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Abstract

The main scope of this thesis is to implement a structured numerical analysis
to check the exactness and applicability of the famous Kirk formula (1995) [12]
and the newer Bjerksund-Stensland formula (2011) [24] widely used by energy
markets practitioners while pricing and hedging (bivariate and trivariate) spread
options when the strike price is different from zero.

This research found that by varying volatilities, drifts, correlations, strikes, ex-
ercise times, heating rates and initial price of emission-certificates, these two
analytical approximations have limitations for pricing and hedging spread op-
tions. Notably the more recent Bjerksund-Stensland formula, which is supposed
to be an improvement on the Kirk formula, is not better to provide reliable result
in three-dimensional trading markets. This is important, as energy markets often
are three-dimentional. It will be shown mathematically with numerical experi-
ments that both approximations provide acceptable results for pricing bivariate
spread options with respect to positive strike prices. But their performances are
unsatisfactory for negative strike prices. Furthermore, neither of them performed
well to price trivariate spread options. And both performed poorly in hedging
trivariate spread options.

Although using a closed-form formula is very attractive for practitioners, this
research proposes that it is safer to keep using the slower Monte Carlo numerical
method, until future researches perfect existing closed-form formulas or discover
a new one.
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Frequently Used Notation

When a numbered equation/figure/table is referred to, it will be by chapter and
number, e.g. equation (3.1) will be referred to the first equation in Chapter 3,
Table (4.5) the fifth table in Chapter 4. Results, however, will simply be re-
ferred to as e.g. Definition 1. References are referred to by only numbers, e.g.
[7] will be the seventh source from the complete list of sources in the bibliography.

Some symbols are standard for the entire thesis, most of which are listed be-
low. Vectors and matrices are generally captured in bold font.

Ω Sample space, a subset of R.
F σ-algebra.
Ft Filtration with time t.
X(t, ω) (A path of) stochastic process with time t and state ω.
M(t) Martingale with time t.
φ(·) Probability density function of the standard normal distribution1.
Φ(·) Cumulative distribution function of the standard normal distribution.
P [·] Probability measure.
Q[·] Risk-neutral probability measure, or equivalent martingale measure.
E[·] Expected value with respect to P .
EQ[·] Expected value with respect to Q.
max{·} The greatest element in a set.
{·}+ The positive part of a set.
1A The indicator function2 of a subset A of a set X.
∆ The delta-hedge parameter.

1This is described by φ(x) = 1√
2π

exp
{
− 1

2x
2
}

.

2The indicator function is defined as 1A =

{
1 if x ∈ A
0 if x 6∈ A .
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Chapter 1

Introduction and literature
review

At the core of their trading activities, energy markets practitioners, in Europe and
beyond, use extensively spread options to valuate commodities price differences
over time and places. Spread options are defined as an option written on the
price difference between two commodities. In this thesis we will focus on call
options, with a strike price K, having a payoff function at exercise time T given
as

max {P (T )− hG(T )−K, 0} (1.1)

where P (T ) and G(T ) are the prices of two energy commodities at the time of
exercise T . Typically in a given energy market, P may be the price of electricity
and G the price of gas, and h the heating rate, converting gas into electricity.
The producer’s income is a European call option, depending on the differnce
P (T )− hG(T ), or, on the spread between electricity and gas. Such a spread op-
tion provides the value of operating a gas-fired power plant, with fixed operation
cost of K.

There have been numerous articles on the topic of pricing such spread options
when the strike price is zero, but very few have claimed to find an approximation
that can apply to a non-zero strike price for all circumstances. In general, there
is no satisfactory analytical formula for the price of a spread call option when
K 6= 0. If K = 0 one can price it by using the famous Margrabe formula [34]
(see also Theorem 13 in Chapter 2). And there are two, supposedly very efficient,
approximations formulas suggested by Kirk [12], and Bjerksund-Stensland [24].
Both are variants on the Margrabe formula.

In recent years, power plants emitting CO2 must also pay for their emissions.
Articles in the media, such as Bloomberg on May 2nd, 2014 [38], have pointed
out that for the first time, the amount (throughout April 2014) of carbon dioxide
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in the atmosphere averaged more than 400 parts per million, a highly symbolic
threshold. EU power plants have increasingly been obliged to purchase additional
emission permits in the market. This means that an additional cost of carbon
emission has been introduced into the operation of a coal or gas power plant, and
we can view this as a trivariate spread option

max {P (T )− hG(T )− C(T ), 0} (1.2)

with C(T ) being the price of a certificate to emit a certain amount of CO2 at the
time of exercise T . Hence, we end up with a spread option on three assets, which
can be viewed as a spread between power (electricity) and total production cost,
being the sum of gas and emission price.

The main purpose of this thesis is to price such spread options using the famous
Kirk approximation (1995) and the newer Bjerksund-Stensland approximation
(2011), and to implement a structured numerical analysis to check the exactness
and applicability of them in pricing and hedging (bivariate and trivariate) spread
options in energy market when the strike price differs from zero.

This research found that by varying volatilities, drifts, correlations, strikes, ex-
ercise times, heating rates and initial price of emission-certificate, these two an-
alytical approximations have shortcomings for being able to price and hedge
trivariate spread options. Notably, this present research found that the more
recent Bjerksund-Stensland formula, which is supposed to be an improvement
on the Kirk formula, is not better to provide reliable result in three dimensional
trading markets. This is important, because energy markets often need to use
three-dimentional calculations. Although the intention to discover a closed-form
formula can be very attractive, the project proposes that it would be better, for
the time being, for the practitioners to keep using well proven numerical methods,
such as the Monte Carlo method, even if its disadvantage is to be computation-
ally slow.

It will be shown mathematically with numerical experiments that those two
approximations provide acceptable results for pricing bivariate spread options
with respect to positive strike prices. But their performances are unsatisfactory
for negative strike prices. Furthermore, neither of them performed well to price
trivariate spread options. And both performed poorly in hedging trivariate spread
options. Therefore, this research suggests that practitioners may decide to focus
on numerical methods until other better closed-form formulas are attested.
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1.1 Energy market

An Energy Market (EM) is a market where the commodities being sold and
bought are energy sources, such as electricity or natural gas. An EM involves both
physical and financial elements. The physical market contains natural resources,
infrastructure, institutions and market participants involved in producing energy
and delivering it to consumers. For its part, the financial market includes the
trading of financial products derived from physically traded commodities, and
they are used for price hedging and risk management. Financial products do not
involve the delivery of energy, since retail consumers usually have few options
for storing it. Instead, financial markets trade paper and money. As for the
end-users of energy, limited by individual storage capacity, they cannot adapt
purchases with price fluctuations.

History. From the 19th century, until the second part of the 20th century, a
few petroleum companies [13] had tight control on most aspects of the energy
market. With physical control of much of the world’s known reserves, extraction,
transportation and trade, they dominated the energy market and therefore were
often described as a cartel with monopolistic characteristics. From the middle of
the 20th century onward, newly established sovereign states, holding vast energy
reserves, joined forces to counter balance in the energy market, the overwhelming
power of the petrol companies. This led to the creation of the Organization of
the Petroleum Exporting Countries (OPEC), which until today plays an impor-
tant role in the supply side of the energy market. The new reality of OPEC
had been painfully demonstrated to leading economies during the 1973 oil crisis.
Throughout the 20th century, the energy market has been steadily modernized
and liberalized but also regulated. In different parts of the world, national and
regional authorities have sought to protect consumers’ rights, and have moved to
curb oligopolies. Those institutions include the Australian Energy Market Com-
mission, the Energy Market Authority in Singapore and the Energy Community
in Europe. Member states of the European Union (EU) are required to liberalize
their energy markets [21], like the Nord Pool Spot for Nordic countries and the
European Energy Exchange AG (EEX) in Germany. Since 2003, energy markets
have been investigated, as sharp increase in oil price was thought to be linked to
extreme speculation. In 2008, it was the turn of the petroleum importing nations
to organize their own conferences to voice their concerns about the impact of the
energy market on their own economies [41].

More about Nord Pool Spot: The Nordic electricity exchange Nord Pool
Spot runs the largest electrical energy market in the world [36], offering both
day-ahead and intraday markets to its participants. Nord Pool Spot covers Nor-
way, Finland, Sweden, Denmark, Estonia and Lithuania. Nord Pool Spot is an
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exchange primarily servicing stakeholders (producers, retailers, end-users, traders
and brokers) at the wholesale market for electricity. Some 330 companies from
20 countries trade on the exchange [42]. At times some areas have surplus of
power while others run deficit. Should there be insufficient transmission capacity
on the grid between two areas, bottlenecks occur and price differences arise. Due
to the bottlenecks, the Nord Pool Spot exchange area is divided into a number of
bidding areas [42]. The Nordic transmission system operators (TSO’s) decide the
number of bidding areas within its boundaries. Eastern Denmark and Western
Denmark are always treated as two different bidding areas. Sweden has been
divided into four bidding areas since 2011. Norway currently (December 2013)
has five bidding areas, while Finland, Estonia and Lithuania are treated as three
different bidding areas since June 2013. Two Nordic commercial players situated
in different bidding areas cannot trade elctricity with each other, because Nord
Pool Spot handles all the trading capacity on the cross-border links, on behalf
of the Nordic TSO’s. As the power markets gradually are becoming more inte-
grated, Nord Pool Spot also keeps close relations with other exchanges in Europe.
Today, market coupling exists between the Nordic, German and Central Western
European exchange areas. For example, new cables connecting the Nord Pool
Spot to the German EEX market are planned to be built.

Energy Union. Energy supply and demand may depend highly on political
and economic stability. Given the current crisis with Russia regarding Ukraine,
Poland’s Prime Minister Donald Tusk has recently pressed his EU partners to
envision the establishment of an energy union as a mean of reducing European
EM’s dependency on Russian gas (read more in [39] and [43]). PM Tusk said
that it was crucial to find a way that would take three important European in-
terests into account: energy independence, reasonable energy prices, and climate
challenge facing Europe. German Chancellor Angela Merkel expressed her sup-
port during discussions with PM Tusk in Berlin April 24th, 2014, but added that
“more details have to be elaborated”[45].

Green energy. Increasingly renewable and sustainable energy are playing a
greater role in the energy market. Green energy has benefited from alarming
forecasts about global warming, technological innovation, government subsidies,
prices, tax incentives, and at times the perceived potential for profits by investors.
A report from EnergyUnion.eu predicts that by the year 2030, green energy could
provide 35% of the world’s energy needs [37], given the political will to promote its
large scale deployment in all sectors at a global level. Future of renewable energy
development will strongly depend on political choices by national governments,
EU decision making processes and international agreements. But it should also
be noted that until now, governments’ energy policies and subsidies have been
necessary for green energy to be competitive in the energy market.

4
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Weather. It is worth mentioning that weather is a significant factor affecting
energy demand and causing seasonal fluctuations of energy prices. Cold weather
and short days drive winter demand in northern regions, causing the occurrence
of seasonal load during the long period of darkness. Meanwhile, the heat waves
in southern regions typically contribute to peak consumption of air conditioners.
Unexpected changes in the weather can also have extreme short-term effects on
energy usage. Raising the energy demand, even a single day, can dramatically
affect energy prices. The difficulty to predict consumers demand appropriately
is one of the major concerns for energy suppliers.

1.2 Financial derivatives in energy market

As aforementioned, financial markets differ from physical markets in that no
physical storage or delivery of energy occurs. Financial traders may use longer-
term contracts, in a way which requires (or provides) no physical delivery, but a
financial payout instead. Indeed, in addition to trading physical electricity and
natural gas, there is a significant market for electricity derivatives and gas deriva-
tives. Derivatives are financial instruments whose values are derived from some
physical or financial fundamentals, known as the underlying assets specified by
the contract, and in this case, the price of electricity and the price of natural
gas. Traditionally, most derivatives are traded over-the-counter (OTC) or on off-
exchange markets.

Description of some key trading mechanisms and concepts:

Short selling is the selling of contracts a trader does not own at present, on the
assumption that the trader will buy offsetting contracts prior to the contracts’
expiration. Short selling is one of the ways market participants can trade future
financially - they sell the future, and buy it before the contract expires so the
contracts net out and the trader faces no delivery obligation. This can be done
on an exchange or or other markets that allows for bidirectional trading.

A position is the net holdings of a participant in a market. A trader’s posi-
tion in a specific instrument is combined purchases and sales of that contract. A
trader’s overall position is the combination of all positions in all contracts the
trader owns.

Time: Each contract has a number of time elements. The trade date is the
date on which the contract is written. The expiration day is the last day for a
contract, after which it is no longer available to be bought or sold; it is often the
same day as the settlement day.
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Price: The price paid for a contract set by the market which is usually known
at the time the contract is bought or sold.

1.3 Option contracts

An option contract conveys a right (but not an obligation) to buy or sell some-
thing. It comes in two forms: the right to buy or the right to sell at a pre-set
price at or before a specified date. The buyer buys the right - the option - to
buy or sell in the future. The seller (or writer) sells the obligation to buy or sell
if the buyer exercises his or her right, i.e. the option. In terms of terminology in
mathematical finance, the price of an option is the discounted expected value of
the payoff of the option at its exercise time, where the expectation is taken under
the risk-neutral probability measure, cf. Section 3.2.

The price paid to buy the option is simply known as the option’s price. An
option is a call option if it gives the buyer the right to buy, while it is called
a put option if it gives the buyer the right to sell. Deciding to buy or sell the
underlying commodity is known as exercising the option. The price at which the
option may be exercised is called the strike price (or just strike). At the time
of exercise, traders may either exercise their call (put) options if the actual price
is higher (lower) than the strike price, or not exercise their call (put) options if
the actual price is lower (higher) than the strike price. In the latter case, the
traders’ cost will simply be the price of the option, i.e. the contract, if we ig-
nore other expenses. There are many different styles of option classifications. A
European option may be exercised only at the pre-defined expiration date of the
option. An American option on the other hand may be exercised at any time
before the expiration date. Option contracts traded on futures exchanges are
mainly American-style, whereas those traded on the OTC markets are mainly
European. Nearly all stock and equity options are American options, while in-
dexes are generally represented by European options. Commodity options can
be of either style. An Asian option (or average option) is an option of which
the payoff is determined by the average underlying price over a pre-specified time
interval. It can protect investors from the volatility risk of the market.

Traders buy and sell options depending on their objectives. Broadly speaking,
market participants trade to accomplish any of the following objectives. First,
they provide a risk management tool akin to insurance. Second, traders may use
options traded on exchanges or electronic trading platforms to speculate. Finally,
traders may use options to boost their trading income or to reduce the volatility
of their returns.
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Different types of options in energy markets. The use of spread options
is widespread in spite of the fact that the development of pricing and hedging
techniques has not been followed at the same pace. In energy markets one finds
an abundance of different spread options. We refer to Carmona and Durrleman
(2003) [25] for their extensive survey on the matter.

For example, in agricultural futures markets, there are location spreads that based
on the prices of the same commodity (quality spreads) at two different locations,
and calendar spreads that based on the prices of the same commodity at two
different points in time, such as, for example, the soybean calendar spreads. In
currency and fixed income markets, we find bond spreads, cross-currency spreads,
and spreads based on differences between two interest rates, two yields, two ma-
turities, and so on. In energy markets, spreads are typically used as a way to
quantify the cost of production of refined products from the non-refined raw ma-
terial. Crack spread is a term used for the difference between the price of crude oil
and petroleum products extracted from it. The New York Mercantile Exchange
(NYMEX) offers the only exchange-traded options on energy spreads: the heating
oil/crude oil and gasoline/crude oil crack spread options. Spark spread is referred
to as the difference between the market price of electricity and gas, while dark
spread as the difference between the market price of electricity and coal. Clean
spark spread (or spark green spread) represents the net revenue a generator makes
from selling electricity, having bought gas and the required number of carbon al-
lowances, while clean dark spread (or dark green spread) refers to an analogous
indicator for coal-fired generation of electricity. The difference between the spark
green spread and the dark green spread is known as the climate spread.

1.4 Monte Carlo method

The name Monte Carlo comes originally from a city in Monaco, which is famous
for its gambling casinos. During the late 1930s and 1940s, many computer simu-
lations were performed to estimate the probability that the chain reaction needed
for the hydrogen bomb to work successfully. The physicists and astronomers in-
volved in this work were big fans of gambling, so they gave the simulations the
code name Monte Carlo. See the full story in [33].

In computing, the Monte Carlo algorithm is a broad class of randomized al-
gorithm. One of its main advantages is that it can be easily implemented for any
type of probability distributions and for almost all kinds of financial derivatives,
and it is most powerful when it is highly complex or (in most of the cases) im-
possible to obtain a closed-form expression, or infeasible to apply a deterministic
algorithm, as often used in physics and mathematic. This algorithm depends on
repeated random samplings with deterministic running time to obtain required

7



numerical results. The magnitude of the random samples is usually suggested to
be at least 3000 (VOSE Software RISK SOFTWARE SPECIALISTS) or 5000
(FMRIB Software Library version 5.0). The higher the number, the closer the p-
value will be to the p-value that would be found by systematically examining all
possible permutations. Practitioners will try different numbers of permutations
up to several millions. However, the main weakness of the Monte Carlo approach
is that it takes a massive amount of time for analyzing, computing and plotting
the data. Hence, practitioners will keep increasing the permutations until the
result stabilizes at a certain precision, say, two decimal places. This is exactly
the approach we have adopted in Chapter 3 and Chapter 4.

In most of the cases, the terms Monte Carlo algorithms and Monte Carlo meth-
ods (or Monte Carlo experiments) refer to the same concept. Generally speaking,
they are techniques that can be used to solve mathematical and statistical prob-
lems, mainly in three problems classes: optimization, numerical integration and
generation of draws from a probability distribution. While in other cases, Monte
Carlo methods refer to the methods based on the Monte Carlo algorithm. Some
people use the term Monte Carlo method only when they want to differenti-
ate between the different methods used in pricing financial derivatives. In this
project, we will adapt the term Monte Carlo method with respect to both the
algorithm and the method based on the algorithm, for pricing and hedging the
spread options. Apart from Monte Carlo methods, other methods [18] in pricing
derivatives may include, but are not limited to:

• Finite Difference Method (see also [3] and [2])

• Risk-Neutral Valuation (see also [11] and [22])

• Transform methods, for example the fast Fourier-transformation (see also
[19], [23] and [35])

• (Approximated or exact) Analytic Method. On rare occasions, mathemati-
cians discover closed-form formulas like the Margrabe formula, the Black-
Scholes formula [5], the analytical formula for asian options ([14] and [32]),
or the Kirk formula and the Bjerksund-Stensland formula being considered
in later chapters.

In mathematical finance, a Monte Carlo option model uses Monte Carlo methods
to calculate the value of an option with multiple sources of uncertainty or with
complicated features [16]. The most significant advantage of the Monte Carlo
method is that it is flexible and relatively easy to be implemented for numerical
evaluation of nearly all derivatives, which is also the main reason that we in this
project are using this method. The Monte Carlo computation for this project
will be to:

8



1. Generate a large number of random numbers from standard normal distri-
bution.

2. Calculate the underlyings of the option for each path.

3. Calculate the associated exercise value, i.e. the payoff, of the option for
each path.

4. Take the average of these payoffs.

5. Discount the average value back to the initial time.

This result is the value of the option.

This thesis has been divided into 7 chapters. Chapter 1 and 2 are introduc-
tory chapters, providing some background on financial derivatives in the energy
market and some results on stochastic analysis in continuous time. In Chapter
3, the bivariate geometric Brownian motion and the trivariate geometric Brown-
ian motion are introduced, as the models for spread options and trivariate spread
options, respectively. Chapter 4 presents a structured numerical analysis for pric-
ing spread options in the light of comparing the Kirk formula in Section 4.1 and
the Bjerksund-Stensland formula in Section 4.2, with numerical results found us-
ing the Monte Carlo method in different scenarios in Section 4.3. By using up to
6, 000, 000 permutations in Monte Carlo, when Bjerksund and Stensland [24] only
used 100, 000, this research looked at the parameters pairwisely to investigate the
effect on pricing:

• By varying combinations of volatilities, this research found in Section 4.3.1
that the Bjerksund-Stensland formula did slightly better than the Kirk for-
mula for both positive and negative strike prices. Both formulas produced
very small and close relative errors.

• By varying combinations of strike price and correlation, this research found
in Section 4.3.2 that the Bjerksund-Stensland formula was better than the
Kirk formula, especially for large positive values of strike prices and corre-
lation coefficients.

• By varying combinations of drift (here interest rate) and the time to ex-
ercise, this research found in Section 4.3.3 that neither seemed to have
very large relative errors for positive strike prices; as per negative strike
prices, the Bjerksund-Stensland formula achieved slightly smaller relative
errors than the Kirk formula, nevertheless still far more for the acceptable
standard to edge risk.
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A study of forward prices in energy market is outlined at the end of this chap-
ter, see Section 4.4 , since the method can be applied to forward contracts as well.

Similar analysis for pricing of trivariate spread options using the Monte Carlo
method is applied in Chapter 5, where we first derived the updated formula
corresponding to the Kirk formula in Section 5.1 and the Bjerksund-Stensland
formula in Section 5.2 , then this research implemented Monte Carlo simulation
using those revisited formulas with 4,000,000 permutations in Section 5.3. This
time large variations showed up in pricing the trivariate spread options. Here we
looked at two scenarios in details:

• When the heating rate was changed, as in Section 5.3.1, both of the two
approximations produced large (but still close) relative errors, up to 32.74%
when the heating rate was h = 0.5. And the relative error was decreasing
when the heating rate was increasing from h = 0.5 to h = 1.0.

• When the initial price of emission-certificate of carbon dioxide, C(0), was
changed, as in Section 5.3.2, large relative errors occurred again. As C(0)

became higher, the relative price of power P (0)
C(0)

and that of gas G(0)
C(0)

became
lower, causing the relative error to increase a little at first, then decrease
to about 5.5% when h = 1.0 and to about 24.6% when h = 0.8, which was
still too large to be accepted.

In Chapter 6 we derived delta-hedge parameters for the Kirk formula and those
for the Bjerksund-Stensland formula for bivariate spread options in Section 6.1
and for trivariate spread options in Section 6.2, where mathematical and numeri-
cal comparisons were presented in Section 6.3, showing that both performed very
well (with an accuracy of three decimals of places) in hedging bivariate spread
options, whereas significantly inaccurate in hedging trivariate spread options.

The conclusion and some ideas for further work are discussed in Chapter 7. Most
programming codes for this thesis have been written in R and MATLAB, as listed
in the appendices.
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Chapter 2

Some Preliminaries on Stochastic
Analysis

We start with some basic definitions which can be of great importance to this
project.

Definition 1. If Ω is a given set, then a σ-algebra F on Ω is a family F of Ω
with the following properties:

(i) ∅ ∈ F

(ii) F ∈ F ⇒ FC ∈ F , where FC = Ω \ F is the complement of F in Ω

(iii) A1, A2, ... ∈ F ⇒ A :=
⋃∞
i=1Ai ∈ F

The pair (Ω,F) is called a measurable space. A probability measure P on
a measurable space (Ω,F) is a function P : F −→ [0, 1] such that

(a) P(∅) = 0, P(Ω) = 1

(b) if A1, A2, ... ∈ F and {Ai}∞i=1 is disjoint (i.e. Ai ∩ Aj = ∅ if i 6= j), then

P

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

P (Ai)

The triple (Ω,F ,P) is called a probability space. The subsets F of Ω which
belong to F are called F-measurable sets. If (Ω,F ,P) is a given probability
space, then a function Y : Ω −→ Rn ic called F-measurable if

Y −1(U) := {ω ∈ Ω;Y (ω) ∈ U} ∈ F

for all open sets U ∈ Rn. If X := Ω −→ Rn is any function, then the σ-algebra
HX generated by X is the smallest σ-algebra on Ω containing all the sets

X−1(U); U ⊆ Rn open.
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Definition 2. A random variable X is a function X(ω) : Ω −→ R. The
cumulative distribution function of X is defined as the probability that X
is less than or equal to the real number x, that is,

FX(x) = P(X ≤ x) (2.1)

The ε-quantile of a random variable X is defined as the number qε such that

FX(qε) = P(X ≤ qε) = ε; ε ∈ [0, 1] (2.2)

The probability density function of a random variable X is defined as the
derivative of the (continuous) cumulative distribution function FX , that is,

fX(x) =
d

dx
FX(x) (2.3)

The expectation (or expected value, mean, first moment) of a (continuous)
random variable X with probability density function fX(x) is given by

µ = E[X] =

∫ ∞
−∞

xfX(x)dx (2.4)

Furthermore, the expectation of a measurable function h(X) : R −→ R is given
by the inner product of f and h, that is,

E[g(X)] =

∫ ∞
−∞

g(x)fX(x)dx (2.5)

Note that equation (2.5) is valid (finite) only if the integral converges absolutely.
The variance of a (continuous) random variable X with probability density
function fX(x) is defined by

σ2 = Var[X] = E
[
(X − µ)2

]
=

∫ ∞
−∞

(x− µ)2fX(x)dx (2.6)

Note that a continuous distribution may not have a valid (finite) variance no
matter its expectation is valid or not. This is because the integral in equation
(2.6) diverges. A shortcut formula for calculating the variance is given by

σ2 = Var[X] = E
[
X2
]
− (E[X])2 =

∫ ∞
−∞

x2fX(x)dx− µ2 (2.7)

The standard deviation of a random variable X is defined as the square root
of its variance, that is,

σ = sd(X) =
√

Var[X] (2.8)
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Definition 3. Given two random variables X and Y , the joint probability
distribution is defined by a joint cumulative distribution function as

fX,Y (x, y) =
∂2

∂x∂y
P(X ≤ x, Y ≤ y) (2.9)

The two random variables X and Y are said to be independent if and only if

fX,Y (x, y) = fX(x)fY (y) (2.10)

In probability theory and statistics, a measure of (linear) dependence between
two random variables X and Y is the covariance,

Cov[X, Y ] = E [(X − E[X]) (Y − E[Y ])] (2.11)

By using the linearity property of expectations, this can be simplified to

Cov[X, Y ] = E[XY ]− E[X]E[Y ] (2.12)

Another popoular measure of (linear) dependence between two random variables
X and Y is the (population) correlation coefficient, which is the normalized
covariance

corr(X, Y ) =
Cov[X, Y ]

sd(X)sd(Y )
(2.13)

Note that when X and Y independent, then E[XY ] = E[X]E[Y ], implying
Cov[X, Y ] = 0 and therefore corr(X, Y ) = 0.

Given n random variables X1, ..., Xn, their correlation matrix is an n× n ma-
trix, of which the i, j-th entry is equal to the correlation coefficient corr(Xi, Xj).
Because of the fact that corr (Xi, Xj) = corr (Xj, Xi), the correlation matrix is
always symmetric, with its diagonal elements always equal to 1, since they are
the correlations of the random variables with themselves. The correlation matrix
serves as a tool for describing the correlations among n random variables.

Definition 4. If Y is a normal (or Gaussian) random variable, and its prob-
ability density is denoted by φ, then the normal (or Gaussian) distribution
is given by

fY (y) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
(2.14)

where µ is the mean or expectation (and is also the mode and median) of the
distribution, and σ is the standard deviation of the distribution. When µ = 0
and σ = 1, the distribution is called the standard normal distribution or the
unit normal distribution. If Z denotes the standard normal variable, then the
standard normal distribution is given by

φ(x) =
1√
2π
e−

x2

2 (2.15)
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Then the variable X = eµ+σZ is called a log-normal variable, where the param-
eters µ and σ are respectively the mean and standard deviation of the variable’s
natural logarithm. The probability density function of a log-normal distribution
is given by

fX(x;µ, σ) =
1

xσ
√

2π
e−

(lnx−µ)2

2σ2 , x > 0 (2.16)

Theorem 5. (The central limit theorem) Suppose {X1, ..., Xn} is a sequence
of n independent and identically distributed random variables from a distribution
of expetation E[Xi] = µ and variance Var[Xi] = σ2 < ∞, for 1 ≤ i ≤ n. Let
X̄n = 1

n

∑n
i=1Xi denote the sample average. Then as n approaches infinity, the

random variable
√
n
(
X̄n − µ

)
converge in distribution to a normal distribution

N (0, σ2),
√
n
(
X̄n − µ

) d−→ N (0, σ2) (2.17)

The usefulness of this theorem is that the distribution of X̄n approaches a normal
N (µ, σ

2

n
) regardless of the shape of the distribition of the individual Xi’s. Hence,

this theorem will be appealed in our study of Monte Carlo methods.

Definition 6. Mathematically, a (1-dimensional) Brownian motion (BM)
B(t) is an almost surely time-continuous stochastic process characterized by the
following conditions:

• B(0) = 0.

• B(t) has independent increments, i.e., the stochastic variable B(t) − B(s)
is independent with B(v)−B(u), for 0 ≤ s < t ≤ u < v.

• B(t) has normal increments, i.e. the variable B(t) − B(s) is normally dis-
tributed with mean 0 and variance t− s, for 0 ≤ s < t.

• B(t) has stationary increments, i.e. the distribution of B(t) − B(s) only
depends on t− s, not t or s.

Definition 7. Let Bt be a (1-dimensional) Brownian motion on (Ω,F ,P). As-
sume there exist two adapted processes Y (t) and Z(t). A (1-dimensional) Itô
process is a stochastic process X(t) on (Ω,F ,P) of the form

X(t) = X(0) +

∫ t

0

Y (s)dB(s) +

∫ t

0

Z(s)ds (2.18)

where

P
[∫ t

0

Y 2(s)dBs <∞ for all t ≥ 0

]
= 1 (2.19)

P
[∫ t

0

|Z(s)| ds <∞ for all t ≥ 0

]
= 1 (2.20)
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If X(t) is an Itô process of the integral form like equation (2.18), then it is
sometimes written in the shorter differential form

dX(t) = Y (t)dB(t) + Z(t)dt (2.21)

Theorem 8. (The Itô formula) Let g(t, x) be a function which is once contin-
uously differentiable in t ∈ [0,∞] and twice continuously differentiable in x ∈ R.
Let X(t) be an Itô process. Then Y (t) = g(t,X(t)) is again an Itô process, and
the (1-dimensional) Itô formula is given by

dg(t,X(t)) =
∂g

∂t
(t,X(t))dt+

∂g

∂x
(t,X(t))dX(t)+

1

2

∂2g

∂x2
(t,X(t))(dX(t))2 (2.22)

where (dX(t))2 = dX(t) · dX(t) is computed according to the Itô rules:

dt · dt = dt · dB(t) = dB(t) · dt = 0, dB(t) · dB(t) = dt (2.23)

The Itô formula can be expanded to the n-dimentional case. Introduce m inde-
pendent Brownian motions B1(t), ..., Bm(t) and assume that X1(t), ..., Xn(t) are
n Itô processes with dynamics

dX1(t) = Y11(t)dB1(t) + · · ·+ Y1m(t)dBm(t) + Z1(t)dt

· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
dXn(t) = Yn1(t)dB1(t) + · · ·+ Ynm(t)dBm(t) + Zn(t)dt

where Yij(t)’s and Zi(t)’s are adapted Itô processes, for i = 1, ..., n and j =
1, ...,m. If we denote the vector X(t) = (X1(t), ..., Xn(t))′ and let g(t,x) =
(g1(t,x, ..., gp(t,x)))′ be a vector-valued function which is once continuously dif-
ferentiable in t ∈ [0,∞] and twice continuously differentiable in x ∈ Rn, then
the multi-dimensional Itô formula is given by considering each coordinate
process, that is, for k = 1, ..., p,

dgk(t,X(t)) =
∂gk
∂t

(t,X(t))dt+
n∑
i=1

∂gk
∂xi

(t,X(t))dXi(t)

+
1

2

n∑
i,j=1

∂2gk
∂xi∂xj

(t,X(t))dXi(t)dXj(t) (2.24)

where dXi(t)dXj(t) is computed according to the multi-dimensional version of
the Itô rules

dt · dt = dt · dBi(t) = dBi(t) · dt = 0, dBi(t) · dBj(t) = δijdt (2.25)
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with the Kronecker delta δij defined by

δij =

{
1 if i = j
0 if i 6= j

(2.26)

Definition 9. A (1-dimensional) geometric Brownian motion (GBM),
also known as (1-dimensional) exponential Brownian motion, is an almost
surely time-continuous stochastic process in which the logarithm of the random-
ness follows a Brownian motion with a drift. Technically, a stochastic process
S(t) is said to follow a GBM if it satisfies the following stochastic differencial
equation (SDE):

dS(t) = µS(t)dt+ σS(t)dB(t), t > 0 (2.27)

where B(t) is a Brownian motion, µ is the percentage drift and σ is the percentage
volatility. For an arbitrary initial value S(0), this SDE has an analytic solution

S(t) = S(0)exp

{(
µ− 1

2
σ2

)
t+ σB(t)

}
, t > 0 (2.28)

The (1-dimensional) GBM can be extended to the multi-dimensional case, since
a three-dimensional (trivariate) option price model is required as an assumption
in the later chapters of this thesis.

Suppose {S1(t), ..., Sn(t)} is a sequence of n adapted Itô processes. LetB1(t), ..., Bm(t)
be m independent Brownian motions. For each component i = 1, ..., n, Si(t) is
defined through the SDE:

dSi(t) = αiSi(t)dt+ Si(t)
m∑
j=1

σijdBj(t) (2.29)

This is called a multi-dimensional GBM.

It is possible to demonstrate that the explicit solution, Si(t), of this SDE is
given by

Si(t) = Si(0)exp

{(
αi −

1

2

m∑
j=1

σ2
ij

)
t+

m∑
j=1

σijBj(t)

}
(2.30)

Note that the number of independent Brownian motions m can be less than,
equal to or larger than the number of Itô processes n. In mathematical finance,
Si(t) can apply to the value of the i-th asset at time t, with parameter αi as the
drift and parameters σij as the volaitlity which describes the correlation among
the log-returns of the assets.
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Theorem 10. As it has been stated in Definition 9, the Si(t)’s in equation (2.29)
are assumed to denote the values of the assets in a market, where the number
of independent stochastic noises (here Brownian motions) m and the number
of assets n can be either equal or unequal. However, the market is said to be
complete if and only if m ≤ n. In contrast with complete markets, there exist
incomplete markets, which is often the case for energy markets, since there
usually will be a lot of different sources of noises. Note that if all claims in a
market can be hedged, then the market achieves completeness. This is why we
are also interested in finding hedging portfolios for spread options. More about
this in chapter 6.

Definition 11. A filtration (on (Ω,F)) is a familyMt = {Mt}t≥0 of σ-algebras
Mt ⊆ F such that

0 ≤ s < t⇒Ms ⊆Mt

i.e., {Mt} is increasing. An n-dimensional stochastic process {M(t)}t≥0 on
(Ω,F ,P) is called a martingale with respect to the filtration {Mt}t≥0 and with
respect to the probability measure P if the following conditions are fulfilled:

(i) M(t) is Mt-measurable for all t.

(ii) E [|M(t)|] <∞ for all t.

(iii) E [M(t) |M(s)] = M(s) for all s ≤ t.

Theorem 12. (The Girsanov theorem I) Let Y (t) ∈ R be an Itô process of
the form

dY (t) = a(t, ω)dt+ dB(t); t ≤ T , Y (0) = 0 (2.31)

where T ≤ ∞ is a given constant and B(t) is a Brownian motion. Put

M(t, ω) = exp

{
−
∫ t

0

a(s, ω)dB(s)− 1

2

∫ t

0

a2(s, ω)ds

}
; 0 ≤ t ≤ T (2.32)

where

E

[
exp

(
1

2

∫ T

0

a2(s, ω)ds

)]
<∞ (2.33)

Assume that {M(t, ω)}t≤T is a martingale with respect to a filtration Ft and a
probability measure P . Define the measure Q on Ft by

dQ(ω) = M(T, ω)dP(ω) (2.34)

Then Q is a probability measure on FT and Y (t) is a Brownian motion with
respect to Q, for 0 ≤ t ≤ T .
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Theorem 13. (The Margrabe formula) In mathematical finance, the Mar-
grabe formula applies to an option to exchange one risky asset for another at
maturity. Suppose there exist only two risky assets in the market. Their prices,
S1(t) and S2(t) respectively, at time t < T , are assumed to follow GBM, where T
is the exercising time. Each of the assets has a constant continuous dividend yield
qi, for i = 1, 2. The option, C, gives the buyer the right but not the obligation
to exchange the second asset for the first at time T . We wish to price the payoff
of the option

C(T ) = max {S1(T )− S2(T ), 0} (2.35)

If the volatilities of Si’s are σi for i = 1, 2, then σ =
√
σ2
1 + σ2

2 − 2σ1σ2ρ is
constant, where ρ is the correlation coefficient of the Brownian motions of the
Si’s. The Margrabe formula states that the right price for the option at time 0
is

C(0) = e−q1TS1(0)Φ(d1)− e−q2TS2(0)Φ(d2) (2.36)

where

d1 =
ln
(
S1(0)
S2(0)

)
+ (q2 − q1 + 1

2
σ2)T

σ
√
T

(2.37)

d2 = d1 − σ
√
T (2.38)

Theorem 14. (The Cholesky decomposition) In linear algebra, the Cholesky
decomposition or the Cholesky factorization is a decomposition of a Her-
mitian positive-definite matrix A into the form

A = LLT (2.39)

where L is a lower triangular matrix with real and strictly positive diagonal
entries, and LT denotes the conjugate transpose of L. Every Hermitian positive-
definite matrix (and thus also every real-valued symmetric positive-definite ma-
trix) has a unique Cholesky decomposition.

Definition 15. Absolute error is the amount of physical error in an approxi-
mation, while relative error gives an indication of how good an approximation
is relative to the size of the thing being measured. Denote p̃ the simulated result
by Monte Carlo method and p̂ the estimated value by a closed-form formula.
Then the relative error of the estimated value is given by

εp̂ =

∣∣∣∣ p̃− p̂p̃
∣∣∣∣ · 100% =

(∣∣∣∣ p̃p̂
∣∣∣∣− 1

)
· 100% (2.40)
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Chapter 3

Model: Trivariate Geometric
Brownian Motion

3.1 Spot price dynamics

The payoff of a trivariate spread option is given by

max{P (T )− hG(T )− C(T ), 0} (3.1)

where P is the price of power, G is the price of gas, which is used as a fuel
for producing power, C is the price of a certificate to emit a certain amount of
carbon dioxide (CO2), and the constant h is the heating rate, which converts gas
into the energy equivalent of electricity.

The three price dynamics, assumed to be GBM, are given by the differential
form

dP (t) = µP (t)P (t)dt+ σP (t)P (t)dWP (t) (3.2)

dG(t) = µG(t)G(t)dt+ σG(t)G(t)dWG(t) (3.3)

dC(t) = µC(t)C(t)dt+ σC(t)C(t)dWC(t) (3.4)

where µi(t) and σi(t) are time-dependent, deterministic drift and volatility re-
spectively for i = P,G,C and W(t) = (WC(t),WP (t),WG(t)) is a correlated
three-dimentional BM, of which the correlation matrix is given by

ρ(t) =

 1 ρCP (t) ρCG(t)
ρCP (t) 1 ρPG(t)
ρCG(t) ρPG(t) 1

 (3.5)

for time-dependent correlations ρCP (t), ρCG(t), ρPG(t) ∈ (−1, 1).

In order to ensure that W(t) is a well-defined trivariate BM, we must have that

ρ2CP (t) + ρ2CG(t) + ρ2PG(t) ≥ 1 + 2ρCP (t)ρCG(t)ρPG(t) (3.6)
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It will be of convenience to solve the stochastic differential equations (3.2) to
(3.4) for the price dynamics explicitly. We solve (3.2) to get P (t) by applying
Theorem 5 (The Itô formula) on lnP (t),

d (lnP (t)) =
1

P (t)
dP (t) +

1

2

(
− 1

(P (t))2

)
(dP (t))2

=
(µP (t)P (t)dt+ σP (t)P (t)dWP (t))

P (t)
− 1

2

(σP (t)P (t))2 dt

(P (t))2

=

(
µP (t)− 1

2
σ2
P (t)

)
dt+ σP (t)dWP (t) (3.7)

This can be written on the integral form

lnP (t)− lnP (0) =

∫ t

0

(
µP (s)− 1

2
σ2
P (s)

)
ds+

∫ t

0

σP (s)dWP (s)

Hence, we get the solution

P (t) = P (0)exp

{∫ t

0

(
µP (s)− 1

2
σ2
P (s)

)
ds+

∫ t

0

σP (s)dWP (s)

}
(3.8)

Similarly, we can solve (3.3) and (3.4) explicitly for G(t) and C(t) and get

G(t) = G(0)exp

{∫ t

0

(
µG(s)− 1

2
σ2
G(s)

)
ds+

∫ t

0

σG(s)dWG(s)

}
(3.9)

C(t) = C(0)exp

{∫ t

0

(
µC(s)− 1

2
σ2
C(s)

)
ds+

∫ t

0

σC(s)dWC(s)

}
(3.10)

3.2 Trivariate spread option

The price at time t of a trivariate spread option is given by the risk-neutral expec-
tation of the discounted payoff of the option at the exercise time T , conditioned
on the filtration Ft, that is,

V (t, T ) = e−r(T−t)EQ [max {P (T )− hG(t)− C(T ), 0} | Ft] (3.11)

where Q denotes the risk-neutral probability measure.

Since ρ(t) is a real-valued symmetric positive-definite matrix given by (3.5), by
Theorem 10 (The Cholesky decomposition) there exists a 3-by-3 lower triangular
matrix L(t) such that ρ(t) = L(t)L(t)T . Such a matrix L(t) is given as

L(t) =

 1 0 0

ρCP (t)
√

1− ρ2CP (t) 0

ρCG(t) ρPG(t)−ρCP (t)ρCG(t)√
1−ρ2CP (t)

√
1− ρ2PG(t)− (ρPG(t)−ρCP (t)ρCG(t))2

1−ρ2CP (t)


(3.12)
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We see that to ensure that L(t) in (3.12) has real and strictly positive diagonal
entries, we must have that

1− ρ2CP (t) > 0 (3.13)

and

1− ρ2PG(t)− (ρPG(t)− ρCP (t)ρCG(t))2

1− ρ2CP (t)
> 0 (3.14)

which lead the condition (3.6). For the sake of convenience, we denote

a(t) =
ρPG(t)− ρCP (t)ρCG(t)√

1− ρ2CP (t)
(3.15)

b(t) =

√
1− ρ2PG(t)− (ρPG(t)− ρCP (t)ρCG(t))2

1− ρ2CP (t)
(3.16)

for the rest of this project.

Define a new three-demensional, independent Brownian motion given by

U(t) = (WC(t), U1(t), U2(t)) (3.17)

Then immediately we have that W(t) = L(t)U(t), or in terms of the components,

dWC(t) = dWC(t)

dWP (t) = ρCP (t)dWC(t) +
√

1− ρ2CP (t)dU1(t) (3.18)

dWG(t) = ρCG(t)dWC(t) + a(t)dU1(t) + b(t)dU2(t) (3.19)

The explicit price dynamics for P (t) and G(t) now become

P (t) =P (0)exp

{∫ t

0

(
µP (s)− 1

2
σ2
P (s)

)
ds

+

∫ t

0

σP (s)ρCP (s)dWC(s) +

∫ t

0

σP (s)
√

1− ρ2CP (s)dU1(s)

}
(3.20)

G(t) =G(0)exp

{∫ t

0

(
µG(s)− 1

2
σ2
G(s)

)
ds+

∫ t

0

σG(s)ρCG(s)dWC(s)

+

∫ t

0

σG(s)a(s)dU1(s) +

∫ t

0

σG(s)b(s)dU2(s)

}
(3.21)
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Thus the price of the spread option (3.11) has become

V (t, T ) = e−r(T−t)EQ

[
C(T ) ·max

{
P (T )

C(T )
− hG(T )

C(T )
− 1, 0

}∣∣∣∣Ft]
= e−r(T−t)EQ

[
C(t)exp

{∫ T

t

[
µC(s)− 1

2
σ2
C(s)

]
ds+

∫ T

t

σC(s)dWC(s)

}
·max

{
P (T )

C(T )
− hG(T )

C(T )
− 1, 0

}∣∣∣∣Ft]
= e−r(T−t)C(t)exp

{∫ T

t

µC(s)ds

}
· EQ

[
exp

{∫ T

t

−1

2
σ2
C(s)ds+

∫ T

t

σC(s)dWc(s)

}
·max

{
P (T )

C(T )
− hG(T )

C(T )
− 1, 0

}∣∣∣∣Ft] (3.22)

Moreover, let us define

M(t) = exp

{∫ t

0

−1

2
σ2
C(s)ds+

∫ t

0

σC(s)dWC(s)

}
(3.23)

Applying Theorem 5 (The Itô formula) on M(t), we obtain

dM(t) = M(t)

(
−1

2
σ2
C(t)dt+ σC(t)dWC(t)

)
+

1

2
·M(t) · σ2

C(t)dt

= σC(t)M(t)dWC(t) (3.24)

Hence, we claim that M(t) is a martingale with respect to Ft. By Theorem 8
(The Girsanov theorem I), there exists a probability measure Q̃ on the σ-algebra
Ft satisfying

dQ̃
dQ

∣∣∣∣∣
Ft

= M(t) (3.25)

where Q̃(A) = EQ [M(T ) · 1A], and Q̃ is absolutely continuous with respect to
the restriction of Q to FT for fixed T > 0. Then we claim that

dW̃C(t) = −σC(t)dt+ dWC(t) (3.26)

is a BM under Q̃. As a consequence of this, we could denote

µ̃P (s) = µP (s)− µC(s) (3.27)

µ̃G(s) = µG(s)− µC(s) (3.28)

σ̃2
P (s) = σ2

P (s) + σ2
C(s)− 2σP (s)σC(s)ρCP (s) (3.29)

σ̃2
G(s) = σ2

G(s) + σ2
C(s)− 2σG(s)σC(s)ρCG(s) (3.30)
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as two updated drifts and two updated volatilities under the probability measure
Q̃.

Now we are ready to derive the dynamics for P (T ) and G(T ) regarding C(T )
respectively.

P̃ (T ) =
P (T )

C(T )

=
P (t)

C(t)
exp

{∫ T

t

[
µP (s)− µC(s)− 1

2
σ2
P (s) +

1

2
σ2
C(s)

]
ds

+

∫ T

t

[σP (s)ρCP (s)− σC(s)] dWC(s) +

∫ T

t

σP (s)
√

1− ρ2CP (s)dU1(s)

}
=
P (t)

C(t)
exp

{∫ T

t

[
µP (s)− µC(s)− 1

2
σ2
P (s) +

1

2
σ2
C(s)

]
ds

+

∫ T

t

[σP (s)ρCP (s)− σC(s)]
[
dW̃C(s) + σC(s)ds

]
+

∫ T

t

σP (s)
√

1− ρ2CP (s)dU1(s)

}
=
P (t)

C(t)
exp

{∫ T

t

[
µ̃P (s)− 1

2
σ̃2
P (s)

]
ds

+

∫ T

t

[σP (s)ρCP (s)− σC(s)] dW̃C(s) +

∫ T

t

σP (s)
√

1− ρ2CP (s)dU1(s)

}
(3.31)
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G̃(T ) =
G(T )

C(T )

=
G(t)

C(t)
exp

{∫ T

t

[
µG(s)− µC(s)− 1

2
σ2
G(s) +

1

2
σ2
C(s)

]
ds

+

∫ T

t

[σG(s)ρCG(s)− σC(s)] dWC(s)

+

∫ T

t

σG(s)a(s)dU1(s) +

∫ T

t

σG(s)b(s)dU2(s)

}
=
G(t)

C(t)
exp

{∫ T

t

[
µG(s)− µC(s)− 1

2
σ2
G(s) +

1

2
σ2
C(s)

]
ds

+

∫ T

t

[σG(s)ρCG(s)− σC(s)]
[
dW̃C(s) + σC(s)ds

]
+

∫ T

t

σG(s)a(s)dU1(s) +

∫ T

t

σG(s)b(s)dU2s

}
=
G(t)

C(t)
exp

{∫ T

t

[
µ̃G(s)− 1

2
σ̃2
G(s)

]
ds

+

∫ T

t

[σG(s)ρCG(s)− σC(s)] dW̃C(s)

+

∫ T

t

σG(s)a(s)dU1(s) +

∫ T

t

σG(s)b(s)dU2(s)

}
(3.32)

Since the stochastic processes
(
W̃C , U1, U2

)
are independent from each other, the

sum of the last two stochastic integrals in (3.31) will be normally distributed with

mean 0 and variance
∫ T
t
σ̃2
P (s)ds, while the sum of the last three stochastic inte-

grals in (3.32) will be normally distributed with mean 0 and variance
∫ T
t
σ̃2
G(s)ds,

by the properties of BM, with σ̃2
P (s) and σ̃2

G(s) given as in equation (3.29) and
(3.30), respectively. Furthermore, we could also find the covariance between the
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two sums of the stochastic integrals in P̃ (T ) and G̃(T ) according to the Itô rules

EQ

[(∫ T

t

[σP (s)ρCP (s)− σC(s)] dW̃C(s) +

∫ T

t

σP (s)
√

1− ρ2CP (s)dU1(s)

)
·
(∫ T

t

[σG(s)ρCG(s)− σC(s)] dW̃C(s) +

∫ T

t

σG(s)a(s)dU1(s) +

∫ T

t

σG(s)b(s)dU2(s)

)]
=

∫ T

t

[σP (s)ρCP (s)− σC(s)] [σG(s)ρCG(s)− σC(s)] ds

+

∫ T

t

σP (s)
√

1− ρ2CP (s)σG(s)a(s)ds

=

∫ T

t

[
σP (s)σG(s)ρPG(s)− σP (s)σC(s)ρCP (s)− σC(s)σG(s)ρCG(s) + σ2

C(s)
]

ds

(3.33)

Hence, the spread option price (3.22) can be expressed as

V (t, T ) = C(t)exp

{∫ T

t

(µC(s)− r) ds

}
EQ̃

[
max

{
P̃ (T )− hG̃(T )− 1, 0

}∣∣∣ F̃t]
= g(t, T, C(t))EQ̃

[
max

{
P̃ (T )− hG̃(T )− 1, 0

}∣∣∣ F̃t] (3.34)

where

g(t, T, C(t)) = C(t)exp

{∫ T

t

(µC(s)− r) ds

}
(3.35)

and
(
P̃ (T ), G̃(T )

)
is a bivariate GBM with respect to the filtration F̃t which

consists of P̃ (t) and G̃(t). We see from equation (3.34) that this is actually the
price of a trivariate spread option with a non-zero strike price of K = 1.
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Chapter 4

Pricing of Bivariate Spread
Options

In the paper published by Bjerksund and Stensland (2011) [24], the numerical
example given show that their approximation is really excellent. However, it lists
only a limited amount of examples. We would like to make a structured numerical
analysis of their method compared to the method of Kirk, to check the validity
of the approximation. This study will use GBM with constant parameters, as
described in the previous chapter.

Consider a European call option on the price spread P − hG with heating rate
h, strike K ≥ 0 and exercising time T . The payoff of the call option at time T is
given by

V (T ) = {P (T )− hG(T )−K}+ (4.1)

The call value at time 0 can be represented by

V (r, 0, K) = e−rTEQ̃ [max {P (T )− hG(T )−K, 0}] (4.2)

where the expectation is taken with respect to the risk-neutral probability mea-
sure Q̃, with r the riskless interest rate.

4.1 The Kirk formula

Kirk (1995) [12] suggests the following formula for pricing the spread call option:

cK(0, T ) = P (0)Φ(dK,1)− hG(0)Φ(dK,2)− e−rTKΦ(dK,2) (4.3)

26



where

dK,1 =
ln
(

P (0)
hG(0)+Ke−rT

)
+ 1

2
σ2
KT

σK
√
T

(4.4)

dK,2 = dK,1 − σK
√
T (4.5)

σK =

√
σ2
1 − 2

hG(0)

hG(0) +Ke−rT
ρσ1σ2 +

(
hG(0)

hG(0) +Ke−rT

)2

σ2
2 (4.6)

with σ1 and σ2 being the volatilities for P (t) and G(t) respectively.

4.2 The Bjerksund-Stensland formula

Bjerksund and Stensland (2011) [24] propose an alternative closed-form formula
of pricing the spread call option:

cBS(0, T ) = P (0)Φ(dBS,1)− hG(0)Φ(dBS,2)− e−rTKΦ(dBS,3) (4.7)

where

dBS,1 =
ln
(
P (0)
a

)
+
(
r + 1

2
σ2
1 − bρσ1σ2 + 1

2
b2σ2

2

)
T

σBS
√
T

(4.8)

dBS,2 =
ln
(
P (0)
a

)
+
(
r − 1

2
σ2
1 + ρσ1σ2 + 1

2
b2σ2

2 − bσ2
2

)
T

σBS
√
T

(4.9)

dBS,3 =
ln
(
P (0)
a

)
+
(
r − 1

2
σ2
1 + 1

2
b2σ2

2

)
T

σBS
√
T

(4.10)

σBS =
√
σ2
1 − 2bρσ1σ2 + b2σ2

2 (4.11)

with the constants a and b defined as

a = hG(0)erT +K (4.12)

b =
hG(0)erT

a
(4.13)

4.3 Numerical results

As aforementioned, we are providing a structured numerical analysis of the Bjerksund-
Stensland formula (4.7) compared to the Kirk formula (4.3) to check the validity
of the approximations. Note that when the strike is K = 0, both of the two
formulas become the Margrabe formula (2.36) , which is an accurate closed-form
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formula for pricing the exchange option proposed by William Margrabe (1978)
[34]. We are going to run a simulation by Monte Carlo method as a benchmark
with increasing permutations to see how many trials are necessary to ensure a
given precision of the price, say, a precision of two decimal places.

We adopt the numerical example in Carmona and Durrleman (2003a) [25], where
the annual riskless interest rate is r = 0.05 and the time horizon is T = 1 (year).
The spot prices are respectively P (0) = 110 and G(0) = 100, with the annual-
ized volatilitie σ1 = 0.10 and σ2 = 0.15. Inserting these values, both Bjerksund-
Stensland (4.7) and Kirk (4.3) produce a price equal to 11.9121. Figure 4.1 shows
the results from Monte Carlo method together with this exact price, indicating
that at least 6,000,000 permutations are necessary in order to obtain two decimal
places of accuracy. We will therefore adopt this number of trials for simulation
for the rest of this chapter.

In this section, we will compare the accuracy of the Kirk approximation (4.3)
and the Bjerksund-Stenland approximation (4.7) along with the results simu-
lated by Monte Carlo method. This means that we are going to vary volatilities,
drifts, correlation, strikes and exercise times to investigate the effect, if any, on
pricing the spread option.

Figure 4.1: Monte Carlo benchmark for spread option, with two approximations
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4.3.1 Different combinations of volatilities

We start with different combinations of volatilities σ1 and σ2 when other param-
eters are constants as given above. The results of the valuation of the spread
option in the case of a positive strike price K = 10 and a negative one K = −10
are shown in Table 4.1 and Table 4.2 respectively. For each σ2 value, the first
row (in italics) lists the result obtained by Monte Carlo method with 6, 000, 000
permutations, which is used as a benchmark for the true spread option price. The
second row gives the result from the Bjerksund-Stensland formula (4.7), with its
relative error given in the third row (in bold). The fourth row provides the re-
sult from the Kirk formula (4.3), with its relative error given in the fifth row (in
bold). We see that the Bjerksund-Stensland approximation performs better in
both Table 4.1 and 4.2, in the light of that it produces smaller relative error in
50 (out of 81) cells in the case of a positive strike K = 10, and in 65 (out of
81) cells in the case of a negative one K = −10. The relative errors for both
approximations when K = 10 and K = −10 are plotted in Figure 4.2, where we
see that the relative errors obtained by the two approximations are very small.
Note that the units of the vertical axes (relative error) are different in each of the
four subfigures.

4.3.2 Different combinations of strikes and correlations

We then consider different combinations of strike price K and correlation ρ.
The results of the simulation are presented in Table 4.3. For each K value,
the first row (in italics) lists the result obtained by Monte Carlo method with
6, 000, 000 permutations, which is used as a benchmark for the true spread option
price. The second row gives the result from the Bjerksund-Stensland formula
(4.7), with its relative error given in the third row (in bold). The fourth row
provides the result from the Kirk formula (4.3), with its relative error given in
the fifth row (in bold). We see that the Bjerksund-Stensland approximation
performs better, in the light of that it produces smaller relative error in 73 (out
of 81) cells in Table 4.3. In addition it shows that the Kirk formula tends to
overprice the spread option when the strike is further away from zero, which
is in consistent with the results of Bjerksund and Stensland [24]. The relative
errors for both approximations are plotted in Figure 4.3, from which we can
clearly articulate that the Bjerksund-Stensland approximation beats the Kirk
approximation, especially for large positive values of strike price and correlation.
Note that the units of the vertical axes (relative error) are different in each of the
two subfigures.
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4.3.3 Different combinations of drifts and exercise times

The last scenario in this section is to consider the effect on option price by different
combinations of drift (here: risk-free interest rate) r and time to exercise T . The
results are listed in Table 4.4 when the strike is positive (K = 10) and in Table 4.5
when the strike is negative (K = −10). For each T value, the first row (in italics)
shows the result obtained by Monte Carlo method with 6, 000, 000 permutations,
which is used as a benchmark for the true spread option price. The second row
gives the result from the Bjerksund-Stensland formula (4.7), with its relative
error given in the third row (in bold). The fourth row provides the result from
the Kirk formula (4.3), with its relative error given in the fifth row (in bold). We
see that in the case of a positive strike K = 10, neither of the approximations
does a satisfying work since they both produce very large deviations. In spite of
this, the Bjerksund-Stensland approximation achieves smaller relative errors in 25
(out of 30) cells. As for a negative strike K = −10 however, both approximations
perform very well when the time to exercise is short, but still, the Bjerksund-
Stenslandand approximation obtains smaller relative error in 28 (out of 30) cells.
The relative errors for both approximations when K = 10 and K = −10 are
plotted in Figure 4.4, where we see that the relative errors for K = 10 are
incredibly large. Note that the vertical axes (relative error) are different in each
of the four subfigures.

4.4 A study of forward prices

So far we have considered the dynamics only for option prices. However, in many
relevant situations, it might be practical to apply the approximations for forward
price dynamics. We will first look at the method for a complete market, then
move for an incomplete one.

Let t denote time, T the exercise time for option, and τ the delivery time for
forward. Note that it is reasonable to assume 0 ≤ T ≤ τ . Let SP and SG denote
the spot prices for power and gas, and fP and fG the forward prices for power
and gas, respectively. Some standard assumptions are necessary to capture the
fact, such as:

• Forward prices are lognormal distributed.

• Forward prices are equal to the expected future spot prices, that is,

fP (t, τ) = EQ[SP (τ)|Ft] = SP (t)er(τ−t) (4.14)

fG(t, τ) = EQ[SG(τ)|Ft] = SG(t)er(τ−t) (4.15)

where r is the risk-free interest rate. Hence, forward prices are martingales
under the objective probability measure Q.
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• Spot prices converge to forward prices as t→ τ , that is,

SP (τ) = lim
t→τ

fP (t, τ) = fP (τ, τ) (4.16)

SG(τ) = lim
t→τ

fG(t, τ) = fG(τ, τ) (4.17)

• Spot volatility Σi(·) : [0, T ] → R for i = P,G is a deterministic function
proportional to the forward price level. It is a falling curve with exercising
time, or equivalently, an increasing curve as the forward approaches its
delivery time.

From equations (4.14) and (4.15), the payoff of the call option (4.1) at time T is
now given by

V (T, τ) = {fP (T, τ)− h · fG(T, τ)−K)+}

=
{
SP (T )er(τ−T ) − h · SG(T )er(τ−T ) −K, 0

}+
= er(τ−T )

{
SP (T )− h · SG(T )−Ke−r(τ−T ), 0

}+
(4.18)

Therefore we have derived a spread option of the forwards in complete market.
Thus we can apply the abovementioned theory about the Kirk formula and the
Bjerksund-Stensland formula on (4.18).

Now let’s move the focus to incomplete market. Assume that the forward prices
follow the Itô stochastic differential equations

dfP (t, τ) = fP (t, τ)ΣP (t, τ)dBP (t) (4.19)

dfG(t, τ) = fG(t, τ)ΣG(t, τ)dBG(t) (4.20)

where ΣP (t) and ΣG(t) are bounded, deterministic functions, and BP (t) and
BG(t) are BM to the τ−maturity forward prices on probability space (Ω,F ,Q)
along with the standard filtration Ft : t ∈ [0, T ].

The solution of equation (4.19) can be found by applying Theorem 5 (The Itô
formula)

d (lnfP (t, τ)) = −1

2
Σ2
P (t, τ)dt+ ΣP (t, τ)dBP (t) (4.21)

Then integrating both sides

ln

(
fP (t, τ)

fP (0, τ)

)
= −1

2

∫ t

0

Σ2
P (s, τ)ds+

∫ t

0

ΣP (s, τ)dBP (s) (4.22)

or equivalently

fP (t, τ) = fP (0, τ)exp

{
−1

2

∫ t

0

Σ2
P (s, τ)ds+

∫ t

0

ΣP (s, τ)dBP (s)

}
(4.23)
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Similarly, we can solve the stochastic differential equation (4.20) and get

fG(t, τ) = fG(0, τ)exp

{
−1

2

∫ t

0

Σ2
G(s, τ)ds+

∫ t

0

ΣG(s, τ)dBG(s)

}
(4.24)

A typical case in energy market is the occurrence of the Samuelson effect in
the volatility structure of the forward price, in the sense that the volatility is a
decreasing function with time to maturity τ−t. This requires a model with time-
dependent volatility function, as we have seen so far. The volatilities Σi(t, τ) for
i = P,G can therefore be captured in two ways:

(i) by a two-parameter exponential model

Σi(t, τ) = σi,0e
−αi(τ−t) (4.25)

(ii) by a three-parameter model

Σ′i(t, τ) = σi,1 + σi,2e
−αi(τ−t) (4.26)

where αi, σi,0, σi,1, σi,2 are strictly positive constants.
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Table 4.1: Simulated spread option values for different volatilities when K = 10

σ2

σ1 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0.10

4.4475 5.9688 7.8267 9.8215 11.8691 13.9560 16.0841 18.1464 20.2742
4.4482 5.9757 7.8304 9.8207 11.8736 13.9571 16.0550 18.1579 20.2599
0.02% 0.12% 0.05% 0.01% 0.04% 0.01% 0.18% 0.06% 0.07%
4.4481 5.9758 7.8304 9.8207 11.8737 13.8573 16.0552 18.1582 20.2604
0.01% 0.12% 0.05% 0.01% 0.04% 0.71% 0.18% 0.07% 0.07%

0.15

5.6167 6.5498 7.9976 9.7292 11.6269 13.5719 15.5696 17.6068 19.6780
5.6182 6.5433 7.9909 9.7218 11.6038 13.5694 15.5827 17.6228 19.6773
0.03% 0.10% 0.08% 0.08% 0.20% 0.02% 0.08% 0.09% 0.00%
5.6181 6.5435 7.9910 9.7218 11.6038 13.5695 15.5829 17.6232 19.6778
0.02% 0.10% 0.08% 0.08% 0.20% 0.02% 0.09% 0.09% 0.00%

0.20

7.1798 7.6166 8.6334 10.0316 11.6702 13.4718 15.3907 17.2898 19.2875
7.1748 7.6237 8.6354 10.0350 11.6781 13.4708 15.3564 17.3001 19.2802
0.07% 0.09% 0.02% 0.03% 0.07% 0.01% 0.22% 0.06% 0.04%
7.1750 7.6243 8.6360 10.0354 11.6782 13.4708 15.3564 17.3003 19.2806
0.07% 0.10% 0.03% 0.04% 0.07% 0.01% 0.22% 0.06% 0.04%

0.25

8.9073 9.0289 9.6556 10.7088 12.0861 13.6650 15.3757 17.2364 19.0498
8.9093 9.0274 9.6635 10.7226 12.0894 13.6674 15.3872 17.2022 19.0810
0.02% 0.02% 0.08% 0.13% 0.03% 0.02% 0.07% 0.20% 0.16%
8.9105 9.0290 9.6653 10.7240 12.0903 13.6678 15.3873 17.2022 19.0811
0.04% 0.00% 0.10% 0.14% 0.03% 0.02% 0.08% 0.20% 0.16%

0.30

10.7290 10.6180 10.9570 11.7247 12.8215 14.1501 15.6554 17.3257 19.0998
10.7304 10.6214 10.9633 11.7157 12.8035 14.1457 15.6731 17.3327 19.0860
0.01% 0.03% 0.06% 0.08% 0.14% 0.03% 0.11% 0.04% 0.07%
10.733 10.6248 10.9669 11.7191 12.8062 14.1475 15.6741 17.3331 19.0861
0.04% 0.06% 0.09% 0.05% 0.12% 0.02% 0.12% 0.04% 0.07%

0.35

12.6007 12.3287 12.4509 12.9504 13.7728 14.8885 16.1897 17.7088 19.2982
12.5964 12.3274 12.4457 12.9408 13.7707 14.8768 16.1991 17.6856 19.2944
0.03% 0.01% 0.04% 0.07% 0.02% 0.08% 0.06% 0.13% 0.02%
12.6029 12.3336 12.4520 12.9470 13.7763 14.8812 16.2023 17.6875 19.2954
0.02% 0.04% 0.01% 0.03% 0.03% 0.05% 0.08% 0.12% 0.01%

0.40

14.4946 14.1055 14.0600 14.3431 14.9526 15.8320 16.9410 18.2485 19.6988
14.4858 14.1006 14.0488 14.3349 14.9391 15.8233 16.9412 18.2466 19.6987
0.06% 0.03% 0.08% 0.06% 0.09% 0.05% 0.00% 0.01% 0.00%
14.4969 14.1108 14.0588 14.3449 14.9486 15.8317 16.9480 18.2516 19.7021
0.02% 0.04% 0.01% 0.01% 0.03% 0.00% 0.04% 0.02% 0.02%

0.45

16.4031 15.9055 15.7330 15.8495 16.2617 16.9465 17.8670 18.9954 20.3020
15.3864 15.9144 15.7314 15.8497 16.2621 16.9467 17.8703 18.9955 20.2858
6.20% 0.06% 0.01% 0.00% 0.00% 0.00% 0.02% 0.00% 0.08%
16.4038 15.9301 15.7469 15.8647 16.2768 16.9603 17.8822 19.0053 20.2932
0.00% 0.15% 0.09% 0.10% 0.09% 0.08% 0.09% 0.05% 0.04%

0.50

18.2973 17.7502 17.4678 17.5595 17.7098 18.1994 18.9773 19.9060 21.0548
18.2907 17.7524 17.4675 17.4501 17.7018 18.2111 18.9564 19.9091 21.0385
0.04% 0.01% 0.00% 0.62% 0.05% 0.06% 0.11% 0.02% 0.08%
18.3163 17.7754 17.4894 17.4716 17.7229 18.2314 18.9750 19.9254 21.0520
0.10% 0.14% 0.12% 0.50% 0.07% 0.18% 0.01% 0.10% 0.01%
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Table 4.2: Simulated spread option values for different volatilities when K = −10

σ2

σ1 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0.10

19.6470 19.9493 20.6338 21.6763 22.9721 24.4380 26.0132 27.6970 29.4087
19.6429 19.9517 20.6392 21.6791 22.9753 24.4437 26.0265 27.6855 29.3954
0.02% 0.01% 0.03% 0.01% 0.01% 0.02% 0.05% 0.04% 0.05%
19.6453 19.9525 20.6392 21.6791 22.9755 24.4441 26.0270 27.6859 29.3958
0.01% 0.02% 0.03% 0.01% 0.01% 0.02% 0.05% 0.04% 0.04%

0.15

20.0878 20.3232 20.8827 21.7635 22.8961 24.2449 25.7081 27.2763 28.9076
20.0837 20.3315 20.8930 21.7664 22.9006 24.2307 25.7011 27.2703 28.9084
0.02% 0.04% 0.05% 0.01% 0.02% 0.06% 0.03% 0.02% 0.00%
20.1003 20.3406 20.8967 21.7673 22.9007 24.2308 25.7013 27.2706 28.9088
0.06% 0.09% 0.07% 0.02% 0.02% 0.06% 0.03% 0.02% 0.00%

0.20

20.9910 21.1031 21.5209 22.2177 23.1793 24.3435 25.6654 27.1080 28.6441
21.0052 21.1064 21.5141 22.2133 23.1699 24.3368 25.6660 27.1169 28.6573
0.07% 0.02% 0.03% 0.02% 0.04% 0.03% 0.00% 0.03% 0.05%
21.0456 21.1347 21.5305 22.2211 23.1729 24.3376 25.6662 27.1169 28.6574
0.26% 0.15% 0.04% 0.02% 0.03% 0.02% 0.00% 0.03% 0.05%

0.25

22.3062 22.2283 22.4641 23.0085 23.7595 24.7452 25.9290 27.2488 28.6434
22.3098 22.2447 22.4772 22.9925 23.7632 24.7527 25.9212 27.2314 28.6512
0.02% 0.07% 0.06% 0.07% 0.02% 0.03% 0.03% 0.06% 0.03%
22.3753 22.2977 22.5146 23.0154 23.7754 24.7583 25.9234 27.2320 28.6513
0.31% 0.31% 0.22% 0.03% 0.07% 0.05% 0.02% 0.06% 0.03%

0.30

23.8697 23.6612 23.7229 24.0681 24.6436 25.4301 26.4542 27.6324 28.8836
23.8657 23.6560 23.7222 24.0580 24.6442 25.4527 26.4511 27.6067 28.8894
0.02% 0.02% 0.00% 0.04% 0.00% 0.09% 0.01% 0.09% 0.02%
23.9543 23.7341 23.7842 24.1022 24.6725 25.4690 26.4596 27.6106 28.8910
0.35% 0.31% 0.26% 0.14% 0.12% 0.15% 0.02% 0.08% 0.03%

0.35

25.5834 25.2699 25.1897 25.3759 25.7852 26.4127 27.2174 28.2337 29.3337
25.5806 25.2558 25.1795 25.3535 25.7671 26.4008 27.2292 28.2250 29.3612
0.01% 0.06% 0.04% 0.09% 0.07% 0.05% 0.04% 0.03% 0.09%
25.6896 25.3569 25.2663 25.4217 25.8163 26.4333 27.2490 28.2360 29.3668
0.42% 0.34% 0.30% 0.18% 0.12% 0.08% 0.12% 0.01% 0.11%

0.40

27.4088 26.9680 26.7779 26.8564 27.0740 27.5500 28.2175 29.0435 30.0542
27.3968 26.9824 26.7897 26.8249 27.0846 27.5567 28.2228 29.0610 30.0484
0.04% 0.05% 0.04% 0.12% 0.04% 0.02% 0.02% 0.06% 0.02%
27.5236 27.1041 26.8993 26.9171 27.1567 27.6091 28.2582 29.0832 30.0612
0.42% 0.50% 0.45% 0.23% 0.31% 0.21% 0.14% 0.14% 0.02%

0.45

29.2726 28.7682 28.5038 28.4362 28.5572 28.8715 29.3814 30.0898 30.9446
29.2782 28.7944 28.5078 28.4271 28.5537 28.8812 29.3974 30.0859 30.9277
0.02% 0.09% 0.01% 0.03% 0.01% 0.03% 0.05% 0.01% 0.05%
29.4200 28.9336 28.6376 28.5415 28.6485 28.9551 29.4514 30.1228 30.9512
0.50% 0.57% 0.47% 0.37% 0.32% 0.29% 0.24% 0.11% 0.02%

0.50

31.2070 30.6628 30.3171 30.1178 30.1425 30.3534 30.7257 31.2820 31.9959
31.2017 30.6635 30.3015 30.1250 30.1383 30.3393 30.7207 31.2706 31.9743
0.02% 0.00% 0.05% 0.02% 0.01% 0.05% 0.02% 0.04% 0.07%
31.3558 30.8175 30.4486 30.2591 30.2544 30.4345 30.7944 31.3243 32.0111
0.48% 0.50% 0.43% 0.47% 0.37% 0.27% 0.22% 0.14% 0.05%
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Table 4.3: Simulated spread option values for different strikes and correlations

K
ρ

-0.9 -0.7 -0.5 -0.3 0 0.3 0.5 0.7 0.9

-20

30.7623 30.4916 30.2424 29.9940 29.6293 29.3220 29.1687 29.0574 29.0304
30.7583 30.4924 30.2315 29.9785 29.6239 29.3204 29.1648 29.0637 29.0261
0.01% 0.00% 0.04% 0.05% 0.02% 0.01% 0.01% 0.02% 0.01%
30.8205 30.5511 30.2863 30.0289 29.6664 29.3527 29.1885 29.0772 29.0295
0.19% 0.20% 0.15% 0.12% 0.13% 0.10% 0.07% 0.07% 0.00%

-15

26.7082 26.3680 26.0472 25.7216 25.2536 24.8196 24.5565 24.3759 24.2831
26.6975 26.3731 26.0478 25.7240 25.2495 24.8097 24.5582 24.3689 24.2766
0.04% 0.02% 0.00% 0.01% 0.02% 0.04% 0.01% 0.03% 0.03%
26.7407 26.4144 26.0872 25.7611 25.2824 24.8370 24.5803 24.3837 24.2816
0.12% 0.18% 0.15% 0.15% 0.11% 0.07% 0.10% 0.03% 0.01%

-10

22.8555 22.4531 22.0614 21.6924 21.0783 20.4667 20.0853 19.7555 19.5465
22.8512 22.4678 22.0762 21.6773 21.0696 20.4651 20.0837 19.7540 19.5445
0.02% 0.07% 0.07% 0.07% 0.04% 0.01% 0.01% 0.01% 0.01%
22.8760 22.4918 22.0995 21.6998 21.0905 20.4839 20.1003 19.7672 19.5510
0.09% 0.17% 0.17% 0.03% 0.06% 0.08% 0.07% 0.06% 0.02%

-5

19.2588 18.8240 18.3699 17.8913 17.1485 16.3603 15.8273 15.2985 14.8727
19.2585 18.8202 18.3658 17.8941 17.1516 16.3675 15.8291 15.3023 14.8700
0.00% 0.02% 0.02% 0.02% 0.02% 0.04% 0.01% 0.02% 0.02%
19.2681 18.8297 18.3751 17.9032 17.1605 16.3760 15.8374 15.3100 14.8756
0.05% 0.03% 0.03% 0.07% 0.07% 0.10% 0.06% 0.08% 0.02%

0

15.9556 15.4759 14.9663 14.4247 13.5767 12.6153 11.9130 11.1484 10.3651
15.9563 15.4723 14.9649 14.4304 13.5677 12.6131 11.9121 11.1520 10.3653
0.00% 0.02% 0.01% 0.04% 0.07% 0.02% 0.01% 0.03% 0.00%
15.9563 15.4723 14.9649 14.4304 13.5677 12.6131 11.9121 11.1520 10.3653
0.00% 0.02% 0.01% 0.04% 0.07% 0.02% 0.01% 0.03% 0.00%

5

12.9753 12.4520 11.9148 11.3412 10.3852 9.3012 8.4701 7.4929 6.2863
12.9761 12.4606 11.9160 11.3369 10.3867 9.3017 8.4675 7.4945 6.2867
0.01% 0.07% 0.01% 0.04% 0.01% 0.01% 0.03% 0.02% 0.01%
12.9736 12.4579 11.9132 11.3340 10.3837 9.2984 8.4639 7.4902 6.2800
0.01% 0.05% 0.01% 0.06% 0.01% 0.03% 0.07% 0.04% 0.10%

10

10.3419 9.8202 9.2478 8.6480 7.6612 6.5188 5.6191 4.5371 3.0572
10.3410 9.8118 9.2509 8.6522 7.6626 6.5171 5.6182 4.5338 3.0574
0.01% 0.09% 0.03% 0.05% 0.02% 0.03% 0.02% 0.07% 0.33%
10.3431 9.8135 9.2523 8.6533 7.6633 6.5173 5.6181 4.5334 3.0560
0.01% 0.07% 0.05% 0.06% 0.03% 0.02% 0.02% 0.08% 0.04%

15

8.0631 7.5388 6.9904 6.3974 5.4231 4.3052 3.4358 2.4048 1.0599
8.0629 7.5399 6.9865 6.3966 5.4249 4.3066 3.4370 2.4038 1.0592
0.00% 0.01% 0.06% 0.01% 0.03% 0.03% 0.03% 0.04% 0.07%
8.0757 7.5520 6.9978 6.4072 5.4345 4.3155 3.4457 2.4131 1.0730
0.16% 0.18% 0.11% 0.15% 0.21% 0.24% 0.29% 0.35% 1.24%

20

6.1370 5.6450 5.1619 4.5666 3.6719 2.6632 1.9156 1.0875 0.2261
6.1412 5.6443 5.1216 4.5688 3.6709 2.6654 1.9157 1.0872 0.2249
0.07% 0.01% 0.78% 0.05% 0.03% 0.08% 0.01% 0.03% 0.53%
6.1684 5.6700 5.1458 4.5916 3.6915 2.6840 1.9330 1.1036 0.2402
0.51% 0.44% 0.31% 0.55% 0.53% 0.78% 0.91% 1.48% 6.24%
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Table 4.4: Simulated spread option values for different drifts and exercise times
when K = 10

T
ρ

0.00 0.03 0.05 0.07 0.10

1 month

0.4606 0.4736 0.4826 0.4914 0.5046
1.5137 1.5443 1.5613 1.5755 1.5915

228.64% 226.08% 223.52% 220.61% 215.40%
1.5493 1.5619 1.5703 1.5788 1.5915

236.37% 229.79% 225.38% 221.29% 215.40%

2 months

0.6519 0.6778 0.6957 0.7142 0.7415
2.0914 2.1666 2.2075 2.2407 2.2756

220.82% 219.65% 217.31% 213.74% 206.89%
2.1909 2.2162 2.2331 2.2501 2.2755

236.08% 226.97% 220.99% 215.05% 206.88%

3 months

0.7988 0.8375 0.8656 0.8927 0.9346
2.5026 2.6306 2.6997 2.7549 2.8103

213.29% 214.10% 211.89% 208.60% 200.70%
2.6832 2.7212 2.7466 2.7720 2.8102

235.90% 224.92% 217.31% 210.52% 200.68%

6 months

1.1298 1.2101 1.2666 1.3225 1.4074
3.3014 3.6181 3.7894 3.9234 4.0480

192.21% 198.99% 199.18% 196.67% 187.62%
3.7940 3.8704 3.9212 3.9719 4.0477

235.81% 219.84% 209.58% 200.33% 187.60%

9 months

1.3828 1.5089 1.5937 1.6786 1.8105
3.7726 4.3047 4.5965 4.8235 5.0255

172.82% 185.29% 188.42% 187.35% 177.58%
4.6460 4.7608 4.8358 4.9124 5.0251

235.98% 215.51% 203.43% 192.65% 177.55%

12 months

1.5964 1.7664 1.8797 1.9967 2.1706
4.0655 4.8260 5.2508 5.5816 5.8673

154.67% 173.21% 179.34% 179.54% 170.31%
5.3639 5.5171 5.6181 5.7182 5.8666

236.00% 212.34% 198.88% 186.38% 170.28%
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Table 4.5: Simulated spread option values for different drifts and exercise times
when K = −10

T
ρ

0.00 0.03 0.05 0.07 0.10

1 month

19.9997 19.9744 19.9592 19.9419 19.9166
20.0000 19.9750 19.9584 19.9418 19.9170
0.00% 0.00% 0.00% 0.00% 0.00%
20.0000 19.9750 19.0584 19.9418 19.9170
0.00% 0.00% 0.00% 0.00% 0.00%

2 months

20.0002 19.9498 19.9171 19.8832 19.8342
19.9997 19.9503 19.9174 19.8845 19.8353
0.00% 0.00% 0.00% 0.01% 0.01%
20.0005 19.9507 19.9176 19.8846 19.8353
0.00% 0.00% 0.00% 0.01% 0.01%

3 months

20.0010 19.9244 19.8769 19.8266 19.7526
19.9962 19.9272 19.8799 19.8320 19.7595
0.02% 0.01% 0.02% 0.03% 0.03%
20.0062 19.9317 19.8823 19.8332 19.7600
0.03% 0.04% 0.03% 0.03% 0.04%

6 months

20.0004 19.8482 19.7533 19.6556 19.5111
19.9268 19.8774 19.8194 19.7465 19.6172
0.37% 0.15% 0.33% 0.46% 0.54%
20.0982 19.9527 19.8570 19.7623 19.6220
0.49% 0.53% 0.52% 0.54% 0.57%

9 months

20.0019 19.7776 19.6343 19.4862 19.2787
19.7342 19.8370 19.8246 19.7618 19.5981
1.34% 0.30% 0.97% 1.41% 1.66%
20.2942 20.0827 19.9445 19.8085 19.6086
1.46% 1.54% 1.58% 1.65% 1.71%

12 months

19.9999 19.7090 19.5165 19.3241 19.0503
19.4218 19.7787 19.8590 19.8366 19.6574
2.89% 0.35% 1.75% 2.65% 3.19%
20.5515 20.2779 20.1003 19.9267 19.6733
2.76% 2.89% 2.99% 3.12% 3.27%
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Figure 4.2: Relative errors for various volatilities
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(a) Bjerksund-Stensland, K = 10
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(b) Kirk, K = 10
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(c) Bjerksund-Stensland, K = −10

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

0.1

0.2

0.3

0.4

0.5
0

1

2

3

4

5

6

x 10
−3

Volatility 1Volatility 2

R
el

at
iv

e 
er

ro
r

(d) Kirk, K = −10
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Figure 4.3: Relative errors for variours strike prices and correlations
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Figure 4.4: Relative errors for variours drifts and exercising times
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(c) Bjerksund-Stensland, K = −10
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Chapter 5

Pricing of Trivariate Spread
Options

The true price of a trivariate spread option is given in (3.1). Assuming time-
independent drifts, the option price (3.34) at the initial time t = 0 will become

V (0, T ) = C(0)eµCT
(
e−rTEQ̃

[
max

{
P̃ (T )− hG̃(T )− 1, 0

}])
(5.1)

Hence, the numerical analysis study in Chapter 4 could be put into a context of a
trivariate spread option, where the strike price is 1. In this chapter we would like
to analyse the exactness and applicability of the method applied in the previous
chapter.

5.1 The Kirk formula revisited

As a consequence of (5.1), the updated Kirk formula for pricing trivariate spread
options at time t = 0 is given by

c̃K(0, T ) = C(0)eµCT
(
P̃ (0)Φ(d̃K,1)− hG̃(0)Φ(d̃K,2)− e−rT · 1 · Φ(d̃K,2)

)
= eµCT

(
P (0)Φ(d̃K,1)− hG(0)Φ(d̃K,2)− e−rTC(0)Φ(d̃K,2)

)
(5.2)

where

d̃K,1 =
ln
(

P̃ (0)

hG̃(0)+1·e−rT

)
+ 1

2
σ̃2
KT

σ̃K
√
T

(5.3)

d̃K,2 = d̃K,1 − σ̃K
√
T (5.4)

σ̃K =

√√√√σ2
P − 2

hG̃(0)

hG̃(0) + 1 · e−rT
ρPGσPσG +

(
hG̃(0)

hG̃(0) + 1 · e−rT

)2

σ2
G (5.5)
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5.2 The Bjerksund-Stensland formula revisited

Similarly, by applying (5.1), the updated Bjerksund-Stensland formula for pricing
trivariate spread options at time t = 0 is given by

c̃BS(0, T ) = C(0)eµCT
(
P̃ (0)Φ(d̃BS,1)− hG̃(0)Φ(d̃BS,2)− e−rT · 1 · Φ(d̃BS,3)

)
= eµCT

(
P (0)Φ(d̃BS,1)− hG(0)Φ(d̃BS,2)− e−rTC(0)Φ(d̃BS,3)

)
(5.6)

where

d̃BS,1 =
ln
(
P̃ (0)
ã

)
+
(
r + 1

2
σ2
P − b̃ρPGσPσG + 1

2
b̃2σ2

G

)
T

σ̃BS
√
T

(5.7)

d̃BS,2 =
ln
(
P̃ (0)
ã

)
+
(
r − 1

2
σ2
P + ρPGσPσG + 1

2
b̃2σ2

G − b̃σ2
G

)
T

σ̃BS
√
T

(5.8)

d̃BS,3 =
ln
(
P̃ (0)
ã

)
+
(
r − 1

2
σ2
P + 1

2
b̃2σ2

G

)
T

σ̃BS
√
T

(5.9)

σ̃BS =

√
σ2
P − 2b̃ρPGσPσG + b̃2σ2

G (5.10)

with the constants ã and b̃ defined as

ã = hG̃(0)erT + 1 (5.11)

b̃ =
hG̃(0)erT

ã
(5.12)

5.3 Numerical results

Now we are ready to construct a structured numerical analysis comparing the
revisted Kirk formula (5.2) and the revisited Bjerksund-Stensland formula (5.6)
in pricing of trivariate spread options along with the true values simulated by
Monte Carlo method.

Assume the correlation matrix for the spot prices of power P (t), gas G(t) and
CO2 certificate C(t) is given by

ρ(t) =

ρCC ρCP ρCG
ρPC ρPP ρPG
ρGC ρGP ρGG

 =

 1 −0.7 0.8
−0.7 1 0.1
0.8 0.1 1


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then the conditions (3.6), (3.13) and (3.14) are all fulfilled, such that the lower
triangular matrix (3.12) is given by

L(t) =

 1 0 0
−0.7 0.7141428 0
0.8 0.9241849 0.3686222


The initial values of the electricity price, the gas price and the price of emission-
certificate of CO2 are assumed to be P (0) = 110, G(0) = 100 and C(0) = 70.

Other relevant values are assumed to have the values

µP = 0.20 σP = 0.10

µG = 0.15 σG = 0.15

µC = 0.05 σC = 0.15

such that

µ̃P = µP − µC = 0.15

µ̃G = µG − µC = 0.10

σ̃P =
√
σ2
P + σ2

C − 2σPσCρCP = 0.2313007

σ̃G =
√
σ2
G + σ2

C − 2σGσCρCG = 0.0948683

The strike price is assumed to be K = 1 in order to be able to fit into the expres-
sion of the trivariate option price (3.34). Assume the heating rate to be h = 1
for this moment (we are going to vary this parameter later), the exercise time
T = 1 (year), and the interest rate r = 0.05. Applying these values into Monte
Carlo method for equations (3.15) to (3.23) and (3.27) to (3.34) with increasing
permutations, we wish to find out how many trials are necessary to ensure a given
precision of the price. Figure 5.1(a) shows the results from Monte Carlo method
from 1, 000, 000 to 10, 000, 000 permutations, from which we see that 4, 000, 000
permutations are necessary to ensure two decimal places of accuracy.

However, when the results simulated by Monte Carlo method are plotted to-
gether with the approximated trivariate option price according to the revisited
Kirk formula (5.2) and the revisited Bjerksund-Stensland formula (5.6), large
variations occur, as it is shown in Figure 5.1(b). Note that the intervals of the
vertical axes (trivariate option price) are different in each of the two subfigures.
Given the heating rate h = 1, it is worth mentioning that Monte Carlo method
with 4, 000, 000 permutations produces a trivariate option value of 0.5584, while
the revisited Kirk formula (5.2) and the revisited Bjerksund-Stensland formula
(5.6) gives 0.4891 and 0.4886 respectively, with a relative error of 12.41% and
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12.50%; both are relatively large.

In the rest of this section, we will compare the accuracy of the revisited Kirk
formula and the revisited Bjerksund-Stensland formula along with the results
simulated by Monte Carlo method. In Subsection 5.3.1 we will look at six differ-
ent values of heating rates, while in Subsection 5.3.2 we will vary the initial price
of C(0) with respect to the initial price of power P (0) and the initial price of gas
G(0). The purpose is to investigate their effect, if they had any, on pricing the
trivariate spread option.

Figure 5.1: Monte-Carlo benchmark for trivariate spread option
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(b) Monte-Carlo and approximations

5.3.1 Various heating rates

In this subsection we will discuss the effect on pricing of trivariate spread option
caused by different values of heating rates. The price of the trivariate option
is produced according to the two abovementioned approximation methods. The
results are shown in Table 5.1, where the first column lists six different heating
rates, the second column (in italics) gives the results from Monte Carlo method,
the third column gives the approximated prices of trivariate option produced by
the revisited Bjerksund-Stensland formula (5.6), the fourth column gives the ap-
proximated prices of trivaraite options produced by the revisited Kirk formula
(5.2), and the last two columns (in bold) give the relative errors due to those two
formulas, respectively.

We see that as the heating rate decreases, both the Monte Carlo method and
the two approximation methods are increasing, but at the same time, both rela-
tive errors are increasing as well, indicating large variations and uncertainty for
both of the methods. In other words, as Figure 5.2(a) indicates, relative errors
produced by two approximations are quite close, and they are decreasing when
the values of heating rate are growing towards 1.0.
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Table 5.1: Simulated trivariate spread option values for different heating rates
h MC B-S Kirk errorBS errorK

1.0 0.5584 0.4886 0.4891 12.50% 12.41%
0.9 1.1118 0.8916 0.8922 19.81% 19.75%
0.8 2.1527 1.5976 1.5982 25.79% 25.76%
0.7 3.9786 2.7976 2.7980 29.68% 29.67%
0.6 7.0114 4.7608 4.7611 32.10% 32.09%
0.5 11.6325 7.8244 7.8245 32.74% 32.74%

Figure 5.2: Relative errors for pricing the trivariate spread option
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(b) various C(0)’s

5.3.2 Various C(0) values regarding P (0) and G(0)

Now we would like to look into the effect on pricing of trivariate spread option
when the initial value of the price of emission-certificates of carbon dioxide C(0)
is varied comparing to the initial value of the power price P (0) and that of the
gas price G(0). Given P (0) = 110 and G(0) = 100, two values of heating rate,
h = 1.0 and h = 0.8, are chosen. And for each of them, the initial price of
emission-certificates of carbon dioxide C(0) is varying from 10 to 100 with a step
of 10. The results are shown in Table 5.2(a) and Table 5.2(b) where the first
column gives ten initial values of C(0), the second and third columns give the
relative value of P (0) and G(0) relatively to each C(0), the five columns to the
right give respectively the results simulated by Monte Carlo method (in italics),
the approximated prices of trivariate spread options produced by the revisted
Bjerksund-Stensland formula (5.6) and that by the revisited Kirk formula (5.2)
along with their relative errors (in bold), for each value of C(0).

The tables imply that when C(0) gets larger, the relative value P (0)
C(0)

and G(0)
C(0)

become smaller and closed to the strike price K = 1, causing both the simulated
option price and the two approximated option prices to decrease. We can also
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conclude from Table 5.2(a) that when h = 1.0, the relative errors due to the two
approximation methods become smaller as C(0) beomes larger, while from Table
5.2(b) we see that when h = 0.8, the relative errors still remainl large. These
phenomena are also captured in Figure 5.2(b), that the relative errors for both
approximation methods tend to decrease for a higher value of heating rate, but
tend to increase for some time and then stay high for a lower one.

Table 5.2: Simulated trivariate spread option values for different C(0) comparing
to P (0) and G(0)

(a) when h = 1.0

C(0) P (0)
C(0)

G(0)
C(0)

MC B-S Kirk errorBS errorK

10 11.00 10.00 13.8255 11.2216 11.2217 18.83% 18.83%
20 5.50 5.00 8.9355 7.2304 7.2311 19.08% 19.07%
30 3.67 3.33 5.5026 4.4766 4.4777 18.65% 18.63%
40 2.75 2.50 3.2471 2.6771 2.6783 17.55% 17.52%
50 2.20 2.00 1.8565 1.5543 1.5553 16.28% 16.22%
60 1.83 1.67 1.0310 0.8804 0.8812 14.61% 14.53%
70 1.57 1.43 0.5574 0.4886 0.4891 12.34% 12.25%
80 1.38 1.25 0.2990 0.2667 0.2671 10.80% 10.67%
90 1.22 1.11 0.1573 0.1437 0.1439 8.65% 8.52%

100 1.10 1.00 0.0811 0.0766 0.0767 5.55% 5.43%

(b) when h = 0.8

C(0) P (0)
C(0)

G(0)
C(0)

MC B-S Kirk errorBS errorK

10 11.00 10.00 29.9682 24.1874 24.1868 19.29% 19.29%
20 5.50 5.00 21.7978 17.1022 17.1018 21.54% 21.54%
30 3.67 3.33 15.0126 11.5241 11.5242 23.24% 23.24%
40 2.75 2.50 9.8607 7.4259 7.4265 24.69% 24.69%
50 2.20 2.00 6.1612 4.5981 4.5989 25.37% 25.36%
60 1.83 1.67 3.7065 2.7504 2.7511 25.80% 25.78%
70 1.57 1.43 2.1560 1.5976 1.5982 25.90% 25.87%
80 1.38 1.25 1.2189 0.9056 0.9060 25.70% 25.67%
90 1.22 1.11 0.6733 0.5031 0.5033 25.28% 25.25%

100 1.10 1.00 0.3649 0.2750 0.2751 24.64% 24.61%
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Chapter 6

Hedging of Bivariate and
Trivariate Spread Options

In most of the liberalized markets, traders decide what products to trade, how to
trade them and in which combinations. Their strategies could be originated from
a number of considerations: to get cash; to buy or sell the ownership of physical
products (here electricity or natural gas); or to hedge.

Hedging risk may sound like a cautious approach to investing, but it is often
the most aggressive investors (speculators) who hedge to manage the risk of their
physical positions. By reducing the risk in one part of a portfolio, an investor
can often take more risk elsewhere, increasing her absolute returns while putting
less capital at risk in each individual investment.

In this chapter, we first derive the delta-hedge parameters for bivariate spread
options under the Kirk formula (4.3) and the Bjerksund-Stensland formula (4.7)
in Section 6.1, and for trivariate spread options under the revisited Kirk formula
(5.2) and the revisited Bjerksund-Stensland formula (5.6) in Section 6.2. Nu-
merical results using Monte Carlo method are presented in Section 6.3, where it
is shown that both of the two formulas perform very well in hedging bivariate
spread options but poorly for the trivariate spread options.

6.1 Delta-hedge parameters for bivariate spread

options

As mentioned in Section 4.3, for spread options, when K = 0, both the Kirk
formula and the Bjerksund-Stensland formula converge to the same one, the
Margrabe formula, which returns the true price for the spread option at time 0,

VM(0, T ) = P (0)Φ(d1)−G(0)Φ(d2) (6.1)
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where

d1 =
ln
(
P (0)
G(0)

)
+ 1

2
σ2T

σ
√
T

(6.2)

d2 = d1 − σ
√
T (6.3)

σ =
√
σ2
P − 2ρPGσPσG + σ2

G (6.4)

We differentiate (6.1) with respect to P (0) and G(0) to get the two delta-hedge
parameters:

∆M,1 =
∂VM(0, T )

∂P (0)
= Φ(d1) +

P (0)φ(d1)−G(0)φ(d2)

P (0)σ
√
T

(6.5)

∆M,2 =
∂VM(0, T )

∂G(0)
= −Φ(d2)−

P (0)φ(d1)−G(0)φ(d2)

G(0)σ
√
T

(6.6)

We are going to compare (6.5) and (6.6) with the true delta parameters of the
bivariate spread option by inserting (3.8) and (3.9) into the conditional expecta-
tion,

Vb(0, T ) = e−rTEQ [max{P (T )−G(T ), 0}]
= e−rTEQ

[
max

{
P (0)eXP −G(0)eXG , 0

}]
(6.7)

where

XP =

∫ T

0

(
µP (s)− 1

2
σ2
P (s)

)
ds+

∫ T

0

σP (s)dWP (s) (6.8)

XG =

∫ T

0

(
µG(s)− 1

2
σ2
G(s)

)
ds+

∫ T

0

σG(s)dWG(s) (6.9)

The delta-hedge parameters are obtained by diffentiating (6.7) with respect to
P (0) and G(0) respectively:

∆b,1 =
∂Vb(0, T )

∂P (0)
= e−rTEQ

[
1
{
P (0)eXP −G(0)eXG > 0

}
· eXP

]
(6.10)

∆b,1 =
∂Vb(0, T )

∂G(0)
= −e−rTEQ

[
1
{
P (0)eXP −G(0)eXG > 0

}
· eXG

]
(6.11)

6.2 Delta-hedge parameters for trivariate spread

options

The updated Kirk formula for trivariate spread options is given by (5.2). As-
suming σ̃K to be constant, we obtain three delta-hedge parameters from the Kirk
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approximation,

∆K,1 =
∂c̃K(0, T )

∂P (0)

= eµCT

[
Φ(d̃K,1) +

P (0)φ(d̃K,1)− hG(0)φ(d̃K,2)− e−rTC(0)φ(d̃K,2)

P (0)σ̃K
√
T

]
(6.12)

∆K,2 =
∂c̃K(0, T )

∂G(0)

= −eµCT
hΦ(d̃K,2) +

P (0)φ(d̃K,1)− hG(0)φ(d̃K,2)− e−rTC(0)φ(d̃K,2)(
hG̃(0) + e−rT

)
σ̃K
√
T


(6.13)

∆K,3 =
∂c̃K(0, T )

∂C(0)

= −eµCT
[
e−rTΦ(d̃K,2) +

P (0)φ(d̃K,1)− hG(0)φ(d̃K,2)− e−rTC(0)φ(d̃K,2)

σ̃K
√
T

·(
1

C(0)
− 1

hG̃(0) + e−rT
· h

˜G(0)

C(0)

)]
(6.14)

with d̃K,1, d̃K,2 and σ̃K given as in equation (5.3), (5.4) and (5.5), respectively.

The updated Bjerksund-Stensland formula for trivariate spread options is given
by (5.6). Assuming ã, b̃ and σ̃BS to be constants, we obtain three delta-hedge
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parameters from the Bjerksund-Stensland approximation,

∆BS,1 =
∂c̃BS(0, T )

∂P (0)

= eµCT

[
Φ(d̃BS,1) +

P (0)φ(d̃BS,1)− hG(0)φ(d̃BS,2)− e−rTC(0)φ(d̃BS,3)

P (0)σ̃BS
√
T

]
(6.15)

∆BS,2 =
∂c̃BS(0, T )

∂G(0)

= −eµCT
[
hΦ(d̃BS,2) +

P (0)φ(d̃BS,1)− hG(0)φ(d̃BS,2)− e−rTC(0)φ(d̃BS,3)

(hG(0)erT + 1)σ̃BS
√
T

]
(6.16)

∆BS,3 =
∂c̃BS(0, T )

∂C(0)

= −eµCT
[
e−rTΦ(d̃BS,3) +

P (0)φ(d̃BS,1)− hG(0)φ(d̃BS,2)− e−rTC(0)φ(d̃BS,3)

σ̃K
√
T

·(
1

C(0)
− 1

hG̃(0) + e−rT
· h

˜G(0)

C(0)

)]
(6.17)

with d̃BS,1, d̃BS,2, d̃BS,3, σ̃BS, ã and b̃ given as in equations (5.7) to (5.12).

We would like to compare the three delta-hedge parameters (6.12), (6.13) and
(6.14) obtained from the Kirk formula with those (6.15), (6.16) and (6.17) from
the Bjerksund-Stensland formula together with the ones obtained directly from
the conditional expectation (3.1). At t = 0, the price of the trivariate spread
option is given as

Vt(0, T ) = e−rTEQ [max {P (T )−G(t)− C(0), 0}] (6.18)

Applying (3.8) and (3.9), we may rewrite (6.18) as

Vt(0, T ) = e−rTEQ
[
max

{
P (0)eXP −G(0)eXG − C(0)eXC , 0

}]
(6.19)

where XP and XG are given as in (6.8) and (6.9), and XC is given as

XC =

∫ T

0

(
µC(s)− 1

2
σ2
C(s)

)
ds+

∫ T

0

σC(s)dWC(s) (6.20)
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Therefore, we could differentiate (6.19) with respect to P (0), G(0) and C(0) to
get the true delta-hedge parameters

∆t,1 =
∂Vt(0, T )

∂P (0)

= e−rTEQ
[
1
{
P (0)eXP − hG(0)eXG − C(0)eXC > 0

}
· eXP

]
(6.21)

∆t,2 =
∂Vt(0, T )

∂G(0)

= −e−rTEQ
[
1
{
P (0)eXP −G(0)eXG − C(0)eXC > 0

}
· eXG

]
(6.22)

∆t,3 =
∂Vt(0, T )

∂C(0)

= −e−rTEQ
[
1
{
P (0)eXP −G(0)eXG − C(0)eXC > 0

}
· eXC

]
(6.23)

6.3 Numerical results

Applying the same values as in the numerical analysis for bivariate spread option
in Section 4.3, i.e. P (0) = 110, G(0) = 100, σP = 0.10, σG = 0.15, ρPG = 0.1,
T = 1, r = 0.05 and h = 1, we get the results in Table 6.1(a), showing the
delta-hedge parameters approximated by the Kirk or the Bjerksund-Stensland
formula as well as the true parameters simulated by Monte Carlo method (using
4, 000, 000 permutations). We see that the results from the approximations are
quite satisfying, with an accuracy of three decimal places.

Applying the same values as in the numerical analysis for trivariate spread option
in Section 5.3, i.e. P (0) = 110, G(0) = 100, C(0) = 70, σP = 0.10, σG = 0.15,
σC = 0.15, ρPG = 0.1, ρCG = 0.8, ρCP = −0.7, T = 1, r = 0.05 and h = 1, we
get the results in Table 6.1(b), showing the delta-hedge parameters approximated
by the revisited Kirk formula and the revisited Bjerksund-Stensland formula as
well as the true parameters simulated by Monte Carlo method (using 4, 000, 000
permutations). This time we see that, although the two approximations produce
close results, both of them differ greatly from the results simulated by Monte
Carlo method, with relative errors larger than 130%.
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Table 6.1: Delta-hedge parameters

(a) for bivariate spread option

∆1 ∆2

Kirk or Bjerksund-Stensland 0.7392 -0.6805
Monte Carlo 0.7394 -0.6807

(b) for trivariate spread options

∆1 ∆2 ∆3

Kirk 0.0501 -0.0302 -0.0287
Bjerksund-Stensland 0.0501 -0.0286 -0.0323

Monte Carlo 0.0206 -0.0126 -0.0121
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Chapter 7

Conclusions and Discussions

7.1 Conclusions

Pricing of spread options with non-zero strikes

Taking into account of the fact that Energy Market practitioners are currently
making use of alternatives to the Monte Carlo method, we deemed it important
to examine the exactness of the two most popular closed-form formulas. We
compared the Bjerksund-Stensland formula and the Kirk formula in pricing and
hedging spread options in a trivariate financial world consisting of the price of
power (electricity) P , the price of gas G and the price of emission-certificate C.
We used trivariate geometric Brownian motions for modelling the dynamics for
the three price dynamics, and we applied Monte Carlo method as our benchmark
for simulating the accurate results. In this research, 6, 000, 000 permutations were
used for the bivariate case and 4, 000, 000 for the trivariate one.

We made a structured numerical analysis with respect to six parameters (two
volatilities, strike price, correlation coefficient, interest rate and time to exercise)
for bivariate spread options. When volatilities were varied, we found that the
Bjerksund-Stensland formula was slightly better than the Kirk formula, in the
sense that the Bjerksund-Stensland formula produced smaller relative errors in
50 out of 81 combinations for a positive strike price and 65 out of 81 combi-
nations for a negative one. When strike prices and correlation coefficients were
varied, we found that the Bjerksund-Stensland formula turned out to be better
as well, as it produced smaller relative errors in 73 out of 81 combinations of dif-
ferent strike prices and correlations, especially for large positive values of strike
prices and correlation coefficients close to 1.0. However, when the interest rate
and time of exercise were varied, we found that neither the Bjerksund-Stensland
formula, nor the Kirk formula were satisfying when negative strike prices were
given, even though the Bjerksund-Stensland formula did achieve slightly smaller
relative errors than the Kirk formula in 28 out of 30 combinations; but both
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formula performed very pooly when positive strike prices were given.

We have proved in Chapter 3 (equation 3.34) that pricing spread options in
a trivariate financial world consisting of P , G, C can be tranformed to pricing
spread options in a bivariate world consisting of P , G, 1, where 1 represents the
non-zero strike price K = 1. Hence, we are able to adapt a similar analysis to a
three-dimensional case, as it is often the case in EM operations. Different values
of heating rate and initial emission-certificate price were investigated for their
effect on pricing trivariate spread options. When heating rates were varied, we
found that both of the two formulas produced large relative errors, up to 32.74%
when the heating rate h = 0.5 was given, and that the relative errors tended to
decrease when the heating rates increased from h = 0.5 to h = 1.0. Then when
the initial price of emission-certificate C(0) were varied, the relative price of power
P (0)/C(0) and that of gas G(0)/C(0) were also varied, and large relative errors
occurred. Therefore we conclude that the Bjerksund-Stensland formula does not
fit well in pricing trivariate spread options with non-zero strikes. Although the
wish to rely on quicker closed-form formulas is understandable, we believe that
it would be better for practitioners, for the time being, to keep using other well
tried numerical methods, such as Monte Carlo method, even if its disadvantage
is to be computationally slow.

Hedging of spread options with non-zero strikes

For the spread options and trivariate spread options, we derived the delta-hedge
parameters with respect to the price of electricity, the price of gas, and the price
of emission-certificate. Starting from the same initial values as in the paper
of Bjerksund and Stensland (2011) [24], we compared the values of delta-hedge
parameters derived from the Kirk formula and Bjerksund-Stensland formula, to-
gether with the results simulated by the Monte Carlo method with 4, 000, 000
permutations.

For bivariate spread options, since the value of K does not exist any more (or
just consider K = 0), both the Kirk formula and the Bjerksund-Stensland for-
mula transform into the Margrabe formula, from which we obtained satisfactory
delta-hedge parameters with respect to P (0) and G(0), with an accuracy of three
decimal places. For trivariate spread options, however, the delta-hedge parame-
ters with respect to P (0), G(0) and C(0) produced by both formulas were far from
the results simulated by the Monte Carlo method, with relative errors of more
than 130%. Hence, we conclude that the Bjerksund-Stensland formula is indeed
as good as the Kirk formula in hedging bivariate spread options. Nonetheless,
for hedging trivariate spread options, neither of them should be used by real
investors in energy markets. Numerical methods, such as Monte Carlo, remain
today a better tool.
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7.2 Outlook

In this research we focused on Monte Carlo simulation to valuate spread call op-
tion. For example, it takes about 3’10”, 3’15” and 1’15” respectively to generate
the prices for spread option (with an accuracy of two decimal places) pairwisely
with respect to two volatilities, strike price and correlation coefficients, interest
rate and exercise time of the spread call option, using 6,000,000 permutations in
Monte Carlo algorithms (see appendices A.2 - A.4) implemented in R (version
2.15.1 GUI 1.52 Leopard build 32-bit) in this research. From this point onward, it
may be possible to introduce some improvements to the Monte Carlo algorithms
which could possibly produce quicker and precise results, for example through the
variance reduction method [10]. One may also want to look at other numerical
methods, such as the Fourier transform method (see also [19], [23] and [35]).

As previously mentioned, it has always been appealing to find a closed-form
formula, which is both quick and robust in pricing and hedging spread options
in energy markets when the strike price differs from zero. Future works may
look at the possibilities of modifying the existing closed-form formulas (such as
the Kirk formula, the Bjerksund-Stensland formula, or others), or creating a new
mathematical closed-form formula.
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Appendix A

R scripts

All the R codes used for computation and simulation in this project are listed as
the following.

A.1 R codes for the benchmark of pricing bi-

variate spread option

1 # Initial values of parameters:

2 s1=110; s2=100;

3 sigma1=0.10; sigma2=0.15;

4 K=0; rho=0.5; delta.t=1; r=0.05

5

6 # Monte Carlo method:

7 MC=3e+06

8 call.price.benchmark=rep(0,10)

9 for(k in 1:10)

10 {

11 N=MC*k

12 eps1=rnorm(N)

13 eps2=rho*eps1+sqrt(1-rho^2)*rnorm(N)

14 S1=s1*exp((r-sigma1^2/2)*delta.t+sigma1*sqrt(delta.t)*eps1)

15 S2=s2*exp((r-sigma2^2/2)*delta.t+sigma2*sqrt(delta.t)*eps2)

16 call.price=exp(-r*delta.t)*pmax(S1-S2-K,0)

17 call.price.benchmark[k]=mean(call.price)

18 }

19 print(round(call.price.benchmark,4))

20

21 # The Bjerksund-Stensland formula:

22 BS<-function(s1,s2,K,sigma1,sigma2,rho,delta.t,r)
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23 {

24 a=s2*exp(r*delta.t)+K

25 b=s2*exp(r*delta.t)/a

26 sigma=sqrt(sigma1^2-2*b*rho*sigma1*sigma2+b^2*sigma2^2)

27 d1=(log(s1/a)+(r+sigma1^2/2-b*rho*sigma1*sigma2+b^2*sigma2^2/2)*

delta.t)/(sigma*sqrt(delta.t))

28 d2=(log(s1/a)+(r-sigma1^2/2+rho*sigma1*sigma2+b^2*sigma2^2/2- b*

sigma2^2)*delta.t)/(sigma*sqrt(delta.t))

29 d3=(log(s1/a)+(r-sigma1^2/2+b^2*sigma2^2/2)*delta.t)/(sigma*sqrt

(delta.t))

30 c=s1*pnorm(d1)-s2*pnorm(d2)-exp(-r*delta.t)*K*pnorm(d3)

31 }

32 testBS=BS(s1,s2,K,sigma1,sigma2,rho,delta.t,r)

33 print(round(testBS,4))

34

35 # The Kirk formula:

36 Kirk<-function(s1,s2,K,sigma1,sigma2,rho,delta.t,r)

37 {

38 sigma.k=sqrt(sigma1^2-2*s2*exp(r*delta.t)/(s2*exp(r*delta.t)+K)*

rho*sigma1*sigma2+(s2*exp(r*delta.t)/(s2*exp(r*delta.t)+K)*

sigma2)^2)

39 d1=(r*delta.t+log(s1/(s2*exp(r*delta.t)+K))+sigma.k^2/2*delta.t)

/(sigma.k*sqrt(delta.t))

40 d2=d1-sigma.k*sqrt(delta.t)

41 c=s1*pnorm(d1)-s2*pnorm(d2)-exp(-r*delta.t)*K*pnorm(d2)

42 }

43 testKirk=Kirk(s1,s2,K,sigma1,sigma2,rho,delta.t,r)

44 print(round(testKirk,4))

45

46 # Plot all the results in one graph:

47 xx=(1:10)*MC

48 yy=round(as.numeric(call.price.benchmark),4)

49 plot(xx,yy,"o",xlab="Numbers of simulation (in 1,000,000)",ylab="

Bivariate option price",ylim=c(11.90,11.92),xaxt="n")

50 axis(1,at=(1:10)*MC,las=2,labels=c("3","6","9","12","15","18","21"

,"24","27","30"))

51 abline(h=11.9100,lty=2)

52 abline(h=11.9199,lty=2)

53 points(xx,rep(testBS,10),pch=4)

54 points(xx,rep(testKirk,10),pch=5)

55 legend("bottomright",c("Monte Carlo","B-S","Kirk"),cex=0.7,lty=c

(1,0,0),pch=c(1,4,5))
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A.2 R codes for pricing bivariate spread option

for various volatilities

1 # Monte Carlo method:

2 sigma1.list=c("0.10","0.15","0.20","0.25","0.30","0.35","0.40","

0.45","0.50")

3 sigma2.list=c("0.10","0.15","0.20","0.25","0.30","0.35","0.40","

0.45","0.50")

4 vol=matrix(rep(0,81),nrow=9,dimnames=list(sigma1.list,sigma2.list)

)

5 N=6e+06

6 K=10

7 for(i in 1:9)

8 {

9 sigma2=i*0.05+0.05

10 for(j in 1:9)

11 {

12 sigma1=j*0.05+0.05

13 eps1=rnorm(N)

14 eps2=rho*eps1+sqrt(1-rho^2)*rnorm(N)

15 S1=s1*exp((r-sigma1^2/2)*delta.t+sigma1*sqrt(delta.t

)*eps1)

16 S2=s2*exp((r-sigma2^2/2)*delta.t+sigma2*sqrt(delta.t

)*eps2)

17 call.price=pmax(S1-S2-K,0)*exp(-r*delta.t)

18 vol[i,j]=mean(call.price)

19 }

20 }

21 print(round(vol,4))

22

23 # The Bjerksund-Stensland formula:

24 vol.BS=matrix(rep(0,81),nrow=9,dimnames=list(sigma1.list,sigma2.

list))

25 BS.vol<-function(s1,s2,K,rho,delta.t,r)

26 {

27 a=s2*exp(r*delta.t)+K

28 b=s2*exp(r*delta.t)/a

29 for(i in 1:9)

30 {

31 sigma2=i*0.05+0.05

32 for(j in 1:9)

33 {
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34 sigma1=j*0.05+0.05

35 sigma=sqrt(sigma1^2-2*b*rho*sigma1*sigma2+b^2

*sigma2^2)

36 d1=(log(s1/a)+(r+sigma1^2/2-b*rho*sigma1*

sigma2+b^2*sigma2^2/2)*delta.t)/(sigma*

sqrt(delta.t))

37 d2=(log(s1/a)+(r-sigma1^2/2+rho*sigma1*sigma2

+b^2*sigma2^2/2-b*sigma2^2)*delta.t)/(

sigma*sqrt(delta.t))

38 d3=(log(s1/a)+(r-sigma1^2/2+b^2*sigma2^2/2)*

delta.t)/(sigma*sqrt(delta.t))

39 c=s1*pnorm(d1)-s2*pnorm(d2)-exp(-r*delta.t)*K

*pnorm(d3)

40 vol.BS[i,j]=c

41 }

42 }

43 return(vol.BS)

44 }

45 testBS.vol=BS.vol(s1=110,s2=100,K=10,rho=0.5,delta.t=1,r=0.05)

46 testBS.vol=BS.vol(s1=110,s2=100,K=-10,rho=0.5,delta.t=1,r=0.05)

47 print(round(testBS.vol,4))

48

49 # The Kirk formula:

50 vol.Kirk=matrix(rep(0,81),nrow=9,dimnames=list(sigma1.list,sigma2.

list))

51 Kirk.vol<-function(s1,s2,K,rho,delta.t,r)

52 {

53 for(i in 1:9)

54 {

55 sigma2=i*0.05+0.05

56 for(j in 1:9)

57 {

58 sigma1=j*0.05+0.05

59 sigma.k=sqrt(sigma1^2-2*s2*exp(r*delta.t)/(s2

*exp(r*delta.t)+K)*rho*sigma1*sigma2+(s2*

exp(r*delta.t)/(s2*exp(r*delta.t)+K)*

sigma2)^2)

60 d1=(r*delta.t+log(s1/(s2*exp(r*delta.t)+K))+

sigma.k^2/2*delta.t)/(sigma.k*sqrt(delta.

t))

61 d2=d1-sigma.k*sqrt(delta.t)

62 c=s1*pnorm(d1)-s2*pnorm(d2)-exp(-r*delta.t)*K

*pnorm(d2)
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63 vol.Kirk[i,j]=c

64 }

65 }

66 return(vol.Kirk)

67 }

68 testKirk.vol=Kirk.vol(s1=110,s2=100,K=10,rho=0.5,delta.t=1,r=0.05)

69 testKirk.vol=Kirk.vol(s1=110,s2=100,K=-10,rho=0.5,delta.t=1,r

=0.05)

70 print(round(testKirk.vol,4))

A.3 R codes for pricing bivariate spread option

for various strike prices and correlations

1 # Monte Carlo method:

2 K.list=c("-20","-15","-10","-5","0","5","10","15","20")

3 rho.list=c("-0.9","-0.7","-0.5","-0.3","0.0","0.3","0.5","0.7","

0.9")

4 K.num=seq(-20,20,5)

5 rho.num=c(-0.9,-0.7,-0.5,-0.3,0,0.3,0.5,0.7,0.9)

6 K.rho<-matrix(rep(0,81),nrow=9,dimnames=list(K.list,rho.list))

7 N=6e+06

8 for(i in 1:9)

9 {

10 K=K.num[i]

11 for(j in 1:9)

12 {

13 rho=rho.num[j]

14 eps1=rnorm(N)

15 eps2=rho*eps1+sqrt(1-rho^2)*rnorm(N)

16 S1=s1*exp((r-sigma1^2/2)*delta.t+sigma1*sqrt(delta.t

)*eps1)

17 S2=s2*exp((r-sigma2^2/2)*delta.t+sigma2*sqrt(delta.t

)*eps2)

18 call.price=pmax(S1-S2-K,0)*exp(-r*delta.t)

19 K.rho[i,j]=mean(call.price)

20 print(round(K.rho,4))

21 }

22 }

23 print(round(K.rho,4))

24

25 # The Bjerksund-Stensland formula:

26 K.rho.BS<-matrix(rep(0,81),nrow=9,dimnames=list(K.list,rho.list))
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27 BS.K.rho<-function(s1,s2,sigma1,sigma2,delta.t,r)

28 {

29 for(i in 1:9)

30 {

31 K=K.num[i]

32 a=s2*exp(r*delta.t)+K

33 b=s2*exp(r*delta.t)/a

34 for(j in 1:9)

35 {

36 rho=rho.num[j]

37 sigma=sqrt(sigma1^2-2*b*rho*sigma1*sigma2+b^2

*sigma2^2)

38 d1=(log(s1/a)+(r+sigma1^2/2-b*rho*sigma1*

sigma2+b^2*sigma2^2/2)*delta.t)/(sigma*

sqrt(delta.t))

39 d2=(log(s1/a)+(r-sigma1^2/2+rho*sigma1*sigma2

+b^2*sigma2^2/2-b*sigma2^2)*delta.t)/(

sigma*sqrt(delta.t))

40 d3=(log(s1/a)+(r-sigma1^2/2+b^2*sigma2^2/2)*

delta.t)/(sigma*sqrt(delta.t))

41 c=s1*pnorm(d1)-s2*pnorm(d2)-exp(-r*delta.t)*K

*pnorm(d3)

42 K.rho.BS[i,j]=c

43 }

44 }

45 return(K.rho.BS)

46 }

47 testBS.K.rho=BS.K.rho(s1=110,s2=100,sigma1=0.10,sigma2=0.15,delta.

t=1,r=0.05)

48 print(round(testBS.K.rho,4))

49

50 # The Kirk formula:

51 K.rho.Kirk<-matrix(rep(0,81),nrow=9,dimnames=list(K.list,rho.list)

)

52 Kirk.K.rho<-function(s1,s2,sigma1,sigma2,delta.t,r)

53 {

54 for(i in 1:9)

55 {

56 K=K.num[i]

57 for(j in 1:9)

58 {

59 rho=rho.num[j]
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60 sigma=sqrt(sigma1^2-2*s2*exp(r*delta.t)/(s2*

exp(r*delta.t)+K)*rho*sigma1*sigma2+(s2*

exp(r*delta.t)/(s2*exp(r*delta.t)+K)*

sigma2)^2)

61 d1=(r*delta.t+log(s1/(s2*exp(r*delta.t)+K))+

sigma^2/2*delta.t)/(sigma*sqrt(delta.t))

62 d2=d1-sigma*sqrt(delta.t)

63 c=s1*pnorm(d1)-s2*pnorm(d2)-exp(-r*delta.t)*K

*pnorm(d2)

64 K.rho.Kirk[i,j]=c

65 }

66 }

67 return(K.rho.Kirk)

68 }

69 testKirk.K.rho=Kirk.K.rho(s1=110,s2=100,sigma1=0.10,sigma2=0.15,

delta.t=1,r=0.05)

70 print(round(testKirk.K.rho,4))

A.4 R codes for pricing bivariate spread option

for various drifts and exercising times

1 # Monte Carlo method:

2 time.list=c("1 month","2 months","3 months","6 months","9 months",

"12 months")

3 r.list=c("0.00","0.03","0.05","0.07","0.10")

4 time.num=c(1/12,2/12,3/12,6/12,9/12,1)

5 r.num=c(0,0.03,0.05,0.07,0.1)

6 r.time<-matrix(rep(0,30),nrow=6,dimnames=list(time.list,r.list))

7 N=6e+06

8 K=-10

9 for(i in 1:6)

10 {

11 delta.t=time.num[i]

12 for(j in 1:5)

13 {

14 r=r.num[j]

15 eps1=rnorm(N)

16 eps2=rho*eps1+sqrt(1-rho^2)*rnorm(N)

17 S1=s1*exp((r-sigma1^2/2)*delta.t+sigma1*sqrt(delta.t

)*eps1)

18 S2=s2*exp((r-sigma2^2/2)*delta.t+sigma2*sqrt(delta.t

)*eps2)
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19 call.price=pmax(S1-S2-K,0)*exp(-r*delta.t)

20 r.time[i,j]=mean(call.price)

21 print(round(r.time,4))

22 }

23 }

24 print(round(r.time,4))

25

26 # The Bjerksund-Stensland formula:

27 r.T.BS<-matrix(rep(0,30),nrow=6,dimnames=list(time.list,r.list))

28 BS.r.T<-function(s1,s2,sigma1,sigma2,K,rho)

29 {

30 for(i in 1:6)

31 {

32 delta.t=time.num[i]

33 a=s2*exp(r*delta.t)+K

34 b=s2*exp(r*delta.t)/a

35 sigma=sqrt(sigma1^2-2*b*rho*sigma1*sigma2+b^2*sigma2

^2)

36 for(j in 1:5)

37 {

38 r=r.num[j]

39 d1=(log(s1/a)+(r+sigma1^2/2-b*rho*sigma1*

sigma2+b^2*sigma2^2/2)*delta.t)/(sigma*

sqrt(delta.t))

40 d2=(log(s1/a)+(r-sigma1^2/2+rho*sigma1*sigma2

+b^2*sigma2^2/2-b*sigma2^2)*delta.t)/(

sigma*sqrt(delta.t))

41 d3=(log(s1/a)+(r-sigma1^2/2+b^2*sigma2^2/2)*

delta.t)/(sigma*sqrt(delta.t))

42 c=s1*pnorm(d1)-s2*pnorm(d2)-exp(-r*delta.t)*K

*pnorm(d3)

43 r.T.BS[i,j]=c

44 }

45 }

46 return(r.T.BS)

47 }

48 testBS.r.T=BS.r.T(s1=110,s2=100,sigma1=0.10,sigma2=0.15,K=10,rho

=0.5)

49 print(round(testBS.r.T,4))

50

51 # The Kirk formula:

52 r.T.Kirk<-matrix(rep(0,30),nrow=6,dimnames=list(time.list,r.list))

53 Kirk.r.T<-function(s1,s2,sigma1,sigma2,K,rho)
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54 {

55 for(i in 1:6)

56 {

57 delta.t=time.num[i]

58 for(j in 1:5)

59 {

60 r=r.num[j]

61 sigma=sqrt(sigma1^2-2*s2*exp(r*delta.t)/(s2*

exp(r*delta.t)+K)*rho*sigma1*sigma2+(s2*

exp(r*delta.t)/(s2*exp(r*delta.t)+K)*

sigma2)^2)

62 d1=(r*delta.t+log(s1/(s2*exp(r*delta.t)+K))+

sigma^2/2*delta.t)/(sigma*sqrt(delta.t))

63 d2=d1-sigma*sqrt(delta.t)

64 c=s1*pnorm(d1)-s2*pnorm(d2)-exp(-r*delta.t)*K

*pnorm(d2)

65 r.T.Kirk[i,j]=c

66 }

67 }

68 return(r.T.Kirk)

69 }

70 testKirk.r.T=Kirk.r.T(s1=110,s2=100,sigma1=0.10,sigma2=0.15,K=-10,

rho=0.5)

71 print(round(testKirk.r.T,4))

A.5 R codes for the benchmark of pricing trivari-

ate spread option

1 # Initial values of parameters:

2 rhoPG=0.1; rhoCG=0.8; rhoCP=-0.7

3

4 # Check condition (3.6):

5 rhoCP^2+rhoCG^2+rhoPG^2-(1+2*rhoCP*rhoCG*rhoPG)

6 # Check condition (3.13):

7 1-rhoCP^2

8 # Check condition (3.14):

9 1-rhoPG^2-(rhoPG-rhoCP*rhoCG)^2/(1-rhoCP^2)

10

11 rho.matrix=matrix(c(1,rhoCP,rhoCG,rhoCP,1,rhoPG,rhoCG,rhoPG,1),

byrow=T,nrow=3,dimnames=list(c("C","P","G"),c("C","P","G")))

12 H.matrix=matrix(c(1,0,0,rhoCP,sqrt(1-rhoCP^2),0,rhoCG,(rhoPG-rhoCP

*rhoCG)/sqrt(1-rhoCP^2),sqrt(1-rhoPG^2-(rhoPG-rhoCP*rhoCG)^2/
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(1-rhoCP^2))),byrow=T,nrow=3)

13

14 muP=0.20; muG=0.15; muC=0.05

15 muP.tilde=muP-muC

16 muG.tilde=muG-muC

17

18 sigmaP=0.10; sigmaG=0.15; sigmaC=0.15

19 sigmaP.tilde=sqrt(sigmaP^2+sigmaC^2-2*rhoCP*sigmaC*sigmaP)

20 sigmaG.tilde=sqrt(sigmaG^2+sigmaC^2-2*rhoCG*sigmaC*sigmaG)

21

22 p0=110; g0=100; c0=70

23 K=1; delta.t=1; h=1; r=0.05

24

25 # Monte Carlo method:

26 MC=1e+06

27 TriPrice.benchmark=rep(0,10)

28 for(k in 1:10)

29 {

30 N=MC*k

31 WC=sqrt(delta.t)*rnorm(N)

32 U1=sqrt(delta.t)*rnorm(N)

33 U2=sqrt(delta.t)*rnorm(N)

34 a=(rhoPG-rhoCP*rhoCG)/sqrt(1-rhoCP^2)

35 b=sqrt(1-rhoPG^2-(rhoPG-rhoCP*rhoCG)^2/(1-rhoCP^2))

36 WP=rhoCP*WC+sqrt(1-rhoCP^2)*U1

37 WG=rhoCG*WC+a*U1+b*U2

38 C=c0*exp((muC-sigmaC^2/2)*delta.t+sigmaC*WC)

39 WC.tilde=-sigmaC*delta.t+WC

40 P.tilde=p0/c0*exp((muP.tilde-sigmaP.tilde^2/2)*delta.t+(

sigmaP*rhoCP-sigmaC)*WC.tilde+sigmaP*sqrt(1-rhoCP^2)*U1)

41 G.tilde=g0/c0*exp((muG.tilde-sigmaG.tilde^2/2)*delta.t+(

sigmaG*rhoCG-sigmaC)*WC.tilde+sigmaG*a*U1+sigmaG*b*U2)

42 Martingale=exp(-sigmaC^2/2*delta.t+sigmaC*WC)

43 TriPrice.benchmark[k]=c0*exp((muC-r)*delta.t)*mean(

Martingale*pmax(P.tilde-h*G.tilde-1,0))

44 }

45 print(round(TriPrice.benchmark,4))

46

47 # The revisited Bjerksund-Stensland formula:

48 BS.tri<-function(p0,g0,c0,K,sigma1,sigma2,rho,delta.t,r,muC,h)

49 {

50 P=p0/c0

51 G=g0/c0
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52 a=h*G*exp(r*delta.t)+K

53 b=h*G*exp(r*delta.t)/a

54 sigma.bs=sqrt(sigma1^2-2*b*rho*sigma1*sigma2+b^2*sigma2^2)

55 d1=(log(P/a)+(r+sigma1^2/2-b*rho*sigma1*sigma2+b^2*sigma2^2

/2)*delta.t)/(sigma.bs*sqrt(delta.t))

56 d2=(log(P/a)+(r-sigma1^2/2+rho*sigma1*sigma2+b^2*sigma2^2/

2-b*sigma2^2)*delta.t)/(sigma.bs*sqrt(delta.t))

57 d3=(log(P/a)+(r-sigma1^2/2+b^2*sigma2^2/2)*delta.t)/(sigma.

bs*sqrt(delta.t))

58 c=c0*exp(muC*delta.t)*(P*pnorm(d1)-h*G*pnorm(d2)-exp(-r*

delta.t)*K*pnorm(d3))

59 }

60 testBS.tri=BS.tri(p0=110,g0=100,c0=10,K=1,sigma1=sigmaP.tilde,

sigma2=sigmaG.tilde,rho=rhoPG,delta.t=1,r=0.05,muC=0.05,h=1)

61 print(round(testBS.tri,4))

62

63 # The revisited Kirk formula:

64 Kirk.tri<-function(p0,g0,c0,K,sigma1,sigma2,rho,delta.t,r,muC,h)

65 {

66 P=p0/c0

67 G=g0/c0

68 sigma.k=sqrt(sigma1^2-2*h*G*exp(r*delta.t)/(h*G*exp(r*delta

.t)+K)*rho*sigma1*sigma2+(h*G*exp(r*delta.t)/(h*G*exp(r*

delta.t)+K)*sigma2)^2)

69 d1=(r*delta.t+log(P/(h*G*exp(r*delta.t)+K))+sigma.k^2/2*

delta.t)/(sigma.k*sqrt(delta.t))

70 d2=d1-sigma.k*sqrt(delta.t)

71 c=c0*exp(muC*delta.t)*(P*pnorm(d1)-h*G*pnorm(d2)-exp(-r*

delta.t)*K*pnorm(d2))

72 }

73 testKirk.tri=Kirk.tri(p0=110,g0=100,c0=10,K=1,sigma1=sigmaP.tilde,

sigma2=sigmaG.tilde,rho=rhoPG,delta.t=1,r=0.05,muC=0.05,h=1)

74 print(round(testKirk.tri,4))

75

76 # Plot all the results in one graph:

77 xx=(1:10)*MC

78 yy=round(as.numeric(TriPrice.benchmark),4)

79 plot(xx,yy,"o",xlab="Numbers of simulation (in 1,000,000)",ylab="

Triviate option price",ylim=c(0.48,0.57),xaxt="n")

80 axis(1,at=(1:10)*MC,las=1,labels=1:10)

81 abline(h=0.5500,lty=2)

82 abline(h=0.5600,lty=2)

83 points(xx,rep(testBS.tri,10),pch=4)
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84 points(xx,rep(testKirk.tri,10),pch=20)

85 legend("center",c("Monte Carlo","B-S","Kirk"),cex=0.7,lty=c(1,0,0)

,pch=c(1,4,20))

A.6 R codes for differentiating delta-hedge pa-

rameters for bivariate spread option

1 # Initial values of parameters:

2 p0=110; g0=100; c0=70

3 K=1; delta.t=1; h=1; r=0.05

4 rhoPG=0.1; rhoCG=0.8; rhoCP=-0.7

5 muP=0.20; muG=0.15; muC=0.05

6 muP.tilde=muP-muC

7 muG.tilde=muG-muC

8 sigmaP=0.10; sigmaG=0.15; sigmaC=0.15

9 sigmaP.tilde=sqrt(sigmaP^2+sigmaC^2-2*rhoCP*sigmaC*sigmaP)

10 sigmaG.tilde=sqrt(sigmaG^2+sigmaC^2-2*rhoCG*sigmaC*sigmaG)

11

12 # Monte Carlo method:

13 bi.true<-function(N,p0,g0,sigmaP,sigmaG,rhoPG,delta.t,r)

14 {

15 WP=sqrt(delta.t)*rnorm(N)

16 WG=rhoPG*WP+sqrt(1-rhoPG^2)*sqrt(delta.t)*rnorm(N)

17 XP=(r-sigmaP^2/2)*delta.t+sigmaP*WP

18 XG=(r-sigmaG^2/2)*delta.t+sigmaG*WG

19 indicator=(p0*exp(XP)-g0*exp(XG)>0)

20 delta1=exp(-r*delta.t)*mean(indicator*exp(XP))

21 delta2=-exp(-r*delta.t)*mean(indicator*exp(XG))

22 delta=c(delta1,delta2)

23 }

24 bi.delta.true=bi.true(N=4e+06,p0=110,g0=100,sigmaP=0.10,sigmaG

=0.15,rhoPG=0.1,delta.t=1,r=0.05)

25 print(round(bi.delta.true,4))

26

27 # The Kirk and Bjerksund-Stensland formula (same):

28 bi<-function(N,p0,g0,sigmaP,sigmaG,rhoPG,delta.t,r)

29 {

30 sigma=sqrt(sigmaP^2-2*rhoPG*sigmaP*sigmaG+sigmaG^2)

31 d1=(log(p0/g0)+sigma^2*delta.t/2)/(sigma*sqrt(delta.t))

32 d2=d1-sigma*sqrt(delta.t)

33 delta1=pnorm(d1)+(p0*dnorm(d1)-g0*dnorm(d2))/(p0*sigma*sqrt

(delta.t))
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34 delta2=-pnorm(d2)-(p0*dnorm(d1)-g0*dnorm(d2))/(g0*sigma*

sqrt(delta.t))

35 delta=c(delta1,delta2)

36 }

37 bi.delta=bi(p0=110,g0=100,sigmaP=0.10,sigmaG=0.15,rhoPG=0.1,delta.

t=1,r=0.05)

38 print(round(bi.delta,4))

A.7 R codes for differentiating delta-hedge pa-

rameters for trivariate spread option

1 # Monte Carlo method:

2 tri.true<-function(N,p0,g0,c0,sigmaP,sigmaG,sigmaC,rhoPG,rhoCP,

rhoCG,delta.t,r,h)

3 {

4 WC=sqrt(delta.t)*rnorm(N)

5 U1=sqrt(delta.t)*rnorm(N)

6 U2=sqrt(delta.t)*rnorm(N)

7 a=(rhoPG-rhoCP*rhoCG)/sqrt(1-rhoCP^2)

8 b=sqrt(1-rhoPG^2-(rhoPG-rhoCP*rhoCG)^2/(1-rhoCP^2))

9 WP=rhoCP*WC+sqrt(1-rhoCP^2)*U1

10 WG=rhoCG*WC+a*U1+b*U2

11 XP=(r-sigmaP^2/2)*delta.t+sigmaP*WP

12 XG=(r-sigmaG^2/2)*delta.t+sigmaG*WG

13 XC=(r-sigmaC^2/2)*delta.t+sigmaC*WC

14 indicator=(p0*exp(XP)-h*g0*exp(XG)-c0*exp(XC)>0)

15 delta1=c0*exp((muC-r)*delta.t)*mean(indicator*exp(XP))

16 delta2=-c0*exp((muC-r)*delta.t)*mean(indicator*h*exp(XG))

17 delta3=-exp(-r*delta.t)*mean(indicator*exp(XC))

18 delta=c(delta1,delta2,delta3)

19 }

20 tri.delta.true=tri.true(N=4e+04,p0=110,g0=100,c0=70,sigmaP=0.10,

sigmaG=0.15,sigmaC=0.15,rhoPG=0.1,rhoCG=0.8,rhoCP=-0.7,delta.t

=1,r=0.05,h=1)

21 print(round(tri.delta.true,4))

22

23 # The revisited Kirk formula:

24 delta.K<-function(p0,g0,c0,sigmaP,sigmaG,rhoPG,delta.t,r,muC,h)

25 {

26 P=p0/c0; G=g0/c0

27 sigma.k=sqrt(sigmaP^2-2*h*G*exp(r*delta.t)/(h*G*exp(r*delta

.t)+1)*rhoPG*sigmaP*sigmaG+(h*G*exp(r*delta.t)/(h*G*exp(
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r*delta.t)+1)*sigmaG)^2)

28 d1=(log(P/(h*G+exp(-r*delta.t)))+sigma.k^2/2*delta.t)/(

sigma.k*sqrt(delta.t))

29 d2=d1-sigma.k*sqrt(delta.t)

30 delta1=exp(muC*delta.t)*(pnorm(d1)+(p0*dnorm(d1)-h*g0*dnorm

(d2)-exp(-r*delta.t)*c0*dnorm(d2))/(p0*sigma.k*sqrt(

delta.t)))

31 delta2=exp(muC*delta.t)*(-h*pnorm(d2)-(p0*dnorm(d1)-h*g0*

dnorm(d2)-exp(-r*delta.t)*c0*dnorm(d2))/((h*G+exp(-r*

delta.t))*sigma.k*sqrt(delta.t)))

32 delta3=exp(muC*delta.t)*(-exp(-r*delta.t)*pnorm(d2)-(p0*

dnorm(d1)-h*g0*dnorm(d2)-exp(-r*delta.t)*c0*dnorm(d2))*

(1/c0-(1/(h*G+exp(-r*delta.t)))*(h*G/c0))/(sigma.k*sqrt(

delta.t)))

33 delta=c(delta1,delta2,delta3)

34 }

35 delta.K=delta.K(p0=110,g0=100,c0=70,sigmaP=sigmaP.tilde,sigmaG=

sigmaG.tilde,rhoPG=rhoPG,delta.t=1,r=0.05,muC=0.05,h=1)

36 print(round(delta.K,4))

37

38 # The revisited Bjerksund-Stensland formula:

39 delta.BS<-function(p0,g0,c0,sigmaP,sigmaG,rhoPG,delta.t,r,muC,h)

40 {

41 P=p0/c0

42 G=g0/c0

43 a=h*G*exp(r*delta.t)+1

44 b=h*G*exp(r*delta.t)/a

45 sigma.bs=sqrt(sigmaP^2-2*b*rhoPG*sigmaP*sigmaG+b^2*sigmaG

^2)

46 d1=(log(P/a)+(r+sigmaP^2/2-b*rhoPG*sigmaP*sigmaG+b^2*sigmaG

^2/2)*delta.t)/(sigma.bs*sqrt(delta.t))

47 d2=(log(P/a)+(r-sigmaP^2/2+rhoPG*sigmaP*sigmaG+b^2*sigmaG^2

/2-b*sigmaG^2)*delta.t)/(sigma.bs*sqrt(delta.t))

48 d3=(log(P/a)+(r-sigmaP^2/2+b^2*sigmaG^2/2)*delta.t)/(sigma.

bs*sqrt(delta.t))

49 delta1=exp(muC*delta.t)*(pnorm(d1)+(p0*dnorm(d1)-h*g0*dnorm

(d2)-exp(-r*delta.t)*c0*dnorm(d3))/(p0*sigma.bs*sqrt(

delta.t)))

50 delta2=exp(muC*delta.t)*(-h*pnorm(d2)-(p0*dnorm(d1)-h*g0*

dnorm(d2)-exp(-r*delta.t)*c0*dnorm(d3))/((h*G*exp(r*

delta.t)+1)*sigma.bs*sqrt(delta.t)))

51 delta3=exp(muC*delta.t)*(-exp(r*delta.t)*pnorm(d3)-(p0*

dnorm(d1)-h*g0*dnorm(d2)-exp(r*delta.t)*c0*dnorm(d3))*(1
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/c0-1/(h*G*exp(r*delta.t)+1)*h*G*exp(r*delta.t)/c0)/(

sigma.bs*sqrt(delta.t)))

52 delta=c(delta1,delta2,delta3)

53 }

54 delta.BS=delta.BS(p0=110,g0=100,c0=70,sigmaP=sigmaP.tilde,sigmaG=

sigmaG.tilde,rhoPG=rhoPG,delta.t=1,r=0.05,muC=0.05,h=1)

55 print(round(delta.BS,4))

A.8 R codes for plotting relative errors for pric-

ing trivariate spread options

1 # Plot the relative errors for various h:

2 h=seq(1,0.5,by=-0.1)

3 BS.h=c(12.50,19.81,25.79,29.68,32.10,32.74)/100

4 K.h=c(12.41,19.75,25.76,29.67,32.09,32.74)/100

5 plot(h,BS.h,pch=1,xlab="h value",ylab="relative error")

6 points(h,K.h,pch=3,col=2)

7 legend("bottomleft",cex=0.7,c("the Kirk formula","the Bjerksund-

Stensland formula"),pch=c(3,1),col=c(2,1))

8

9 # Plot the relative errors for various relative C(0):

10 C_0=seq(10,100,by=10)

11 BS.h_1.0=c

(18.83,19.08,18.65,17.55,16.28,14.61,12.34,10.80,8.65,5.55)/100

12 K.h_1.0=c

(18.83,19.07,18.63,17.52,16.22,14.53,12.25,10.67,8.52,5.43)/100

13 BS.h_0.8=c

(19.29,21.54,23.24,24.69,25.37,25.80,25.90,25.70,25.28,24.64)/

100

14 K.h_0.8=c

(19.29,21.54,23.24,24.69,25.36,25.78,25.87,25.67,25.25,24.61)/

100

15 plot(C_0,BS.h_1.0,pch=1,col=1,xlab="C(0) value",ylab="relative

error",ylim=c(0.05,0.3))

16 points(C_0,K.h_1.0,pch=3,col=2)

17 points(C_0,BS.h_0.8,pch=2,col=1)

18 points(C_0,K.h_0.8,pch=4,col=3)

19 legend("bottomleft",cex=0.7,c("the Kirk formula, h=1.0","the

Bjerksund-Stensland formula, h=1.0","the Kirk formula, h=0.8","

the Bjerksund-Stensland formula, h=0.8"),pch=c(3,1,4,2),col=c

(2,1,3,1))
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Appendix B

MATLAB scripts

All the MATLAB codes used for plotting in this project are listed as the following.

B.1 MATLAB codes for plotting relative errors

for pricing spread options with various volatil-

ities

1 % Define some reasonable volatility values:

2 x=linspace(0.10,0.50,9);

3 y=linspace(0.10,0.50,9);

4 [xx,yy]=meshgrid(x,y);

5

6 % a) The Bjerksund-Stensland formula, when K=10:

7 BS_vol_plus10=[0.02/100,0.12/100,0.05/100,0.01/100,0.04/100,0.01/

100,0.18/100,0.06/100,0.07/100,

8 0.03/100,0.10/100,0.08/100,0.08/100,0.20/100,0.02/100,0.08/

100,0.09/100,0.00/100,

9 0.07/100,0.09/100,0.02/100,0.03/100,0.07/100,0.01/100,0.22/

100,0.06/100,0.04/100,

10 0.02/100,0.02/100,0.08/100,0.13/100,0.03/100,0.02/100,0.07/

100,0.20/100,0.16/100,

11 0.01/100,0.03/100,0.06/100,0.08/100,0.14/100,0.03/100,0.11/

100,0.04/100,0.07/100,

12 0.03/100,0.01/100,0.04/100,0.07/100,0.02/100,0.08/100,0.06/

100,0.13/100,0.02/100,

13 0.06/100,0.03/100,0.08/100,0.06/100,0.09/100,0.05/100,0.00/

100,0.01/100,0.00/100,

14 6.20/100,0.06/100,0.01/100,0.00/100,0.00/100,0.00/100,0.02/

100,0.00/100,0.08/100,
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15 0.04/100,0.01/100,0.00/100,0.62/100,0.05/100,0.06/100,0.11/

100,0.02/100,0.08/100];

16 figure(1)

17 surf(xx,yy,BS_vol_plus10);

18 xlabel(’Volatility 1’);

19 ylabel(’Volatility 2’);

20 zlabel(’Relative error’);

21

22 % b) The Kirk formula, when K=10:

23 Kirk_vol_plus10=[0.01/100,0.12/100,0.05/100,0.01/100,0.04/100,0.71

/100,0.18/100,0.07/100,0.07/100,

24 0.02/100,0.10/100,0.08/100,0.08/100,0.20/100,0.02/100,0.09/

100,0.09/100,0.00/100,

25 0.07/100,0.10/100,0.03/100,0.04/100,0.07/100,0.01/100,0.22/

100,0.06/100,0.04/100,

26 0.04/100,0.00/100,0.10/100,0.14/100,0.03/100,0.02/100,0.08/

100,0.20/100,0.16/100,

27 0.04/100,0.06/100,0.09/100,0.05/100,0.12/100,0.02/100,0.12/

100,0.04/100,0.07/100,

28 0.02/100,0.04/100,0.01/100,0.03/100,0.03/100,0.05/100,0.08/

100,0.12/100,0.01/100,

29 0.02/100,0.04/100,0.01/100,0.01/100,0.03/100,0.00/100,0.04/

100,0.02/100,0.02/100,

30 0.00/100,0.15/100,0.09/100,0.10/100,0.09/100,0.08/100,0.09/

100,0.05/100,0.04/100,

31 0.10/100,0.14/100,0.12/100,0.50/100,0.07/100,0.18/100,0.01/

100,0.10/100,0.01/100];

32 figure(2)

33 surf(xx,yy,Kirk_vol_plus10);

34 xlabel(’Volatility 1’);

35 ylabel(’Volatility 2’);

36 zlabel(’Relative error’);

37

38 % c) The Bjerksund-Stensland formula, when K=-10:

39 BS_vol_minus10=[0.02/100,0.01/100,0.03/100,0.01/100,0.01/100,0.02/

100,0.05/100,0.04/100,0.05/100,

40 0.02/100,0.04/100,0.05/100,0.01/100,0.02/100,0.06/100,0.03/

100,0.02/100,0.00/100,

41 0.07/100,0.02/100,0.03/100,0.02/100,0.04/100,0.03/100,0.00/

100,0.03/100,0.05/100,

42 0.02/100,0.07/100,0.06/100,0.07/100,0.02/100,0.03/100,0.03/

100,0.06/100,0.03/100,
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43 0.02/100,0.02/100,0.00/100,0.04/100,0.00/100,0.09/100,0.01/

100,0.09/100,0.02/100,

44 0.01/100,0.06/100,0.04/100,0.09/100,0.07/100,0.05/100,0.04/

100,0.03/100,0.09/100,

45 0.04/100,0.05/100,0.04/100,0.12/100,0.04/100,0.02/100,0.02/

100,0.06/100,0.02/100,

46 0.02/100,0.09/100,0.01/100,0.03/100,0.01/100,0.03/100,0.05/

100,0.01/100,0.05/100,

47 0.02/100,0.00/100,0.05/100,0.02/100,0.01/100,0.05/100,0.02/

100,0.04/100,0.07/100];

48 figure(3)

49 surf(xx,yy,BS_vol_minus10);

50 xlabel(’Volatility 1’);

51 ylabel(’Volatility 2’);

52 zlabel(’Relative error’);

53

54 % d) The Kirk formula, when K=-10:

55 Kirk_vol_minus10=[0.01/100,0.02/100,0.03/100,0.01/100,0.01/

100,0.02/100,0.05/100,0.04/100,0.04/100,

56 0.06/100,0.09/100,0.07/100,0.02/100,0.02/100,0.06/100,0.03/

100,0.02/100,0.00/100,

57 0.26/100,0.15/100,0.04/100,0.02/100,0.03/100,0.02/100,0.00/

100,0.03/100,0.05/100,

58 0.31/100,0.31/100,0.22/100,0.03/100,0.07/100,0.05/100,0.02/

100,0.06/100,0.03/100,

59 0.35/100,0.31/100,0.26/100,0.14/100,0.12/100,0.15/100,0.02/

100,0.08/100,0.03/100,

60 0.42/100,0.34/100,0.30/100,0.18/100,0.12/100,0.08/100,0.12/

100,0.01/100,0.11/100,

61 0.42/100,0.50/100,0.45/100,0.23/100,0.31/100,0.21/100,0.14/

100,0.14/100,0.02/100,

62 0.50/100,0.57/100,0.47/100,0.37/100,0.32/100,0.29/100,0.24/

100,0.11/100,0.02/100,

63 0.48/100,0.50/100,0.43/100,0.47/100,0.37/100,0.27/100,0.22/

100,0.14/100,0.05/100];

64 figure(4)

65 surf(xx,yy,Kirk_vol_minus10);

66 xlabel(’Volatility 1’);

67 ylabel(’Volatility 2’);

68 zlabel(’Relative error’);
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B.2 MATLAB codes for plotting relative errors

for pricing spread options with various strike

prices and correlation coefficients

1 % Define some reasonable strike prices and correlations:

2 x=linspace(-0.9,0.9,9);

3 y=linspace(-20,20,9);

4 [xx,yy]=meshgrid(x,y);

5

6 % a) The Bjerksund-Stensland formula:

7 BS_k_rho=[0.01/100,0.00/100,0.04/100,0.05/100,0.02/100,0.01/

100,0.01/100,0.02/100,0.01/100,

8 0.04/100,0.02/100,0.00/100,0.01/100,0.02/100,0.04/100,0.01/

100,0.03/100,0.03/100,

9 0.02/100,0.07/100,0.07/100,0.07/100,0.04/100,0.01/100,0.01/

100,0.01/100,0.01/100,

10 0.00/100,0.02/100,0.02/100,0.02/100,0.02/100,0.04/100,0.01/

100,0.02/100,0.02/100,

11 0.00/100,0.02/100,0.01/100,0.04/100,0.07/100,0.02/100,0.01/

100,0.03/100,0.00/100,

12 0.01/100,0.07/100,0.01/100,0.04/100,0.01/100,0.01/100,0.03/

100,0.02/100,0.01/100,

13 0.01/100,0.09/100,0.03/100,0.05/100,0.02/100,0.03/100,0.02/

100,0.07/100,0.33/100,

14 0.00/100,0.01/100,0.06/100,0.01/100,0.03/100,0.03/100,0.03/

100,0.04/100,0.07/100,

15 0.07/100,0.01/100,0.78/100,0.05/100,0.03/100,0.08/100,0.01/

100,0.03/100,0.53/100];

16 figure(5)

17 surf(xx,yy,BS_k_rho);

18 xlabel(’Correlation’);

19 ylabel(’Strike price’);

20 zlabel(’Relative error’);

21

22 % b) The Kirk formula:

23 Kirk_k_rho=[0.19/100,0.20/100,0.15/100,0.12/100,0.13/100,0.10/

100,0.07/100,0.07/100,0.00/100,

24 0.12/100,0.18/100,0.15/100,0.15/100,0.11/100,0.07/100,0.10/

100,0.03/100,0.01/100,

25 0.09/100,0.17/100,0.17/100,0.03/100,0.06/100,0.08/100,0.07/

100,0.06/100,0.02/100,
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26 0.05/100,0.03/100,0.03/100,0.07/100,0.07/100,0.10/100,0.06/

100,0.08/100,0.02/100,

27 0.00/100,0.02/100,0.01/100,0.04/100,0.07/100,0.02/100,0.01/

100,0.03/100,0.00/100,

28 0.01/100,0.05/100,0.01/100,0.06/100,0.01/100,0.03/100,0.07/

100,0.04/100,0.10/100,

29 0.01/100,0.07/100,0.05/100,0.06/100,0.03/100,0.02/100,0.02/

100,0.08/100,0.04/100,

30 0.16/100,0.18/100,0.11/100,0.15/100,0.21/100,0.24/100,0.29/

100,0.35/100,1.24/100,

31 0.51/100,0.44/100,0.31/100,0.55/100,0.53/100,0.78/100,0.91/

100,1.48/100,6.24/100];

32 figure(6)

33 surf(xx,yy,Kirk_k_rho);

34 xlabel(’Correlation’);

35 ylabel(’Strike price’);

36 zlabel(’Relative error’);

B.3 MATLAB codes for plotting relative errors

for pricing spread options with various drifts and

exercising times

1 % Define some reasonable drifts ane exercising times:

2 x=[0,0.03,0.05,0.07,0.10];

3 y=[1,2,3,6,9,12];

4 [xx,yy]=meshgrid(x,y);

5

6 % a) The Bjerksund-Stensland formula, when K=10:

7 BS_r_T_plus10=[228.64/100,226.08/100,223.52/100,220.61/100,215.40/

100,

8 220.82/100,219.65/100,217.31/100,213.74/100,206.89/100,

9 213.29/100,214.10/100,211.89/100,208.60/100,200.70/100,

10 192.21/100,198.99/100,199.18/100,196.67/100,187.62/100,

11 172.82/100,185.29/100,188.42/100,187.35/100,177.58/100,

12 154.67/100,173.21/100,179.34/100,179.54/100,170.31/100];

13 figure(7)

14 surf(xx,yy,BS_r_T_plus10);

15 xlabel(’Drift’);

16 ylabel(’Time to exercise’);

17 zlabel(’Relative error’);

18

19 % b) The Kirk formula, when K=10:
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20 Kirk_r_T_plus10=[236.37/100,229.79/100,225.38/100,221.29/

100,215.40/100,

21 236.08/100,226.97/100,220.99/100,215.05/100,206.88/100,

22 235.90/100,224.92/100,217.31/100,210.52/100,200.68/100,

23 235.81/100,219.84/100,209.58/100,200.33/100,187.60/100,

24 235.98/100,215.51/100,203.43/100,192.65/100,177.55/100,

25 236.00/100,212.34/100,198.88/100,186.38/100,170.28/100];

26 figure(8)

27 surf(xx,yy,Kirk_r_T_plus10);

28 xlabel(’Drift’);

29 ylabel(’Time to exercise’);

30 zlabel(’Relative error’);

31

32 % c) The Bjerksund-Stensland formula, when K=-10:

33 BS_r_T_minus10=[0.00/100,0.00/100,0.00/100,0.00/100,0.00/100,

34 0.00/100,0.00/100,0.00/100,0.01/100,0.01/100,

35 0.02/100,0.01/100,0.02/100,0.03/100,0.03/100,

36 0.37/100,0.15/100,0.33/100,0.46/100,0.54/100,

37 1.34/100,0.30/100,0.97/100,1.41/100,1.66/100,

38 2.89/100,0.35/100,1.75/100,2.65/100,3.19/100];

39 figure(9)

40 surf(xx,yy,BS_r_T_minus10);

41 xlabel(’Drift’);

42 ylabel(’Time to exercise’);

43 zlabel(’Relative error’);

44

45 % d) The Kirk formula, when K=-10:%

46 Kirk_r_T_minus10=[0.00/100,0.00/100,0.00/100,0.00/100,0.00/100

47 0.00/100,0.00/100,0.00/100,0.01/100,0.01/100

48 0.03/100,0.04/100,0.03/100,0.03/100,0.04/100

49 0.49/100,0.53/100,0.52/100,0.54/100,0.57/100

50 1.46/100,1.54/100,1.58/100,1.65/100,1.71/100

51 2.76/100,2.89/100,2.99/100,3.12/100,3.27/100];

52 figure(10)

53 surf(xx,yy,Kirk_r_T_minus10);

54 xlabel(’Drift’);

55 ylabel(’Time to exercise’);

56 zlabel(’Relative error’);
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