
A Study In Monads

Leif Harald Karlsen
Master’s Thesis Autumn 2013





Preface

This thesis is a study in monads in functional programming. As a functional
language I will use Haskell, and will therefore assume some basic knowledge
of functional programming and Haskell’s syntax. In short, Haskell is a
lazy, strongly and statically typed, curried, purely functional language with
pattern matching, abstract data types, type polymorphism, and first class
functions. A thorough introduction to Haskell can be found in “Real World
Haskell” by Sullivan, Goerzen and Stewart[7].

Furthermore, I will also assume some familiarity with basic theoretical
computer science, such as first order logic, lambda calculus with and
without types, and basic mathematical and computer scientific concepts and
expressions like bijective functions, homeomorphisms, structural induction,
etc.

Throughout the thesis I will use a dagger, �, to denote my theoretical
contributions. If a dagger is placed next to a chapter, it means that the
chapter contains new theoretical material, the same holds for sections. All
definitions, lemmas, theorems, etc. marked with a dagger are my own and
not taken from anywhere else. Furthermore, a λ next to a section or a
chapter marks that the chapter contains applicable code written by me.
All such code can be found in full, written in pure ASCII in the appendix
starting on page 119.

The thesis is divided into four parts. The first part, “Foundation And
Definition”, goes through all the definitions and results needed for the rest of
the thesis. The next part, “Application”, shows real applications of monads.
The third part, “Deeper Theory”, is mainly concerned with monads studied
in a more formal way. The last part, “Conclusion And Appendix”, is just
that, the conclusion and appendix. A more detailed outline of the chapters
is given below.

Chapter 1 In the first chapter we start by looking at the history,
invention, and first use of the monad, together with some alternate
constructions that solve some of the same problems. We then briefly visit
one of the original motivations behind monads, namely the problem of IO
in functional languages.

Chapter 2 The second chapter is mainly concerned with introducing the
monad as it is used in a functional language, such as Haskell. There are
two definitions of the monad, and both will be presented and shown to be
equivalent. We continue by looking at a special notation used when writing
monadic code, along with common auxiliary functions used throughout the
rest of the thesis. The chapter continues with a discussion on the monadic

iii



solution to IO and the consequences this has for IO in Haskell, and ends with
common perspectives and views on monads. Examples of different monads
are presented when the necessary material concerning each monad has been
discussed. After reading this chapter the reader should know what monads
are and have some intuition of where monads can be used, as well as be
familiar with the most common monads.

Chapter 3 In this chapter we will look at how monads’ functionality
can be combined through what is called monad transformers. A discussion
on how transformers are used and how they behave follows, before a few
examples are presented. After this, we show how we can use the extended
functionality of a monad in the transformed monads through the concept
of lifting. We finish this chapter with a discussion on general monad
morphisms. The reader should now have an understanding of how predefined
monads can be combined to form new, more complex monads.

Chapter 4 Up until now we will have focused on predefined monads.
In this chapter we will create a new monad, the Pair monad, prove its
desired properties and view some applications. The Pair monad can
represent computations in almost any collection. We will also look at the
corresponding transformer and discuss the implementation in detail.

Chapter 5 In this chapter an extended example is shown, where we
construct a small interpreter for lambda calculus with a graph reduction
algorithm similar to that of Haskell. We will use the Pair monad defined
in the previous chapter to represent lambda terms. The reader should be
familiar with all of the monads used in this implementation.

Chapter 6 This chapter combines much of the material that has been
presented so far in one large example. A framework for cryptographic
algorithms are constructed from some of the presented monads, and some
new. We will throughout this chapter see how monads can be combined
and used to solve a more realistic and more complex problem than those
previously presented.

Chapter 7 One common application of monads is implementation of
domain specific languages. In this chapter we will investigate such an
application, where we use monads as building blocks to create a Datalog-like
language embedded in Haskell. We will look at how different monads can
be combined to create different languages.

Chapter 8 In this chapter we will look at monads’ origins, namely
category theory and how monads are defined there. All categorical
constructs needed will be presented and no prior knowledge of category
theory is necessary.

Chapter 9 This chapter is more theoretical and presents a modal logic
derived from typed lambda calculus with monads, through the Curry-
Howard correspondence. We will use this corresponding logic to build up
some intuition around the nature of monads, and use its Kripke semantic to
construct a semantic for our lambda calculus. The semantic will be used to
help us reason about the properties of different monads. This chapter is of
a more investigative nature, but will hopefully provide the reader with more
intuition on monads.

Chapter 10 In the last chapter we will look at other constructs related

iv



to monads, namely the monad’s dual, comonads, along with the three other
constructs, arrows, applicative functors, and continuations. In turn, we
will look at how these concepts are related to monads, and discuss which
problems they solve.

v



vi



Acknowledgements

First of all, I want to thank my supervisor Herman Ruge Jervell who, despite
illness, continuously gave me great supervision with helpful comments and
clear insight throughout this thesis. I also want to thank him for allowing
me to investigate freely according to my interests and making this thesis my
own. He was also the one who initially sparked my interest for theoretical
computer science, as the lecturer of my first course in logic, as well as
developing my curiosity even further through later courses and discussions.

A special thanks goes to my dearest Helene for supporting me and
showing interest in my work throughout this degree, even in my excited
elaborations on monads. My time as a master student wouldn’t be the same
without her by my side. I also want to thank her for a thorough proof
reading and spell checking of this thesis, in addition to general advice on
language.

I also want to thank my wonderful mother, father, and brother for their
encouragement and support in my years of studies. I am grateful for their
caring and interest in my work, despite it being quite far from what they
are familiar with.

A great thanks also goes to my ingenious friends for interesting
discussions and engaging conversations.

vii



viii



Contents

I Foundation And Definition 1

1 The Monad’s History and Motivation 3

1.1 The invention of monads . . . . . . . . . . . . . . . . . . . . . 3

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Meet the Monad 5

2.1 Defining the monad . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Alternate definition . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Do-notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Auxiliary functions . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 The IO monad . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Perspectives on monads . . . . . . . . . . . . . . . . . . . . . 20

3 Combining Monads 23

3.1 Monad transformers . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Lifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Monad morphisms . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Introducing a New Monad: The Pair Monad†λ 29

4.1 Definition†λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Usage and interpretation†λ . . . . . . . . . . . . . . . . . . . 32

4.3 PairT†λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

II Application 43

5 Extended Example: Graph Reductionλ 45

5.1 The problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Building blocks and representationλ . . . . . . . . . . . . . . 46

5.3 Implementation of a small interpreterλ . . . . . . . . . . . . . 48

6 Extended Example: Cryptographic Algorithmsλ 53

6.1 Combining the needed functionalityλ . . . . . . . . . . . . . . 53

6.2 Making a frameworkλ . . . . . . . . . . . . . . . . . . . . . . 56

6.3 Introducing stateλ . . . . . . . . . . . . . . . . . . . . . . . . 59

ix



7 Building Blocks for Query Languages† 61
7.1 Catamorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.2 Queries as monad comprehensions† . . . . . . . . . . . . . . . 64
7.3 Backtracking† . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

III Deeper Theory 79

8 Category Theory 81
8.1 Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.2 Functors and natural transformations . . . . . . . . . . . . . 82
8.3 Categorical monads . . . . . . . . . . . . . . . . . . . . . . . . 83

9 Monads and the Curry-Howard Correspondence† 87
9.1 New notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
9.2 There and back again† . . . . . . . . . . . . . . . . . . . . . . 88
9.3 Computational Kripke models† . . . . . . . . . . . . . . . . . 92

10 Other Related Constructs 101
10.1 Applicative functors . . . . . . . . . . . . . . . . . . . . . . . 101
10.2 Arrows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
10.3 Comonads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
10.4 Continuations . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

IV Conclusion And Appendix 113

11 Conclusion 115
11.1 My views on monadic programming . . . . . . . . . . . . . . 115
11.2 My contributions and suggested future work . . . . . . . . . . 116

12 Appendix 119
12.1 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

12.1.1 PairMonad . . . . . . . . . . . . . . . . . . . . . . . . 119
12.1.2 Graph reduction . . . . . . . . . . . . . . . . . . . . . 123
12.1.3 Cryptographic framework . . . . . . . . . . . . . . . . 125

x



Part I

Foundation And Definition

1





Chapter 1

The Monad’s History and
Motivation

1.1 The invention of monads

It was originally Eugenio Moggi who, in 1991, introduced the monad as a
way of simulating different types of computations in lambda calculus. In
his article “Notions of computations and monads” [20] he used the notion
of the monad from category theory to define a categorical semantic for
lambda calculus with different types of computational effects. Effects such
as indeterminism and side-effects cannot be represented by lambda calculi
alone, so he extended the categorical semantics with monads to describe such
features. We will see the categorical definition of the monad in Chapter 8.

However, Philip Wadler was the first one to use monads as a
programming construct and utilise them to structure computations within
programs. This was presented in his article “Monads for functional
programming”[31]. He was at the time involved in the creation of Haskell,
and needed a way of handling IO and other side effects. Before monads were
used, Haskell applied two models to handle these features, one based on lazy
lists and one based on continuations[14]. We will see more of continuations
in chapter 10.

Since then monads have been shown to be a neat and expressive construct
and used in a great amount of applications, which we will see throughout
this thesis.

Even though one perhaps mostly hear about monads as a construct in
Haskell or category theory, it can be, and is, defined in other languages
as well, for instance other functional languages like F#[23] and Scala[21],
but also imperative languages like C++[7]. The language with the most
applications and most explicit use is perhaps still Haskell[7], and we will
see that Haskell’s syntax and type system is very much suited for monadic
programming.

3



1.2 Motivation

Before we define the monad in the next chapter, we will give a small
motivational example of one application of the monad, namely IO.

The functional programming paradigm has many interesting aspects
which is appealing to most programmers: Features such as referential
transparency and pattern matching makes it much easier to debug code
and make secure and robust programs, but also allows functions to be
memoized; higher order functions enables programmers to work and think on
a greater level of abstraction, making code shorter and easier generalised; the
close connection, through the Curry-Howard Correspondence, to logic makes
typed functional languages ideal for making proof verifiers and theorem
provers.

There are however some drawbacks to the listed features. Sadly (or
perhaps luckily) the world is imperative, so one needs to compromise to
implement them. One cannot for instance have only referential transparent
functions, since a referential transparent function cannot have side effects.
A program without any side effects is rather useless, as we can’t gather any
output from it. We must therefore allow side effects for some functions, like
print and other IO-functions. But wouldn’t that compromise everything?
How can we know whether a function, say f :: Int → Int, is with or
without side effects if we don’t have access to the source code? And if
we do gather some input, for instance asking for a character from the user,
isn’t that going to pollute the entire code with this destructive value? The
function above could very well be defined as f x = getInt + x, where
getInt :: Int gets an integer from the user.

We can use the type system to make a container for destructive values,
to seal them off from the rest of the code. If we have a value with type α, we
can let its destructive type be IO α. Now we have as type for the function
defined above f :: Int → IO Int, and it is now obvious that this function
isn’t pure. Bot, say we want to apply the function f twice to a value a, how
would we do this? After one application we have (f a) :: IO Int and all
is well, but we cannot apply f once more, since f takes arguments of type
Int, not IO Int. It is, of course, not a solution to add an escape function
escapeIO :: (IO a) → a, as this would render the container pointless.
Instead of letting the value out, we could rather put the function inside
the container. A function with type IO Int → (Int → IO Int) → IO Int

would do the trick.
This is exactly what the monad provides: A container with the ability

to chain computations of that type together. Even greater, monadic IO is
in fact pure. We will later see how this is possible. Monads are however
not limited to just handling IO and destructive effects in a pure way, it is a
general way of structuring computations in a separate environment.

One should also note that Haskell doesn’t need monads, it is just a
convenient way of handling IO and structuring features of a program.
Furthermore, it is not a language feature, but rather a product of the ability
to create abstract data types and type classes.

4



Chapter 2

Meet the Monad

In this chapter we will introduce the monad in a functional setting, show
some properties of the construct, and look at some examples of common
monads and their applications. We will start with the definition, and will
build up intuition through examples along the way.

2.1 Defining the monad

As stated above, we start off quite naturally by defining the monad as it is
defined in Haskell.

Definition 2.1.1. The monad in functional programming is defined as a
tuple (m, return, �=) through a type class as

class Monad m where
return :: α→ m α
(�=) :: m α→ (α→ m β)→ m β

where the following laws must hold

i) return a �= f = f a

ii) ma �= return = ma

iii) ma �= f �= g = m �= λ a → (f a �= g)

Monads are thought of as a structure defining a type of computation,
where an element in the monad, ma :: m α, is a computation having a
result (or results) of type α; return a evaluates to the trivial computation
immediately returning a; (�=) binds computations together, such that
ma �= f evaluates ma and applies the function f to the result (or results) of
this computation, which again results in a new computation. The meaning
behind the words computation and bind will become clearer after some
examples.

It is easier to remember the laws of the monad if we rewrite them with
monadic function composition, called Kleisli Composition, which is defined
as

(�) :: (β → m γ) → (α → m β) → α → m γ

5



f � g = λ a → f a �= g

Now the laws can be restated as

return � f = f

f � return = f

(f � g) � h = f � (g � h)

That is, (�) is associative and has return as identity, or alternatively put,
(return, �) is a monoid.

We said that return should construct the trivial computation, and this is
captured in the two first laws. Furthermore, (�=) is chaining computation
together, and the third law just states that this chaining of computations
behaves nicely.

Example 2.1.2. A simple yet useful monad is the Maybe monad. This is
a monad for working with computations with the possibility of failure. For
this we first need to define the monadic type.

data Maybe α = Just α | Nothing

So a computation of type Maybe α can either be successful and be on the form
Just a, having result a, or have failed and be Nothing. The Nothing value
is similar to the Null pointer in Java or the void value in Python. The
monad instance for the Maybe type is given by

instance Monad Maybe where
return = Just

Nothing �= = Nothing

Just a �= f = f a

return just wraps the argument in Just. The value of a failed computation
can’t be used in a new computation, since it does not contain a value.
Hence binding a failed computation to a new computation results in a failed
computation. If we have a successful computation, we can use its value in a
new computation.

We can now use this monad to execute previously unsafe operations,
safely.

safeDiv :: Float → Float → Maybe Float

safeDiv n 0 = Nothing

safeDiv n m = return $ n/m

safeDivFive :: Float → Maybe Float

safeDivFive = safeDiv 5
safeDivFive 3 �= safeDivFive = Just (5/(5/3))
safeDivFive 0 �= safeDivFive = Nothing

Notice how we don’t need any if-tests while chaining these computations. In
Java or other pointer based languages one often encounters code like

6



String f(String str) {

if(str == null){
return null;

}
//Rest of method...

}

but by using the Maybe monad, we have already specified how our
computations should treat a failed computation.

If a computation might fail, it could be interesting to be able to throw
an exception to inform later functions what went wrong. This might also
be achieved through a monad, shown in the following example.

Example 2.1.3. The exception monad is defined as

data Exceptional ε α = Exception ε | Success α

instance Monad (Exceptional ε) where
return = Success

Exception b �= = Exception b

Success a �= f = f a

Chaining computations can now be done safely, and if some subcomputation
fails with an exception, the entire computation fails with that exception.
Exceptions can be thrown and caught with

throw :: ε → Exceptional ε α
throw e = Exception e

catch :: Exceptional ε α → (ε → Exceptional ε α) → Exceptional ε α
catch (Exception e) h = h e

catch (Success a) = Success a

Now we can define

safeDiv :: Float → Float → Exceptional String Float

safeDiv n 0 = throw ”Divided by 0”
safeDiv n m = return $ n/m

safeDivFive :: Float → Exceptional String Float

safeDivFive = safeDiv 5
safeDivFive 3 �= safeDivFive = Success (5/(5/3))
safeDivFive 0 �= safeDivFive = Exception ”Divided by 0”

As we saw in the previous examples, monads enables us to state how
our computations should behave. We will later see that monads are much
more expressive that just handling null-values and exceptions, but can in
fact handle state, input and output, backtracking, and much more. We will
now look at an alternate but equivalent definition, which is sometimes more
convenient to use.

7



2.2 Alternate definition

In the previous section we defined the functional monad as it is defined in
Haskell. There is however another definition which is more convenient in
some cases, specially when working with monads which are containers. We
will see an example of this shortly. This definition depends on a structural
mapping, known as a functor.

Definition 2.2.1. A functor is defined as

class Functor f where
fmap :: (α → β)→ f α → f β

with the following requirements

i) fmap id = id

ii) fmap (f . g) = (fmap f) . (fmap g)

for id :: α → α, the identity function over all types.

The functor, which in category theory is a mapping from one category
to another, applies functions uniformly over a data type in the functional
setting. We will look closer at the categorical functor in Chapter 8.

Example 2.2.2. The Functor instance for the Maybe type can be defined
as

instance Functor Maybe where
fmap f Nothing = Nothing

fmap f (Just a) = Just (f a)

For lists, it can be defined as

instance Functor [ ] where
fmap f [ ] = [ ]
fmap f (a : as) = (f a) : (fmap f as)

There is already a function map :: (α → β) → [α] → [β] in the Haskell
libraries, so we could just set fmap = map.

Extending a functor to a monad can be done by defining the two
functions return and join.

Definition 2.2.3. A monad might be defined through the join function as
follows,

class Functor m ⇒ Monad m where
return :: α → m α
join :: m (m α) → m α

where the following must hold

i) join . (fmap join) = join . join
ii) join . (fmap return) = join . return = id

iii) join . (fmap (fmap f)) = (fmap f) . join
iv) (fmap f) . return = return . f

8



The join function is thought of as flattening a computation of a
computation to a single computation. The equivalence of the two definitions
is not difficult to show, but first we need a lemma. In the next proofs we write
“

n
=” if the equality holds due to the nth law in some assumed definition.

Lemma 2.2.4. The definition of a monad using (�=) implicitly defines a
functor.

Proof. Set

fmap f a = a �= return . f

In this proof we assume the laws of the monad in the first definition and
will deduce the functor laws. The first law is easily seen by

(fmap id) ma = ma �= return . id
= ma �= return
2
= ma

= id ma

The equality in the second law of the functor is obtained by

(fmap f) . (fmap g) $ ma
= fmap f (ma �= return . g)
= (ma �= return . g) �= return . f
3
= ma �= λ x → (return (g x) �= return . f)
1
= ma �= λ x → return . f . g $ x
= ma �= return . f . g
= fmap (f . g) ma

Proposition 2.2.5. The two definitions of the monad are equivalent.

Proof. The lemma gave us a way of defining fmap, and we can define join

from (�=) by

join a = a �= id

for a :: m (m α). That is, we just pierce a and does nothing else with it. The
other way is a bit harder, but by following the type signatures we get

a �= f = join $ fmap f a

What remains is to show that the laws are equivalent. Assume the laws of
the definition using (�=). Then we have the following,

join $ fmap join a = join $ a �= return . join
= a �= return �= id �= id
2
= a �= id �= id

= join $ join a

9



For the second join law, we have for the left hand side

join $ fmap return a = join $ a �= return . return
= a �= return . return �= id
2
= return a �= id
1
= id a

and for the other side

join . return a = return a �= id
1
= id a

The third law can be seen to hold by the following steps,

join $ fmap (fmap f) a
= join $ a �= return . (fmap f)
= a �= return . (fmap f) �= id
3
= a �= λ x → return (x �= return . f) �= id
1
= a �= λ x → id (x �= return . f)
= a �= λ x → (x �= return . f)
= a �= λ x → (id x �= return . f)
3
= a �= id �= return . f
= fmap f (join a)

For the last law, observe

fmap f (return a) = return a �= return . f
1
= return (f a)

Now for the other way around, assume the laws using join, return, and

fmap. Here we write “
n′
=” for the nth fmap law. We now have for the first

law

return a �= f = join $ fmap f (return a)
4
= join $ return (f a)
2
= f a

For the second law, we have

a �= return = join $ fmap return a
2
= id a

= a

The third law is a bit more work. For the left hand side, we derive

a �= f �= g = join (fmap f a) �= g

= join $ fmap g (join $ fmap f a)
= join $ (fmap g) . join . (fmap f) a
3
= join $ join . (fmap (fmap g)) . (fmap f) a

10



2′
= join $ join . (fmap ((fmap g) . f)) a

whereas for the right hand side, we obtain

a �= λ x → (f x �= g)
= join $ fmap (λ x → (f x) �= g) a
= join $ fmap (λ x → join (fmap g (f x))) a
= join $ fmap (join . (fmap g) . f) a
2′
= join $ (fmap join) . (fmap ((fmap g) . f)) a
1
= join $ join . (fmap ((fmap g) . f)) a

and we are done.

This gives us two ways to look at monads in a functional setting.
Either a monad can be viewed as a way of chaining computations together,
or a way of both lifting functions to the computational level and also
flattening computations of computations to just computations. We have
proved the equivalence of the two definitions of a monad, and can therefore
use whichever definition we prefer. Let’s look at an example of the two
definitions.

Example 2.2.6. The List monad is a very common monad, and has the
following definition:

instance Monad [ ] where
return a = [a]
ma �= f = concat $ map f ma

Here map was the function we saw above. The function

concat :: [[α]] → [α]
concat [ ] = [ ]
concat (a : as) = a ++ (concat as)

is also a regular Haskell functions from the library. concat takes a list of
lists L and returns a list of all the elements of the lists inside L, whereas map

takes a function and a list, and applies the function to each element in the
list. The alert reader may have observed that what we really have done is
defined the definition using (�=) through the join definition, since for lists
join = concat and fmap = map. One could also define it directly through
the (�=) operator as

instance Monad [ ] where
return a = [a]
[ ] �= f = [ ]
(a : as) �= f = (f a) ++ (as �= f)

The List monad is often seen as a way of combining indeterministic
computation, that is, computations that can return multiple values. Assume
you play a dice game where you can bet an amount A of money, and you win

11



A times (f r), where f is some function and r is the roll of a die. We then
have a function

game :: int → [int]
game a = [a ∗ (f 1), a ∗ (f 2), . . . , a ∗ (f 6)]

computing the possible winnings of a single play. You are of course interested
to see what you can expect in the long run of this game. The following
functions give you the answer:

play :: [int] → int → [int]
play bets n = if n == 0 then

bets

else
play (bets �= game) (n− 1)

earnings :: int → int → float

earnings bet n = (mean $ play (return bet) n) − bet

where n is the number of games to play, bet is the starting bet,
and mean :: [int] → float calculates the mean of a list. Then
(earnings bet n) will give you the expected earnings if you start betting bet,
and bet everything you win for n games.

The Monad class has some extra utility functions defined. Monads can,
as stated earlier, simulate destructive effects, so in some cases we are not
interested in the result of a computation, but rather its effect. Take e.g.
the result of applying print :: Show α ⇒ α → IO (), which is a function
in the IO monad. For such circumstances we have the following function,

(�) :: m α → m β → m β
ma � mb = ma �= λ → mb.

That is, execute computation ma, discard the result, and then execute
mb. Any monad also has a predefined fail :: String → m α, as
fail s = error s. One should however, override this to fit the logic of
the instantiating type. The full definition of the Monad class in Haskell is
as follows,

class Monad m where
return :: α → m α
(�=) :: m α → (α → m β) → m β
(�) :: m α → m β → m β
fail :: String → m α
ma � mb = ma �= λ → mb

fail = error

12



2.3 Do-notation

Since many of the applications of monads involve simulating imperative
features, it is often convenient to write that code as one would in an
imperative language. Because of this there is a special way of writing
monadic code, using what in Haskell is called a do-block. In a do-block one
writes commands just as in an imperative language, line by line. However,
all such code can be (and is by the compiler) rewritten to ordinary monadic
functions using lambda abstractions, (�=), and (�). That is, it is only
syntactic sugar. A do-block starts with the keyword do and then a block of
lines, each line a command. A command is either a call to a function, or
an assignment of a value to a variable. The assignment is either using the
familiar let-expression, or a monadic assignment written with a left arrow.
Here is an example of a do-block:

doExample = do
update

b ← getSomeVal

let c = doSomething b

return $ c + 1

The best way of understanding this type of code is to see how it translates
to known code. We will use  to denote the translation from do-notation
to regular monadic code. Furthermore,

do
line1

line2

. . .
linen

is equivalent to

do {line1; line2; . . . ; linen}.

The following is taken from [7], and is a desugaring of do-blocks in the same
way a Haskell compiler would do it. A single command translates to itself,
so

do com  com

A series of commands in a do-block is translated recursively such that

do {com; rest}  com � do {rest}

A let statement in a do-block behaves the same, albeit we do not need the
in keyword.

do {let decls; rest}  let decls in do {rest}

The monadic assignment is trickier to translate. We have that

13



do {a ← ma; rest}  ma �= λ a → do {rest}

So whenever we write a ← exp, the monadic value exp is computed, such
that a is assigned the result of the computation. So for instance, if we had
a line a ← Just 1, then a would get the value 1. However, for a ← [1, 2, 3]
in the List monad, then a would first be assigned 1, then 2, and lastly 3,
and the do-block is executed once for each value.

The small example above is translated to

doExample = update �
getSomeVal �= λ b →

let
c = doSomething b

in
return $ c + 1

Let’s look at an example using this new notation coupled with a rather
useful monad.

Example 2.3.1. Manipulating state is alpha and omega in imperative
programming, and some algorithms are more intuitively expressed through
manipulation of state. However, we should not tolerate destructive effects
in our pure code. One solution could be to pass a state value along to all
our functions, but that is rather tiresome. The State monad comes to our
rescue, simulating destructive effects in a functionally pure way.

newtype State σ α = State { runState :: σ → (σ, α)}

instance Monad (State σ) where
return a = State $ λ s → (a, s)
as �= f = State $ λ k → let

(a, s) = runState as k

in
f a s

So something of type State σ α is a function taking a state s and returns
a tuple consisting of a state and a value; return a is just the trivial
computation immediately returning its unaltered argument state value and a;
(sa �= f) unwraps sa with the current state k, applies f to the unwrapped
value, and then feeds the new state s to the result.

Notice that the state value is actually passed along every monadic
function call, but is now done automatically. As with the Maybe monad,
we again had a feature we wanted our computations to (uniformly) have,
and again the defined monad takes care of it in the background.

Now, let’s return to your gambling situation from the previous example.
Perhaps betting everything you own isn’t the best tactic. Perhaps you would
like to just bet a fraction of what you own. Let’s see how the state monad
can help you keep track of how much you have, and how much you should
bet. For our example, let’s say you would like to bet 1

3 of what you have.
We will need two very helpful functions defined in the State module in the
Haskell libraries. The helpful functions are as follows:

14



modify :: (s → s) → State s ()
modify f = State $ λ s → ((), f s)

get :: State s s

get = State $ λ s → (s, s)

So modify takes a function and uses it to modify the state value, whereas
get sets the result of the computation to be equal to the state value. We are
now ready to define functions for our gambling simulation.

won :: Int → State Int Int

won n = do
modify (+ n)
money ← get

let nextBet = floor . fromIntegral $ money/3.0
return nextBet

playGames :: Int → Int → (Int, Int)
playGames start n = if n == 0 then

return start

else
playGames start (n− 1) �= won . play

Here play :: Int → Int is the winnings from one play, startBet is the
first bet, and n is the number of games to play. In the state’s tuple (a, s),
the state s is how much money you currently have and the value a is how
much you want to bet the next round. The won function can be translated to

won n =
modify (+ n) �

get �= λ money →
let
nextBet = floor . fromIntegral $ money/3.0

in
return nextBet

which further reduces to

won n = State $ λ k → ((floor . fromIntegral $ (k + n)/3.0), (k + n))

by β-reduction.

The monad laws can also be expressed in do-notation, as

15



do
block

x ← return a

rest

= do
block

rest[a/x]

do
block

a ← ma

return a

= do
block

ma

do
block

a ← do
com1
...
comn

rest

= do
block

com1
...
a ← comn
rest

The laws are rather natural in this context, almost taken for granted one
might think. It would probably be quite confusing to write code in do-
notation if these qualities didn’t hold. This is an important note, monad
instances not satisfying the monad laws are actually unintuitive to work
with.

We will now look at some of the functionality written around monads,
both useful extensions and practical functions.

2.4 Auxiliary functions

In addition to the functions defined in the monad class, there are several
type class extensions equipping monads with more functionality. One rather
useful extension is the MonadPlus class.

Definition 2.4.1. The MonadPlus class is defined as

class Monad m ⇒ MonadPlus m where
mzero :: m α
mplus :: m α → m α → m α

Where we require (a subset of)

mzero ′mplus′ ma = ma

ma ′mplus′ mzero = ma

ma ′mplus′ (mb ′mplus′ mc) = (ma ′mplus′ mb) ′mplus′ mc
mzero �= f = mzero

ma � mzero = mzero

(ma ′mplus′ mb) �= f = (ma �= f) ′mplus′ (mb �= f)

where ′mplus′ is just infixed mplus.

16



One should note that the laws are not fully agreed upon, but the once
stated above are perhaps the most canonical[2]. Different choices of laws
gives different interpretations of both mzero and mplus. One interpretation
allows us to make a monoid (the three topmost laws) over computations
with the binary operator mplus and an accompanying identity mzero. The
idea is to let mzero denote a failed computation, and have mplus combine
the result of its two arguments. A common interpretation of mplus is
that it represents a choice over its two argument computations. For the
Maybe monad, mzero = Nothing and mplus returns the first successful
computation, if any. For the List monad, mzero = [ ] and mplus = ++.

There is currently a reform proposal[2] which suggest to split the
MonadPlus class into different classes, each satisfying one of the most
common subsets of the laws above.

There are also several other extensions of the Monad class, and we will see
some of them later in the thesis. We will now look at some useful monadic
functions which we will apply throughout the thesis.

We saw how a functor F defines functionality for lifting any function
f :: α → β up to its type, such that (fmap f) :: F α → F β. We also saw
how every monad uniquely defines a functor. There is an implementation of
this lifting defined for every monad as

liftM :: Monad m ⇒ (α → β) → m α → m β
liftM f ma = do

a ← ma

return $ f a

The definition above is equivalent (just written in do-notation) to the one
for fmap, but now with the assumption that the data type is a monad.
Even though every monad implicitly defines a functor, there need not be an
explicit implementation of fmap. In such cases, we can however always use
liftM. Applying liftM is called promoting a function to a monad. This
is very useful, but we are not limited to only promoting functions of one
argument. The expressiveness of monads lets us define this for functions of
an arbitrary number of arguments. For two arguments, we have

liftM2 :: Monad m ⇒
(α1 → α2 → β) → m α1 → m α2 → m β

liftM2 f ma1 ma2 = do
a1 ← ma1

a2 ← ma2

return $ f a1 a2

So for any natural number n we could define

liftMn :: Monad m ⇒
(α1 → α2 → . . . → αn → β) →
m α1 → m α2 → . . . → m αn → m β

17



liftMn f ma1 ma2 . . . man = do
a1 ← ma1

a2 ← ma2
...
an ← man
return $ f a1 a2 . . . an

In the Haskell library there are definition up to liftM5, and one probably
rarely needs more.

So far we have used the application function ($) quite a lot, albeit mainly
to avoid parenthesis. There is a monadic version of this, defined as

ap :: Monad m ⇒ m (α → β) → m α → m β
ap = liftM2 id

This function lets us apply a function inside the monad to values also inside
the monad. Say for instance we would have a computation in the State

monad, where the state value was a function with type α → β. Then

get :: State (α → β) (α → β)

Normally, to apply this function, one would have to unwrap both the
function and the argument from the state computation, apply it, and then
wrap the result into the computation again, that is

do
f ← get

a ← ma

return $ f a

Now we can just write

ap get ma

Another neat feature is that

(return f) ′ap′ ma1
′ap′ ma2

′ap′ . . . ′ap′ man

is equivalent to

liftMn f ma1 ma2 . . . man

so defining, for example, liftM7 can now be done in one line, if one ever
should need it.

There are some neat functions for controlling the flow of computations
inside monads and we will now look at a couple of such functions. One often
needs to filter lists, and to do this in the List monad, one could write

do
x ← ma

if p x then
return x

else
[ ]

18



This is however tedious if you want to have several filters. This is where the
neat function guard :: MonadPlus m ⇒ Bool → m () is handy. It has the
simple implementation

guard True = return ()
guard False = mzero

All it does, is cut off a computation if its argument is False. So the above
filter could rather be written

do
x ← ma

guard (p x)
return x

There are two other useful functions for conditional execution of monadic
expression, namely when :: Monad m ⇒ Bool → m () → m() and unless

with the same type. In the expression when b ma, if b is True then ma is
executed, but will return return () if not. unless does just the opposite.

The last function we will discuss is

sequence :: Monad m ⇒ [m α] → m [α]
sequence [ ] = return [ ]
sequence (ma : mas) = do

a ← ma

as ← sequence mas

return (a : as)

and is defined in the library of the List monad and is useful in conjunction
with any monad m. It takes as argument a list of computations in m, and
executes each one in order. Every result is gathered in a list and wrapped in
one large computation inside m. Notice how every result now is dependent
upon the same computation. We will see applications of this function later
in our extended examples.

There is a myriad of other useful functions, and most of them can be
looked up in the Haskell library in the package Control.Monad.

2.5 The IO monad

We started this thesis by explaining a problem in purely functional programs,
namely input and output. In this section we investigate how one particular
monad can solve this problem, such the language remains pure. This
particular monad is (not surprisingly) the IO monad. The following is taken
from [17], and a more thorough discussion can be read there.

The IO monad is in many ways similar to the State monad since it
actually has a state it passes along with its computations. It differs in the
way that the states type is not something we can chose. The state in the
IO monad is a representation of the real world, with a type not accessible
to programmers.

19



There are two ways of implementing the IO monad in a pure language:
Either the definition of the IO monad is not in language, but in a lower level
language (like C) such that the monadic functions are primitives; or it could
be defined as a normal monad like the following,

newtype IO α = IO { runIO :: RealWorld → (α, RealWorld)}

instance Monad IO where
return a = IO $ λ w → (a, w)
ma �= f = IO $ λ w → let

(a, w′) = runIO ma w

in
f a w′

This is how it is done in GHC[17].

There are two vital features of this monad. The first is that every time
we print something, ask for a character from the user, or use any other
IO-function, the internal representation of the real world is updated. The
updated representation should never have been used before, since the current
state of the world is never equal to a previous state.

The other vital feature of the IO monad is that it is inescapable, hence
there is nothing of type RealWorld available to a programmer. That means
that there is no function of type f :: (IO α) → β for a β not in the IO

monad. To see the importance of this, let’s assume there was a function
like the one above. Assume also that we have a function getInput :: IO α,
taking some input of type α from an external source (user, file, etc.). We
would now have a function g = (f getInput) where g :: β, so assume we
observe g = b for some value b. Then, by referential transparency, we
should be able to substitute g by b everywhere in the code. But g is taking
input from an external source, so we might not always get the same value.
If we, on the other hand, had f :: IO α → IO β, we would have g :: IO β.
Now g’s return value would depend on the current state of the world, which
is given to g as an argument. As stated above the representation of the
world is updated every time we interact with it, so we will never give g

exactly the same arguments and is therefore not substituted.

These two features preserves referential transparency, and thereby
provides one solution to the issue of combining IO with referential
transparency in purely functional languages.

2.6 Perspectives on monads

As we have seen throughout this chapter, the monad can be applied to
many different types of problems and we will see more in the chapters to
come. Even though the monads are useful constructs and there are dozens
of tutorials on the subject, they are somewhat notorious for being difficult
to understand. However, many are debating this view, for instance ”Real
World Haskell”, stating that monads really are quite simple[7], and that
monads appear quite naturally from the functional paradigm.

20



Until now we have described monads as a construct simulating different
kinds of computations. However, there are many perspectives on how
one could interpret monads, so here we will give some examples of such
interpretations.

Some of the monads we have seen, for instance List and Maybe,
are naturally interpreted as containers. They represents data structures
which contain values. With this interpretation, return creates a singleton
container; fmap takes a function and a container and applies the function
to every element in the container;(�=) takes two arguments, the first is
a container, and the second is a function which transforms a value to a
container, and applies the function over each element in the container before
flattening the resulting container of containers down to just a container.

Apart from data structures, the IO monad can also be seen as a container.
Here, c :: IO Char is a character inside the IO container. As explained in
the previous section, this container is inescapable.

Monads have, as we saw earlier, a special notation, namely the
do-notation. This gives rise to yet another interpretation, monads as
programmable semicolon. In a do-block we saw that at the end of every
line there really is a (�=). So (�=) is used in quite a similar fashion as
a semicolon, as they both define the borders between two commands. If
we change the definition of (�=) we change how a command should be
interpreted, thereby making (�=) a programmable semicolon.

Monads can also be viewed as a context, such that ma :: m α is
a value depending a context specified by the monad. This is cer-
tainly the case for the State and IO monads. If we have a value
(State (λ s → (a + s, s))) :: State σ α, we can clearly see that the result
or value of the computation depends on a context, namely the state value
s.

These perspectives are of course only to help our intuition, as the
definition of a monad is equivalent no matter our perspective on that monad.

This completes our general discussion on monads. In the next section,
we will see how we can combine monadic features to create new monads, as
well as create monad morphisms.

21



22



Chapter 3

Combining Monads

We have until now seen how we can create a monad for a single type of
computation, like indeterminism or statefulness. In most cases you will
need more complex computations, and in such situations we can use monad
transformers. They combine features and functionality of different monads
into one single monad.

We will also look at monad morphisms, their properties, and examples
of such morphisms.

3.1 Monad transformers

A monad transformer is a function over monads in the sense that its kind is
∗ → ∗ → ∗, where the first argument should be a monad, and the result of
applying a transformer to a monad should also be a monad. Hence, a monad
transformer can be viewed as a morphism from monads to monads, where
the resulting monad is extended with one specific feature defined by the
transformer. Monad transformers are defined in a similar way as a regular
monad, but where we abstract over all argument monads.

Definition 3.1.1. A monad transformer is a type t :: ∗ → ∗ → ∗ such
that for any given monad m, (t m) is a monad. That means we should have
definitions for

return :: Monad m ⇒ α → t m α
(�=) :: Monad m ⇒ t m α → (α → t m β) → t m β

satisfying the monad laws.

Let’s look at the implementation of the transformer for the Maybe monad.

Example 3.1.2. The Maybe monad transformer MaybeT is defined in
Haskell in the following way:

newtype MaybeT m α = MaybeT { runMaybeT :: m (Maybe α) }

instance Monad m ⇒ Monad (MaybeT m) where

23



return = MaybeT . return . Just
x �= f = MaybeT $ do

v ← runMaybeT x

case v of
Nothing→ return Nothing

Just y → runMaybeT (f y)

Notice that the do-block (in the definition of (�=)) is in the argument
monad m, and that all we really do is pierce the two layers of computation
and apply f to that value. The first line in the do block retrieves the Maybe

value from the argument monad, and the case retrieves the result inside the
Maybe monad (if any). The function f is then applied, and the result is
wrapped up in the MaybeT constructor.

Checking the laws should be rather straight forward for the first two, and
the third can be proven by induction.

Observe how the Maybe monad is the innermost monad in the example
above. This is so for any monad transformer, its argument monad is
wrapped around the transformer monad. This is a crucial point, due to
the importance of the order of the monads in a monad stack. Take e.g.
MaybeT (State σ). This monad is quite different from (StateT σ Maybe).
The first is a monad handling state where the values in the computation
may be Nothing, such that the interior of a computation may look like either
λ s → (Just a, s) or λ s → (Nothing, s). The latter is a monad where we
may have a value, and that value is a function over states. The interior of
such a computation looks like either λ s → Just (a, s) or λ s → Nothing.
Notice how this is a combination of the functionality of the two monads, and
is not the same as the trivial combination of monads, like State σ (Maybe a)
or Maybe (State σ a). With such values the (�=)-function can only work
on one monad at the time.

Another important point is that there really is no limit as to how many
monads you can combine. Feeding a monad transformer a new monad
transformer enables you to add yet another monad. Say we would like IO on
top of the two other monads in the first example above, we could just type
our elements with type MaybeT (StateT σ IO). This is extremely useful, as
it makes adding or removing functionality quite easy. We will see how this
is done in the extended examples.

Not all monads can be made monad transformers though. That does
not mean it is impossible to implement the monad class, but rather that
the resulting monads are not proper monads in the sense that they do not
satisfy the monad laws. The transformer for the List monad is one such
example.

Example 3.1.3. The List monad has the following transformer.

newtype ListT m α = ListT { runListT :: m [α]}

instance Monad m ⇒ Monad (ListT m) where

24



return = ListT . return . return
mla �= f = ListT $ do

la ← runListT mla

lla← sequence $ liftM (runListT . f) la
return $ concat lla

Notice how this really isn’t that different from the MaybeT transformer. After
unwrapping mla to la :: [α], we map (runListT . f) over it. The result has
type [(m [α])], so after applying sequence we get something of type m [[α]],
which then is pierced and concatenated before injected into m again.

(ListT m) is only a monad if the argument monad m is commutative, that
is, monads where

do
a ← exp1

b ← exp2

rest

is equivalent to

do
b ← exp2

a ← exp1

rest

A proof of this can be seen by Jones and Duponcheel in “Composing
Monads”[16].

In the Haskell libraries, if a monad has a proper monad transformer one
often just defines the transformer. Then one can define the base monad as
the transformer applied to the Identity monad. The Identity monad has
the trivial definition:

newtype Identity a = Identity { runIdentity :: a }

instance Monad Identity where
return a = Identity a

ma �= f = f (runIdentity ma)

The Identity monad contains no functionality, that is, return is just the
identity function and (�=) is the same as regular function application.
Applying a monad transformer to the Identity monad therefore results
in a monad with only the transformers functionality. So for example, the
Maybe monad can be defined through MaybeT as MaybeT Identity, such that

newtype Maybe α = MaybeT Identity α

Now we already have the monad instance for Maybe, since it was defined for
MaybeT m for any monad m.

25



3.2 Lifting

While monad transformers enable us to combine monadic functionality
through return and (�=), a monad often has much more functionality
attached to it. Say we have constructed the monad

type NewMonad σ = MaybeT (State σ)

how can we use functions associated with the State monad, such as
get :: State σ σ? If we used this in a do-block in the NewMonad monad, we
would get a compiler error, since get doesn’t have type MaybeT (State σ) σ.
The answer is through lifting (not to be confused with the function lifting
we discussed in Chapter 2, albeit related). Including the definition of how a
monad transformer t should work as a monad, one also have to define how
a value is lifted from an underlying monad up to a value in the transformer
monad.

Definition 3.2.1. A monad transformer defines how it lifts values up from
an underlying monad through

class MonadTrans t where
lift :: Monad m ⇒ m α → t m α

such that

lift . return = return

lift (ma �= f) = (lift ma) �= (lift . f)

The first return and the first (�=) in the first and second law
respectively, are from the m monad, while the seconds are from the composite
monad t m.

Example 3.2.2. Lifting in the MaybeT transformer is defined as

instance MonadTrans MaybeT where
lift = MaybeT . (liftM Just)

It is easy to verify that the laws hold.

We can now use get in our NewMonad as (lift get), which has the correct
type MaybeT (State σ) σ.

3.3 Monad morphisms

A monad morphism is a morphism from one monad to another.

Definition 3.3.1. For any two monads m and n, a monad morphism,
η :: ∀ α . m α → n α, from m to n is a property preserving map from
computations in m to computations in n such that

η (return a) = return a

η (ma �= f) = η ma �= (η . f)

26



Monad transformers are monad morphisms, where lift plays the role
of η in the above definition. There are however other monad morphisms
not traditionally expressed as a monad transformer, and they do not
necessarily only add functionality, but might remove or completely change
the functionality of the argument monad. For instance, assume one has a
monad transformer t and a monad m. Then we have a monad morphism
lift :: m α → t m α, but one could also, in many cases, write a dual
monad morphism down :: t m α → m α, removing functionality. A function
perhaps not normally thought of as a monad morphism is the function
head :: [α] → α extracting the first element of a list. Observe that this
really is a monad morphism from the List monad to the Identity monad,
and that both of the laws above are satisfied. This function is only partial
though, since it fails when applied to the empty list. If we however write

head′ :: [α] → Maybe α
head′ (x : xs) = Just x

head′ [ ] = Nothing

we have made a monad morphism from the List monad into the Maybe
monad.

As we can see, there are quite a lot of functions not normally thought
of as monad morphisms, but knowing that they are might help reasoning
and characterisation of programs. For instance, it is a lot cheaper to
calculate head′ xs �= head′ . f than head′ (xs �= f), since the first limits
the number of applications of f.

This concludes our discussion on monad transformers and monad
morphisms. Throughout the chapters 5, 6, and 7 we will apply both
constructs to solve different kinds of problems.

27



28



Chapter 4

Introducing a New Monad:
The Pair Monad†λ

Throughout this chapter, we will construct a new monad, prove its
correctness, look at some interpretations of computations in that monad,
and lastly define its transformer. This monad is new and to my knowledge
does not exist in the libraries.

4.1 Definition†λ

From Lisp we know how useful pairs can be as a data structure, and we
will try to achieve some of that expressiveness in the realm of monads by
constructing the Pair monad. One criteria for the Pair Monad is that it
should be equivalent to the List Monad if we restrict our constructions
to lists. That is, (Cons a1 (Cons a2 . . . (Cons an Nil) . . . )) �= f and
[a1, a2, . . . , an] �= f should be equivalent for all f and {ai}i≤ n. In
addition to the Nil and Cons constructors, we also need a way of combining
two pairs to one.

Definition� 4.1.1. The Pair type is defined as

Data Pair α = Nil |Cons α (Pair α) |Comp (Pair α) (Pair α)
deriving (Eq, Show)

Cons1 behaves as (:) in regular lists. Comp2 constructs a new pair of
two pairs, and thereby constructs a bifurcation. Nil is just the empty pair.
In addition to construct lists, we can with these constructors also create
arbitrary trees, lists of trees, trees of lists, etc. This freedom of form in
combination with its similarity to lists is quite handy, and we will see some
applications of this later.

Pair behaves like a functor in much the same way as List does.

1Short for “CONStruct”.
2Short for either “COMbine Pairs” in regular applications, or “COMPute” when

representing lambda terms, as we will see soon.

29



Definition� 4.1.2. Pair is a functor, with the following functor instance.

instance Functor Pair where
fmap f Nil = Nil
fmap f (Cons a p) = Cons (f a) (fmap f p)
fmap f (Comp p1 p2) = Comp (fmap f p1) (fmap f p2)

With the functor instance defined we are one step closer to a monad.
However, we need two more functions before the monad can be defined.
First we need the functionality for appending and concatenation of pairs.

Definition� 4.1.3. Appending two pairs is done with

appendPair :: Pair α → Pair α → Pair α
appendPair Nil p = p

appendPair (Cons a p1) p2 = Cons a (appendPair p1 p2)
appendPair (Comp p1 p2) p3 = Comp (appendPair p1 p3) p2

and concatenation of a pair of pairs down to just a pair, is done with

concatPair :: Pair (Pair α) → Pair α
concatPair Nil = Nil
concatPair (Cons p1 p2) = appendPair p1 (concatPair p2)
concatPair (Comp p1 p2) = Comp (concatPair p1) (concatPair p2)

Notice that we in fact can set concatPair = join, so now we have all
we need to define the monad instance for Pair.

Definition� 4.1.4. The Pair monad is defined as

instance Monad Pair where
return a = Cons a Nil
p �= f = concatPair $ fmap f p

We can easily see that if we omit the Comp constructor, all of the
definitions above are equivalent to List’s, so the Pair type really is a true
extension of List. Also, there are no functions taking a term only consisting
of Nil and Cons to a term containing Comp. This means that whenever we
want to use lists, we could just as well use pairs to allow for a possible
extension to trees or other similar data structures.

After proving some basic properties of the monad, we will see how we
can use this bifurcation in some interesting applications.

Lemma� 4.1.5. Pair is a proper functor, that is

fmap id = id

fmap (f . g) = (fmap f) . (fmap g)

Proof. Easy induction on the construction of pairs.

30



Lemma� 4.1.6. We have the following properties of the functions above:

i) (fmap f) distributes over appendPair,

ii) appendPair is associative,

iii) concatPair distributes over appendPair.

Proof. All proofs done by induction over the construction of pairs.

Theorem� 4.1.7. Pair is a proper monad, that is

return a �= f = f a

ma �= return = ma

ma �= f �= g = ma �= λ x → (f x �= g)

for all a :: α, ma :: Pair α, f :: α → m β, and g :: β → m γ.

Proof. The first two laws are trivial, and seen to hold by a short induction
proof. The third is a bit more involved. If ma = Nil both sides reduce to
Nil. Assume ma = Comp p1 p2. First observe that

(Comp p1 p2) �= f = concatPair $ fmap f (Comp p1 p2)
= Comp (concatPair $ fmap f p1)

(concatPair $ fmap f p2)
= Comp (p1 �= f)

(p2 �= f)

Repeating the steps above with the function g, we get the left hand side to
be

(Comp p1 p2) �= f �= g = Comp (p1 �= f �= g)
(p2 �= f �= g)

Doing the same for the right hand side, we obtain

(Comp p1 p2) �= λ x → (f x �= g)
= Comp (p1 �= λ x → (f x �= g))

(p2 �= λ x → (f x �= g))

which is equal to the left hand side by to the induction hypothesis. Now
assume ma = Cons v p. We then have the following by the lemma above,

(Cons v p) �= f �= g

= concatPair . (fmap g) . concatPair $ Cons (f v) (fmap f p)
= concatPair . (fmap g) $ appendPair (f v) (concatPair $ fmap f p)
= appendPair (concatPair . (fmap g) $ f v)

(concatPair . (fmap g) . concatPair . (fmap f) $ p)
= appendPair (f v �= g)

(p �= f �= g)

and for the other side we have

31



(Cons v p) �= λ x → (f x �= g)
= concatPair $ Cons (f v �= g) (fmap (λ x → f x �= g) p)
= appendPair (f v �= g)

(p �= λ x → (f x �= g))

which also are equal by the induction hypothesis.

Notice that the only requirements on appendPair for Pair to satisfy
the monad laws, are those given in lemma 4.1.6 and appendPair Nil = id.
This means that we could also define the third clause of appendPair as

appendPair (Comp p1 p2) p3 = Comp p1 (appendPair p2 p3)

The reason for choosing the original over this one, is just to enable an
application we will see in the next chapter.

While using this monad, we will see that it is often the case that we want
to substitute one particular value with a pair. In such cases we can use the
following function.

subs :: Eq α ⇒ α → Pair α → α → Pair α
subs a p x = if a == x then

p

else
return x

If we have the following pair

p = Cons 1 (Cons 2 (Comp (Cons 3 Nil)
(Cons 4 Nil)))

we can substitute 3 with Comp (Cons 5 Nil) (Cons 6 Nil) with

p �= subs 3 (Comp (Cons 5 Nil) (Cons 6 Nil))
= Cons 1 (Cons 2 (Comp (Comp (Cons 5 Nil)

(Cons 6 Nil))
(Cons 4 Nil)))

Now that we have seen the definition and proof of correctness of the Pair
monad, we will look at applications and interpretations of this new monad.

4.2 Usage and interpretation†λ

As we saw in the previous section, the Pair monad is a generalisation of
the List monad, the monad of indeterministic computations. So what
type of computations does the Pair monad model? As a generalisation of
the List monad, the Pair monad can of course also model indeterministic
computations, but how should we then interpret the new constructor Comp?
Throughout this section we will look at some different interpretations of the
constructors, and for each interpretation see what (�=) represents.

We know that for lists, a common interpretation of (:) is disjunction, that
is, a list represents a disjunction of possible results from a computation. For

32



example, [1, 2, 3] represents a computation with either result 1, or 2, or
3. [ ] represents a failed computation, a computation with zero possible
results. First we will look at two interpretations of pairs where we keep
these interpretations of Cons and Nil, and let Comp represent either “or” or
“and”.

If Comp also represents “or”, then the only difference between the Pair

monad and the List monad is that Pair enables some structure on the
result. Instead of having all possible values in a linear list, we can separate
values via bifurcations. For instance in the dice example from the previous
chapter, we could let each result be on the form Comp p1 p2, where we put
all 0s in p1 and all greater numbers in p2. Instead of having a linear result
on the form

[0, 0, 2, 5, 0, 7]

we can construct the bifurcations above, and get

0

0

2

5

0 7

Notice that betting 0 in the dice game always gives 0 money back, so we
will never get a non-zero value in a left subtree. Also, if one substitutes a
non-zero value with a result Comp p1 p2, the definition of appendPair ensures
that the rest of the tree is appended to p2. This preserves the structure also
after substitution. Assume, if we bet 5 we can win either 0, 4, or 7. Making
only this substitution in the above tree, we get

0

0

2

4

0 7

0 7

We could make this interpretation explicit, and by that I mean to transform
a computation in the Pair monad to a computation in the List monad. We
have a firm grasp of the meaning or semantic of a computation in the List

monad, as described above. A translation from pairs to lists would then give
rise to an interpretation of computations in the Pair monad.

Definition� 4.2.1. A structured indeterministic computation in the Pair

monad can be translated to a regular indeterministic computation with

pairAsStruct :: Pair α → [α]
pairAsStruct Nil = [ ]
pairAsStruct (Cons a p) = (a : (pairAsStruct p))
pairAsStruct (Comp p1 p2) = (pairAsStruct p1) ++ (pairAsStruct p2)

33



In fact, pairAsStruct is almost a monad morphism from pairs to
lists. We have that pairAsStruct (p �= f) will have the same elements
as pairAsStruct p �= pairAsStruct . f, but not necessarily in the same
order. If we use the alternate definition of appendPair as described in the
end of previous section, pairAsStruct would be a proper monad morphism.

Before finishing of this interpretation of pairs as computations with
structure, one should note that pairs have an infinite number of different
failed computations. While lists only have the empty list, pairs have Nil,
and any combination of only Comp and Nil. We can enumerate a subset of
them,

zero :: Int → Pair α
zero 0 = Nil

zero n = Comp (zero (n− 1)) Nil

and use them to represent different types of failures. Note that
(zero n) �= f = zero n for any n and f, since there are no values
contained in zero n. Say we have a computation in the List monad,
la �= f. If f applied to one of the values in la results in [ ], this will
simply disappear. Observe that if one particular value substitutes to zero n

for n > 0 in the Pair monad, the failure will be a part of the resulting
computation, as zero (n− 1). For example,

(Cons 1 (Cons 2 (Cons 3 Nil))) �= subs 2 (zero n)
= Cons 1 (Comp (zero (n− 1)) (Cons 3 Nil))

So in addition to preserve some structure on our computations, we can also
represent and differentiate between different failed computations.

Another possible interpretation of Comp is as “and”. In other words, to
let it represent a choice of two values, one choice from both its arguments.
This interpretation makes Comp a Cartesian product over possible values.
Although intuitive, we will see shortly that this interpretation is a bit
problematic with respect to substitutions.

With such an interpretation, we cannot translate pairs with this
interpretation to single level lists. However, a translation to list of lists,
[[α]], can be done with the function defined below. Here, (:) for the top level
list is interpreted as regular disjunction, while for the lists within this list
we interpret (:) as conjunction.

Definition� 4.2.2. A computation in the Pair monad can be interpreted as
a choice over the composition of single values and Cartesian products over
values with

pairAsCart :: Pair α → [[α]]
pairAsCart Nil = [ ]
pairAsCart (Cons a p) = ([a] : (pairAsCart p)
pairAsCart (Comp p p′) = ap (fmap (++) (pairAsCart p))

(pairAsCart p′)

34



The last line might need an explanation to help our intuition. First we
map (++) over the result from pairAsCart p, which creates a list of functions.
This list has type [[α] → [α]]. Each function in that list is then applied to
every value in the result of pairAsCart p′. This generates a list of every
possible combination of elements from each branch. For instance, if

p = (Cons 1 (Comp (Cons 2 (Cons 3 Nil))
(Cons 4 (Cons 5 Nil))))

then

pairAsCart p = [[1], [2, 4], [2, 5], [3, 4], [3, 5]]

If we let f = subs 1 (Comp (Cons 1 Nil) (Cons 0 Nil)), then

pairAsCart p �= f = [[0, 1], [0, 2, 4], [0, 2, 5], [0, 3, 4], [0, 3, 5]].

The interpretation of the result of the substitution depends heavily on where
in the tree the substituted value is located, but the function making the
substitutions is oblivious to the placements of its argument. This makes
this interpretation quite unintuitive to work with.

Above we interpreted Cons as ”or”, as with regular lists, and Comp as
”and”. We might do the reverse, interpret Cons as ”and” and Comp as ”or”.
Then every choice would represent a path from the root to a leaf node in
the tree. This can be made explicit and translated to a list of lists with the
same semantic as above, with the following definition.

Definition� 4.2.3. A computation in the Pair monad can be interpreted
as a choice of path from root to leaf with the function

pairAsPathCh :: Pair α → [[α]]
pairAsPathCh Nil = [[ ]]
pairAsPathCh (Cons a p) = fmap (a :) (pairAsPathCh p)
pairAsPathCh (Comp p p′) = (pairAsPathCh p) ++ (pairAsPathCh p′)

If we let p and f be the same as above, we have that

pairAsPathCh p = [[1, 2, 3], [1, 4, 5]]

which is a list of all possible paths from root to leaves. Furthermore,

pairAsPathCh $ p �= f = [[0], [1, 2, 3], [1, 4, 5]]

As we can see, substitutions extend and create new paths.
We have now seen interpretations of pairs as extensions of indeterministic

computations. There is however another quite different interpretation of
computations in Pair. In fact, Pairs naturally represents lambda terms
and (�=) can simulate β-reduction. Here Cons a p can represent a lambda
abstraction of a over p, Comp p1 p2 can represent the application of p1 to
p2, and a single variable can be represented as Cons x Nil. Then p �= f

35



represents a substitution of variables x with lambda terms (f x) in p. Regular
β-reduction is then modelled by subs, such that

Comp (Cons x p) p′
β
 p′ �= subs x p

An interpretation satisfying the description above is given below.

Definition� 4.2.4. A computation in the Pair monad can be interpreted
as a lambda term with the following functions

beta :: Eq α ⇒ Pair α → Pair α
beta ps = case ps of

Comp (Cons a p) p′ → if p == Nil then
ps

else
p �= subs a p′

Comp (Comp p1 p2) p→ Comp (beta $ Comp p1 p2) p
→ ps

reduce :: Eq α ⇒ Pair α → Pair α
reduce ps = case findFix beta ps of

Nil → Nil

Cons a p → Cons a (reduce p)
Comp p1 p2 → Comp p1 (reduce p2)

findFix :: Eq α ⇒ (α → α) → α → α
findFix f a = fixer a (f a)

where fixer a1 a2 = if a1 == a2 then
a1

else
fixer a2 (f a2)

In this definition, beta reduces a lambda term one step, reduce reduces
a lambda term to normal form, and findFix finds the fix point of a function
over one particular element.

Going one step further, we could use elements with type Pair (Pair α)
to represent lambda terms with pattern matching. With this, we can for
instance represent f (c x) = h x as the pair

f = Cons (Comp (Cons c Nil)
(Cons x Nil))

(Comp (Cons (Cons h Nil) Nil)
(Cons (Cons x Nil) Nil))

Every atomic value has to be wrapped twice in Cons to get the correct type,
and all abstractions are now over pairs instead of variables. To apply such
pattern matching functions, we could translate them in the same manner
as any interpreter would have, namely back to regular lambda expressions.
I have written such a translation, which can be found in the appendix on

36



page 121. The function is called reducePatterns and is a bit technical. We
will not go through the details here, but the interested reader can look it
up.

Applying reducePatterns to f, we would get the regular lambda
function

reducePatterns f

= Cons z

(Comp (Cons f (Comp (Cons x p)
(Comp (Comp Nil Nil)

(Cons z Nil))))
(Comp Nil (Cons z Nil)))

where

p = (Comp (Cons f Nil)
(Cons x Nil))

We let Nil represents a meta function extracting p1 from Comp p1 p2, and
Comp Nil Nil represents a meta function extrac ting p2. These functions are
primitives, and need to be implemented in beta, so a small change in this
function is required. Note that the reason p was placed at the right spot in
the pair is due to the original definition of appendPair. If we were to use
the alternate definition, p would be placed at the Nil after z.

We will see an application of pairs as lambda terms in the next chapter,
where we create an interpreter for lambda calculus with graph sharing.
There we will not use the functions defined above, but rather a more
complex reduction strategy including an optimisation and logging of the
interpretation process.

One should note that there already exist a Tree monad, which can
simulate lists and similar data structures. It has the definition

data Tree α = Nil | Leaf α | Branch (Tree α) (Tree α)

instance Monad Tree where
return = Leaf

Nil �= f = Nil

(Leaf a) �= f = f a

(Branch t1 t2) �= f = Branch (t1 �= f) (t2 �= f)

However, this data type is not really an extension of lists, and cannot replace
lists in the same way. To simulate a single level list one would have to use all
constructors. Furthermore, there is no easy separation of a single element
appended to a list and the joining of two trees to one. This would, for
instance, make simulating lambda calculus difficult and far from natural. It
also doesn’t have the same interpretations as the Pair monad. So as we can
see, the Tree monad and the Pair monad solves different problems.

In the next section we are going to see how we can define a monad
transformer for pairs.

37



4.3 PairT†λ

Composition of monads is in many cases useful, and the Pair monad is no
exception. In this section we will go through the definition of the monad
transformer for Pair.

Definition� 4.3.1. The definition of the transformer type, PairT, is the
rather straight forward

newtype PairT m α = PairT { runPairT :: m (Pair α) }

So an element with type PairT is just an element of type m (Pair α)
wrapped in PairT, and unwrapped through the function runPairT.

Recall how the sequence function did much of the work in the definition
of (�=) in ListT. PairT is not that different from that of ListT, as its core
is sequenceP, the Pair version of the list function sequence.

Definition� 4.3.2. The sequencer-function for Pair is defined as

sequenceP :: Monad m ⇒ Pair (m a) → m (Pair a)
sequenceP Nil = return Nil

sequenceP (Cons ma mps) = do
a ← ma

ps ← sequenceP mps

return $ Cons a ps
sequenceP (Comp mps mps′) = do

ps ← sequenceP mps

ps′ ← sequenceP mps′

return $ Comp ps ps′

The list version, sequence, took a list of computations, executed them in
turn, and gathered the results of these computations in a list inside one large
computation. Exactly the same is done in sequenceP, the only difference
being that our data structure is pairs rather than lists.

We now have what we need to implement the Monad instance for the
transformer.

Definition� 4.3.3. The Pair monad transformer has the following defini-
tion,

instance Monad m ⇒ Monad (PairT m) where
return = PairT . return . return
mpa �= f = PairT $ do

pa ← runPairT mpa

ppa ← sequenceP $ liftM (runPairT . f) pa
return $ concatPair ppa

38



The return function is rather easy to grasp, first apply Pair’s return

function, then apply m’s, and finally wrap the result in PairT.
The implementation of (�=) is a bit more involved, and we will go

through it step by step. In general, PairT is applied to a do-block
in the monad m. The first thing done in the do-block is unwrapping
mpa and binding the result of the unwrapped computation (of type
m (Pair α)) to pa. Hence pa :: Pair α. Then the function (runPairT . f)
is applied to every element inside pa. Recall that f :: α → PairT m β, so
(runPairT . f) :: α → m (Pair β). Hence, liftM (runPairT . f) pa results
in a value of type Pair (m (Pair β)). To this value, sequenceP is applied,
gathering all the results from the applications of (runPairT . f) in one large
computation with type m (Pair (Pair β)). This value is now pierced, binding
the result to ppa :: Pair (Pair β). This value is concatenated down to a
value of type Pair β before being promoted to m by the return function.

Let’s look at an example to build up some intuition.

Example 4.3.4. We will look at a small computation in PairT [ ] Int. So
let

mpa = PairT [(Cons 1 Nil), (Comp (Cons 2 Nil) (Cons 4 Nil))]

and

f a = if a > 2 then
PairT $ [(Cons a Nil), (Cons (a + 1) Nil)]

else
return a

We will go through mpa �= f step by step. Firstly, the PairT constructor
is removed from mpa. Then pa is assigned Cons 1 Nil. Remember that the
do-block is in the List monad, so pa will be assigned each element of the
list in turn.

After the assignment, we map runPairT . f over pa, resulting in
Cons [(Cons 1 Nil)] Nil, since 1 is less than 2. Now sequenceP is applied,
which results in [Cons (Cons 1 Nil) Nil]. Each result of this list is then
assigned in turn to ppa, which currently only is Cons (Cons 1 Nil) Nil. This
pair is then concatenated down to Cons 1 Nil, before wrapped in a list, so
the result is [Cons 1 Nil].

Now, we go back to the second line, and assign the next element in the
first list to pa, so now pa = Comp (Cons 2 Nil) (Cons 4 Nil). The result of
applying runPairT . f to every element in pa is

Comp (Cons [Cons 2 Nil] Nil)
(Cons [(Cons 4 Nil), (Cons 5 Nil)] Nil)

Then sequenceP is applied to get

[Comp (Cons (Cons 2 Nil) Nil) (Cons (Cons 4 Nil) Nil),
Comp (Cons (Cons 2 Nil) Nil) (Cons (Cons 5 Nil) Nil)]

Now, both of the two elements in that list is assigned to ppa, concatenated,
and wrapped in a list again, in turn. The two results of this are

39



[Comp (Cons 2 Nil) (Cons 4 Nil)]

[Comp (Cons 2 Nil) (Cons 5 Nil)]

The three resulting lists are appended, and we get the following result,

PairT [Cons 1 Nil,
Comp (Cons 2 Nil) (Cons 4 Nil),
Comp (Cons 2 Nil) (Cons 5 Nil)]

and we are done.

We are almost done building the PairT transformer, but we still need
to define how values are lifted into the PairT monad. All we really need to
do is apply Pair’s return function to the value of the computation being
lifted, and then wrap the result in PairT.

Definition� 4.3.5. PairT’s lift function is defined as

instance MonadTransformer PairT where
lift = PairT . (liftM return)

Theorem� 4.3.6. lift for PairT is a proper monad morphism, that is

lift . return = return

lift (ma �= f) = lift ma �= lift . f

Proof. The first equality is trivial. The second is proven by a long sequence
of rewritings, reducing both sides to

PairT $ concatPair (liftM ((liftM return) . f) ma

The left hand side is easily rewritten to the term above. The right hand side
however, is more work. We will not go through all the steps, but by using
the monad laws and the fact that sequenceP . return = liftM return, the
proof is rather straight forward.

Now we have implemented everything we need to combine the function-
ality of the Pair monad with other monads. However, there is still one thing
one should think of every time one implements an instance of the monad
class: Does our implementation satisfy the monad laws? That is, is PairT m
really a proper monad for any monad m? As it turns out, it is not. This
should come as no surprise, since I have already mentioned that ListT m is
only a proper monad for commutative m, and we know that Pair is just a
generalisation of List.

Theorem� 4.3.7. PairT m is not a monad for all monad m.

40



Proof. It is the third law that is not satisfied. For example, if we define

ma :: PairT (State Int) Int
ma = PairT $ return (Cons 1 (Cons 2 Nil))

update :: Int → PairT (State Int) Int
update a = do

s ← lift get

lift $ put (s + a)
return s

runBoth :: PairT (State Int) Int → (Pair Int, Int)
runBoth ma = runState (runPairT ma) 0

we have that

runBoth $ ma �= update �= update

= ((Cons 3 (Cons 3 Nil)), 4)

runBoth $ ma �= λ a → (update a �= update)
= ((Cons 1 (Cons 3 Nil)), 4)

which are not equal.

Theorem 4.3.8. PairT m is a proper monad for commutative m.

Proof. The proof can be obtained by generalising the proof of Mark P. Jones
and Luc Duponcheel in “Composing Monads”[16] of the same property of
ListT. They prove that for ListT m to be a proper monad, sequence needs
to satisfy four laws. In their article sequence is named swap. They continue
to prove these laws for commutative m with induction. We only need to
extend their inductions proofs with the Comp-constructor, so a generalised
proof must prove these properties for sequenceP.

We will not go through the proof here, as the proof is quite straight
forward using the methods and results described in the article, but demands
a great deal of rewriting and technical manipulation of large expressions.

Throughout the article they make heavy usage of comprehensions which
is closely related to do-notation. An explanation of such syntax can be seen
in Chapter 7.

This concludes our investigation into the Pair monad, and we will now
look at applications of this and many other monads.

41



42



Part II

Application

43





Chapter 5

Extended Example: Graph
Reductionλ

Haskell is a purely functional programming language, and as we discussed
briefly in the introduction, one feature of functional languages is referential
transparency. (That is, the resulting value of a given expression can replace
the same expression anywhere in the code.) This feature lets us optimise
our code through what is known as graph reduction. In this chapter we
will, after an introduction to graph reduction, implement an interpreter for
lambda calculus with graph reduction, using monads. All lines of code are
my own, but the idea and concepts are gathered from Simon Peyton Jones’
article on implementing functional languages[24].

5.1 The problem

In a normal β-reduction one reduces applications by substituting a term
with a variable in the applied function’s body. However, there are two
main reduction strategies, innermost and outermost reduction. Outermost
substitutes unreduced arguments, while innermost reduces its arguments
before substitution. For instance, say (f 5) = 3, then the outermost
reduction of (λ x . (∗ x x)) (f 5) is

(λ x . (∗ x x)) (f 5)
β
 (∗ (f 5) (f 5)))
β
 (∗ 3 (f 5))
β
 (∗ 3 3)
β
 9

while the innermost is

(λ x . (∗ x x)) (f 5)
β
 (λ x . (∗ x x)) 3
β
 (∗ 3 3)
β
 9

As we can see, the innermost has, in this case, the fewest reductions, since
it reduces (f 5) before it sends it to a function which uses the expression

45



two different places. This is not always the case, take for instance the term
fst (f 5, f5) where the outermost is

fst (f 5, f 5)
β
 (f 5)
β
 3

The innermost is the longer

fst (f 5, f 5)
β
 fst (f 5, 3)
β
 fst (3, 3)
β
 3

Haskell uses outermost reduction to enable lazy evaluation[24] such
that terms are only reduced when the result is needed (enabling more
expressiveness, like streams etc.). But as we saw with outermost reduction,
the term (f 5) might be calculated several times, although we really only
have to reduce it once due to referential transparency. This is where graph
reduction comes into play. The idea is to substitute pointers to the argument
rather than the argument itself. So

(λ x . (∗ x x)) (f 5)
β
 (∗�(f 5) �(f 5))

where �(f 5) is a pointer to a cell with the expression (f 5) stored. If we need
the result (or value) of �(f 5), we reduce the expression which it points to,
updates the cell with the reduced value, and substitutes in that value. The
next time we need the result of the same expression, we can just retrieve it
from the cell pointed to. A term stored in a cell can also contain pointers,
so a term can be represented by a graph. Now every argument is reduced
at most once while still having outermost reduction. This is called sharing
and the graph that results from this sharing will be called the Shared Term
Graph (STG). The process of reducing such a graph is called graph reduction.

In the next section we will see how we will represent lambda terms,
pointers, and other functionality needed for an implementation of an
interpreter of lambda calculus with graph reduction and sharing.

5.2 Building blocks and representationλ

We start by presenting a convenient way of representing the lambda terms,
namely through the Pair monad defined in the previous chapter. So the
term in the previous section has the following representation

Comp (Cons ”x”
(Comp (Comp (Cons ” ∗ ” Nil)

(Cons ”x” Nil))
(Cons ”x” Nil)))

(Comp (Cons ”f” Nil)
(Cons ”5” Nil))

46



As we saw above, we must have a way of representing pointers. However,
there are no pointers in Haskell, so we will use a Map from Pairs to Terms
to represent the edges of the STG. For this, we define the following type,

import qualified Data.Map as Map

type MyMap α = Map.Map (Pair α) (Term α)

where

data Term α = Red (Pair α) | UnRed (Pair α)

Our pointers are going from pairs to terms, which either consists of reduced
or unreduced pairs. The Map data structure demands that its keys are
orderable, that is, implementing the Ord type class. In the code in the
appendix, on page 119, there is a proposal for ordering pairs, demanding
that the values inside the pair are orderable. We could also rather just
assume Show α and use ordering on strings, but this would lead to a lot
of unnecessary comparison of characters, since the constructors would be a
part of the strings.

The map is going to keep track of all the pointers in the graph, so most
of the interpreter’s functions will need access to it. We will therefore use the
State monad with the map as the state value. We are going to implement
an interpreter, and as we know, logging of the interpretation is quite useful.
For such logging, we are going to use the Writer monad, which is a monad
for sharing values that are relevant for later computations. This monad is a
special case of the State monad, with transformer type

newtype WriterT µ m α = WriterT { runWriterT :: m (α, µ) }

where the monadic instance for the transformer is defined as

instance (Monoid µ, Monad m) ⇒ Monad (WriterT µ m) where
return a = WriterT $ return (a, mempty)
m �= k = WriterT $ do

(a, w) ← runWriter m

(b, w′)← runWriter (k a)
return $ (b, w ‘mappend‘ w′)

All it does is update and pass the w-value alongside the computations. Notice
that while the State monad is a function over states, the Writer monad is
not. Here we always start a computation with mempty.

The WriterT monad implements the MonadWriter class, which defines
the function

tell :: MonadWriter µ m ⇒ m ()

WriterT implements this with

tell w = WriterT $ return ((), w)

47



The monad we are going to work with is therefore the following,

type STG α = WriterT String (State (MyMap α))

such that logging is taken care of by the Writer monad. For inserting a
pointer to a pair with key k and value a, we define

insert :: Ord α ⇒ Pair α → Term α → STG α ()
insert k a =lift $ modify (Map.insert k a)

We will also use the following lifted Map functions, and their implementation
can be seen in the appendix on page 123.

member :: Ord α ⇒ Pair α → STG Bool

retrieve :: Ord α ⇒ Pair α → STG α (Term α)
delete :: Ord α ⇒ Pair α → STG α ()

Here member checks if the argument is a member of the Map, retrieve

extracts a value, and delete deletes a value from the Map. We now have
the building blocks needed for the implementation of our sharing lambda
calculus.

5.3 Implementation of a small interpreterλ

We implemented a small interpreter with pairs representing lambda terms
in the previous chapter. Now we will add much more functionality, so we are
not going to use that implementation here, but rather define a new, similar,
but more complex, interpreter.

We will implement the interpreter top down with three main functions
controlling the reduction process. One function will control the reduction
on the top level in the same way reduce did in our simple implementation
in previous chapter. So this function is ensuring that the resulting term is
on normal form. Let’s call the this function reduceSTG.

A second function will do a single, topmost β-reduction, and will call
itself recursively in case of reductions of sub-terms are necessary to perform
a single topmost reduction. This is necessary whenever we have a term on the
form ((f e) e′), where we have to reduce (f e) to see which variable e′ should
be substituted for. In the above expression, the reduction of applying (f e)
to e′ is topmost, so (f e) should be reduced first. This function is named
reduceTop.

The last main function, evaluator, is handling the pointers in the map,
and reduces the terms when necessary using reduceSTG.

Let’s start by defining the first of these functions.

reduceSTG :: (Ord α, Show α) ⇒ Pair α → STG α (Pair α)
reduceSTG p = do

48



b ← member p

p′ ← if b then evaluator p else untilFix reduceTop p

case p′ of
Nil → return Nil

Cons a ps → do
ps′ ← reduceSTG ps

return $ Cons a ps′

Comp p1 p2 → do
p′1 ← reduceSTG p1

p′2 ← reduceSTG p2

return $ Comp p′1 p
′
2

To reduce a term, we first check whether the term is shared earlier, and if
so we apply evaluator to p to obtain the shared term. The term returned
from evaluator should already be reduced. We will also log when reducing
and using reduced terms. Below is the definition of this function.

evaluator :: (Ord α, Show α) ⇒ Pair α → STG α (Pair α)
evaluator p = do
trm ← retrieve p

case trm of
Red p′ → do

tell $ ”Used reduced value < ”
++ (show p′) ++ ” > \ n”

return p′

UnRed p′ → do
delete p

p′′ ← reduceSTG p′

insert p (Red p′′)
tell $ ”Reduced < ” ++ (show p′)

++ ” > to < ” ++ (show p′′)
++ ” > .\ n”

return p′′

So evaluator just retrieves the term from the map, returns it if it already is
reduced, or reduces it if not. Note that if p is unreduced, we have to delete
p from the map before reducing it to prevent going in an infinite loop.

If it’s not shared when given to reduceSTG, we need to iterate reduceTop
over p, such that it is fully reduced on top level. This is done by finding the
fix point of reduceTop over p, which the following function handles.

untilFix :: (Monad m, Ord α) ⇒ (α → m α) → α → m α
untilFix f a = fixer a (f a)

where fixer b mb = do
b′ ← mb

if b == b′ then
return b

else
fixer b′ (f b′)

Finally, we have the function doing the actual reduction.

49



reduceTop :: (Ord α, Show α) ⇒ Pair α → STG α (Pair α)
reduceTop ps = case ps of
Comp (Cons a p) p′ → if p == Nil then

return ps

else
do
share p′

return $ p �= subs a p′

Comp (Comp p1 p2) p→ do
p′ ← reduceTop (Comp p1 p2)
return $ Comp p′ p

→ return ps

Notice that we don’t reduce terms on the form Comp (Cons f Nil) p, since
they correspond to (f p) where f is atomic. Also observe the laziness of our
reductions, we only reduce a term if it is strictly necessary. So we never
reduce an argument, and only reduce an applied function such that we can
see which variable the function is abstracted over. However, reduceSTG does
make sure that the term is on normal form on termination by reducing the
sub-terms when we cannot reduce the top level of the term any further.

We still haven’t defined share, which just stores the value in the map,
if not already there. We log the values entering the map for convenience.

share :: (Ord α, Show α) ⇒ Pair α → STG α ()
share p = do

b ← member p

if b then
tell $ ”Used shared value < ” ++ (show p) ++ ” > .\ n”

else
do
insert p (UnRed p)
tell $ ”Shared < ” ++ (show p) ++ ” > .\ n”

Now we have everything we need to reduce a lambda term to normal form
using shared term graphs. Our result is in the STG α monad, so to unwrap
the reduced term outside the monad, we could define

unwrapSTG :: (Ord α, Show α) ⇒ STG α (Pair α) → (Pair α, String)
unwrapSTG stg = let

wtr = runWriterT stg

((p, s), ) = runState wtr Map.empty
in
(p, s)

Furthermore, we could define

reduce :: (Ord α, Show α) ⇒ Pair α → (Pair α, String)
reduce = unwrapSTG . reduceSTG

such that a user never have to know of, or use, the STG monad
at all. Let’s test our implementation and apply it to the term

50



((λ f → (f (f x))) ((λ g → g) h)), which should reduce to (h (h x)). So if
we set

p = Comp (Cons ′f′

(Comp (Cons ′f′ Nil)
(Comp (Cons ′f′ Nil)

(Cons ′x′ Nil))))
(Comp (Cons ′g′ (Cons ′g′ Nil))

(Cons ′h′ Nil))

(p′, s) = reduce p

then

p′ = Comp (Cons ′h′ Nil)
(Comp (Cons ′h′ Nil)

(Cons ′x′ Nil)))

s = ”Shared < Comp (Cons ′g′ (Cons ′g′ Nil)) (Cons ′h′ Nil) > .
Shared < Cons ′h′ Nil > .
Reduced < Comp (Cons ′g′ (Cons ′g′ Nil)) (Cons ′h′ Nil) >

to < Cons ′h′ Nil > .
Used reduced value < Cons ′h′ Nil > .
Used shared value < Cons ′h′ Nil > .
Used reduced value < Cons ′h′ Nil > .”

Notice that even though ((λ g → g) h) is used twice in the expression, it is
only reduced once, thanks to our sharing.

In this chapter we saw usage of the Writer and State monad in
conjunction, and the Pair monad on its own. In the next chapter we will
introduce more monads, and combine them in a more complex and realistic
manner.

51



52



Chapter 6

Extended Example:
Cryptographic Algorithmsλ

In this chapter we will show how monads can be combined to create
an environment for writing cryptographic algorithms. We will start by
combining the needed functionality associated with such programming.
Functions and types will be introduced one at the time and explained.
For the entire code, see the appendix starting on page 125. The
ideas and algorithms concerning cryptography are gathered from Stinson’s
“Cryptography Theory and Practice”[27], but the implementations are my
own.

After the base environment is defined, we will extend it with more
functionality. The point of this is to show how easy one can extend monadic
code.

6.1 Combining the needed functionalityλ

Perhaps the most crucial functionality needed in the implementation of
cryptographic algorithms are access to random numbers. Cryptographic
algorithms mix cryptographic keys with plain text in a reversible way, to
hide its meaning. The cryptographic keys are mostly randomly generated
numbers, sometimes with specific properties.

In Haskell there is a module called System.Random that enables
us to retrieve random values. In this module there is a function
getStdGen :: IO StdGen which returns a random number generator in the
IO monad. Why is it in the IO monad, one might ask. When generating
random numbers, one often use the previously generated value and runs
it through a complicated algorithm, similar to a hash function. In order
to start generating numbers however, we need a pseudo random number to
start with. This number is gathered from outside the program, such that the
program doesn’t use the same values for every run. Since it communicates
with the environment outside the program, the result should be in the IO

monad, that is, it is dependent on the state of the World.

We can start using a generator retrieved from a call to getStdGen

to generate random numbers by calling next :: StdGen → (Int, StdGen).

53



Now we have a way of getting random values, but how should we enable
access to the generator from functions needing it? We could define all
functions to take an extra argument, namely the generator, and then
explicitly pass it along with every function call. This is a solution, albeit
cumbersome and untidy.

We will not settle for cumbersome and untidy, but instead seek
a more elegant solution. There is in fact a predefined monad that
perfectly suits our purpose, namely the Random monad from the module
Control.Monad.Random. The base monad has type Rand γ α, where γ
is the random generator. This monad passes the generator along,
much in the same way the state value was passed along in the State

monad. Inside the monad we have access to, among others, the function
getRandom :: (Random α, MonadRandom m) ⇒ m α, since Rand implements
MonadRandom. We can execute a computation in the Random monad with
either of

evalRand :: RandomGen γ ⇒ Rand γ α → γ → α

or

runRand :: RandomGen γ ⇒ Rand γ α → γ → (α, γ)

depending on whether we want to keep the generator or not.

We will define a type for our encryption which we will extend as we
define more and more functionality. For now, we have

type Encrypted α = Rand StdGen α

Example 6.1.1. A simple implementation of One Time Pad encryption:

enc :: Int → Encrypted Int

enc p = do
k′ ← getRandom

let k = mod k′ 2
return $ xor p k

encryptAll :: [Int] → [Int] → Encrypted [Int]
encryptAll [ ] cs = return cs

encryptAll (p : ps) cs = do
c ← enc p

encryptAll ps (c : cs)

oneTimePad :: [Int] → IO [Int]
oneTimePad ps = do

let randcs = encryptAll ps [ ]
evalRand randcs getStdGen

54



Encryption isn’t very interesting if we cannot reverse what we have done.
Using only the Random monad we can encrypt, but since we don’t keep the
keys, we cannot decrypt the cipher text. One solution could be to make
encryptAll take another list as argument to keep the keys. However, again
there is a monad that suits our needs, the Writer monad seen in the previous
chapter. We could now extend the monad we work in, as

type Encrypted κ α = RandT StdGen (Writer [κ]) α

where κ is the type of our keys. To share our keys in the above example,
all we have to do is insert (lift $ tell [k]) in enc, a call to runWriter in
oneTimePad, and use evalRandT instead of evalRand. The rest of the code
can go untouched.

Decryption is in many cases equivalent to encryption, for instance with
the one time pad. There, decryption is done by xor’ing the keys with the
cipher text. How would we do this in the example above? Obviously we
cannot use the enc function. To be able to use the same logic for both
encryption and decryption, we will move the key management outside the
Encryption monad. We will then introduce a new monad, which will supply
the computations with keys fed from the outside of the monad. This new
monad, called conveniently Supply, keeps a (possibly infinite) list of values.
We will use the transformer of this monad, and its definition is

newtype SupplyT κ m α = SupplyT (StateT [κ] m α)

As we can see, SupplyT is really just a new name for StateT, but with some
new functionality. The supplied values are given to the computation when
the computation is run through

evalSupplyT :: Monad m ⇒ SupplyT κ m α → [κ] → m α

SupplyT implements the MonadSupply class, which contains the following
useful function

supplies :: MonadSupply σ m ⇒ Int → m [σ]

such that supplies n returns a list of elements from the stream with length
n. Substituting RandT with this monad, our new monad now looks like

type Encrypted κ α = SupplyT κ (Writer [κ]) α

All we now need is a list of random values to feed our computations. This
can be done with the following function.

generateSupply :: (Random κ, RandomGen γ) ⇒ Rand γ [κ]
generateSupply = liftM2 (:) getRandom generateSupply

All this code does is generate an infinite stream of random numbers, inside
the Rand monad. If we would like an infinite stream of random bits as a list,
this could be achieved by

55



bitSupply :: IO [Int]
bitSupply = do

gen ← getStdGen

let s′ = generateSupply

s = evalRand s′ gen
return $ map (λ x → mod x 2) s

Normally in cryptography one does not generate all the key material
randomly, since the keys must be transmitted in some way to the receiver of
the cipher text. Usually one generates randomly one key of a fixed number
of bits and then use that key to generate new keys[27]. This makes the
Supply monad handy, since we can generate one key, and make a supply
with derived keys.

Now we have everything we need to implement symmetric cryptographic
algorithms.

Example 6.1.2. Let’s see how the One Time Pad is implemented using our
new monad and functions. Encryption and decryption can both be done by
the function

enc :: Int → Encrypted Int Int

enc p = do
(k : ) ← supplies 1
lift $ tell [k]
return $ xor p k

oneTimePad :: [Int] → [Int] → ([Int], [Int])
oneTimePad ps ks = let

sup = encryptAll ps

wrt = runSupplyT sup ks
in
runWriter wrtComp

encryptAll :: [Int] → [Int] → Encrypted Int Int is equivalent, but
with an updated type signature. In the code below, we first generate a supply
of random bits randBits, encrypt a list of bits bs, and then decrypts them
again.

encDec :: [Int] → IO ()
encDec bs = do

randBits ← bitSupply

let (cs, ks) = oneTimePad ps randBits

print cs

let (ps, ) = oneTimePad cs ks

print ps

6.2 Making a frameworkλ

In this section we will make a general framework for cryptographic
algorithms, such that a user only have to implement the key functionality

56



of an algorithm: How keys are mixed with the plain text to form the cipher
text. For instance, the only thing a user should need to implement in the
examples above, is the enc function. So we need to define general versions
of the other functions. Let’s start with the encryptAll function, with type

encryptAll :: (α → Encrypted κ α) → [α] → [α] → Encrypted κ [α]

where the first argument is the enc function. This could be implemented as

encryptAll enc [ ] cs = return cs

encryptAll enc (p : ps) cs = do
c ← enc p

encryptAll enc ps (c : cs)

What we are doing here is actually applying a function uniformly over a list,
so we could instead map enc over ps. But (map enc ps) :: [Encrypted κ α],
and we want something of type Encrypted κ [α]. The trick is to use the
function

sequence :: Monad m ⇒ [m α] → m [α]

from the List monad, which we discussed earlier. We then get the neat
implementation below.

encryptAll :: (α → Encrypted κ α) → [α] → Encrypted κ [α]
encryptAll enc ps = sequence $ map enc ps

Now enc is mapped over the elements of ps resulting in a list of
computations. When sequence is applied, it creates one big computation
returning a list of elements. These elements are the result of each
computation in the first list. It is important to understand that after
sequence is applied, they are all part of the same computation. That means
that they update the same writer variable and use the same supply.

All we need now is a method for gathering the result of the resulting
computation.

evalEncrypted :: Encrypted κ [α] → [κ] → ([α], [κ])
evalEncrypted encr ks = let

res = evalSupplyT encr ks

in
runWriter res

From these function we can define a general encryption method.

encrypt :: (α → Encrypted κ α) → [α] → [κ] → ([α], [κ])
encrypt enc ps ks = evalEncrypted (encryptAll enc ps) ks

In the example in the section before, to share one key k we had to write
lift $ tell [k]. To simplify this we wrap such code in small functions.

57



shareKey :: κ → Encrypted κ ()
shareKey k = lift $ tell [k]

shareKeys :: [κ] → Encrypted κ ()
shareKeys ks = lift $ tell ks

We will finish this section with a couple of examples of our framework.
In the next section we will see how easily one can extend this monadic code.

Example 6.2.1. The implementation of One Time Pad is simply

enc :: Int → Encrypted Int Int

enc p = do
(k : ) ← supplies 1
shareKey k

return $ xor p k

oneTimePad :: [Int] → [Int] → ([Int], [Int])
oneTimePad = encrypt enc

Usage is as before, for instance as used in encDec.

Example 6.2.2. Let’s look at a more realistic example in terms of
complexity. A popular family of cryptographic algorithms are the SPNs
(Substitution Permutation Networks), which is a type of block cipher. Here
encryption is done by a series of rounds defined by a round function.
One round in such an encryption scheme consists of mixing in keys, a
substitution, and a permutation. Typically, the number of rounds are between
12 to 16, depending on the algorithm and desired security. In the last round
one drops the permutation. This is done such that one can use the same
logic to decrypt the cipher text, just reverse the order of the applications of
the keys. Chapter 3 in [27] handles SPNs in detail.

Since SPNs are block ciphers we will work on lists of bits, so
enc :: [Int] → Encrypted Int [Int]. In our example we will assume
implementations of the permutations, perm :: [Int] → [Int], and the
substitutions, subs :: [Int] → [Int]. We will also assume that key mixing
is done by xor. We can then implement the round function as

rndFunc :: [Int] → Int → Encrypted Int [Int]
rndFunc p n = do

k ← supplies (length p)
shareKeys k

let c′ = zipWith xor p k

c = subs c′
if n > 1 then
rndFunc (perm c) (n− 1)

else
return c

enc :: [Int] → Encrypted Int [Int]
enc p = round p 16

58



if we want 16 rounds. We can now both decrypt and encrypt using enc, but
we need to reverse the keys received from encryption before using them to
decrypt.

spn :: [Int] → [Int] → ([Int], [Int])
spn = encrypt enc

6.3 Introducing stateλ

In many cases in an algorithm one is interested in the previous encrypted
text. For instance in SPNs CBC mode (Cipher Block Chaining mode) where
one xors the previously encrypted block with the current plain text before
it is encrypted. So if ci is the encrypted pi, then ci+1 = enc (xor pi+1 ci).
The first plain text, p0, is xored with a default value, often called IV.
However, currently we don’t have access to ci when applying enc to pi+1.
In this section we will extend our framework to enable such encryption. For
this we will use the State monad to store previously encrypted blocks. Our
new and extended monad now has the type

type Encrypted κ α = StateT [κ] (SupplyT κ (Writer [κ])) α

All we have to change in the code of the framework is adding another lift
in the shareKey and shareKeys functions, and inserting one more line in
the let-block in evalEncrypted, as such

evalEncrypted :: Encrypted κ [α] → [κ] → ([α], [κ])
evalEncrypted encr ks = let

res′ = evalStateT encr [IV]
res = evalSupplyT res′ ks

in
runWriter res

The rest can go unchanged, including the implementations of One Time Pad
and the SPN.

The purpose of the state was to store values needed for later encryption.
For manipulating this state, we will define some helpful functions.

push :: α → Encrypted κ ()
push a = modify (a :)

peek :: Encrypted κ κ
peek = do

s ← get

return $ head s

pop :: Encrypted κ κ
pop = do

k ← peek

modify tail

return k

59



We can now implement an SPN with CBC mode.

enc :: [Int] → Encrypted Int [Int]
enc p = do

c′ ← pop

c ← rndFunc (xor p c′) 14
push c

return c

where rndFunc is as before.
This is how easily monadic code can be extended with new features:

Extend the type and do some small changes in the base code. Amazingly, our
code is still backwards compatible with already implemented applications,
like oneTimePad and spn. This is a feature that any programmer would
appreciate, and makes monadic code rather easy to maintain and extend.

60



Chapter 7

Building Blocks for Query
Languages†

In this chapter we will investigate how monads and monad transformers
can be used to reason about and construct queries for relational databases.
We will generalise the work of Grust’s query language with monad
comprehensions based on a catamorphic language. We will base our
work on his article “Monad Comprehension: A Versatile Representation
for Queries”[12]. Furthermore will we combine this result with the work
of Hinze’s Prological backtracking monad from “Prological Features in a
Functional Setting: Axioms and Implementations”[13].

7.1 Catamorphisms

In this section we will investigate the concept of a catamorphism, which will
be used in the next sections as a basis for a monadic, comprehension based
query language. Catamorphisms are homomorphisms over initial algebras,
that is, a property preserving translation from one inductively generated
algebra to another. For instance, the catamorphism from the initial algebra
for lists, written ([ ], (:)), to the initial algebra of XOR, (false, (⊕)), is the
unique homomorphism h, such that

h [ ] = false

h (x : xs) = ⊕ x (h xs)

In Haskell there is a special function, foldr1, for generating homomorphisms
from lists to other initial algebras,

foldr :: (α → β → β) → β → [α] → β
foldr ⊗ z [ ] = z

foldr ⊗ z (x : xs) = ⊗ x (foldr ⊗ z xs)

So for any (⊗) :: α → β → β and z :: β having the same properties as (:)
and [ ] respectively, foldr (⊗) z is a homomorphism. There is, however, also
a generalisation of this function in the libraries, Data.Foldable, with type

1The ’r’ at the states which way the fold is executed, from left to right. There is also
a foldl variant.

61



foldr :: Foldable t ⇒ (α → β → β) → β → t α → β

which generalises application to all foldable structures that implement the
type class Data.Foldable. This is the function we will use to generate
catamorphisms. Catamorphisms are highly expressive and can express
several key features of functional programming. A small list of such are
given below.

maximum :: Foldable t ⇒ t Int → Int

maximum = foldr max 0

or :: Foldable t ⇒ t Bool → Bool

or = foldr (||) false

(++) :: [α] → [α] → [α]
(++) a b = foldr (:) a b

sum :: Foldable t ⇒ t Int → Int

sum = foldr (+) 0

toList :: Foldable t ⇒ t α → [α]
toList = foldr (:) [ ]

We can define general data structure mappings with

gmap :: Foldable t ⇒
γ → (β → γ → γ) → (α → β) → t α → γ

gmap z c f = foldr (λ x xs → c (f x) xs) z

We can also use foldr to define a fix point generator with

fix :: (α → α) → α
fix f = foldr (λ → f) undefined (repeat undefined)

showing how foldr can express general iteration. Catamorphisms are in
fact expressive enough to construct almost all queries in common query
languages for databases[12].

One should note that the foldr function is not capable of expressing
all catamorphisms, and is therefore somewhat weaker in expressiveness. For
example, catamorphisms can compute the height of a tree, while foldr

cannot[32]. This is due to the fact that foldr only iterates a structure from
left to right (foldl from right to left), while there is no such restriction in
the definition of a catamorphism. For our purpose however, the power of
foldr will do, and a generalisation of our work here to all catamorphisms
could be a topic for future work.

Now we will look at some nice features of catamorphisms, making them
well fit as a foundation for query languages. The first property is an
optimisation called deforestation[11]. We will in the following theorem
let (cata z c) be a catamorphism where the resulting data structure has

62



constructor c and zero element z. For instance the general mapping
gmap z c f has its constructors factored out, so if we rather fix one function
f, and write

mapf z c = gmap z c f

we can easily alter the resulting data structure while preserving the element-
wise mapping f. With this in mind, we are ready to present the following
neat optimisation.

Theorem 7.1.1. For any catamorphism (foldr (⊗) n) and any catamor-
phism (cata z c) we have

(foldr (⊗) n) . (cata z c) = cata n⊗

Proof. By induction on the structure of the argument. Let the argument
structure have zero element z′ and constructor c′. For the base case we have

(foldr ⊗ n) . (cata z c) $ z′ = foldr ⊗ n z

= n

= cata n ⊗ z′

The induction step is easily shown with

(foldr ⊗ n) . (cata z c) $ c′ x xs = foldr ⊗ n $ c x′ (cata z c) xs
=⊗ x′ ((foldr ⊗ n) . (cata z c) $ xs)
=⊗ x′ (cata n ⊗ xs)
=cata n ⊗ (c′ x xs)

where x′ is the result of (cata z c)’s effect on x.

What this theorem really express is that we can omit intermediary data
structures. This is indeed a neat optimisation, since the left-hand side of the
equation in the theorem iterates the data structure twice, while the right-
hand only does this once. Let’s look at an example from Gill, Launchbury,
and Jones’ article[11] of such an optimisation.

Example 7.1.2. Assume we have the two catamorphisms

and :: Foldable t ⇒ t Bool → Bool

and = foldr (&&) true

mapPred :: (α → Bool) → [α] → [Bool]
mapPred p = map p

We can now make finite universal quantification over lists with the function

forall :: (α → Bool) → [α] → Bool

forall p = and . (mapPred p)

63



determining if all elements of the argument list satisfy p. However, if we
rather factor out and abstract over the constructors, that is

mapPred :: Foldable t ⇒
(α → Bool) → β → (Bool → β → β) → t α → β

mapPred p z c = gmap z c p

we can now make finite universal quantification over a general data structure
with zero z and constructor c, with the catamorphism

forall :: Foldable t ⇒ (α → Bool) → t α → Bool

forall p = and . (mapPred p z c)

Furthermore, from the theorem above we know that we can simplify that to

forall p = mapPred p true (&&)

In the end of the next section, we will look at other optimisations. We
have now defined the foundation for our language, but catamorphisms by
themselves are uneasy to work with and does not give an intuitive framework
for writing queries. In the next section, we will introduce an abstraction layer
on top of the catamorphisms, known as monad comprehensions, providing
a syntax closer to modern query languages.

7.2 Queries as monad comprehensions†

We have seen how do-notation makes monadic code easier to write and read.
For the List monad, there is however yet another layer of syntactic sugar.
This new notation is used for writing list comprehensions, a way of defining
lists based on other lists, predicates, and functions, with a set-like structure.
The syntax can be written in BNF as

mc := [e | qs] | ma
qs := q | qs, qs
q := v ← mc | boolExp

where e is any lambda expression (including new comprehensions) with
possible free variables bound in qs, ma is any list, and boolExp is a boolean
expression. So [x ∗ x | x ← [1..5], odd x] results in the list [1, 9, 25]. This
syntax is syntactically quite similar to relational calculus, but is in fact more
expressive[12]. Such syntax is easily translated to do-notation. Assume T is
the translation morphism from comprehension syntax to do-notation, then

T [e | q0, q1, ..., qn] = do { Tq q0; Tq q1; ...; Tq qn; return (T e)}
T exp = exp

Tq (v ← mc) = v ← (T mc)
Tq boolExp = guard boolExp

for any expression exp that is not a comprehension. If we apply this function
to the example above, we get

64



T [x ∗ x | x ← [1..5], odd x] = do
x ← [1..5]
guard (odd x)
return $ x ∗ x

We could also translate the syntax directly to regular monadic functions as

T [e | q0, q1, ..., qn] = Tq q0 (Tq q1 (... Tq qn (return T(e)) ...))
T exp = exp

Tq boolExp k = guard boolExp � k

Tq (v ← mc) k = T mc �= λ v → k

The comprehension syntax is special for lists in Haskell. The only
dependency is has is through the use of guard which depends on MonadPlus,
hence it could be defined for any monad implementing this. We will
therefore abstract over all MonadPlus instances, and write [e | qs] :: (m α)
for a comprehension in monad m when needed2.

Furthermore, we will also allow nested comprehensions of different
monads, such as [e | v ← [e′ | qs] :: (m′ α), p v] :: (m β). To translate this,
we need the catamorphisms defined in the previous section,

foldr :: Foldable t ⇒ (α → β → β) → β → t α → β,

hence we also require our comprehension monads to be Foldable. We can
now define a monad translator function from any foldable monad m′ to a
MonadPlus monad m.

Definition� 7.2.1. A translation from a monad m′ to a monad m is done
with

trans :: (Foldable m′, MonadPlus m) ⇒ m′ α → m α
trans = foldr mplus′ mzero

where mplus′ x xs = mplus (return x) xs

We can then ornament T with the name of the base monad of the
comprehension it translates, as Tm, and add the following line to the above
definition.

Tm [e | q0, q1, ..., qn] :: (m′ α) = (trans $ Tm′ [e | q0, q1, ..., qn]) :: (m α)

We will use these comprehensions as a base language on top of our
catamorphisms for expressing queries. Let’s look at how regular SQL queries
can be expressed in this comprehension language. Regular SQL queries on
the form

select e
from r

where p

2This notation is just to help the reader determine which monad we are working in. In
an implementation this could be handled by the type inference algorithm.

65



can be translated to the comprehension [e | v ← r, p]. A regular SQL semi-
join,

select e
from r , s

where p

can be represented as a comprehension as [e | v1 ← r, v2 ← s, p]. We are
not limited to just SQL as our top level query language, but could also use
other dialects or completely different languages. For instance, Grust shows
how comprehensions can serve as a backend for the path describing language
Xpath[12].

To complete the translation from SQL syntax, or some other language, all
the way to catamorphisms, we need our monadic functions fmap and join to
be expressible as catamorphisms. To achieve this we have to demand that
our monads satisfy some properties. Such monads will be called natural
monads, and the properties are given in the following definition. From now
on we will write the infix function (p) for mplus where it is appropriate.

Definition� 7.2.2. A monad m is called natural if it has Foldable and
MonadPlus instances satisfying

i) fmap f mzero = mzero

ii) join mzero = mzero

iii) fmap f (a p b) = (fmap f a) p (fmap f b)

iv) join (a p b) = (join a) p (join b)

v) ma p mzero = ma

vi) (a p b) p c = a p (b p c)

vii) foldr ⊗ z (return a) = ⊗ a z

viii) foldr ⊗ z (a p b) = foldr ⊗ (foldr ⊗ z b) a

Although these assumptions on our monadic computations seem limiting,
they are in fact rather natural. There are several monads satisfying the
criteria of naturality. For instance, it is quite easy to check that the monads
List, Bag and Set from Grust’s article are natural. In fact, natural monads
are closed under a type of composition.

Theorem� 7.2.3. If t is the monad transformer for some monad m such
that

newtype t n α = T { runT :: n (m α)}

for some constructor T, and n is a natural monad, then t n is natural, with
a Foldable instance given by

foldr :: (α → β → β) → β → t n α → β
foldr f z nma = foldr f z $ (runT nma) �= trans

and a MonadPlus instance equal to n’s.

66



Proof. Since the MonadPlus instance is equal to n’s and n is natural, t n will
satisfy the naturality axioms concerning mplus and mzero. Observe that
we need to add and remove the constructor T where appropriate, such that
mplus a b = T $ mplus (runT a) (runT b), and mzero = T mzero.

What remains is proving the last two axioms, those involving foldr. For
the first, observe that by naturality of n,

foldr f z (return a)
= foldr f z $ runT (T $ return (return a)) �= trans

= foldr f z $ return (return a) �= trans

= foldr f z $ foldr mplus mzero (return a)
= foldr f z $ return a
= f a z

For the last axiom, we have that

foldr f z (a p b)
= foldr f z $ runT (a p b) �= trans

= foldr f z $ (runT a �= trans) p (runT b �= trans)
= foldr f (foldr f z $ runT b �= trans) (runT a �= trans)
= foldr f (foldr f z b) (runT a �= trans)
= foldr f (foldr f z b) a

where we got from the second to the third line by distributivity of join and
fmap, and from the third to the fourth by axiom viii), both by naturality of
n. The last two lines are concluded by definition of foldr for t n.

Notice that all we demand from m in the above theorem is that it should
be foldable, so it doesn’t need to be natural. Hence, any monad transformer
t applied to a natural monad n such that the unwrapped type is equal to
n (m α) is natural. In the next section, we will prove the naturality of yet
another set of monads.

Grust worked explicitly on the constructors of the monads, such as (:)
and [ ] for lists. We will abstract these away and rather use return and
mplus as a way of constructing our computations. This lets us generalise
our work also to monads which lacks such constructors.

Definition� 7.2.4. If a computation is equal to either mzero, return a, or
ma p ma′ for some ma :: m α, ma′ :: m α, we will say that the computation is
on natural form. Furthermore, we will call the restriction of the set of all
computations of a monad down to just computations on natural form for the
natural restriction.

Note that having computations on natural form isn’t necessarily a desired
property, but rather a constraint to make our future results provable. If one
is able to generalise the results in rest of this chapter to computations on
some other form, one should. However, all computations in List, Bag, and
Set are on natural form, and we will mainly work with monads where this
is the case.

Before we can define the monadic functions through catamorphisms, we
need the following lemma.

67



Lemma� 7.2.5. For any natural monad m, any ma :: m α on natural form,
and any mb :: m β, we have

foldr (p) mb ma = (foldr (p) mzero ma) p mb

Proof. We will let z = mzero in the following proof. The proof is by
induction on ma. For both ma = z or ma = return a the equality is trivial.
So assume ma = ma1 p ma2 and that the result holds for ma1 and ma2. Then
we have

foldr (p) mb (ma1 p ma2) = foldr (p) (foldr (p) mb ma2) ma1

= (foldr (p) z ma1) p (foldr (p) mb ma2)
= (foldr (p) z ma1) p ((foldr (p) z ma2) p mb)
= ((foldr (p) z ma1) p (foldr (p) z ma2)) p mb
= (foldr (p) (foldr (p) z ma2) ma1) p mb
= (foldr (p) z (ma1 p ma2)) p mb

We are now able to state the Monad instance from the Foldable and
MonadPlus instances.

Theorem� 7.2.6. For the natural restriction of any natural monad m, we
have

i) join = foldr (p) mzero

ii) fmap = gmap mzero (p′)

where a p′ b = (return a) p b.

Proof. The proof is again by induction on the construction of the monads
computations ma. Given either ma = mzero, ma = return a the result is
trivial for both, so assume the equalities holds for some ma1 and ma2 and
that ma = ma1 p ma2. It should be straight forward to see that

join (ma1 p ma2) = (join ma1) p (join ma2)
= (foldr (p) mzero ma1) p (foldr (p) mzero ma2)
= foldr (p) (foldr (p) mzero ma2) ma1

= foldr (p) mzero (ma1 p ma2)

by the induction hypothesis, the lemma above, and naturality of m,
respectively. The second equality remains. Recall that

gmap z c f = foldr (λ x xs → c (f x) xs) z.

Let’s write

f′ = λ x xs → ((f x) p′ xs)

such that

68



gmap mzero (p′) f = foldr f′ mzero

to save ink. Then

fmap f (a p b) = (fmap f a) p (fmap f b)
= (foldr f′ mzero a) p (foldr f′ mzero b)
= foldr f′ (foldr f′ mzero b) a
= foldr f′ mzero (a p b)
= gmap z (p′) f

again by the induction hypothesis, the lemma above, and naturality of m,
respectively.

One can easily see from the distributivity and identity properties of join
and fmap f that the result of applying either of them to a computation in
natural form results in a computation in natural form.

We now see that our comprehensions can be translated to a language
only constructed by catamorphisms, and is therefore subject to the nice
features we saw in the previous section.

This completes the translation, and we now have the desired hierarchy:
SQL syntax or some other suitable language on the top as an interface
for a user; Monad comprehensions in the middle, similar to relational
calculus; Catamorphisms at the bottom, enabling mathematical reasoning
and optimisation of queries.

We will show one more of the optimisations from Grust’s article, and
show that it holds for all natural monads. The optimisation is concerned
with a type conversion function used in some SQL dialects, known as
element. This function unwraps a singleton of some collection, and throws
an error either if there are zero or more than one element. Whenever
we apply this function to a query, there is a chance that we do a lot of
unnecessary computations. Take the following scenario,

element ( select f x y
from xs as x , ys as y )

If xs and ys contains more than one element each, this query is calculating
f x y more than once, which is a waste since an error should be called right
away. So an optimiser should rewrite the above query to

f ( element xs ) ( element ys )

Now an error would be called immediately if either xs or ys contains more
than one element. We will see that this translation is valid in our functional
language. Grust uses the following definition of element,

element = snd . (foldr ⊗ z)
where z = (true, ⊥)

x ⊗ (c, e) = if c then
(false, x)

else
⊥

where evaluating ⊥ raises an exception.

69



Lemma� 7.2.7. Assume m is a natural monad where mplus preserves
the quantity of elements. Then element is a morphism from the natural
restriction of m, to the Identity monad, such that

element . return = id

join . element = element . element

and in addition, if for any xs, size xs ≤ size (fmap f xs), then

element . (fmap f) = f . element

where size = foldr (λ x → (+1)) 0.

Proof. It is quite easy to see that element . return = id by axiom vii) of
naturality, which proves the first result. For the second equality, we get ⊥
for both sides if the argument is either mzero or (a p b) for non-zero a and
b. If the argument is return a, we get

element $ join (return a) = element a

= element $ element (return a)

by the first equality.
In the last law we again get an error if the argument to either of the

sides is empty or a monadic sum, since fmap f never decreases the number
of elements in its argument, and mplus preserves the quantity of elements.
If the argument is on the form return a, we have

element $ fmap f (return a) = element $ return (f a)
= f a

= f . element $ return a

by the last monad law for the join-definition and element . return = id

respectively.

Notice that the requirement on f is necessary in the lemma, and that
this implies that element isn’t a proper monad morphism. This can be seen
by the counter example below.

f = λ x → if x == 1 then return x else [ ]

element ([1, 2] �= f) = 1

element [1, 2] �= element . f = ⊥

We also need the requirement on mplus, since for monads like Set, where
mplus a a = a, we for instance can get

element $ fmap (λ x → 1) {1, 2, 3} = 1

(λ x → 1) $ element {1, 2, 3} = ⊥

Using the lemma above, we are automatically able to generalise Grust’s
result to all natural monads satisfying the lemma.

70



Theorem 7.2.8. For any natural monad m where mplus preserves quantity,
the example query from above,

e lement ( se lect f x y
from xs as x , ys as y )

is equivalent to

f ( e lement xs ) ( e lement ys ) .

for xs and ys on natural form.

Proof. We have that the first of the two expressions translates to

element [f x y | x ← xs, y ← ys].

Continuing the translation down to monadic code, and using lemma 7.2.7,
we get

element [f x y | x ← xs, y ← ys]
= element (xs �= λ x → ys �= λ y → return $ f x y)
= element . join $ fmap (λ x → ys �= λ y → return $ f x y) xs
= element $ ys �= λ y → return $ f (element xs) y
= element . join $ fmap (λ y → return $ f (element xs) y) ys
= element . element $ fmap (λ y → return $ f (element xs) y) ys
= element . return $ f (element xs) (element ys)
= f (element xs) (element ys)

Observe that we were able to use the lemma in the lines 3 and 6, since
neither of the functions

fmap (λ x → ys �= λ y → return $ f x y)

fmap (λ y → return $ f (element xs) y)

decreases the size of its argument.

This was just one small example of optimising rewritings, several more
can be done. For example, by induction we can show that the above result
holds for functions f′ with any arity, not just for binary functions. There
are several other similar optimisations, and it would be interesting to see
which is satisfied by our natural monads. This could be a topic for future
research.

This concludes our discussion on optimisations. For more the interested
reader can consult Grust’s article.

7.3 Backtracking†

The language we have constructed is well suited for expressing query
languages like SQL. In this section we will see that we can extend our
language, without cost, with backtracking computations similar to that of
Datalog. We will use the work of Hinze[13] and his backtracking monad.

71



The idea is to create a backtracking core for which monads can implement.
Hinze defined this core as

class Monad m ⇒ Backtr m where
fail :: m α
(p) :: m α → m α → m α
once :: m α → m (Maybe α)
sols :: m α → m [α]

Since fail represents the same as mzero and (p) is equivalent to our usage
above, we will rather use the following definition:

class MonadPlus m ⇒ Backtr m where
once :: m α → m (Maybe α)
sols :: m α → m [α]

Here mzero represents a failed computation as usual, (p) represents the actual
backtracking, that is m1 p m2 should be interpreted “try m1 first, if that fails
try m2”. The once-function extracts one result if there is one, while sols

gathers all successful computations’ results in a list. Hinze assumes that
(mzero, (p)) is a proper monoid, and apart from defining a Foldable instance
for his backtracking computations, he demands all other laws of naturality.

With this core we can write facts and rules with resemblance to a Datalog
program. For instance

child :: Backtr m ⇒ String → m String

child ”peter” = (return ”sandra”) p (return ”abe”) p (return ”carl”)
child ”carl” = (return ”olivia”) p (return ”alex”)
child ”alex” = (return ”stuart”) p (return ”sue”)
child = mzero

represents facts, while

grandChild :: Backtr m ⇒ String → m String

grandChild = child } child

introduces a new relation based on a “rule”. For example

grandChild ”carl”
= child } child $ ”carl”
= child ”carl” �= child

= (return ”olivia”) p (return ”alex”) �= child

= (return ”olivia” �= child) p (return ”alex” �= child)
= mzero p (return ”alex” �= child)
= return ”alex” �= child

= (return ”stuart”) p (return ”sue”)

Here we can clearly see the backtracking, where the computation
child ”olivia” failed.

We could go further and define

72



descendant :: Backtr m ⇒ String → m String

descendant = child � (descendant } child)

where (�) is the union of two relations defined as

(�) :: Backtr m ⇒ (α → m β) → (α → m β) → (α → m β)
f � g = λ a → f a p g a

If we read r � q as “r or q” and r } q as “r of a q”, then the above reads as
“a descendant is a child or a descendant of a child”, while “a grandChild is
a child of a child”. This syntax can remind one of the syntax of description
logic, although far from equivalent.

General transitive closure of relations can be defined as

transitiveClosure :: Backtr m ⇒ (α → m α) → α → m α
transitiveClosure r = r � (transitiveClosure r } r)

Hinze discusses the transitive closure in more detail and defines an improved
version of the one above.

The backtracking core gives us some elementary backtracking features
seen in languages such as Prolog and Datalog. We don’t have logical
variables, nor are our rules declarative since our definitions are sequential
and the order of the rules does matter. However, we still have all the positive
features of Haskell combined with backtracking, which for instance results
in higher order relations.

Hinze further defines a backtracking monad transformer adding back-
tracking features to any monad. The definition of this transformer is as
follows.

newtype BacktrT m α = ∀ β . (α → m β → m β) → m β → m β

instance Monad (BacktrT m) where
return a = λ k → k a

m �= f = λ k → m (λ a → f a k)

A computation in BacktrT m is a function taking two arguments. The first
is a function which is applied to every value contained in the computation in
a backtracking manner. The result is a function with type m α → m α. The
argument to this function will be returned if the backtracking computation
fails.

With this in mind, it shouldn’t be too hard to grasp the meaning of
m �= f. Here, the values in m will be bound to a, for which f will be
applied. Then we abstract over the argument function and feed this to the
result of each f a.

Furthermore, we can augment the resulting monads with the backtrack-
ing core implementing the following instances:

instance Monad m ⇒ MonadPlus (BacktrT m) where
mzero = λ k → id

m p n = λ k → (m k) . (n k)

73



instance Monad m ⇒ Backtr (BacktrT m) where
once m = λ k f → m first nothing �= λ x → k x f

sols m = λ k f → m cons nil �= λ x → k x f

where

nothing :: m (Maybe α)
nothing = return Nothing

first :: Monad m ⇒ α → m (Maybe α) → m (Maybe α)
first a = return (Just a)

nil :: m [α]
nil = return [ ]
cons :: Monad m ⇒ α → m [α] → m [α]
cons a mx = do

x ← mx

return (a : x)

Example 7.3.1. Let’s look at the example above, with the definition of the
relation child. We can update its type to child :: String → BacktrT [ ] String,
and for instance write

(child ”carl”) (:) [ ] = ((return ”olivia”) p (return ”alex”)) (:) [ ]
= ((λ k → k ”olivia”) p (λ k → ”alex”)) (:) [ ]
= (λ k → (k ”olivia”) . (k ”alex”)) (:) [ ]
= [”olivia”, ”alex”]

We could also bind a computation to child, as

(child ”carl”) �= child

= λ k → (child ”carl”) (λ a → f a k)
= λ k → ((return ”olivia”) p (return ”alex”)) (λ a → child a k)
= λ k → (child ”olivia” k) . (child ”alex” k)
= λ k → (mzero k) . (((return ”stuart”) p (return ”sue”)) k)
= λ k → id . ((k ”stuart”) . (k ”sue”))
= λ k → (k ”stuart”) . (k ”sue”)

If m is the computation above, then once m = return (Just ”stuart”),
while sols m = return [”stuart”, ”sue”].

Notice how we don’t need to assume that m is a monad in the monadic
instance definition of BacktrT m. That means that BacktrT m is a monad for
any data type m :: ∗ → ∗, not just monads. Also, the only requirement on
m in the definition of the backtracking core, Backtr, is that is is a monad,
so m doesn’t need a Backtr instance.

There are some other neat features of this monad not present in most
other backtracking monads. One notable feature is that both (�=) and
(p) execute in constant time. If we want to retrieve all solutions of the
computation in some data structure, we still need to visit every value.

74



However, fetching n elements, for some fixed integer n, still runs in constant
time.

We are now ready to bridge our catamorphism based query language
with backtracking. It turns out that the framework defined in the previous
sections is expressive enough to include the above-defined backtracking
feature. First of all, note that if we restrict ourselves to only the functions
defined above, all computations are on normal form. This can be proven by
a short induction proof. Furthermore, we have already stated that almost all
the laws of naturality are satisfied, apart from the definition of a Foldable

instance with the desired properties. To define the Foldable instance for
BacktrT m, we need to add a dependency on the argument monad m. It
needs to be escapable, that is, it needs to implement the Run class.

class Monad m ⇒ Run m where
run :: m α → α

Here we require run . return = id. The requirement of implementing Run

is not really a catch if we intend to work with natural monads due to the
following result.

Lemma� 7.3.2. All natural monads are escapeable, and can therefore
implement Run.

Proof. Since all computations in any natural monads can be transformed
into a list through

toList :: Foldable t ⇒ t α → [α]
toList = foldr (:) [ ]

we can let run = head . toList.

Since head is a partial function, run will also be. run will fail if its
argument is mzero. We will shortly see that for our application, this is no
problem. Most other monads, like State or Pair, can also implement Run

easily. For State we can just set run ma = fst $ runState ma s for some
appropriate state value s. Notice that this state value might be different for
each State σ, and State σ is only escapeable if σ is inhabited. For Pair we
could just extract the left-most value, if the pair contains a value. We can
now define the Foldable instance for BacktrT.

Definition� 7.3.3. The Foldable instance for the Backtracking monad is
defined as

instance Run m ⇒ Foldable (BacktrT m) where
foldr f z ma = run $ ma (liftB f) (return z)

liftB :: Monad m ⇒ (α → β → β) → α → m β → m β
liftB f a mb = liftM (f a) mb

75



Folding a function f over a backtracking computation is done by lifting f

and feeding this lifted function into the computation. The lifted function is
then applied to every result of the computation. We now have something of
type m β → m β, which is a function taking as argument the desired output
in case the computation fails. This is then fed the monadically wrapped up
z, such that a failed computation results in return z. The desired result is
now computed, but is inside the monad m, hence we apply the unwrapping
function run.

Notice that if the argument to foldr f z is mzero, run will be applied
to return z and never z, so even though run is partial, foldr is not.

We will prove the correctness of this definition, but first we need a lemma.

Lemma� 7.3.4. For any runnable monad m, any function f :: α → β → β,
any z :: β, and any ma :: BacktrT m α, there exists a b :: β such that

ma (liftB f) (return z) = return b

Proof. Seen easily by induction on ma. For either ma = mzero or
ma = (return a), the result is trivial. Assume ma = a p b. Then

(a p b) (liftB f) (return z) = (λ k → (a k) . (b k)) (liftB f) (return z)
= a (liftB f) (b (liftB f) (return z))
= a (liftB f) (return b′)
= return a′

where the two last equalities follow by the induction hypothesis.

Theorem� 7.3.5. For any runnable monad m, BacktrT m is a natural
monad.

Proof. There are two laws concerning foldr. The first is

foldr f z (return a) = f a z.

We can easily see that

foldr f z (return a) = run $ (λ k → k a) (liftB f) (return z)
= run $ (liftB f) a (return z)
= run $ return (f a z)
= f a z

The second law is

foldr f z (a p b) = foldr f (foldr f z b) a

By the above lemma and the fact that run . return = id, we have

foldr f z (a p b) = run $ (a p b) (liftB f) (return z)
= run $ (λ k → (a k) . (b k)) (liftB f) (return z)
= run $ a (liftB f) (b (liftB f) (return z))
= run $ a (liftB f) (return b′)

76



= foldr f b′ a
= foldr f (run $ return b′) a
= foldr f (run $ b (liftB f) (return z)) a
= foldr f (foldr f z b) a

The only dependency the argument to BacktrT has, is that is should
be a runnable monad. This means that we can construct queries where the
result is in any such monad, also unnatural monads, like State. Let’s end
this section with an example showing an application of our backtracking
query language.

Example 7.3.6. Let’s look at an example of a combination of backtracking
and our monadic query language. We will use Hinze’s implementation of
the n-queens problem[13], and show how we can write this in comprehension
syntax. The n-queens problem is the problem of placing n queens on an
n × n chess board, such that no two queens can attack each other. Notice
that every solution can be written as a list of integers, the index is the column
while the value is the row. For example

8 0Z0Z0ZqZ
7 Z0l0Z0Z0
6 0Z0Z0Z0l
5 ZqZ0Z0Z0
4 0Z0ZqZ0Z
3 l0Z0Z0Z0
2 0Z0Z0l0Z
1 Z0ZqZ0Z0

a b c d e f g h
�

can be written as [3, 5, 7, 1, 4, 2, 8, 6]. Notice further that every solution is a
permutation of this list, and that for every placement we only have to check
whether queens can attack each other on the diagonal. We will represent
diagonals as two lists, one for up diagonals (going up from left to right),
and one for down diagonals, both with numbers from − 7 to 7. A query
solving this problem is given below.

place :: Backtr m ⇒ Int → [Int] → [Int] → [Int] → m [Int]
place i rs d1 d2 = [(q : qs) |(q, rs′) ← select rs,

q− i /∈ d1,
q + i /∈ d2,
qs ← place (i− 1) rs′ (q− i : d1) (q + i : d2)]

where select is defined as

select :: Backtr m ⇒ [α] → m (α, [α])

77



select [ ] = mzero

select (a : x) = return (a, x) p
[(b, a : x′) | (b, x′) ← select x]

So place tries to place out queens, backtracks if it fails in either of the
guards, and returns all possible solutions. The first argument to place is
the number of queens not yet placed on the board; the second is the list of
possible placements; the third and fourth are the currently attacked up and
down diagonals respectively. The select function creates a monadic sum of
selections of elements, where one selection is a tuple (a, xs) where a is the
selected item and xs is the list of the unselected items.

We can now define

queens :: Backtr m ⇒ Int → m [Int]
queens n =place n [1..n] [ ] [ ]

which solves the problem. We could then, for instance, execute the
computation in BacktrT [ ] and retrieve the solutions of the 8th-queens
problem as a list with

solution :: BacktrT [ ] [Int]
solution = queens 8

solutionList :: [[Int]]
solutionList = solution (:) [ ]

We could easily change the backtracking monad used by changing the type of
solution, also to unnatural monads. Say we wanted to put all solutions in
the state value of a computation in the State monad, this can be done with

addToState :: α → State [α] () → State [α] ()
addToState a sa = sa � modify (a :)

solution :: BacktrT (State [[Int]]) [Int]
solution = queens 8

solutionState :: State [[Int]] ()
solutionState = solution addToState (return ())

Another neat feature of our language is that we can use all functions already
defined for any natural monad. Say for instance select was a predefined
function into the List monad, select :: [α] → [(α, [α])]. Then we could
still just use it as it is used above. Our translator function Tm defined in the
previous section would then just inject trans before select rs in the query
above. This would translate select rs to the definition of select we have
defined above.

These features show how easily we can integrate our query language with
other monads and the rest of Haskell.

78



Part III

Deeper Theory

79





Chapter 8

Category Theory

Since the monad originally is a categorical construct, it would seem only
natural to devote a chapter to the category theoretic foundation for monads.
This will also familiarise mathematicians and computer scientists from the
more theoretical disciplines.

8.1 Categories

Category theory originated as the theory of structure preserving transfor-
mations and is now used as a general mathematical language [4]. Its main
construct is the category.

Definition 8.1.1. A category consists of a collection of objects and a
collection of arrows satisfying the following:

i) For every arrow f , there are objects A = dom(f) and B = cod(f) called
the domain and codomain of f respectively, and we write f : A→ B.

ii) For every couple of arrows f : A → B and g : B → C where
cod(f) = dom(g), there exists a composite arrow, written g◦f : A→ C.

iii) Arrow composition is associative, that is, (f ◦ g) ◦ h = f ◦ (g ◦ h) for
any arrows f, g, and h.

iv) For every object A there is an identity arrow 1A : A→ A.

v) For any arrow f : A → B there are identity arrows 1A and 1B such
that f ◦ 1A = 1B ◦ f = f .

Example 8.1.2. One of the perhaps most well known example of a category
is the category of sets, where objects are sets and arrows are functions over
sets. So f : A → B is a function from the set A to the set B, arrow
composition is regular function composition, hence (g ◦ f)(x) = g(f(x)).

Example 8.1.3. We have studied monads in functional programming, so
how does categories come into functional programming? In typed functional
languages, such as Haskell, the type system is a category. The types are the
objects and functions are arrows. To verify this, note the following:

81



i) Every function has an argument type, which is its domain, and a return
type, which is its codomain.

ii) In Haskell we have a composition function

(.) :: (β → γ) → (α → β) → (α → γ)
g . f = λ x → g (f x)

playing the role of ◦. It is trivial to verify that (f . g) . h = f . (g . h),
so it is clearly associative.

iii) We have a polymorphic identity function

id :: ∀ α . α → α
id = λ x → x

which can be made the identity function for any type by explicitly typing
it. We can e.g. write id :: γ → γ for the identity function of the γ
type.

iv) For any function f :: α → β we have f . id = id . f = f.

It is important to note that even though both the notation and my
examples suggest that arrows are functions, they need not be. There are
several examples of arrows which aren’t functions. Take e.g. preorders (sets
with a transitive and reflexive relation). If we let the elements of the set
be objects and let there be an arrow between related elements, we get a
category. Deductions are also arrows, if we let logical sentences be objects.
Then every deduction be an arrow from its assumption to its conclusion.
For these, and several other examples, see Awodey’s book[4].

8.2 Functors and natural transformations

Categories are all well and good, but currently we have no way of relating
different categories, and we can’t do anything with our arrows except for
combining them. For this we need the concept of a functor, structure
preserving morphisms of categories.

Definition 8.2.1. A functor F : C → C′ is a mapping from a category C to
a category C′ such that for any objects A and B, and any arrows f : A→ B
and g : B → C from C,

F (f) : F (A)→ F (B)

F (1A) = 1F (A)

F (g ◦ f) = F (g) ◦ F (f).

Functors can be used as translations between equivalent categories,
embedding a smaller category into a larger one, or even collapsing a large
category into a smaller one. If we create endo-functors, functors from a
category back into itself, we can express morphisms from one arrow to

82



another. We have seen functors as types with kind ∗ → ∗, with functor
mappings defined through the fmap function in the Functor type class.

We will now climb higher on the mountain of abstraction. While functors
represents morphisms of arrows, category theory was originally made for
studying morphisms of functors [19].

Definition 8.2.2. A natural transformation η : F → G from a functor
F : C → C′ to a functor G : C → C′ is a family of arrows defining
ηX : F (X)→ G(X) for each object X in C′, such that

ηB ◦ F (f) = G(f) ◦ ηA

for any arrow f : A → B in C. For any functors T : C′′ → C and K : C′ →
C′′, we write ηT : FT → GT for the family ηT (X) : F (T (X)) → G(T (X)),
and Kη : KF → KG for the family K(ηX) : K(F (X))→ K(G(X)).

We have seen many natural transformations in the previous chapters.
Natural transformations are morphisms from one functor to another, hence
any function f :: F α → G α is a natural transformation, a mapping from
the functor F to the functor G. For example, all monad morphisms and
many of the catamorphisms we saw in the previous chapter are natural
transformations.

This concludes our discussion on general categorical constructs. For
more examples of categories, functors, and natural transformations and a
more thorough discussion, see [4]. We will now turn towards our main goal,
the definition of the monad.

8.3 Categorical monads

The monad is traditionally defined through the use of one endo-functor
and two natural transformations, which is the categorical version to our
definition using join.

Definition 8.3.1. Given a category C, a categorical monad is a triple
〈T, µ, η〉, where T : C → C is an endo-functor, µ : T 2 → T and
η : idC → T are two natural transformations such that µ ◦ Tµ = µ ◦ µT
and µ ◦ Tη = µ ◦ ηT = idC, where idC : C → C is the identity functor on C.
As commuting diagrams, we have

T 3 T 2

T 2 T

Tµ

µT µ

µ

T T 2

T 2 T

ηT

Tη µ

µ

idC

From this one can define the following

83



Definition 8.3.2. A Kleisli triple is given by 〈T, η, ∗〉, where T and η is as
given above, and for a given f : A→ T (B) we have f∗ : T (A)→ T (B), such
that ηA

∗ = idT (A), f
∗◦ηA = f for every f : A→ T (B), and g∗◦f∗ = (g∗◦f)∗

for every f : A→ T (B) and g : B → T (C).

This definition corresponds to our regular definition, where the Kleisli
Star ∗ is equivalent to (�=), only with the order of the arguments switched.
One can prove that there is an isomorphic correspondence between monads
and Kleisli triples, by observing that µA = idT (A)

∗, and for a given
f : A → T (B) we have f∗ = µB ◦ T (f). This is quite similar to the
proof restricted to the two type theoretic definitions we did in Chapter 2.

If we introduce the categorical Kleisli composition (}), that is for
g : A→ T (B) and g : B → T (C),

f } g = (f∗ ◦ g)∗

the laws above are expressed as

i) f } η = f

ii) η } f = f

iii) (f } g)} h = f } (g } h)

Observe that these laws are the properties of a category. Hence, a monad is
a category over arrows of the form f : A→ T (B), for any objects A,B, and
Kleisli composition as arrow composition.

Monads are quite important in category theory, specially in the study of
adjunctions. An adjunction is a relationship between certain functors, and
if two functors satisfy such a relationship they are called adjoint functors.
These functors are very important in mathematics, as Awodey puts it:
“Indeed, I will make the admittedly provocative claim that adjointness
is a concept of fundamental logic and mathematical importance that is
not captured elsewhere in mathematics.”[4] In his book, he shows how
adjunctions can represent both universal quantification in logic and image
operations of continuous functions in topology, stating that these two
seemingly unrelated concepts actually are the same thing in category theory.

Monads are interesting in the study of adjunctions, since every
adjunction gives rise to both a monad, and every monad gives rise to an
adjunction. Also, if an endo-functor T is part of a monad, then T is the
composition of two adjoint functors. The proof for these statements as well
as a deep discussion on the relationship between monads and adjunctions
can be seen in Awodey’s book[4].

Before we finish this this chapter, we will look at a particular difference
in the concept of the categorical monad and type theoretic monad. In fact,
what we in functional programming call a monad really corresponds to what
in category theory is called a strong monad [20].

Definition 8.3.3. A strong monad is a monad 〈T, µ, η〉 over a monoidal
category 〈C,⊗, I〉 coupled with a natural transformation tA,B : A ⊗ TB →
T (A⊗B), such that the following diagrams commute

84



I ⊗ TA T (I ⊗A)

TA

tI,A

rTA

TrA

A⊗B

A⊗ TB T (A⊗B)

A⊗ T 2B T (A⊗ TB) T 2(A⊗B)

idA ⊗ ηB ηA⊗B

tA,B

idA ⊗ µB

tA,TB TtA,B

µA⊗B

(A⊗B)⊗ TC T ((A⊗B)⊗ C)

A⊗ (B ⊗ TC) A⊗ T (B ⊗ C) T (A⊗ (B ⊗ C))

tA⊗B,C

αA,B,TC TαA,B,TC

idA ⊗ tB,C tA,B⊗C

where rA : (I⊗A)→ A and αA,B,C : (A⊗B)⊗C → A⊗(B⊗C) are natural
isomorphisms.

A strong monad is just a monad behaving nicely under a Cartesian
product. However, for any functional monad m and Cartesian product over
types (, ), we can define the function

strength :: Monad m ⇒ (α, m β) → m (α, β)
strength (a, mb) = mb �= λ b → return (a, b)

This function satisfies the properties of the natural transformation tA,B :
A⊗ TB → T (A⊗B) required for a strong monad[22]. So we never have to
consider strength of a monad in Haskell, they are all strong monads.

85



86



Chapter 9

Monads and the
Curry-Howard
Correspondence†

In this chapter we will investigate how monads appear through the Curry-
Howard Correspondence. The correspondence states that there is an
isomorphism between the lambda expressions in typed lambda calculus and
the proofs in constructive logic. The type of the arguments corresponds to
the assumptions in the proof; the return value of the expression corresponds
to the conclusion of the proof; the morphism of the arguments to the return
value in the function (or the function body) corresponds to the actual
proof. So a type is inhabited if and only if the corresponding formula is a
theorem. The correspondence maps different type theories to different logics.
For instance, simply typed lambda calculus corresponds to constructive
propositional logic.

We will in this chapter see how simply typed lambda calculus extended
with monads, called Computational Lambda Calculus, is isomorphic to a
subsystem of constructive S4 modal logic, known as CL or Lax logic. Some
familiarity with modal logic is necessary to appreciate this chapter. For
an introduction to modal logic, see for instance Blackburn, Benthem, and
Wolter’s book “Handbook of modal logic”[6].

9.1 New notation

We start by introducing some new notation for the monad, a more
appropriate representation for use in a proof calculus.

Definition 9.1.1. A monad consists of a type T coupled with the two
expressions val(x) and (let x⇐ e in f), such that if x : ϕ then val(x) : Tϕ,
and if f : Tψ with x : ϕ free and e : Tϕ then (let x ⇐ e in f) : Tψ. The

87



expressions satisfies the following three laws:

let x⇐ (val(e)) in f = f [e/x]

let x⇐ e in (val(x)) = e

let y ⇐ (let x⇐ e in f) in g = let x⇐ e in (let y ⇐ f in g),

It is easy to see that val(x) represents (return x), whereas (let x ⇐
e in f) represents e �= λ x → f (or as do notation, do {x ← e; f}), and
the three laws are equivalent to the functional definition.

We will, in definitions and proofs, let

D
Γ ` ϕ

denote the proof, D, which concludes with Γ ` ϕ, so Γ ` ϕ is included in D.
On the other hand,

D
Γ ` ϕ

denotes the proof D extended with Γ ` ϕ, that is, Γ ` ϕ is not a part of D.
Much of the discussion in this chapter in based on the work of Benton,

Bierman, and de Paiva in [5] and Pfenning and Davies in [26].

9.2 There and back again†

We start by defining the calculus, before deriving some fundamental
properties of the system. Computational lambda calculus has the following
rules of derivation

� Γ, e : ϕ ` e : ϕ

� Γ ` ∗ : 1

�
Γ, x : ϕ ` f : ψ

Γ ` λx : ϕ.f : ϕ→ ψ

�
Γ ` f : ϕ→ ψ Γ ` e : ϕ

Γ ` (f e) : ψ

�
Γ ` e : 0

Γ ` ∇ϕ(e) : ϕ

�
Γ ` e : ϕ

Γ ` val(e) : Tϕ

�
Γ ` e : Tϕ Γ, x : ϕ ` f : Tψ

Γ ` (let x⇐ e in f) : Tψ

In addition to the regular axioms of simply typed lambda calculus, we have
the axioms concerning the monadic computations mentioned above. We will
let Λ be the set of lambda terms, VΛ be the set of term variables, T be the
set of types, and V be the set of type variables.

88



Benton, Bierman, and de Paiva proves substitution, subject reduction,
strong normalisation, and confluence properties of the calculus. We will
assume these properties and focus more on the interplay between the
CL-logic and the lambda calculus. They also defined conjunction and
disjunction in their calculus. This is just an easy extension and the interested
reader can look it up in the above mentioned paper.

Example 9.2.1. Let’s see how the list monad would appear in our system.
Assume Tϕ is the type of a list of elements of type ϕ, and that we have a
constant nil : Tϕ and a constructor cons : ϕ → Tϕ → Tϕ. We will also
need a way of joining two lists to one, append : Tϕ→ Tϕ→ Tϕ. With

append(nil, e) = e

append(cons(e, e′), e′′) = cons(e, append(e′, e′′))

we can introduce the following monadic β-reductions

val(e) = cons(e, nil)

let x⇐ nil in f = nil

let x⇐ cons(e, e′) in f = append(f [e/x], let x⇐ e′ in f)

It is easy to verify that this definition of the List monad is equivalent to
Haskell’s.

To study the link between our type theory and logic, we will go through
the Curry-Howard Correspondence and define a forgetful map F from
expressions in the type theory, to statements in propositional CL-logic.

Definition 9.2.2. F is a forgetful map, such that for any term e and any
type ϕ we have that F(e : ϕ) = P(ϕ) where P is defined recursively as

P(α) = α, α ∈ V
P(1) = >
P(0) = ⊥

P(ϕ→ ψ) = P(ϕ) ⊃ P(ψ)

P(Tϕ) = #P(ϕ)

Clearly, P is a bijection. The map is extended to sets of expressions, sequents
and proofs in the natural way. We will also use P−1 for the obvious inverse
of P. Furthermore, we write ϕ′ for the translated propositional statement
derived from the type ϕ by F and P, as a more compact notation when
needed. We will extend this notation to sets of statements, as well as worlds.

We will let PT = {P(ϕ)|ϕ ∈ T }.

The derivation rules resulting from applying the map to the rules from
computational lambda calculus are the normal natural deduction rules for
intiutionistic propositional logic, but with the following two new rules

�
Γ `CL ϕ

Γ `CL #ϕ

89



�
Γ `CL #ϕ Γ, ϕ `CL #ψ

Γ `CL #ψ

These obviously correspond to the monadic rules. Hence the monadic type
T in type theory corresponds to the modal operator #. We will later discuss
how this operator can be interpreted in a more classical modal logic. For
now, the reader can think of it as a type of possibility.

Now we have a way of going from computational lambda calculus to CL-
logic. Getting back is a bit more tricky. Since we forgot something on our
way to CL-logic, we now need to reconstruct what was forgotten. This can
be done by the following construction map:

Definition� 9.2.3. C : D × E → Λ is a construction map which con-
structs a lambda term from the derivation of a statement in CL-logic. Here
D is the set of CL-derivations, E is the set of environments on the form
{(x1 : ϕ1), (x2 : ϕ2), . . . , (xn : ϕn)} such that ϕi ∈ T and xi ∈ VΛ are all
distinct. C is defined recursively on proofs as follows:

C
(

Γ `CL > , σ
)

= ∗

C
(

Γ, ϕ `CL ϕ , σ
)

= x (s.t (x : ϕ) ∈ σ)

C

( D

Γ, ϕ `CL ψ

Γ `CL ϕ ⊃ ψ
, σ

)
= λx : P−1(ϕ).C

(
D,σ ∪ {x : P−1(ϕ)}

)

C

( D

Γ `CL ϕ ⊃ ψ
D′

Γ `CL ϕ

Γ `CL ψ

, σ

)
= (C (D,σ) C (D′, σ))

C

( D

Γ `CL ⊥
Γ `CL ϕ

, σ

)
= ∇ϕ (C (D,σ))

C

( D

Γ `CL ϕ

Γ `CL #ϕ
, σ

)
= val (C (D,σ))

C

( D

Γ `CL #ϕ
D′

Γ, ϕ `CL #ψ
Γ `CL #ψ

, σ

)
= let x⇐ C (D,σ) in C (D′, σ ∪ {(x : ϕ)})

where x is fresh in the third and the last line.

Notice that C really is indeterministic, since there might be more than
one element satisfying the clause (x : ϕ) ∈ σ in the second line of the
definition. For instance, C applied to the proof

ϕ,ϕ ` ϕ
ϕ ` ϕ ⊃ ϕ
` ϕ ⊃ ϕ ⊃ ϕ

can give either of λx : ϕλy : ϕ.x or λx : ϕλy : ϕ.y. For our purposes, we will
only be interested whether for a given proof and a given term, C applied to
the proof can return the term, so this really is not a problem.

Example 9.2.4. We will see how we can convert a derivation of ϕ ⊃ (ψ ⊃
#ϕ) to a lambda term. We have

90



ϕ,ψ `CL ϕ
ϕ,ψ `CL #ϕ
ϕ `CL ψ ⊃ #ϕ
`CL ϕ ⊃ (ψ ⊃ #ϕ)

Feeding this through C we get

C

( ϕ,ψ `CL ϕ

ϕ,ψ `CL #ϕ
ϕ `CL ψ ⊃ #ϕ
`CL ϕ ⊃ (ψ ⊃ #ϕ)

, {}

)
= λx : ϕ.C

( ϕ,ψ `CL ϕ

ϕ,ψ `CL #ϕ
ϕ `CL ψ ⊃ #ϕ

, {(x : ϕ)}

)

= λx : ϕ.λy : ψ.C

(
ϕ,`CL ϕ

ϕ,ψ `CL #ϕ
, {(x : ϕ), (y : ψ)}

)

= λx : ϕ.λy : ψ.val

(
C
(

ϕ,ψ `CL ϕ , {(x : ϕ), (y : ψ)}
))

= λx : ϕ.λy : ψ.val(x)

As expected λx : ϕ.λy : ψ.val(x) : ϕ→ (ψ → Tϕ).

The definition of F and C enables us to move back and forth between
the two systems. This is of course only interesting if what we manage to do
in one of the systems holds in the other.

Theorem� 9.2.5. Given a lambda term e, a type ϕ, and an environment
Γ, we have

Γ `λ e : ϕ⇔ ∃D
((

D
Γ′ `CL ϕ′

)
∧ C(D,Γ) = e

)
Proof. (⇒) is trivial by the definitions of F and P. For (⇐), observe that
if we derive a function, C′, mapping C over each depth of the proof, we can
construct a proof in computational lambda calculus from a proof in CL-logic.
C′ is defined inductively, with rules on the form

C′
(

D
Γ `CL ϕ

, σ

)
=

C′(D,σ′)
σ `λ C(D̂, σ) : P−1(ϕ)

where D̂ is just short for D
Γ `CL ϕ

, σ′ is either just σ or σ with an element

(x : ψ) added if needed. If we have a bifurcation we can just map C′ over
each of them, adjusting σ as needed.

With this we can from a proofD and a specified lambda term e, construct
a proof of Γ ` e : ϕ.

Example 9.2.6. We can now see what functions in the computational
lambda calculus different tautologies in CL-logic gives. It is easy to see that

ϕ ⊃ ψ `CL ϕ ⊃ ψ ϕ `CL ϕ
ϕ ⊃ ψ,ϕ `CL ψ
ϕ ⊃ ψ,ϕ `CL #ψ #ϕ `CL #ϕ

ϕ ⊃ ψ,#ϕ `CL #ψ
ϕ ⊃ ψ `CL #ϕ ⊃ #ψ

`CL (ϕ ⊃ ψ) ⊃ (#ϕ ⊃ #ψ)

91



Furthermore, if we name the proof above D, we have

C(D, {}) = λf.λe.(let x⇐ e in val(fx)) : (ϕ→ ψ)→ (Tϕ→ Tψ)

which is a functor derived from a monad.

The above example gives us some insight into how we can interpret #
in classical intuitionistic modal logic, since here 0 (ϕ ⊃ ψ) ⊃ (3ϕ ⊃ 3ψ).
Hence it cannot be equivalent to just 3. However, assuming⇒ is implication
in intuitionistic modal logic, we do have ` �(ϕ ⇒ ψ) ⇒ (3ϕ ⇒ 3ψ). If
I is a translation from CL-logic to intuitionistic modal logic, Pfenning and
Davies showed in [26] that we need both

I(#ϕ) = 3�I(ϕ)

I(ϕ ⊃ ψ) = �I(ϕ)⇒ I(ψ).

It is clear what this would mean in modal logic. Is is not so clear as to
how we can think of �ϕ in our computational lambda calculus. For the
sake of our intuition, we can think of �ϕ as a stable value, a value that is
persistent and will never cease to exist. Of course, in our computational
lambda calculus, all values are stable, so this is of no particular interest to
us. As Pfenning and Davies pointed out, it could however be used to model
computations effected by destruction of values due to memory deallocation
during a computation.

So a monadic value corresponds to a proof of a possibly necessarily true
statement. Therefore, a new and fruitful way of thinking of a monadic value
ma : Tϕ is that it possibly necessarily evaluates to something of type ϕ. This
is quite obvious if we limit ourselves to monads like Maybe or Exception,
but how can this possibility be interpreted in monads in general? In every
monad we work on some type of computation. The key difference between a
value and a computation are the intrinsic possibilities. A value is constant
while a computation might fail, not terminate, depend on other values etc.
In the non-monadic function application (f a), there is only one possible
value which f will be applied to, namely a, which we can obtain by just
inspecting it. However, this is not the case for the monadic ma �= f′. If
we were to inspect ma we still couldn’t say with certainty which value would
be given to f′.

In the next section we will look at a possible semantic for the
computational lambda calculus, and hopefully this will further our intuition
on the nature of monads.

9.3 Computational Kripke models†

We will now define a possible semantic via Kripke models for CL-logic, and
then see how we can use this to derive a semantic for our computational
lambda calculus. For this we use the CL-Kripke model from Benton,
Bierman and de Paiva:

92



Definition 9.3.1. A Kripke model for CL-logic is a tuple (W,V,≤, R,�CL),
such that W is a non-empty set of worlds; V : V → ℘(W ) is a mapping from
propositional variables to subsets of worlds; R and ≤ are partial preorders on
W ; �CL is a relation between worlds and formulae such that for all w ∈ W
we have

� w �CL p⇔ w ∈ V (p), p ∈ V

� w �CL >

� w �CL ⊥ ⇔ ∀p ∈ V.w �CL p

� w �CL ϕ ⊃ ψ ⇔ ∀v ≥ w(v �CL ϕ⇒ v �CL ψ)

� w �CL #ϕ⇔ ∀v ≥ w∃u(vRu ∧ u �CL ϕ).

Both R and ≤ are required to be hereditary, that is for every w, v ∈W , and
ϕ ∈ PT we have

� if w �CL ϕ and w ≤ v then v �CL ϕ,

� if w �CL ϕ and wRv then v �CL ϕ.

With this definition it is quite easy to see that CL-logic is a sublogic
of constructive S4, but where we are restricted to only one modality,
the composition of possibility and necessity. We have soundness and
completeness from Benton, Bierman, and de Paiva.

Theorem 9.3.2. `CL ϕ⇔ ∀w.w �CL ϕ.

Proof. By standard Henkin constructions [5].

Definition 9.3.3. We will make use of the following abbreviations:

� w �CL Γ denotes ∀ϕ ∈ Γ.w �CL ϕ,

� Γ �CL ϕ denotes ∀w(w �CL Γ⇒ w �CL ϕ).

Lemma� 9.3.4. Γ, ψ �CL ϕ⇔ Γ �CL ψ ⊃ ϕ

Proof. (⇒): Assume ∀w.w �CL Γ, ψ ⇒ w �CL ϕ and fix a world w. Also
assume w �CL Γ. By the hereditary property of ≤, we know that for any
world v ≥ w we have v �CL Γ, so if v � ψ then v �CL Γ, ψ. By our
assumption we then have v �CL ϕ, and since v ≥ w was arbitrary, we can
conclude w �CL ψ ⊃ ϕ.

(⇐): Assume ∀w.(w �CL Γ⇒ w �CL ψ ⊃ ϕ) and fix a world w. Assume
also that w � Γ, ψ. Since w �CL Γ we have w �CL ψ ⊃ ϕ, and by reflexivity
of ≤ we then have w � ϕ.

Corollary� 9.3.5. Γ `CL ϕ⇔ Γ �CL ϕ.

93



Proof. Since every deduction is finite, we can assume that Γ =
{ψ1, ψ2, . . . , ψn}. Let ϕ∗ ≡ ψ1 ⊃ ψ2 ⊃ · · · ⊃ ψn ⊃ ϕ. By the Deduction
theorem we have

Γ `CL ϕ⇔ `CL ϕ∗

With induction and the above lemma, we get

∀w.(w �CL Γ⇒ w �CL ϕ)⇔ ∀w.w �CL ϕ∗

Conclude

Γ `CL ϕ⇔ `CL ϕ∗

⇔ ∀w.w �CL ϕ∗

⇔ ∀w.(w �CL Γ⇒ w �CL ϕ)

⇔ Γ �CL ϕ.

Before we can deduce a semantic for computational lambda calculus, we
need to state how proofs and worlds are related. We will therefore first define
an extension on the semantic above, where each proposition is ornamented
with a proof of that proposition.

Definition� 9.3.6. An ornamented Kripke model for CL-logic is a 6-tuple
(W,V,≤, R,�CL, �̀), such that (W,V,≤, R,�CL) is a regular Kripke model
for CL logic, and �̀ is a relation between worlds and terms of the form D : ϕ,
where D is a proof and ϕ is a regular formula, such that

� w �̀
(

Γ, ϕ ` ϕ
)

: ϕ⇔ w �CL ϕ

� w �̀
(

Γ ` >
)

: >

� w �̀
(

D
Γ ` ⊥

)
: ⊥ ⇔ ∀ϕ ∈ PT .w �̀

(
D

Γ ` ϕ

)
: ϕ

� w �̀

 D
Γ, ϕ ` ψ

Γ ` ϕ ⊃ ψ

 : ϕ ⊃ ψ ⇔ ∀v ≥ w (v �CL ϕ⇒ v �̀ D : ψ)

� w �̀

 D
Γ ` ψ ⊃ ϕ

D′

Γ ` ψ
Γ ` ϕ

 : ϕ⇔ w �̀ D : ψ ⊃ ϕ ∧ w �̀ D′ : ψ

� w �̀

 D
Γ ` ϕ

Γ ` #ϕ

 : #ϕ⇔ ∀v ≥ w∃u (vRu ∧ u �̀ D : ϕ)

� w �̀

 D
Γ ` #ϕ

D′

Γ, ϕ ` #ψ
Γ ` #ψ

 : #ψ ⇔

w �̀ D : #ϕ ∧ ∀v ≥ w(v �CL ϕ⇒ v �̀ D′ : #ψ)

94



and in addition

� w �̀ D : ϕ ∧ (w ≤ v ∨ wRv)⇒ v �̀ D : ϕ

� w �̀ D : ϕ⇒ D is a proper proof, that is, every leaf of D is on either
of the forms, Γ′, ψ ` ψ or Γ′ ` >, and every extension of a subproof
matches a calculus rule.

Definition� 9.3.7. Γ �̀ D : ϕ denotes ∀w(w �CL Γ⇒ w �̀ D : ϕ).

Now we have related worlds and proofs in a clear way. Our goal is to
collapse the above semantic to a semantic for typesetting of lambda terms.
However, first we need to prove some properties of the ornamented semantic.

Lemma� 9.3.8. If

(
D

Γ ` ϕ

)
a proper proof, then Γ �̀ D : ϕ.

Proof. The proof is by induction on the depth of D. For D equal to any of

(
Γ, ϕ ` ϕ

)
,
(

Γ ` >
)
,

(
D

Γ ` ⊥
Γ ` ϕ

)
,

 D
Γ ` ψ ⊃ ϕ

D′

Γ ` ψ
Γ ` ϕ


the result follows directly from the definition of �̀, so we will show the proof
of the last three extensions.

� If D is on the form

D
Γ, ϕ ` ψ

Γ ` ϕ ⊃ ψ

and is a proper proof, then we also have that

D
Γ, ϕ ` ψ

is a proper proof. Then from the induction hypothesis, it follows that

∀w
(
w � Γ, ϕ⇒ w �̀

(
D

Γ, ϕ ` ψ

)
: ψ

)
.

This is, by the heredity of ≤, equivalent to

∀w
(
w � Γ⇒ ∀v ≥ w

(
v � ϕ⇒ v �̀

(
D

Γ, ϕ ` ψ

)
: ψ

))
.

which by definition is equivalent to

∀w
(
w � Γ⇒ w �̀

(
D

Γ ` ϕ ⊃ ψ

)
: ϕ ⊃ ψ

)
.

95



� Or, if D is on the form

D
Γ ` ϕ

Γ ` #ϕ

then by the induction hypothesis we get ∀w (w � Γ⇒ w �̀ D : ϕ). It
follows from the hereditary property of ≤ and the reflexivity of R that
∀w (w � Γ⇒ ∀v ≥ w∃u (vRu ∧ v �̀ D : ϕ)), which is equivalent to the
desired

∀w
(
w � Γ⇒ w �̀

(
D

Γ ` #ϕ

)
: #ϕ

)
.

� Finally, if D is on the form

D
Γ ` #ϕ

D′

Γ, ϕ ` #ψ
Γ ` #ψ

,

then by the induction hypothesis we have both ∀w (w � Γ⇒ w �̀ D : #ϕ)
and ∀w (w � Γ, ϕ⇒ w �̀ D′ : #ψ). The last of the two implies, by the
hereditary property of ≤, that

∀w
(
w � Γ⇒ ∀v ≥ w

(
v � ϕ⇒ v �̀ D′ : #ψ

))
.

Hence,

∀w
(
w � Γ⇒

(
w �̀ D : #ϕ ∧ ∀v ≥ w

(
v � ϕ⇒ v �̀ D′ : #ψ

)))
,

which is equivalent to

∀w
(
w � Γ⇒ w �̀

(
D D′

Γ ` #ψ

)
: #ψ

)
.

The above lemma just states that if a world satisfies all assumptions of
a proof, then the world also ”satisfies” the proof.

Corollary� 9.3.9. The natural deduction calculus for CL-logic is sound and
complete with respect to the ornamented Kripke semantics, that is, for any
proof D, (

D
Γ ` ϕ

)
⇔ Γ �̀ D : ϕ

Proof. (⇒) follows from lemma 9.3.8. All that remains is to prove (⇐). We
will prove the contrapositive, so assume

¬
(

D
Γ ` ϕ

)

96



in order to prove that there exists a model such that

∃w ∈ W(w � Γ ∧ ¬w �̀ D : ϕ).

Since all proofs satisfied by a world is well formed, we have that for all
models ∀w ∈ W(¬w �̀ D : ϕ), so all that remains is to prove that there
exists a model such that ∃w.w �CL Γ. Let Γ′ be the largest consistent subset
of Γ. Then, by completeness of CL-logic, there exists a model such that
∀w ∈ W.w �CL Γ′. Either Γ = Γ′ and we are done, or Γ\Γ′ = {ϕi ⊃ ⊥}i∈I
for some ϕi ∈ Γ′. If the latter is the case, pick one world w in that model,
and extend the model with one top world w′ ≥ w, where w′ �CL ⊥. We now
have ∀ϕ ∈ Γ′.w′ �CL ϕ ⊃ ⊥, hence w′ �CL Γ.

Definition� 9.3.10. A Kripke model for computational lambda calculus
is a 5-tuple (W,V,≤, R,�λ), defined through an ornamented Kripke model
(W,V,≤, R,�CL, �̀) as

Γ �λ e : ϕ⇔ ∃D (F(Γ) �̀ D : P(ϕ) ∧ C(D,Γ) = e)

In addition, we will only allow variables to inhabit one type, that is,
w �λ x : ϕ ∧ w �λ x : ψ ⇒ ϕ = ψ.

Theorem� 9.3.11. Γ `λ e : ϕ⇔ Γ �λ e : ϕ

Proof. We have that

Γ �λ e : ϕ ⇔ ∃D (F(Γ) �̀ D : P(ϕ) ∧ C(D,Γ) = e)

⇔ ∃D

( (
D

F(Γ) `CL P(ϕ)

)
∧ C(D,Γ) = e

)

⇔ Γ `λ e : ϕ

Using the definition of �̀ we can derive the rules for �λ. Doing this we
get the following set of rules:

� w �λ x : ϕ⇔ w �CL P(ϕ)

� w �λ ∗ : 1

� w �λ e : 0⇔ ∀ϕ ∈ T .w �λ ∇ϕ(e) : ϕ

� w �λ (λx : ϕ.e) : ϕ→ ψ ⇔ ∀v ≥ w(v �λ x : ϕ⇒ v �λ e : ψ)

� w �λ (f e) : ϕ⇔ ∃ψ ∈ T (w �λ f : ψ → ϕ ∧ w �λ e : ψ)

� w �λ val(e) : Tϕ⇔ ∀v ≥ w∃u(vRu and u �λ e : ϕ)

� w �λ (let x⇐ e in f) : Tϕ⇔
∃ψ ∈ T (w �λ e : Tψ ∧ ∀v ≥ w(v �λ x : ψ ⇒ w �λ f : Tϕ))

97



We finished the last section by using the correspondence to modal logic
to build up intuition. We will now see how our semantic can help us
further in this regard. Firstly, we discuss the worlds. From the fact that
w �λ x : ϕ⇔ w �CL ϕ, it is intuitive to think of the worlds as environments
where different worlds satisfy different types. Every type inhabited in a
world, is at least inhabited by variables, and from these one can build more
complex terms to inhabit other types.

So worlds are environments, but what is the meaning of the relations ≤
and R? We know that if w ≤ w′ we have w �λ e : ϕ ⇒ w′ �λ e : ϕ but not
necessarily the other way around. So w′ is an extension of w in the sense of
types. These extensions allow for new, more complex types to be created in
w′.

Example 9.3.12. Take the term

(λx : p0 → p1 → ϕ. (x f) g) : (p0 → p1 → ϕ)→ ϕ

A model for this could be (W,V,≤, R,�) where W = {u, v, w, z, z′}, V (p0) =
{u,w, z, z′}, V (p1) = {v, w, z, z′}, V (p2) = {z}, and V (p3) = {z′}. Then
u ≤ w, v ≤ w, w ≤ z, and w ≤ z′. If z �λ e : p0 → p1 → p2 and
z′ �λ d : p0 → p1 → p3, then as a graph

g : p0

f : p1 ((e f) g) : p2

((d f) g) : p3u

v

w

z

z′≤

≤ ≤

≤

From the example we can observe that (W,≤) can be seen as a
dependency graph, relating worlds with values that can directly be used to
form new expressions. This can be used to model several things. For instance
scope of variables where each set {w′|w′ ≥ w} is the scope of elements defined
in w, or to model dependencies of different definitions where a world is a
module or perhaps a class. Such modelling could perhaps be the topic of
future research.

The R relation is a bit different. It does not define dependencies in the
same way. Say w �λ e : Tϕ, all we now know is that there should exist
a world u R-related to w where there is an element e′ inhabiting ϕ. We
cannot, for certain, use this element in a non-monadic expression in w nor
any ≤-related world, since e′ need not be defined in such a world. It might
however, be used in a world z if u ≤ z. This represents two important
features of monads: There is a possibility attached to the result value; the
computation is performed in a separate environment. Let’s look at some
examples of monads interpreted with this semantic.

Example 9.3.13. We first consider the IO monad, where computations are
done in a separate environment which values cannot escape. Assume we
have a value x received from a user and a function f we can apply to that
value. A model satisfying this scenario can look like

98



IO x

x (f x)

IO (f x)u

v w

z

R

≤

R

≤

Here the worlds v and w are “inside” the IO monad, and the two worlds u
and z are outside. A property of the IO monad is that there never should
be, for any model involving the IO monad, a world inside the IO monad w′

such that for a world outside the IO monad u′, w′ ≤ u′. One can think of
the worlds inside the IO monad as inhabiting the RealWorld type while all
other worlds does not, hence they cannot be ≤-related.

We could do the same type of modelling with any State related monad.
If we let the type of the state value only be inhabited in certain worlds, we
can then easily separate worlds manipulating or otherwise depending on the
state value, and those who do not. Say we had a program P using the State

monad and our state had type σ. Then, if in any model for P we had that
for some type γ,

∀w ∈ W(∃s ∈ Λ.w �λ s : σ ⇔ ∃e ∈ Λ.w �λ e : γ)

we know that γ depends on σ.

Example 9.3.14. Let’s look at the List monad and what the R-relation
represents here. Assume that for some worlds u0, u1, u0 �λ a0 : α and
u1 �λ a1 : α, but u0 2λ a1 : α and u1 2λ a0 : α. This can be achieved by
letting a0 contain a variable with a type not inhabited in u1 and likewise for
a1 and u0. If w �λ append : [α]→ [α]→ [α], and wRu0 and wRu1, we have
that w �λ [a0, a1]. Now the R-relation represents a choice of values in the
indeterministic computation [a0, a1].

w
[a0, a1]

u0a0 u1 a1

R R

As we can see, it is possible for the results of an indeterministic computation
to live in different worlds. Making a choice of one result value implies a
choice of one of the possible worlds.

As we can see, the R-relations between the worlds represents the
properties of a monad. This might be a useful tool for studying the
differences and similarities of different monads.

We could extend our modal logic with multiple modalities, {#i}, where
every Ti would represent a monad. We could then study relations and
mappings between monads, which would make a framework for studying
monad transformers and other monad morphisms.

This concludes our discussion on monads and the Curry-Howard
Correspondence, and we will now explore other constructs related to the
monad.

99



100



Chapter 10

Other Related Constructs

We know that in Haskell there are a myriad of type classes, each with
different properties and applications. In this chapter we will look at some
of those type classes, namely those which are closely related to monads.

10.1 Applicative functors

We saw in the beginning of this thesis that every monad can express a
functor, that is, by defining a monad one indirectly also defines a functor. In
this section we will see that a monad indirectly defines an even more powerful
concept, the applicative functor. This type class extends the functionality
of the Functor type class. The Applicative type class has the following
definition.

class Functor f ⇒ Applicative f where
pure :: α → f α
(<∗>) :: f (α → β) → f α → f β

such that

pure id <∗> a = a

pure f <∗> pure a = pure (f a)
a <∗> pure b = pure ($ b) <∗> a

fmap f a = pure f <∗> a

pure (.) <∗> a <∗> b <∗> c = a <∗> (b <∗> c)

An applicative functor can lift functions into and apply functions inside its
type. For example,

instance Applicative [ ] where
pure a = [a]
[ ] <∗> = [ ]
(f : fs) <∗> xs = (fmap f xs) ++ (fs <∗> xs)

is the Applicative instance for lists. How is this related to monads? Well,
since pure is just supposed to inject a value into the type, it is equivalent
to the monadic return. Furthermore, we have that (<∗>) = ap, where

101



ap :: Monad m ⇒ m (α → β) → m α → m β
ap mf ma = do

f ← mf

a ← ma

return $ f a

which is the application of a function from inside the monad, that we defined
earlier in this thesis. It is easy to verify that the laws above are satisfied with
these definitions of pure and (<∗>). So all monads are in fact applicative
functors[7].

Another interesting question is then whether all applicative functors are
monads. If we write

(<∗>′) :: f α → f (α → β) → f β
(<∗>′) = flip (<∗>)

we can see that the types of (<∗>′) and (�=) are not so different. However,
if we try to apply a function of the form f :: α → f β to an element in the
applicative functor, we get something of type f f β, and not something of
type f β. Applicative functors lacks the ability to flatten such a type, that
is, we cannot from the three functions

fmap :: (α → β) → f α → f β
pure :: α → f α
(<∗>) :: f (α → β) → f α → f β

create a function join :: f f α → f α. This is what makes a monad more
powerful than an applicative functor, it can flatten layers of computations
down to a single layer.

For examples and a deeper discussion on applicative functors, see
Yorgey’s “Typeclassopedia”[32].

10.2 Arrows

In this subsection we will look at another construct which the monad
implicitly defines, namely the arrow. The arrow was first introduced by
John Hughes in [15] as a construct solving many of the same problems as
the monad. Its core type class is defined as

class Arrow a where
arr :: (β → γ) → a β γ
(≫) :: a β γ → a γ δ → a β δ

So while the monadic type only takes one argument, an arrow takes two.
An element a β γ is thought of as a computation taking input of type β and
returns a result of type γ. The first function in the above definition, arr,
then creates an arrow from a function, while the second function, (≫), is
composition of arrows.

An arrow implementation should satisfy the following laws:

102



i) (f ≫ g) ≫ h = f ≫ (g ≫ h)

ii) arr (f ≫ g) = arr f ≫ arr g

iii) arr id ≫ f = f = f ≫ arr id

That is, (≫) is a monoid with arr id as identity, and arr distributes over
(≫).

Notice the similarity of this definition to that of the monad: Where
return makes a computation from a value, arr makes an input dependent
computation from a function; and where (�=) chains computations, (≫)
chains input dependent computations.

In fact, for every monad m we can make an arrow by just making the
input explicit. That is, Hughes shows that we can define

newtype Kleisli m α β = K (α → m β)

instance Monad m ⇒ Arrow (Kleisli m) where
arr f = K (λ b → return $ f b)
K f ≫ K g = K (λ b → f b �= g)

to make any monad an arrow. So simply put arr f = return . f and
(≫) = (}).

An arrow instance defines functionality for making and composing
arrows, but currently we have no way of combining output from two arrows.
For instance, as Hughes explains in his article, we cannot make a simple add
function analogous to the monadic

add :: Monad m ⇒ m Int → m Int → m Int

add mx my = mx �= λ x → my �=→ λ y → return (x + y)

To enable this, Hughes extended his class to include the function

first :: a β γ → a (β, δ) (γ, δ)

converting a computation from β to γ to a computation over a tuple applying
the argument arrow to the first element in the tuple. The other element in
the tuple is untouched. This might seem like a small extension, but it
allows us to express much more, for instance function lifting, which solves
our problem above. Defining lifting from the three functions arr, (≫),
and first is quite involved and several intermediate functions are needed.
These intermediate functions are rather useful so we will write out their
definitions.

After defining first, it would be natural to have a second, and we can
define this as

second :: Arrow a ⇒ a β γ → a (δ, β) (δ, γ)
second f = arr swap ≫ first f ≫ arr swap

where swap (x, y) = (y, x)

We can then define

103



(∗∗∗) :: Arrow a ⇒ a β γ → a δ ε → a (β, δ) (γ, ε)
f ∗∗∗ g = first f ≫ second g

which applies f to the first element and g to the second element of the input
pair. The last function needed to define lifting is the ability to combine the
result of two arrows into a pair.

(&&&) :: Arrow a ⇒ a β γ → a β δ → a β (γ, δ)
f &&& g = arr (λ b → (b, b)) ≫ (f ∗∗∗ g)

Now we can define lifting of a binary function over two arrows by first
combining the results of the two arrows in a tuple, and then apply the
arrow obtained from the operator to the two elements of the tuple. So

liftA2 :: Arrow a ⇒ (γ → δ → ε) → a β γ → a β δ → a β ε
liftA2 op f g = (f &&& g) ≫ arr (λ (b, c) → op b c)

Finally we can define

add :: Arrow a ⇒ a β Int → a β Int → a β Int

add = liftA2 (+)

Let’s write that out in terms of our three core functions to see what really
happens:

add f g =arr (λ b → (b, b)) ≫
first f ≫
arr swap ≫
first g ≫
arr swap ≫
arr (λ (b, c) → b + c)

To sum up, first duplicate the input to a tuple, apply f to the first element,
swap places, apply g to the (currently) first element, swap place again, then
apply (+) to the two results. As we can see, arrows are well suited for
manipulating one part of the computation at the time, and combining the
parts again.

What does arrows lack that monads have, that is, which function or type
class does an arrow need to implement to become as expressive as a monad?
Hughes shows in his article that the following type class is all it takes:

class Arrow a ⇒ ArrowApply a where
app :: a (a β γ, β) γ

That is, we need to have an arrow which takes as input an arrow and an
input value to that arrow, applies the arrow to the value, and returns the
result. He then shows that for any ArrowApply a we have

newtype ArrowApply a ⇒ ArrowMonad a b = M { unM :: (a Void b)}

instance Monad (ArrowMonad a) where

104



return a = M $ arr (λ z → a)
M m �= f = M (m ≫ arr (λ x → (unM $ f x, ⊥)) ≫ app)

where ⊥ :: Void, which eliminates the dependency on the input type.
Notice that return a is a computation that ignores its input, and so is
the case for all elements in any ArrowMonad a. This is forced by the fact
that ⊥ cannot be used for anything, and is also the only element inhabiting
Void. In the definition of (�=) we can then safely apply the resulting arrow
from (f x) on ⊥ to unwrap the value inside, again resulting in an input-
independent computation.

This concludes our discussion on arrows. Non-monadic examples of
arrows are quite involved, but can be looked up in Hughes article cited
above.

10.3 Comonads

In category theory it is often the case that a structure has a co-structure. A
co-structure is a structure where all the mapping are reversed, so for every
mapping in the original structure F : A → B, one would have a mapping
F′ : B → A. The monad has such a structure, namely the comonad. The
Comonad is defined in Haskell through the following type class,

class Functor w ⇒ Comonad w where
extract :: w α → α
duplicate :: w α → w w α

such that

extract . duplicate = id

fmap extract . duplicate = id

duplicate . duplicate = fmap duplicate . duplicate

where extract and duplicate are the dual to return and join respectively.
Alternatively, we could define it with

class Comonad w where
extract :: w α → α
extend :: (w α → β) → w α → w β

where extend is the (flipped and prefixed) dual to (�=). This definition
should satisfy

extend extract = id

extract . extend f = f

extend f . extend g = extend (f . extend g)

In the Haskell libraries there is a function which is the direct dual to (�=),

(=>>) :: Comonad w ⇒ w α → (w α → β) → w β

105



ma =>> f = extend f ma

Now the laws look a bit more familiar, albeit a small difference in the last.

ma =>> extract = ma

extract ma =>> f = f ma

ma =>> f =>> g = ma =>> λ m → f (m =>> g)

One can go from the first definition to the next by setting

extend f = (fmap f) . duplicate

and from the second to the first by

fmap f = extend (f . extract)
duplicate = extend id

Comonads are discussed in detail by Uustalu and Vene in [28]. They
think of wa :: w α as a value depending on a context, namely w.

Some examples of comonads are given below.

Example 10.3.1. The list monad does not have a proper comonad, since
then extract would only be a partial function, as it has no return value
if applied to the empty list. However, we could define the data type for
non-empty lists as

data NEList α = [α] | (α : (NEList α))

Now we can define

instance Comonad [ ] where
extract = head

duplicate [a] = [[a]]
duplicate (a : as) = (a : as) : (duplicate as)

So duplicate gathers its argument and all tails of that argument in a
list, such that duplicate [1, 2, 3, 4] = [[1, 2, 3, 4], [2, 3, 4], [3, 4], [4]]. Further-
more, we have [1, 2, 3, 4] =>> sum = [10, 9, 7, 4].

The comonad above might be useful for simulating computations on the
effect of ordered removal of elements from a list. However, the example
below is perhaps closer to a canonical usage of comonads. Here we clearer
see the context dependent computations as described by Uustalu and Vene.
This example is inspired by Dan Piponi’s article[1] on comonads and cellular
automata.

Example 10.3.2. In this example we will look at a comonad for pointers
in a stream. A pointer is here modelled by one list containing all elements
to the left (or before) the element pointed to, the actual element pointed to,
and a list of all elements to the right of (or after) the element pointed to.

data Pointer α = P [α] α [α]

106



Now we can move the pointer left and right with

moveLeft :: Pointer α → Pointer α
moveLeft (P (y : ys) a xs) = P ys y (a : xs)
moveLeft = error ”Cannot move any more left.”

moveRight :: Pointer α → Pointer α
moveRight (P ys a (x : xs)) = P (a : ys) x xs
moveRight = error ”Cannot move any more right.”

We will assume that the streams are infinite, so there really is no need for the
wild card in the two definitions. Before we can define the comonad instance,
we need the following two help functions.

pointAllLeft :: Pointer α → [Pointer α]
pointAllLeft p = tail $ iterate moveLeft p

pointAllRight :: Pointer α → [Pointer α]
pointAllRight p = tail $ iterate moveRight p

These two functions just make a list of all possible left or right pointers from
the given pointer. So, for instance,

pointAllLeft (P [2, 1..] 3 [4, 5..]) = [(P [1..] 2 [3, 4, 5..]), (P [..] 1 [2, 3, 4, 5..])..]

Now we can define our comonad instance.

instance Comonad where
extract (P ys a xs) = a

duplicate p = P (pointAllLeft p)
p

(pointAllRight p)

The extract function just returns the value pointed to, while duplicate

makes a pointer to a pointer in a stream of pointers. If we write wa =>> f,
then f is applied to wa and all possible pointers achievable by moving left or
right from wa.

Notice that what we have made is quite similar to a Turing machine. If
we set

read :: Pointer α → α
read = extract

and

write :: α → Pointer α → Pointer α
write b (P ys a xs) = P ys b xs

we can view a pointer as a state with the head currently over the element
pointed to. We can then move the head left and right on the tape, and also
read and write to the tape. With this we can write rules as for a regular

107



Turing machine. However, (=>>) allows us to apply a rule uniformly to
every state achievable by only movement. This is quite useful for simulating
cellular automatons, as Dan Piponi writes on his blog[1]. A cellular
automata determines the value in a cell on rules based on its neighbouring
cell’s values, and every cell’s value is updated every step. This is where
the uniformly mapping of rules is useful. A popular example of a cellular
automata is Conway’s Game of Life[10].

Let’s make a small example of such an automata which models growth
of some sort of a life form. We will let every cell have one of two values,
either True or False depending on whether that cell is inhabited or not,
respectively. We will have the following rules of transitions from one state
to the next:

� If a cell is inhabited and has two inhabited neighbouring cells, it dies
as a result of overpopulation.

� If a cell is uninhabited and has at least one neighbouring inhabited cell,
the cell becomes inhabited as a result of growth.

Notice that for any pointer (P (y : ys) a (x : xs)), the above rules can be
reduced to the following:

rule :: Pointer Bool → Bool

rule (P (y : ys) a (x : xs)) = if a then
not (x && y)

else
x || y

Let’s also define some help functions, transforming a pointer into a finite
list with the element pointed to as the mid element.

toFiniteList :: Pointer Bool → Int → [Char]
toFiniteList (P ys a xs) n = (reverse $ take n ys) ++ [a] ++ (take n xs)

Furthermore, we will display True as ′x′ and False as ′ ′ for visual purposes.
Now we have

p :: Pointer Bool

p = P (True : (repeat False)) False (True : (repeat False))

toFiniteList p 10 = ” x x ”

toFiniteList (p =>> rule) 10 = ” xxxxx ”

If we print each iteration of rule over p, that is p =>> rule =>> rule =>> ...,
and use white space instead of underscore, we get the nice fractal seen in
figure 10.1. If we change the values on the start tape, we get a completely
different pattern.

The above example clearly shows how comonads can be viewed as a
context. Comonads also have transformers which combines contexts in the
same way monad transformers combine effects. A discussion of comonad
transformers along with more examples can be seen in the article by Uustalu
and Vene[28].

108



′′ x x ′′
′′ xxxxx ′′
′′ xx xx ′′
′′ xxxx xxxx ′′
′′ xx xxx xx ′′
′′ xxxxxx xxxxxx ′′
′′ xx xxx xx ′′
′′ xxxx xx xx xxxx ′′
′′ xx xxxxxxxxxxx xx ′′
′′ xxxxxx xxxxxx ′′
′′ xx xx xx xx ′′
′′ xxxx xxxx xxxx xxxx ′′
′′ xx xxxx xx xx xxxx xx ′′
′′ xxxxxx xxxxxx xxxxxx xxxxxx ′′
′′ xx xxxx xxx xxxx xx ′′
′′ xxxx xx xx xx xx xx xx xxxx ′′
′′ xx xxxxxxxxxxxxxxxxxxxxxxxxxxx xx ′′
′′ xxxxxx xxxxxx ′′
′′ xx xx xx xx ′′
′′ xxxx xxxx xxxx xxxx ′′
′′ xx xxxx xx xx xxxx xx ′′
′′ xxxxxx xxxxxx xxxxxx xxxxxx ′′
′′ xx xxxx xx xx xxxx xx ′′
′′ xxxx xx xx xxxx xxxx xx xx xxxx ′′
′′ xx xxxxxxxxxxxx xx xx xxxxxxxxxxxx xx ′′
′′ xxxxxx xxxxxx xxxxxx xxxxxx ′′
′′ xx xx xx xx xx xx xx xx ′′
′′ xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx ′′
′′ xx xxxx xx xx xxxx xx xx xxxx xx xx xxxx xx ′′
′′ xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx ′′
′′ xx xxxx xxxx xxxx xxx xxxx xxxx xxxx xx ′′
′′ xxxx xx xx xx xx xx xx xx xx xx xx xx xx xx xx xxxx ′′
′′ xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xx ′′
′′ xxxxxx xxxxxx ′′
′′ xx xx xx xx ′′
′′ xxxx xxxx xxxx xxxx ′′
′′ xx xxxx xx xx xxxx xx ′′
′′ xxxxxx xxxxxx xxxxxx xxxxxx ′′
′′ xx xxxx xx xx xxxx xx ′′
′′ xxxx xx xx xxxx xxxx xx xx xxxx ′′
′′ xx xxxxxxxxxxxx xx xx xxxxxxxxxxxx xx ′′
′′ xxxxxx xxxxxx xxxxxx xxxxxx ′′
′′ xx xx xx xx xx xx xx xx ′′
′′ xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx ′′
′′ xx xxxx xx xx xxxx xx xx xxxx xx xx xxxx xx ′′
′′ xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx ′′
′′ xx xxxx xxxx xxxx xx xx xxxx xxxx xxxx xx ′′
′′ xxxx xx xx xx xx xx xx xxxx xxxx xx xx xx xx xx xx xxxx ′′
′′ xx xxxxxxxxxxxxxxxxxxxxxxxxxxxx xx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxx xx ′′
′′xxxxxx xxxxxx xxxxxx xxxxxx′′
′′x xx xx xx xx xx xx x′′

Figure 10.1: Resulting pattern from iterating rule over p.

10.4 Continuations

A continuation is something that contains a representation of the future
computation. Programming which explicitly handles continuations is called
continuation passing style (CPS) and such programs are able to control and
manipulate this future computation. Continuations can be represented in
Haskell as programming with elements of type (α → ρ) → ρ, such that the
argument to this function represents the future computation. Within such
functions one has a name for the future computation, and can continue this
any where in the body of the function. This allows for great control of the
computation’s flow, and enables features such as escape of the computation,
backtracking, and much more. Let’s set

newtype Cont ρ α = Cont { runCont :: (α → ρ) → ρ}

The first immediate connection between continuations and monads, is that
for every continuation with result type ρ, there is a monad:

instance Monad (Cont ρ) where
return a = Cont $ λ k → k a

ma �= f = Cont $ λ k → runCont ma (λ a → runCont (f a) k)

The Cont monad combines computations in CPS, return constructs the
trivial continuation which applies the future computation to a value, and
ma �= f abstracts over the future computation, applies f to the results of
ma, unwraps this result and feeds it the future computation k. We will now
study continuations in more detail before we examine this connection any
further.

109



A very powerful concept in conjunction with continuations is something
called “call-with-current-continuation”, often represented as a function with
name callCC. This concept, as a function, originated in the Scheme
language[3], but was invented as an escape operator in 1965 by Peter
Landin[18]. It takes a function as argument and applies this to the current
continuation. Whenever this current continuation is called, the computation
jumps right to it, and continues from there. Hence, callCC can, amongst
other things, simulate forward goto-statements.

In Haskell, callCC can be defined as a regular function:

callCC :: ((α → Cont ρ β) → Cont ρ α) → Cont ρ α
callCC f = Cont $ λ k → runCont (f (λ a → λ → k a)) k

It allows us to bring the future continuation k into scope explicitly. The
difference between Cont and callCC is best expressed by looking at the
differences in their types.

Cont :: ((α→ ρ) → ρ) → Cont ρ α
callCC :: ((α→ Cont ρ β)→ Cont ρ α)→ Cont ρ α

In callCC we have the ability to manipulate, sequence, and construct entire
continuations from values given to the argument function, while Cont is only
able to manipulate the immediate future computation. For instance with
callCC we can construct nested goto-statements, as

contEx :: Int → Cont ρ Int
contEx n =
callCC (λ label0 → do

a1 ← callCC (λ label1 → do
a2 ← do

when (n ≥ 10) $ label0 n

when (n ≥ 5) $ label1 n

return n
return $ a2 + 5)

return $ a1 + 5)

Here, every labelN is a continuation representing a label we can jump to.
If we call a label, we jump up to the line it was defined and continue from
there. In the above function, our goal is to return something greater or equal
to 10 for any positive argument integer n. If n is less than 5, we continue the
computation as usual, add 5 twice and returns that result. If n is greater
or equal to 5, but less than 10, we only have to add 5 once, so we jump to
label1 and skip the first addition. We now add 5 and returns. If n already
is greater or equal to 10, we can just escape the entire computation, and
jump right back to start.

As we can see from the example above, continuations give great
control over computations flow and can also simulate different types of
computations. As mentioned in the first chapter for example, there is a
model of IO using continuations. We have already seen that continuations
can be represented by monads, but can every monad be represented by

110



continuations, that is, are monads and continuations equally expressive?
It turns out that the answer is negative. There are several papers on
this subject, so let’s look at some of the differences between monads and
continuations.

Simon Peyton Jones and Phillip Wadler shows in “Imperative functional
programming”[25] that monadic IO is strictly more powerful than IO based
on continuations. Furthermore, Wadler shows in “The essence of functional
programming”[29] that continuations always provides an escape possibility
through callCC, while monads can choose whether to include such a feature
or not.

However, Wadler compares monads to an extension of continuations
with new functions in “Monads and composable continuations”[30]. Here
he extends the continuation language with the two functions shift and
reset, which was invented by Danvy and Filinsky[8]. These functions
increases the control over the computation flow even further, and the
resulting continuation-based language is too general to be embraced as a
monad.

Filinsky proves in “Representing monads”[9] that if a language can
represent composable continuation and a single state value, that language
can express any monadic computation, such as indeterminism, exception
handling, etc. This clearly states the expressive powers of continuations,
and begs the question whether the continuation monad in conjunction with
the state monad can express any other monad. We will not dig any further
into this, but it might be an interesting topic for future research.

From the discussion above, we can conclude that continuations are able
to simulate many computational features and are closely related to monads,
but the two constructs are not equivalent. The interested reader can consult
the papers mentioned above for a deeper study on the relationship between
the two concepts.

This concludes our discussion on constructs similar (or otherwise related)
to monads, and we will now proceed to summarise and conclude this thesis.

111



112



Part IV

Conclusion And Appendix

113





Chapter 11

Conclusion

Throughout this thesis we have studied different aspects of monads, and in
some cases developed some new theory. In this section I will summarise
my experience working with monads, followed by a section about my
contributions and proposals for future work.

11.1 My views on monadic programming

In this section we will summarise my experiences and views on monads and
monadic programming.

We have seen that monads are not a tool for solving one particular set
of problems, but rather a general framework for expressing solutions in a
small but expressive language. Monadic programming has the ability to
define how computations should behave in a uniform way. This frees the
programmer from writing a lot of previously needed code, such as if-tests
for checking void values or explicit exception handling. Predefining how
computations behave also makes the code cleaner and easier to read. To
check the correctness of an implementation, much of the work can be put
into just checking the correctness of the monad.

In many of our applications, we saw how monads allows for great
abstractions, simulating different computations and effects. Monadic code
can easily be extended with new functionality using monad transformers and
lifting. This makes core functionality easy to maintain and develop without
even thinking about compatibility issues with previously written code.

Using do-notation and effectful monads, one can write imperative-like
code without the need for destructive functions. This enables an imperative
style for writing algorithms more intuitively expressed in an imperative
manner.

On the other hand, I think heavy usage of do-notation in some cases
might lead to unexpected results, due to the great level of abstraction from
the original monadic functions. There is also the danger of assuming some
imperative features of commands in a do-block, since the appearance is so
similar to imperative code. The same caution is raised in “Real World
Haskell”[7], where the authors suggest one should go “sugar-free” until
one becomes an intermediate user of monads. Explicitly writing (�=)

115



reminds the programmer what the code really means, but also enables the
programmer to manipulate monadic code to a greater extent.

We have seen many positive features of monadic programming. However,
the monad is perhaps a more difficult concept to grasp than other
programming constructs, such as objects in object oriented languages or
actors in the actor model. After one builds up some intuition on the usage
of monads, I think that continued use should come without strain and
appear quite natural. Apart from demanding a bit more time to learn, I
see no reason why monadic programming shouldn’t become a widely used
programming paradigm.

11.2 My contributions and suggested future work

Apart from serving as yet another tutorial on monads, this thesis explores
some new theory and applications. In this section, we will summarise my
contributions along with proposals for future work.

The first of my contributions in this thesis was to define a new monad,
the Pair monad. A monad, which is a direct generalisation of the List

monad, we saw was well suited for representing lambda calculi with different
properties. It might be interesting to look at other uses of this monad, for
instance with one of the interpretations presented in that chapter. Another
possibility for future work on this topic could be to investigate how its
transformer can be used in conjunction with other monads.

The applications I wrote in chapter 5 and 6 were mainly for illustrating
monadic programming. However, the monads used are quite convenient for
each purpose. For writing an interpreter, using the combination of Writer
and State is quite natural. The same goes for cryptographic libraries and
Supply, Writer and State. If one wants to write such applications, these
monads and the functionality I defined around them might be a good start.

In chapter 7, I generalised Grust’s work on monadic comprehension
languages for queries to all natural monads. The definition and results were
general enough to contain Hinze’s backtracking transformer applied to any
monad. This made the resulting query language quite easy to integrate, as
we can let the result of a query be wrapped in any monad. As a proposal
for future work, it might be interesting to generalise all the optimisations
from Grust’s article to any natural monad. One could also try to generalise
further, and see if one could remove some of the axioms of naturality, for
instance the criteria of natural form, without losing the abilities needed for
forming a basis for query languages. It would also be nice to see whether
one is able to derive my generalisations for all catamorphisms, not just folds.

The last of my contributions in this thesis was concerning the Curry-
Howard Correspondence. Here I made the correspondence explicit with a
forgetful mapping and a construction mapping. After defining how worlds
and proofs were related, I derived a Kripke semantic for the computational
lambda calculus. I then used the maps to prove completeness of the calculus
with respect to this new semantic. We saw that the R-relation relating worlds
inside a monad with outside worlds, described the features of each monad.

116



It would be very interesting to see if we can get even more information from
this R-relation of the semantic for different monads. As stated in that same
chapter, it would also be quite interesting to see how multiple modalities
could represent different monads and monad transformers.

This concludes both the discussion of my contributions and future work,
and this thesis.

117



118



Chapter 12

Appendix

12.1 Code

12.1.1 PairMonad

The PairMonad module

module PairMonad where

import Control .Monad
import Control .Monad. Trans

data Pair a = Ni l | Cons a ( Pair a ) | Comp ( Pair a ) ( Pair a )
deriving (Eq, Show)

appendPair : : Pair a −> Pair a −> Pair a
appendPair Ni l x = x
appendPair ( Cons a b) c = Cons a ( appendPair b c )
appendPair (Comp a b) c = Comp ( appendPair a c ) b

concatPai r : : Pair ( Pair a ) −> Pair a
concatPai r Ni l = Ni l
concatPai r ( Cons p1 p2 ) = appendPair p1 ( concatPai r p2 )
concatPai r (Comp p1 p2 ) = Comp ( concatPai r p1 ) ( concatPai r p2 )

instance Functor Pair where
fmap f Ni l = Ni l
fmap f ( Cons a p) = Cons ( f a ) ( fmap f p)
fmap f (Comp p1 p2 ) = Comp ( fmap f p1 ) ( fmap f p2 )

instance Monad Pair where
return a = Cons a Ni l
p >>= f = concatPai r ( fmap f p)

instance MonadPlus Pair where
mzero = Ni l
mplus = appendPair

subs : : Eq a => a −> Pair a −> a −> Pair a
subs x p a = i f a == x

then p
else return a

zero : : Int −> Pair a
zero 0 = Ni l
zero n = Comp ( zero (n−1)) Ni l

newtype PairT m a = PairT { runPairT : : m ( Pair a ) }

119



sequenceP : : (Monad m) => Pair (m a ) −> m ( Pair a )
sequenceP Ni l = return Ni l
sequenceP ( Cons ma mps) = do

a <− ma
ps <− sequenceP mps
return ( Cons a ps )

sequenceP (Comp mps mps ’ ) = do
ps <− sequenceP mps
ps ’ <− sequenceP mps ’
return (Comp ps ps ’ )

instance Monad m => Monad ( PairT m) where
return = PairT . return . return
mpa >>= f = PairT $ do

pa <− runPairT mpa
ppa <− sequenceP $ liftM ( runPairT . f ) pa
return $ concatPai r ppa

instance MonadTrans PairT where
l i f t ma = PairT $ do a <− ma

return ( Cons a Ni l )

instance Ord a => Ord ( Pair a ) where
compare p p ’ = case p of

Ni l −> case p ’ of
Ni l −> EQ

−> LT
Cons a q −> case p ’ of

Ni l −> GT
Cons a ’ q ’ −> let c = compare a a ’

in
i f ( c == EQ) then compare q q ’
else c

−> LT
Comp p1 p2 −> case p ’ of

Comp p1 ’ p2 ’ −> let c = compare p1 p1 ’
in
i f c == EQ then compare p2 p2 ’
else c

−> GT

120



Interpretations of the Pair monad

module Pa i r In t e rp where

import PairMonad
import Control .Monad

−−−−−−−−−−Pair as a s t ruc tu r ed i nd e t e rm in i s t i c computation−−−−−−−
pa i rAsStruct : : Pair a −> [ a ]
pa i rAsStruct Ni l = [ ]
pa i rAsStruct ( Cons a p) = ( a : ( pa i rAsStruct p ) )
pa i rAsStruct (Comp p1 p2 ) = ( pa i rAsStruct p1 ) ++ ( pa i rAsStruct p2 )

−−−−−−−−−−Pair as a Cartes ian product−−−−−−−−−−−−−−−−−−−−−−−−−−−−
pairAsCart : : Pair a −> [ [ a ] ]
pairAsCart Ni l = [ ]
pairAsCart ( Cons a p) = ( [ a ] : ( pairAsCart p ) )
pairAsCart (Comp p p ’ ) = ap ( fmap (++) ( pairAsCart p ) ) ( pairAsCart p ’ )

−−−−−−−−−−Pair as a cho ice o f path from root to l e a f−−−−−−−−−−−−−
pairAsPathCh : : Pair a −> [ [ a ] ]
pairAsPathCh Ni l = [ [ ] ]
pairAsPathCh ( Cons a p) = fmap ( a : ) ( pairAsPathCh p)
pairAsPathCh (Comp p p ’ ) = ( pairAsPathCh p) ++ ( pairAsPathCh p ’ )

−−−−−−−−−−Pair as lambda express ions−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
beta : : Eq a => Pair a −> Pair a
beta ps = case ps of

(Comp ( Cons a p) p ’ ) −> i f p == Ni l
then ps
else p >>= subs a p ’

(Comp (Comp p1 p2 ) p) −> Comp ( beta $ Comp p1 p2 ) p
−> ps

reduce : : Eq a => Pair a −> Pair a
reduce ps = case f i ndF ix beta ps of

Ni l −> Ni l
Cons a p −> Cons a ( reduce p)
Comp p1 p2 −> Comp p1 ( reduce p2 )

f indF ix : : Eq a => ( a −> a ) −> a −> a
f indF ix f a = f i x e r a ( f a )

where f i x e r a1 a2 = i f a1 == a2
then a1
else f i x e r a2 ( f a2 )

−−−−−−−−−−Pattern matching lambda terms−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−Same as beta , but with two p r im i t i v e f unc t i ons :
−− i ) (Comp Ni l (Comp p1 p2 )) −> p1
−− i i ) (Comp (Comp Ni l Ni l ) (Comp p1 p2 )) −> p2
betaWP : : Eq a => Pair a −> Pair a
betaWP ps = case ps of

Comp Ni l (Comp p1 ) −> p1
Comp (Comp Ni l Ni l ) (Comp p2 ) −> p2
Comp ( Cons a p) p ’ −> i f p == Ni l

then ps
else p >>= subs a p ’

Comp (Comp p1 p2 ) p −> Comp (betaWP $ Comp p1 p2 ) p
−> ps

reduceWP : : Eq a => Pair a −> Pair a
reduceWP ps = let ps ’ = f indF ix betaWP ps

in
case ps ’ of

Ni l −> Ni l
Cons a p −> Cons a ( reduceWP p)

121



Comp p1 p2 −> Comp p1 ( reduceWP p2 )

evPattern : : Pair String −> Pair String
evPattern p@(Comp ( Cons f Ni l ) ( Cons x Ni l ) ) =

Cons (show p) (Comp ( Cons f (Comp ( Cons x Ni l )
(Comp (Comp Ni l Ni l )

( Cons (show p) Ni l ) ) ) )
(Comp Ni l ( Cons (show p) Ni l ) ) )

evPattern p@(Comp f ( Cons xs Ni l ) ) =
Cons (show p) (Comp ( Cons xs (Comp ( evPattern f )

(Comp Ni l ( Cons (show p) Ni l ) ) ) )
(Comp (Comp Ni l Ni l )

( Cons (show p) Ni l ) ) )

evPattern p = p

reducePatterns : : Pair ( Pair String ) −> Pair String
reducePatterns p = p >>= evPattern

122



12.1.2 Graph reduction

Graph reduction

module GraphReduction where

import PairMonad
import Control .Monad. Trans . Writer
import Control .Monad. Trans . State
import quali f ied Data .Map as Map
import Control .Monad. Trans

data Term a = Red ( Pair a ) | UnRed ( Pair a )
type MyMap a = Map.Map ( Pair a ) (Term a )
type STG a = WriterT String ( State (MyMap a ) )

u n t i l F i x : : (Monad m, Ord a ) => ( a −> m a ) −> a −> m a
u n t i l F i x f a = f i x e r a ( f a )

where f i x e r b mb = do
b ’ <− mb
i f b == b ’

then return b
else f i x e r b ’ ( f b ’ )

insert : : Ord a => Pair a −> Term a −> STG a ( )
insert k a = l i f t $ modify (Map. insert k a )

member : : Ord a => Pair a −> STG a Bool
member k = do s <− l i f t get

return $ Map. member k s

r e t r i e v e : : Ord a => Pair a −> STG a (Term a )
r e t r i e v e k = do s <− l i f t get

return $ s Map . ! k

delete : : Ord a => Pair a −> STG a ( )
delete p = l i f t $ modify (Map. delete p)

share : : (Ord a , Show a ) => Pair a −> STG a ( )
share p = do

b <− member p
i f b

then t e l l $ ”Used shared value <” ++ (show p) ++ ”>.\n”
else do insert p (UnRed p)

t e l l $ ”Shared <” ++ (show p) ++ ”>.\n”

eva lua to r : : (Ord a , Show a ) => Pair a −> STG a ( Pair a )
eva lua to r p = do

trm <− r e t r i e v e p
case trm of

Red p ’ −> do t e l l $ ”Used reduced value <”
++ (show p ’ ) ++ ”>.\n”

return p ’
UnRed p ’ −> do delete p ’

p ’ ’ <− reduceSTG p ’
insert p (Red p ’ ’ )
t e l l $ ”Reduced <” ++ (show p ’ )

++ ”> to <” ++ (show p ’ ’ ) ++ ”>.\n”
return p ’ ’

reduceTop : : (Ord a , Show a ) => Pair a −> STG a ( Pair a )
reduceTop ps = case ps of

Comp ( Cons a p) p ’ −> i f p == Ni l
then return ps
else do share p ’

return $ p >>= subs a p ’
Comp (Comp p1 p2 ) p −> do p ’ <− reduceTop (Comp p1 p2 )

123



return $ Comp p ’ p
−> return ps

reduceSTG : : (Ord a , Show a ) => Pair a −> STG a ( Pair a )
reduceSTG p = do

b <− member p
p ’ <− i f b then eva lua to r p else u n t i l F i x reduceTop p
case p ’ of

Ni l −> return p ’
Cons a ps −> do ps ’ <− reduceSTG ps

return $ Cons a ps ’
Comp p1 p2 −> do p1 ’ <− reduceSTG p1

p2 ’ <− reduceSTG p2
return $ Comp p1 ’ p2 ’

unwrapSTG : : (Ord a , Show a ) => STG a ( Pair a ) −> ( Pair a , String )
unwrapSTG stg = let wtr = runWriterT stg

( ( p , s ) , ) = runState wtr Map. empty
in

(p , s )

reduce : : (Ord a , Show a ) => Pair a −> ( Pair a , String )
reduce = unwrapSTG . reduceSTG

124



12.1.3 Cryptographic framework

Cryptographic framework without state

module CryptoNoState where

import Control .Monad. Trans . State
import Control .Monad.Random
import System .Random
import Control .Monad. Trans
import Data . B i t s
import Control .Monad
import Control .Monad. Supply
import Control .Monad. Writer

type Encrypted k a = SupplyT k ( Writer [ k ] ) a

shareKey : : k −> Encrypted k ( )
shareKey k = l i f t $ t e l l [ k ]

shareKeys : : [ k ] −> Encrypted k ( )
shareKeys ks = l i f t $ t e l l ks

encryptAl l : : ( a −> Encrypted k a ) −> [ a ] −> Encrypted k [ a ]
encryptAl l enc ps = sequence (map enc ps )

evalEncrypted : : ( Encrypted k [ a ] ) −> [ k ] −> ( [ a ] , [ k ] )
evalEncrypted encr ks = let r e s = evalSupplyT encr ks

in
runWriter r e s

generateSupply : : (Random k , RandomGen g ) => Rand g [ k ]
generateSupply = liftM2 ( : ) getRandom generateSupply

bitSupply : : IO [ Int ]
b i tSupply = do gen <− getStdGen

let s ’ = generateSupply
s = evalRand s ’ gen

return $ map (\x −> mod x 2) s

125



Cryptographic framework with state

module Crypto where

import Control .Monad. Trans . State
import Control .Monad.Random
import System .Random
import Control .Monad. Trans
import Data . B i t s
import Control .Monad
import Control .Monad. Supply
import Control .Monad. Writer

type Encrypted k a = StateT [ k ] ( SupplyT k ( Writer [ k ] ) ) a

push : : k −> Encrypted k ( )
push k = modify ( k : )

peek : : Encrypted k k
peek = do s <− get

return $ head s

pop : : Encrypted k k
pop = do k <− peek

modify ta i l
return k

shareKey : : k −> Encrypted k ( )
shareKey k = l i f t $ l i f t $ t e l l [ k ]

shareKeys : : [ k ] −> Encrypted k ( )
shareKeys ks = l i f t $ l i f t $ t e l l ks

encryptAl l : : ( a −> Encrypted k a ) −> [ a ] −> Encrypted k [ a ]
encryptAl l enc ps = sequence (map enc ps )

evalEncrypted : : ( Encrypted k [ a ] ) −> [ k ] −> ( [ a ] , [ k ] )
evalEncrypted encr ks = let r s l t S t = evalStateT encr [ ]

r s l t S u = evalSupplyT r s l t S t ks
in runWriter r s l t S u

generateSupply : : (Random k , RandomGen g ) => Rand g [ k ]
generateSupply = liftM2 ( : ) getRandom generateSupply

bitSupply : : IO [ Int ]
b i tSupply = do gen <− getStdGen

let s ’ = generateSupply
s = evalRand s ’ gen

return $ map (\x −> mod x 2) s

126



Example of usage of the cryptographic framework

import Crypto
import Data . B i t s
import System .Random
import Control .Monad. Supply
import Control .Monad
import Control .Monad. Trans
import Control .Monad. Writer
import Control .Monad. Trans . State

−−One time pad
encOTP : : Int −> Encrypted Int Int
encOTP a = do ( k : ) <− l i f t $ s u p p l i e s 1

shareKey k
return $ xor a k

oneTimePad : : [ Int ] −> [ Int ] −> ( [ Int ] , [ Int ] )
oneTimePad ps ks = encrypt enc ps ks

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−Dummy func t i ons
perm : : [ a ] −> [ a ]
perm = id
subs : : [ a ] −> [ a ]
subs = id

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−Round func t ion fo r SPNs
rndFunc : : [ Int ] −> Int −> Encrypted Int [ Int ]
rndFunc p n = do k <− s u p p l i e s ( length p)

shareKeys k
let c ’ ’ = zipWith xor p k

c ’ = subs c ’ ’
c = i f (n > 1) then perm c ’ else c ’

rndFunc c (n−1)

−−enc fo r SPNs
encSPN : : [ Int ] −> Encrypted Int [ Int ]
encSPN p = rndFunc p 16

spn : : [ Int ] −> [ Int ] −> ( [ Int ] , [ Int ] )
spn ps ks = encrypt encSPN ps ks

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−CBC mode fo r SPNs
encCBC : : [ Int ] −> Encrypted Int [ Int ]
encCBC p = do c ’ <− pop

c <− rndFunc ( xor p c ’ ) 14
push c
return c

127



128



Bibliography

[1] http://blog.sigfpe.com/2006/12/evaluating-cellular-automata-is.html,
December 2006.

[2] http://www.haskell.org/haskellwiki/Monadplus, June 2013.

[3] Harold Abelson, RK Dybvig, CT Haynes, GJ Rozas, NI Adams IV,
DP Friedman, E Kohlbecker, GL Steele Jr, DH Bartley, R Halstead,
et al. Revised report on the algorithmic language scheme. ACM
SIGPLAN Lisp Pointers, 4(3):1–55, 1991.

[4] Steve Awodey. Category Theory (Oxford Logic Guides). Oxford
University Press, USA, 2 edition, August 2010.

[5] P.N. Benton, G.M. Bierman, and V.C.V. de Paiva. Computational
types from a logical perspective i. 1995.

[6] Patrick Blackburn, Johan Van Benthem, and Frank Wolter. Handbook
of Modal Logic. Studies in logic and practical reasoning - ISSN 1570-
2464 ; 3. Elsevier, 2007.

[7] John Goerzen Bryan O’Sullivan and Don Stewart. Real World Haskell.
O’Reilly, 2009.

[8] Olivier Danvy and Andrzej Filinski. A functional abstraction of typed
contexts. Datalogisk Institut, 1989.

[9] Andrzej Filinski. Representing monads. In Proceedings of the 21st
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’94, pages 446–457, New York, NY, USA, 1994. ACM.

[10] Martin Gardner. Mathematical Games The fantastic combinations of
John Conway’s new solitaire game ”life”. Scientific American, 223:120–
123, 1970.

[11] Andrew Gill, John Launchbury, and Simon L. Peyton Jones. A short
cut to deforestation. In Proceedings of the conference on Functional
programming languages and computer architecture, FPCA ’93, pages
223–232, New York, NY, USA, 1993. ACM.

[12] Torsten Grust. Monad Comprehensions: A Versatile Representation
for Queries.

129



[13] Ralf Hinze. Prological features in a functional setting axioms and
implementations. In In Third Fuji Int. Symp. on Functional and Logic
Programming, pages 98–122, 1998.

[14] Paul Hudak, Simon Peyton Jones, Philip Wadler, Brian Boutel, Jon
Fairbairn, Joseph Fasel, Maŕıa M. Guzmán, Kevin Hammond, John
Hughes, Thomas Johnsson, Dick Kieburtz, Rishiyur Nikhil, Will
Partain, and John Peterson. Report on the programming language
haskell: a non-strict, purely functional language version 1.2. SIGPLAN
Not., 27(5):1–164, May 1992.

[15] John Hughes. Generalising monads to arrows. Science of Computer
Programming, 37(1-3):67 – 111, 2000.

[16] Mark P. Jones and Luc Duponcheel. Composing monads. Technical
report, 1993.

[17] Simon P. Jones. Tackling the Awkward Squad: monadic input/output,
concurrency, exceptions, and foreign-language calls in Haskell.

[18] P. J. Landin. Correspondence between algol 60 and church’s lambda-
notation: part i. Commun. ACM, 8(2):89–101, February 1965.

[19] Saunders Mac Lane. Categories for the working mathematician.
Springer-Verlag, New York :, 1971.

[20] Eugenio Moggi. Notions of computation and monads. Inf. Comput.,
93(1):55–92, 1991.

[21] Adriaan Moors, Frank Piessens, and Martin Odersky. Generics of a
higher kind. In Acm Sigplan Notices, volume 43, pages 423–438. ACM,
2008.

[22] D. Orchard and A. Mycroft. A notation for comonads. 2012. In Post-
Proceedings of IFL’12.

[23] Tomas Petricek and Don Syme. Syntax matters: Writing abstract
computations in f#. Pre-proceedings of TFP (Trends in Functional
Programming), St. Andrews, Scotland, 2012.

[24] Simon L. Peyton Jones. The Implementation of Functional Program-
ming Languages (Prentice-Hall International Series in Computer Sci-
ence). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1987.

[25] Simon L Peyton Jones and Philip Wadler. Imperative functional
programming. In Proceedings of the 20th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 71–84.
ACM, 1993.

[26] Frank Pfenning and Rowan Davies. A judgmental reconstruction of
modal logic. In Mathematical Structures in Computer Science, page
2001, 1999.

130



[27] Douglas Stinson. Cryptography: Theory and Practice,Second Edition.
CRC/C&H, 2nd edition, 2002.

[28] Tarmo Uustalu and Varmo Vene. Comonadic notions of computation.
Electronic Notes in Theoretical Computer Science, 203(5):263 – 284,
2008. ¡ce:title¿Proceedings of the Ninth Workshop on Coalgebraic
Methods in Computer Science (CMCS 2008)¡/ce:title¿.

[29] Philip Wadler. The essence of functional programming. In Proceedings
of the 19th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 1–14. ACM, 1992.

[30] Philip Wadler. Monads and composable continuations. Lisp and
Symbolic Computation, 7(1):39–55, 1994.

[31] Philip Wadler. Monads for functional programming. In Advanced Func-
tional Programming, First International Spring School on Advanced
Functional Programming Techniques-Tutorial Text, pages 24–52, Lon-
don, UK, UK, 1995. Springer-Verlag.

[32] Brent Yorgey. Typeclassopedia. The Monad.Reader, (13):17–68, March
2009.

131


