤ Y π(t), for all admissible (π, θ), thus

For all θ: Y θ(t) ≤ ess inf
π∈Π

Y π,θ(t) P× dt− a.e. (3.21)

For all π: ess sup
θ∈Q

Y π,θ(t) ≤ Y π(t) P× dt− a.e. (3.22)

From definition of essential supremum and (3.21), we get

Ŷ (t) ≤ ess sup
θ∈Q

Y θ(t) ≤ ess sup
θ∈Q

(
ess inf
π∈Π

Y π,θ(t)

)
.

From (3.22) and definition of essential infimum, we get

Y (t) = ess inf
π∈Π

{
ess sup
θ∈Q

Y π,θ(t)

}
≤ ess inf

π∈Π
Y π(t) ≤ Ŷ .

Hence, we obtain the following chain of inequalities:

Y (t) = ess inf
π∈Π

{
ess sup
θ∈Q

Y π,θ(t)

}
≤ ess inf

π∈Π
Y π(t) ≤ Ŷ

≤ ess sup
θ∈Q

Y θ(t) ≤ ess sup
θ∈Q

(
ess inf
π∈Π

Y π,θ(t)

)
.

Since sup(inf) ≤ inf(sup) we get equality between all terms. This completes the
proof. �

As in Section 2.4, we state a theorem that evolved during the study of the
optimization by BSDEs. Again, we wanted to form a theorem that do not require
a saddle point optimum. We do not use the theorem is this thesis, but the theorem
is included as a curiosity.

Theorem 3.8 (Optimization Theorem II ♣) Let (ξ, g) be standard parame-
ters. Suppose that for all (ω, t, λ, y, z, u(·)) ∈ Ω× [0, T ]×R+ ×R×R×R there
exist π̂(t) = π̂(ω, t, λ, y, z, u(·)) and θ̂(t) = θ̂(ω, t, λ, y, z, u(·)) such that for all
admissible portfolios and all admissible probability measures, we have:

g(π̂(t), θ̂(t)) ≤ g(π(t), θ̂(t)), and

g(π(t), θ(t)) ≤ g(π(t), θ̂(t)),

for a.a. (ω, t). Assume g satisfies the criteria of g2 in Theorem 2.14. Suppose π̂
and θ̂ are admissible. Suppose that for all admissible (π, θ) there exists a unique
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solution to the BSDE with (ξ, g(π(t), θ(t))) as terminal condition and generator,
respectively. Then

Ŷ (t) = ess inf
π∈Π

Y π(t) = ess inf
π∈Π

{
ess sup
θ∈Q

Y π,θ(t)

}
= Y (t) (3.23)

Proof: ♣ By applying the comparison theorem to the solutions of the BSDEs
of the couples (F, g(π̂(t), θ̂(t))), (F, g(π(t), θ̂(t))), (F, g(π(t), θ(t))), we get that
Ŷ (t) ≤ Y π(t) and Y π,θ(t) ≤ Y π(t), for all admissible (π, θ), thus

Ŷ (t) ≤ ess inf
π∈Π

Y π(t) P× dt− a.e. (3.24)

For all π: ess sup
θ∈Q

Y π,θ(t) ≤ Y π(t) P× dt− a.e. (3.25)

From the definition of essential infimum we have

Ŷ (t) ≥ ess inf
π∈Π

Y π(t). (3.26)

Together with (3.24), (3.26) gives the following equality

Ŷ (t) = ess inf
π∈Π

Y π(t). (3.27)

From the definition of essential supremum we have

ess sup
θ∈Q

Y π,θ(t) ≥ Y π(t), for all admissible π. (3.28)

Together with (3.25), (3.28) gives the following equality

ess sup
θ∈Q

Y π,θ(t) = Y π(t), for all admissible π. (3.29)

Combining (3.27) and (3.29) gives (3.23), and completes the proof. ♣
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3.4.1 Case I: Knowledge of the time-distortion

First we consider the problem where Mt = Gt, i.e. full information on the driver
processes and complete future insight in the time-distortion process.

We find the BSDE for

Y π,θ(t) = EQ

[
e−

∫ T
t r(s)dsF −

∫ T

t

e−
∫ s
t r(u)duπ(s)(µ(s)− r(s))ds

−
∫ T

t

e−
∫ s
t r(u)duπ(s)σ(s)dW (s)−

∫ T

t

∫
R0

e−
∫ s
t r(u)duπ(s)γ(s, z)H̃(ds, dz)

∣∣∣∣Gt],
(3.30)

where π ∈ ΠG and θ ∈ QG. By the Girsanov Theorem (Theorem 3.1), we can
define a Q−Brownian motion and a Q−martingale random field by

dW θ(t) := dW (t)− θ0(t)dt,

and
H̃θ(dt, dz) := H̃(dt, dz)− θ1(t, z)ν(dz)λ(t)dt.

We use this representation and the martingale property of
∫ t

0
dW θ(s) and∫ t

0

∫
R0
H̃θ(ds, dz) with respect to (G,Q), to eliminate the stochastic integrators

inside the expectation of (3.30):

Y π,θ(t) = EQ

[
e−

∫ T
t r(s)dsF −

∫ T

t

e−
∫ s
t r(u)duπ(s)(µ(s)− r(s))ds

−
∫ T

t

e−
∫ s
t r(u)duπ(s)σ(s)dW (s)±

∫ T

t

e−
∫ s
t r(u)duπ(s)σ(s)θ0(s)ds

−
∫ T

t

∫
R0

e−
∫ s
t r(u)duπ(s)γ(s, z)H̃(ds, dz)

±
∫ T

t

∫
R0

e−
∫ s
t r(u)duπ(s)γ(s, z)θ1(s, z)ν(dz)λ(s)ds

∣∣∣∣Gt]
= EQ

[
e−

∫ T
t r(s)dsF −

∫ T

t

e−
∫ s
t r(u)duπ(s)

(
(µ(s)− r(s)) + σ(s)θ0(s)

+

∫
R0

γ(s, z)θ1(s, z)ν(dz)λ(s)

)
ds−

∫ T

t

e−
∫ s
t r(u)duπ(s)σ(s)dW θ(s)

−
∫ T

t

∫
R0

e−
∫ s
t r(u)duπ(s)γ(s, z)H̃θ(ds, dz)

∣∣∣∣Gt]
= EQ

[
e−

∫ T
t r(s)dsF −

∫ T

t

e−
∫ s
t r(u)duπ(s)

(
(µ(s)− r(s)) + σ(s)θ0(s)

+

∫
R0

γ(s, z)θ1(s, z)ν(dz)λ(s)

)
ds

∣∣∣∣Gt]. (3.31)
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To find the BSDE corresponding to Y π,θ, we use the martingale representation
(2.5) from Theorem 2.9. The right-hand side of (3.31) is not a (G,Q)−martingale,
but by manipulating the expression inside the expectation to become an element
of L2(Ω,FT ,Q), we obtain a (G,Q)−martingale term plus a residual term.

First multiply both sides of (3.31) by the Gt−adapted process

e−
∫ t
0 r(u)du.

Since this process is Gt−adapted, we can take it inside the expectation and get

e−
∫ t
0 r(u)duY π,θ(t)

= e−
∫ t
0 r(u)duEQ

[
e−

∫ T
t r(s)dsF −

∫ T

t

e−
∫ s
t r(u)duπ(s)

·
(

(µ(s)− r(s)) + σ(s)θ0(s) +

∫
R0

γ(s, z)θ1(s, z)ν(dz)λ(s)

)
ds

∣∣∣∣Gt]
= EQ

[
e−

∫ T
0 r(s)dsF −

∫ T

t

e−
∫ s
0 r(u)duπ(s)

(
(µ(s)− r(s)) + σ(s)θ0(s)

+

∫
R0

γ(s, z)θ1(s, z)ν(dz)λ(s)

)
ds

∣∣∣∣Gt]. (3.32)

Now, by adding and subtracting the missing piece of the integrals in the expec-
tation, which is Gt−adapted too, we obtain the martingale term we have been
looking for:

e−
∫ t
0 r(u)duY π,θ(t)

= EQ

[
e−

∫ T
0 r(s)dsF −

∫ T

t

e−
∫ s
0 r(u)duπ(s)

·
(

(µ(s)− r(s)) + σ(s)θ0(s) +

∫
R0

γ(s, z)θ1(s, z)ν(dz)λ(s)

)
ds

∣∣∣∣Gt]
±
∫ t

0

e−
∫ s
0 r(u)duπ(s)

(
(µ(s)− r(s)) + σ(s)θ0(s) +

∫
R0

γ(s, z)θ1(s, z)ν(dz)λ(s)

)
ds

= EQ

[
e−

∫ T
0 r(s)dsF −

∫ T

0

e−
∫ s
0 r(u)duπ(s)

·
(

(µ(s)− r(s)) + σ(s)θ0(s) +

∫
R0

γ(s, z)θ1(s, z)ν(dz)λ(s)

)
ds

∣∣∣∣Gt]
+

∫ t

0

e−
∫ s
0 r(u)duπ(s)

(
(µ(s)− r(s)) + σ(s)θ0(s) +

∫
R0

γ(s, z)θ1(s, z)ν(dz)λ(s)

)
ds

(3.33)

To make the calculations more readable, rename the expression inside the expec-
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tation of (3.33), and call it

ξ = e−
∫ T
0 r(s)dsF −

∫ T

0

e−
∫ s
0 r(u)duπ(s) (3.34)

·
(

(µ(s)− r(s)) + σ(s)θ0(s) +

∫
R0

γ(s, z)θ1(s, z)ν(dz)λ(s)

)
ds.

We write (3.33) over again, now with the abbreviation (3.34) inserted:

e−
∫ t
0 r(u)duY π,θ(t)

= EQ[ξ|Gt] +

∫ t

0

e−
∫ s
0 r(u)duπ(s)

·
(

(µ(s)− r(s)) + σ(s)θ0(s) +

∫
R0

γ(s, z)θ1(s, z)ν(dz)λ(s)

)
ds.

We apply the Martingale theorem (Theorem 2.9) on this conditional expectation,
which yields

e−
∫ t
0 r(u)duY π,θ(t)

= EQ[ξ|FΛ
T ] +

∫ t

0

Zπ,θ(s)dW θ(s) +

∫ t

0

∫
R0

Uπ,θ(s, z)H̃θ(ds, dz)

+

∫ t

0

e−
∫ s
0 r(u)duπ(s)

(
(µ(s)− r(s)) + σ(s)θ0(s)

+

∫
R0

γ(s, z)θ1(s, z)ν(dz)λ(s)

)
ds,

for (Z,U) ∈ IG. The differentiated form of this is obtained by using Itô’s lemma
on the left-hand side:

−r(t)e−
∫ t
0 r(u)duY π,θ(t)dt+ e−

∫ t
0 r(u)dudY π,θ(t)

= e−
∫ t
0 r(u)duπ(t)

(
(µ(t)− r(t)) + σ(t)θ0(t) +

∫
R0

γ(t, z)θ1(t, z)ν(dz)λ(t)

)
dt

+ Zπ,θ(t)dW θ(t) +

∫
R0

Uπ,θ(t, z)H̃θ(dt, dz).
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By rearranging this expression, we end up with Y π,θ in form of a BSDE:

dY π,θ(t) = r(t)Y π,θ(t)dt+ π(t)

(
(µ(t)− r(t)) + σ(t)θ0(t)

+

∫
R0

γ(t, z)θ1(t, z)ν(dz)λ(t)

)
dt

+ e
∫ t
0 r(u)duZπ,θ(t)dW θ(t) +

∫
R0

e
∫ t
0 r(u)duUπ,θ(t, z)H̃θ(dt, dz)

=

(
r(t)Y π,θ(t) + π(t){µ(t)− r(t)}+ {π(t)σ(t)− e

∫ t
0 r(u)duZπ,θ(t)}θ0(t)

+

∫
R0

{π(t)γ(t, z)− e
∫ t
0 r(u)duUπ,θ(t, z)}θ1(t, z)ν(dz)λ(t)

)
dt

+ e
∫ t
0 r(u)duZπ,θ(t)dW (t) +

∫
R0

e
∫ t
0 r(u)duUπ,θ(t, z)H̃(dt, dz), (3.35)

Y π,θ(T ) = F,

Zπ,θ and Uπ,θ can be found by the Integral representation (Theorem 2.8) of the
martingale EQ[ξ|Gt] for t = T .

ξ = EQ[ξ|FΛ
T ] +

∫ T

0

Zπ,θ(s)dW θ(s) +

∫ T

0

∫
R0

Uπ,θ(s, z)H̃θ(ds, dz).

From (2.6) we recall how to find the generator of a BSDE, and we see that
the generator of the BSDE (3.35) is

g(·, λ, y, z, u(·), π, θ) =− yr − (µ− r)π − (πσ − e
∫ ·
0 r(s)dsz)θ0

−
∫
R0

(πγ(·, x)− e
∫ ·
0 r(s)dsu(·, x))θ1(·, x)ν(dx)λ. (3.36)
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The unique optimal solution

We have to verify that the generator (3.36) of the BSDE (3.35) satisfy Theorem
3.7, and we need to find (π̂, θ̂) ∈ ΠG ×QG that satisfy the following:

(1)
∂g

∂π
(π̂, θ̂) = 0,

(2)
∂g

∂θ0

(π̂, θ̂) = 0,

(3)
∂g

∂θ1

(π̂, θ̂) = 0.

First we check if the generator (3.36) satisfies Theorem 2.14, i.e. if there
exists (α, β) ∈ IG and K > 0, with 0 ≤ β(t, z) < Kx, x ∈ R0, and |α(t)|<
K dP× dt−a.e. such that

g(t, λ,y, z, u(·), π(t), θ(t))

= f(t, y, zα(t),

∫
R0

β(t, z)u(z)ν(dz)
√
λ, π(t), θ(t)),

for a function f that satisfies

(i) |f(t, y, b, h, π(t), θ(t))−f(t, y′, b′, h′, π(t), θ(t))|≤ Kh(|y−y′|+|b−b′|+|h−h′|),

(ii) E

[ ∫ T
0
|f(t, 0, 0, 0, π(t), θ(t))|2dt

]
<∞.

From (3.36) we have

g(t, λ, y, z, u(·), π(t), θ(t))

=− yr(t)− (µ(t)− r(t))π(t)− (π(t)σ(t)− e
∫ t
0 r(s)dsz)θ0(t)

−
∫
R0

(π(t)γ(t, z)− e
∫ t
0 r(s)dsu(z))θ1(t, z)ν(dz)λ

=− yr(t)− π(t)

[
µ(t)− r(t) + σ(t)θ0(t) +

∫
R0

γ(t, z)θ1(t, z)ν(dz)λ

]
+ e

∫ t
0 r(s)dszθ0(t) +

∫
R0

e
∫ t
0 r(s)dsu(z)

√
λθ1(t, z)ν(dz)

√
λ.
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We see that we must have

α(t) = e
∫ t
0 r(s)dsθ0(t), β(t, z) = e

∫ t
0 r(s)ds

√
λ(t)θ1(t, z), (3.37)

By the definition of admissible equivalent probability measures and the assump-
tion that r(t) < C, (3.37) holds. We get the following representation of the new
generator f :

f(t, y(t), b(t), h(t), π(t), θ(t)) = − yr(t)− π(t)

[
µ(t)− r(t) + σ(t)θ0(t)

+

∫
R0

γ(t, z)θ1(t, z)ν(dz)λ(t)

]
+ b(t) + h(t).

(i) follows from the boundedness of r(t), and (ii) holds by the definition of an
admissible portfolio.

So we know the generator satisfies the conditions in Theorem 3.7. Now we
find a solution that satisfies (1), (2) and (3) above:

1.
∂g

∂π
(π̂, θ̂) = −(µ− r)− σθ̂0 −

∫
R0

γ(x)θ̂1(x)ν(dx)λ.

Hence, the optimal parameters for change of measure must satisfy:

(µ(t)− r(t)) + σ(t)θ̂0(t) +

∫
R0

γ(t, z)θ̂1(t, z)ν(dz)λ(t) = 0.

2.
∂g

∂θ0

(π̂, θ̂) = e
∫ ·
0 r(s)dsz − π̂σ.

Hence, the optimal portfolio must satisfy:

e
∫ t
0 r(s)dsẐ(t)− π̂(t)σ(t) = 0.

3.
∂g

∂θ1

(π̂, θ̂) =

∫
R0

(e
∫ ·
0 r(s)dsu(x)− π̂γ(x))ν(dx)λ.

Hence, the optimal portfolio must also satisfy:∫
R0

(e
∫ t
0 r(s)dsÛ(t, z)− π̂(t)γ(t, z))ν(dz)λ(t) = 0.
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Summary

The unique optimal solution of the problem (3.18), whenMt = Gt, is to find
(π̂, θ̂) ∈ ΠG ×QG so that the following conditions hold

e
∫ t
0 r(s)dsẐ(t)− π̂(t)σ(t) = 0, (3.38)∫

R0

(e
∫ t
0 r(s)dsÛ(t, z)− π̂(t)γ(t, z))ν(dz)λ(t) = 0, (3.39)

(µ(t)− r(t)) + σ(t)θ̂0(t) +

∫
R0

γ(t, z)θ̂1(t, z)ν(dz)λ(t) = 0. (3.40)

The dynamics of the price process are then

dŶ (t) = r(t)Ŷ (t)dt+ e
∫ t
0 r(s)dsẐ(t)dW θ̂(t) +

∫
R0

e
∫ t
0 r(s)dsÛ(t, z)H̃ θ̂(dt, dz),

Ŷ (T ) = F,

with solution

Y (t) = e−
∫ T
t r(s)dsF −

∫ T

t

e
∫ t
0 r(u)duẐ(s)dW θ̂(s)

−
∫ T

t

∫
R0

e
∫ t
0 r(u)duÛ(s, z)H̃ θ̂(ds, dz).

(Ẑ, Û) ∈ IG are the solutions of

e−
∫ T
0 r(t)dtF = EQ̂[e−

∫ T
0 r(t)dtF |FΛ

T ] +

∫ T

0

Ẑ(s)dW θ̂(s) +

∫ T

0

∫
R0

Û(s, z)H̃ θ̂(ds, dz).

(3.41)

Moreover, the optimal θ̂ is a martingale measure to the price process, since we
have from (3.32) that

e−
∫ t
0 r(s)dsŶ (t) = EQ̂[e−

∫ T
0 r(s)dsŶ (T )|Gt]. (3.42)
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3.4.2 Case II: Standard information on the time-distortion

In order to find a BSDE corresponding to (3.30) for the information flow F, we
must abandon the BSDE type in (2.6), i.e.

Y (t) = ξ +

∫ T

t

g(s, λ(s), Y (s), Z(s), U(s, z))ds−
∫ T

t

Z(s)dW (s)

−
∫ T

t

∫
R0

U(s, z)H̃(ds, dz).

Instead we consider a general BSDE be on the form

Y (t) = ξ +

∫ T

t

f(s, Y (s), Z(s))d〈µ〉(s)−
∫ T

t

Z(s)dµ(s)−N(T ) +N(t), (3.43)

as in [3],where

(i) (µ(t), 0 ≤ t ≤ T ) is a square integrable, càdlàg (F,P)−martingale,

(ii) 〈µ〉 is its conditional quadratic variation (See 4.III.[11]), and

(iii) N is a square integrable (F,P)−martingale orthogonal to µ, and N(0) = 0.

The solution of such a BSDE is (Y (t), Z(t), N(t)), and the theory about exis-
tence and uniqueness of such a solution for Lipschitz generators can be found in
Theorem 2.1, [3]. By the same definition of standard parameters, and the same
assumptions on the parameters in the set of admissible portfolios and equiva-
lent measures as before, there exists a unique solution to (3.43). See [3] for
β−standard parameters with β = 0.

Definition 3.9 (Doléans exponential) The Doléans exponential E(X) of a
semimartingale X is a unique solution of the Doléans equation

E(X)(t) = 1 +

∫ t

0

E(X)(s−)dX(s).

The solution for any semimartingale X is

E(X)(t) = exp

(
X(t)−X(0)− 1

2
[X](t)

)
·
∏
s<t

(1 + ∆X(s)) exp

(
−∆X(s) +

1

2
∆X2(s)

)
, t > 0.

When X is a local martingale, then E(X) is a local martingale.
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We use the Doléans exponential as a Radon-Nikodym density process, and need
E(X) to be a positive uniformly integrable martingale. If ∆X(t) > −1 almost
surely for all t, then the process E(X) is positive. A generalized Novikov condition
found in [10] ensure that E(X) is uniformly integrable.

The next result is Lemma 2.2 in [3]:

Lemma 3.10 Let a,b,c be predictable bounded processes, let E be the Doléans
exponential of the martingale (

∫ t
0
b(s)dµ(s), 0 ≤ t), and define

ψ(t) = exp

(∫ t

0

a(s)d〈µ〉(s)
)
, Ψ(t) = ψ(t)E(t). (3.44)

Suppose that

(i) E is a positive uniformly integrable martingale;

(ii) E[(supt∈[0,T ] ψ(t))2E2(T )] <∞.

If the linear backward equation

dY (t) = −(a(t)Y (t) + b(t)Z(t) + c(t))d〈µ〉(s) + Z(t)dµ(t) + dN(t)

Y (T ) = ξ, (3.45)

has solution (Y, Z,N) in S2 × IF × L2, where L2 is the space of L2−bounded
(F,P)−martingales, then Y is given by

Y (t) = E

[
ξ

Ψ(T )

Ψ(t)
+

∫ T

t

Ψ(s)

Ψ(t)
c(s)d〈µ〉(s)

∣∣∣∣Ft], 0 ≤ t ≤ T. (3.46)

Proof: See proof of Lemma 2.2 in [3].

Remark. Whenever expression (3.46) makes sense, it is a solution of the lin-
ear equation (3.45). 3

The next theorem is a comparison theorem from [3] (Theorem 2.2, [3]):

Theorem 3.11 Consider two linear BSDEs of the form (3.45), for i = 1, 2

Yi(t) = ξi +

∫ T

t

fi(s, Yi(s), Zi(s))d〈µ〉(s)−
∫ T

t

Zi(s)dµ(s)−Ni(T ) +Ni(t).

Define δY (t) = Y1(t)− Y2(t) and δZ(t) = Z1(t)− Z2(t), and let

∆Y f1(t) =
f1(t, Y1(t), Z1(t))− f1(t, Y2(t), Z1(t))

δY (t)
1δY (t)6=0,

∆Zf1(t) =
f1(t, Y2(t), Z1(t))− f1(t, Y2(t), Z2(t))

δZ(t)
1δZ(t)6=0,

δ2f(t) = f1(t, Y2(t), Z2(t))− f2(t, Y2(t), Z2(t)),
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and assume ∆Y f1(t) and ∆Zf1(t) verify the conditions (i) and (ii) in Lemma
3.10. Assume that ξ1 ≥ ξ2 and, for any t, δ2f(ω, t) ≥ 0 P−a.s. Then, for any t,
Y1(t) ≥ Y2(t) P−a.s.

Proof: The process δY (t) solves the following linear BSDE:

dδY (t) = −[∆Y f1(t)δY (t) + ∆Zf1(t)δZ(t) + δf(t)]d〈µ〉(t)
− δZ(t)dµ(t)− dδN(t).

According to Lemma 3.10, the solution of this BSDE is

Ψ(t)δY (t) = E

[
Ψ(T )(ξ1 − ξ2) +

∫ T

t

δ2f(t)Ψ(s)d〈µ〉(s)
∣∣∣∣Ft].

By the assumptions ξ1 ≥ ξ2 and, for any t, δ2f(ω, t) ≥ 0 P−a.s., the expression in-
side the conditional expectation is non-negative. The result Y1(t) ≥ Y2(t) P−a.s.,
for any t, follows. �

In order to apply this theory, we must adapt to the given setup. First we
must define the (F,P)−martingale random field M , and its conditional quadratic
variation 〈M〉: Define M by

M(dt, dz) = δ{0}(dz)dW (t) + 1R0(z)H̃(dt, dz),

where δ{0} is the Dirac delta with point mass at zero, and its conditional quadratic
variation by

〈M〉(dt, dz) = δ{0}(dz)dt+ 1R0(z)ν(dz)λ(t)dt.

Moreover, by the Girsanov theorem we define the (F,Q)−martingale random

field M̃ by

M̃(dt, dz) = M(dt, dz)− b(t, z)d〈M〉(dt, dz). (3.47)

Note that 〈M〉 = 〈M̃〉, since 〈M〉 has no quadratic variation.
We write the expression

Y π,θ(t) = EQ

[
e−

∫ T
t r(s)dsF −

∫ T

t

e−
∫ s
t r(u)duπ(s)(µ(s)− r(s))ds

−
∫ T

t

e−
∫ s
t r(u)duπ(s)σ(s)dW (s)

−
∫ T

t

∫
R0

e−
∫ s
t r(u)duπ(s)γ(s, z)H̃(ds, dz)

∣∣∣∣Ft]}, (3.48)
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with the new notation. Recall the definition of ψ(t) and Ψ(t) from (3.44). Here
E(t) = Z(t), i.e. the Radon-Nikodym density process defined in Section 3.1 and

ψ(t) = e
∫ t
0 r(s)ds. Then we have

ψ(t)Y π,θ(t)

=EQ

[
ψ(T )F −

∫ T

t

ψ(s)π(s)

[
(µ(s)− r(s))ds− σ(s)dW (s)

−
∫
R0

γ(s, z)H̃(ds, dz)

]∣∣∣∣Ft]}
=EQ

[
ψ(T )F −

∫ T

t

ψ(s)π(s)

[
(µ(s)− r(s))ds+ σ(s){dW θ(s) + θ0(s)ds}

+

∫
R0

γ(s, z){H̃θ(ds, dz) + θ1(s, z)ν(dz)λ(s)ds}
]∣∣∣∣Ft]}

By use of the martingale property, we get

=EQ

[
ψ(T )F −

∫ T

t

ψ(s)π(s)

[
{(µ(s)− r(s)) + σ(s)θ0(s)}ds

+

∫
R0

γ(s, z)θ1(s, z)ν(dz)λ(s)ds}
]∣∣∣∣Ft]}

=EQ

[
ψ(T )F −

∫ T

t

∫
R

ψ(s)π(s)

[
{(µ(s)− r(s)) + σ(s)θ0(s)}1{0}(z)

+ γ(s, z)θ1(s, z)1R0(z)}
][
δ{0}(dz)dt+ 1R0(z)ν(dz)λ(t)dt

]∣∣∣∣Ft]}
=EQ

[
ψ(T )F −

∫ T

t

∫
R

ψ(s)π(s)

[
{(µ(s)− r(s)) + σ(s)θ0(s)}1{0}(z)

+ γ(s, z)θ1(s, z)1R0(z)}
]
〈M〉(ds, dz)

∣∣∣∣Ft]}. (3.49)

Hence, after the measure change we have Y π,θ(t) on the same form as (3.46):

Y π,θ(t) = E

[
Ψ(T )

Ψ(t)
F −

∫ T

t

∫
R

Ψ(s)

Ψ(t)
π(s)

[
{(µ(s)− r(s)) + σ(s)θ0(s)}1{0}(z)

+γ(s, z)θ1(s, z)1R0(z)}
]
〈M〉(ds, dz)

∣∣∣∣Ft]}.
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By Lemma 3.10, this is the solution of the BSDE

dY π,θ(t) =−
∫
R

{
− r(t)1{0}(z)Y (t) + θ0(t)1{0}(z)Z̄(t)

+ θ1(t, z)1R0(z)Ū(t, z)− π(t)

[
{(µ(t)− r(t)) (3.50)

+ σ(t)θ0(t)}1{0}(z) + γ(t, z)θ1(t, z)1R0(z)}
]}

d〈M〉(t)

+

∫
R

Z̄(t)1{0}(z) + Ū(t, z)1R0(z)M(dt, dz) + dN(t)

Y π,θ(T ) =F.

Moreover, going back to (3.49), we obtain by direct derivation of the BSDE the
following:

ψ(t)Y π,θ(t) =EQ

[
ψ(T )F −

∫ T

t

∫
R

ψ(s)π(s)

[
{(µ(s)− r(s)) + σ(s)θ0(s)}1{0}(z)

+ γ(s, z)θ1(s, z)1R0(z)}
]
〈M〉(ds, dz)

∣∣∣∣Ft]} (3.51)

=EQ

[
ψ(T )F −

∫ T

0

∫
R

ψ(s)π(s)

[
{(µ(s)− r(s)) + σ(s)θ0(s)}1{0}(z)

+ γ(s, z)θ1(s, z)1R0(z)}
]
〈M〉(ds, dz)

∣∣∣∣Ft]}
+

∫ t

0

∫
R

ψ(s)π(s)

[
{(µ(s)− r(s)) + σ(s)θ0(s)}1{0}(z)

+ γ(s, z)θ1(s, z)1R0(z)}
]
〈M〉(ds, dz)

=EQ

[
ξ0 +

∫ T

0

∫
R

Z(t)1{0}(z) + U(t, z)1R0(z)M̃(dt, dz)

∣∣∣∣Ft] (3.52)

+

∫ t

0

∫
R

ψ(s)π(s)

[
{(µ(s)− r(s)) + σ(s)θ0(s)}1{0}(z)

+ γ(s, z)θ1(s, z)1R0(z)}
]
〈M〉(ds, dz)

=EQ[ξ0|Ft] +

∫ t

0

∫
R

Z(s)1{0}(z) + U(s, z)1R0(z)M̃(ds, dz)

+

∫ t

0

∫
R

ψ(s)π(s)

[
{(µ(s)− r(s)) + σ(s)θ0(s)}1{0}(z)

+ γ(s, z)θ1(s, z)1R0(z)}
]
〈M〉(ds, dz). (3.53)
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In (3.52) we used the integral representation with respect to the F−filtration.
It includes the unknown L2(Q)−variable ξ0. This variable is orthogonal to the
stochastic integrals. The differential form of (3.53) is

d(ψ(t)Y π,θ(t)) =

∫
R

Z(t)1{0}(z) + U(t, z)1R0(z)M̃(dt, dz)

+

∫
R

ψ(t)π(t)

[
{(µ(t)− r(t)) + σ(t)θ0(t)}1{0}(z)

+ γ(t, z)θ1(t, z)1R0(z)}
]
〈M〉(dt, dz) + dEQ[ξ0|Ft].

Recall the definition of γ(t) from (3.44), and the definition of M̃ from (3.47).
Hence,

dY π,θ(t) =−
∫
R

{
− r(t)1{0}(z)Y (t) + θ0(t)1{0}(z)e

∫ t
0 r(s)dsZ(t)

+ θ1(t, z)1R0(z)e
∫ t
0 r(s)dsU(t, z)− π(t)

[
{(µ(t)− r(t))

+ σ(t)θ0(t)}1{0}(z) + γ(t, z)θ1(t, z)1R0(z)}
]}
〈M〉(dt, dz)

+

∫
R

e
∫ t
0 r(s)dsZ(t)1{0}(z) + e

∫ t
0 r(s)dsU(t, z)1R0(z)M(dt, dz)

+ e
∫ t
0 r(s)dsdEQ[ξ0|Ft]

Y π,θ(T ) = F,

or equivalently

dY π,θ(t) =−
∫
R

[{
− r(t)Y (t)− π(t)(µ(t)− r(t))

+ θ0(t){e
∫ t
0 r(s)dsZ(t)− π(t)σ(t)}

}
1{0}(z)

+

{
e
∫ t
0 r(s)dsU(t, z)− π(t)γ(t, z)

}
θ1(t, z)1R0(z)

]
〈M〉(dt, dz)

+

∫
R

[
e
∫ t
0 r(s)dsZ(t)1{0}(z) + e

∫ t
0 r(s)dsU(t, z)1R0(z)

]
M(dt, dz) (3.54)

+ e
∫ t
0 r(s)dsdEQ[ξ0|Ft]

Y π,θ(T ) =F.
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Now compare (3.50) and (3.54). We see that

Z̄(t) = e
∫ t
0 r(s)dsZ(t)

Ū(t, z) = e
∫ t
0 r(s)dsU(t, z),

and N(t) =

∫
(0,t]

e
∫ s
0 r(u)dudEQ[ξ0|Fs].

Note that we have explicitly given the integration limits of the stochastic integral.
This is because we want to make the reader aware that the integration does not
contain zero, i.e. the integration respects the condition that N(0) = 0.

Recall that N(t) is a (F,P)−martingale and orthogonal to M .∫
(0,t]

e
∫ s
0 r(u)dudEQ[ξ0|Fs] is an (F,Q)−martingale and orthogonal to M̃ by con-

struction. This anticipates the next result, that N(t) is an (F,Q)−martingale

and strongly orthogonal to M̃ .

Lemma 3.12 Let the Doléans exponential E(t) in Lemma 3.10 be the Radon-
Nikodym density process Z(t) defined in Section 3.1. Then the process N(t) from

(3.45) is an (F,Q)−martingale and strongly orthogonal to M̃ .

Proof: ♣ N(t) is orthogonal to M̃ by

〈N, M̃〉 = 〈N(·),
∫ ·

0

∫
R

M(dt, dz)−
∫ ·

0

∫
R

b(t, z)d〈M〉(dt, dz)〉

= 〈N(·),
∫ ·

0

∫
R

M(dt, dz)〉 − 〈N(·),
∫ ·

0

∫
R

b(t, z)d〈M〉(dt, dz)〉

= 0,

because 〈N,M〉 = 0 by construction, and 〈N(·),
∫ ·

0

∫
R
b(t, z)d〈M〉(dt, dz)〉 = 0

since N(t) is a martingale and 〈M〉 has no quadratic variation.
For N(t) to be an (F,Q)−martingale, it must satisfy

EQ[N(T )|Ft] =
E[Z(T )N(T )|Ft]

Z(t)
= N(t),

i.e. if Z(t)N(t) is an (F,P)−martingale, then N(t) is an (F,Q)−martingale.
The dynamics of Z(t)N(t) are

d(Z(t)N(t)) = Z(t)dN(t) +N(t)dZ(t) + dZ(t)dN(t).

Recall that the Doléans exponential Z(t) is the solution of the Doléans equation

E(X)(t) = 1 +

∫ t

0

E(X)(s−)dX(s),
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for the (F,P)−martingale X : X(t) =
∫ t

0

∫
R
b(s, z)M(ds, dz). Thus

dZ(t) = Z(t−)

∫
R

b(t, z)M(dt, dz).

Hence, by P−orthogonality between M and N , the dynamics of Z(t)N(t) are

d(Z(t)N(t)) = Z(t)dN(t) +N(t)dZ(t),

and this is an (F,P)−martingale by the square-integrability of Z and N . ♣
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The unique optimal solution

From (3.54) we see that the generator f (cf. (3.43)) of the BSDE with the
solution (3.48) is∫ T

0

f(t)d〈µ〉(t) =

∫ T

0

∫
R

{
− r(t)Y (t) + π(t)(µ(t)− r(t))

+ θ0(t){e
∫ t
0 r(s)dsZ(t)− π(t)σ(t)}

}
1{0}(z)

+

{
e
∫ t
0 r(s)dsU(t, z)− π(t)γ(t, z)

}
θ1(t, z)1R0(z)〈M〉(dt, dz).

We recognize the generator from the case of information flow G, and by the
comparison theorem, Theorem 3.11, and the optimization theorem, Theorem 3.7,
the same conditions on the parameters will be required for the optimal solution
here as in the case of information flow G. Note, however, that even though
the optimization conditions are the same, the measurability assumptions on the
control parameters are different. This may lead to different solutions.

In addition, the price process in the case of F−information contains an or-
thogonal process and not an orthogonal random variable, like the price process
in the case of G−information.
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Summary

The unique optimal solution of the problem (3.18), whenMt = Ft, is to find
(π̂, θ̂) ∈ ΠF ×QF so that the following conditions hold

e
∫ t
0 r(s)dsẐ(t)− π̂(t)σ(t) = 0, (3.55)∫

R0

(e
∫ t
0 r(s)dsÛ(t, z)− π̂(t)γ(t, z))ν(dz)λ(t) = 0, (3.56)

(µ(t)− r(t)) + σ(t)θ̂0(t) +

∫
R0

γ(t, z)θ̂1(t, z)ν(dz)λ(t) = 0. (3.57)

The dynamics of the price process are then

dŶ (t) = r(t)Ŷ (t)dt+ e
∫ t
0 r(s)dsẐ(t)dW θ̂(t) +

∫
R0

e
∫ t
0 r(s)dsÛ(t, z)H̃ θ̂(dt, dz)

+ e
∫ t
0 r(s)dsdEQ̂[ξ̂0|Ft],

Ŷ (T ) = F,

where (Ẑ, Û , ξ̂0) ∈ IF × L2(Q) are the solutions of

e−
∫ T
0 r(t)dtF = ξ̂0 +

∫ T

0

Ẑ(s)dW θ̂(s) +

∫ T

0

∫
R0

Û(s, z)H̃ θ̂(ds, dz). (3.58)

Moreover, the optimal θ̂ is a martingale measure to the price process, since we
have from (3.51) that

e−
∫ t
0 r(s)dsŶ (t) = EQ̂[e−

∫ T
0 r(s)dsŶ (T )|Ft]. (3.59)

68



3.5 Solution via the maximum principle

This section is greatly inspired by the calculations in [1]. The processes involved
in [1] and in this thesis are different. Nevertheless, a great part of the theory can
be adapted to the setup for this thesis. We do the calculations for completeness
of the thesis and to rule out the possible ambiguities in the the paper and this
thesis.

Recall the theory presented in Section 2.4, in particular the optimization
theorems via the maximum principle: Theorem 2.15 and Theorem 2.16. We use
these theorems to solve the optimization problem (3.18) at time zero.

In addition to the assumptions on the parameters in the admissible set of
portfolios, Definition 3.6, and the set of admissible equivalent probability mea-
sures, Definition 3.5, we need the following assumptions. The assumptions come
from the paper [8].

In the method of the maximum principle, the admissible controls (π, θ) ∈
Π×Q must in addition satisfy:

E

[ ∫ T

0

|f(s,X(s−), λ(s), π(s), θ(s))|2ds+ |l(X(T ))|+|∂xl(X(T ))|2
]
<∞,

where f and l are the functions in the performance criterion, and X is the state
process in (2.7). Moreover, for some K1 > 0 we have

|∂xb(t,X(t−), λ(t), π(t), θ(t))| ≤ K1 dP× dt− a.e.,
|∂xσ(t,X(t−), λ(t), π(t), θ(t))| ≤ K1 dP× dt− a.e.,∫

R0

(∂xγ(t,X(t−), λ(t), π(t), θ(t), z))2ν(dz)
√
λ(t) ≤ K1 dP× dt− a.e.,

where b, σ and γ are the functions inside the state process (2.7). In addition, we
have the following sufficient conditions to ensure existence of a strong solution of
the state process (2.7): For some K2 > 0 we have

|σ(t, x, λ(t), π(t), θ(t))− σ(t, x′, λ(t), π(t), θ(t))| ≤ K2|x− x′| P− a.s.
|γ(t, x, λ(t), π(t), θ(t), z)− γ(t, x′, λ(t), π(t), θ(t), z)| ≤ K2|z||x− x′| P− a.s.

|b(t, x, λ(t), π(t), θ(t))− b(t, x′, λ(t), π(t), θ(t))| ≤ K2|x− x′| P− a.s.∫ T

0

|σ(t, 1, λ(t), π(t), θ(t))|2dt <∞ P− a.s.∫ T

0

∫
R0

|γ(t, 1, λ(t), π(t), θ(t), z)|2ν(dz)λ(t)dt <∞ P− a.s.∫ T

0

|b(t, 1, λ(t), π(t), θ(t))|2dt <∞ P− a.s.
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See the references connected to these assumptions in [8] for the justification of
the existence of a strong solution. We still call the sets by the same names ΠM

and QM, for M = F,G.
The financial market is defined by the Definition 3.3. However, in the cal-

culations via the maximum principle we let π be the proportion of the wealth
invested in the risky asset, so the corresponding dynamics are

dXπ(t) = Xπ(t−)

[
(r(t) + π(t)(µ(t)− r(t)))dt+ π(t)σ(t)dW (t)

+

∫
R0

π(t)γ(t, z)H̃(dt, dz)

]
, (3.60)

Xπ(0) = x > 0.

For admissible portfolios (Definition 3.6), the solution to the dynamics of the
value process (3.60) is given by

Xπ(t) = x · exp

[ ∫ t

0

{
r(t) + π(t)(µ(t)− r(t))− 1

2
π2(t)σ2(t)

+

∫
R0

[ln(1 + π(s)γ(s, z))− π(s)γ(s, z)]ν(dz)λ(s)

}
ds

+

∫ t

0

π(s)σ(s)dW (s) +

∫ t

0

∫
R0

ln(1 + π(s)γ(s, z))H̃(ds, dz)

]
.

Recall the dynamics of the Radon-Nikodym density process Z defined in (3.1) in
Section 3.1. Define the 2-dimensional state process Y (t) as follows:

dY (t) =

[
dY1(t)
dY2(t)

]
=

[
dZ(t)
dXπ(t)

]
=

[
0

Xπ(t−)[r(t) + π(t)(µ(t)− r(t))]

]
dt

+

[
Z(t−)θ0(t)

Xπ(t−)π(t)σ(t)

]
dW (t) +

[
Z(t−)

∫
R0
θ1(t, z)

Xπ(t−)
∫
R0
π(t)γ(t, z)

]
H̃(dt, dz).

We get the following Hamiltonian:

H(t, y1, y2, θ, π, p, q, r)

= y2{r(t) + π(t)(µ(t)− r(t))}p2(t) + y1θ0(t)q1(t) + y2π(t)σ(t)q2(t)

+

∫
R0

y1θ1(t, z)r1(t, z) + y2π(t)γ(t, z)r2(t, z)ν(dz)λ(t). (3.61)

Remark. r is the first is the short interest rate, while r1, r2 are the solutions to
the adjoint equations defined below. 3
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The adjoint equations are

dp1(t) = {θ0(t)q1(t) +

∫
R0

θ1(t, z)r1(t, z)ν(dz)λ(t)}dt+ q1(t)dW (t)

+

∫
R0

r1(t, z)H̃(ds, dz) (3.62)

p1(T ) = ∇y1U(Y2(T ))

and

dp2(t) =

{
[r(t) + π(t)(µ(t)− r(t))]p2(t) + π(t)σ(t)q2(t)

+

∫
R0

π(t)γ(t, z)r2(t, z)ν(dz)λ(t)

}
dt+ q2(t)dW (t) +

∫
R0

r2(t, z)H̃(ds, dz)

(3.63)

p2(T ) = ∇y2U(Y2(T ))
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3.5.1 Case I: Knowledge of the time-distortion

First, we look at the following performance criterion

J(π, θ) = EQ

[
Xπ(0)− e−

∫ T
0 r(s)dsXπ(T ) + Fe−

∫ T
0 r(s)ds

∣∣∣∣FΛ
T

]
,

and the optimization problem

ess inf
π∈ΠG

{
ess sup
θ∈QG

J(π, θ)

}
. (3.64)

From the theory in Section 2.4, we see that the optimization problem corre-
sponds to an f = 0 and a utility function U : [0,∞)→ [−∞,∞) given by

U(X(T )) = X(0)− e−
∫ T
0 r(s)dsX(T ) + Fe−

∫ T
0 r(s)ds.

From Theorem 2.15 and the first equality in (2.13), we have the following opti-
mization condition by minimizing the Hamiltonian H(t, y1, y2, λ, π, θ, p, q, r) from
(3.61) over all π ∈ ΠG:

(µ(t)− r(t))p̂2(t) + σ(t)q̂2(t) +

∫
R0

γ(t, z)r̂2(t, z)ν(dz)λ(t) = 0. (3.65)

From the second equality in (2.13), we get a second and a third optimization
condition by maximizing the Hamiltonian H(t, y1, y2, λ, π, θ, p, q, r) over all
θ ∈ QG:

Ẑ(t)q̂1(t) = 0, (3.66)

and ∫
R0

Ẑ(t)r̂1(t, z)ν(dz)λ(t) = 0.

We guess for a solution of p̂1(t) of the form

p̂1(t) = U(f(t)X̂(t)),
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with f a differentiable function. We Utilize Itô’s lemma on p̂1(t), and get

dp̂1(t) = f ′(t)X̂(t)U ′(f(t)X̂(t))dt

+ X̂(t)[(r(t)− (µ(t)− r(t))π̂(t))dt

+ σ(t)π̂(t)dW (t)]f(t)U ′(f(t)X̂(t))

+
1

2
f 2(t)X̂2(t)σ2(t)π̂2(t)U ′′(f(t)X̂(t))dt

+

∫
R0

{U(X̂(t)(f(t) + π̂(t)γ(t, z)))− U(f(t)X̂(t))

− f(t)X̂(t)π̂(t)γ(t, z)U ′(f(t)X̂(t))}ν(dz)λ(t)dt

+

∫
R0

{U(X̂(t)(f(t) + π̂(t)γ(t, z)))− U(f(t)X̂(t))}H̃(dt, dz)

=

{
f ′(t)X̂(t)U ′(f(t)X̂(t)) +

1

2
f 2(t)X̂2(t)σ2(t)π̂2(t)U ′′(f(t)X̂(t))

+ X̂(t)(r(t)− (µ(t)− r(t))π̂(t))f(t)U ′(f(t)X̂(t))

+

∫
R0

{U(X̂(t)(f(t) + π̂(t)γ(t, z)))− U(f(t)X̂(t))

− f(t)X̂(t)π̂(t)γ(t, z)U ′(f(t)X̂(t))}ν(dz)λ(t)

}
dt

+ X̂(t)f(t)σ(t)π̂(t)U ′(f(t)X̂(t))dW (t)

+

∫
R0

{U(X̂(t)(f(t) + π̂(t)γ(t, z)))− U(f(t)X̂(t))}H̃(dt, dz).

Comparing this with (3.62), we get

q̂1(t) = X̂(t)f(t)σ(t)π̂(t)U ′(f(t)X̂(t)), (3.67)

r̂1(t, z) = U(X̂(t)(f(t) + π̂(t)γ(t, z)))− U(f(t)X̂(t)),

and

f ′(t)X̂(t)U ′(f(t)X̂2(t)) +
1

2
f 2(t)X̂2(t)σ2(t)π̂2(t)U ′′(f(t)X̂(t))

+ X̂(t)(r(t)− (µ(t)− r(t))π̂(t))f(t)U ′(f(t)X̂(t))

+

∫
R0

{U(X̂(t)(f(t) + π̂(t)γ(t, z)))− U(f(t)X̂(t))

− f(t)X̂(t)π̂(t)γ(t, z)U ′(f(t)X̂(t))}ν(dz)λ(t)

= θ̂0(t)q̂1(t) +

∫
R0

θ̂1(t, z)r̂1(t, z)ν(dz)λ(t).
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Substituting (3.67) into condition (3.66), we obtain

Ẑ(t)X̂(t)f(t)σ(t)π̂(t)U ′(f(t)X̂(t)) = 0,

or
π̂(t) = 0.

Now, we try a process p̂2(t) of the form

p̂2(t) = Ẑ(t)f(t)U ′(f(t)X̂(t)).

We Utilize Itô’s lemma on p̂2(t), and get

dp̂2(t) = Ẑ(t)f ′(t)U ′(f(t)X̂(t)) + Ẑ(t)f(t)dU ′(f(t)X̂(t))

+ f(t)U ′(f(t)X̂(t))dẐ(t)

= Ẑ(t){f ′(t)U ′(f(t)X̂(t)) + f(t)f ′(t)X̂(t)U ′′(f(t)X̂(t))

+ f 2(t)X̂(t)r(t)U ′′(f(t)X̂(t))}dt
+ Ẑ(t)θ0(t)f(t)U ′(f(t)X̂(t))dW (t)

+

∫
R0

Ẑ(t)f(t)θ1(t, z)U ′(f(t)X̂(t))H̃(dt, dz).

Comparing with (3.63), we get

q̂2(t) = Ẑ(t)θ0(t)f(t)U ′(f(t)X̂(t)),

r̂2(t, z) = Ẑ(t)f(t)θ1(t, z)U ′(f(t)X̂(t)),

and

f ′(t)U ′(f(t)X̂(t)) + f(t)f ′(t)X̂(t)U ′′(f(t)X̂(t))

− f 2(t)X̂(t)r(t)U ′′(f(t)X̂(t)) = r(t)f(t)U ′(f(t)X̂(t)). (3.68)

Inserting p̂2(t), q̂2(t) and r̂2(t, z) into (3.65) yields

(µ(t) − r(t))Ẑ(t)f(t)U ′(f(t)X̂(t)) + σ(t)Ẑ(t)θ0(t)f(t)U ′(f(t)X̂(t))

+

∫
R0

γ(t, z)Ẑ(t)f(t)θ1(t, z)U ′(f(t)X̂(t))ν(dz)λ(t) = 0,

or

(µ(t) − r(t)) + σ(t)θ0(t) +

∫
R0

γ(t, z)θ1(t, z)ν(dz)λ(t) = 0.

From (3.68), we get

[U ′(f(t)X̂(t)) + f(t)X̂(t)U ′′(f(t)X̂(t))][f ′(t)− r(t)f(t)] = 0,

or
f ′(t)− r(t)f(t) = 0,

i.e.

f(t) = exp

(
−
∫ T

t

r(s)ds

)
.
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Summary

The unique optimal solution of the problem (3.64) is to find (π̂, θ̂) ∈ ΠG×QG
so that the following conditions hold

π̂ = 0, (3.69)

(µ(t)− r(t)) + σ(t)θ̂0(t) +

∫
R0

γ(t, z)θ̂1(t, z)ν(dz)λ(t) = 0. (3.70)

The performance criterion corresponds to the price process at time t = 0, and
here the solution of (3.64) is

ess inf
π∈ΠG

{
ess sup
θ∈QG

J(π, θ)

}
= EQ̂[e−

∫ T
0 r(s)dsF |FΛ

T ].

Recall from the derivation of this criterion, that J(π, θ) = Y (0). Hence, the op-
timal solution of the optimization problem (3.18) at time t = 0 by the maximum
principle is that (π̂, θ̂) satisfies (3.69) and (3.70), and

Ŷ (0) = EQ̂[e−
∫ T
0 r(s)dsF |FΛ

T ]. (3.71)

Moreover, the optimal θ̂ is a martingale measure to the price process, since from
(3.71) we have that

Ŷ (0) = EQ̂[e−
∫ T
0 r(s)dsŶ (T )|FΛ

T ].
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3.5.2 Case II: Standard information on the time-distortion

Now, we look at a new performance criterion

J(π, θ) = EQ

[
Xπ(0)− e−

∫ T
0 r(s)dsXπ(T ) + Fe−

∫ T
0 r(s)ds

]
,

with a new optimization problem

inf
π∈ΠF

{
sup
θ∈QF

J(π, θ)

}
. (3.72)

Note that for this problem, we do not deal with random variables. Therefore,
we find the infimum and not the essential infimum, and likewise for the supremum.
From the theory in Section 2.4, we see that the optimization problem corresponds
to an f = 0 and a utility function U : [0,∞)→ [−∞,∞) given by

U(X(T )) = X(0)− e−
∫ T
0 r(s)dsX(T ) + Fe−

∫ T
0 r(s)ds.

From Theorem 2.16 and the first equality in (2.22), we have the following
optimization condition by minimizing the Hamiltonian HF(t, y1, y2, λ, π, θ, p, q, r)
from (3.61) over all π ∈ ΠF:

(µ(t)− r(t))E[p̂2(t)|Ft] + σ(t)E[q2(t)|Ft] +

∫
R0

γ(t, z)E[r̂2(t, z)|Ft]λ(t)ν(dz) = 0.

(3.73)

From the second equality in (2.22), we get a second and a third optimization
condition by maximizing the Hamiltonian HF(t, y1, y2, λ, π, θ, p, q, r) over all
θ ∈ QF:

E[Ẑ(t)q̂1(t)|Ft] = 0, (3.74)

and ∫
R0

E[Ẑ(t)r̂1(t, z)|Ft]ν(dz)λ(t) = 0.

We guess on a solution of p̂1(t) of the form

p̂1(t) = U(f(t)X̂(t)),
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with f a differentiable function. We use Itô’s lemma on p̂1(t), and get

dp̂1(t) = f ′(t)X̂(t)U ′(f(t)X̂(t))dt

+ X̂(t)[(r(t)− (µ(t)− r(t))π̂(t))dt

+ σ(t)π̂(t)dW (t)]f(t)U ′(f(t)X̂(t))

+
1

2
f 2(t)X̂2(t)σ2(t)π̂2(t)U ′′(f(t)X̂(t))dt

+

∫
R0

{U(X̂(t)(f(t) + π̂(t)γ(t, z)))− U(f(t)X̂(t))

− f(t)X̂(t)π̂(t)γ(t, z)U ′(f(t)X̂(t))}ν(dz)λ(t)dt

+

∫
R0

{U(X̂(t)(f(t) + π̂(t)γ(t, z)))− U(f(t)X̂(t))}H̃(dt, dz)

=

{
f ′(t)X̂(t)U ′(f(t)X̂(t)) +

1

2
f 2(t)X̂2(t)σ2(t)π̂2(t)U ′′(f(t)X̂(t))

+ X̂(t)(r(t)− (µ(t)− r(t))π̂(t))f(t)U ′(f(t)X̂(t))

+

∫
R0

{U(X̂(t)(f(t) + π̂(t)γ(t, z)))− U(f(t)X̂(t))

− f(t)X̂(t)π̂(t)γ(t, z)U ′(f(t)X̂(t))}ν(dz)λ(t)

}
dt (3.75)

+ X̂(t)f(t)σ(t)π̂(t)U ′(f(t)X̂(t))dW (t)

+

∫
R0

{U(X̂(t)(f(t) + π̂(t)γ(t, z)))− U(f(t)X̂(t))}H̃(dt, dz).

Comparing (3.75) with (3.62), we get

q̂1(t) = X̂(t)f(t)σ(t)π̂(t)U ′(f(t)X̂(t)), (3.76)

r̂1(t, z) = U(X̂(t)(f(t) + π̂(t)γ(t, z)))− U(f(t)X̂(t)),

and

f ′(t)X̂(t)U ′(f(t)X̂2(t)) +
1

2
f 2(t)X̂2(t)σ2(t)π̂2(t)U ′′(f(t)X̂(t))

+ X̂(t)(r(t)− (µ(t)− r(t))π̂(t))f(t)U ′(f(t)X̂(t))

+

∫
R0

{U(X̂(t)(f(t) + π̂(t)γ(t, z)))− U(f(t)X̂(t))

− f(t)X̂(t)π̂(t)γ(t, z)U ′(f(t)X̂(t))}ν(dz)λ(t)

= θ̂0(t)q̂1(t) +

∫
R0

θ̂1(t, z)r̂1(t, z)ν(dz)λ(t).
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Substituting (3.76) into condition (3.74), we obtain

E[Ẑ(t)X̂(t)f(t)σ(t)π̂(t)U ′(f(t)X̂(t))|Ft] = 0

π̂(t)X̂(t)f(t)σ(t)U ′(f(t)X̂(t))Ẑ(t) = 0,

or

π̂(t) = 0.

Now, we try a process p̂2(t) of the form

p̂2(t) = Ẑ(t)f(t)U ′(f(t)X̂(t)).

We use Itô’s lemma on p̂2(t), and get

dp̂2(t) = Ẑ(t)f ′(t)U ′(f(t)X̂(t)) + Ẑ(t)f(t)dU ′(f(t)X̂(t))

+ f(t)U ′(f(t)X̂(t))dẐ(t)

= Ẑ(t){f ′(t)U ′(f(t)X̂(t)) + f(t)f ′(t)X̂(t)U ′′(f(t)X̂(t))

+ f 2(t)X̂(t)r(t)U ′′(f(t)X̂(t))}dt
+ Ẑ(t)θ̂0(t)f(t)U ′(f(t)X̂(t))dW (t)

+

∫
R0

Ẑ(t)f(t)θ̂1(t, z)U ′(f(t)X̂(t))H̃(dt, dz).

Comparing this and (3.63), we see that

q̂2(t) = Ẑ(t)θ̂0(t)f(t)U ′(f(t)X̂(t)),

r̂2(t, z) = Ẑ(t)f(t)θ̂1(t, z)U ′(f(t)X̂(t)),

and

f ′(t)U ′(f(t)X̂(t)) + f(t)f ′(t)X̂(t)U ′′(f(t)X̂(t))

− f 2(t)X̂(t)r(t)U ′′(f(t)X̂(t)) = r(t)f(t)U ′(f(t)X̂(t)). (3.77)

Inserting p̂2(t), q̂2(t) and r̂2(t, z) in (3.73) yields

(µ(t) − r(t))E[Ẑ(t)f(t)U ′(f(t)X̂(t))|Ft] + σ(t)E[Ẑ(t)θ0(t)f(t)U ′(f(t)X̂(t))|Ft]

+

∫
R0

γ(t, z)E[Ẑ(t)f(t)θ1(t, z)U ′(f(t)X̂(t))|Ft]λ(t)ν(dz) = 0,

or

(µ(t) − r(t)) + σ(t)θ0(t) +

∫
R0

γ(t, z)θ1(t, z)λ(t)ν(dz) = 0.
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From (3.77), we get

[U ′(f(t)X̂(t)) + f(t)X̂(t)U ′′(f(t)X̂(t))][f ′(t)− r(t)f(t)] = 0,

or
f ′(t)− r(t)f(t) = 0,

i.e.

f(t) = exp

(
−
∫ T

t

r(s)ds

)
.
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Summary

The unique optimal solution of the problem (3.72) is to find (π̂, θ̂) ∈ ΠF×QF
so that the following conditions hold

π̂ = 0, (3.78)

(µ(t)− r(t)) + σ(t)θ̂0(t) +

∫
R0

γ(t, z)θ̂1(t, z)ν(dz)λ(t) = 0. (3.79)

The performance criterion corresponds to the price process at time t = 0, and
here the solution of (3.72) is

inf
π∈ΠF

{
sup
θ∈QF

J(π, θ)

}
= EQ̂[e−

∫ T
0 r(s)dsF ].

Recall from the derivation of this criterion, that J(π, θ) = Y (0). Hence, the op-
timal solution of the optimization problem (3.18) at time t = 0 by the maximum
principle is that (π̂, θ̂) satisfies (3.78) and (3.79), and

Ŷ (0) = EQ̂[e−
∫ T
0 r(s)dsF ]. (3.80)

Moreover, the optimal θ̂ is a martingale measure to the price process, since from
(3.80) we have that

Ŷ (0) = EQ̂[e−
∫ T
0 r(s)dsŶ (T )].
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3.6 Analysis and comparison of the solutions ♣
We have solved the problem (3.18) for both the filtrations G and G via the
maximum principle and via BSDEs. In this section, we make a comparison of
the solutions, and analyze whether the continuous evaluation via BSDEs makes
a difference to the capital requirement for the worst case scenario hedge.

With this in mind, we give a toy example to point out for which contingent
claims the solutions of the two methods coincide.

Recall the results on page 58, 68, 75, and 80.

3.6.1 Example: e
∫ T
0 r(t)dtF is FΛ

T−measurable

In this example, we let e
∫ T
0 r(t)dtF be FΛ

T−measurable. The purpose of this ex-
ample is not to be realistic, but to show the differences and similarities of the
solutions of (3.18) by the two methods studied.

The solution of the optimization via BSDEs with information flow F contains
an unknown process, and it is difficult to find an explicit expression of the solution

for a general contingent claim. By assuming that e
∫ T
0 r(t)dtF is FΛ

T−measurable,
we know what this unknown process is. With this in mind, we analyze the integral
representation of L2(Q)−variables.

Let ξ ∈ L2(Ω,FT ,Q), then by the integral representations for the information
flows F and G, we have:

ξ = ξ0 +

∫ T

0

Z(t)dW θ(t) +

∫ T

0

∫
R0

U(t, z)H̃θ(dt, dz), (Z,U) ∈ IF,

ξ = EQ[ξ|FΛ
T ] +

∫ T

0

Z̄(t)dW θ(t) +

∫ T

0

∫
R0

Ū(t, z)H̃θ(dt, dz), (Z̄, Ū) ∈ IG.

Call the spaces spanned by the stochastic integrals for

XF =

{∫ T

0

Z(t)dW θ(t) +

∫ T

0

∫
R0

U(t, z)H̃θ(dt, dz), (Z,U) ∈ IF
}
,

XG =

{∫ T

0

Z(t)dW θ(t) +

∫ T

0

∫
R0

U(t, z)H̃θ(dt, dz), (Z,U) ∈ IG
}
.

Clearly, XF ⊂ XG by the definition of the integrands in Definition 2.7. Let XC

be the complement of X in ξ ∈ L2(Ω,FT ,Q). The complement, is the remains of
the space L2(Ω,FT ,Q) which is not covered by the stochastic integrals. Since

XF ∪XC
F = XG ∪XC

G = L2(Ω,FT ,Q),

we have that XC
G ⊂ XC

F , i.e. the complement of the space XG is a subset of the
complement of XF. We know that XC

G is the set of FΛ
T−measurable random vari-

ables by the integral representation (2.4). By the arguments above, we conclude
that XC

F contains the FΛ
T−measurable random variables.
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Hence, when e
∫ T
0 r(t)dtF is an FΛ

T−measurable random variable, then ξ0 =

e−
∫ T
0 r(t)dtF . The integrands below are indexed by F or G, which indicates of

which problem they are a solution. We can conclude the following in succeeding
order:

I. By EQ̂[e
∫ T
0 r(t)dtF |FΛ

T ] = e
∫ T
0 r(t)dtF , the equation in (3.41) yields ẐF(t) =

ÛF(t, z) = 0;

II. By I and (3.38) (or (3.39)), the optimal investment strategy is π̂(t) = 0, and
by (3.42)

ŶG(t) = e−
∫ T
t r(s)dsF.

III. Moreover, by II:

ŶG(0) = e−
∫ T
0 r(t)dtF.

IV. The optimal parameters of the measure change (θ̂0, θ̂1) are still a solution
of (3.40).

And

I. By ξ0 = e−
∫ T
0 r(t)dtF , the equation in (3.58) yields ẐF(t) = ÛF(t, z) = 0;

II. By I and (3.55) (or (3.56)), the optimal investment strategy is π̂(t) = 0, and
by (3.59)

ŶF(t) = EQ̂[e−
∫ T
t r(t)dtF |Ft]

III. Moreover, by II:

ŶF(0) = EQ̂[e−
∫ T
0 r(t)dtF ].

IV. The optimal parameters of the measure change (θ̂0, θ̂1) are still a solution
of (3.57).

Hence, we see that the optimal price process solved via the BSDEs at t = 0 coin-
cides with the optimal price process solved via the maximum principle when the

contingent claim e
∫ T
0 r(t)dtF is FΛ

T−measurable, for both the case of information
flow F and G. ♣
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In the example (3.6.1) we see that for special cases of contingent claims F and
the short rate r, the solution (Ŷ , π̂, θ̂) of the problem in (3.18) via the maximum
principle evaluated at the initial time, is the same as the solution via BSDEs
continuously evaluated for t ∈ [0, T ]. This holds for both the information flow F

and G.

The reason the solutions coincide, is because when e−
∫ T
0 r(t)dtF is

FΛ
T−measurable, there is not possible to hedge the risk by investing in the stock.

The stock is strongly orthogonal to the FΛ
T−measurable elements in L2(Q̂). Since

e
∫ t
0 r(s)dsS1(t) is a (G, Q̂)−martingale, we have:

EQ̂[e
∫ T
0 r(s)dsF ·S1(T )|Gt] = F ·EQ̂[e

∫ T
0 r(s)dsS1(T )|Gt] = Fe

∫ t
0 r(s)dsS1(t), t ∈ [0, T ].

Strong orthogonality follows from Definition D.8. Therefore, the optimal strategy
is to put all the money in the risk-free asset, and wait until time of maturity.

The results in the toy example are, however, not valid for general contingent
claims. In general, the optimal investment will be the solution of (3.55) and

(3.56) (optionally (3.38) and (3.39)). And whenever e−
∫ T
0 r(t)dtF is not totally

contained in XC
F (optionally XC

G), then the solution is π̂(t) 6= 0. Hence, the
solution π̂(t) = 0 cannot in general be the solution to the optimization problem
(3.18), and the strategy will over-hedge the contingent claim with respect to the
preferences of the agent. What we mean by over-hedge is explained below.

Let π be different from π̂. By the solution in Sections 3.4.1 and 3.4.2, we
know that π will generate a value process which is greater or equal to the value
process of π̂, i.e.

Xπ(t) ≥ X π̂(t), P× dt− a.e.

since the solutions are the infimum over the admissible sets of portfolios. Thus,
the solution π(t) = 0 will in general over-hedge the contingent claim, and make
the agent assume a bigger potential loss than the optimal solution via BSDEs.
We may say that the maximum principle gives a more conservative solution than
the BSDEs. The solution of the maximum principle tells the agent to invest all
the money in the risk-free bond, and just sit an wait for the bad economy to
come. The solution of the BSDEs suggest that the agent in some cases invests
in the risky asset, and to lower the capital requirement. The author thinks this
solution has more credibility to it. One has to try to create profit, even though
the requirements to stay solvent are high. To go and hide in a dark room, throw
the key away, and sit and wait for a crack in the market, seems a bit too extreme,
even for an ambiguity averse agent.

Over to the optimal solution θ̂(t) of “the market”. As we can see from the
summary pages, the solution is the same for the optimization via the maximum
principle as for the optimization via BSDEs. They both have the solution that θ̂
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should satisfy

(µ(t)− r(t)) + σ(t)θ̂0(t) +

∫
R0

γ(t, z)θ̂1(t, z)ν(dz)λ(t) = 0.

We have previously claimed that this is an equivalent martingale measure, and
for completeness we prove that this indeed is true, i.e. the discounted asset is a
Q−martingale:

d
(
e−

∫ t
0 r(s)dsS1(t)

)
= −r(t)e−

∫ t
0 r(s)dsS1(t)dt+ e−

∫ t
0 r(s)dsdS1(t)

= e−
∫ t
0 r(s)dsS1(t)

[
(µ(t)− r(t))dt+ σ(t)dW (t)

+

∫
R0

γ(t, z)H̃(dt, dz)

]
= e−

∫ t
0 r(s)dsS1(t)

[
(µ(t)− r(t))dt+ σ(t)

{
dW θ̂(t) + θ̂0(t)dt

}
+

∫
R0

γ(t, z)

{
H̃ θ̂(dt, dz) + θ̂1(dt, dz)

}]
= e−

∫ t
0 r(s)dsS1(t)

[
σ(t)dW θ̂(t) +

∫
R0

γ(t, z)H̃ θ̂(dt, dz)

]
,

since

(µ(t)− r(t)) + σ(t)θ̂0(t) +

∫
R0

γ(t, z)θ̂1(t, z)ν(dz)λ(t) = 0.

Because the optimal probability distribution induced by θ̂ is an equivalent
martingale measure, the optimal price process Ŷ corresponds to the dynamic
superhedging price of the portfolio π̂. The dynamic superhedging price has the
conditional risk measures of the form:

ρt(X) = ess sup
θ∈ EMM

EQ[−X|Ft],

where EMM is the set of equivalent martingale measures to the probability mea-
sure for which the financial market is defined. The optimal price process Ŷ
corresponds to the dynamic superhedging price because the set of EMMs are con-
tained in the set of equivalent measuresQ, and therefore finding the superhedging
price is a subproblem of (3.18).

Superhedging strategies are not popular in financial markets. Firstly, they are
difficult to compute. Secondly, superhedging prices are in general not arbitrage-
free and they are usually too high to be accepted by buyers. However, under the
assumptions that the essential supremum and infimum are attained in Theorem
3.7, the optimal price process have the representation

Ŷ (t) = EQ̂[e−
∫ T
t r(s)dsF |Ft],
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and is not just a limit of elements of this form. So the prices under Q̂ are
arbitrage-free.

This said, the question of existence of arbitrage opportunities is not a goal to
answer in our application. The optimal solution will serve as a suggestion to the
sufficient capital required to withstand extreme scenarios.
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3.7 Further research

The theory in Section 3.4.2 opens up for more general processes than what this
thesis entails. We have worked with DSPRFs that are centered by a compensator
that is absolutely continuous with respect to the Lebesgue measure. This was
utilized in the solution via BSDEs in Section 3.4.1 in the case of future insight
of the time-distortion process. However, the solution via BSDEs in Section 3.4.2
in the case of standard information of the time-distortion required no such de-
pendency, thus random fields with compensators of more general form may be
studied in this theory.

Ambit fields are examples of generalizations of the random fields treated in the
present thesis. We suggest a representation of ambit fields via stochastic integrals
of meta-time changed Lévy random fields. Meta-time change can be regarded as
a stochastic perturbation of the time-space by a random measure (introduced
only from a statistical point of view by Barndorff-Nielsen and Pedersen, 2012.)
It is not certain that this extension is applicable in the theory mentioned above,
since general ambit fields are not semimartingales, and specific integration theory
has to be devised.

The motivation of this generalization is to model environmental factors repre-
senting the exogenous turbulence and environmental risk factors, e.g. in energy
price dynamics, that can not be captured by time-perturbation alone. Hedging
of environmental risk is crucial in derivative pricing in energy markets.
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Appendix

A Dynamic risk measures via g-expectations

A dynamic risk measure is a functional that quantifies the riskiness of a finan-
cial position continuously over a specified period of time. This is useful since
the information flow is continuous, and investors should, in theory, continuously
update their portfolio. The theory in this section is obtained from [5].

The definition of a dynamic risk measure is as follows:

Definition A.1 A family (ρt)0≤t≤T of mappings ρt : L2(Ω,FT ,P)→ L2(Ω,Ft,P)
such that

ρT (ξ) = −ξ, for ξ ∈ L2(Ω,FT ,P)

is called a dynamic risk measure.

The measure ρt(ξ) quantifies at time t the risk of the financial position ξ which
is going to be liquidated at time T. Since the manager is not interested in losing
any money in expectation, we call the risk of ξ acceptable at time t if ρt(ξ) ≤ 0.

Risk measures are adopted to finance in order to measure risk in a reasonable
manner, and certain properties should be satisfied in order to concur with reality.
We introduce the key properties, sometimes called the axioms of risk measures,
for the risk measure to agree with financial practice and views of investors:

• Convexity

ρt(cξ1 + (1− c)ξ2) ≤ cρt(ξ1) + (1− c)ρ(ξ2),

0 ≤ t ≤ T, c ∈ [0, 1], ξ1, ξ2 ∈ L2(Ω,FT ,P)

This implies that diversification reduces the risk.

• Monotonicity

ξ1 ≥ ξ2 ⇒ ρt(ξ1) ≤ ρt(ξ2), 0 ≤ t ≤ T, ξ1, ξ2 ∈ L2(Ω,FT ,P)

This reflects the common rule that if a position has higher or equal pay-off
in all scenarios, then it is less risky.

• Cash invariance

ρt(c) = −c, 0 ≤ t ≤ T, c ∈ R.

The risk of a constant pay-off should be minus the pay-off, or in order to
protect ourselves from this risk, we need to reserve c money units to be
able to pay the liability at time t = T . This property can be exchanged
by “cash sub-additivity” which respects the time-value of money. This
property is defined as the non-decreasing mapping c 7→ ρt(ξ + c) + c on
R, 0 ≤ t ≤ T, ξ ∈ L2(Ω,FT ,P). This basically says, that in order to cover
for a constant liability c, we need less than c. This agrees with putting
money in a risk-free bank.
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• Translation invariance

ρt(ξ1 + ξ2) = ρt(ξ1)− ξ2,

0 ≤ t ≤ T, ξ1 ∈ L2(Ω,FT ,P), ξ2 ∈ L2(Ω,Ft,P).

The riskiness of a position is only affected by uncertainty of this position,
and components that are determined by the current information should be
treated as constants. This is also a property that suggests that ρt(ξ) can be
thought of as the price of the position ξ that makes it acceptable. Indeed,
we have

ρt(ξ + ρt(ξ)) = ρt(ξ)− ρt(ξ) = 0.

So the risk is measured to be zero. Therefore, a risk measure is also called a
capital requirement, which is a correct term when working with replication
of liabilities.

• Sub-linearity: sub-additivity and positively homogeneity

ρt(ξ1 + ξ2) ≤ ρt(ξ1)+ρt(ξ2), ρt(cξ) = cρt(ξ),

0 ≤ t ≤ T, c > 0, ξ1, ξ2, ξ ∈ L2(Ω,FT ,P)

Sub-additivity is a property that supports that diversification is encour-
aged, while positive homogeneity says that the risk of a position should
be proportional to the volume. Positive homogeneity property does not
include liquidity risk in the market.

• Time-consistency

ρs(ξ) = ρs(−ρt(ξ)), 0 ≤ s ≤ t ≤ T, ξ1, ξ2 ∈ L2(Ω,FT ,P)

Quantifying the risk of the position directly from time t = T should yield the
same result as quantifying an intermediate quantification of the position.

In this thesis we will model dynamic risk measures by BSDEs, and this is
done through g−expectations. Recall the general representation of a BSDE from
(2.6). The generator g decides the properties of the dynamic risk measure. The
definition of a g−expectation, in the setup of this thesis, is as follows:

Definition A.2 Let

(i) (µ(t), 0 ≤ t ≤ T ) is a square integrable, càdlàg (F,P)−martingale,

(ii) 〈µ〉 is its dual predictable projection, and

(iii) N is a square integrable (F,P)−martingale orthogonal to µ, and N(0) = 0.
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Then the g−expectation Eg(ξ)(t) := Y (t) is the solution of the BSDE

dY (t) = −g(t, Y (t), Z(t))d〈µ〉(t) + Z(t)dµ(t) + dN(t)

Y (T ) = ξ

The g−expectation studied in this thesis is of the form

Eg(ξ)(t) = ess sup
Q∈Q

EQ[−ξ|Mt],

whereMt is either Ft or Gt (see Section 2.1.) The dynamic risk measure is defined
by this g−expectation

ρt(ξ) = Eg(ξ)(t).
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B Proofs of results in Section 2.2

In section 2.2 we only presented the main results of the integral (2.4) and martin-
gale representation (2.5) for easy and quick reading. Here in the appendices we
will elaborate for completeness. The results and proofs are taken from [8] and [12].

To ease the notation, define the operator I:

Definition B.1 Define the integral operator I : IG → L2(Ω,FT ,P) by

I(θ) :=

∫ T

0

θ0(t)dW (t) +

∫ T

0

∫
R0

θ1(t, z)H̃(dt, dz).

Define the norm on IG by

‖θ‖IG=

(
E

[ ∫ T

0

θ0
2(t)dt+

∫ T

0

∫
R0

θ1
2(t, z)ν(dz)λ(t)dt

])1/2

Remark. Note that for all θ ∈ IG we have ‖θ‖IG < ∞, and that the operator
I : IG → L2(Ω,FT ,P) is isomorphic, i.e.(

E[I(θ)2]

)1/2

= ‖I(θ)‖L2(P)= ‖θ‖IG . 3 (B.1)

First we find a total subset of L2(Ω,FT ,P).

K := {θ ∈ IG | θ0 and θ1 are FΛ
T−measurable, θ1 is bounded P× dt−a.e.,

and I(θ) is a bounded random variable}

The following lemmas and their proofs can be found in [8].

Lemma B.2 For any θ ∈ K we have

eI(θ) ∈ L2(Ω,FT ,P), (B.2)

and

eI(θ)

E[eI(θ)|FΛ
T ]
∈ L2(Ω,FT ,P). (B.3)

Furthermore, the random variables {eI(θ), θ ∈ K} form a total subset of
L2(Ω,FT ,P).

Proof: (B.2) and (B.3) are proved in [Lemma 4, Lemma 6 and Lemma 9 in [12]].
We prove that {eI(θ), θ ∈ K} form a total subset of L2(Ω,FT ,P):
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If θ ∈ K, then by (B.2), we have eI(θ) ∈ L2(Ω,FT ,P). Let ξ ∈ L2(Ω,FT ,P)
be such that

E[ξeI(θ)] = 0, for all θ ∈ K.

By Proposition 2.6 we deduce that

E[ξe
∑n
k=1 zkI(θk)] = 0, for all θ1, ..., θn ∈ K, z1, ...zn ∈ R, n ≥ 1. (B.4)

Fix n ≥ 1 and θ1, ..., θn ∈ K. Then (B.4) says that the Laplace transform of the
signed measure

τ(B) = E[ξ1B(I(θ1), ..., I(θn))],

for B ∈ BR, is identically zero on R. Consequently, the measure τ is zero, which
implies E[ξ1G] = 0 for any G ∈ FT , so ξ = 0. �

Next we show that the elements in the total subset has the integral represen-
tation stated in Theorem 2.8.

Lemma B.3 Assume θ ∈ K. Define, for t ∈ [0, T ],

ζ(t) = exp

{∫ t

0

θ0(s)dW (s) +

∫ t

0

∫
R0

θ1(s, z)H̃(ds, dz)

}
.

Then the following representation holds:

ζ(T ) = E[ζ(T )|FΛ
T ]+

∫ T

0

[
E[
ζ(T )

ζ(s−)
|FΛ

T ]ζ(s−)θ0(s)

]
dW (s)

+

∫ T

0

∫
R0

[
E[
ζ(T )

ζ(s−)
|FΛ

T ]ζ(s−)(eθ1(s,z)−1)

]
H̃(ds, dz) (B.5)

Remark. The integrands in (B.5) are G−predictable. 3

Proof: Let

Y (t) =
ζ(t)

E[ζ(t)|FΛ
T ]

= exp

{∫ t

0

θ0(s)dW (s) +

∫ t

0

∫
R0

θ1(s, z)H̃(ds, dz)−
∫ t

0

1

2
θ0(s)2ds

−
∫ t

0

∫
R0

[eθ1(s,z) − 1− θ1(s, z)]ν(dz)λ(s)ds

}
, (B.6)

by Lévy-Khintchine. Note that Y (t) and ζ(t) are elements of L2(Ω,FT ,P) by
Lemma B.2. By Itô’s formula

dY (t) = Y (t−)

(
θ0(t)dW (t) +

∫
R0

(eθ1(t,z) − 1)H̃(dt, dz)

)
Y (0) = 1. (B.7)
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Combining (B.6) and (B.7) the above equalities yields

ζ(T ) = E[ζ(T )|FΛ
T ]Y (T )

= E[ζ(T )|FΛ
T ]

(
1 +

∫ T

0

Y (s−)θ0(s)dW (s)

+

∫ T

0

∫
R0

Y (s−)(eθ1(s,z) − 1)H̃(ds, dz)

)
= E[ζ(T )|FΛ

T ] +

∫ T

0

E[ζ(T )|FΛ
T ]Y (s−)θ0(s)dW (s)

+

∫ T

0

∫
R0

E[ζ(T )|FΛ
T ]Y (s−)(eθ1(s,z) − 1)H̃(ds, dz)

= E[ζ(T )|FΛ
T ] +

∫ T

0

E[
ζ(T )

ζ(s−)
|FΛ

T ]ζ(s−)θ0(s)dW (s)

+

∫ T

0

∫
R0

E[
ζ(T )

ζ(s−)
|FΛ

T ]ζ(s−)(eθ1(s,z) − 1)H̃(ds, dz),

where we used Proposition 2.6 and the equations

Y (s)E[ζ(T )|FΛ
T ] = Y (s)E[ζ(s)|FΛ

T ]E[
ζ(T )

ζ(s)
|FΛ

T ] = ζ(s)E[
ζ(T )

ζ(s)
|FΛ

T ]. �

Now that we have shown that the elements in the total set in L2(Ω,FT ,P) have
the integral representation in Theorem 2.8, we are ready to prove that all ele-
ments in L2(Ω,FT ,P) has this representation.

Proof of Theorem 2.8: At first let ξ = ζ(T ), where

ζ(T ) = eI(θ), θ ∈ K.
From Lemma B.3 the integral representation (2.4) holds in this case.

Consider a general ξ ∈ L2(Ω,FT ,P). Then ξ can be approximated by a
sequence of linear combinations of the form (2.4) by Lemma B.2. Let {ξn}n≥1 be
such a sequence. Then, by (B.1), we have

E[(ξn − ξm)2] = E

[
(E[ξn − ξm|FΛ

T ])2 +

∫ T

0

(θ0
(n)(s)− θ0

(m)(s))2ds

+

∫ T

0

∫
R0

(θ1
(n)(s, z)− θ1

(m)(s, z))2Λ(ds, dz)

]
.

Thus {θ(n)}n≥1 is a Cauchy-sequence in IG, which proves existence. To prove
uniqueness, suppose

ξ = E[ξ|FΛ
T ] + I(θ)

= E[ξ|FΛ
T ] + I(Θ),
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for Θ ∈ IG. Then, using (B.1),

E

[ ∫ T

0

(θ0
θ(s)− θ0

Θ(s))2ds+

∫ T

0

∫
R0

(θ1
θ(s, z)− θ1

Θ(s, z))2Λ(ds, dz)

]
= 0. �

Proof of Theorem 2.9: The proof is a modification of the proof of Theo-
rem 4.3.4 in [13]. By Theorem 2.8 applied to T = t and ξ = M(t), we have that
for all t ∈ [0, T ] there exists a unique couple (θ0

(t)(s, ω), θ1
(t)(s, z, ω)) such that

M(t) = E[M(t)|FΛ
T ] +

(∫ t

0

θ0
(t)(s)dW (s) +

∫ t

0

∫
R0

θ1
(t)(s, z)H̃(ds, dz)

)
= E[M(T )|FΛ

T ] +

(∫ t

0

θ0
(t)(s)dW (s) +

∫ t

0

∫
R0

θ1
(t)(s, z)H̃(ds, dz)

)
,

since
E[M(T )|FΛ

T ] = E[E[M(T )|Gt]|FΛ
T ] = E[M(t)|FΛ

T ].

Now assume that 0 ≤ t1 < t2. Then

M(t1) = E[M(t2)|Gt1 ]

= E[M(T )|FΛ
T ] + E

[ ∫ t2

0

θ0
(t2)(s)dW (s) +

∫ t2

0

∫
R0

θ1
(t2)(s, z)H̃(ds, dz)

∣∣∣∣Gt1]
= E[M(T )|FΛ

T ] +

∫ t1

0

θ0
(t2)(s)dW (s) +

∫ t1

0

∫
R0

θ1
(t2)(s, z)H̃(ds, dz).

(B.8)

But we also have

M(t1) = E[M(T )|FΛ
T ] +

∫ t1

0

θ0
(t1)(s)dW (s) +

∫ t1

0

∫
R0

θ1
(t1)(s, z)H̃(ds, dz).

(B.9)

Hence, comparing the equations (B.8) and (B.9), we get that

0 = E

[(∫ t1

0

θ0
(t1)(s)− θ0

(t2)(s)dW (s)

+

∫ t1

0

∫
R0

θ1
(t1)(s, z)− θ1

(t2)(s, z)H̃(ds, dz)

)2]
= E

[ ∫ t1

0

(θ0
(t1)(s)− θ0

(t2)(s))2ds+

∫ t1

0

∫
R0

(θ1
(t1)(s, z)− θ1

(t2)(s, z))2Λ(ds, dz)

]
,

and therefore

θ0
(t1)(ω, t) = θ0

(t2)(ω, t) for a.a. (ω, t) ∈ Ω× [0, t1],

θ1
(t1)(ω, t, z) = θ1

(t2)(ω, t, z) for a.a. (ω, t, z) ∈ Ω× [0, t1]×R0.
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Thus, define

θ0(ω, t) = θ0
(T )(ω, t) for a.a. (ω, t) ∈ Ω× [0, T ],

θ1(ω, t, z) = θ1
(T )(ω, t, z) for a.a. (ω, t, z) ∈ Ω× [0, T ]×R0,

and then we get for all t ∈ [0, T ]

M(t) = E[M(T )|FΛ
T ] +

∫ t

0

θ0
(T )(s)dW (s) +

∫ t

0

∫
R0

θ1
(T )(s, z)H̃(ds, dz)

= E[M(T )|FΛ
T ] +

∫ t

0

θ0(s)dW (s) +

∫ t

0

∫
R0

θ1(s, z)H̃(ds, dz). �

94



C BSDEs: existence and uniqueness

This theory is taken from [8], with minor changes due to different use of stochas-
tic integrator. In [8] the stochastic integrator is µ(dt, dz) = δ{0}(z)dB(t) +

1R0H̃(dt, dz), while in this thesis the stochastic integrators are divided into dW (t)
and H̃(dt, dz), separately. This change affects only some coefficients in the cal-
culations.

We adopt the setup from Section 2.3, and answer questions of existence and
uniqueness of the solution of the backward stochastic differential equation

Y (t) = ξ +

∫ T

t

g(s, λ(s), Y (s), Z(s), U(s, ·))ds−
∫ T

t

Z(s)dW (s)

−
∫ T

t

∫
R0

U(s, z)H̃(ds, dz), t ∈ [0, T ]. (C.1)

So, given terminal condition ξ and generator g, a solution is given by the
G−adapted processes (Y, Z, U) on (Ω,FT ,P) satisfying (C.1).

Recall Definition 2.7 of the space IG, Definition 2.10 of the space S2, and the
definition of standard parameters, i.e.

Definition C.1 The couple (ξ, g) are standard parameters, with respect to G, for
a BSDE on (Ω,FT ,P) if ξ ∈ L2(Ω,FT ,P) and g : Ω×[0, T ]×[0,∞)×R2×R → R

satisfies for some Kg > 0:

(i) g(·, ·, λ, Y, Z, U(·)) is G-adapted for all λ ∈ L, Y ∈ S2(P), (Z,U) ∈ I;

(ii) For all λ ∈ L we have g(·, ·, λ(·), 0, 0, 0) G-predictable and

E

[∫ T

0

g2(t, λ(t), 0, 0, 0)dt

]
<∞;

(iii) For all λ ∈ [0,∞), y1, y2, z1, z2 ∈ R and u1, u2 ∈ R we have

|g(t,λ, y1, z1, u1)− g(t, λ, y2, z2, u2)|≤

Kg

(
|y1 − y2|+|z1 − z2|+

√∫
R0

|u1(x)− u2(x)|2ν(dx)λ

)
.

Moreover, recall the fundamental inequality (a1 +a2 + ...+an)2 ≤ n(a2
1 +a2

2 +
...+ a2

n) for any n ∈ N and a1, a2, ..., an ∈ R.

Lemma C.2 Consider (Y, Z, U), (Y ′, Z ′, U ′) ∈ S2 × IG. Let g : Ω × [0, T ] ×
[0,∞)×R2 ×R satisfy (ii) and (iii) in Definition C.1. Then, for any t ∈ [0, T ],
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we have

E

[(∫ T

t

g(s, λ(s), Y (s), Z(s), U(s, ·))− g(s, λ(s), Y ′(s), Z ′(s), U ′(s, ·))ds
)2]

≤ 3K2
g (T − t)E

[
(T − t) sup

t≤r≤T
|Y (r)− Y ′(r)|2+

∫ T

t

|Z(s)− Z ′(s)|2ds

+

∫ T

t

∫
R0

|U(s, z)− U ′(s, z)|2Λ(ds, dz)

]
(C.2)

and

E

[(∫ T

t

|g(s, λ(s), Y ′(s), Z ′(s), U ′(s, ·))|ds
)2]

≤ (T − t)E
[
2

∫ T

t

|g(s, λ(s), 0, 0, 0)|ds

+ 6K2
g

(
(T − t) sup

t≤r≤T
|Y ′(r)|2+

∫ T

t

|Z ′(s)|2ds+

∫ T

t

∫
R0

|U ′(s, z)|2Λ(ds, dz)

)]
(C.3)

Proof: Fix t ∈ [0, T ]. From the Lipschitz conditions in Definition C.1 (iii), we
have:

E

[(∫ T

t

g(s, λ(s), Y (s), Z(s), U(s, ·))− g(s, λ(s), Y ′(s), Z ′(s), U ′(s, ·))ds
)2]

≤ K2
gE

[(∫ T

t

|Y (s)− Y ′(s)|+|Z(s)− Z ′(s)|

+

√∫
R0

|U(s, z)− U ′(s, z)|2ν(dz)λ(s)ds

)2]
≤ 3K2

g (T − t)E
[(∫ T

t

|Y (s)− Y ′(s)|2+|Z(s)− Z ′(s)|2ds

+

∫ T

t

∫
R0

|U(s, z)− U ′(s, z)|2Λ(ds, dz)

)2]
≤ 3K2

g (T − t)E
[
(T − t) sup

t≤r≤T
|Y (r)− Y ′(r)|2+

∫ T

t

|Z(s)− Z ′(s)|2ds

+

∫ T

t

∫
R0

|U(s, z)− U ′(s, z)|2Λ(ds, dz)

)2]
.
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Moreover, from (ii) in Definition C.1, we can prove the second inequality:

E

[(∫ T

t

|g(s, λ(s), Y ′(s), Z ′(s), U ′(s, ·))|ds
)2]

≤ (T − t)E
[ ∫ T

t

|g(s, λ(s), Y ′(s), Z ′(s), U ′(s, ·))|2ds
]

≤ (T − t)E
[ ∫ T

t

(
|g(s, λ(s), 0, 0, 0)|

+ |g(s, λ(s), Y ′(s), Z ′(s), U ′(s, ·))− g(s, λ(s), 0, 0, 0)|
)2

ds

]
≤ 2(T − t)E

[ ∫ T

t

|g(s, λ(s), 0, 0, 0)|2

+ |g(s, λ(s), Y ′(s), Z ′(s), U ′(s, ·))− g(s, λ(s), 0, 0, 0)|2ds
]
.

The result follows from (C.2) by proceeding as in the proof of (C.3). �

Lemma C.3 Consider Y ′ ∈ S2, (Z,U), (Z ′, U ′) ∈ IG and let (ξ, g) be standard
parameters. Define a stochastic process Y (t), t ∈ [0, T ], by

Y (t) = ξ +

∫ T

t

g(s, λ(s), Y ′(s), Z ′(s), U ′(s, ·))ds−
∫ T

t

Z(s)dW (s)

−
∫ T

t

∫
R0

U(s, z)H̃(ds, dz). (C.4)

Then Y ∈ S2. In particular, we have

E

[
sup
t≤r≤T

|Y (r)|2
]
≤ E

[
4ξ2 + 4

(∫ T

t

|g(s, λ(s), Y ′(s), Z ′(s), U ′(s, ·))|ds
)2

+ 40

(∫ T

t

|Z(s)|2ds+

∫ T

t

∫
R0

|U(s, z)|2Λ(ds, dz)

)]
. (C.5)

Proof: Directly from (C.4), taking the square, we have

|Y (t)|2 ≤ 4ξ2 + 4

(∫ T

t

|g(s, λ(s), Y ′(s), Z ′(s), U ′(s, ·))|ds
)2

+ 4

(∫ T

t

Z(s)dW (s)

)2

+ 4

(∫ T

t

∫
R0

U(s, z)H̃(ds, dz)

)2

.

97



Using this representation for Y (t), we see that

E

[
sup
t≤r≤T

|Y (r)|2
]
≤ E

[
4ξ2 + 4

(∫ T

t

|g(s, λ(s), Y ′(s), Z ′(s), U ′(s, ·))|ds
)2 ]

+ E

[
sup
t≤r≤T

4

(∫ T

r

Z(s)dW (s)

)2

+ sup
t≤r≤T

4

(∫ T

r

∫
R0

U(s, z)H̃(ds, dz)

)2]
.

We have

E

[
sup
t≤r≤T

(∫ T

r

Z(s)dW (s)

)2]
= E

[
sup
t≤r≤T

(∫ T

t

Z(s)dW (s)−
∫ r

t

Z(s)dW (s)

)2]
≤ E

[
2

(∫ T

t

Z(s)dW (s)

)2

+ 2 sup
t≤r≤T

(∫ r

t

Z(s)dW (s)

)2]
≤ 10E

[ ∫ T

t

|Z(s)|2ds
]
,

where the last inequality follows from Doob’s martingale inequality, i.e.
for a continuous martingale M(t), with p > 1, T > 0, and E[|M(T )|p] < ∞, we
have

E[ sup
0≤t≤T

|M(t)|p] ≤
(

p

p− 1

)p
E[|M(T )|p].

The same calculation holds for

E

[
sup
t≤r≤T

(∫ T

r

∫
R0

U(s, z)H̃(ds, dz)

)2]
,

with the obvious modifications. Equation (C.5) follows, and we conclude that
Y ∈ S2 by (C.3) since Y ′ ∈ S2, (Z,U), (Z ′, U ′) ∈ IG and (ξ, g) are standard
parameters. �

Now let (ξ, g) be standard parameters, and define the mapping

Θ : S2 × IG → S2 × IG, Θ(Y ′, Z ′, U ′) := (Y, Z, U) (C.6)

as follows. Let (Z,U) be the unique element in IG that provides the stochastic
integral representation

M(t) = M(0) +

∫ t

0

Z(s)dW (s) +

∫ t

0

∫
R0

U(s, z)H̃(ds, dz), t ∈ [0, T ],
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of the martingale

M(t) = E

[
ξ +

∫ T

0

g(s, λ(s), Y ′(s), Z ′(s), U ′(s, ·))ds
∣∣∣∣Gt], t ∈ [0, T ].

The component Y in (C.6) is defined by

Y (t)) = E

[
ξ +

∫ T

t

g(s, λ(s), Y ′(s), Z ′(s), U ′(s, ·))ds
∣∣∣∣Gt], t ∈ [0, T ].

Note that

Y (t) = M(t)−
∫ t

0

g(s, λ(s), Y ′(s), Z ′(s), U ′(s, ·))ds

= M(0) +

∫ t

0

Z(s)dW (s) +

∫ t

0

∫
R0

U(s, z)H̃(ds, dz)

−
∫ t

0

g(s, λ(s), Y ′(s), Z ′(s), U ′(s, ·))ds.

Since Y (T ) = ξ, we also have Y (t) = ξ − Y (T ) + Y (t) so that

Y (t) = ξ +

∫ T

t

g(s, λ(s), Y ′(s), Z ′(s), U ′(s, ·))ds

−
∫ T

t

Z(s)dW (s)−
∫ t

0

∫
R0

U(s, z)H̃(ds, dz). (C.7)

Thus, Y ∈ S2 by Lemma C.3 and the mapping (C.6) is well-defined.

We use the mapping Θ to prove that the BSDE of type (C.1) admits a unique
solution for the given standard parameters (ξ, g).

Lemma C.4 Consider (Y ′1 , Z
′
1, U

′
1), (Y ′2 , Z

′
2, U

′
2) ∈ S2 × IG and define

(Y1, Z1, U1) = Θ(Y ′1 , Z
′
1, U

′
1) and (Y2, Z2, U2) = Θ(Y ′2 , Z

′
2, U

′
2). Set Ȳ ′ = Y ′1 −

Y ′2 , Z̄
′ = Z ′1 − Z ′2, Ū ′ = U ′1 − U ′2, and similar for Yi, Zi, Ui, i = 1, 2. There exists

a K > 0 such that

E

[
sup
t≤r≤T

|Ȳ (r)|2+

∫ T

t

|Z̄(s)|2ds+

∫ T

t

∫
R0

|Ū(s, z)|2Λ(ds, dz)

]
≤ K(T − t)E

[
(T − t) sup

t≤r≤T
|Ȳ ′(r)|2+

∫ T

t

|Z̄ ′(s)|2ds (C.8)

+

∫ T

t

∫
R0

|Ū ′(s, z)|2Λ(ds, dz)

]
, t ∈ [0, T ].
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Proof: By the representation of Y in (C.7) we have, for any t ∈ [0, T ], that

Ȳ (t) =

∫ T

t

g(s, λ(s), Y ′1(s), Z ′1(s), U ′1(s, ·))− g(s, λ(s), Y ′2(s), Z ′2(s), U ′2(s, ·))ds

−
∫ T

t

Z̄(s)dW (s)−
∫ T

t

∫
R0

Ū(s, z)H̃(ds, dz).

Since

E

[
Ȳ (t)

∫ T

t

Z̄(s)dW (s)

]
= E

[
Ȳ (t)E

[ ∫ T

t

Z̄(s)dW (s)

∣∣∣∣Gt]] = 0,

and

E

[
Ȳ (t)

∫ T

t

∫
R0

Ū(s, z)H̃(ds, dz)

]
= E

[
Ȳ (t)E

[ ∫ T

t

∫
R0

Ū(s, z)H̃(ds, dz)

∣∣∣∣Gt]] = 0,

and that W and H̃ are conditionally orthogonal, we have

E

[(
Ȳ (t) +

∫ T

t

Z̄(s)dW (s) +

∫ T

t

∫
R0

Ū(s, z)H̃(ds, dz)

)2]
= E

[
|Ȳ (t)|2+

∫ T

t

|Z̄(s)|2ds+

∫ T

t

∫
R0

|Ū(s, z)|2Λ(ds, dz)

]
= E

[(∫ T

t

g(s, λ(s), Y ′1(s), Z ′1(s), U ′1(s, ·))− g(s, λ(s), Y ′2(s), Z ′2(s), U ′2(s, ·))ds
)2]

We apply (C.2) and obtain

E

[ ∫ T

t

|Z̄(s)|2ds+

∫ T

t

∫
R0

|Ū(s, z)|2Λ(ds, dz)

]
≤ E

[
|Ȳ (t)|2+

∫ T

t

|Z̄(s)|2ds+

∫ T

t

∫
R0

|Ū(s, z)|2Λ(ds, dz)

]
≤ 3K2

g (T − t)E
[
(T − t) sup

t≤r≤T
|Ȳ ′(r)|2+

∫ T

t

|Z̄ ′(s)|2ds (C.9)

+

∫ T

t

∫
R0

|Ū ′(s, z)|2Λ(ds, dz)

]
.
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By (C.2), (C.5) and (C.9) we have

E

[
sup
t≤r≤T

|Ȳ (r)|2
]

≤ E
[
0 + 4

(∫ T

t

|g(s, λ(s), Y ′1(s), Z ′1(s), U ′1(s, ·))

− g(s, λ(s), Y ′2(s), Z ′2(s), U ′2(s, ·))|ds
)2

+ 40

(∫ T

t

|Z̄(s)|2ds+

∫ T

t

∫
R0

|Ū(s, z)|2Λ(ds, dz)

)]
≤ 12K2

g (T − t)E
[
(T − t) sup

t≤r≤T
|Ȳ ′(r)|2+

∫ T

t

|Z̄ ′(s)|2ds

+

∫ T

t

∫
R0

|Ū ′(s, z)|2Λ(ds, dz)

]
+ 120K2

g (T − t)E
[
(T − t) sup

t≤r≤T
|Ȳ ′(r)|2+

∫ T

t

|Z̄ ′(s)|2ds

+

∫ T

t

∫
R0

|Ū ′(s, z)|2Λ(ds, dz)

]
= (12 + 120)K2

g (T − t)2E

[
sup
t≤r≤T

|Ȳ ′(r)|2
]

+ (12 + 120)K2
g (T − t)E

[ ∫ T

t

|Z̄ ′(s)|2ds+

∫ T

t

∫
R0

|Ū ′(s, z)|2Λ(ds, dz)

]
.

(C.10)

Combining (C.9) and (C.10) gives (C.8). �

Theorem C.5 Let (ξ, g) be standard parameters. Then there exists a uniqiue
solution (Y, Z, U) ∈ S2 × IG such that

Y (t) = ξ +

∫ T

t

g(s, λ(s), Y (s), Z(s), U(s, ·))ds−
∫ T

t

Z(s)dW (s)

−
∫ T

t

∫
R0

U(s, z)H̃(ds, dz). (C.11)

Proof: In this proof we apply the Banach fixed point theorem, that states that
every contraction mapping on a non-empty complete metric space (a Hilbert
space holds this property) has a unique fixed point.

Choose t1 ∈ [0, T ) such that max{K(T − t1)2, K(T − t1)} < 1, where K is the
same as in Lemma C.4. Denote S2(u, v) as the space consisting of the elements
of S2 equipped with the norm ‖Y ‖2

S2(u,v)= E[supu≤r≤v|Y (r)|2], and I(u, v) as the
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space of elements of IG equipped with the norm ‖θ0‖2
I(u,v)= E[

∫ v
u
|Z(s)|2ds +∫ v

u

∫
R0
|U(s, z)|2Λ(ds, dz)]. From (C.8), Θ is a contraction on S2(t1, T )×I(t1, T ),

and thus there exists a unique (Y1, Z1, U1) ∈ S2(t1, T )× I(t1, T ) such that
Θ(Y1, Z1, U1) = (Y1, Z1, U1) on [t1, T ], i.e.

Y1(t) = ξ +

∫ T

t

g(s, λ(s), Y1(s), Z1(s), U1(s, ·))ds−
∫ T

t

Z1(s)dW (s)

−
∫ T

t

∫
R0

U1(s, z)H̃(ds, dz), t ∈ [t1, T ].

Now consider a modification of Θ, the mapping Θ̃(Y ′, Z ′, U ′) = (Y, Z, U),
(Y ′, Z ′, U ′) ∈ S2(t2, t1) × I(t2, t1), with standard parameters (Y1(t1), g), which
are defined as follows. Here t2 is such that max{K(t1 − t2)2, K(t1 − t2)} < 1.
The components (Z,U) are determined by the unique element in I(t2, t1) from
the martingale representation (2.5) of the G−martingale

M(t) = E

[
Y1(t1) +

∫ t1

0

g(s, λ(s), Y ′(s), Z ′(s), U ′(s, z))ds

∣∣∣∣Gt].
By the martingale representation theorem M(t) is uniquely described by

M(t) = E[M(t1)|FΛ
T ] +

∫ t

0

Z(s)dW (s) +

∫ t

0

∫
R0

U(s, z)H̃(ds, dz)

= E[M(t1)|FΛ
T ] +

∫ t2

0

Z(s)dW (s) +

∫ t

t2

Z(s)dW (s)

+

∫ t2

0

∫
R0

U(s, z)H̃(ds, dz) +

∫ t

t2

∫
R0

U(s, z)H̃(ds, dz)

= M(t2) +

∫ t

t2

Z(s)dW (s) +

∫ t

t2

∫
R0

U(s, z)H̃(ds, dz).

The component Y is obtained in a similar manner as for Θ, i.e.

Y (t) = E

[
Y1(t1) +

∫ t1

t

g(s, λ(s), Y ′(s), Z ′(s), U ′(s, z))ds

∣∣∣∣Gt], t ∈ [t2, t1].

For argumentation for this, look at the derivation of Θ above.
Following the same argumentation as above, we conclude that Θ is a contrac-

tion on S2(t2, t1) × I(t2, t1) so that there exists a unique element (Y2, Z2, U2) ∈
S2(t2, t1)× I(t2, t1) such that Θ̃(Y2, Z2, U2) = (Y2, Z2, U2). Then we have

Y2(t) = Y1(t1) +

∫ T

t

g(s, λ(s), Y2(s), Z2(s), U2(s, z))ds−
∫ T

t

Z2(s)dW (s)

−
∫ T

t

∫
R0

U2(s, z)H̃(ds, dz), t ∈ [t2, t1].
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Now consider

Y (t) = Y1(t)1t1<t≤T (t) + Y2(t)1t2<t≤t1(t), t ∈ [t2, T ]

Z(t) = Z1(t)1t1<t≤T (t) + Z2(t)1t2<t≤t1(t), t ∈ [t2, T ]

U(t, ·) = U1(t, ·)1t1<t≤T (t) + U2(t, ·)1t2<t≤t1(t), t ∈ [t2, T ].

We can see that

Y (t) = ξ +

∫ T

t

g(s, λ(s), Y (s), Z(s), U(s, z))ds−
∫ T

t

Z(s)dW (s)

−
∫ T

t

∫
R0

U(s, z)H̃(ds, dz), t ∈ [t1, T ]. (C.12)

In fact, clearly (C.12) holds for t ∈ [t2, T ]. Assume t ∈ (t2, t1], then

Y (t) = = Y1(t1) +

∫ t1

t

g(s, λ(s), Y2(s), Z2(s), U2(s, z))ds−
∫ t1

t

Z2(s)dW (s)

−
∫ t1

t

∫
R0

U2(s, z)H̃(ds, dz)

= ξ +

∫ T

t1

g(s, λ(s), Y1(s), Z1(s), U1(s, ·))ds−
∫ T

t1

Z1(s)dW (s)

−
∫ T

t1

∫
R0

U1(s, z)H̃(ds, dz)

+

∫ t1

t

g(s, λ(s), Y2(s), Z2(s), U2(s, z))ds−
∫ t1

t

Z2(s)dW (s)

−
∫ t1

t

∫
R0

U2(s, z)H̃(ds, dz)

= ξ +

∫ T

t

g(s, λ(s), Y (s), Z(s), U(s, ·))ds−
∫ T

t

Z(s)dW (s)

−
∫ T

t

∫
R0

U(s, z)H̃(ds, dz).

Hence, (Y, Z, U) ∈ S2(t2, T ) × I(t2, T ). Proceed iteratively. Eventually, there is
a step n such that max{K(tn − tn+1)2, K(tn − tn+1)} < 1 for tn+1 = 0. Then we
conclude and have found a unique solution (Y, Z, U) ∈ S2(0, T )×I(0, T ) = S2×IG
such that (C.11) holds. �
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D Local martingales and quadratic variation

The theory in this section is from the book by Philip Protter [11]. Much of
the theory in [11] is formulated for semimartingales, but from the corollary of
Theorem 26.III in [11], we know that every local martingale is a semimartingale.

The process X is locally integrable if there exist a sequence of stopping times
(Tn)n≥1 increasing to ∞ a.s. such that E[|X(Tn)1Tn>0|] <∞ for each n.

A family of random variables (Uα)α∈A is uniformly integrable if

lim
n→∞

sup
α

∫
{|Uα|≥n}

|Uα|dP = 0.

Definition D.1 (Local martingale) An adapted, càdlàg process X is a lo-
cal martingale if there exists a sequence of increasing stopping times, Tn, with
limn→∞ Tn = ∞ a.s. such that X(t ∧ Tn)1{Tn>0} is a uniformly integrable mar-
tingale for each n.

Definition D.2 (Quadratic variation of a semimartingale) Let X, Y be semi-
martingales. The quadratic variation process of X, denoted [X,X] = ([X,X]t)t≥0,
is defined by

[X,X] = X2 − 2

∫
X−dX.

The quadratic covariation of X, Y , also called the bracket process of X, Y , is
defined by

[X, Y ] = XY −
∫
X−dY −

∫
Y−dX.

The operation (X, Y ) 7→ [X, Y ] is bilinear and symmetric, hence we have the
polarization identity

[X, Y ] =
1

2
{[X + Y,X + Y ]− [X,X]− [Y, Y ]}.

Definition D.3 (Conditional quadratic variation of a semimartingale) Let
X, Y be semimartingales such that their quadratic variation processes, also called
sharp bracket processes, are locally integrable. The conditional quadratic varia-
tion process of X, denoted 〈X,X〉 = (〈X,X〉t)t≥0, exists and is defined to be the
compensator of [X,X], i.e. [X,X] − 〈X,X〉 is a local martingale. The opera-
tion (X, Y ) 7→ 〈X, Y 〉 is bilinear and symmetric, hence we have the polarization
identity

〈X, Y 〉 =
1

2
{〈X + Y,X + Y 〉 − 〈X,X〉 − 〈Y, Y 〉}.

While [X,X], [Y, Y ] and [X, Y ] remain invariant with a change to an equivalent
probability measure, the conditional quadratic variation in general change with a
change to an equivalent probability measure and may even no longer exist.

Remark. For a continuous semimartingale M , we have that 〈M〉 = [M ]. 3
Remark. [M,N ]− 〈M,N〉 is a local martingale. 3
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Example

An easy example shoes the differences between the bracket processes [, ] and the
sharp bracket processes 〈, 〉. Let N(t) be a Poisson process of intensity λ. Then

[N ](t) =
∑
s<t

(∆N(s))2 =
∑
s<t

∆N(s) = N(t), not predictable,

while
〈N〉(t) = λt, predictable, deterministic even.

Moreover,
[N ](t)− 〈N〉(t) = N(t)− λt, a local martingale.

Theorem D.4 (Theorem 51.I.[11]) Let X be a local martingale such that
E[sups≤t|X(s)|] <∞ for every t ≥ 0. Then X is a martingale. If E[supt|X(t)|] <
∞, then X is a uniformly integrable martingale.

Corollary D.5 (Corollary to Theorem 27.II.[11]) Let M be a local martin-
gale. Then M is a martingale with E[M2(t)] < ∞ for all t if and only if
E[[M,M ](t)] <∞ for all t. If E[[M,M ](t)] <∞, then E[M2(t)] = E[[M,M ](t)].

The following theory is from Section 3.IV.[11]:

Definition D.6 M2 ⊂ L2 consists of L2−martingales M such that E[supt|M(t)|] <
∞ and M(0) = 0. M2 can be endowed with a norm

‖M‖= E[M2(T )]1/2 = E[[M,M ](T )]1/2,

and it is a Hilbert space.

Definition D.7 ((Weak) orthogonality) N,M ∈M2 are (weakly) orthogonal
if E[M(T )N(T )] = 0.

Definition D.8 (Strong orthogonality) N,M ∈ M2 are strongly orthogonal
if L = MN is a (uniformly integrable) martingale. Or, equivalently N,M ∈ M2

are strongly orthogonal if and only if [M,N ] is a uniformly integrable martingale.
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