
STABILIZED FINITE ELEMENT METHODS
FOR THE BRINKMAN EQUATION ON
FITTED AND FICITITIOUS DOMAINS

by

Jarle Sogn

Thesis
for the degree of

MASTER OF SCIENCE

Master in applied mathematics and mechanics

Faculty of Mathematics and Natural Sciences

University of Oslo

February, 2014





3

Acknowledgements

I would like to thank my supervisors Kent-Andre Mardal, André Massing, Øyvind Evju
and Martin Sandve Alnæs, who have helped me both with this thesis and further aca-
demical prospects. For that I am truly grateful.

I would like to express my gratitude to Magne, Håkon and Tom Andreas for good
discussions, Andreas for proofreading most parts of this thesis, and the people in Study
hall B1002 for creating a great work environment.

Finally, a thanks goes to my family for being patient with me during last Christmas.





Contents

1 Introduction 7

2 Motivation and application 9
2.1 Intracranial aneurysms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Motivation for using methods of non-matching meshes . . . . . . . . . . . 10

3 Mathematical model 13
3.1 The Navier–Stokes equations . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 The Brinkman equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Numerical methods I: Fitted meshes 17
4.1 The finite element method . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Weak formulation of the Brinkman equation . . . . . . . . . . . . . . . . . 21
4.3 Stabilization of the Brinkman equation . . . . . . . . . . . . . . . . . . . . 23
4.4 A priori error estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Numerical methods II: Unfitted meshes 31
5.1 The Nitsche method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 Cut elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Results 39
6.1 The test problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2 Darcy flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.3 Brinkman problem with unfitted meshes . . . . . . . . . . . . . . . . . . . 42

7 A priori error estimate 47
7.1 Ingredients: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.2 Brezzi’s conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.3 A priori error estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

8 Preconditioning 59
8.1 Iterative methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5



6 CONTENTS

8.2 Operator preconditioning of the unstabilized Brinkman equation . . . . . 60
8.3 Discrete preconditioning of the unstabilized Brinkman equation . . . . . . 61
8.4 Preconditioning the stabilized Brinkman equation . . . . . . . . . . . . . . 64

9 Discussion 67
9.1 The Brinkman equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
9.2 Conclusions and further work . . . . . . . . . . . . . . . . . . . . . . . . . 71

A Mathematical definitions and formulas 73

B Source code 77
B.1 Brinkman problem without Nitsche . . . . . . . . . . . . . . . . . . . . . . 77
B.2 Level set function for a stent . . . . . . . . . . . . . . . . . . . . . . . . . 79
B.3 UFL code for the fictitious domain simulation . . . . . . . . . . . . . . . . 80



Chapter 1

Introduction

Many aspects of nature’s change can be described through mathematical models. A
large part of these models are partial differential equations (PDEs). Most PDEs do
not have a closed form analytical solution. To solve these equations we use numerical
methods. One of the largest family of numerical methods for solving partial differential
equations is the finite element method (FEM).

We are interested in computational fluid dynamics, in particular viscous and porous flow,
which arises in many physical models. Stokes flow and Darcy flow describe viscous and
porous flow, respectively. The parameter-dependent equation, the Brinkman equation,
describes both flows. We will apply finite element methods on the Brinkman equation
and treat the Stokes flow and Darcy flow as extreme cases of the Brinkman equation.

Saddle point problems, which the Brinkman equation is, need finite elements that satis-
fies a set of conditions known as the Brezzi conditions [1]. These elements are referred
to as stable elements. Alternatively, stabilization techniques can be used to circumvent
these conditions. The mini–elements are uniformly stable for Brinkman equation [2, 3].
In Chapter 4 we use the mini–elements as a comparison to two different stabilization
methods; the Pressure Stabilized Petrov–Galerkin (PSPG) method and the Continuous
Interior Penalty (CIP) method.

Finding error estimates for a numerical method is important. They give information on
how the error behaves and how good the method is. Juntunen and Stenberg [3] prove
an a priori error estimate for the mini–elements and the PSPG method. We will prove a
similar a priori error estimate for the CIP method. Burman and Hansbo [4] have proved
an error estimate for the CIP method. However, they consider other solution spaces.

Normally, finite element methods involve discretizing the domain into a mesh, a fitted
mesh. The meshing of a domain can be challenging and time consuming, especially
if the domain is complex. An alternative is using fictitious domain methods. These
are methods in which the domain and mesh are independent from each other. We will
consider a fictitious domain method with cut elements. This method is the similar

7



8 CHAPTER 1. INTRODUCTION

to that of Burman and Hansbo [5, 6]. Fictitious domain methods create some new
challenges, one being that the elements on the boundary need stabilizing, which is done
with ghost–penalties [7, 8]. Another challenge is that Dirichlet boundary conditions need
to be weakly imposed. To achieve this, we use the Nitsche method [9], which has been
popular in recent years because of advances in fictitious domain methods.

The work of this master thesis was done at the Center for Biomedical Computing (CBC)
and the initial task was to perform numerical simulations of blood flow through intracra-
nial aneurysms with stents inserted. The extremely fine structure of the stents and the
complex domain made normal methods insufficient and we have instead focused on the
fictitious domain method. Even though there are many possible applications for the
fictitious domain method, the medical application has been the main motivation and is
explained in Chapter 2. To perform numerical simulations on large problems (like blood
flow through aneurysms), good preconditioners are essential. Chapter 8 contains oper-
ator preconditioning for the unstabilized and the stabilized Brinkman equation. The
theory of operator preconditioning is based on Mardal and Winther [10, 11]. These ar-
ticles suggests a preconditioner for the unstabilized Brinkman equation and we suggest
our own preconditioner for the stabilized Brinkman equation. Both preconditioners are
examined by finding the condition number and the number of iterations needed to solve
the system. The operator preconditioning approach also gives a deeper understanding
of the nature of the Brinkman equation.

The structure of this thesis is: In Chapter 2 we present motivation and applications for
fictitious domain methods in the context of treatment of intracranial aneurysms. The
Navier–Stokes equations are derived in Chapter 3, which we discretize with respect to
time and obtain the Brinkman equation. In Chapter 4 and 5 we consider the finite
element method and the fictitious domain method respectively, with regards to the
Brinkman equation. In Chapter 6 we examine the Darcy case and present numerical
results for the fictitious domain method. An a priori error estimate is proved in Chapter
7. Chapter 8 contains preconditioning and the discussion can be found in Chapter 9.



Chapter 2

Motivation and application

2.1 Intracranial aneurysms

An intracranial aneurysm (cerebral aneurysm) is an abnormal blood vessel inside the
brain which has a balloon-like bulge of the vessel wall. Unruptured intracranial aneurysms
occur in 5-8% of the general population [12]. Aneurysms are subject to spontaneous
rupture. If this happens, blood bleeds into the subarachnoid space, which is called sub-
arachnoid hemorrhage (SAH). In western countries the annual incidence of aneurysmal
SAH is approximately 9 / 100 000. This number varies with several factors, such as
country, gender and smoking or non–smoking [13, 14]. 30-40% of those who get aneuris-
mal SAH, die from the initial bleed. 7-20% of those surviving the initial treatment, die
within one year due to complications such as acute re-bleeding or vasospasm. Of the
survivors approximately 30% sustain significant neurological deficits [15].

An aneurysm ruptures when hemodynamic loads exceed the wall strength. The details
of why the wall is weakened and the evolution of the aneurysm towards stabilization
or rupture, are not fully understood. However, several risk factors have been studied
[12]. The probability that an aneurysm will rupture is dependent on many factors, such
as size, location and geometry. Hemodynamic factors are considered to be important
for the growth and rupture of aneurysms. A lot of computational studies have and are
being done to model the blood with computational fluid dynamics to calculate the wall
shear stress (WSS) and pressure on the vessel wall [12, 16, 15]. One of the aims of
these studies is to help physicians better determine the risk of rupture and course of
treatment. There are three main treatment options for intracranial aneurysms: Surgery,
endovascular coiling and endovascular insertion of a stent [15]. The third option is often
in combination with the second option. We explain the two endovascular treatment
options in the following two paragraphs.

The aneurysm is filled up with coil material using cerebral angiography techniques. This
lowers the intra-aneurysmal hemodynamic stress and induces thrombus formation which

9



10 CHAPTER 2. MOTIVATION AND APPLICATION

Figure 2.1: The left figure illustrates a wide neck aneurysm which is both coiled and
stented. The stent keeps the coil in place. The right figure shows two stents. Source:
US National Institutes of Health and Wikimedia Commons.

eventually clods the aneurysm. Endovascular coiling is the most preferred method. Its
disadvantages is that the coil can “collapse” and wide neck aneurysms can not be coiled
directly.

A stent (see Figure 2.1) is placed in a vessel such that some of the blood is diverted away
from the aneurysm sack and WSS and pressure is reduced. There are several different
stent designs with different space between the threads. Stents which allow no blood from
passing through are called flow diverters. One of the disadvantage, with using stents is
that unwanted thrombosis can occur and blood clots can be created. This can be treated
with medications.

2.2 Motivation for using methods of non-matching meshes

For our computations our domain is a blood vessel with a stent inserted. Figure 2.2 shows
a simple stent design. We would like to change the number of twists and number of stent
threads to find an “optimal” patient specific stent and also consider other designs. Since
stents have an extremely fine structure (thread thickness is 30−50µm [17]) and we wish
to consider many different stents, meshing the domain (blood vessel and several different



2.2. MOTIVATION FOR USING METHODS OF NON-MATCHING MESHES 11

Figure 2.2: Simple stent design. The
spacial axis x, y and z axis where dis-
cretized with 125, 125 and 250 points,
respectively. A program uses an analyt-
ical function (level set function) to de-
termines if the point is on/in the stent
or not.

stents) is difficult and the cell size must be small in order to represent a stent properly.
One solution is to refine the mesh such that the size of cells close to the stent decreases.
However, the number of cells will grow with the power of 2–3 and the mesh becomes
too large to handle. Therefore we seek a method that can accurately represent the stent
without the need for extensive refinement. Non-matching methods (unfitted methods)
have this property. The methods we will consider are not well studied and we need to
further develop the methodology, which is the focus of this thesis.

In the unfitted methods we will consider, the domain is described through analytical
functions (level set functions) and is independent of the mesh. This makes the methods
desirable for many other application where the domain is complex and difficult to mesh.



12 CHAPTER 2. MOTIVATION AND APPLICATION



Chapter 3

Mathematical model

3.1 The Navier–Stokes equations

The Navier–Stokes equations are important equations used to describe the motion of
fluid. They are derived from conservation of mass, Newton’s second law and stress-strain
relations. In this section we will derive the incompressible Navier–Stokes equations [18].
We assume that the fluid is incompressible. This is a reasonable assumption if the flow
speeds we are considering are low compared to the speed of sound. We need to use the
transport theorem.

Theorem 3.1. Reynold’s transport theorem.

Let Ω(t) ⊂ R3 be a material volume. Assume f : Ω(t)× [0, T ]→ R and that f is smooth.
Then the following holds:

∂

∂t

∫
Ω(t)

fdx =
∫

Ω(t)

∂f

∂t
dx +

∫
∂Ω(t)

f u · n dS, (3.1)

where n is the normal vector to the surface ∂Ω(t) and u is the surface velocity.

Proof. Proof can be found in [18].

Let Ω(t) ⊂ R3 be a material volume. The mass of this volume is
∫

Ω(t) ρ(x, t)dx. We have
assumed incompressibility, so ρ(x, t) = ρ. From the principal of conservation of mass we
get

∂

∂t

∫
Ω(t)

ρ dx = 0. (3.2)

We apply the transport theorem to the equation above and obtain

ρ

∫
∂Ω(t)

u · n dS = 0. (3.3)

13



14 CHAPTER 3. MATHEMATICAL MODEL

The next step is to apply the divergence theorem to the equation above, which gives

ρ

∫
Ω(t)

∇ · u dx = 0. (3.4)

Since the volume Ω(t) is arbitrary, it follows that

∇ · u = 0. (3.5)

This is one part of the Navier–stokes equations. It states that the divergence of the
velocity field is zero everywhere, which follows from conservation of mass and incom-
pressibility.

Next will use Newton’s second law. The momentum per unit volume is ρu(x, t). There
are two kinds of forces: Body forces and surface forces. The surface forces (per unit
volume) can be written as the divergence of the Cauchy stress tensor, which gives us
∇ · σ. Let f denote the body force. Newton’s second law can now be stated directly as

∂

∂t

∫
Ω(t)

ρu(x, t) dx =
∫

Ω(t)

ρ f dx +
∫

∂Ω(t)

∇ · σ dS. (3.6)

We use the transport theorem on the left-hand side of equation (3.6) to obtain∫
Ω(t)

ρ
∂u
∂t

dx +
∫

∂Ω(t)

ρu(u · n) dS =
∫

Ω(t)

ρ f dx +
∫

∂Ω(t)

∇ · σ dS. (3.7)

Using Green’s formula and Equation (3.5) on the surface term on the left-hand side, we
end up with ∫

Ω(t)

ρ
∂u
∂t

dx +
∫

Ω(t)

ρu · ∇u dx =
∫

Ω(t)

ρ f dx +
∫

∂Ω(t)

∇ · σ dS. (3.8)

Since the volume Ω(t) is arbitrary, we can remove the integrals and get

∂u
∂t

+ u · ∇u = f + 1
ρ
∇ · σ. (3.9)

Finally we need to find an expression for the stress tensor σ. We assume that the fluid is
isotropic which means that the fluid is uniform in all orientations. If the fluid is at rest,
the stress will be σ = −pI, where p is the thermodynamic pressure and I is the identity
matrix. However, we have a moving fluid which will develop additional stress due to
viscosity. We use a simple linear stress-strain relation. Fluids that follow such stress-
strain behavior are called Newtonian fluids. The stress tensor becomes σ = −pI+2µε(u),



3.2. THE BRINKMAN EQUATION 15

where µ is the dynamic viscosity and ε(u) is the strain rate tensor. This tensor is
symmetric and can be represented as

ε(u) = 1
2(∇u +∇uT ). (3.10)

Inserting our expression for the stress tensor σ in Equation (3.9), we obtain the incom-
pressible Navier–Stokes equations

∂u
∂t

+ u · ∇u = f − 1
ρ
∇p+ 2ν∇ · ε(u), (3.11)

∇ · u = 0. (3.12)

3.2 The Brinkman equation

The Brinkman equation describes flow through porous media. It can also be seen as a
singular perturbation problem. Here we use it to describe viscous flow by discretizing
the Navier–Stokes equations in a certain fashion.

3.2.1 Discretizing the Navier–Stokes equation in time

The divergence of the strain rate tensor (3.10) can be written as 1
2∇ · (∇u + ∇uT ) =

1
2 (∆u +∇(∇ · u)) which reduces to the vector Laplacian since the u is divergence free.
The Navier–Stokes equations are rewritten as

∂u
∂t

+ u · ∇u− ν∆u + 1
ρ
∇p = f , (3.13)

∇ · u = 0. (3.14)

First we discretize in time. Let t ∈ (0, T ] and let M be the number of time steps.
∆t = T

M+1 is the time step. We use un to denote the velocity at time n∆t; that is,
un = u (x, n∆t). Similar notation is used for f and p. We use an implicit scheme for the
time discretization, except for the convective term u · ∇u, for which we use an explicit
scheme. We get

un+1 − un

∆t + un · ∇un − ν∆un+1 + 1
ρ
∇pn+1 = fn+1, (3.15)

∇ · un+1 = 0. (3.16)

By rearranging equation (3.15), we get

un+1 −∆tν∆un+1 + ∆t
ρ
∇pn+1 = ∆t

(
fn+1 − un · ∇un

)
+ un. (3.17)



16 CHAPTER 3. MATHEMATICAL MODEL

We simplify the equation by scaling the pressure such that it contains ∆t
ρ . Furthermore

we redefine fn+1 such that it contains the whole right-hand side of equation (3.17). We
get

un+1 −∆tν∆un+1 +∇pn+1 = fn+1. (3.18)

Finally, we define ε2 := ∆tν which give us the Brinkman equation,

u− ε2∆u +∇p = f ,
∇ · u = 0.

(3.19)

The Brinkman equation (3.19) will be our main focus from now on. We refer to [19], for
other suggestions on discretizing the Navier–Stokes equations.

3.2.2 Some properties of the Brinkman equation

For simplicity we use pure Dirichlet boundary conditions for the velocity; that is,

u (x) = g (x) , ∀x ∈ ∂Ω = Γ. (3.20)

It follows that the pressure is only determined uniquely up to a constant. To obtain
uniqueness we require the additional condition,∫

Ω

p dx = 0. (3.21)

We use the notation p ∈ L2
0 (Ω), meaning that the pressure is in the L2-space and satisfies

condition (3.21).

The parameter ε is a number between zero and one. For ε = 1, Equation (3.19) is a Stokes
problem with a non-harmful lower order term. The solution spaces are u ∈

[
H1
g (Ω)

]d
and p ∈ L2

0 (Ω). For ε = 0, Equation (3.19) is a mixed Poisson problem (also called
Darcy flow) which has two possible solution spaces, one of them is u ∈

[
L2
g (Ω)

]d
and

p ∈ H1 (Ω) ∩ L2
0 (Ω). The subscript g implies that the function is equal to g(x) on the

boundary1. We will discuss the solution space in further detail in Chapter 8 and 9.
Remark: When ε = 0 the boundary condition (3.20) reduces to u · n = g · n.

1The space L2
g (Ω) does not make sense since u does not need to be continuous at the boundary.



Chapter 4

Numerical methods I: Fitted
meshes

In this chapter we explain the finite element method and use it to numerically solve the
Brinkman equation. We introduce the mini–element and some stabilization methods to
circumvent the Brezzi conditions. The convergence rates are measured for the different
methods. The mesh T is assumed to be fitted to the domain Ω; that is, ⋃T∈T T = Ω̄.

4.1 The finite element method

The finite element method (FEM) is an elegant mathematical framework for solving
differential equations. It emerged in the second half of the 20th century and is today a
widely used method. The method can be viewed in four steps:

1. A (strong) formulation of the problem

2. A weak formulation of the problem

3. Discretizing with a suitable finite element

4. Solution algorithm

To explain these steps we use an example problem. The strong formulation of the
example problem reads:

Problem 4.1. Poisson’s equation:

Find a function u(x) in some function space V (Ω) such that

−∆u = f(x) ∀x ∈ Ω,
u(x) = g(x) ∀x ∈ ΓD,

∂nu(x) = h(x) ∀x ∈ ΓN ,
(4.1)

17



18 CHAPTER 4. NUMERICAL METHODS I: FITTED MESHES

where ∂nu(x) = ∇u(x) · n and Ω is the domain. The boundary is ∂Ω = Γ = ΓD ∪ ΓN ,
where ΓD denotes the Dirichlet part and ΓN denotes the Neumann part. We assume that
they do not overlap. If ΓD is nonempty and f ∈ L2 (Ω), then the problem is well-posed.

4.1.1 The weak formulation

Problem 4.1 is strongly formulated. We seek to reformulate it as a weak formulation.
Let v be a function in some function space V̂ . We call v the test function. We multiply
the test function v with the first line of Equation (4.1) and integrate over the domain,∫

Ω

−∆u v dx =
∫
Ω

f v dx. (4.2)

The left-hand side is integrated by parts,∫
Ω

∇u · ∇v dx−
∫

ΓD

∂u

∂nv dS −
∫

ΓN

∂u

∂nv dS =
∫
Ω

f v dx. (4.3)

We seek a solution that is equal to g(x) on the Dirichlet boundary, u|ΓD = g(x). We let
the test function be zero on the Dirichlet boundary, v|ΓD = 0. Equation (4.3) becomes∫

Ω

∇u · ∇v dx =
∫
Ω

f v dx +
∫

∂ΩN

h v dS. (4.4)

By writing the differential equation in this form, we no longer require u to be two times
differentiable. Instead, we require that u is in the Sobolev space H1

g,D (Ω) (see A.3).
That is, u ∈ V = H1

g,D (Ω), where the subscript, “g,D”, means that u is equal to g(x)
on the Dirichlet boundary. A proper space for the test function, is v ∈ V = H1

0,D (Ω).
We now state the weak formulation of Problem 4.1:

Problem 4.2. Find u ∈ H1
g,D (Ω) such that∫

Ω

∇u · ∇v dx =
∫
Ω

f v dx +
∫

∂ΩN

h v dS ∀ v ∈ H1
0,D (Ω) . (4.5)

4.1.2 The finite element

We use the definition of the finite element and the nodal basis as defined by Ciarlet in
1978 [20] [21].

Definition 4.1. Finite element.

A finite element is defined by a triple (T,V,L), where



4.1. THE FINITE ELEMENT METHOD 19

• the domain T is a bounded, closed subset of Rd (for d = 1, 2, 3, . . .) with nonempty
interior and piecewise smooth boundary;

• the space V = V (T ) is a finite dimensional function space on T of dimension n;

• the set of degrees of freedom (nodes) L = {`1, `2, . . . , `n} is a basis for the dual
space V ′; that is, the space of bounded linear functionals on V.

Definition 4.2. Nodal basis.

The nodal basis {φi}ni=1 for a finite element (T,V,L) is the unique basis satisfying

`i(φj) = δij .

There are many kinds of finite elements which have different properties that are suited
for different kinds of problems. One of the simplest and possibly the most common
finite element, is the Lagrange element. It is also known as the continuous Galerkin
element, CG. Let Pq denote the Lagrange element, where q is the polynomial order of
the element. Figure 4.1 shows a Lagrange element for q = 1, on a interval, triangle and
tetrahedron.

Definition 4.3. The Lagrange element.

The Lagrange element (Pq) is defined for q = 1, 2, . . . by

T = {interval, triangle, tetrahedon}, (4.6)
V = Pq (T ) , (4.7)

`i (v) = v
(
xi
)
, i = 1, . . . , n(q), (4.8)

where {xi}n(q)
i=1 is an enumeration of points in T defined by

x =


i/q, 0 6 i 6 q, T interval,
(i/q, j/q), 0 6 i+ j 6 q, T triangle,
(i/q, j/q, k/q), 0 6 i+ j + k 6 q, T tetrahedron.

(4.9)

We also define the bubble element Bq, which we will use later for the mini–element.

Definition 4.4. The bubble element.

The bubble element (Bq) is defined for q ≥ (d+ 1) by

T = {interval, triangle, tetrahedon}, (4.10)
V = {Pq (T ) : v|∂T = 0} , (4.11)

`i (v) = v
(
xi
)
, i = 1, . . . , n(q), (4.12)

where {xi}n(q)
i=1 is an enumeration of points in T defined in such a way that v

(
xi
)
for

i = 1, . . . , n(q) is a basis for the dual space of V.



20 CHAPTER 4. NUMERICAL METHODS I: FITTED MESHES

Figure 4.1: The linear Lagrange interval, triangle and tetrahedron. The black dots are
the degrees of freedom.

For the reference triangle and tetrahedron, the bubble function is 27xy(1 − x − y) and
256xy(1− x− y − z), respectively.

4.1.3 Discretizing the weak formulation

Now we have defined the finite element, the Lagrange element and the bubble element.
We continue on our test Problem (4.1), by discretizing Equation (4.5). Assume we have
chosen a finite element. We discretize the domain such that Ω̄ = ⋃N

i=1 Ti. We seek a
function uh = Vh,g,D (T ) such that∫

T

∇uh · ∇vh dx =
∫
T

f vh dx +
∫
∂TN

h vh dS ∀ vh ∈ Vh,0,D (T ) , (4.13)

where Vh (T ) is a finite dimensional function space. The discrete function uh, can be
written as a linear combination of the basis functions, {φ}Nj=1, of Vh;

uh =
N∑
j=1

Ujφj (4.14)

Without loss of generality we set vh = φi, for i = 1, 2, . . . , N . Inserting this, Equation
(4.13) can be written as∫

T

∇
N∑
j=1

Ujφj · ∇
N∑
i=1

φi dx =
∫
T

f
N∑
i=1

φi dx +
∫
∂TN

h
N∑
i=1

φi dS, (4.15)

N∑
j=1

N∑
i=1

Uj

∫
T

∇φj · ∇φi dx =
N∑
i=1

∫
T

f φi dx +
N∑
i=1

∫
∂TN

hφi dS. (4.16)

We transform Equation (4.16) to linear system of equations,

AU = B, (4.17)



4.2. WEAK FORMULATION OF THE BRINKMAN EQUATION 21

where U is a vector containing Uj , for j = 1, 2, . . . , N , A is a N ×N matrix,

Aj,i =
∫
T

∇φj · ∇φi dx, (4.18)

and B is a vector of length N ,

Bi =
∫
T

f φi dx +
∫
∂TN

hφi dS. (4.19)

The example Problem (4.1) has been transformed from a PDE to a linear system of
Equations (4.17). After finding the matrix entries Aj,i and the load vector B, Equation
(4.17) is solved. This can be done either with a direct solver or with an iterative method
with a preconditioner. We will discuss this further in Chapter 8.

4.1.4 Abstract formulation

The finite element method can be summarized in this abstract formulation:

1. Find u ∈ V such that
Lu = f, (4.20)

where V is a function space, L : V → V
′ is a spatial differential operator and

f ∈ V ′ , where V ′ is the dual space of V .

2. Introduce a suitable test space V̂ and define a bilinear form, a(·, ·), and a linear
form, l(·).

Find u ∈ V such that
a (u, v) = l (v) ∀ v ∈ V̂ . (4.21)

3. Chose a suitable finite element and discretize the domain.

Find uh ∈ Vh such that

a (uh, vh) = l (vh) ∀ vh ∈ V̂h. (4.22)

4. Find an algorithm to find the degrees of freedom of uh.

4.2 Weak formulation of the Brinkman equation

Let us first restate the Brinkman Equation (3.19).



22 CHAPTER 4. NUMERICAL METHODS I: FITTED MESHES

Problem 4.3. Find u ∈ Vg and p ∈ Q such that

u− ε2∆u +∇p = f , ∀x ∈ Ω,
∇ · u = 0, ∀x ∈ Ω,

u = g, ∀x ∈ Γ,
(4.23)

holds for all ε ∈ [0, 1], where Vg and Q are the solution spaces.

To obtain a weak formulation of Equation (4.23), we multiply the first line with a test
function v ∈ V̂0, where v = 0 on the boundary. Then we integrate over the domain,∫

Ω

u · v dx +
∫
Ω

−ε2∆u · v dx +
∫
Ω

∇p · v dx =
∫
Ω

f · v dx. (4.24)

Now we use integration by parts on two of the terms on the left-hand side,∫
Ω

u · v dx +
∫
Ω

ε2∇u : ∇v dx−
∫
Ω

p (∇ · v) dx =
∫
Ω

f · v dx. (4.25)

The surface integrals vanish since v = 0 on the surface. The divergence term in Equation
(4.23) is multiplied with another test function q ∈ Q̂ and integrated over the domain,∫

Ω

(∇ · u) q dx = 0. (4.26)

This integral is subtracted from from Equation (4.25). From now on, we use a simplified
notation; (·, ·)Ω and (·, ·)Γ will denote the L2 inner product over the domain and on the
boundary respectively. The weak formulation of the Brinkman Equation (4.23) becomes:

Problem 4.4. Find (u, p) ∈ Vg ×Q such that

a (u,v) + b (p,v) + b (q,u) = (f ,v)Ω ∀ (v, q) ∈ V̂0 × Q̂, (4.27)

where

a (u,v) = (u,v)Ω + ε2 (∇u,∇v)Ω , (4.28)
b (p,v) = − (p,∇ · v)Ω . (4.29)

The saddle point Problem 4.4 is well-posed for Vg × Q =
[
H1
g (Ω)

]d
× L2

0 (Ω) for ε > 0

and for the case ε = 0, it is well-posed for the spaces
[
L2
g (Ω)

]d
×H1 (Ω) ∩ L2

0 (Ω) and
H (div; Ω)× L2

0 (Ω), assuming f is in a suitable dual space [2].



4.3. STABILIZATION OF THE BRINKMAN EQUATION 23

4.3 Stabilization of the Brinkman equation

For saddle point problems of the form (4.27) – (4.29), the following four conditions
(Brezzi’s conditions) have to be satisfied to have a well-posed discrete problem [1]:

a (uh,vh) ≤ C1‖uh‖Vh‖vh‖Vh , ∀uh, vh ∈ Vh, (4.30)

b (uh, qh) ≤ C2‖uh‖Vh‖qh‖Qh , ∀uh ∈ Vh, qh ∈ Qh, (4.31)

a (uh,uh) ≥ C3‖uh‖2Vh , ∀uh ∈ Vh, (4.32)

sup
uh∈Vh

b (uh, qh)
‖uh‖Vh

≥ C4‖qh‖Qh , ∀ qh ∈ Qh. (4.33)

The first two conditions are boundedness of a and b, which can be shown using Cauchy–
Schwarz’s inequality (A.9). The third condition is coercivity of a, this is only need for
the kernel of Qh. However, we show this for the Nitsche method in Section 7.2 for Vh.
The last condition is known as the Babuška–Brezzi condition (also called the inf-sup
condition) and can be rewritten as

C4 ≤ inf
ph∈Qh

sup
vh∈Vh,g

b (vh, ph)
‖vh‖Vh‖ph‖Qh

. (4.34)

We need to use elements that satisfies (4.30)–(4.33) . Lagrangian elements of same order
do not satisfy condition (4.33), nor do the P1–P0 elements [22]. This is a problem since
the software we use for the unfitted meshes, only have P0 and P1 elements implemented.
We use the P1–P1 elements and need to circumvent the Brezzi conditions. This is done by
two different stabilization techniques: The pressure stabilized Petrov–Galerkin method
(PSPG) and the continuous interior penalty method (CIP). The discrete stabilized for-
mulation of the Brinkman Problem 4.4 is:

Problem 4.5. Find (uh, ph) ∈ Vg,h ×Qh such that

a (uh,vh) + b (ph,vh) + b (qh,uh) + c (uh, ph; vh, qh)
= (f,vh)Ω + Φ (vh, qh, ) , ∀ (vh, qh) ∈ V̂0,h × Q̂h,

(4.35)

where

a (uh,vh) = (uh,vh)Ω + ε2 (∇uh,∇vh)Ω , (4.36)
b (ph,vh) = − (ph,∇ · vh)Ω , (4.37)

where c (uh, ph; vh, qh) and Φ (vh, qh, ) are stabilization terms which depend on the sta-
bilization technique we use.



24 CHAPTER 4. NUMERICAL METHODS I: FITTED MESHES

Note that the problem is no longer on the form (4.27) – (4.29) and the conditions for
discrete well-posedness have also changed.

4.3.1 The mini–element

The stabilization techniques will be compared toward a reference element that satisfies
the Brezzi conditions. We have chosen to use the mini–element [23]. This element
consists of P1 elements with a cubic bubble B3 for the velocity and P1 elements for
the pressure. The reason for choosing the mini–element instead of for example the
Crouzeix–Raviart element, is that the mini–element is stable both for the Stokes case
(ε = 1) and the Darcy case (ε = 0), where as the solution does not converge when using
the Crouzeix–Raviart element for the Darcy case [2]. No stabilization is needed for the
mini–element, thus c (uh, ph; vh, qh) and Φ (vh, qh, ) are zero.

4.3.2 Pressure stabilized Petrov–Galerkin method

The first stabilization method we consider is the “classical” pressure stabilized Petrov–
Galerkin method (PSPG). It was introduced by Hughes [24] in 1986 (for the Stokes
problem). In [3] the method is applied for the Brinkman equation. The idea is to
subtract the residual from the left-hand side of Equation (4.35):

− βs
∑
T∈T

h2
T

ε2 + h2
T

(
uh − ε2∆uh +∇ph − f ,vh − ε2∆vh +∇qh

)
T
, (4.38)

where βs is a stability constant and hT is the size of the element T , defined as the
distance from the interior node to the boundary. For the P1 element we have

∆uh|T = 0 and ∆vh|T = 0.

After multiplying out Equation (4.38), we get

c (uh, ph; vh, qh) = −βs
∑
T∈T

h2
T

ε2 + h2
T

[ (uh,vh)T + (uh,∇qh)T

+ (∇ph,vh)T + (∇ph,∇qh)T ],
(4.39)

where we have moved the following term to the right-hand side

Φ (vh, qh, ) = −βs
∑
T∈T

h2
T

ε2 + h2
T

[(f ,vh)T + (f ,∇qh)T ] . (4.40)



4.4. A PRIORI ERROR ESTIMATES 25

4.3.3 Continuous interior penalty method

The second stabilization method we use is the continuous interior penalty method (CIP).
This method is presented by Burman and Hansbo article [4] for the Brinkman equation,
where they also prove stability. The method consists of adding the term

c (ph, qh) = βs
∑
T∈T

h3
T

ε2 + h2
T

([∂nph] , [∂nqh])∂T , (4.41)

to the left-hand side of Equation (4.35). Here, [∂nph] is the pressure gradient jump
over the interior facets of element T , βs > 0 is a stabilization parameter. The scaling
function h3

T /(ε2 + h2
T ) in Equation (4.41) is not used in [4]. Burman and Hansbo use

h3
T for ε2 ≥ hT and h2

T for ε2 < hT , which is not smooth when ε2 ≈ hT . We do not add
anything on the right-hand side,

Φ (vh, qh, ) = 0. (4.42)

Analysis of the CIP stabilization method can be found in Chapter 7.

4.4 A priori error estimates

We wish to measure the convergence rate of our solution to verify the implementation
and to compare the different stabilization techniques. To do this, we use an a priori
error estimate for the mini–element; that is, Vh = [P1 (T ) +B3 (T )]d and Qh = P1 (T ).
To get this error estimate, we need some ingredients:

Theorem 4.1. Babuška–Brezzi theorem.

Assume that we have a saddle point problem on the form (4.27) and the conditions
(4.30)–(4.33) hold for some Vh and Qh. Then

‖u− uh‖Vh + ‖p− ph‖Qh ≤ C
{

inf
vh∈Vh

‖u− vh‖Vh + inf
qh∈Qh

‖p− qh‖Qh
}
. (4.43)

Proof. Proof can be found in [1].

Theorem 4.2. Approximation by interpolation.

There exists an interpolation operator πh : Ht (Ω)→ Vh where Vh is a piecewise polyno-
mial field of order t− 1, with the property that for any u ∈ Ht(Ω)

‖u− πhu‖Hm ≤ Cht−m‖u‖Ht . (4.44)

Proof. Proof can be found in [21].



26 CHAPTER 4. NUMERICAL METHODS I: FITTED MESHES

4.4.1 A priori error estimate: Stokes case

For the Stokes case (ε = 1) the solution spaces are u ∈
[
H1
g (Ω)

]d
and p ∈ L2

0 (Ω).
Theorem 4.1 becomes

‖u− uh‖H1 + ‖p− ph‖L2 ≤ C
{

inf
vh∈Vh

‖u− vh‖H1 + inf
qh∈Qh

‖p− qh‖L2

}
.

We use the interpolation approximation from Theorem 4.2 on both infvh∈Vh ‖u−vh‖H1

and infqh∈Qh ‖p− qh‖L2 , where m is 1 and 0, respectively, and t is 2 and 1, respectively.

‖u− uh‖H1 + ‖p− ph‖L2 ≤ Ch (‖u‖H2 + ‖p‖H1) . (4.45)

Form the equation above we see that the L2-error for the pressure will have at least
first order convergence and the H1-error for the velocity will have at least first order
convergence. We measure the L2-error and not the H1-error of the velocity, thus we
expect second order convergence (from Aubin-Nitsche’s duality techniques [22]).

4.4.2 A priori error estimate: Darcy case

For the Darcy case (ε = 0) we choose the solution spaces to be u ∈
[
L2
g (Ω)

]d
and

p ∈ H1 (Ω) ∩ L2
0 (Ω). Theorem 4.1 becomes

‖u− uh‖L2 + ‖p− ph‖H1 ≤ C
{

inf
vh∈Vh

‖u− vh‖L2 + inf
qh∈Qh

‖p− qh‖H1

}
.

As before, we use the interpolation approximation from Theorem 4.2 on both infvh∈Vh ‖u−
vh‖H1 and infqh∈Qh ‖p − qh‖L2 , but now m is 0 and 1, respectively, and t is 1 and 2,
respectively. We obtain

‖u− uh‖L2 + ‖p− ph‖H1 ≤ Ch (‖u‖H1 + ‖p‖H2) . (4.46)

We see that the L2-error for the velocity has at least first order convergence. The
H1-error for the pressure has first order convergence, thus we expect second order con-
vergence for the L2-error.

When applying Theorem 4.2 for the two previous error estimates, we assumed one order
higher regularity then what the solution space is.

4.5 Results

4.5.1 Methods of manufactured solutions

The method of manufactured solutions can be used to measure the error for a particular
problem, and thus the convergence rate. The method consists of choosing a simple do-



4.5. RESULTS 27

main, we use the unit square, and choosing a solution (u, p) that satisfies the initial con-
dition and boundary condition. In our case we need to choose a divergence free velocity
field u. We choose the same velocity field as used in [2], u = ∇×

(
sin2(πx) sin2(πy)

)
. This

is divergence free. The pressure is chosen to be p = −sin(2πx). Now we calculate the
source function f such that Equation (4.23) hold; that is, we calculate f = u−ε2∆u+∇p.
Let us summarize the test problem:

Ω =
{

(x, y) ∈ R2| x, y ∈ (0, 1)
}
,

u = ∇×
(
sin2(πx) sin2(πy)

)
,

p = − sin(2πx),
f = u− ε2∆u +∇p,
βs = 0.1,

(4.47)

where βs is the stabilization constant. The mesh consists of N × N triangles. After
solving this problem, we measure the relative L2-error as,

‖u− uh‖Ω
‖u‖Ω

=

√∫
Ω (u− uh)2 dx√∫

Ω u2 dx
, (4.48)

and similar for the pressure. The convergence rate is found by taking the logarithm of
both the errors and mesh size h, then using the least squares method.

Python code
from numpy import *

def convergence_rate ( error_array , h_array ):
y = log( error_list )
x = log( h_list )
A = array([ x, ones(len(x))])
rate = linalg .lstsq(A.T,y)[0]
return rate[0]

The problem is implemented in python using the FEniCS software [25], code can be
found in Appendix B.

4.5.2 The mini–element

Table 4.1 and 4.2 show the errors from the mini-element for velocity and pressure respec-
tively. The left column contains the ε values and the right column shows the convergence
rates. The theory from Section 4.4 tells us that we would expect second order conver-
gence for the velocity for ε = 1.0 and first order for ε = 0.0. However, we get second
order for all ε. Thus we get a bit better results than expected. For the pressure we
expect first order convergence for ε = 1.0 and second order for ε = 0.0. From the table
we see that we get slightly better convergence rates.



28 CHAPTER 4. NUMERICAL METHODS I: FITTED MESHES

ε\N 8 16 32 64 128 rate
1 1.12e-01 2.87e-02 7.20e-03 1.80e-03 4.48e-04 1.99
2−2 9.69e-02 2.43e-02 6.06e-03 1.51e-03 3.77e-04 2.00
2−4 5.52e-02 1.25e-02 3.02e-03 7.48e-04 1.86e-04 2.05
2−8 1.35e-01 2.86e-02 4.29e-03 6.69e-04 1.84e-04 2.45
0 1.49e-01 4.20e-02 1.10e-02 2.82e-03 7.13e-04 1.93

Table 4.1: The relative L2-error in velocity obtained by the mini–element.

ε\N 8 16 32 64 128 rate
1 2.81e-00 8.85e-01 2.95e-01 1.02e-01 3.58e-02 1.57
2−2 1.91e-01 5.76e-02 1.88e-02 6.45e-03 2.25e-03 1.60
2−4 5.23e-02 1.33e-02 3.42e-03 8.99e-04 2.45e-04 1.94
2−8 3.93e-02 1.05e-02 2.83e-03 7.61e-04 1.99e-04 1.90
0 3.32e-02 7.77e-03 1.89e-03 4.66e-04 1.16e-04 2.04

Table 4.2: The relative L2-error in pressure obtained by the mini–element.

4.5.3 Pressure stabilized Petrov–Galerkin method

Table 4.3 and 4.4 show the errors from the PSPG stabilization for velocity and pres-
sure, respectively. The results are similar to the mini-element. We have second order
convergence rates through the whole range of ε, for the velocity.

4.5.4 Continuous interior penalty method

Table 4.5 and 4.6 show the errors from the CIP stabilization for the velocity and the
pressure, respectively. These are similar to themini-element and the PSPG stabilization.

These results indicate that both the PSPG and CIP stabilization are suitable to use for
the Brinkman equation for ε ∈ [0, 1].

ε\N 8 16 32 64 128 rate
1 1.61e-01 4.44e-02 1.14e-02 2.88e-03 7.21e-04 1.95
2−2 1.65e-01 4.68e-02 1.22e-02 3.08e-03 7.71e-04 1.94
2−4 1.13e-01 3.63e-02 1.19e-02 3.44e-03 9.01e-04 1.73
2−8 8.38e-02 2.12e-02 5.36e-03 1.39e-03 3.98e-04 1.94
0 8.36e-02 2.11e-02 5.29e-03 1.32e-03 3.30e-04 2.00

Table 4.3: The relative L2-error in velocity obtained by the PSPG stabilization (βs =
0.1).



4.5. RESULTS 29

ε\N 8 16 32 64 128 rate
1 7.53e-01 2.93e-01 1.03e-01 3.62e-02 1.27e-02 1.48
2−2 7.32e-02 2.14e-02 7.08e-03 2.39e-03 8.18e-04 1.61
2−4 6.14e-02 1.52e-02 3.66e-03 8.98e-04 2.26e-04 2.03
2−8 5.97e-02 1.52e-02 3.82e-03 9.55e-04 2.37e-04 1.99
0 5.97e-02 1.52e-02 3.83e-03 9.57e-04 2.39e-04 1.99

Table 4.4: The relative L2-error in pressure obtained by the PSPG stabilization (βs =
0.1).

ε\N 8 16 32 64 128 rate
1 1.64e-01 4.61e-02 1.18e-02 2.97e-03 7.43e-04 1.95
2−2 1.57e-01 4.13e-02 1.04e-02 2.61e-03 6.54e-04 1.98
2−4 1.97e-01 4.62e-02 8.16e-03 1.66e-03 4.03e-04 2.27
2−8 2.25e-01 6.23e-02 1.56e-02 3.80e-03 8.74e-04 2.01
0 2.25e-01 6.25e-02 1.58e-02 3.91e-03 9.69e-04 1.97

Table 4.5: The relative L2-error in velocity obtained by the CIP stabilization (βs = 0.1).

ε\N 8 16 32 64 128 rate
1 1.06e+00 4.61e-01 1.36e-01 3.94e-02 1.20e-02 1.65
2−2 2.15e-01 4.45e-02 1.02e-02 2.76e-03 8.08e-04 2.01
2−4 1.49e-01 3.47e-02 6.16e-03 1.11e-03 2.42e-04 2.35
2−8 1.35e-01 3.61e-02 9.08e-03 2.24e-03 5.29e-04 2.00
0 1.35e-01 3.61e-02 9.11e-03 2.27e-03 5.67e-04 1.98

Table 4.6: The relative L2-error in pressure obtained by the CIP stabilization (βs = 0.1).



30 CHAPTER 4. NUMERICAL METHODS I: FITTED MESHES



Chapter 5

Numerical methods II: Unfitted
meshes

In Chapter 4 we presented numerical methods for the Brinkman equation. Chapter 4
assumes that the mesh T matches the domain Ω, which is common for finite element
methods. In this chapter we introduce a fictitious domain method. Figure 5.1 shows a
matching mesh (left) and a non-matching mesh (right). Ω is the domain, T̂ ∗ is called
the background mesh. T̂ ∗ is structured independently of the domain.

To describe the domain Ω we use level set functions S(x). The level set functions are
designed such that the following properties hold,

S (x) < 1 if x ∈ Ω,
S (x) = 1 if x ∈ Γ,
S (x) > 1 if x /∈ Ω.

(5.1)

Figure 2.2 was constructed from a level set function. The source code can be found in
appendix B.

The method of unfitted meshes creates several challenges which we deal with in this
chapter. In Chapter 6 we test the methods in this chapter on similar test case as Section
4.5.

In Problem 4.5, we found a weak formulation of the Brinkman equation. We looked for
a solution (uh, ph) ∈ Vg,h×Qh and we used the test function spaces V̂0,h and Q̂h. In the
unfitted case we can no longer let uh ∈ Vg,h since we have no guarantee that the nodes
will lie on the boundary Γ. Instead we let uh,vh ∈ Vh and weakly impose the Dirichlet
boundary condition.

31



32 CHAPTER 5. NUMERICAL METHODS II: UNFITTED MESHES

Figure 5.1: The left figure shows a matching mesh. The right figure shows a non-
matching mesh. The mesh T̂ ∗ in the right figure is called a background mesh.

5.1 The Nitsche method

Nitsche’s method is a method to weakly impose Dirichlet boundary conditions. The
idea of the method was introduced by Nitsche [9]. However, we have used [26] for the
description of the method. This article shows stability and an a priori error estimate for
the Poisson problem. We will apply the method to the Brinkman Equation (4.23) and
derive a weak formulation.

We multiply the discrete version of Equation (4.23) with a test function vh ∈ Vh and
integrate over the domain,

(uh,vh)Ω − ε
2 (∆uh,vh)Ω + (∇ph,vh)Ω = (f ,vh)Ω . (5.2)

Now we use integration by parts on two of the terms on the left-hand side,

(uh,vh)Ω + ε2 (∇uh,∇vh)Ω − (ph,∇ · vh)Ω

−ε2 (∂nuh,vh)Γ + (ph,vh · n)Γ = (f ,vh)Ω .
(5.3)

The surface integrals no longer disappear. We add a penalty term γ ε
2

h (uh − g,vh)Γ
to Equation (5.3), where γ is a penalty parameter. The incompressibility equation
is multiplied with a test function qh ∈ Qh and integrated over the domain. We add
((uh − g) · n, qh)Γ to the incompressibility equation. We add the term−ε2 ((uh − g), ∂nvh)Γ
to Equation (5.3). The last two steps gives us symmetry. The problem is stated as:

Problem 5.1. Find uh ∈ Vh and ph ∈ Qh such that

A ((uh, ph) , (vh, qh)) = L (vh, qh) , ∀ qh ∈ Qh, vh ∈ Vh, (5.4)



5.2. CUT ELEMENTS 33

where

A ((uh, ph) , (vh, qh)) = a (uh,vh) + b (ph,vh) + b (uh, qh) + c (uh, ph; vh, qh)︸ ︷︷ ︸
Stabilization

,

L (vh, qh) = (f ,vh)Ω − ε
2 (g, ∂nvh)Γ + (g · n, qh)Γ

+ Φ (vh, qh)︸ ︷︷ ︸
Consistency of stabilization

+ γ
ε2

h
(g,vh)Γ︸ ︷︷ ︸

Nitsche penalty

,

a (uh,vh) = (uh,vh)Ω + ε2 (∇uh,∇vh)Ω

− ε2 (∂nuh,vh)Γ︸ ︷︷ ︸
Consistency

− ε2 (uh, ∂nvh)Γ︸ ︷︷ ︸
Symmetry

+ γ
ε2

h
(uh,vh)Γ︸ ︷︷ ︸

Nitsche penalty

,

b (ph,vh) = − (ph,∇ · vh)Ω + (ph,vh · n)Γ︸ ︷︷ ︸
Symmetry

,

where c (uh, ph; vh, qh) and Φ (vh, qh) depend on the stabilization, see Section 4.3.

5.1.1 The Nitsche method without stabilization

We test the Nitsche method on the same test problem as in Section 4.5 on a match-
ing mesh for P1–P1 elements without any stabilization; that is, c (uh, ph, ; vh, qh) =
Φ (vh, qh) = 0. This problem does not satisfy the inf-sup condition (4.34) and we expect
suboptimal convergence rates. The errors and convergence rates are found in Table 5.1
and 5.2. From these tables we see that the error and convergence rates are good and
similar to what we found in Section 4.5. However, plot (Figure 5.2) of the pressure shows
small oscillations. It seems that the Nitsche method has a stabilizing effect. This will
be discussed further in Chapter 6, 8 and 9.

ε\N 8 16 32 64 128 rate
1 1.61e-01 4.51e-02 1.17e-02 2.95e-03 7.41e-04 1.95
2−2 1.44e-01 3.99e-02 1.03e-02 2.60e-03 6.52e-04 1.95
2−4 9.55e-02 2.51e-02 6.37e-03 1.60e-03 4.01e-04 1.98
2−8 8.08e-02 2.07e-02 5.20e-03 1.30e-03 3.26e-04 1.99
0 8.08e-02 2.07e-02 5.20e-03 1.30e-03 3.26e-04 1.99

Table 5.1: The relative L2-error in velocity obtained by the Nitsche method. No stabi-
lization is used.



34 CHAPTER 5. NUMERICAL METHODS II: UNFITTED MESHES

ε\N 8 16 32 64 128 rate
1 1.42e+00 4.81e-01 1.53e-01 5.48e-02 2.28e-02 1.50
2−2 1.12e-01 3.51e-02 1.06e-02 3.62e-03 1.46e-03 1.58
2−4 5.48e-02 1.43e-02 3.63e-03 9.23e-04 2.42e-04 1.96
2−8 5.39e-02 1.40e-02 3.52e-03 8.82e-04 2.21e-04 1.98
0 5.39e-02 1.40e-02 3.52e-03 8.82e-04 2.21e-04 1.99

Table 5.2: The relative L2-error in pressure obtained by the Nitsche method, no stabi-
lization is used.

Figure 5.2: The plots show the pressure when solving with the Nitsche method for P1–P1
elements without stabilization. N = 32 for the left plot and N = 64 for the right plot.

Figure 5.3: A reduced background mesh T ∗ for the fictitious domain Ω∗. The green
elements are the cut elements.



5.2. CUT ELEMENTS 35

Figure 5.4: The left figure illustrates a case where the constant CI in Equation (7.14)
becomes large. The right figure shows a case where the matrix stability becomes a
problem.

5.2 Cut elements

The left figure in Figure 5.3 shows a unfitted mesh. We see that some of the elements in
the background mesh T̂ ∗ do not interact with Ω̄. These elements can be removed from
the mesh T̂ ∗; that is, we remove all T ∈ T̂ ∗ such that

T ∩ Ω̄ = ∅,

and obtain a reduced mesh T ∗. This is illustrated in the right part of Figure 5.3. The
elements that are intersected by the boundary Γ; that is,

T ∩ Ω 6= ∅ and T \ Ω̄ 6= ∅,

are called cut elements and are denoted by the symbol T ∗Γ . The cut elements are marked
green in Figure 5.3. We define F∗Γ as the set of all interior facets belonging to elements
which are intersected by the boundary Γ. We also define a fictitious domain Ω∗ which
contains Ω and the cut elements. Ω will be referred to as the physical domain and Ω∗
as the fictitious domain.

We use the same assumptions on Γ and T ∗ as in [8]:

I The intersection between Γ and a facet F ∈ ∂iT ∗ is simply connected; that is, Γ
does not cross an interior facet multiple times.

II For each element T intersected by Γ, there exists a plane ST and a piecewise smooth
parametrization Φ : ST ∩ T → Γ ∩ T .

III The number of facets to be crossed in order to “walk” from a cut element T to a
non-cut element T ′ ⊂ Ω is bounded.



36 CHAPTER 5. NUMERICAL METHODS II: UNFITTED MESHES

One major problem with the cut elements is that we have no upper bound for inverse
estimate 7.1. This estimate is used to show coercivity, a(uh,uh) ≥ C3‖uh‖2ε,h, which
we will come back to in Chapter 7. The consequence is that the constant C3 becomes
large when the area of the cut elements are small compared to the surface. The left
illustration in Figure 5.4 shows such a case. C3 will depend on how the boundary cuts
the mesh, which in turn makes the penalty parameter γ depend on how the boundary
cuts the mesh. See the proof of Theorem 7.5 for details. In addition the matrix A may
become almost singular if a cut element is cut in such a way that only a small fraction
is inside the domain. The right illustration in Figure 5.4 shows such a case.

Extending the coercivity from the physical domain to the fictitious domain will fix these
problems. Burman and Hansbo [7, 5] did this by adding artificial stabilization operators
(ghost-penalties), ih(uh,vh) and jh(ph, qh), in the interface zone, also outside the phys-
ical domain. We use the following ghost-penalty for velocity and pressure respectively,

ih(uh,vh) = βu
∑
F∈F∗Γ

su (hF ) ([∂nuh] , [∂nvh])F , (5.5)

jh(ph, qh) = βp
∑
F∈F∗Γ

sp (hF ) ([∂nph] , [∂nqh])F , (5.6)

where su and sp are scaling functions, βu and βp are penalty parameters. For the Stokes
problem (with P1–P1 elements) su = hT and sp = h3

T are used in [6] and [8]. Massing
et al. [8] provide a useful proposition:

Proposition 5.1.

There is a constant C > 0 such that the following estimates hold. For qh ∈ P1 (T ∗):

‖∇qh‖2Ω∗ ≤ C

‖∇qh‖2Ω +
∑
F∈F∗Γ

hF ([∂nqh] , [∂nqh])F

 ≤ C‖∇qh‖2Ω∗ , (5.7)

‖qh‖2Ω∗ ≤ C

‖qh‖2Ω +
∑
F∈F∗Γ

h3
F ([∂nqh] , [∂nqh])F

 ≤ C‖qh‖2Ω∗ . (5.8)

Proof. The proof can be found in [8]. This proposition also extends to vector valued
functions like vh.

We use Proposition 5.1 to find suitable scaling functions su and sp. The velocity field
is measured in the H1-norm for the Stokes case and the L2-norm for the Darcy case.
From the proposition we want su = hT for ε = 1 and su = h3

T for ε = 0. Therefore, we
construct the scaling function

su = hT
(
ε2 + h2

T

)
. (5.9)



5.2. CUT ELEMENTS 37

For the pressure we wish to measure the L2-norm for the Stokes case and the H1-norm
for the Darcy case. From the Proposition 5.1 we have sp = h3

T for ε = 1 and sp = hT for
ε = 0. We construct the scaling function,

sp = h3
T

ε2 + h2
T

. (5.10)

5.2.1 Quadrature integration rules

Integration over the cut elements is a challenging task since the geometry is no longer
a tetrahedron, but in a sense arbitrary. One approach is subtetrahedralization, which
divides tetrahedron into several subtetrahedron to fit the geometry and uses standard
integration schemes on the subtetrahedron. However, this is also quite challenging. We
use quadrature integration rules which are implemented in the library DOLFIN-OLM
[27], which is an extension of the FEniCS [25] software. These integration rules are only
implemented for the P0 and P1 elements. For higher order elements these integration
rules are challenging to implement. This is the main reason why we are restricted to
the P1–P1 element. Integration over the cut elements is a huge topic which we will not
explore further in this thesis. See [27, 28, 29] for more information on this topic.

5.2.2 The final problem

In this subsection we state the final problem. Let Vh = [P1 (T ∗)]d and Qh = P1 (T ∗),
βu, βp, βs and γ are penalty constants,

Problem 5.2. Find uh ∈ Vh and ph ∈ Qh such that

A ((uh, ph) , (vh, qh)) + J ((uh, ph) , (vh, qh)) = L (vh, qh) , ∀ qh ∈ Qh, vh ∈ Vh,



38 CHAPTER 5. NUMERICAL METHODS II: UNFITTED MESHES

where

A ((uh, ph) , (vh, qh)) = a (uh,vh) + b (ph,vh) + b (uh, qh) + c (uh, ph; vh, qh)︸ ︷︷ ︸
Stabilization

,

J ((uh, ph) , (vh, qh)) = βu
∑
F∈F∗Γ

su ([∂nuh] , [∂nvh])F︸ ︷︷ ︸
Ghost-penalty

+βp
∑
F∈F∗Γ

sp ([∂nph] , [∂nqh])F︸ ︷︷ ︸
Ghost-penalty

,

L (vh, qh) = (f ,vh)Ω − ε
2 (g, ∂nvh)Γ − (g · n, qh)Γ

+ Φ (vh, qh)︸ ︷︷ ︸
Consistency of stabilization

+ γ
ε2

h
(g,vh)Γ︸ ︷︷ ︸

Nitsche penalty

,

a (uh,vh) = (uh,vh)Ω + ε2 (∇uh,∇vh)Ω

− ε2 (∂nuh,vh)Γ︸ ︷︷ ︸
Consistency

− ε2 (uh, ∂nvh)Γ︸ ︷︷ ︸
Symmetry

+ γ
ε2

h
(uh,vh)Γ︸ ︷︷ ︸

Nitsche penalty

,

b (ph,vh) = − (ph,∇ · vh)Ω + (ph,vh · n)Γ︸ ︷︷ ︸
Symmetry

,

where c (uh, ph; vh, qh) and Φ (vh, qh) depend on the stabilization, see Section 4.3. The
scaling functions su and sp depend on hT and ε2, see Equation (5.9) and (5.10) for
suggestions.



Chapter 6

Results

This chapter presents the errors and convergence rates from solving Problem 5.2 with
the method of manufactured solutions.

6.1 The test problem

We use the same manufactured solution as in Section 4.5. The physical domain Ω is
the unit square and the fictitious domain is a unit square which is δ larger at each side,
see Figure 6.1. When δ → 0, the problem reduces to a matching mesh with the Nitsche
method. We let δ = 1.1 · 10−3 unless stated otherwise. Let us state the manufactured
solution:

Ω =
{

(x, y) ∈ R2| x, y ∈ (0, 1)
}
,

Ω∗ =
{

(x, y) ∈ R2| x, y ∈ (−δ, 1 + δ)
}
,

u = ∇×
(
sin2(πx) sin2(πy)

)
,

p = − sin(2πx),
f = u− ε2∆u +∇p,
βs = βp = βu = 0.1, γ = 10.0.

(6.1)

We solved the problem with C++ and using the DOLFIN-OLM [27] library. The UFL
code [30] for Problem 5.2 with CIP stabilization, can by found in B.3.

Remark: The software we used only supported 3-dimensional problems and our test prob-
lem is a 2-dimensional problem. To solve this we scaled the z-axis with 1/N and use ho-
mogeneous Neumann conditions on the xy-surfaces. This created a quasi 2-dimensional
problem.

39



40 CHAPTER 6. RESULTS

Figure 6.1: Illustration of the meshes.
The physical domain is an unit square
(blue) and the background is a box
which is δ lager in sides.

su\N 8 16 32 64 128 rate
h3
T 2.45e-01 1.16e-01 3.55e-01 1.06e+00 1.30e+00 -0.80
h1
T 4.35e-01 1.52e-01 5.26e-02 3.43e-02 1.20e-01 0.59
h−1
T 6.27e-01 2.69e-01 9.41e-02 3.18e-02 1.05e-02 1.49

Table 6.1: The relative L2-error for velocity obtained by the CIP stabilization.

6.2 Darcy flow

When computing the Darcy flow; that is, ε = 0, we did not get the expected convergence
rates. From Proposition 5.1 we expect su = h3

T since the velocity is in the L2 space.
We tested for su = hT and su = h−1

T as well, sp was set to hT . The results for the CIP
stabilization are shown in Table 6.1 and 6.2.

From the tables we see that the error does not converge for su = h3
T or su = hT . For

su = h−1
T we get a sufficient convergence for velocity and pressure (other values for s

were also tested). These somewhat unexpected results motivate further investigation of
the weak formulation of the Darcy flow, which we do for the fitted case. First we state

sp\N 8 16 32 64 128 rate
h3
T 9.45e-02 4.92e-02 1.55e-01 3.12e-01 3.94e-01 -0.68
h1
T 1.18e-01 2.61e-02 8.64e-03 2.27e-02 9.43e-02 0.08
h−1
T 2.60e-01 6.53e-02 1.34e-02 2.70e-03 5.82e-04 2.22

Table 6.2: The relative L2-error in pressure obtained by the CIP stabilization.



6.2. DARCY FLOW 41

the Darcy equation on the strong form,

u +∇p = f for x ∈ Ω,
∇ · u = 0 for x ∈ Ω,

u = g for x ∈ Γ.
(6.2)

Note that if we take the divergence of the first equation in (6.2), we get the Poisson
equation with respect to the pressure with Neumann boundary conditions, n · ∇p =
n · (f − g). Thus the Darcy flow is a mixed Poisson equation. It can be viewed in two
different ways, which we call the primal mixed method and the dual mixed method.

6.2.1 The primal mixed method

We multiply the first equation in the discrete version of (6.2) with a test function vh ∈ Vh
and integrate over the domain. For the second equation we multiply with qh ∈ Qh and
perform an integration by parts, obtaining

(uh,∇qh)Ω = (g, qh n)Γ . (6.3)

Adding the equations together we obtain the weak formulation:

Problem 6.1. Find uh ∈ Vh and ph ∈ Qh such that

(uh,vh)Ω + (∇ph,vh)Ω + (uh,∇qh)Ω = (f ,vh)Ω + (g, qh n)Γ , (6.4)

for all vh ∈ Vh and qh ∈ Qh.

We see that Vh ⊂
[
L2 (Ω)

]d and Qh ⊂ H1 (Ω). Condition (3.21) is enforced to achieve
uniqueness of the pressure; that is, Qh ⊂ H1 (Ω)∩L2

0 (Ω). These are the function spaces
which were mentioned at the end of Chapter 3.

6.2.2 The dual mixed method

For the dual mixed method only the first equation in (6.2) is integrated by parts and
not the second equation (unlike the primal mixed method). This is what we do for our
Brinkman equation. Thus we can set ε = 0 in Problem 5.1 and we obtain the same
problem.

Problem 6.2. Find uh ∈ Vh and ph ∈ Qh such that

A ((uh, ph) , (vh, qh)) = L (vh, qh) , ∀vh ∈ Vh, qh ∈ Qh, (6.5)

where

A ((uh, ph) , (vh, qh)) = (uh,vh)Ω + b (ph,vh) + b (uh, qh) + c (uh, ph; vh, qh) ,
L (vh, qh) = (f ,vh)Ω + (g · n, qh)Γ + Φ (vh, qh) ,
b (ph,vh) = − (ph,∇ · vh)Ω + (ph,vh · n)Γ .



42 CHAPTER 6. RESULTS

c (uh, ph; vh, qh) and Φ (vh, qh) are stabilization terms.

Now Vh ⊂ H (div; Ω) andQh ⊂ L2
0 (Ω) [2]. This means that the solution space in Problem

4.5, 5.1 and 5.2 are subset of H (div; Ω)×L2
0 (Ω) when ε = 0 and not

[
L2 (Ω)

]d×H1 (Ω)∩
L2

0 (Ω) as suggested in Chapter 3.

Problem 6.1 and 6.2 have two different solution spaces. However, for the P1–P1 elements
these formulations are equivalent since P1 (Ω) ⊂ H1 (Ω).

6.3 Brinkman problem with unfitted meshes

Table 6.1 and 6.2 show that we do not get sufficient convergence rates. We chose to try
a different scaling function su(hT ). From now on we use

su(hT ) = hT
ε2 + h2

T

and sp(hT ) = h3
T

ε2 + h2
T

(6.6)

and not the one suggested in Equation (5.9).

Table 6.3 and 6.4 show the relative L2-error for PSPG stabilization for the velocity
and pressure, respectively. The convergence rate for the velocity starts at second order
for ε = 1 and goes to one and a half order convergence for ε = 0. In the fitted case
(Table 4.3) we have second order convergence throughout the range of ε. Note that the
convergence rate for ε = 2−4 is a bit lower than the other values of ε. The convergence
rates for the pressure behaves similar to the fitted case (Table 4.4). The rates start at
one and a half and goes to second order as ε → 0. The convergence rate for ε = 2−2 is
quite low. An explanation is the error for N = 16 is larger than the error for N = 8.
The method converges after some refinements of the mesh.

Table 6.5 and 6.6 show the relative L2-error for CIP stabilization for the velocity and
pressure, respectively. The convergence rates for the velocity and pressure are very
similar to the PSPG stabilization. Also here, the convergence rate for the velocity at
ε = 2−4 is a bit low compared to the other values of ε and it requires some refinements
before the solution converges for the pressure at ε = 2−2.

ε\N 8 16 32 64 128 rate
1 1.45e-01 3.46e-02 8.04e-03 1.92e-03 4.71e-04 2.07
2−2 6.15e-01 2.71e-01 8.69e-02 2.00e-02 3.64e-03 1.86
2−4 6.99e-01 3.42e-01 1.44e-01 6.34e-02 2.71e-02 1.18
2−8 5.49e-01 2.29e-01 8.65e-02 3.40e-02 1.27e-02 1.36
0 5.59e-01 2.42e-01 8.76e-02 3.04e-02 1.02e-02 1.45

Table 6.3: The relative L2-error in velocity. PSPG stabilization was used.



6.3. BRINKMAN PROBLEM WITH UNFITTED MESHES 43

ε\N 8 16 32 64 128 rate
1 7.89e-01 2.61e-01 8.92e-02 3.27e-02 1.34e-02 1.48
2−2 1.12e-01 1.36e-01 9.63e-02 3.23e-02 7.59e-03 0.98
2−4 1.54e-01 6.21e-02 2.33e-02 1.06e-02 5.13e-03 1.24
2−8 1.70e-01 4.80e-02 1.23e-02 2.95e-03 6.88e-04 1.99
0 1.69e-01 4.30e-02 9.09e-03 1.82e-03 3.64e-04 2.23

Table 6.4: The relative L2-error in pressure. PSPG stabilization was used.

ε\N 8 16 32 64 128 rate
1 1.47e-01 3.59e-02 8.25e-03 1.94e-03 4.70e-04 2.08
2−2 6.09e-01 2.70e-01 8.71e-02 2.00e-02 3.64e-03 1.85
2−4 7.09e-01 3.42e-01 1.43e-01 6.31e-02 2.71e-02 1.19
2−8 6.13e-01 2.53e-01 9.17e-02 3.52e-02 1.29e-02 1.40
0 6.27e-01 2.69e-01 9.41e-02 3.18e-02 1.05e-02 1.49

Table 6.5: The relative L2-error in velocity. CIP stabilization was used.

ε\N 8 16 32 64 128 rate
1 7.83e-01 4.66e-01 1.39e-01 4.10e-02 1.35e-02 1.52
2−2 2.78e-01 2.03e-01 1.18e-01 3.73e-02 8.82e-03 1.24
2−4 2.90e-01 1.01e-01 2.87e-02 1.17e-02 5.62e-03 1.45
2−8 2.63e-01 7.09e-02 1.68e-02 3.84e-03 8.68e-04 2.07
0 2.60e-01 6.53e-02 1.34e-02 2.70e-03 5.82e-04 2.22

Table 6.6: The relative L2-error in pressure. CIP stabilization was used.



44 CHAPTER 6. RESULTS

ε\N 8 16 32 64 128 rate
1 1.48e-01 3.60e-02 8.26e-03 1.94e-03 4.69e-04 2.08
2−2 6.10e-01 2.74e-01 8.77e-02 2.00e-02 3.64e-03 1.86
2−4 7.13e-01 3.44e-01 1.43e-01 6.33e-02 2.72e-02 1.19
2−8 5.93e-01 2.50e-01 9.32e-02 3.63e-02 1.34e-02 1.37
0 6.03e-01 2.62e-01 9.40e-02 3.24e-02 1.08e-02 1.46

Table 6.7: The relative L2-error in velocity. No stabilization is used.

ε\N 8 16 32 64 128 rate
1 1.01e+00 5.65e-01 2.15e-01 7.74e-02 2.69e-02 1.33
2−4 1.88e-01 2.61e-01 1.42e-01 4.93e-02 1.57e-02 0.96
2−4 2.55e-01 1.04e-01 2.89e-02 1.34e-02 7.44e-03 1.31
2−4 2.41e-01 6.55e-02 1.56e-02 3.61e-03 8.52e-04 2.05
0 2.38e-01 5.85e-02 1.15e-02 2.18e-03 4.23e-04 2.30

Table 6.8: The relative L2-error in pressure. No stabilization is used.

In Subsection 5.1.1 we got good results for P1− P1 elements without any stabilization.
This deserves further investigation: We run the same test problem for P1−P1 elements
without CIP or PSPG stabilization (ghost-penalties are used on the cut elements). The
results are displayed in Table 6.7 and 6.8 for velocity and pressure, respectively. From
these tables we see the same behavior as for PSPG and CIP stabilization. The only
difference is that the error for the pressure in the Stokes case is slightly higher.

Table 6.7 and 6.8 suggest that our test problem might be stable with respect to the inf-
sup condition. We will investigate this further in Chapter 8. Comparing two stabilization
methods on a test problem that might be stable, is not useful. From now on we only
consider the CIP stabilization throughout the chapter, since we do not see any significant
difference in the tables presented in this section.

6.3.1 Robustness test

Our fictitious domain is a square with lenght 1 + 2δ. This mesh consists of 2×N ×N
right triangles. The hypotenus of the triangles are

√
2 a, where a is the adjacent, a =

(1 + 2δ) /N . The results presented in Table 6.1 – 6.8 used δ = 1.1 · 10−3. This δ value
gives “nice” cut elements for N between 8 and 128. By “nice” cut elements we mean
cut elements where a large percentage of the area of the triangle is in Ω. We want to
construct “bad” cut elements to test the robustness of the method. Figure 5.4 illustrates
such “bad” cut elements. We create “bad” cut elements by setting

δ = 9
10a ⇔ δ = 9

10N − 2 · 9 . (6.7)



6.3. BRINKMAN PROBLEM WITH UNFITTED MESHES 45

ε\N 8 16 32 64 128 rate
1 1.77e-01 3.77e-02 8.55e-03 2.14e-03 6.46e-04 1.88
2−2 5.40e-01 1.95e-01 6.57e-02 1.93e-02 6.94e-03 1.47
2−4 5.96e-01 2.04e-01 7.66e-02 3.61e-02 2.28e-02 1.11
2−8 6.05e-01 1.56e-01 4.54e-02 1.70e-02 6.66e-03 1.50
0 6.29e-01 1.70e-01 4.82e-02 1.52e-02 5.18e-03 1.60

Table 6.9: The relative L2-error in velocity for “bad” cut elements. CIP stabilization
was used.

ε\N 8 16 32 64 128 rate
1 4.96e-01 2.51e-01 1.15e-01 5.83e-02 3.63e-02 0.89
2−2 4.13e-01 1.55e-01 9.50e-02 5.77e-02 3.69e-02 0.78
2−4 3.77e-01 7.51e-02 1.94e-02 1.72e-02 2.13e-02 0.98
2−8 2.88e-01 5.11e-02 1.17e-02 3.54e-03 1.41e-03 1.78
0 2.82e-01 4.83e-02 1.08e-02 3.31e-03 1.29e-03 1.80

Table 6.10: The relative L2-error in pressure for “bad” cut- lements. CIP stabilization
was used.

Results for this scaling with CIP stabilization are shown in Table 6.9 and 6.10. The
convergence rates are slightly less then expected. We have good convergence rate for
low N , but for N between 64 and 128 it slows down. Again observe see that the error
and convergence rate for ε = 2−4 is a bit low.

Remark: If we measure the error on the entire background mesh we get higher errors
since the values at the nodes outside of the physical domain are zero. The elements
on the boundary were removed to measure the error on the physical domain only. The
consequence is that we neglect some of the errors close to the boundary. However, only
a small portion of the “bad” cut elements is in the physical domain.



46 CHAPTER 6. RESULTS



Chapter 7

A priori error estimate

In this chapter we show an a priori error estimate for the CIP stabilized Brinkman
equation with Nitsche’s method on a fitted mesh. We consider the solution space V =[
L2 (Ω) ∩ εH1 (Ω)

]d for the velocity and Q =
(
H1 (Ω) ∩ L2

0 (Ω)
)

+ ε−1L2
0 (Ω) for the

pressure. We recall the problem:

Problem 7.1. Find uh ∈ Vh and ph ∈ Qh such that

A ((uh, ph) , (vh, qh)) = L (vh, qh) ∀vh ∈ Vh, qh ∈ Qh, (7.1)

where

A ((uh, ph) , (vh, qh)) = a (uh,vh) + b (ph,vh) + b (uh, qh)− c (ph, qh) , (7.2)

L (vh, qh) = (f ,vh)Ω − ε
2 (g, ∂nvh)Γ + (g · n, qh)Γ + γε2

(
h−1g,vh

)
Γ
, (7.3)

a (uh,vh) = (uh,vh)Ω + ε2 (∇uh,∇vh)Ω , (7.4)

− ε2 (∂nuh,vh)Γ − ε
2 (uh, ∂nvh)Γ + γε2

(
h−1uh,vh

)
Γ
, (7.5)

b (ph,vh) =
{
− (ph,∇ · vh)Ω + (ph,vh · n) for ε > 0,
(∇ph,vh)Ω for ε = 0, (7.6)

c (ph, qh) = βs
∑
T∈Th

h3
T

ε2 + h2
T

([∂nph] , [∂nqh])∂T . (7.7)

Vh is the space of continuous, piecewise linear Rd- valued vector fields defined relative
to a standard conforming tessellation T of Ω, Qh is the space of continuous, piecewise
linear functions defined relative to T .

Note that b (ph,vh) is different from the one in Problem 5.1. This is because of the

47



48 CHAPTER 7. A PRIORI ERROR ESTIMATE

solution space we use. We now state both the continues norms and the discrete norms:

‖v‖2ε := ‖v‖2Ω + ε2‖∇v‖2Ω + ε2γ‖h−
1
2 v‖2Γ + ε2‖h

1
2∂nv‖2Γ, (7.8)

‖vh‖2ε,h := ‖vh‖2Ω + ε2‖∇vh‖2Ω + ε2γ‖h−
1
2 vh‖2Γ, (7.9)

|||q|||ε := sup
v∈V

b (q,v)
‖v‖ε,h

, (7.10)

|||qh|||2ε,h :=
∑
T∈T

h2
T

ε2 + h2
T

‖∇qh‖2T , (7.11)

‖ (vh, qh) ‖2ε := ‖vh‖2ε + |||qh|||2ε , (7.12)
‖ (vh, qh) ‖2ε,h := ‖vh‖2ε,h + |||qh|||2ε,h. (7.13)

If a norm ‖ · ‖ has no subscript, then it is the L2-norm over the domain Ω. C (without
any subscript) is a generic constant. We use the symbol . to state the a is less or equal
to b multiplied with a generic constant C; that is, a . b ⇔ a ≤ Cb . We assume that
the mesh is shape regular and hmax ≤ Chmin, where C is independent of h. We call this
a quasi-uniform mesh.

The outline of this chapter is as follows: First, we state some ingredients needed to show
the error estimate. Then we prove the four Brezzi’s conditions. Finally, we prove the a
priori error estimate.

7.1 Ingredients:

Lemma 7.1. Inverse estimates and trace inequality.

Let hF be the facet length on the element T . F is the facets of element T , then

‖h1/2
F ∂nvh‖2F ≤ CI‖∇vh‖2T , (7.14)
‖∇vh‖T ≤ CI,1 h−1

T ‖vh‖T , (7.15)

‖vh‖F ≤ CT
(
h
−1/2
T ‖vh‖T + h

1/2
T ‖∇vh‖T

)
, (7.16)

hold for all vh ∈ Vh, T ∈ T and F ∈ F .

Proof. Proof can be found in [31] and [1].

Lemma 7.2.

‖vh‖ε ≤ Cn‖vh‖ε,h ∀vh ∈ Vh (7.17)



7.1. INGREDIENTS: 49

Proof. We use the inverse estimate (7.14) and sum over all elements:

‖vh‖2ε = ‖vh‖2ε,h + ε2‖h
1
2∂nvh‖2Γ ≤ ‖vh‖2ε,h + ε2CI‖∇xvh‖2Ω ≤ C2

n‖vh‖2ε,h (7.18)

We use similar techniques as Burman and Hansbo [4] and use the Oswald interpolant to
control the CIP term.

Lemma 7.3. Property of the Oswald interpolant.

There exist an interpolation operator I :
[
H2 (T )

]d −→ [Vh]d, such that for any piecewise
constant function φ ≥ 0, the following hold,

‖φ
1
2 (∇ph − I (∇ph)) ‖2Ω ≤ Cc

∑
T∈T

hTφ ([∂nph] , [∂nph])∂T\∂Ω ∀∇ph ∈ Vh (7.19)

Proof. Proof can be found in both [32] and [33].

We set φ = h2

ε2+h2 throughout this chapter.

Lemma 7.4. Scott–Zhang interpolants.

There exist an interpolation operator πh :
[
H1(Ω)

]d −→ Vh, such that∑
T∈T

h−2
T ‖v− πhv‖2T ≤ C‖∇v‖2, (7.20)

‖πhv‖ ≤ C‖v‖ (7.21)

and
‖∇πhv‖ ≤ C‖∇v‖ (7.22)

holds. There also exist an L2–projection operator π̃h :
[
L2(Ω)

]d −→ Vh, such that

‖π̃h (∇ph) ‖ ≤ ‖∇ph‖ ∀ ph ∈ Qh. (7.23)

Proof. Proof can be found in [21] and [34].

Lemma 7.5. Interpolation error estimates.

Let πh :
[
H2(Ω)

]d −→ Qh be a Scott–Zhang interpolation operator, then the following
error estimates hold.

‖q − πhq‖r,T ≤ Chs−r|q|s,ω(T ), 0 ≤ r ≤ s ≤ 2 ∀T ∈ T , (7.24)
‖q − πhq‖r,F ≤ Chs−r−1/2|q|s,ω(T ), 0 ≤ r ≤ s ≤ 2 ∀F ∈ ∂iT , (7.25)

where ω(T ) is the patch of neighbors of element T; that is, the union of elements sharing
a vertex with T .



50 CHAPTER 7. A PRIORI ERROR ESTIMATE

Proof. Proof can be found in [35].

Theorem 7.1. Interpolation error estimate for the ε-norm.

Let πh be the interpolation operator in Lemma 7.5, there is a constants C > 0 such that
for all v ∈

[
H2 (Ω)

]d and all q ∈ H2 (Ω):

‖v− πhv‖ε ≤ Ch|v|2,Ω, (7.26)

|||q − πhq|||ε,h ≤ Cφ
1
2h|q|2,Ω, (7.27)

|||q − πhq|||ε ≤ Ch|q|2,Ω, (7.28)
‖ (v− πhv, q − πhq) ‖ε ≤ Ch (|v|2,Ω + |q|2,Ω) . (7.29)

Proof. First note that from Equation (7.24), we get

‖q − πhq‖r,Ω ≤ Chs−r|q|s,Ω, (7.30)

by letting C contain the number of maximum neighboring elements to any T ∈ T . We
now prove Equation (7.26) term by term using Equation (7.30).

‖v− πhv‖ ≤ Ch2|v|2,Ω ≤ Ch|v|2,Ω,
ε‖∇ (v− πhv) ‖ ≤ εCh|v|2,Ω ≤ Ch|v|2,Ω,

ε
√
γ‖h−

1
2 (v− πhv) ‖Γ ≤ ε

√
γCT

(
h−1‖v− πhv‖+ ‖∇ (v− πhv) ‖

)
≤ Ch|v|2,Ω,

ε‖h
1
2∂n (v− πhv) ‖Γ ≤ ε‖h

1
2 ∇ (v− πhv)︸ ︷︷ ︸

:=w

‖Γ ≤ εC (‖w‖+ h‖∇w‖) ≤ Ch|v|2,Ω.

We used the trace inequality (7.16) for the two last inequality.

Equation (7.27) follow from applying Equation (7.30). We show Equation (7.28). Since
q ∈ H2 (Ω), we can write b (q − πhq,v) = (∇ (q − πhq) ,v)Ω. Using Cauchy–Schwarz’s
inequality (A.9) we get,

|||q − πhq|||ε = sup
v∈V

(∇ (q − πhq) ,v)Ω
‖v‖ε,h

≤ ‖∇ (q − πhq) ‖ sup
v∈V

‖v‖
‖v‖ε,h

≤ Ch|q|2,Ω. (7.31)

For the last inequality we used Equation (7.30) and the fact that ‖v‖/‖v‖ε,h ≤ 1.
Equation (7.29) follows from Equation (7.28) and (7.26).

Lemma 7.6. Special case of Theorem 7.1

‖v− πhv‖ε ≤ Ch|v|1,Ω, for ε = 0, (7.32)
|||q − πhq|||ε,h ≤ Ch|q|1,Ω, for ε = 1, (7.33)
|||q − πhq|||ε ≤ Ch|q|1,Ω, for ε = 1. (7.34)



7.1. INGREDIENTS: 51

Proof. Equation (7.32) follows from that fact that ‖v‖ε = ‖v‖ for ε = 0 and Equation
(7.33) since φ 1

2 = Ch for ε = 1. The last inequality can be shown by applying Cauchy–
Schwarz’s inequality and Equation (7.24) and (7.25),

|||q − πhq|||ε := sup
v∈V

− ((q − πhq) ,∇ · v)Ω + ((q − πhq) ,v · n)Γ
‖v‖ε,h

, (7.35)

≤ sup
v∈V

‖q − πhq‖‖∇v‖+ 1
γh

1
2 ‖q − πhq‖Γ‖γh−

1
2 v‖Γ

‖v‖ε,h
, (7.36)

≤ Ch|q|1,Ω sup
v∈V

‖∇v‖+ ‖γh− 1
2 v‖Γ

‖v‖ε,h
≤ Ch|q|1,Ω. (7.37)

Lemma 7.7.

∑
T∈T

(
ε2 + h2

T

h2
T

) 1
2

‖πhv− v‖T ≤ Cz‖v‖ε (7.38)

Proof. Follows from Lemma 7.4.

∑
T∈T

ε2 + h2
T

h2
T

‖πhv− v‖2T =
∑
T∈T

(
ε2

h2
T

+ 1
)
‖πhv− v‖2T , (7.39)

≤ C
(
ε2‖∇v‖2 + ‖πhv− v‖2

)
, (7.40)

≤ C
(
ε2‖∇v‖2 + ‖v‖2

)
, (7.41)

≤ Cz‖v‖2ε . (7.42)

Lemma 7.8. Galerkin orthogonality.

Let (u, p) ∈ V×Q be solutions of the Brinkman equation in Problem 4.3 and let (uh, ph) ∈
Vh ×Qh be the discrete solution of Problem 7.1. Then

A ((u− uh, p− ph) , (vh, qh)) = 0 ∀ (vh, qh) ∈ Vh ×Qh. (7.43)

Proof. Follows from the fact that (u, p) satisfy

A ((u, p) , (vh, qh)) = L (vh, qh) (7.44)

and then subtracting
A ((uh, ph) , (vh, qh)) = L (vh, qh) . (7.45)



52 CHAPTER 7. A PRIORI ERROR ESTIMATE

7.2 Brezzi’s conditions

Theorem 7.2. Boundedness of a (·, ·).

a (u,vh) ≤ C1‖u‖ε‖vh‖ε,h ∀u ∈ H2 and vh ∈ Vh. (7.46)

Proof. The proof can be found in [36], it follows from Cauchy–Schwarz’s inequality (A.9)
and (A.10), and the inverse estimate (7.15):

a (u,vh) = (u,vh)Ω + ε2 (∇u,∇vh)Ω + ε2γ
(
h−1u,vh

)
Γ

− ε2 (∂nu,vh)Γ − ε
2 (∂nvh,u)Γ ,

≤ ‖u‖‖vh‖+ ε2‖∇u‖‖∇vh‖+ ε2γ‖h−
1
2 u‖Γ‖h−

1
2 vh‖Γ

+ ε2‖h
1
2∂nu‖Γ‖h−

1
2 vh‖Γ + ε2‖h

1
2∂nvh‖Γ‖h−

1
2 u‖Γ,

≤ ‖u‖‖vh‖+ ε2‖∇u‖‖∇vh‖+ ε2γ‖h−
1
2 u‖Γ‖h−

1
2 vh‖Γ

+ ε2‖h
1
2∂nu‖Γ‖h−

1
2 vh‖Γ + ε2

√
CI‖∇vh‖‖h−

1
2 u‖Γ,

≤ C1‖u‖ε‖vh‖ε,h.

(7.47)

We can also show a modified coercivity on the form a (uh,vh) ≤ C1‖uh‖ε‖vh‖ε for all
uh, vh ∈ Vh.

Theorem 7.3. Boundedness of b (·, ·).

b (q,v) ≤ C2‖v‖ε,h|||q|||ε ∀v ∈ V, q ∈ Q (7.48)

Proof. Follows from the definition in Equation (7.10).

Theorem 7.4. Modified coercivity of b (·, ·).

Assuming quasi uniform mesh, the following holds.

sup
vh∈Vh

b (ph,vh)
‖vh‖ε,h

+ (c (ph, ph))
1
2 ≥ C4|||ph|||ε,h ∀ ph ∈ Qh (7.49)

Proof. First, we note that the bilinear form b (ph,vh), Equation (7.6), for ε > 0 and
ε = 0 are equivalent for the discrete case for P1 elements. We therefore consider only
b (ph,vh) = (vh,∇ph)Ω. We use the same vh as in the proof of Lemma 7.57,

vh = φ π̃h (∇ph) and φ = h2

ε2 + h2 , (7.50)



7.2. BREZZI’S CONDITIONS 53

where π̃h is the projection in Lemma 7.4.

|||ph|||2ε,h = (φ π̃h (∇ph) ,∇ph)Ω + (φ (∇ph − π̃h (∇ph)) ,∇ph)Ω , (7.51)

= b (ph,vh) +
(
φ

1
2 (∇ph − π̃h (∇ph)) , φ

1
2 (∇ph − I (∇ph))

)
Ω
. (7.52)

Here, I (∇ph) denotes the Oswald interpolation from Lemma 7.3. The last equality
come from the fact that I (∇ph) ∈ Vh and that π̃h is a L2–projection. Further, we use
Cauchy–Schwarz’s inequality (A.9) and Lemma 7.3.

|||ph|||2ε,h ≤ b (ph,vh) + φ
1
2 ‖∇ph − π̃h (∇ph) ‖Cc (c (ph, ph))

1
2 , (7.53)

≤ b (ph,vh) + Cc φ
1
2 (‖∇ph‖+ ‖π̃h (∇ph) ‖) (c (ph, ph))

1
2 , (7.54)

≤ b (ph,vh) + 2Cc φ
1
2 ‖∇ph‖ (c (ph, ph))

1
2 , (7.55)

= b (ph,vh) + 2Cc|||ph|||ε,h (c (ph, ph))
1
2 (7.56)

For the last inequality we used Lemma 7.4. The proof is completed by dividing Equation
(7.56) by |||ph|||ε,h and showing that

‖vh‖ε,h ≤ C|||ph|||ε,h. (7.57)

We show this term by term for ‖vh‖ε,h:

‖vh‖ = ‖φ π̃h (∇ph) ‖ . φ‖∇ph‖ = φ
1
2 |||ph|||ε,h . |||ph|||ε,h (7.58)

The first inequality comes from Lemma 7.4, the second from the fact that φ 1
2 ≤ 1.

ε‖∇vh‖ = ε‖φ∇ (π̃h (∇ph))‖ ≤ CI,1
ε

h
φ‖π̃h (∇ph) ‖ ≤ CI,1

ε

h
φ

1
2 |||ph|||ε,h . |||ph|||ε,h

(7.59)
The first inequality comes from the inverse estimate (7.15), the second inequality we
used Lemma 7.4 and the last inequality comes from the fact that ε

hφ
1
2 < 1.

ε‖h−
1
2 vh‖Γ ≤ CT

(
ε

h
‖vh‖+ ε‖∇vh‖

)
. |||ph|||ε,h (7.60)

The first inequality comes from the trace inequality (7.16). For the first term on the
second inequality we use Equation (7.58) and the fact that ε

hφ
1
2 < 1. For the second

term on the second inequality we use Equation (7.59).

Theorem 7.5. Coercivity of a (·, ·).

a (uh,uh) ≥ C3‖uh‖2ε,h ∀uh ∈ Vh. (7.61)



54 CHAPTER 7. A PRIORI ERROR ESTIMATE

Proof. The proof can be found in both [36] and [37]. We also prove it in this thesis:

a (uh,uh) = ‖uh‖2 + ε2‖∇uh‖2 − 2ε2 (∂nuh,uh)Γ + ε2γ‖h−
1
2 uh‖2Γ,

≥ ‖uh‖2 + ε2‖∇uh‖2 −
ε2

δ
‖h

1
2∂nuh‖2Γ + ε2 (γ − δ) ‖h−

1
2 uh‖2Γ,

≥ ‖uh‖2 + ε2‖∇uh‖2 − ε2
CI
δ
‖∇uh‖2 + ε2 (γ − δ) ‖h−

1
2 uh‖2Γ.

To obtain the first inequality, we used Cauchy’s inequality with δ (A.8). The second
inequality comes from the inverse estimate 7.1 with similar summation trick as in The-
orem 7.2. CI

δ must be less then 1, thus we choose δ such that δ > CI . Also γ must be
chosen such that γ > δ > CI .

Note that C3 is dependent on CI as mentioned in Section 5.2.

Theorem 7.6. The inf-sup stability of A ( · , · ).

There is a constant C > 0 such that

sup
(vh,qh)∈Vh×Qh

A ((uh, ph) , (vh, qh))
‖ (vh, qh) ‖ε,h

> C‖ (uh, ph) ‖ε,h ∀ (uh, ph) ∈ Vh ×Qh (7.62)

Proof.

Part 1: Let (vh, qh) = (uh,−ph), then we obtain

A ((uh, ph) , (uh,−ph)) = a (uh,uh) + b (ph,uh) + b (−ph,uh) + c (ph, ph) , (7.63)
≥ C3‖uh‖2

ε,h + c (ph, ph) , (7.64)

from the coercivity Theorem 7.5.

Part 2: Let (vh, qh) = (φ π̃h (∇ph) , 0), where π̃h is the projection in Lemma 7.4.
From Theorem 7.4 we have,

b (ph, πhφ π̃h (∇ph)) ≥ C4 |||ph|||ε,h‖vh‖ε,h − (c (ph, ph))
1
2 ‖vh‖ε,h, (7.65)

≥ C4 |||ph|||ε,h‖vh‖ε,h − δ‖vh‖
2
ε,h −

1
4δ c (ph, ph) . (7.66)

In the last inequality we used Cauchy–Schwarz’s inequality with δ (A.8). Using



7.2. BREZZI’S CONDITIONS 55

inequality 7.66 and recalling that vh = φ π̃h (∇ph), we get

A ((uh, ph) , (φ π̃h (∇ph) , 0)) = a (uh,vh) + b (ph,vh) , (7.67)
≥ −C1‖uh‖ε‖vh‖ε + C4|||ph|||ε,h‖vh‖ε,h (7.68)

− δ‖vh‖2
ε,h −

1
4δ c (ph, ph) , (7.69)

≥ −C1

4δ̃
‖uh‖2

ε − δ̃C1‖vh‖2
ε + C4|||ph|||ε,h‖vh‖ε,h (7.70)

− δ‖vh‖2
ε,h −

1
4δ c (ph, ph) . (7.71)

We rescale ‖vh‖ε,h := |||ph|||ε,h, use Lemma 7.2 and chose δ and δ̃ such that Cδ :=
C4 − C1C

2
nδ̃ − δ is positive.

A ((uh, ph) , (φ π̃h (∇ph) , 0)) = a (uh,vh) + b (ph,vh) , (7.72)

≥ Cδ|||ph|||ε,h‖vh‖ε,h −
C1C

2
n

4δ̃
‖uh‖2

ε,h −
1
4δ c (ph, ph) .

(7.73)

Part 3: Finally we combine part 1 and 2, (vh, qh) = (uh,−ph) +α (φ π̃h (∇ph) , 0)
for a sufficiently small α and use inequality (7.64) and (7.73).

A ((uh, ph) , (vh, qh)) ≥ C3‖uh‖2
ε,h + c (ph, ph) (7.74)

+ α

(
Cδ|||ph|||ε,h‖vh‖ε,h −

C1C
2
n

4δ̃
‖uh‖2

ε,h −
1
4δ c (ph, ph)

)
,

(7.75)

≥
(
C3 − α

C1C
2
n

4δ̃

)
‖uh‖2

ε,h + αCδ|||ph|||2ε,h, (7.76)

≥ min
((

C3 − α
C1C

2
n

4δ̃

)
, αCδ

)
‖ (vh, qh) ‖2

ε,h, (7.77)

and the proof is complete. Note that α have to be chosen such that C3 − αC1C2
n

4δ̃
and 1− α 1

4δ are positive.



56 CHAPTER 7. A PRIORI ERROR ESTIMATE

7.3 A priori error estimate

Theorem 7.7. A priori error estimate.

Let (u, p) ∈
[
H2 (Ω)

]d × H2 (Ω) be the solution of the Brinkman Problem 4.3, and let
(uh, ph) be the discrete solution of corresponding CIP stabilized Nitsche formulation,
Problem 7.1. Then, there is a constant C > 0 such that

‖u− uh‖ε + |||p− ph|||ε,h ≤ Ch (|u|2,Ω + |p|2,Ω) . (7.78)

Proof. Using the triangle inequality and Lemma 7.2 we obtain

‖u− uh‖ε + |||p− ph|||ε,h ≤ ‖u− πhu‖ε + |||p− πhp|||ε,h
+ Cn‖πhu− uh‖ε,h + |||πhp− ph|||ε,h.

(7.79)

The desired bound for the first two terms on the right-hand side of Equation (7.79)
are obtained by applying Theorem 7.1. We need to handle the last two terms on the
right-hand side of Equation (7.79). By using Cauchy’s inequality (A.7) and Theorem
7.6 we obtain

Cn‖πhu− uh‖ε,h + |||πhp− ph|||ε,h ≤
A ((uh − πhu, ph − πhp) , (vh, qh))

‖ (vh, qh) ‖ε,h
, (7.80)

for some vh, ph ∈ Vh ×Qh. Next, we use Galerkin orthogonality (Lemma 7.8),

A ((uh − πhu, ph − πhp) , (vh, qh)) = A ((u− πhu, p− πhp) , (vh, qh)) . (7.81)

From the definition of A, we have

A ((u− πhu, p− πhp) , (vh, qh)) = a (u− πhu,vh) + b (u− πhu, qh)
+ b (p− πhp,vh)− c (p− πhp, qh) .

(7.82)

We handle these term separately. Using Theorem 7.2 we obtain

a (u− πhu,vh) ≤ C1‖u− πhu‖ε‖vh‖ε,h ≤ C1‖u− πhu‖ε‖vh‖ε,h. (7.83)

Using Cauchy–Schwarz’s inequality,

b (u− πhu, qh) =
(
φ−

1
2 (u− πhu) , φ

1
2∇qh

)
≤

√
ε2 + h2

h2 ‖u− πhu‖|||qh|||ε,h. (7.84)

Next, we use Theorem 7.3,

b (p− πhp,vh) ≤ C2|||p− πhp|||ε‖vh‖ε,h. (7.85)



7.3. A PRIORI ERROR ESTIMATE 57

The CIP stabilization term can be estimated by combining the inverse estimate Equation
(7.14), Equation (7.22), Equation (7.30), and the trace inequality Equation (7.16).

−c (p− πhp, qh) = βs
∑
T∈T

h3

ε2 + h2 ([∂nπhp] , [∂nqh])∂T

≤ Cφ
∑
T∈T
‖h

1
2∂n (πhp− p) ‖∂T ‖h

1
2∂nqh‖∂T

≤ Cφ (‖ (πhp− p) ‖+ h|p|2,Ω) ‖∇qh‖ ≤ Cφ
1
2h|p|2,Ω|||qh|||ε,h.

(7.86)

Now we use on Equation (7.26) on (7.83) and (7.84), where we gain an extra h since
Equation (7.84) only contains the L2-norm. We use Equation (7.28) on (7.85). Collecting
the term, we get

A ((u− πhu, p− πhp) , (vh, qh)) ≤ C
(
h|u|2,Ω‖vh‖ε,h + h

√
ε2 + h2|u|2,Ω|||qh|||ε,h

+ h|p|2,Ω‖vh‖ε,h + φ
1
2h|p|2,Ω|||qh|||ε,h

)
.

(7.87)

We apply the discrete Cauchy’s inequality to the equation above to obtain

A ((u− πhu, p− πhp) , (vh, qh)) ≤ Ch (|u|2,Ω + |p|2,Ω) ‖ (vh, qh) ‖ε,h. (7.88)

Combining Equation (7.80) and (7.88) completes the proof.

Lemma 7.9. Special case of the a priori error estimate

‖u− uh‖ε + |||p− ph|||ε,h ≤ Ch (|u|2,Ω + |p|1,Ω) , for ε = 1, (7.89)
‖u− uh‖ε + |||p− ph|||ε,h ≤ Ch (|u|1,Ω + |p|2,Ω) , for ε = 0. (7.90)

Proof. Can be shown by modifying the proof of Theorem 7.7 by applying Lemma 7.6.



58 CHAPTER 7. A PRIORI ERROR ESTIMATE



Chapter 8

Preconditioning

8.1 Iterative methods

The finite element method transforms a PDE into a system of equations,

Au = b. (8.1)

The matrix A ∈ RN,N is typically large and sparse (meaning that it contains only O (N)
nonzero entries). Direct methods for solving the linear system, like Gaussian elimination
or LU-factorization, require between O

(
N2) and O (N3) floating point operations and

O
(
N2) of storage. For realistic simulation N is large, typically in the range 106–109,

the direct methods are insufficient. Instead, we use iterative methods with a good
preconditioner. An iterative method (assuming that it convergent), solves a linear system
in O (N) operations.

The iterative method we use is the Krylov subspace method called Minimal Residual
(MinRes). It requires that the matrix A is symmetric, in contrast to the more com-
mon Conjugated gradient method which requires that A is both symmetric and positive
definite.

The convergence of the iterative methods is related to the condition number of A. A high
condition number gives a slow convergence rate. For discretized PDEs, the condition
number grows as 1/h2; in other words, the condition number of A is not bounded.
Hence the convergence might be extremely slow or it might not converge at all. To fix
the problem we multiply Equation (8.1) with a preconditioner B and instead solve the
system:

BAu = Bb. (8.2)

The preconditioner B should have the following properties:

1. The condition number of BA is bounded.

59



60 CHAPTER 8. PRECONDITIONING

2. B only uses O (N) flops for evaluation.

3. B require only O (N) of storage.

If B is chosen to be A−1, the first property is satisfied. However, the second and third
property is not satisfied since A−1 is dense.

Finding good preconditioners is challenging. We explore some possible preconditioners
for unstabilized and stabilized Brinkman problems in the view of operator precondition-
ing. The rest of this chapter follows the theory from [2, 38, 10] and [11]. We will focus
only on the fitted case and simplify the notation by removing the domain Ω and the
brackets to the spaces; that is, H1 =

[
H1 (Ω)

]d.
8.2 Operator preconditioning of the unstabilized Brinkman

equation

We reformulate the (strong) Brinkman Equation (3.19) as a matrix equation,

Aε

(
u
p

)
=
(

f
0

)
, (8.3)

where Aε is the differential operator

Aε =
(
I − ε2∆ grad

div 0

)
. (8.4)

For each fixed ε > 0, the operator Aε is an isomorphism mapping H1×L2
0 onto H−1×L2

0,
where H−1 is the dual space of H1 [38].

However, we would like to vary ε and have the operator norm bounded independently
of ε. To achieve this we will need to introduce ε dependent spaces and norms.

As mentioned in the end of Section 4.2, the Darcy case has two possible solution spaces,
namely L2

g×H1 ∩L2
0 and H (div)×L2

0. We have two possible solution spaces Xε for the
Brinkman Equation (8.3):

Xε =
(
L2 ∩ εH1

)
×
((
H1 ∩ L2

0

)
+ ε−1L2

0

)
(8.5)

Xε =
(
H (div) ∩ εH1

)
× L2

0 (8.6)

The corresponding dual spaces with respect to the L2–inner product are1

X∗ε =
(
L2 + ε−1H−1

)
×
(
H−1

0 ∩ εL2
0

)
, (8.7)

X∗ε =
(
H−1 (rot) + ε−1H−1

)
× L2

0, (8.8)

1The asterisk “*” denotes the dual space and not the background mesh.



8.3. DISCRETE PRECONDITIONING OF THE UNSTABILIZED BRINKMAN EQUATION61

where H−1
0 corresponds to the dual space of H1 ∩ L2

0 [38, 2].

In Section 6.2 we found that the solution space in Problem 4.5, 5.1 and 5.2 reduces to
H (div) × L2

0 when ε → 0. However, for constructing preconditions we chose to use the
solution space (8.5) and dual space (8.7).

Mardal et al. [38] show that Aε is an isomorphism mapping Xε onto X∗ε . We want an
operator Bε that maps X∗ε onto Xε.

Bε =
((
I − ε2∆

)−1 0
0 ε2I + (−∆)−1

)
(8.9)

has this property. Combining Bε and Aε gives:

BεAε : Xε
Aε−−→ X∗ε

Bε−→ Xε; (8.10)

that is, BεAε maps Xε onto itself. Furthermore, the condition number κ (BεAε) is
bounded independently of ε.

Remark: If we instead want to use the solution space (8.6) with the corresponding dual
space (8.8), the preconditioner can be chosen as

Bε =
((
I − grad div− ε2∆

)−1 0
0 I

)
, (8.11)

which maps (8.8) onto (8.6) [11].

8.3 Discrete preconditioning of the unstabilized Brinkman
equation

We need to transform the operators Aε and Bε into discrete matrices Aε,h and Bε,h. For
Aε,h we use the finite element formulation in Problem 4.5 or 5.1 (depending on if we
want to use Nitsche method or not), for a suitable finite element without stabilization.
This approach however, will be inefficient for Bε,h since the discrete operator Bε,h is
dense. Instead, we use a matrix B̃ε,h which is spectral equivalent to Bε,h and cheap to
both evaluate and store.

For the computations we use a multigrid preconditioner B̃ε,h which uses a standard V–
cycle operator and four sweeps of symmetric Gauss–Seidel as smoother [39]. For the
stop criteria we use

(
rTkArk < tolerance

)1/2
, where rk is the residual, rk := bk − Auk.

We use the library cbc.block [40] for block operations and to construct preconditioners,
and we use the software Octave [41] to find exact eigenvalues and condition numbers.



62 CHAPTER 8. PRECONDITIONING

ε\N 4× 4 8× 8 16× 16
1 15.8 17.3 17.8
2−2 12.8 15.6 17.0
2−4 6.85 10.2 13.5
2−8 3.30 3.46 3.80
0 3.33 3.38 3.40

Table 8.1: Condition number for
Bε,hAε,h for the mini–element (without
Nitsche).

ε\N 4× 4 8× 8 16× 16
1 1.14e+04 4.54e+04 1.82e+05
2−2 9.22e+01 3.56e+02 1.41e+03
2−4 3.30e+01 6.45e+01 2.21e+02
2−8 3.41e+02 1.34e+03 3.75e+03
0 3.54e+02 1.57e+03 6.245+03

Table 8.2: Condition number for Aε,h
for the mini–element (without Nitsche).

8.3.1 Condition number of Bε,hAε,h and Aε,h

Definition 8.1. Condition number.

The condition number of a matrix A is the largest absolute eigenvalue divided by the
smallest absolute eigenvalue,

κ (A) = |λmax|
|λmin|

. (8.12)

We remove the zero eigenvalue that comes because the pressure is only defined uniquely
up to a constant.

Table 8.1 displays the exact condition number for preconditioned system Bε,hAε,h for the
mini–element without the Nitsche method for various ε and N . Table 8.2 displays the
exact condition number for the matrix Aε,h for the mini–element without the Nitsche
method. Table 8.1 shows that the condition number increases a bit, but seems to even
out for high values of N , these results are similar to what [42] and [38] showed. Table 8.2
shows that the condition number grows rapidly as N increases. For the lower right entry
of Bε,h we used (I −∆)−1 instead of (−∆)−1, since (−∆)−1 gives a singular matrix.

8.3.2 Number of iterations for the preconditioned system

Table 8.3 shows the number of iterations B̃ε,hAε,h for the mini–element without Nitsche
method. We used 10−8 as tolerance and random values as initial vector. From the table
we see that the number of iterations grows as N increases, for ε > 0. From the theory we
expect that the number of iterations would be bounded. An explanation might be that
the bubble function of the mini–element is only supposed to occur on the finest grid.
The program might use bubbles on the coarse level in the multigrid.

We also find the number of iterations for the lowest order of the Taylor–Hood elements
which consist of P2 elements for the velocity and P1 elements for the pressure. Table 8.4
shows the result. We see that the number of iterations increases only a bit as N increases
for ε > 0, this is expected and within reasonable limits. These numbers of iterations



8.3. DISCRETE PRECONDITIONING OF THE UNSTABILIZED BRINKMAN EQUATION63

ε\N 16 32 64 128 256
1 60 76 120 227 467
2−2 53 65 98 189 384
2−4 48 53 67 108 199
2−8 24 28 39 48 54
0 21 21 22 22 23

Table 8.3: Number of iterations needed
to solve the system B̃ε,hAε,h for the
mini–elements (without Nitsche).

ε\N 16 32 64 128 256
1 52 65 82 95 115
2−2 45 55 69 85 101
2−4 37 42 52 63 76
2−8 26 28 31 33 37
0 26 26 26 27 27

Table 8.4: Number of iterations
needed to solve the system B̃ε,hAε,h
for the Taylor–Hood elements (without
Nitsche).

are a bit lower than [11] have. The reason might be that we use four smoothing sweeps,
which more then normally used.

8.3.3 Condition number with and without Nitsche method

In Chapter 5 and 6 we saw that the Nitsche method seemed to have a stabilizing effect
for P1–P1 elements. Table 5.1 and 5.2 show good convergence rates for P1–P1 elements
without any stabilization for the matching case. Similar results the unfitted case can be
found in Table 6.7 and 6.8, where we only use ghost–penalties. However, plots showed
small oscillations for the pressure.

We explore the stabilizing effect of the Nitsche method further by finding the condition
number for the system Bε,hAε,h, both with and without the Nitsche method for Taylor–
Hood element, mini–element and P1–P1 elements without stabilization. Table 8.5 and
8.6 show the condition number when using the Taylor–Hood elements with and without
the Nitsche method, respectively. The condition number increases slightly as N increases
and is a bit lower when using the Nitsche method. Table 8.5 have similar values as in
[42], [38], and [11]. For Table 8.6 we do not have any comparison. Table 8.7 shows
the condition number when using the mini–elements with the Nitsche method (without
Nitsche is displayed i Table 8.1). Here, the condition number is a bit higher when
using the Nitsche method. Finally, Table 8.8 shows the condition number for P1–P1
element with Nitsche method. When we did not use the Nitsche method, the condition
number was between 1015 and 1030. Table 8.8 shows that the condition number starts
reasonably low and increases somewhere between first and second order as N increases.
These results also indicate that the Nitsche method has a stabilizing effect for P1–P1
elements, but that the system is not completely stabilized.



64 CHAPTER 8. PRECONDITIONING

ε\N 4× 4 8× 8 16× 16
1 13.25 13.44 13.52
2−2 12.18 12.92 13.27
2−4 9.00 10.94 12.24
2−8 5.94 6.13 6.53
0 5.90 6.00 6.05

Table 8.5: Condition number for
Bε,hAε,h with Taylor–Hood element.

ε\N 4× 4 8× 8 16× 16
1 11.17 11.81 12.17
2−2 8.74 10.18 11.23
2−4 4.56 6.47 8.52
2−8 3.19 3.26 3.32
0 3.19 3.25 3.28

Table 8.6: Condition number for
Bε,hAε,h with Taylor–Hood elements
with the Nitsche method.

ε\N 4× 4 8× 8 16× 16
1 20.05 21.65 22.25
2−2 16.67 19.95 21.50
2−4 7.64 13.26 17.76
2−8 3.33 3.44 3.78
0 3.31 3.37 3.39

Table 8.7: Condition number for
Bε,hAε,h with mini–elements with the
Nitsche method.

ε\N 4× 4 8× 8 16× 16
1 16.48 52.60 165.93
2−2 16.40 52.60 165.86
2−4 15.00 51.72 165.16
2−8 12.44 43.81 150.83
0 12.42 43.62 149.65

Table 8.8: Condition number for
Bε,hAε,h with P1–P1 elements with the
Nitsche method.

8.4 Preconditioning the stabilized Brinkman equation

For the stabilized Brinkman equation, the differential operator Aε is not the same as
(8.4). We write the new differential operator as

Asε =
(
I − ε2∆ grad

div C

)
, (8.13)

where C is the stability term and the superscript s means the stabilized Brinkman
equation. In this formulation we only stabilized the pressure. Since Aε has changed to
Asε it is reasonable to believe that we have to find a new preconditioner Bsε . Table 8.9
shows the condition number for Bε,hAsε,h and Table 8.10 shows the number of iterations
for solving B̃ε,hAsε,h when using CIP stabilization, where we used the preconditioner in
(8.9). We do not consider the Nitsche method in this section, but rather consider the
test case (4.47). From Table 8.9 and 8.10 we see that the condition number and number
of iterations are large and increasing as N increase for the Stoke case. When ε is either
close to zero or zero, the values are low and almost not increasing. This indicates that
the preconditioner (8.9) works well for (very) low ε, but is insufficient for ε = 1.



8.4. PRECONDITIONING THE STABILIZED BRINKMAN EQUATION 65

ε\N 4× 4 8× 8 16× 16
1 161.2 198.9 236.1
2−2 51.79 113.6 174.7
2−4 8.018 18.41 50.07
2−8 6.652 6.670 6.645
0 6.666 6.720 6.837

Table 8.9: Condition number for
Bε,hAsε,h with CIP stabilization.

ε\N 16 32 64 128 256
1 293 347 427 457 493
2−2 256 317 382 419 447
2−4 148 227 289 345 385
2−8 46 49 66 98 166
0 44 46 46 48 50

Table 8.10: Number of iterations
needed to solve the system B̃ε,hAsε,h with
CIP stabilization.

ε\N 4× 4 8× 8 16× 16
1 5.05 6.45 7.77
2−2 4.61 5.41 6.48
2−4 5.55 4.93 4.96
2−8 7.73 7.70 7.63
0 7.76 7.80 7.99

Table 8.11: Condition number for
Bsε,hAsε,h with CIP stabilization.

ε\N 16 32 64 128 256
1 47 54 62 67 70
2−2 46 51 57 62 67
2−4 47 50 51 57 64
2−8 37 43 54 67 76
0 39 41 43 48 56

Table 8.12: Number of iterations
needed to solve the system B̃sε,hAsε,h with
CIP stabilization.

Our suggestion for a new preconditioner is

Bsε =
((
I − ε2∆

)−1 0
0

(
ε−2I − C

)−1 + (−∆− C)−1

)
. (8.14)

For the case ε = 0 we remove the term
(
ε−2I − C

)−1. We test the preconditioner (8.14)
by finding the condition number and number of iterations for both CIP and PSPG
stabilization. Table 8.11 and 8.13 show the condition number for CIP and PSPG stabi-
lization, respectively. We see that the numbers are low for both stabilization methods
and not growing to much. The number of iterations are shown in Table 8.12 and 8.14.
The numbers are low and barely increasing. The results in Table 8.11, 8.12, 8.13 and
8.14 indicate that the preconditioner (8.14) is good.



66 CHAPTER 8. PRECONDITIONING

ε\N 4× 4 8× 8 16× 16
1 4.10 5.80 7.08
2−2 4.56 4.95 5.87
2−4 9.13 5.82 4.85
2−8 15.80 16.11 15.71
0 15.87 16.31 16.49

Table 8.13: Condition number for
Bsε,hAsε,h with PSPG stabilization.

ε\N 16 32 64 128 256
1 42 48 56 60 64
2−2 39 42 49 52 57
2−4 32 36 39 44 49
2−8 58 57 48 37 35
0 60 62 64 66 68

Table 8.14: Number of iterations
needed to solve the system B̃sε,hAsε,h with
PSPG stabilization.



Chapter 9

Discussion

9.1 The Brinkman equation

The Brinkman equation arises in many different problems. We obtained it from dis-
cretizing the Navier–Stokes equations in a certain fashion. Similarly, we can obtain
the Brinkman equation by discretizing the time-dependent Stokes equation implicitly in
time. The Brinkman equation can be used to model flow through viscous and porous
media. The Brinkman equation can also be viewed as a singular perturbation problem
when ε < h.

One of the challenges is that the solution spaces are different in the Stokes case and
the Darcy case. We approach this by letting the solution space depend on ε. The weak
formulation has two possible solution spaces and two corresponding dual spaces.

Xε =
(
L2 ∩ εH1

)
×
((
H1 ∩ L2

0

)
+ ε−1L2

0

)
,

X∗ε =
(
L2 + ε−1H−1

)
×
(
H−1

0 ∩ εL2
0

) (9.1)

and
Xε =

(
H (div) ∩ εH1

)
× L2

0,

X∗ε =
(
H−1 (rot) + ε−1H−1

)
× L2

0.
(9.2)

For our analysis in this thesis, we looked at the (9.1) spaces. Our programs follows the
(9.2) spaces. To change these to the (9.1) spaces we add an if-test using the formulation
in Problem 6.1 for ε = 0.

Finding elements which are uniformly stable; that is, stable for all ε ∈ [0, 1], is challeng-
ing. Mardal et al. [2] points out that many of the elements which are stable for the Stokes
case are not stable for the Darcy case, and vice versa. Examples of such elements are the
Crouzeix–Raviart element, the P2–P0 element and the Raviart-–Thomas element. The
article also points out that the mini–element is uniformly stable for the (9.1) spaces and

67



68 CHAPTER 9. DISCUSSION

shows that the Mardal–Tai–Winther element is uniformly stable for the (9.2) spaces. We
refer to Chapter 3 in [20] for the definitions of the elements mentioned in this section.
Unfortunately the software we used, does not have the Mardal–Tai–Winther element
implemented.

9.1.1 Stabilization methods

A different approach than using uniformly stable elements is to use stabilization methods.
The software used only supported P1 and P0 cut elements, and since implementation
of higher order elements was deemed out of scope, we chose to focus on stabilization
methods. There are many good reasons to use stabilization methods over uniformly
stable elements, one being that uniformly stable elements often have more degrees of
freedom which requires more memory and floating point operations to solve.

We have considered the PSPG method and the CIP method. Juntunen and Stenberg [3]
show stability and both a priori and a posteriori error estimates for the mini–element
and PSPG method for the (9.1) spaces. The CIP method for the Brinkman problem
were presented and analyzed by Burman and Hansbo [4]. We mainly considered the CIP
method and used the PSPG method as comparison.

The PSPG method is a well known method which has been widely used in practice with
good results. The method does however have some disadvantages [33], one being that
mass lumping is impossible. The CIP method overcomes these disadvantages with no
additional unknowns added. A practical advantage in our case is that we use the same
similar terms for the CIP stabilization as for the ghost penalties. The results in Tables
4.3, 4.4, 4.5 and 4.6 do not show any noticeable differences between the two methods.
Other stabilization methods and their analysis can be found in [43].

9.1.2 Nitsche method

The need to weakly impose boundary conditions has made the Nitsche method popular in
recent years. The method was mentioned and discussed by Nitsche [9] in 1971. Juntunen
and Stenberg [26] consider the Nitsche method for general boundary conditions for the
Poisson equation. The Nitsche method was used in fictitious domain methods with cut
elements in [5] for the Poisson equation and extended to the Stokes equation in [6]. The
Nitsche method can also be used for domain decomposition problems where there is a
jump on the boundary interacting the domains, and for overlapping meshes methods
[44, 45]. An alternative to the Nitsche method is to use Lagrange multiplier defined
as element-wise constant on the cut elements [46, 47]. The Nitsche method is however
preferred since it does not introduce multipliers.

Finding a lower bound for the penalty parameter γ is of practical interest and we discuss
it for the fitted case. In the proof of the coercivity Theorem 7.5 we find that γ must be



9.1. THE BRINKMAN EQUATION 69

larger than CI , where CI is the constant in the inverse estimate (7.1). CI can be found
by finding the largest eigenvalue, λmax, in the eigenproblem [37]:

Find uh ∈ Vh and λ ∈ R such that(
h

1/2
T ∂nuh, ∂nvh

)
∂T∩Γ

= λ (∇uh,∇vh)T , vh ∈ Vh. (9.3)

For P1 we can show
CI = hT meas (∂T ∩ Γ)

meas (T ) . (9.4)

For the unit square test case in Section 4.5, CI = 2
√

2 (CI = 4
√

2 for two of the corner
elements).

Our numerical results indicate that the Nitsche method has a stabilizing effect. Table
5.1 and 5.2 show errors and convergence rates for P1–P1 elements without stabilization
for matching meshes and Table 6.7 and 6.8 show for the unfitted mesh. These tables
show low errors and good convergence rates. Figure 5.2 reveals small oscillations for the
pressure. In Chapter 8 we explored the Nitsche methods further by finding the condition
number of Bε,hAε,h (Table 8.8). These condition numbers are small compared to when
we don’t use the Nitsche method, where the condition number was between 1.0e + 15
and 1.0e+ 30. The condition numbers in Table 8.8 are increasing with an order between
1.5 and 2 as N increases. The results in the tables and plots indicate that the Nitsche
method has a stabilizing effect, but that it is not stable in term of the inf-sup condition.

9.1.3 Fictitious domain finite element methods

Classical fictitious domain methods like [48], extend the equation to the fictitious domain
Ω∗ and set the source function to zero in Ω∗\Ω. The normal derivative across the
boundary is not well approximated and there is a loss of accuracy. To address this we
use fictitious domain with cut elements. The problem is that there is no lower bound on
the size of T ∩Ω and no upper bound on the condition number of the system matrix [5].
One consequence is that the denominator in Equation (9.4) is not bounded from below
and stability fails on the boundary. We use ghost-penalties to stabilize in the interface
zone which extends the coercivity to the fictitious domain [7].

One challenge is to find scaling functions su and sp for the ghost-elements for the
Brinkman equation. Proposition 5.1 was used to suggest scaling functions for ε = 1
and ε = 0. However, for ε = 0 we suggested su = h3

T , but numerical results from Ta-
ble 6.1 shows that this did not achieve the expected convergence rates. Instead we use
su = h−1

T for ε = 0, which gave good convergence rates. The scaling functions are

su(hT ) = hT
ε2 + h2

T

and sp(hT ) = h3
T

ε2 + h2
T

. (9.5)

Tables 6.3 to 6.10 show results using the scaling functions above. Common for the tables
is that the convergence rates are good for ε = 1 and ε = 0, but the convergence rates for



70 CHAPTER 9. DISCUSSION

ε in between, are not as good. This might indicate that the scaling functions (9.5) are
insufficient or that the scaling functions can be improved.

Table 6.9 and 6.10 show results when using “bad” cut elements. The convergence rates
are affected. However, this is a unlikely test case where every cut element are “bad”.
This test case shows, to a certain extent, the robustness of the method.

9.1.4 A priori error estimate

In Chapter 7 we proved an a priori error estimate for the Brinkman equation with the
Nitsche method and CIP stabilization on a matching mesh. We considered the spaces
in (9.1). Our spaces and norms are very similar to those employed by Juntunen and
Stenberg [3] use. Juntunen and Stenberg [3] prove both an a priori and an a posteriori
error estimate for the mini–element and P1–P1 with PSPG stabilization, and at the
end they discuss the Nitsche method. Burman and Hansbo [4] prove an a priori error
estimate for the CIP stabilized Brinkman equation (without Nitsche), however in the
other spaces (9.2). Techniques from both [4] and [3] were used to prove Theorem 7.7.
A natural extension of our error estimate would be to prove it for the fictitious domain
method presented in Chapter 5. Massing et al. [8] prove an a priori error estimate for the
PSPG stabilized Stokes problem for the same fictitious domain method we considered.

9.1.5 Preconditioner for the fictitious domain method

In Chapter 8 we discussed preconditioners for the unstabilized Brinkman equation. We
used the theory from [10] and [11]. The preconditioner was tested by counting the
number of iterations and finding the exact condition number (to machine precision). We
also suggested a preconditioner (Equation (8.14)) for the stabilized Brinkman equation
and performed the same test with good results.

In the same chapter we only considered matching meshes and not the fictitious domain
method from Chapter 5. To extend to the fictitious domain method we could use the
same preconditioner (8.14) and include the ghost penalties for the pressure in C and the
ghost penalties for the velocity in

(
I − ε2∆

)−1. However, this have not been tested.

9.1.6 Limitations of the numerical results

Most of our numerical results are produced from the manufactured solution Equation
(4.47) and (6.1). This is one of infinitely many possible solutions. Our solution might
not contain the whole spectrum of eigenfunctions; that is, it might be that our solution
only test low frequent solutions and not high frequent solutions. To thoroughly test the
problem, manufactured solutions with different properties should be used. An example
of another manufactured solution we could use, is u = ε∇× e−xy/ε and p = ε ex/ε. This



9.2. CONCLUSIONS AND FURTHER WORK 71

solution is ε-dependent and its behavior is typical for solutions of singular perturbation
problems [2]. Also this solution has inhomogeneous boundary conditions, in contrast
to the solution in Equation (4.47) and (6.1) where g = 0 on Γ. The numerical results
should be produced for higher mesh resolutions, especially for Table 6.10. If we study
the table closely we can see that the convergence rate between N = 64 and N = 128,
are low. We would like to know if it is low for N = 128 and N = 256 as well.

The condition number tests in Chapter 8, done for Aε,h and Asε,h, only depend on
Vh (T ) × Qh (T ) and not the source term f (x). These tests do not have the same
problem as the manufactured solutions might have and can be a good supplement to
manufactured solutions. The condition numbers are exact to machine precision and we
are only able to find them using a coarse grids (low N).

9.2 Conclusions and further work

We have studied a fictitious domain method with cut elements, which allows the domain
to be independent of the mesh. This is a desired property since meshing and mesh
analysis can be difficult and time consuming for complex domains. The Nitsche method
is useful to weakly impose Dirichlet boundary conditions and we also observed some
unexpected stabilizing effects.

The parameter dependent Brinkman equation covers a family of problems, ranging from
the Stokes flow to the Darcy flow. Two stabilization techniques were considered; the
more classical PSPG method and the CIP method. Both methods have similar numerical
results, however the CIP method is preferred because of its practicality (with respect
to ghost penalties) and because it allows mass lumping [33]. An a priori error estimate
for the CIP stabilized Brinkman equation with the Nitsche method on matching meshes
was proved.

Suggestions for scaling functions (9.5) for the ghost penalties were given. They showed
good results for ε = 0 and ε = 1, but could be improved for intermediate ε values.

Preconditioners have been studied for the fitted case and suggestions on how to extend
to the unfitted case are given. This thesis lays some of the foundation for application on
large problems. In particular blood flow trough aneurysms with a stent inserted, since
the Navier–Stokes equations can be discretized to the Brinkman equation and a level set
function for the stent is provided (see B.2).

9.2.1 Further work

The field of non-matching mesh methods is large and expanding. Further research and
development of the methodology is needed, as well as finding suitable preconditioners.



72 CHAPTER 9. DISCUSSION

In relation to this thesis we mention only a couple of things that is subject for further
work:

• Explore the stabilization effect of the Nitsche method.

• Improve the scaling functions su and sp.

• Extend the a priori error estimate to fictitious domain formulations.

• Explore the preconditioner for fictitious domain formulations.

• Further software development; extend to higher order elements.

• Simulation on an aneurysm with a stent inserted.



Appendix A

Mathematical definitions and
formulas

Definition A.1. L2 inner product, (·, ·)Ω, over the domain, Ω ⊂ Rd
Let A and B be two n×m matrices. There inner product is,

(A,B)Ω =
∫
Ω

A : B dx =
∫
Ω

m∑
i=1

n∑
j=1

AijBij dx. (A.1)

Assuming that the entries AijBij are integrable.

Definition A.2. Weak derivative
Suppose u, v ∈ L1

loc (Ω), and that α is a multi-index. We say that v is the αth-weak
partial derivative of u, written

Dαu = v,

provided ∫
Ω

uDαφdx = (−1)|α|
∫
Ω

v φ dx ∀φ ∈ C∞0 (Ω) . (A.2)

Definition A.3. The Sobolev space

Hk (Ω)

consists of all locally summable functions u : Ω → R such that for each multi-index α
with |α| ≤ k, Dαu exists in the weak sense and belongs to L2 (Ω).

Definition A.4. The Hk (Ω) norm
If u ∈ Hk (Ω), we define the norm to be

‖u‖Hk(Ω) = ‖u‖k,Ω =

 ∑
|α|≤k

∫
Ω

|Dαu|2dx

 1
2

. (A.3)

73



74 APPENDIX A. MATHEMATICAL DEFINITIONS AND FORMULAS

Similarly, we define a semi to be

|u|Hk(Ω) = |u|k,Ω =

 ∑
|α|=k

∫
Ω

|Dαu|2dx

 1
2

. (A.4)

Definition A.5. The Sobolev space

H (div; Ω)

consists of all locally summable functions u : Ω → Rd in
[
L2 (Ω)

]d such that the diver-
gence exists in the weak sense and belongs to L2 (Ω). The H (div; Ω) norm is defined
as

‖u‖H(div; Ω) =

∫
Ω

|u|2dx +
∫
Ω

|∇ · u|2dx

 1
2

. (A.5)

Definition A.6. Equivalent operators
Let B and B̃ be two operators or matrices for v ∈ V . They are said to be equivalent if
there exits constants c0, c1 > 0 such that

c0
(
B̃v, v

)
≤ (Bv, v) ≤ c1

(
B̃v, v

)
∀ v ∈ V. (A.6)

There is a similar definition for norms.

Theorem A.1. Cauchy’s inequality

2ab ≤ a2 + b2 (A.7)

Proof. 0 ≤ (a− b)2 = a2 − 2ab+ b2.

Theorem A.2. Cauchy’s inequality with δ
Let δ > 0, then

2ab ≤ 1
δ
a2 + δb2 (A.8)

Proof. Write

2ab = a2

δ1/2 δ
1/2b2

and apply the Cauchy’s inequality.

Theorem A.3. Cauchy–Schwarz’s inequality
If u, v ∈ L2 (Ω), we have ∫

Ω

|uv| dx ≤ ‖u‖L2(Ω)‖v‖L2(Ω). (A.9)



75

A discrete version: If a = (a1, . . . an, ), b = (b1, . . . bn) ∈ Rn, we have

|
n∑
k=1

akbk| ≤
(

n∑
k=1
|ak|2

) 1
2
(

n∑
k=1
|bk|2

) 1
2

. (A.10)

Proof. Proof can be found in [49].

Theorem A.4. If X and Y are Hilbert spaces, both continuously contained in some
larger Hilbert spaces, then the intersection X ∩ Y and the sum X + Y are themselves
Hilbert spaces with the norms

‖q‖X∩Y =
(
‖q‖2X + ‖q‖2Y

)1/2
(A.11)

and
‖q‖X+Y = inf

q=x+y, x∈X, y∈Y

(
‖x‖2X + ‖q‖2y

)1/2
. (A.12)

Furthermore if X ∩ Y is dense in both X and Y then

(X ∩ Y )∗ = X∗ + Y ∗ (A.13)

and
(X + Y )∗ = X∗ ∩ Y ∗ (A.14)

Proof. Proof can be found in Chapter 2 in [50].



76 APPENDIX A. MATHEMATICAL DEFINITIONS AND FORMULAS



Appendix B

Source code

B.1 Brinkman problem without Nitsche

Python code
# -*- coding :utf -8 -*-
from dolfin import *
import numpy , sys

# Default parameters
use_mini = False; use_pspg = False;
use_cip = False; epsilon = 1.0;
beta = 0.1; N = 6;

#Read in command line arguments
for arg in sys.argv[1:]:

exec(arg)
print arg ,

mesh = UnitSquareMesh (N,N)
h_T = CellSize (mesh); h = avg(h_T)
eps2 = Constant ( epsilon **2); n = FacetNormal (mesh)

# Define the function spaces
V = VectorFunctionSpace (mesh , ’CG’, 1)
Q = FunctionSpace (mesh , ’CG’, 1)
R = FunctionSpace (mesh ,"R", 0)
if use_mini :

print "using MINI element " #RM
B = VectorFunctionSpace (mesh , " Bubble ", 3)
V = V + B

W = MixedFunctionSpace ([V,Q,R]);

u, p, r = TrialFunctions (W);
v, q, s = TestFunctions (W);

77



78 APPENDIX B. SOURCE CODE

# Source function
f = Expression ((" pi*sin(2*pi*x[1])*pow(sin(pi*x[0]),2)

+ep*ep*2*pi*pi*pi*sin(2*pi*x[1])*(2*pow(sin(pi*x[0]),2)-
cos(2*pi*x[0])) - 2*pi*cos(2*pi*x[0])",
"-pi*sin(2*pi*x[0])*pow(sin(pi*x[1]),2)

-ep*ep*2*pi*pi*pi*sin(2*pi*x[0])*(2*pow(sin(pi*x[1]),2)-
cos(2*pi*x[1]))"),ep= epsilon )

# Analytical solution
u_exact = Expression (("pi*sin(2*pi*x[1])*pow(sin(pi*x[0]),2)",

"-pi*sin(2*pi*x[0])*pow(sin(pi*x[1]),2)"))
p0 = Expression ("-sin(2*pi*x[0])")

# Standard form of a and L
a = inner(u,v)*dx + eps2*inner(grad(u),grad(v))*dx;
b = -div(v)*p*dx + q*r*dx;
b+= -div(u)*q*dx + p*s*dx;

L = dot(f,v)*dx + p0*s*dx

if use_cip :
s_stab = -avg(beta*h_T**3/( epsilon **2 + h_T**2))
c = s_stab *dot(jump(grad(p),n),jump(grad(q),n))*dS;

elif use_pspg :
s_stab = -beta*(h_T**2/( epsilon **2 + h_T**2))
a += s_stab *dot(u,v)*dx;
b += s_stab *dot(grad(p),v)*dx + s_stab *dot(u,grad(q))*dx;
c = s_stab *dot(grad(p),grad(q))*dx ;
L += s_stab *dot(f,v)*dx + s_stab *dot(f,grad(q))*dx;

else:
c = 0

# Define boundary and boundary condition
def boundary (x):

return x[0] < DOLFIN_EPS or x[0] > 1.0 - DOLFIN_EPS or \
x[1] < DOLFIN_EPS or x[1] > 1.0 - DOLFIN_EPS

bcs = DirichletBC (W.sub(0), u_exact , boundary )

A, B = assemble_system (a+b+c, L, bcs)
w = Function (W) # Solution functions
solve(A, w. vector (), B)

U, Pr , Rr = w.split ()
U = Function (V,U); Pr= Function (Q,Pr);

#Save solution for post processing
mesh_to_file = File(" results / boxmesh_N "+str(N)+".xml.gz")
u_to_file = File(" results / velocity_N "+str(N)+".xml")
p_to_file = File(" results / pressure_N "+str(N)+".xml")
mesh_to_file << mesh
u_to_file << U
p_to_file << Pr



B.2. LEVEL SET FUNCTION FOR A STENT 79

B.2 Level set function for a stent

C++ code
// Define Constants
double r_s = 2.5; // blood vessel radius , mm
double H = 8.0;// blood vessel height , mm
double h_t = 0.050;// stent tread thickness mm
int w = 1;// number of twists
int tr = 6;// number of treads in each directions

double level_set ( double x1 , double y1 , double z1)
{ // Change to cylinder coordinates r, theta , z

double r1 = sqrt(x1*x1 +y1*y1); // Radius
double b = h_t; //semi -minor axis
double a = h_t*sqrt(pow(pi*2*r_s ,2) +

((H*H)/(w*w)))/(2*pi*r_s); //semi -major axis
double level_set_value , theta , theta2 , z1_t;
// Translation to the center of the stent line
double r1_t= r1-r_s ;
double delta_angle = 2*pi/tr; // angle between two stent lines

for ( int k = 0; k < tr; k++) // check each tread
{ // Angle

theta = atan2(y1 ,x1) + pi - delta_angle *k;
theta2 = -theta;// Angle opposite direction

// Check level set value in first direction
if (theta < 0){theta = theta + 2*pi;}
z1_t= z1-theta*H/(w*2*pi);
level_set_value = pow(r1_t/b,2) + pow(z1_t/a,2);
if ( level_set_value < 1){ return level_set_value ;}

// Check level set value in other direction
if ( theta2 < 0){ theta2 = theta2 + 2*pi;}
z1_t= z1- theta2 *H/(w*2*pi);
level_set_value = pow(r1_t/b,2) + pow(z1_t/a,2);
if ( level_set_value < 1){ return level_set_value ;}

}
// level_set_value < 1: The point is in the stent line
// level_set_value = 1: The point is on the stent line surface
// level_set_value > 1: The point is outside .
return level_set_value ;}



80 APPENDIX B. SOURCE CODE

B.3 UFL code for the fictitious domain simulation

Python code
from ufl import *
from ffc import *

cell = tetrahedron

# Function space
V = VectorElement ("CG", cell , 1)
Q = FiniteElement ("CG", cell , 1)
R = FiniteElement ("R", cell , 0)
W = MixedElement ([V,Q,R])

# Assume h_T is cell diameter = 2 circumradius
h_T = 2*cell. circumradius ; h_F = avg(h_T)
n = cell.n; I = Identity (3)
# Normal vector on Surface
n_I = Coefficient ( VectorElement ("DG", cell , 0))

# Source terms
F = VectorElement ("CG", cell , 2);
P = FiniteElement ("CG", cell , 2);
f = Coefficient (F); g = Coefficient (F)
p_exact = Coefficient (P)

# Kinematic viscosity ( epsilon * epsilon )
eps = Constant (cell)

# Ghost penalty parameters and Nitsche penalty parameter
beta_u = Constant (cell); beta_p = Constant (cell)
beta_CIP = Constant (cell); gamma = Constant (cell)

# Define test and trial functions
(u, p, r) = TrialFunctions (W)
(v, q, s) = TestFunctions (W)

# Standard form used for standard and cut elements
a_h = inner(u,v)*dx + eps*inner(grad(u), grad(v))*dx;
# The x-y plane , quasi 2D
a_h_surf_fitted = inner(dot(v, n), p)*ds(10) + inner(dot(u, n),

q)*ds(10);

# Nitsche boundary terms for the velocity
a_h_surface = -eps*inner(grad(u)*n_I , v)*ds - \

eps*inner(grad(v)*n_I , u)*ds + eps*gamma*inv(h_T)*dot(u, v)*ds

# dS(0): CIP inf -sup stabilization
# dS(1): Ghost - penalty dS(1)
a_h_ghost = avg( beta_u *h_T/(eps + h_T*h_T)) * \

dot(jump(grad(u), n), jump(grad(v), n))*dS(1)
b_h_stab = -avg( beta_CIP *h_T**3/(eps + h_T**2)) * \



B.3. UFL CODE FOR THE FICTITIOUS DOMAIN SIMULATION 81

dot(jump(grad(p),n),jump(grad(q),n))*dS(0)
b_h_stab += -avg( beta_p *h_T**3/(eps + h_T**2)) * \

dot(jump(grad(p),n),jump(grad(q),n))*dS(1)

# Standard form used for standard and cut elements
b_h = - div(v)*p*dx - div(u)*q*dx
# Nitsche boundary terms related to the pressure
b_h_surface = inner(dot(v, n_I), p)*ds + inner(dot(u, n_I), q)*ds

# Construct overall forms
A_h = a_h + b_h
A_h+= p*s*dx + q*r*dx
J_h = a_h_ghost + b_h_stab
A_h_surf = a_h_surface + b_h_surface

# Right -hand side
L_h = inner(f,v)*dx
L_h+= p_exact *s*dx
L_h_surf = -inner(eps*grad(v)*n_I ,g)*ds + inner(q*I*n_I , g)*ds
L_h_surf += eps*gamma*inv(h_T)*dot(g, v)*ds

# ------------------------------------------------------------
# Compile forms
# ------------------------------------------------------------
params = default_parameters ()
params [" format "] = " dolfin "
params [" optimize "] = True
params ["split"]=True
object_names = {id( beta_u ): " beta_u ", id( beta_p ): " beta_p ",

id( beta_CIP ): " beta_CIP ", id(eps): "eps",
id( p_exact ): " p_exact ", id(gamma): "gamma",
id(n_I): "n_I", id(f): "f", id(g): "g"}

# Compile form for non.cut elements including ghost - penalty
compile_form ([A_h+J_h+ a_h_surf_fitted , L_h], parameters =params ,

prefix =" FidoBrinkmanP1P1 ", object_names = object_names )

compile_element ([V], prefix ="V1", parameters = params )
compile_element ([Q], prefix ="Q1", parameters = params )

# Compile form for cut elements by changing " representation "
params [" representation "] = " physical "
params [" optimize "] = False
compile_form ([A_h , L_h], prefix =" FidoBrinkmanP1P1Cut ",

parameters =params , object_names = object_names )

# Compile form for integration on surface (" physical ")
compile_form ([A_h_surf , L_h_surf ], prefix =" FidoBrinkmanP1P1Surf ",

parameters =params , object_names = object_names )



82 APPENDIX B. SOURCE CODE



Bibliography

[1] D Braess. Finite elements: Theory, fast solvers, and applications in solid mechanics.
Cambridge University Press, 2007.

[2] K-A Mardal, X-C Tai, and R Winther. A Robust Finite Element Method for Darcy–
Stokes Flow. SIAM Journal on Numerical Analysis, 40(5):1605–1631, 2002.

[3] M Juntunen and R Stenberg. Analysis of finite element methods for the Brinkman
problem. Calcolo, 47(3):129–147, 2010.

[4] E Burman and P Hansbo. Edge stabilization for the generalized Stokes problem: a
continuous interior penalty method. Computer methods in applied mechanics and
engineering, 195(19):2393–2410, 2006.

[5] E Burman and P Hansbo. Fictitious domain finite element methods using cut
elements: II. A stabilized Nitsche method. Applied Numerical Mathematics, 62(4):
328–341, 2012.

[6] E Burman and P Hansbo. Fictitious domain methods using cut elements: III. A sta-
bilized nitsche method for Stokes’ problem. Technical report, School of Engineering,
Jönköping University, 2011.

[7] E Burman. Ghost penalty. Comptes Rendus Mathematique, 348(21):1217–1220,
2010.

[8] A Massing, M G Larson, A Logg, and M E Rognes. A stabilized Nitsche fictitious
domain method for the Stokes problem. arXiv preprint arXiv:1206.1933, 2012.

[9] J Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Ver-
wendung von Teilräumen, die keinen Randbedingungen unterworfen sind. In Ab-
handlungen aus dem Mathematischen Seminar der Universität Hamburg, volume 36,
pages 9–15. Springer, 1971.

[10] K-A Mardal and R Winther. Preconditioning discretizations of systems of par-
tial differential equations. Numerical Linear Algebra with Applications, 18(1):1–40,
2011.

[11] K-A Mardal and R Winther. Construction of Preconditioners By Mapping Proper-

83



84 BIBLIOGRAPHY

ties for Systems of Partial Differential Equations. Efficient Preconditioned Solution
Methods for Elliptic Partial Differential Equations, pages 66–86, 2011.

[12] J R Cebral and M Raschi. Suggested Connections Between Risk Factors of In-
tracranial Aneurysms: A Review. Annals of biomedical engineering, pages 1–18,
2012.

[13] J Isaksen, A Egge, K Waterloo, B Romner, and T Ingebrigtsen. Risk factors for
aneurysmal subarachnoid haemorrhage: the Tromsø study. Journal of Neurology,
Neurosurgery & Psychiatry, 73(2):185–187, 2002.

[14] N K de Rooij, F H H Linn, J A van der Plas, A Algra, and G J E Rinkel. Incidence
of subarachnoid haemorrhage: a systematic review with emphasis on region, age,
gender and time trends. Journal of Neurology, Neurosurgery & Psychiatry, 78(12):
1365–1372, 2007.

[15] J G Isaksen. Simulation of hemodynamics and biomechanics in intracranial
aneurysms and the Circle of Willis. PhD thesis, University of Tromsø, 2012.

[16] J R Cebral, M A Castro, J E Burgess, R S Pergolizzi, M J Sheridan, and C M
Putman. Characterization of cerebral aneurysms for assessing risk of rupture by
using patient-specific computational hemodynamics models. American Journal of
Neuroradiology, 26(10):2550–2559, 2005.

[17] J R Cebral, F Mut, M Raschi, E Scrivano, R Ceratto, P Lylyk, and C M Putman.
Aneurysm rupture following treatment with flow-diverting stents: computational
hemodynamics analysis of treatment. American journal of neuroradiology, 32(1):
27–33, 2011.

[18] P K Kundu, I M Cohen, and D R Dowling. Fluid Mechanics. Academic Press, 5.
edition, 2012.

[19] H P Langtangen, K-A Mardal, and R Winther. Numerical Methods for Incompress-
ible Viscous Flow. Advances in Water Resources, 25(8):1125–1146, 2002.

[20] A Logg, K-A Mardal, and G Wells. Automated Solution of Differential Equations
by the Finite Element Method: The fenics book, volume 84. Springer, 2012.

[21] S C Brenner and L R Scott. The Mathematical Theory of Finite Element Methods,
volume 15. Springer, 3. edition, 2008.

[22] F Brezzi and M Fortin. Mixed and hybrid finite element methods. Springer-Verlag
New York, Inc., 1991.

[23] D N Arnold, F Brezzi, and M Fortin. A stable finite element for the Stokes equations.
Calcolo, 21(4):337–344, 1984.

[24] T J R Hughes, L P Franca, and M Balestra. A new finite element formulation for
computational fluid dynamics: V. Circumventing the Babuška-Brezzi condition: A



BIBLIOGRAPHY 85

stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-
order interpolations. Computer Methods in Applied Mechanics and Engineering, 59
(1):85–99, 1986.

[25] FEniCS Project. http://www.fenicsproject.org/. URL http://www.
fenicsproject.org/.

[26] M Juntunen and R Stenberg. Nitsche’s method for general boundary conditions.
Mathematics of computation, 78(267):1353–1374, 2009.

[27] A Massing, M G L, and A Logg. Efficient Implementation of Finite Element Meth-
ods on Nonmatching and Overlapping Meshes in Three Dimensions. SIAM Journal
on Scientific Computing, 35(1):C23–C47, 2013.

[28] N Sukumar, N Moës, B Moran, and T Belytschko. Extended finite element method
for three-dimensional crack modelling. International Journal for Numerical Methods
in Engineering, 48(11):1549–1570, 2000.

[29] B Mirtich. Fast and accurate computation of polyhedral mass properties. Journal
of graphics tools, 1(2):31–50, 1996.

[30] M S Alnæs. UFL: a finite element form language. In Automated Solution of Differ-
ential Equations by the Finite Element Method, pages 303–338. Springer, 2012.

[31] A Hansbo and P Hansbo. An unfitted finite element method, based on Nitsche’s
method, for elliptic interface problems. Computer methods in applied mechanics
and engineering, 191(47):5537–5552, 2002.

[32] E Burman. A unified analysis for conforming and nonconforming stabilized finite
element methods using interior penalty. SIAM journal on numerical analysis, 43
(5):2012–2033, 2005.

[33] E Burman, M A Fernández, and P Hansbo. Continuous interior penalty finite
element method for Oseen’s equations. SIAM journal on numerical analysis, 44(3):
1248–1274, 2006.

[34] P Clément. Approximation by finite element functions using local regularization.
ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathéma-
tique et Analyse Numérique, 9(R2):77–84, 1975.

[35] L R Scott and S Zhang. Finite element interpolation of nonsmooth functions satis-
fying boundary conditions. Mathematics of Computation, 54(190):483–493, 1990.

[36] E Burman and P Zunino. Numerical approximation of large contrast problems
with the unfitted Nitsche method. In Frontiers in Numerical Analysis-Durham
2010, pages 227–282. Springer, 2012.

[37] P Hansbo. Nitsche’s method for interface problems in computational mechanics.
GAMM-Mitteilungen, 28(2):183–206, 2005.

http://www.fenicsproject.org/
http://www.fenicsproject.org/
http://www.fenicsproject.org/


86 BIBLIOGRAPHY

[38] K-A Mardal, J Schöberl, and R Winther. A uniform inf–sup condition with appli-
cations to preconditioning. arXiv preprint arXiv:1201.1513, 2012.

[39] A Logg and K-A Mardal. Lectures on the finite element method. Lecture notes in
INF5650 ”Numerical methods for partial differential equations 2”, 2013.

[40] cbc.block. https://bitbucket.org/fenics-apps/cbc.block. URL https://
bitbucket.org/fenics-apps/cbc.block.

[41] Octave. http://www.gnu.org/software/octave/. URL http://www.gnu.org/
software/octave/.

[42] K-A Mardal and RWinther. Uniform preconditioners for the time dependent Stokes
problem. Numerische Mathematik, 98(2):305–327, 2004.

[43] E Burman and M A Fernández. Galerkin finite element methods with symmetric
pressure stabilization for the transient Stokes equations: stability and convergence
analysis. SIAM Journal on Numerical Analysis, 47(1):409–439, 2008.

[44] A Massing, M G L, A Logg, and M E Rognes. A stabilized Nitsche overlapping
mesh method for the Stokes problem. Numerische Mathematik, pages 1–29, 2014.
ISSN 0029-599X. doi: 10.1007/s00211-013-0603-z. URL http://dx.doi.org/10.
1007/s00211-013-0603-z.

[45] E Burman and M A Fernández. An unfitted Nitsche method for incompressible
fluid-structure interaction using overlapping meshes. Rapport de recherche RR-
8424, INRIA, December 2013. URL http://hal.inria.fr/hal-00918272.

[46] E Burman and P Hansbo. Fictitious domain finite element methods using cut
elements: I. A stabilized Lagrange multiplier method. Computer Methods in Applied
Mechanics and Engineering, 199(41):2680–2686, 2010.

[47] I Babuška. The finite element method with Lagrangian multipliers. Numerische
Mathematik, 20(3):179–192, 1973.

[48] V Girault and R Glowinski. Error analysis of a fictitious domain method applied
to a Dirichlet problem. Japan Journal of Industrial and Applied Mathematics, 12
(3):487–514, 1995.

[49] L C Evans. Partial Differential Equations, volume 19. American Mathematical
Society, 2010.

[50] J B-J Lofstrom and J Bergh. Interpolation spaces. SpringereVerlag, Newe, 1976.

https://bitbucket.org/fenics-apps/cbc.block
https://bitbucket.org/fenics-apps/cbc.block
https://bitbucket.org/fenics-apps/cbc.block
http://www.gnu.org/software/octave/
http://www.gnu.org/software/octave/
http://www.gnu.org/software/octave/
http://dx.doi.org/10.1007/s00211-013-0603-z
http://dx.doi.org/10.1007/s00211-013-0603-z
http://hal.inria.fr/hal-00918272

	Introduction
	Motivation and application
	Intracranial aneurysms
	Motivation for using methods of non-matching meshes

	Mathematical model
	The Navier–Stokes equations
	The Brinkman equation

	Numerical methods I: Fitted meshes
	The finite element method
	Weak formulation of the Brinkman equation
	Stabilization of the Brinkman equation
	A priori error estimates
	Results

	Numerical methods II: Unfitted meshes
	The Nitsche method
	Cut elements

	Results
	The test problem
	Darcy flow
	Brinkman problem with unfitted meshes

	A priori error estimate 
	Ingredients:
	Brezzi's conditions
	A priori error estimate

	Preconditioning
	Iterative methods
	Operator preconditioning of the unstabilized Brinkman equation
	Discrete preconditioning of the unstabilized Brinkman equation
	Preconditioning the stabilized Brinkman equation

	Discussion
	The Brinkman equation
	Conclusions and further work

	Mathematical definitions and formulas
	Source code
	Brinkman problem without Nitsche
	Level set function for a stent
	UFL code for the fictitious domain simulation


