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Abstract
Conventional sampling theory is dictated by Shannon’s celebrated sampling theorem: For a
signal to be reconstructed from samples, it must be sampled with at least twice the maximum
frequency found in the signal. This principle is key in all modern signal acquisition, from
consumer electronics to medical imaging devices. Recently, a new theory of signal acquisition
has emerged in the form of Compressed Sensing, which allows for complete conservation of
the information in a signal using far fewer samples than Shannon’s theorem dictates. This is
achieved by noting that signals with information are usually structured, allowing them to be
represented with very few coefficients in the proper basis, a property called sparsity.

In this thesis, we survey the existing theory of compressed sensing, with details on perfor-
mance guarantees in terms of the Restricted Isometry Property. We then survey the state-of-
the-art applications of the theory, including improved MRI using Total Variation sparsity and
restoration of seismic data using curvelet and wave atom sparsity.

We apply Compressed Sensing to the problem of finding statistical properties of a signal
based CS methods, by attempting to measure the Hurst exponent of rough surfaces by partial
measurements.

We suggest an improvement on previous results in seismic data restoration, by applying a
learned dictionary of signal patches for restoration.
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Chapter 1

Introduction

Classic sampling theory dictates that a signal can only be exactly reconstructed if the sample
frequency is at least double the maximum frequency in the signal, a principle which is called
Shannon’s sampling theorem. This underlying principle is found in any digital signal acquisition
device, from the cameras on most new cell phones and music recorders, to medical MRIs and
telescopes in orbit around the Earth. This poses a problem, as even very mundane signals
must be recorded with a large amount of data in order to ensure that the signal features are
preserved. This has led to a situation where we now collect far more data than we are able to
store, even with the combined storage of all the worlds hard drives. In 2010, The Economist
published a special report entitled “Data, data everywhere”, where they noted that already in
2007, the total amount of information created exceeded the storage space worldwide, and that
this trend was increasing (see figure 1.1). They referred to this problem as a “data deluge”,
where one might drown in the sheer amount of data, unable to find the interesting numbers.

Figure 1.1: The total data created worldwide compared to the total storage space.
The figure is from The Economist.

In order to overcome this massive influx of data, our solution is usually to immediately
compress the data. In the case of sound, the Fourier spectrum of recorded sound will typically
only have a few important components. We can approximate the signal well using only these
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2 Introduction Chapter 1

few components, and setting the rest to zero, regardless of their value. This concept is called
sparsity, and a signal where almost all the coefficients are zero is called sparse. The MP3
audio standard uses this feature to compress the signal to only a fraction of the original size.
Similar considerations are made in many modern signal compression algorithms. This process
is illustrated in figure 1.2

Figure 1.2: The classical process of signal acquisition. The signal is recorded at a
very high frequency, then transformed and compressed, before it is stored. The signal
can then later be decompressed and viewed.

This, however, seems wasteful. We collect a huge amount of data, only to throw away
upwards of 90% afterwards, without a notable loss of quality. Clearly, Shannon’s theorem does
not tell the whole story, as we can represent the signal with far fewer samples than that required
by the theorem, as long as we represent it in the proper basis. Ideally, we would be able to find
these important coefficients right away, without the need for such through sampling. In the
case of audio sampling this need is perhaps not obvious, however, in areas such as medical and
seismic imaging, where the same principles apply, each sample is very costly, and being able to
reduce the number of samples needed would be highly advantageous.

Compressed sensing is a rapidly emerging new field in signal processing, aiming to address
this problem [1]. The key concept is that we might be able to select the few interesting coefficients
of a signal in the proper basis if we make fewer measurements, but make them in a clever way.
This can be illustrated well with the well known riddle often called the “12 coins” problem.

There is a pile of twelve coins, all of equal size. Eleven are of equal weight, while
one is counterfeit and is of a different weight. In three weighings on a balance scale,
find the counterfeit coin and determine if it is heavier or lighter.

This problem has several solutions. Typically, any solution would start by comparing 4
coins on each side of the scale (one would perhaps guess that starting with 6 coins on each side
is better, but as you do not known if the counterfeit coin is heavier or lighter than the other,
this provides no information). One can even find a non-adaptive solution, a solution where the
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result of one weighing does not dictate what coins to weigh next. The key to this solution is
that counterfeit property is sparse in the “signal” of coins. Through a clever combination of
weighings, we are then able to locate this sparse property of the signal. Compressed sensing
formulates the mathematics of what makes weighings, or more generally measurements of a
system, clever. The results are formidable; it turns out that the number of measurements
needed to sample a sparse signal and give an exact reconstruction is mainly proportional to
the number of non-zero samples, rather than the length of the signal itself. As we will signal
x of length N only has k non-zero coefficients, then the number M of measurements needed to
restore the signal is bounded by

M ≥ Ck log(N/k). (1.1)

The measurements are linear, and are described by an M ×N matrix A. The measurement
are then stored in the vector y of length M as

y = Ax. (1.2)

Once the measurements are made, we want to restore the signal by finding the sparsest
possible x#, consistent with the measurements, i.e. such that Ax# = y. The signal acquisition
is a success if this restored signal is the same as the original, x# = x. As it turns out, the best
way to ensure this is to minimize the `1-norm of x#, ‖x‖1 =

∑
i |xi|.

While much theory has been developed for CS, there are still many unexplored applications
of CS waiting to be utilized. The goals of this thesis will be the following:

1. Develop a solid understanding of the CS theory and apply it to simple one-dimensional
time series.

2. Understand how to apply CS in a numerical setting to large 2-D datasets, and find suitable
existing numerical packages for large-scale CS (developing code for numerically stable and
efficient `1-minimization is unfeasible given the time scope of this thesis).

3. Investigate, understand and reproduce existing applications of CS in computational physics,
such as MRI [2], molecular dynamics [3], [4], and restoration of seismic data [5].

4. Suggest new possible uses for CS in computational physics.

1.1 Structure of the thesis

This thesis contains a lot of theory! My hope is that someone with a physics background at
a grad student or late undergrad level, wanting to develop an understanding for compressed
sensing, will find what they need here to become fairly operative in CS. This requires quite a
lot of theory to be developed, as most physics student have had only a minimal exposure to
basis representations, which is at the heart of CS theory and applications.

The thesis is roughly structured by the following main points.

1. The second chapter contains a minimal introduction to digital sampling. Many reader
may be familiar with the results of this chapter, but it serves as a nice backdrop for
introducing some concepts and definitions which we will get back to later.
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2. The third chapter deals with basis representations. First we consider Fourier series of
continuous time signals, which again should be familiar to most physics students. We
then quickly turn to the discrete Fourier transform, which is of more interest to us.

3. Next, we spend some time on the Wavelet transform. This will most likely be new to
someone with a background in pure physics, as even someone who has met wavelets in
physics previously, will find this presentation, rooted in signal processing, new to them.
We also look at some new bases with interesting properties.

4. Chapter 4 begins with an introduction to linear inverse problems. Someone looking to get
the gist of CS may want to read the first section of chapter 4 right away, and then follow
up with chapter 5.

5. Next, several sections are spent on the theory of CS. This may be skipped on a first reading.
Finally, section 4.12 will go through how to implement a CS problem in MATLAB.

6. The final chapter is divided in two parts; the first part, sections 5.1 through 5.4, highlights
notable previous work made with CS in physics. The second part goes through original
work made during work on this thesis.

1.2 My contributions

This thesis as a whole acts more like a review of the field of CS than it does a large body of
original work. However, there are original ideas and results which I would like to highlight, which
has not previously been explored in the literature. The terminology here might be unfamiliar
for the reader, but will be explained in the thesis.

• Random orthogonal bases for measuring 2-D signals. We will see later that one of
the best ways to measure a signal for CS is to make completely random measurements on
the system. However for 2-D signals this is not feasible both in terms of memory usage and
numerical complexity. Using direct products of random matrices produces poor results.
My advisor, Øyvind Ryan, introduced the idea of using orthogonal random bases, and
sensing using subsets of these. This turned out to work very well, but does not seem
to be explored in the literature. In section 4.9.2 i have included some theoretical and
experimental results for such bases. Notably, corollary 4.9.7 gives a better restoration
guarantee for direct products of random measurements than what is previously known in
the literature.

• Restoration of Wavelet detail spaces using curvelet sparsity. The detail wavelet
spaces usually contain information to keep abrupt changes in a signal. These abrupt
changes are governed by continuous curves, and should be well representable with curvelets.
I have experimented with filling in missing detail spaces by finding the sparsest possible
curvelet solution consistent with the low-resolution space. This can be considered a form
of non-adaptive “super resolution”, and produces better results than the traditional cubic
spline method.

• Estimation of Hurst exponents from partial measurements of rough surfaces.
We did some work in the restoration of rough surfaces based on partial samples. We were
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interested in the ability to estimate the Hurst exponent based on only a small amount of
measurements. We developed a method for estimating the Hurst exponent based on only
the first measurements of a time series by generating a dictionary of rough surfaces.

• Seismic data restoration based on measurements of varied resolution. Some
work has already been made in the area of restoration of partial seismic data. Here, we
consider the case where we have partial measurements of different resolutions, which has
not been explored earlier.

• Seismic restoration based on learned dictionaries. Finally, I approached the prob-
lem of seismic restoration using learned dictionaries, achieving better results than with
methods that have previously been showcased in articles.

1.3 Code

The reference to code in this thesis in minimal. This has the advantage of making the thesis
near independent of any particular programming language. There are some minimalist examples
where the code will make the concept more clear. Relevant code producing the figures and result
found in this thesis can, for the most part, be found at the GitHub reposity created for this
project, which can be found at https://github.com/andreavs/Compressed-Sensing-code. If you
want some code which for some reason is not available there, or you have questions about the
code, please contact me at a.v.solbra@fys.uio.no.

https://github.com/andreavs/Compressed-Sensing-code




Chapter 2

Classical sampling theory

To understand why Compressed Sensing (CS) is a powerful tool, we should first review tradi-
tional sampling theory. The first section in this chapter will quickly go through the classical
results, and the rest of the sections will go in depth on the theory of CS.

Most signals encountered in physics are continuous functions either in space or time (or
both). Newton’s laws of physics deals with time as a continuous variable. When we want to
simulate physical systems on a computer, we do not have infinite precision, and so we must
find some approximation to this. The solution is most often to discretized the signal in time.
Examples of this encountered in everyday life are plentiful; think of digitally recorded music,
digital images, which are discretized in pixels, and videos, which are discretized in both time
and space. Most often, the discretized signal is made by measuring the signal at with a fixed
interval, and the measurement are called samples. Let us summarize this.

Fact 2.0.1. Continuous signals, when recorded digitally, are discretized. A signal x(t) is
recorded as a vector x with elements xi = x(ti). Most often, the signal is recorded at with
a fixed interval, i.e. ti = i∆t. In this case, the number of samples per second is called the
sample rate, which we will denote by fs (this is the most common conversion, and comes
from the term “sampling frequency”, which is just another term for sample rate) can be
calculated as

fs =
1 sample

∆t
. (2.1)

This will is a good starting point for our discussion. In order to dive deeper into the concepts
of digital signal processing (DSP), it will be useful to consider an example in some detail. In
order to make this approachable for most people, I will here use sound signals as a common
example. Even so, most of the results are easily transferable to any other type of physical signal.

2.1 Sound

Physically, sound is variations in air pressure, which propagate through the air and reaches
a listener. The variations cause muscles in the ear to resonate with the frequency of the air
pressure, and this is how we perceive sound. The human ear can detect these vibrations as long
as they are in the range 20-20 000 Hz. Before we go any further, it is useful to properly define
some properties which will be useful in this section.

7



8 Classical sampling theory Chapter 2

Definition 2.1.1 (Periodicity and frequency). A function x(t) is said to be periodic with
period P if

x(t+ P ) = x(t). (2.2)

for all t. The function sin(2πft) is periodic with period 1/f . In one unit of time the
function repeats itself f times. We define f to be the frequency of y(t). If f is an integer,
a sine or cosine of this type is type is also called a pure tone.

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

(a) x(t) = sin(2πt)

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

(b) x(t) = cos(2πt)

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

(c) x(t) = sin(2π2t)

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

(d) x(t) = sin(2π4t)

Figure 2.1: The figures show some examples of pure tones, as defined in Definition
2.1.1

Figure 2.1 shows a few pure tones. With these definitions in place, we can begin to consider
digital sound. For now, we will consider the sound to be sampled at a constant rate. Sound can
be stored digitally in several different ways, but the format will not be important in this text,
so we will here use a minimalist definition.
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Definition 2.1.2. A digital sound signal x is an N -dimensional vector with sampled
values from some sound signal x(t), with elements xi = x(ti). Normally, the sample rate is
constant, i.e. ti = i∆t = 1/fs, where fs is the sample rate.

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

(a) The initial signal, x(t) = sin(2π3t)

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

(b) The signal is sampled at a constant rate
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(c) The samples are stored in a vector x

Figure 2.2: The figures show the process of sampling as described in Definition 2.1.2

The process of sampling is illustrated in figure 2.2. It seems reasonable that if the signal
is sampled at a high enough rate, we will be able to reproduce the original non-digital signal
from the sample vector. It turns out that if we use a sample rate higher than two times the
highest frequency in the signal, we can in fact reproduce the original signal exactly. This is
called the Shannon-Nyquist sampling theorem, and we will get back to this in the next section.
For now we will look at a brief example of the phenomenon called aliasing, which occurs when
the sample rate is too low.
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Example 2.1.3 (Aliasing). We consider the signal x(t) = sin(2π8t) for one second with a
sampling rate fs = 10. This is illustrated in figure 2.3(a). The samples will then be xi =
sin(2π8i/10). We now note that from the trigonometric rules sin(−t) = − sin(t) and sin(t) =
sin(2π + t), we get

xi = sin(2π8i/10) (2.3)

= − sin(−2π8i/10) (2.4)

= − sin(2πi− 2π8i/10) (2.5)

= − sin(2π(10i− 8i)/10) (2.6)

= − sin(2π2i/10). (2.7)

And so, based on the collected samples these two signals are identical. The reconstruction
process will then choose the lowest frequency solution, as shown i figure 2.3(c)-2.3(d). In
general, for uniformly sampled signals. We have that for any frequency f < fs, the samples will
overlap with the samples of a signal with frequency fs − f , i.e.

sin(2πfi/N) = − sin(2π(fs − f)i/N). (2.8)

♣

Now that we have solidified the basic concepts of discrete signals, we will turn to the topic
of basis representation, which is needed to understand compressed sensing, which is closely tied
to representing your signal in the proper basis.

2.2 Images

In much the same way that sound consists of air vibrations in a certain frequency range, which
are interpreted by our ears, images are electromagnetic waves in the frequency range 430-790
THz. Images can also be stored digitally, but the story is a bit more complicated, as we
cannot store only a single value per point in space. Many colors, such as pink or purple, can
not be represented by a light with a single frequency, but require a mixture of colors. Colors
containing only one wavelength are called pure colors. Typically, the image is stored with
different intensities of 3 different colors, and these are typically chosen to be red, green and
blue. We can however, store only the intensity of light at a given point, which gives black-and-
white images.

Definition 2.2.1 (Digital images). A black-and-white digital image is a two-dimensional
N ×M array of numbers, corresponding to measurements of light intensity at different
solid angles from the measurement device. The array may consists of integers in a given
range or floating point numbers numbers, typically in the range [0, 1).

A digital color image is usually a three dimensional N × M × 3 array, i.e. 3 two-
dimensional N × M arrays. Each two dimensional arrays contains the measured light
intensity in a specific frequency range.

Images are widely using in DSP literature as test cases for proposed methods. Often the
same few images are used, which makes it easier to compare different methods across articles.
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Some of the most used images are shown in figure 2.4. A large library of common images used
in articles can be found at the USC-SIPI image database [6]. We will use these images several
times throughout this thesis.

Usually black-and-white images are preferred to color images in DSP literature. Partly for
printability of articles, and partly because a method for black-and-white images can be extended
to color images simply by applying the method separately to the different color layers.
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(a) The initial signal, x(t) = sin(2π8t), sampled at
fs = 10.
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(b) The sample vector.
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(c) Reconstructed (wrong) signal.
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(d) The two signals superimposed.

Figure 2.3: The figures illustrate how an undersampled signal will be erroneously
reconstructed. See example 2.1.3 for details.



Section 2.2 Images 13

Figure 2.4: Some of the most common test images used in litterature. Left
to right,tTop to bottom: “Lena”, “Peppers”, “Mandril”, “Cameraman”, “Boat”,
“Straws” and “Modified Shepp-Logan Phantom.





Chapter 3

Basis Representations

In the introduction, the sound and image signals were represented in the time and position basis,
respectively. The basis which represent the signal in the most expected manner, like the above,
is often referred to as the canonical basis. Other basis representations may make important
features of the signal more apparent, and are at the heart of DSP. Here we will introduce some
of the most used basis representations apart from the canonical representation.

3.1 Representation of sound in terms of pure tones, Fourier
transform

We begin our review with a representation which should be somewhat familiar to physicists,
the Fourier Transform. We begin by introducing the transform for continuous signals, but for
us the most important version will be the Fourier transform as applied to digital signals.

3.1.1 Fourier series

In our discussion of sound, we only considered pure tones. The following theorem will show
that this is in fact sufficient, and is an extremely important result. We begin with a definition
which will make make the theorem more clear.

Definition 3.1.1 (Fourier Series). Let y(t) be a function defined on the interval [0, 1). We
want to write x(t) as a sum of pure complex tones, 1, e2πit, e−2πit, . . . .

x(t) =

∞∑
n=−∞

cne
i2πn. (3.1)

This representation is called the Fourier series of x(t).

One can show that the Fourier coefficients, {cn}, are given by

cn =

∫ 1

0
y(t)e−2πit dt. (3.2)

This formula will be explained in section 3.2. The following theorem will show that this series
actually converges to x(t). The formulation of the theorem is from [7].

15
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Theorem 3.1.2 (theorem of Dirichlet). If x(t) is periodic with period 1, and if between
0 and 1 it has a finite number of discontinuities and if

∫ 1
0 |x(t)| dt is finite, the the Fourier

series converges to all points where x(t) is continuous, and converges to the midpoint of
the jump for all other points.

For an approachable proof of this theorem, see [8], and for an even more approachable discussion,
see [7]. We turn to an example of why such a representation would be useful.

The energy of a signal and Parseval’s Theorem

Consider an electric signal in the form of a sine function, I(t) = A sin(ωt), where A is the
amplitude of the signal, and ω is the frequency. The power over a resistor is then given by
P (t) = R|I(t)|2. This is the time-density of the energy output, in the sense that if we want to
find total energy output of a period of time T , we integrate the power over time,

E =

∫ T

0
P (t) dt. (3.3)

Next, we consider a more complicated signal, I = I(t), but require the signal to be periodic
with period 1. We know that the signal can be written by its Fourier series, I(t) =

∑
k cke

2πik.
We then try to find the energy of the signal,

E =

∫ 1

0
P (t) dt (3.4)

=

∫ 1

0
R

(∑
k

cke
2πik

)∑
j

c∗je
−2πij

 dt (3.5)

= R

∫ 1

0

∑
k

∑
j

ckc
∗
je

2πi(k−j) dt (3.6)

= R
∑
k

∑
j

ckc
∗
j

∫ 1

0
e2πi(k−j) dt (3.7)

= R
∑
k

∑
j

ckc
∗
jδjk (3.8)

= R
∑
k

|ck|2, (3.9)

So we see that the squares of the fourier coefficients shows us what amount of power is in
the signal as the different frequencies: it can be interpreted as the frequency density of the
power. This result is a direct result from a much more general theorem called Parseval’s theo-
rem.
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Theorem 3.1.3 (Parseval’s Theorem). Suppose two functions A(t) and B(t) have the
Fourier series

A(t) =
∑
n

ane
2πint, (3.10)

and
B(t) =

∑
n

bne
2πint, (3.11)

respectively, then ∑
n

anb
∗
n =

∫ 1

0
A(t)B(t)∗ dt. (3.12)

Proof. This follows from the orthogonality of the exponential functions.

If we set A = B then we obtain our result directly from the theorem.

3.1.2 Discrete Fourier transform

This forms the background for approximating continuous signals with pure tones. However,
once the signals we want to analyse have already been discretized, and so we will focus on
methods for discrete signals. With that, let us now define a fourier transform for vectors. We
want a transform which is similar to the continuous case, however, our signal only has values at
a finite set of points y(0), y(1/N), . . . , y((N − 1)/N). Because of this, we only need a finite set
of pure tones to determine a vector that passes thorugh all these points. We choose these to be
1, e2πit, e2πi2t, . . . , e2πi(N−1)t}. Now we can define the Discrete Fourier basis.

Definition 3.1.4 (Discrete fourier basis). The N -dimensional discrete Fourier basis for
a sample vector x, is the functions {1, e2πit, e2πi2t, . . . , e2πi(N−1)t} sampled at the points
tk = k/N for k = 0, . . . , N −1, i.e. We also want the vectors to be normalized with respect
to the normal inner product, which gives a prefactor of 1/

√
N (this will be explained more

in section 3.2). This gives the vectors

y(0) =
1√
N

(
1, 1, 1, . . . , 1

)T
,

y(1) =
1√
N

(
1, e2πi/N , e2πi2/N , . . . , e2πi(N−1)/N

)T
,

y(2) =
1√
N

(
1, e2πi2/N , e2πi4/N , . . . , e2πi2(N−1)/N

)T
, (3.13)

...

y(N−1) =
1√
N

(
1, e2πi(N−1)/N , e2πi(N−1)/N , . . . , e2πi(N−1)(N−1)/N

)T
,

We want to find coefficients the coefficients {yi}N−1
i=0 such that

x(ti)xi = y0y
(0)
i + y1y

(1)
i + y2y

(2)
i + · · ·+ yN−1y

(N−1)
i . (3.14)
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for all i = 0, . . . , N − 1. This gives us N equations for the N unknown coefficients. We can
collect these into a matrix equation of the form

x = Gy, (3.15)

where Gjk = y
(k)
j = 1√

N
e2πijk/N . This leads us directly to the next result

Theorem 3.1.5 (discrete fourier transform). The Discrete Fourier transform (DFT) of a
sample vector x is given by

y = FNx, (3.16)

where FN is the N -dimensional Fourier matrix with elements (FN )jk = e−2πijk/N .

Proof. Note that the matrix G as defined in eq (3.15) is orthogonal (this is easy to check), so
its inverse is simply G†, the hermittian conjugate.

The inverse discrete Fourier transform (IDFT) is given by F †, x = F †Ny. At this point we
now how to perform a DFT, but how should we interpret it? Consider a normalized vector in
R3, represented with the usual cartesian coordinates. The size of each vector component tells
you roughly how much your vector “looks like” that particular basis vector. The same is true
for vectors represented in the fourier basis. The more the vector “looks like” a sine/cosine with
frequency n the larger the imaginary/real parts of the n-th fourier coefficient will be. We can
check this with the following simple example.

Example 3.1.6 (a simple example of DFT). We want to study the fourier transform of

x(t) = sin(2π150t) +
1

2
cos(2π300t) (3.17)

We store this signal as a vector with a sampling frequency of fs = 4096. We expect the only
fourier coefficients to p an imaginary part at f = 150 and a real part at f = 300. We also expect
the real part to be about half the size of the imaginary part. The result is shown in figure 3.1(b),
and agrees with our expectation. The figure also shows some other common representations
of the fourier spectrum. 3.1(c) shows the absolute value of the fourier coefficient. This treats
the frequencies equally independent of phase, which makes it well suited for investigating real
sound signals. This is called the frequency spectrum. Figure 3.1(d) shows the square of the
absolute values. This is a common way to represent physical signals, because this will tell us
the frequency distribution of the power, as seen in section 3.1.1. For this reason, the final
representation is often called the (frequency) power spectrum.

We see that in addition to the expected frequency spikes, there are similar spikes on the
opposite end of the spectrum. This is an effect of aliasing, as mentioned in example 2.1.3. For
this reason, only the first half of the Fourier coefficients are shown in many cases, but we include
the entire Fourier spectrum here for clarity.

♣
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Figure 3.1: The figures 3.1(b)-3.1(d) show some different representations of the
fourier spectrum of the time signal showed in figure 3.1(a)
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3.1.3 The Fast Fourier Transform

Here we will introduce a very efficient algorithm for performing the DFT. In order to put this
into the proper context, we should define the most common way to profile the efficiency of an
algorithm, the leading order.

Definition 3.1.7 (Leading order). Let A be an algorithm to be performed on some signal
x of length N . The algorithm will will require some number K of operations, typically
dependent on N , K = K(N). We define the leading order of A is the fastest growing term
in K(N). If we denote functional form the fastest growing term by f(N), i.e. the dominant
term as N →∞, but normalized to remove any constant in front of it, then we denote the
leading order of A as O(f(N)). This is also sometimes referred to as the complexity of A.

As an example, solving a system of N linear equations by Gaussian elimination is known to
require N(N − 1)/2 divisions, (2N3 + 3N2 − 5N)/6 multiplications and (2N3 + 3N2 − 5N)/6
subtractions, for a total of N(4N2 + 9N −13)/6 operations. The largest term in this expression
is 2N3/3, which makes the leading order O(N3). The multiplication of an N ×N matrix with
an N -length vector has order O(N2), while the multiplication of two N ×N matrices is of order
O(N3).

The implementation of the DFT we have mentioned so far is of order O(N2), as we have
presented it as a matrix-vector multiplication. The following theorem will be the key to greatly
reducing this order, and its implementation is known as the Fast Fourier Transform (FFT).
The FFT is an example of a divide and conquer algorithm. Such algorithms work by recursively
breaking down a problem into two or more sub-problems of the same (or related) type, until
these become simple enough to be solved directly. The solutions to the sub-problems are then
combined to give a solution to the original problem.

Theorem 3.1.8 (FFT algorithm). Let x be a vector of length N where N is even and
let y = FN be its DFT. If we denote the even entries of x by x(e), i.e., x(e) = (x0, x2, . . . ,
xN−2)T , and similarly denote the odd elements of x by x(o), then the elements of y are for
any n in the interval [0, N/2− 1] given by

yn =
1√
2

(
(FN/2x

(e))n + exp(−2πin/N)(FNx(o))n
)
, (3.18)

yN/2+n =
1√
2

(
(FN/2x

(e))n − exp(−2πin/N)(FNx(o))n
)

(3.19)
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Proof. This is proved using simple algebra. We split the expression of yn into expressions
involving x(e) and x(o):

yn =
1√
N

N−1∑
k=0

xke
−2πink/N (3.20)

=
1√
N

N/2−1∑
k=0

x2ke
−2πin2k/N +

1√
N

N/2−1∑
k=0

x2k+1e
−2πin(2k+1)/N (3.21)

=
1√
2

 1√
N/2

N/2−1∑
k=0

x2ke
−2πink/(N/2) + e−2πin/N 1√

N/2

N/2−1∑
k=0

x2k+1e
−2πin(k)/(N/2)


(3.22)

= 1
√

2
(

(FN/2x
(e))n + e−2πin/N (FN/2)n

)
. (3.23)

The expression for yN/2+n is derived similarly.
If we use this expression to calculate y, then rather than the N2 operations needed for a

regular matrix-vector multiplication, we need 2(N/2)2 + 5N/2 operations. This is still of order
O(N2), however, we can repeat this argument when we calculate FN/2x

(o) and FN/2x
(e), and

continue to split the DFT calculations in this manner.
If we for simplicity consider only the multiplications in this expression, and also ignore the

multiplication of 1/
√

2, then it is clear that if we denote the number of operations needed to
calculate the DFT by MN , then

MN = 2MN/2 +N/2. (3.24)

In the case where N = 2n, we can denote M2n by mn then the expression takes the form

mn+1 = 2mn + 2n, (3.25)

which is a difference equation with the general solution mn = (C+n)2n−1, which in turn implies
that MN = N(C+log2(N))/2. This shows that the leading order of the FFT algorithm is given
by O(N log2(N)). The FFT is possibly the most used algorithm in applied mathematics, and
will usually find its way into any list of the most important algorithms created [9]. Several
improvements can be made on the version proved here, but they all share the order of this
simple version. A MATLAB implementation of the above theorem may look like the following:

function y = FFTImpl(x)
N = l e ng th(x);
if N == 1

y = x(1);
else

xe = x(1:2:(N−1));
xo = x(2:2:N);
ye = FFTImpl(xe);
yo = FFTImpl(xo);
D=exp(−2*p i*1 j*(0:N/2−1)'/N);
y = [ ye + yo .*D; ye − yo .*D]/ s q r t(2);

end
end
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One should note that MATLAB has a far more efficient and robust built-in FFT function
called fft(x). This is normalized different than the version presented here; if one wants the
unitary transformations one should use the calls fft(x)/sqrt(N), and ifft(x)*sqrt(N).

3.2 General Basis representation

We have already developed some sense of Basis representations by considering the Fourier Basis.
However, we will encounter some signals that are not very informative to look at in a Fourier
basis, but rather in some other basis. We will therefore consider some general theorems for
basis representation, which will make future work in new bases less tedious. This section will
follow material from [10] closely, but the notation and discussions will be adjusted to our needs.

We begin by properly defining a basis representation.

Definition 3.2.1. Let B = {b0,b1, . . . ,bN−1} be a basis for an N -dimensional vector
space V . Since B is a basis, a vector x can be written as a linear combination of the basis
elements,

x = c0b0 + · · ·+ cN−1bN−1. (3.26)

The coefficient vector (c0, . . . , cN−1)T is called the B-coordinates of x, and can be written
[x]B.

Just like for the Fourier basis, we can look at this as Matrix equation,

x = PB[x]B. (3.27)

where PB is given by the basis vectors,

PB =
(
b0 b1 . . . bN−1

)
. (3.28)

And because of this, we can find the basis representation of x as

[x]B = P−1
B x. (3.29)

Note that if PB is orthogonal, that is, the basis vectors are orthonormal, then inverse of PB
is simply its hermitian conjugate,

P−1
B = P †B. (3.30)

Furthermore, the basis representation of a matrix A in the base B is

[A]B = P−1
B APB. (3.31)

To check this, assume y = Ax. Then

[y]B = [A]B[x]B (3.32)

= P−1
B APBP

−1
B x (3.33)

= P−1
B Ax (3.34)

= P−1
B y, (3.35)

which means y gets its proper representation in the B-basis.
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3.3 Wavelet bases

In this section we will use the theory developed so far to study another set of bases which
will be useful to us later, called wavelets. So far, we have seen the regular (Cartesian) basis,
which is extremely local in time, but caries no frequency information, and the Fourier basis,
which is very dilute in time, but carries maximum frequency information. Wavelets carry a mix
of the two, some time information and some frequency information (the name wavelet means
“small wave”). Figure 3.2 show some continuous wavelets commonly used in science. Like for
the Fourier basis, the discrete wavelets are made by interpolating the continuous wavelets at a
discrete set of points {1/N, 2/N, . . . , (N − 1)/N}. The functions are then turned into a basis
by translating them in time.
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Figure 3.2: The figures show some common wavelets.
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3.3.1 Continuous Wavelet Transformations

Rather than describing this process in detail, we will focus here on the Haar wavelet. In order
to understand this wavelet, we need to get some basic terminology down.

Definition 3.3.1 (Resolution space). Let N be a natural number. The resolution space
V0 is defined as the spaces of function which are constant on each interval [n, n + 1) for
n = 0, . . . , N − 1.

With this in mind, we begin by defining the scaling function (sometimes called the father
wavelet).

Lemma 3.3.2 (Scaling function). We define the scaling function φ(t) by

φ(t) =

{
1 if 0 ≤ t < 1,

0 otherwise.
(3.36)

We then let φn(t− n) for n = 0, . . . , N − 1. The functions {φn} then form an orthonormal
basis for V0 with respect to the inner product

〈f, g〉 =

∫ N

0
f(t)g(t) dt. (3.37)

Now, it is clear that V0 is not enough to provide a basis for all function, but we will see how we
can extend this in a natural way. This will also clarify the name scaling function.

Definition 3.3.3 (Refined resolution spaces). The space Vm is the space of piecewise
constant functions on each interval [n/2m, (n + 1)/2m for n = 0, . . . , 2m(N − 1). We will
construct a basis for this space by using the function

φm,n(t) = 2m/2φ(2mt− n) =

{
2m/2 if n/2m ≤ t < (n+ 1)/2m,

0 otherwise.
(3.38)

The following now easily proved.

Lemma 3.3.4 (Properties of resolution spaces). Resolution spaces are nested,

V0 ⊂ V1 ⊂ · · · ⊂ Vm. (3.39)

and the set {φm,n}n converges to a basis of continuous functions when m→∞.

We can extend V0 to be equal to V1 by adding another space. Let us first clarify what this
means.



Section 3.3 Wavelet bases 25

Definition 3.3.5 (Direct sum). The direct sum of two vector spaces U, V ⊆ W is the
space of all vectors on the form u + v for any u ∈ U and any v ∈ V . It is denoted as
U ⊕ V .

With this definition in mind, here is how we can extend V0.

Definition 3.3.6 (detail space). Let W0 be the orthogonal complement of V0 in V1, i.e.
the subspace of V1 such that W0⊕ V0 = V1 and 〈v, w〉 = 0 for any v ∈ V0 and any w ∈W0.
We call W0 the detail space of V0.

We then define the function ψ(t) as

ψ(t) =


1 if 0 ≤ t < 1/2,

−1 if 1/2 ≤ t < 1,

0 otherwise.

(3.40)

It is clear that ψn(t) = ψ(t− n) is a basis for W0, and we call ψ the mother wavelet.

To end this section, we note that if a function f is in V1, which means it can be written either
as

f(t) =
N−1∑
n=0

c0,nφ0,n(t) + w0,nψ0,n(t). (3.41)

or

f(t) =

2N−1∑
n=0

c1,nφ1,n(t). (3.42)

The relations between these coefficients are(
c1,2i

c1,2i+1

)
=

1√
2

(
1 1
1 −1

)(
c0,i

w0,i

)
. (3.43)

3.3.2 Discrete Wavelet Transform

The information in the last section was very dense. The good news is that we are now able to
define the Discrete Wavelet Transform (DWT) in a meaningful way. First we make a small note
about digital signals, which will tie the discrete transform to the continuous one.

If we let f(t) be some signal in Vm, so that f(t) =
∑2mN

n=0 cnφm,n(t). Then for any k ∈ {0,
1, . . . , 2mN − 1},

f(k) =
N−1∑
n=0

cnφ0,n(k) = ck, (3.44)

which means that the basis representation in Vm of a signal f ∈ Vm can be thought of as a vector
of samples from f . Alternately, a sample vector can be though of as the basis representation of
f in Vm. This will be our motivation for the following theorem.
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Theorem 3.3.7 (Discrete Wavelet Transform). We define the DWT to be the change of
coordinates from Vm to Vm−1⊕Wm−1. The change of coordinates, e.g. the DWT, is given
by

cm−1,n = (cm,2n + cm,2n+1)/
√

2, (3.45)

wm−1,n = (cm,2n − cm,2n+1)/
√

2. (3.46)

The Inverse Discrete Wavelet Transform (IDWT) is given by

cm,2n = (cm−1,n + wm−1,n)/
√

2, (3.47)

cm,2n+1 = (cm−1,n − wm−1,n)/
√

2. (3.48)

If we represent the vector in V0 ⊕ W0 as (cm−1,0, cm−1,1, . . . , cm−1,N−1, wm−1,0, wm−1,1, . . . ,
wm−1,N−1)T . We can write the change of coordinates matrix as

P(Vm−1⊕Wm−1)←Vm =
1√
2
P



1 1 0 0 . . . 0
1 −1 0 0 . . . 0
0 0 1 1 0

0 0 1 −1
. . . 0

...
. . .

. . .
...

0 0 0 0 . . . −1


, (3.49)

where P is a permutation matrix which sorts the vector from (cm−1,0, wm−1,0, . . . , cm−1,N−1,
wm−1,N−1) to (cm−1,1, . . . , cm−1,N−1, wm−1,1, . . . , wm−1,N−1). This matrix will take on the form

P =



1 0 0 0 . . . 0 0
0 0 1 0 . . . 0 0
... . . .

...
0 0 0 0 . . . 1 0
0 1 0 0 . . . 0 0
0 0 0 1 . . . 0 0
... . . .

...
0 0 0 0 . . . 0 1


. (3.50)

A matrix where blocks repeat along the diagonal as in (3.49) is called a block Toeplitz Matrix.
The term Toeplitz matrix will be defined in the next section.

It may seem strange that we want to order the resulting vector as in (3.50), as it would be
simpler to just do the transform. The reason for this ordering is that we can now perform a
wavelet transform on the scaling part of the vector, i.e. we will represent the vector in the space
Vm−2 ⊕Wm−2 ⊕Wm−1. This can then be repeated multiple times, giving a representation in
the space

V0 ⊕W0 ⊕W1 ⊕W2 ⊕ · · · ⊕Wm−1. (3.51)

This process is generally called a Multi-resolution Analysis (MRA). In this setting is also called
an m-level wavelet transform.
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The square of the non-P part of the change of coordinate matrix is the identity matrix, so
the inverse change of basis matrix is on the form

P(Vm−1⊕Wm−1)←Vm =
1√
2



1 −1 0 0 . . . 0
1 1 0 0 . . . 0
0 0 1 1 0

0 0 1 −1
. . . 0

...
. . .

. . .
...

0 0 0 0 . . . −1


P ′, (3.52)

where P ′ is a matrix which orders the vector back to (cm−1,0, wm−1,0, . . . , cm−1,N−1, wm−1,N−1).
It has the form

P ′ =



1 0 . . . 0 0
0 0 . . . 0 0
0 1 . . . 0 0
0 0 . . . 0 0
... . . .

...
0 0 . . . 0 0
0 0 . . . 1 0
0 0 . . . 0 0
0 0 . . . 0 1


. (3.53)

The outcome of such a transform is not as easy to interpret as a Fourier Transform, and it will
depend on the type of wavelet used. It is useful at this point to look at an example.

Example 3.3.8. For this example we will signal with some structure to highlight the features
of the DWT. The signal is the sound file fiolin.wav, which can be found at the git repository
under code/sounds. We use the first 220 samples of this signal, so we might say this is a signal
in V20. The signal along with various m-level transforms is shown in figure 3.3. Note that the
first half of the signal in figure 3.3(b) is very similar to the signal itself. This is because the
first half is the representation of the signal in V19, which is just a coarser representation. We
also see that the detail space W19 has small components, which means that little information is
lost in this approximation of averaging every other samples. In the 2-level DWT, note how the
last half of the signal is identical to the 1-level DWT. This is because we represent the signal
by breaking it down in the space V18 ⊕W18 ⊕W19, so the last part of the vector should remain
untouched as we go to deeper levels of the DWT. Finally, figure 3.3(d) shows the complete
20-level DWT. At this point, only the first component represent the signal approximation, and
the rest of the components are from the various detail spaces W0,W1, . . . ,W19. Now there is
considerable information stored in the detail spaces. Still, the information is a lot more dense
now, in the sense that many of the coefficients are small. ♣

3.3.3 Creating new DWTs

We went through some work on defining the discrete Haar wavelet transform from the continuous
transform. In the end, we essentially ended up with two coefficient vectors, (1, 1)T /

√
2 and (1,

−1)T /
√

2. These two vectors are repeated along the diagonal of our transformation matrix. In
wavelet and DSP literature, these vectors are called filters, and are denoted in a specific way.
To appreciate their formulation, we should properly define what is meant by a filter in DSP.
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Definition 3.3.9 (digital filter). In DSP, a digital filter S is an operation performed on
a sampled, discrete-time signal x. The operation produces a new vector z, element by
element, by performing an operation centered around all the different elements of x, one
after the other.

An example of a filter may be the procedure

zn =
1

4
(xn−1 + 2xn + xn+1), for n = 0, . . . , N − 1. (3.54)

This filter is called a smoothing filter, as it has the effect of spreading out sharp peaks in a
signal. This filter brings up the point of what to do for the end points z0 and zN−1, as they are
defined in terms of the “elements” x−1 and xN , which do not exist. We solve this by assuming
x to be periodic, which means x−1 = xN−1 and xN = x0. We can then write the application of
a filter S on a signal x as the matrix equation z = Sx, where

S =



2 1 0 . . . 0 1
1 2 1 . . . 0 0
0 1 2 . . . 0 0
...

...
...

...
...

...
0 0 0 . . . 2 1
1 0 0 . . . 1 2


. (3.55)

A matrix where the elements are repeated along each diagonal is called a Toeplitz matrix. If
the elements also wrap around periodically such as above the matrix is called circulant Toeplitz.
The application of a general filter S can be written as

zn =
∑
k

tkxn−k. (3.56)

where tk are the filter coefficients of S. For the smoothing filter introduced here, t−1 = t1 = 1/4,
and t0 = 1/2. Using this, we can define a compact notation for filters

Definition 3.3.10 (Compact notation for filters). We can define a compact notation for
a digital filter in terms of its filter coefficients. We may write

S = {tkmin
, . . . t−1, t0, t1, . . . , tkmax}, (3.57)

where we underline the element along the diagonal of S, and we do not denote the zero-
valued filter coefficients outside of the non-zero filter coefficients with the largest indices.

Given a filter matrix S, the compact notation can be found by reading of any column from top
to bottom (while keeping the periodic wrap-around in mind). With this notation, the smoothing
filter can be written as S = (1/4){1, 2, 1}.

With this in mind, we can define the filters of a DWT
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Definition 3.3.11 (filters of a DWT.). We define the filters of a DWT, H0 and H1, to be
defined by (uniquely) the filter coefficients along the first and second column of the DWT
matrix. Conversely, we define the filters of an IDWT, G0 and G1, to be defined by the
filter coefficients along the first and second column of the IDWT matrix.

With this definition, the filters of the Haar DWT are given by

H0 =
1√
2
{1, 1},

H1 =
1√
2
{−1, 1},

(3.58)

while the filters of the Haar IDWT are given by

G0 =
1√
2
{1, 1},

G1 =
1√
2
{1,−1},

(3.59)

where we the underlined coefficient is the coefficient on the diagonal of the change of coordinates
matrix.

Now we can define create new transforms just by defining two linearly independent fil-
ters (they do not have to be orthogonal). There is a lot of theory that goes into choosing
“good” coefficients with right properties. The JPEG2000 image format uses the so-called Cohen-
Daubechies-Feauveau (CDF) 9/7 wavelet, where the filters are given by

H0 ={0.0378,−0.0238,−0.1106, 0.3774, 0.8527, 0.3774,−0.1106,−0.0238, 0.0378}
H1 ={0.0645,−0.0407,−0.4181, 0.7885,−0.4181,−0.0407, 0.0645}

(3.60)

These turn out to be very good for representing pictures, as we will see later.

3.3.4 Efficient implementation of the DWT

Because the DWT matrices are typically very sparse, with only a few non-zero diagonals. Rather
than setting up the entire DWT matrix, it is much more efficient to simply apply the filters
H0 and H1 element-wise to a vector x. A single level DWT will then require an order of
O(N) operations, while for a signal of length n = 2m an m-level DWT will require an order
of O(n log2(n)) operations. A simple MATLAB implementation of the Haar DWT might look
something like the following:

function xnew=DWTHaarImpl(x,m)
xnew=x;
for mres=m:(−1):1

l e n= l e ng th(xnew)/2ˆ(m−mres);
c=(xnew(1:2:( l en−1))+xnew(2:2: l e n))/ s q r t(2);
w=(xnew(1:2:( l en−1))−xnew(2:2: l e n))/ s q r t(2);
xnew(1: l e n)=[c w];

end
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Once again, one should note that MATLAB has a highly efficient DWT function, called
by dwt(x,H0,H1), where H0 and H1 are the wavelet filters, or dwt(x,’name’), where ’name’is
the name of the wavelet used. Here we have decided on a periodic extension of our vectors to
account for boundary effects. This is not the default setting in MATLAB. To change this, one
may use the call dwtmode(’per’).

The DWT can be implemented even more efficiently, by applying the so-called lifting scheme
[11]. The details of this are not needed in our discussion. A lifting scheme implementations will
cut the number of additions and multiplications needed in half.
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Figure 3.3: The figure shows several levels of the Haar DWT transform.
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3.4 Basis representation in higher dimensions

So far we have only considered one-dimensional signals. We will need to consider signals in two
and three dimensions as well for our applications. We will extend our work so far through the
formalism of tensor products. Let us begin by defining what we mean by a tensor product in
this setting.

Definition 3.4.1 (Tensor products of vectors). Let V and W be two vector spaces. The
Tensor product (also called direct product) of vectors v from V and w from W , denoted
v⊗w is an operation from two vector spaces V and W to a vector space U with dimension
dim(U) = dim(V ) dim(W ), such that

• (v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w,

• v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2,

• cv ⊗ w = v ⊗ cw = c(v ⊗ w).

The new vector space is called the tensor product vector space and is denoted V ⊗W .

This definition might seem very vague. The reason for this is that there are several ways
to represent the tensor product of vectors. Here we present two different representations, each
with their own advantages and drawbacks. First we have the Kronecker product representation,
which we will denote by ⊗k in this section in order to avoid confusion. Later we will use the
two formalisms interchangeably.

Definition 3.4.2 (Kronecker product representation of Tensor products). In the Kronecker
product representation of vectors, the Tensor product of two vectors v = (v1, v2, . . . , vN )T

and w = (w1, w2, . . . , wM )T is given by v ⊗k w = (v1w1, v1w2, . . . , v1wM , v2w1, v2w2, . . . ,
v2wM , . . . vNw1, vNw2, . . . vNwM )T .

This is the representation of the Tensor product familiar from the way most textbooks deal
with spin in quantum mechanics (see for instance [12]). The advantage of this method is be
clear once we define how operators are applied on tensor products.

Definition 3.4.3 (Tensor products of operators). We define the tensor product of two
operators A : V1 → V2 and B : W1 →W2 to be the operator A⊗B : V1 ⊗W1 → V2 ⊗W2,
defined by

(A⊗B)(v ⊗ w) = (Av)⊗ (Bw). (3.61)

Note that this definition is independent on what representation we decide on.

One can show that using this definition and the Kronecker product representation of direct
products, the tensor product is simply the Kronecker product of operators.
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Lemma 3.4.4. Let A be an m× n matrix and B be a p× q matrix. The tensor product
of operators A⊗B in the Kronecker representation is the mp× nq matrix

A⊗k B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 . (3.62)

This product is called the Kronecker product of matrices.

Proof. We consider only the special case where A is n × n and B is m ×m. We write our
vector as (v1w, v2w, . . . , vnw)T . Then

(A⊗k B)(v ⊗k w) =

a11B · · · a1nB
...

. . .
...

an1B · · · annB


v1w

T

...
vnw

T

 (3.63)

=

 (a11v1 + a12v2 + · · ·+ a1nvn)BwT

...
(an1v1 + an2v2 + · · ·+ annvn)BwT

 (3.64)

= (Av)⊗k (Bw). (3.65)

The advantage of this representation is that matrix-vector equations such as the DFT (y =
FNx) remain matrix-vector equations in 2D (and higher dimensions). This means that we can
use code already developed for one-dimensional problems directly. The disadvantage is that the
matrix will be of size N2 × N2 = N4, which offers challenges both in terms of memory usage
and computation time. The computation of the matrix vector product will require an order of
O(N4) operations.

There is an alternate way to represent the tensor product, which we call the outer product,
and simply denote by ⊗.

Definition 3.4.5 (outer product representation of tensor product). In the outer product
representation of the tensor product, the Tensor product of two vectors v = (v1, v2, . . . ,
vN )T and w = (w1, w2, . . . , wM )T is given by

(v⊗w) = vwT =


v1w1 v1w2 · · · v1wM
v2w1 v2w2 · · · v2wM

...
...

. . .
...

vNw1 vNw2 · · · vNwM

 . (3.66)

In this case we get a different formula for applying a tensor product of operators to a tensor
product of vectors.
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Lemma 3.4.6 (Tensor product of operators in the outer product representation). Let A
be an m× n matrix and B be a p× q matrix. The operation (A⊗B)(v⊗w) is given by

(A⊗B)(v⊗w) = A(v⊗w)BT . (3.67)

Proof. Note that

A(v⊗w)BT = AvwTBT (3.68)

= (Av)(Bw)T (3.69)

= (Av)⊗ (Bw). (3.70)

This representation has several useful features, such as the fact that in this case we do not
find the explicit representation of A⊗B, as it is not necessary to calculate the operation. This
saves a lot memory, as the operators will require no more memory than the signal itself. In
addition, since we do two matrix multiplications of size N , the computation of this product is of
order O(N3). The disadvantage is that we do now longer have a matrix-vector product, which
means that we need to adjust our algorithms for one-dimensional problems, and it is also less
clear how we can extend this representation to higher dimensions.

If we denote X = (v⊗w), then the operation can be written as

(A⊗B)X = AXBT (3.71)

= (B(AX)T )T . (3.72)

This may seem convoluted, but it tells us that we can break the operation down in the following
steps:

1. Apply A to every column in X, as the matrix matrix product AX.

2. Transpose the resulting matrix

3. Apply B to the resulting matrix from step 2.

4. Finally, transpose the result.

This will be useful in implementations, but we will not go into detail on this here.

3.4.1 Basis Representation in 2D

We have laid down most of the ground work at this point. In this section we will argue that
if {v(i)}N−1

i=0 is a set of vectors well suited for approximation or basis representation in the

vector space V , and similarly, {w(j)}M−1
j=0 for the vector space W , then {v(i) ⊗ w(j)}N−1,M−1

i,j=0,0

is a good representation in V ⊗ W . To make this clear we first define the inner product in
V ⊗W .

Definition 3.4.7. The inner product 〈·, ·〉 in V ⊗W is given by

〈v1 ⊗ w1, v2 ⊗ w2〉 = 〈v1, v2〉〈w1, w2〉. (3.73)

With this in place, we can prove the following theorem



Section 3.4 Basis representation in higher dimensions 35

Theorem 3.4.8. If {v(i)}N−1
i=0 is a basis for V and {w(j)}M−1

j=0 is a basis for W , then

{v(i) ⊗w(j)}N−1,M−1
i,j=0,0 is a basis for V ⊗W .

Proof. Assume that
M−1,N−1∑
i,j=0,0

ci,jv
(i) ⊗w(j) = 0. (3.74)

We will show that this implies ci,j = 0, which means the vectors are linearly dependent. Let

u(i) =
∑M−1

j=0 ci,jw
(j). Then

N−1∑
j=0

v(i) ⊗ u(i) =

N−1∑
j=0

v(i)u(i)T = 0, (3.75)

where we note that this is a matrix equation, which means that
(∑N−1

j=0 u(i) ⊗w(j)
)
kl

= 0 for

any element (k, l). This in turns means that if we denote the k-th element of u(i) by u
(i)
k , then∑N−1

i=0 u
(i)
k v(i) = 0 for any k. From the linear independence of {v(j)}M−1

j=0 we know that this

implies u
(i)
k = 0 for all k. Since u

(i)
k =

∑M−1
j=0 ci,jv

(j)
k , and {v(i)}N−1

i=0 is linearly dependent, this
tells us that ci,j = 0 for all j. Since this argument hold for any i, we conclude that ci,j = 0 for
all i, j.

It is hard to define in a quantitative way what a “good” basis is, but this theorem shows
us that we can draw inspiration from one-dimensional bases when constructing bases in higher
dimensions. At this point it will be useful to look at some examples to get a feel for how the
two-dimensional transforms behave.

3.4.2 Some examples of Fourier and Haar transforms in 2D

In this section we will test the two-dimensional transforms. We will use two of the standard
benchmarking images introduced in 2.4, Lena and Modified Shepp-Logan Phantom.

Note that we can think of a picture as a vector in Rn ⊗ Rm, and as such, we may choose
to order it as a long vector in the Kronecker representation. With this in mind we can start to
look at the two-dimensional variants of the DFT and the DWT.

We begin by investigating the Fourier transform. To do this, we simply construct a 512×512
DFT matrix, as described section 3.1.2, and compute the change of coordinates

Y = FNXF
T
N . (3.76)

We could in principle have calculated the transform using the Kronecker formalism, but a
5122× 5122 complex matrix with double precision would require 2× 5124× 64 bits = 225 bits =
1024GB of memory, which at the time of writing is unreasonable on everything except large
supercomputers. The result is shown in figure 3.4(b). It is difficult to extract any information
from the signal Y itself, because it is so dominated by low frequencies. For this reason, it is
common to take the logarithm of the frequency spectrum, as displayed in figure 3.4(b). We
can also order the coefficients as a vector and display them in the Kronecker representation, as
shown in figure 3.4(c). We repeat the process for the Shepp-Logan Phantom in figure 3.5.
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We see the same folding effects as in the one-dimensional case, so that the spectrum is
symmetric around both the x- and y-axis. We also see that the low frequencies dominate the
spectrum. We also note that the DFT of the phantom image looks more ordered that the DFT
of the lena image. Without going into detail, the ripples seen in the phantom DFT occurs
from circular shapes in the image, while the vertical/horizontal lines in the middle occur from
vertical/horizontal lines in the image.

(a) The original image, X (b) log |Y |

(c) the Kronecker representation of |Y |

Figure 3.4: The figure shows different representations of the DFT of the lena image.

Next, we introduce the 2-D DWT. Note that the functions we use to generate the DWT will
now be φ ⊗ φ, φ ⊗ ψ, ψ ⊗ φ and ψ ⊗ ψ. We have not defined the tensor product of functions
yet, however, it is simply ψ⊗φ(x⊗ y) = ψ(x)φ(y). These functions are illustrated in figure 3.6.
this means that we split the information in the picture into 4 different groups,

V1 → V0 ⊕W (0,1)
0 ⊕W (1,0)

0 ⊕W (1,1)
0 , (3.77)

where W
(0,1)
0 is the space generated by φ⊗ψ, W

(1,0)
0 by ψ⊗φ and W

(1,1)
0 by ψ⊗ψ. By convention
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(a) The original image, X (b) log |Y |

(c) the kronecker representation of |Y |

Figure 3.5: The figure shows different representations of the DFT of the modified
Shepp-Logan image.

we sort the result according to (
V0 W

(0,1)
0

W
(1,0)
0 W

(1,1)
0

)
(3.78)

which means that the upper left corner of the transformed image will contain a low-resolution
version of the original image. The other spaces are all referred to as detail spaces. When we
perform an MRA, only the upper left quarter is used in the next iteration. An example of an
MRA of the Lena image is shown in figure 3.7. Visually, the DWTs of images are much easier
to interpret than the DFTs.
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Figure 3.6: The figure shows the basis functions used to generate the 2-D Haar
DWT.
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(a) original image (b) m = 1

(c) m = 2 (d) m = 3

Figure 3.7: The figure shows the m-level DWT of the Lena image for various values
of m.
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3.5 Compressability of signals: sparsity

Most modern signal compression schemes are based on some clever representation of signals.
MP3 uses a form of discrete cosine transform, while the JPEG2000 scheme uses the CDF-9/7
wavelet. These are usually followed by some form of numerical compression such as Huffman
encoding or arithmetic encoding. The central idea in lossless compression is that if a lot of the
coefficients in some basis are 0, we can use less bits to represent the 0-valued elements. We call
this property the sparsity of the the signal.

Definition 3.5.1 (Sparse signals). Informally, we refer to a signal x as sparse if most of
the elements of x are 0. Formally, x is said to be k-sparse if x has at most k non-zero
elements.

Sparsity can also be defined in terms of the support of x. In order to do this, we should
define some set properties, including the support.

Definition 3.5.2 (Subsets, complements, cardinality and support). Let NN−1
0 = {0, 1,

. . . N − 1} be the set of non-negative integers smaller than N .

• Let Λ ⊆ NN−1
0 be a subset of NN−1

0 , i.e. some set of non-negative integers smaller
than N . Λ may include all of the elements in NN−1

0 , none of them, of anything in
between.

• The set of all numbers in NN−1
0 , but not in Λ is called the complement of Λ, and is

denoted Λc. We write this selection as Λc = NN−1
0 \ Λ.

• The number of elements in Λ is called the cardinality of Λ, and is denoted |Λ|.

• Let x be a signal of length N . The set of indices Λ = {i : xi 6= 0} is called the support
of x, and denoted supp(x). In this sense x is k-sparse if its support has cardinality
k.

• We define xΛ as the vector made by setting all elements with indices not in Λ equal
to zero:

(xΛ)j =

{
xj if j ∈ Λ,

0 otherwise.
(3.79)

It may seem like a bit of an overkill to define all these properties to describe the sparsity of
x. However, we will find all these properties useful later, and this is as good a place as any to
introduce them.

In most real cases, a signal will not have many elements which are exactly zero. However, if
elements are sufficiently close to zero, setting them to zero will not result in a large error. By
doing this, we can achieve an even higher degree of compression. Let us define the measure of
this error.
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Definition 3.5.3 (k-term approximation error). Let x be a signal and let xk be the
approximation to x obtained by keeping only the k largest elements of x, and setting the
rest to zero. The k-term approximation error is defined as

σk(x)p = ‖x− xk‖p. (3.80)

We should also define what we mean by a signal having “many elements close to zero”.

Definition 3.5.4 (Compressible signals). We say that a signal is compressible or weakly
sparse with the parameter s > 0 if the coefficients xi decay according to the power law

|xi| ≤ Ci−1/s. (3.81)

The closer s is to 0, the faster the signal decays. The following result for weakly sparse signals
is easy to prove.

Lemma 3.5.5. If x is weakly sparse with parameter s, then the k-term approximation
error decays as

σk(x)2 =≤ C(2/s− 1)−1/2k1/2−1/s, s < 2. (3.82)

Proof. If we sort the elements of x and xk from largest to smallest, then we have

σk(x)2
2 =

N∑
i=1

(xi − xk,i)2 (3.83)

=
N∑

i=k+1

(xi − 0)2 (3.84)

≤
N∑

i=k+1

C2i−2/s (3.85)

≤ C2

N−1∫
k

x−2/s dx (3.86)

= C2
[
(−2/s+ 1)−1x−2/s+1

]N−1

k
(3.87)

= C2(1− 2/s)
[
(N − 1)1−2/s − k1−2/s

]
(3.88)

≤ C2(2/s− 1)k1−2/s, (3.89)

for s < 2, where we have used the fact that the sum can be considered a lower Riemann sum
for integral of x−2/s. Taking the square root on each side gives the result.

Most natural signals follow an approximate power law distribution. Figure 3.8 shows the
distribution of coefficients in the Fourier, Haar and CDF 9/7 bases for the Lena and Pepper
images. Note that distributions follow approximate power laws for both cases, and the distri-
butions seem quite similar for all 6 signals.



42 Basis Representations Chapter 3

10
0

10
0

10
5

Sorted coefficients of the Lena im

index (sorted)

a
b
so
lu
te

va
lu
e
o
f
co
effi

ci
en
t

 

 

canonical coefficients
DFT coefficients
Haar coefficients
CDF 9/7 coefficients

(a) Lena coefficients

10
0

10
5

10
0

Sorted coefficients of the Pepper image

index (sorted)

a
b
so
lu
te

va
lu
e
o
f
co
effi

ci
en
t

 

 

canonical coefficients
DFT coefficients
Haar coefficients
CDF 9/7 coefficients

(b) Peppers coefficients

Figure 3.8: The sorted coefficients of the Lena and Peppers image in different
representations.

In DSP, signal compression is usually based on representing the signal is some appropriate
basis. Then methods are split in lossless compression, where the signal is not altered, but
encoded in a clever way, taking advantage of the coefficient distribution, and lossy compression,
where only the largest coefficients of the signal is kept. The process of zeroing out the smallest
elements of a vector has its own designation.

Definition 3.5.6 (Sparsing). The act of zeroing out the smallest elements of a signal is
called sparsing.

Usually, images can be sparsed greatly without noticeable loss in quality, in the proper basis.
This is best shown through an example.

Example 3.5.7 (Sparsing of an image). In this example we will look at one of the standard
DSP benchmarking image from figure 2.4, Peppers. We will investigate the effect of sparsing
the signal when representing it in the DWT and the CDF-9/7 wavelet basis. We will attempt to
zero out 95% and 99% of the coefficients. The signal is then transformed back to the canonical
basis, and finally rounded to real integers in the interval [0,255] (which is the same as the original
image). The result of this process is shown in figure 3.9. We see that both generally perform
well in the case where 5% of the coefficients are kept, while they display different artifacts in
the case where 1% of the coefficients are kept. As is to be expected, the wavelet transform
performs better for the more extreme compression. ♣

This example gives us some idea that we can preserve the quality of the image, but in order
to quantize this notion, we should define what we mean by the error in the signal in a meaningful
way. This will be related to how we measure the magnitude of a signal. Generally, the length
of a vector is given by a function called the vector norm.
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(a) DFT, 95% zeroed (b) DFT, 99% zeroed

(c) DWT, 95% zeroed (d) DWT, 99% zeroed

Figure 3.9: Different compressed versions of the Pepper image.

Definition 3.5.8 (vector norm). The vector norm is a function ‖ · ‖ : CN → [0,∞), which
satisfies the following properties:

1. ‖cx‖ = |c|‖x‖, for any c ∈ C,

2. ‖x + y‖ ≤ ‖x‖+ ‖y‖ (the triangle inequality),

3. ‖x‖ = 0 if and only if x = 0.

There exists several different norm, each with their own field of use. A large group of norms,
collectively called `p-norms, are defined as follows:

Definition 3.5.9 (`p-norms). The `p-norm, ‖x‖p, of a vector x, is defined for any p ∈ N0

as

‖x‖p =

(
N−1∑
i=0

|xi|p
) 1

p

. (3.90)
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The case p = 2 is the standard Euclidean norm. The case p = 1 is often referred to as the
taxicab or Manhattan norm, as it is the distance one would have to walk between two points
of a city where one could only make 90 degree turns. For the case p = 0 we need to define
00 = 0 for the norm to give a meaningful result. In this case, the norm simply counts all the
non-zero elements of x, and is this way works as a measure of the sparsity of x. This is often
called the discrete norm. Finally, the maximum norm, which occurs when p → ∞, is given by
‖x‖∞ = maxi{|xi|}. The unit circle, the set of points x such that ‖x‖p = 1 is shown in figure
3.10 for p = 0, 1, 2,∞.
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Figure 3.10: The figure shows the unit circles in the `0, `1, `2 and `∞ norms.

The p = 0, p = 1, p = 2 and p = ∞ norms are all reasonable ways to measure the error of
an approximation to a signal. The signal processing community have generally chosen to use
some functions related to the `2 norm to measure the error.



Section 3.5 Compressability of signals: sparsity 45

DFT, 95% DFT, 99% DWT, 95% DWT, 99%

`0 246839 252493 242758 249529
`1 1.1149× 104 1.4741× 104 3.458× 103 6.145× 103

`2 8.9922× 102 1.65× 103 2.8599× 102 8.0550× 102

`∞ 1.03× 102 1.47× 102 3.6× 101 1.03× 102

SNR 24.34 19.76 27.73 22.75
MSE 3.0821 10.3855 0.3120 2.4751
PSNR 29.08 24.50 32.47 27.48

Table 3.1: The table lists the different error measurements from the sparsing in
example 3.5.7.

Definition 3.5.10 (Signal-to-noise ratio and Mean Square Error). The Signal-to-Noise
Ratio (SNR) of a an approximation x∗ to a signal x ∈ RN is defined as

SNR(x∗,x) = 10 log10

(
‖x‖22

‖x− x∗‖22

)
= 20 log10

(
‖x‖2

‖x− x∗‖2

)
. (3.91)

The Mean Square Error (MSE) is defined as

MSE(x∗,x) =
1

N
‖x∗ − x‖22. (3.92)

The Peak Signal-to-Noise Ratio (PSNR) is defined as

PSNR(x∗,x) = 10 log10

(
MAX2

MSE(x∗,x)

)
= 20 log10

(
MAX√

MSE(x∗,x)

)
, (3.93)

where MAX is the maximum possible signal value. For an image stored as integers with
8 bits per pixel, this is 255.

Note that for the SNR and the PSNR, a higher value corresponds to better quality. The different
errors for the approximations in example 3.5.7 are shown in table 3.1. Note that the `0 error
in all cases is very close to the maximum value of 5122 = 262144. If not for the rounding
operation at the end of the reconstruction, the error would be the maximum value for all the
reconstruction attempts, highlighting why the `0 error is too strict for most uses.

We note one more result, which relates the error on one basis to that of another. First, we
should define the norm of a matrix.

Definition 3.5.11 (Matrix norm). The norm of a matrix A, ‖A‖p is given by

‖A‖p = max {‖Ax‖p : ‖x‖p = 1} . (3.94)

Note in particular that for any unitary matrix U , such as the DFT or the Haar DWT, ‖U‖2 =
‖U−1‖2 = 1, as for any vector x,

‖Ux‖2 = (Ux)†(Ux) = x†U †Ux = x†x = ‖x‖2. (3.95)
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With this in mind, we have the following result

Lemma 3.5.12. Let x be some signal, and let y = Ax be its representation in some basis.
Let y∗ be an approximation to y, with error ‖y − y∗‖p ≤ ε. Then the restored signal in
the canonical basis, x∗ = A−1y∗ has the error

‖x− x∗‖p ≤ ε‖A−1‖p. (3.96)

Proof. Note that

‖x− x∗‖p = ‖A−1y−A−1y∗‖p (3.97)

= ‖A−1(y− y∗)‖p (3.98)

≤ ‖A−1‖p‖y− y∗‖p (3.99)

≤ ‖A−1‖pε. (3.100)

In particular, this means that for unitary transforms, the `2-error is the same in the canonical
basis as in the transformed basis. This is important in order to guarantee quality of a restored
signal after sparsing.

We will get back to compressibility of signals in the next chapter, as it is at the heart
of Compressed Sensing methods. For now we turn our discussion to some other basis with
interesting properties.

3.6 A brief look at exotic bases: Curvelets

Traditional wavelets in 1-D are efficient for representing signals with singularities. This in turn
makes the 2-D extension of wavelets efficient for representing signals with point singularities.
However, many natural images exhibit line-like edges (so-called line or curve singularities).
Recently, a large group of transforms, including curvelets [13, 14, 15], steerable wavelets [16],
[17], Gabor wavelets [18], wedgelets [19], beamlets [20], bandlets [21], [22], contourlets [23],
shearlets [24], [25], wave atoms [26], platelets [27] and surfacelets [28] have been proposed
independently to restore geometric features. Here we will briefly look into the construction of
the curvelet Transform, as a sample of the properties of these new bases. We will introduce
several other transforms which are used to explain features of the curvelet transform, but we
will intentionally be brief on the details of these transforms, as we will not come back to them
later. Computational details can be found in their respective literature.

The success of wavelets is mainly due to good performance in for piecewise smooth functions
in one dimension. In 1D, wavelets are good for picking up point singularities with a high
compression rate. In 2D the construction of wavelets using direct products ensures that point
singularities are also represented well. However, line singularities, which does not follow perfect
vertical or horizontal lines, will need (comparatively) a high amount of coefficients. These
relatively new transforms belong to a group of 2D-transforms seeking to amend the problems
of standard wavelets.



Section 3.6 A brief look at exotic bases: Curvelets 47

3.6.1 The Radon Transform

We begin with the Radon transform, which is much older than the other transforms we will
visit, but serves as a prerequisite for the other transforms. It was initially introduced in 1917 by
Johan Radon, and is the function you get from making projections along straight lines through
space. In 2D, the projections are taken along the curves

(x(t), y(t)) = (t sinα+ s cosα), (−t cosα+ s sinα)) . (3.101)

We can think of the lines in the following way: Let s be the radius of a circle in 2D. Then, α is
the angle of the circle at which the projection lines intersects the circle, as illustrated in figure
3.11.

Figure 3.11: A Radon projection line

We can now define the Radon transform.

Theorem 3.6.1. The Radon transform of f(x, y), denoted by Rf(α, s) is given by

Rf(α, s) =

∫ ∞
−∞

f(x(t), y(t)) dt (3.102)

=

∫ ∞
−∞

f(t sinα+ s cosα,−t cosα+ s sinα) dt. (3.103)

The Radon transform is closely related to the Fourier transform. If we define the 2-D
CTFT2π, by which we will mean a CTFT, the continuous Fourier transform to be defined in
section 5.4, where there is a factor 2π in the complex exponential, of f(x) as

F (w) =

∫ ∫
f(x) exp(−2πix ·w) dx.

We then have the following result

Theorem 3.6.2 (The Fourier slice theorem). Let FRα[f ](ω) be the CTFT2π of Rf(α, s)
with respect to s. Then

FRα[f ](ω) = F (ωn(α)), (3.104)

where n(α) = (cosα, sinα).
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Proof.

FRα[f ](ω) =

∫
Rf(α, s) exp(−2πisω) ds (3.105)

=

∫
Rf(α, s) exp(−2πisω) ds (3.106)

=

∫ (∫ ∞
−∞

f(t sinα+ s cosα,−t cosα+ s sinα) dt

)
exp(−2πisω) ds (3.107)

=

∫ (∫ ∞
−∞

f(t sinα+ s cosα,−t cosα+ s sinα) exp(−2πisω) dt

)
ds, (3.108)

while

F (ωn(α)) =

∫
f(x, y) exp(2πiω(x cosα+ y sinα)) dxdy. (3.109)

We use the change of variables x = t sinα + s cosα and y = −t cosα + s sinα The Jacobi
determinant for this change of variables is

J =

∣∣∣∣∂x∂t ∂x
∂s

∂y
∂t

∂y
∂s

∣∣∣∣ =

∣∣∣∣ sinα cosα
− cosα sinα

∣∣∣∣ = 1. (3.110)

Notice also that

x cosα+ y sinα = (t sinα+ s cosα) cosα+ (−t cosα+ s sinα) sinα (3.111)

= t(sinα cosα− sinα cosα) + s(cos2 α+ sin2 α) (3.112)

= s, (3.113)

which implies that

F (ωn(α)) =

∫ (∫ ∞
−∞

f(t sinα+ s cosα,−t cosα+ s sinα) exp(−2πisω) dt

)
ds. (3.114)

which proves the theorem.

This theorem shows that the Radon transform can be related to making partial Fourier
transforms along radial lines through the origin at different angles (in the frequency space).
This will not be important presently, but is important to understand applications where partial
reconstruction from radial lines in the Fourier space is used, while partial measurements in
the Radon space are experimentally more likely to be available. It also opens the path for an
efficient Radon transform implementation, based of the FFT.

The Discrete Radon Transform (DRAT) is made by choosing a finite subset of angles {αi} for
which to makes projections along. A common implementation (and the one used in MATLAB)
simply takes the angles as input and performs the projection numerically. Because of this, the
discrete Radon transform is not perfectly invertible, nor is it a transform of the type Rm×n →
Rm×n. Rather, the output will be roughly Nα ×

√
m2 + n2, where Nα is the number of angles

used. The factor
√
m2 + n2 is due to the fact that the projections will go out all the way to

the edges of the image, and is only approximate. Usually it will be somewhat larger. Because
of this, a lot of the projection lines will be 0, because they are projections along lines going
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(a) Phantom data (b) Radon transform (c) Phantom excerpt

(d) Inverse Radon excerpt

Figure 3.12: A Radon transform of the modified Shepp-Logan Phantom. Note that
the restored signal contains some artifacts.

outside the image completely. An example of a Radon transform and a subsequent approximate
inversion is shown in figure 3.12.

Another implementation allows the projections to loop periodically over the edges of the
signal. A version of this implementation is described in [29], where the DRAT is defined as
follows:

Definition 3.6.3. Discrete Radon transform The discrete Radon transform RX of an
N ×N signal X is given by

(RX)k,l =
1√
N

∑
i,j∈Lk,l

Xi,j , (3.115)

where Lk,l is the set of points that make up a line in X,

Lk,l = {(i, j) : j = ki+ l (mod p), i ∈ {1, 2, . . . , N − 1}}, 1 ≤ k < N, (3.116)

LN,l = {(l, j) : j ∈ {1, 2, . . . , N}. (3.117)

This transform takes us from a p× p to a p× (p + 1) signal. There is some redundancy in
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this representation. The redundancy can be sorted out by noting that

p−1∑
l=0

(RX)k,l =
1
√
p

∑
i,j

Xi,j , (3.118)

which means that for each k we can omit one value for l if we desire (however, it is usually
practical to retain all coefficients). Figure 3.13 shows the different elements of a 7× 7 DRAT.

Figure 3.13: The figure shows the 56 elements of the 7 × 7 DRAT. Each basis
element is denoted by its own color.

The advantage with this version is that it is exactly invertible for zero-mean signals, in cases
where p is prime. The inverse operation is called the Finite Back-projection (FBP), and is
defined as the sum of all Radon coefficients of lines that go through a given point. That is,

FBPRX =
1
√
p

∑
(k,l)=Pi,j

rk[l], 0 ≤ i, j < N, (3.119)

where Pi,j is the set of indices of the lines that passes through the point (i, j). We can write
this more explicit as

Pi,j = {(k, l) : l = j − ki (mod p), 0 ≤ k < N} ∪ {(p, i). (3.120)

To see that this is indeed the inverse, note that every set of two points (i, j), (i′, j′) in the
signal lie on exactly one line Lk,l. Note also that every single point (i′, j′) lie in exactly one line
in the set Pi,j , except the point (i, j) itself which lies on all p+ 1 lines.
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Thus, FBP applied to the DRAT of an image X can be written as

(FBRRX (RX))i,j =
1

p

∑
(k,l)∈Pi,j

∑
(i′.j′)∈Lk,l

Xi′,j′ (3.121)

=
1

p

 ∑
(i′,j′)∈[0,p−1]2

Xi′,j′ + pX[i, j]

 (3.122)

= Xi,j . (3.123)

Finally, we note that it can be shown that the matrices for the FRAT and the FBP are
transposed of each other.

The Radon transform introduces the idea of transforms using ideas different from those of
the DFT and the DWT. However, the there is no reason to believe that the Radon transform
should be any more sparse than the original Cartesian representation. With this in mind we
can look into some other transforms.

3.6.2 The Ridgelet Transform

This following is based on the Ph.D. Thesis of Candës [30], as well as [29]. We begin by intro-
ducing the notation ψa,u,b(x) = a−1/2ψ(u·x−ba ). We can think of a as a scaling of ψ, u as a
direction and b as a translation. In this section, we again let Ψ(ω) be the CTFT of ψ(t). With
this in mind, we present the following definition.

Definition 3.6.4. Let ψ : R→ R satisfy the condition

Kψ =

∫
|Ψ(ω)|2

|ω|d
<∞, (3.124)

where d is the dimensionality. Then ψ is called an admissible neural activation function.

Ridgelets emerged in a setting of modeling neural networks, which motivates this name. Here,
we will simply refer to such an ψ as admissible.

Theorem 3.6.5. Suppose f(x) and F (ω) are L1-integrable. If ψ is admissible, then

f(x) = cψ

∫
〈f, ψa,u,b〉ψa,u,b

σd da du db

ad+1
, (3.125)

where cψ = π(2π)−dK−1
ψ and σd is the surface area of the unit sphere in d− 1 dimensions.

The proof of this theorem is fairly straight forward, but involves a bit of theory which is not
suited for this setting. The proof can be found in [30]. The important part is that this theorem
says that the function f can be reconstructed from the coefficients 〈f, ψa,u,b〉.

Since we are mainly interested ridgelets in 2-D, we can replace u by a single parameter,
θ, giving the orientation of the ridgelet. Let us now properly define the Continuous Ridglet
Transform (CRT)
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Definition 3.6.6 (The continuous ridgelet transform). The CRT in 2D is defined by

CFTf (a, b, θ) =

∫
R2

ψa,b,θ(x)f(x) dx. (3.126)

where the ridgelets are defined from a wavelet-type function ψ(x) as

ψa,b,θ(x) = a−1/2ψ((x1 cos θ + x2 cos θ − b)/a). (3.127)

While both 2D wavelets and ridgelets are based on 1D wavelets, we no longer construct our
basis by using tensor products. A key difference is that while in ψm1,n1⊗ψm2,n2 the parameters
n1, n2 describe points in R2, the parameter pair b, θ describes lines.

We can relate this transform to the Radon transform. Note that we can write the Radon
transform similarly to the CRT as

Rf(α, s) =

∫
R2

f(x)δ(x1 cos θ + x2 sin θ − s) dx, (3.128)

where δ(t) is the Dirac delta-function. This gives us the following result

Lemma 3.6.7. The CRT of f can be expressed in terms of the radon transform of f as

CRTf (a, b, θ) =

∫ ∞
−∞

ψa,b(t)Rf(θ, t) dt, (3.129)

where ψa,b(t) = ψ((t− b)/a).

Proof. First of all, we have that∫ ∞
−∞

ψa,b(t)Rf(θ, t) dt =

∫ ∞
−∞

ψa,b(t)

∫
R2

f(x)δ(x1 cos θ + x2 sin θ − t) dx dt. (3.130)

Now, if we carry out the integral over t, the delta function simply picks out the value t =
x1 cos θ + x2 sin θ.∫ ∞

−∞
ψa,b(t)Rf(θ, t) dt =

∫ ∞
−∞

ψa,b(x1 cos θ + x2 sin θ)f(x) dx (3.131)

=

∫ ∞
−∞

ψa,b,θ(x)f(x) dx. (3.132)

This shows us that the CRT is just the 1-D CWT of the Radon transform. This will allow
us to easily define the ridgelet transform.

3.6.3 Discrete Ridgelet Transform

In the previous section we defined the DRAT which is a version of the discrete Radon transform
which, when used on a p × p image, produces a p × (p + 1). The Discrete Ridgelet Transform
(DRIT) is obtained by simply applying a 1-D DWT to each column in this matrix.
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In the same way that a regular 1-D DWT provides a sparse representation for signals with
large periods of small deviations from a mean value, the DRIT will provide a sparse represen-
tation for signals which are roughly constant for large stretches of straight lines with different
angles. This is best shown through an example.

Example 3.6.8. Let us examine the compressive properties of the DRIT. Once again we will
use a standard test image. An image which will highlight the properties of the DRIT is called
“straws”, this image is shown in figure 3.14, and can be found in [6]. Figure 3.15 shows the
relative size of the coefficients (ordered from largest to smallest), computed as

log

(
xi
‖x‖2

)
.

We see that the coefficients for the DRIT are centered on a few large coefficients, and the
remaining coefficients are much smaller than for the regular DWT. We also show here that the
DRAT coefficients are not sparse.

Finally, figure 3.16 show images where 80%, 90% and 95% of the coefficients are zeroed out.
This image has quite a lot of features, compared to for instance “Peppers” or “Lena”, so we
are not able to obtain very good results when compressing the image. However, many of the
details of the image are more apparent with the DRIT compression.

♣

Figure 3.14: A standard test image, “Straws”.

We end this section by noting that this is only one formulation of the DRIT. In a wider
setting, this is referred to as the Orthonormal Discrete Ridgelet Transform, due to the fact that
it is orthonormal for signals of length n where 2n+ 1 is prime (we will no go into detail on why
this is). Other ridgelet transforms are based on other forms of Radon transforms, such as the
Fast Slant Stack transform ([31]) and the A review of different ridgelets transforms can be found
in [32]. Notably, other transforms tend to give more intuitive ridgelet functions, however, many
are transformations of the form n×n→ 2n×2n, which makes them less suited for compression,
which has been our focus so far. They may prove suitable for CS, however. Figure 3.17 shows
the Cartesian representations of single ridgelet coefficients using different Radon transforms.
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Figure 3.15: Relative mass distribution among the coefficients of the “Straws”
image. See text for details.
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(a) DWT 80% zeroed out (b) DRIT 80% zeroed out

(c) DWT 90% zeroed out (d) DRIT 90% zeroed out

(e) DWT 95% zeroed out (f) DRIT 95% zeroed out

Figure 3.16: The figures show the result of zeroing out most coefficients in the
“Straws” images using different representations.



56 Basis Representations Chapter 3

(a) DRAT as explained in the text (b) Slant-Stack

(c) Recto-polar

Figure 3.17: The figures single ridgelet coefficients in their Cartesian representation,
for different ridgelet formalisms.
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3.6.4 1st generation Curvelet Transform

The DRIT provides a good representation for signals where the “ridges” stretch along the en-
tirety of the signal. For realistic signals, this will at best be an approximation. More realistically,
the signals will consist of continuous curves. However, on short scales, curves will essentially
look like straight lines. By this motivation we can introduce local ridgelets, transforms obtained
by splitting the image into small blocks and performing a ridgelet transform on each block. This
will usually provide a better result, however, we can take this concept even further. Remember
from section 3.4.2 that the detail spaces of the 2-D DWT is usually dominated by mostly small
coefficients and some lines of larger coefficients (see figure 3.18 for an illustration).

Figure 3.18: A detail space of the lena image

The “First Generation” Discrete Curvelet Transform (DCUT1) is defined by first doing an
m1-level DWT of the signal, then performing a local m2-level ridgelet transform on each detail
space. See figure 3.19 for a schematic overview of this process.

Figure 3.19: An illustration of the steps in the first generation curvelet transform.

However, this process is somewhat convoluted, as the resulting curvelet coefficients would
be naturally represented by no less than 7 indices (2 detailing the 2-D DWT space, 2 detailing
which block in the block-DRIT transform, 1 detailing the DRAT line and 1 detailing the 1-D
DWT space and 1 detailing the position in the DWT space). For this reason, as well as others
(see [15] for details), a 2nd generation curvelet has been developed using an entirely different
structure, introduced in [15]. To better understand this most recent formulation of the curvelet,
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we need to extend our notion of bases.

3.6.5 Frame of a vector space

Frames can be thought of as generalization of bases, to include vector sets which are linearly
dependent. For a given vector space V , we have a sequence of vectors {ek}, ek ∈ V , and we
want to express an arbitrary element v ∈ V as a linear combination of the vectors {ek}:

v =
∑
k

ckek. (3.133)

In order to do this, we must determine the coefficients ck. If the set {ek} does not span V , then
no such set exist. If {ek} spans V , and the elements are also linearly independent, then this set
forms a basis of V . In this case, the coefficients ck are uniquely determined by v. However, if
{ek} spans V but are not linearly dependent, the question of how to determine the coefficients
is less clear-cut.

The following is from [33].
Given that {ek} spans V and is linearly dependent, a strategy is to remove vectors from the

set until it becomes linearly independent and forms a basis. There are some problems with this
plan:

1. By removing vectors arbitrarily from the set, it may lose its possibility to span V before it
becomes linearly dependent.

2. Even if it is possible to devise a specific way to remove vectors from the set until it becomes
a basis, this approach may not work in practice for very large or infinite sets.

3. In some applications, it may be an advantage to use more vectors than necessary to rep-
resent v, This means that we want to find the coefficients ck without removing elements
in {ek}. The coefficients will then no longer be uniquely determined.

In 1952, Duffin and Schaeffer gave a solution to this problem, by describing the conditions of a
set {e} that makes it possible to compute the coefficients ck in a simple way [34]. More precisely,
a frame is a set {ek} of elements which saitisfies the so-called frame condition:

Definition 3.6.9 (Frame Condition). The frame condition states that for a set of vectors
{ek} in a vector space V , there exist two real numbers A and B such that 0 < A ≤ B∞
and

A‖v‖22 ≤
∑
|〈v, ek〉|2 ≤ B‖v‖22 (3.134)

for all v ∈ V . This means that the constants A and B can be chosen independently of v,
they only depend on the set {ek}. A vector set which obeys the frame condition is called
a frame of V .

The numbers A and B are called lower and upper frame bounds, respectively. We say that
a frame is overcomplete or redundant. It can be shown that the frame condition entails the
existence of a set of dual frame vectors {ẽk} with the property that

v =
∑
k

〈v, ẽk〉ek =
∑
k

〈v, ek〉ẽk (3.135)



Section 3.6 A brief look at exotic bases: Curvelets 59

A frame is tight if the frame bounds A and B can be set equal. In this case the fame obeys
a generalized Parseval’s Identity. For example, if {ek} is the union of 2 orthonormal bases, then
the set is a tight vector frame with A = B = 2.

The second generation curvelet transform forms a tight frame, as we will see.

3.6.6 The second generation curvelet transform

The continuous 1-D wavelet transforms considers a family of dilated and translated functions
ψm,n(x) = 2m/2ψ(2mx − n), generated by one mother wavelet ψ. Each function f(x) ∈ VN
can be written as

∑
m,n cm,nψm,n, where cm,n = 〈f, ψm,n〉. Note that the CTFT of the basis

functions have the form
ψ̂m,n(ξ) = 2−m/2ei2

−jξnψ̂(2−mξ), (3.136)

which means that a dilation by 2j in the space domain corresponds to a dilation by 2−j in the
frequency domain, and the translation corresponds to a phase shift.

For a good frequency localization of the wavelet basis, the main idea is to construct a wavelet
basis that provides a partition of the frequency axis into almost disjoint frequency bands. In
such a construction, each wavelet sub-band gives information about f in different frequency
ranges. Such a partition can be ensured if the Fourier transform of the dyadic wavelet ψ̂ has a
localized or even compact support and satisfies the admissibility condition∑

m

|ψ̂(2−mξ)|2 = 1, (3.137)

for all ξ. This admissibility condition also ensures the typical wavelet property ψ̂(0) =
∫∞
−∞ ψ(x) dx =

0.
A particularly good frequency location is obtains if ψ̂ is compactly supported in [−2,−1/2]∪

[1/2, 2]. Such a construction has been used for the so-called Meyer wavelets, which is defined
in the frequency domain as

ψ̂(ω) :=


1√
2π

sin
(
π
2 ν
(

3|ω|
2π − 1

))
ejω/2 if 2π/3 < |ω| < 4π/3,

1√
2π

cos
(
π
2 ν
(

3|ω|
4π − 1

))
ejω/2 if 4π/3 < |ω| < 8π/3,

0 otherwise,

(3.138)

where ν(x) is a smooth function satisfying

ν(x) :=


0 if x = 0,

ν(1− x) if 0 < x < 1,

1 if x = 1,

(3.139)

and shown in figure 3.20. In turn, the dilated Meyer wavelets ψ̂(2−mξ) generate a tiling of the
frequency axis into frequency bands in the intervals [−2m+1,−2m−1]∪ [2j−1, 2j+1]. In this case,
for a fixed ξ, at most two wavelet functions overlap in the Fourier space. This condition also
ensures that the family of functions {ψm,n : m,n ∈ Z} forms a tight frame of square-integrable
functions on R.

We want to transfer this notion to the construction of a 2-D transform which also incorpo-
rates a rotation invariance. So, we wish to construct a frame, generated by one basic element,
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(a) Frequency representation (b) Time representation

Figure 3.20: The Meyer wavelet in 3.20(a)) the frequency domain, and 3.20(b)) the
time representation.

φ this time using translations, dilations and rotations of φ. Following the considerations of
the 1-D case, we also want the elements of the curvelet family to provide a tiling of the 2-D
frequency space. Therefore the curvelet transform is now based on the following two main ideas:

1. Consider polar coordinates in the frequency domain.

2. Construct curvelet elements being locally supported near wedges according to figure 3.21,
where the number of wedges is Nj = 4× 2dj/2e at the scale 2−j (it doubles in ever second
ring).

Figure 3.21: Tiling of the frequency domain. A particular curvelet function will be
compactly supported on a tile.

Let ξ = (ξ1, ξ2)T be the variable in frequency domain, and r =
√
ξ2

1 + ξ2
2 , ω = arctan ξ1

ξ2
be

the polar coordinates in the frequency domain. We use the ansatz for the dilated basic curvelets
in polar coordinates:

φ̂j,0,0(r, ω) = 2
−3j
4 W (2−jr)ṼNj (ω), r ≥ 0, ω ∈ [0, 2π), j ∈ N0, (3.140)

To construct a basic curvelet with compact support near a “basic wedge”, the two windows
W and ṼNj . Here, we can simply take W (r) to cover (0,∞) with dilated curvelets, and ṼNj
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such that each circular ring is covered by the translations of ṼNj . Here, we have r ∈ [0,∞),
therefore we cannot take the complete Meyer wavelet to determine W , but only the part that
is supported in [1/2, 2]. Then the admissibility condition yields

∞∑
j=−∞

|W (2−jr)|2 = 1, r ∈ (0,∞). (3.141)

We will get back to a more explicit construction of W (r) later.

Further, for the tiling of a circular ring into N wedges, where N is an arbitrary positive
integer, we need a 2π-periodic nonnegative window ṼN with support inside [−2π/N, 2π/N ] such
that

N−1∑
l=0

Ṽ 2
N

(
ω − 2πl

N

)
= 1, for all ω ∈ [0, 2π), (3.142)

is satisfied. Then only two “neighbored” translates of Ṽ 2
N in the sum overlap. Such windows ṼN

can be simply constructed as 2π-periodizations of a scaled window V (Nω/2π), where V will be
given in the next section.

In this way we approach the goal to get a set of curvelet function with compact support in
frequency domain in wedges, where in the circular ring that corresponds to the scale 2−j the
sum of the squared rotated curvelet functions depend only on W (2−jr), i.e., it follows that

Nj−1∑
l=0

∣∣∣∣23/4φ̂j,0,0

(
r, ω − 2πl

Nj

)∣∣∣∣2 = |W (2−jr)|2
Nj−1∑
l=0

Ṽ 2
Nj

(
ω − 2πl

Nj

)
(3.143)

= |W (2−jr)|2. (3.144)

Because of this separability, together with the admissibility condition for W gives an admissi-
bility condition of the basic curvelets φ̂j,0,0 similar to that of the 1-D wavelets. Note that the

translates of φj,0,0 correspond to phase shifts in φ̂j,0,0, so they have no impact on the frequency
support.

We should also attend to the “hole” that arises in the origin of the frequency plane, since
the rotations of the dilated basic curvelets work only in the scales 2−j for j = 0, 1, 2, . . .. Taking
now all scaled and rotated curvelet elements together with Nj = 4×2dj/2e we find for the scales
2−j , j = 0, 1, . . . with the admissibility condition

∞∑
j=0

Nj−1∑
l=0

∣∣∣23/4φ̂j,0,0

∣∣∣2 =

∞∑
j=0

|W (2−jr)|2, (3.145)

which is equal to 1 only for r > 1 (notice the different summation limits). For a complete
covering of the frequency plane, we therefore need to define a low-pass element

φ̂−1(ξ) = W0(|ξ|) with W 2
0 (r)2 = 1−

∞∑
j=0

W (2−jr)2, (3.146)

which is supported on the unit circle and where we do not consider any rotation.
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Window Functions

For constructing the curvelet functions we use the following window functions. Let us consider
the following scaled scaled Meyer windows

V (ω) =


1 |ω| ≤ 1/3,

cos[π2 ν(3|ω| − 1)] 1/3 ≤ |ω| ≤ 2/3,

0 else,

(3.147)

and

W (r) =


cos[π2 ν(5− 6r)] 2/3 ≤ r ≤ 5/6,

1 5/6 ≤ r ≤ 4/3,

cos[π2 ν(3r − 4)] 4/3 ≤ r ≤ 5/3,

0 else.

(3.148)

These two functions satisfies the conditions

∞∑
l=−∞

V 2(ω − l) = 1, ω ∈ R, (3.149)

∞∑
j=−∞

W 2(2lr) = 1. (3.150)

The 2π-periodic window functions ṼN (ω) needed for curvelet construction, can now be obtained
as a 2π-periodization of V (Nω/2π).

How many wedges should be taken in one circular ring

As we have seen in figure 3.21, for the curvelet construction there are Nj = 4 × 2dj/2e angles
(or wedges) chosen in the circular ring (with radius 2j−1/2 ≤ r ≤ 2j+1/2) corresponding to the
2−j-th scale. But looking at the above idea to ensure the admissibility condition for a tight
frame, one is almost free to choose the number of wedges/angles in each scale. Principally, the
construction works for all ratios of angles and scales. In fact this is an important point, where
the curvelets differ from other constructions mentioned earlier.

1. If we take the number of wedges in a fixed way, independent of the scale, we essentially
obtain steerable wavelets.

2. If the number of wedges increases like 1/scale (i.e., like 2j) then we obtain tight frames of
ridgelets.

3. If the number of wedges increases like
√

1/scale (like 2j/2), the curvelet frame is obtained.
This special anisotropic scaling law yields the typical curvelet elements whose properties
are considered next.

This special anisotropic scaling law yields the typical curvelet elements whose properties are
considered next.
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What properties do the curvelet elements have?

To obtain the complete family of curvelet functions, we need to consider rotations and the
translations of the dilated basic curvelets φj,0,0. We choose

• an equidistant sequence of rotation angles θj,l,

θj,l =
πl2dj/2e

2
, with l = 0, 1, . . . , Nj − 1. (3.151)

• the positions bj,lk = bj,lk1,k2 = R−1
θj,l(k1/2

j , k2/2
j)T , where k1, k2 ∈ Z and Rθ denotes the

rotation matrix with angle θ.

The family of curvelet functions is then given by

φj,k,l(x) = φj,0,0(Rθj,l(x− bj,lk )), (3.152)

with indices j = 0, 1, . . ., and k1, k2, l as above.

The curvelet elements have the following properties:

• Support in the frequency domain. In the frequency domain, the curvelet function φ̂j,k,l is
supported inside the polar wedge with radius 2j−1 ≤ r ≤ 2j+1 and angle 2−dj/2eπ(−1 −
l)/2 < ω < 2−dj/2eπ(1 − l)/2. The support does not depend on the bj,lk , which only
corresponds to a phase shift in the frequency domain. The support of some curvelets is
shown in figure 3.22.

• Support in the time domain and oscillatory features. In the time domain, things are more
involved. Since φ̂j,k,l cannot have compact support in the time domain. From Fourier
analysis, one knows that the decay of φj,k,l(x) for large |x| depends on the smoothness of

φ̂j,k,l in the frequency domain. The smoother the φ̂j,k,l, the smoother the decay.

By definition, ˆφj,0,0(ξ), j ∈ N0, is supported away from the vertical axis ξ1 = 0, but
near the axis ξ2 = 0. Hence for large j the function φj,0,0(x) is less oscillatory in the
x2-direction, and very oscillatory in the x2-direction

• Tight frame property. The system of curvelets

{φ−1,k,0 : k ∈ Z}
⋃
{φj,k,l : j ∈ N0, l = 0, . . . , 4× 2dj/2e − 1,k = (k1, k2)T ∈ Z2} (3.153)

satisfies a tight frame property. This means that every square integrable function f can
be written as

f(x) =
∑
j,k,l

〈f, φj,k,l〉φj,k,l (3.154)

and the Parseval identity ∑
j,k,l

|〈f, φj,k,l〉|2 = ‖f‖L2(R2) (3.155)
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holds. The terms cj,k,l(f) = 〈f, φj,k,l〉 are called curvelet coefficients. By Plancherel’s
Theorem, we have

cj,k,l(f) =

∫
R2

f(x)φj,k,l(x) dx (3.156)

=

∫
R2

f̂(ξ) ˆφj,k,l(ξ) dξ (3.157)

=

∫
R2

f̂(ξ)φ̂j,0,0(Rθj,lξ) exp(ibj,lk · ξ) dξ. (3.158)

(a) ˆφ0,0,0

(b) support of ˆφ0,0,0 (c) support of some curvelet func-
tions

Figure 3.22: Some illustrations of curvelets in the frequency domain. 3.22(c) shows

the maximal support of φ̂2,k,0 and φ̂2,k,5 (dark gray), of φ̂3,k,3, φ̂3,k,6 and φ̂3,k,13 (light

gray), and of φ̂4,k,0 and φ̂4,k,11 (gray). The figures are from [35].

3.6.7 The Discrete 2nd Generation curvelet Transform

In practical implementations, one would like to have Cartesian arrays instead of the polar tiling
of the frequency plane. Cartesian tilings based on squares and shears. Therefore, a construction
based on window functions on trapezoids instead of polar wedges are preferable.
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We now use the following new ansatz for the discrete 2nd generation curvelet transform
(DCUT2):

ˆ̃
φj,0,0(ξ) = 2−3/4W (2−jξ1)V

(
2bj/2cξ2

ξ1

)
, (3.159)

with W the same as earlier, and V with compact support in [−2/3, 2/3]. The modified curvelet is
shown in figure 3.23(a) and its support in figure 3.23(b). The support of Vj(ξ) = V (2bj/2cξ2/ξ1)
is now inside the cone K1 = {(ξ1, ξ2) : ε1 > 0, ξ2 ∈ [−2ξ1/3, 2ξ1/3]}. The basic curvelet has
support in the trapezoid{

(ξ1, ξ2) : 2j−1 ≤ ξ1 ≤ 2j+1,−2−bj/2c
2

3
≤ ξ2

ξ1
≤ 2−bj/2c

2

3

}
. (3.160)

The rotation is now replaced by shearing of the basic wavelet in each hemisphere. For the
eastern hemisphere, we define a set of equispaced slopes

tan θj,l = l2−bj/2c, l = −2bj/2c + 1, . . . , 2bj/2c − 1. (3.161)

The curvelets for the other hemispheres are constructed by a rotation of π/2 and a reflection.
Observe that the angles are not equispaced, but the slopes are.

The modified curvelets are now given by

φ̃j,k,l(x) = φ̃j,0,0(STθj,l(x− b̃
j,l

k )), (3.162)

where

Sθ =

(
1 0

− tan θ 0

)
, (3.163)

and where b̃j,lk = S−Tθj,l (k12−j , k22−bj/2c) = S−Tθj,l kj denotes the position in the space domain.

The Cartesian curvelet coefficients are given by

c̃j,k,l = 〈fφ̂j,k,l〉 =

∫
R2

f̂(ξ)
ˆ̃
φj,0,0S

−1
θj,lξ

ei〈b̃
j,l
k ,ξ〉 dξ (3.164)

=

∫
R2

f̂(Sθj,lξ)φ̂j,0,0ξe
i〈kj ,ξ〉 dξ. (3.165)

For an implementation for discrete data, we calculate f̂(Sθj,lξ) by interpolation. Implemen-
tations of numerical orderO(N2 log2N) for an N ×N image are available at www.curvelet.org.
Figure 3.24 shows an example of a discrete curvelet in the position space.

3.6.8 Wave Atoms

Finally, we briefly mention a construction similar to the curvelets, called Wave Atoms. The
wave atoms have the same scaling features in the frequency space, but in addition to the ridges
featured in the curvelet coefficients, the wave atom coefficients contain oscillatory features in
the direction perpendicular to the ridge. Such signals naturally occur many places in nature,
from seismic data to fingerprints. Figure 3.25 shows an example of a wave atom in the position
space.

www.curvelet.org
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(a)
ˆ̃
φ0,0,0

(b) support of
ˆ̃
φ0,0,0 (c) Cartesian polar tiling.

Figure 3.23: Some illustrations of curvelets in the Cartesian-tiled frequency domain.
The figures are from [35].

3.7 Basis representation in a Signal Processing setting

To end this chapter, we note that while we have used the standard terminology found in linear
algebra literature, this differs somewhat from the terminology used when discussing the same
topics in signal processing literature. Here we will go through some of the most common
terminology used in signal processing.

3.7.1 Atom

An atom refers to a single function in a basis (for example a single complex exponential in
the DFT, a single square wave in the Haar DWT, or a single curvelet function in the curvelet
transform).

3.7.2 Dictionary

A dictionary Φ is an indexed collection of atoms {φi}i∈Γ, where Γ may be a finite or countable
infinite set, with cardinality |Γ| = M In discrete-time finite-length signal processing, Φ is an
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(a) A low-resolution DWT used in
the DCUT2

(b) A curvelet coefficient used in the
DCUT2

Figure 3.24: Some illustrations of curvelets in the position space.

Figure 3.25: Example of a wave atom in the position space.

M ×N matrix. The dictionary may be complete (like a basis), overcomplete or redundant, like
a frame. In this case the equation x = Φy is an underdetermined system of linear equations.
A dictionary may also be incomplete, which is the case where the dictionary matrix cannot be
reduced to a basis.

3.7.3 Analysis and Synthesis

Given a dictionary, the analysis operation corresponds to what we normally would call a for-
ward transform in linear algebra, y = Φ†x. Synthesis is the inverse transform, x = Φy. In
the overcomplete case, Φ is not invertible, and the reconstruction is not unique. The only
application for transforms we have looked into so far is signal compression, for which overcom-
plete representations are not very useful. For several other applications, such as signal analysis,
reconstruction and denoising, overcomplete representations will prove extremely useful.





Chapter 4

Theory of Compressed Sensing

In this chapter our goal will be to present the results of recently emerged theory of compressed
sensing. In order to do this in a meaningful way, we need to put the theory into the proper
context. CS is far from the only method for attempting to insert data based on prior information
of the signal. CS belongs to a larger class of problems called Linear Inverse Problems (LIPs),
which we will now introduce.

4.1 Linear Inverse Problems

Many problems in signal processing (and more generally, in computational science), can be cast
as inverting the linear system of equations

b = Ax + ε, (4.1)

where x ∈ CN is the data we want to recover b ∈ CM is some set of observations which
are made made on the signal x, that have been polluted by noise. The error ε can be either
stochastic measurement noise or systematic measurement error (as in the form of a constant
perturbation), but is generally not known. A : CN → CM is a linear operator which describes
the measurements on the signal. A typically represents an underdetermined set of equations.
Such problems are said to be ill-posed, as they do not have a unique solution.

If we at first assume the signal is noiseless, then one particular solution to this system is
given by

x∗ = A†(AA†)−1b. (4.2)

(it can be shown that if A is an M × N matrix with M < N , then (AA†) is invertible). The
matrix A†(AA†)−1 is called the pseudoinverse of A. This solution solution has a very specific
property.

Theorem 4.1.1. Given an underdetermined system

Ax = b, (4.3)

the solution
x∗ = A†(AA†)−1b, (4.4)

has the least `2 (Euclidean) norm.

69
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Proof. Let x be a solution, so that A(x− x∗) = 0. Then

(x− x∗)†x∗ = (x− x∗)†A†(AA†)−1b (4.5)

= (A(x− x∗))†(AA†)−1b (4.6)

= 0. (4.7)

This implies that 〈x − x∗, x〉 = 0, which means that we can use the Pythagorean theorem to
show that

‖x‖2 = ‖x∗ + x− x∗‖2 = ‖x∗‖2 + ‖x− x∗‖2 ≥ ‖x∗‖2. (4.8)

This is sometimes referred to as the “Best solution theorem”. The problem with that
statement is that for many systems, this solution is completely wrong. Let us illustrate this in
an example.

Example 4.1.2 (Partial measurements of a pure tone). Let us consider a simple sine tone of
440 Hz, sampled uniformly for 1 second with a sampling frequency of fs = N , with the aim of
finding its Fourier spectrum:

xi = sin(2π440ti), ti = i/N, i = 0, . . . , N. (4.9)

Assume that for some reason or another, some of the samples are lost, and we are left with
a set of M samples indexed by Λ = λ1, λ2, . . . , λM , where λj ∈ {0, 1, . . . , N} and λi = λj if and
only if i = j. Let xΛ be the vector of length M consisting of only the elements indexed by Λ,
and similarly let F †Λ be the N ×M matrix constructed from keeping only the rows indexed by
Λ in an N ×N inverse Fourier matrix. We are then interested in solving the problem

xΛ = F †Λy. (4.10)

The “best solution” would then be

y = FΛ(F †ΛFΛ)−1xΛ = FΛxΛ, (4.11)

where we have used that the columns in FΛ are orthonormal. The result of this for the case
N = 1000, M = 100 and Λ is created by measuring random indices is shown in figure 4.1. While
the spikes at f = 440 are still apparent, there is a lot of noise in the restored spectrum. The `2
norm minimizing solution will have the property of corresponding to the signal with the least
energy, as we have seen in section 3.1.1. ♣

4.1.1 Finding sparse solutions of LIPs

There is no reason a priori to assume that the `2-minimizing solution of a LIP is the optimal
solution. For many cases, such as the above, we may know beforehand that the restored signal
should be very sparse. If we know we are looking for a k-sparse solution, we should tailor our
methods to this. Is it possible to accurately reconstruct such a sparse solution? For this to be
possible, we must require that there are no other k-sparse vectors x satisfying Ax = b. The
following lemma shows us that it is possible to obtain this uniqueness property.
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Figure 4.1: A reconstructed Fourier spectrum based on partial time measurements
and `2 minimization.

Lemma 4.1.3. Suppose that A is an m×n matrix such that every set of 2k columns of A
are linearly independent. Then a k-sparse vector xk ∈ Cn can be reconstructed uniquely
from Axk = b.

Proof. Assume that Ax = b and Ay = b for x 6= y, where x and y are both k-sparse. This
implies that A(x − y) = 0. But x − y is 2k-sparse, so this in turn implies that there are 2k
linearly dependent columns of A, a contradiction.

This lemma proves the needed uniqueness, and also suggests a way to solve the problem.
Since any k − j-sparse vector, j = 1, . . . , k, is also k-sparse, we should look for the sparsest
possible solution. As long as A obeys the restriction outlined by the lemma, this approach will
give the unique solution xk. Our aim is then formally

minimize ‖x‖0,
subject to Ax = b.

(P0)

The problem is that this problem is very hard to solve1. If we want to solve (P0) directly, we
need to need to try out all possible combinations of placements for the 0s. For a k-sparse vector
of size N , without knowledge of exactly what k is, we need to try up to

∑k
j=0

(
N
j

)
combinations.

So on one hand we hand the `2 minimization which is easy to do, but gives the wrong result,
and on the other we have `0 minimization, which gives the right result, but is impossible to do
in practice.

It turns out that we can avoid the problem of minimizing the `0 norm. If we instead
replace the `0 norm with the `1 norm, we will actually in a lot of cases get the same result. `1
minimization is a well-understood problem, and there exists efficient algorithms for it (not as
efficient as the `2 minimization, but computationally feasible for large systems, unlike the `0
minimization). The problem we want to solve now becomes

1For the mathematically inclined, it is NP-hard.
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minimize ‖x‖1,
subject to Ax = b.

(P1)

The fact that we can often choose to solve (P1) rather than (P0) is a very important point,
and as such, we should take some time to explain why it is reasonable.

Figure 3.10 shows the unit circle for the `0, `1 and `2 norms, i.e. the set of points {x} such
that ‖x‖p = 1. Note that the `1 norm is “pointy”; it has edges. these edges coincide with the
points on the `0 norm. This is the key point for why we can use the `1 norm instead of the `0
norm. Let us illustrate this with an example.

Example 4.1.4. Consider the 2-dimensional problem

minimize ‖x‖1,
subject to x1 − nx2 = 1.

(4.12)

The solutions to this problem lie along the line x2 = (x1 − 1)/n. The `1 and `2 minimizing
solutions for the case n = 2 are shown in figure 4.2. Note that the `1 solution corresponds to
the sparest possible solution, and this would be true for any slope. For linear constraints, the
same effect happens in higher dimensions as well. Meanwhile, the `2 minimizing solution will
not be the sparsest solution unless n = 0, in which case the equation just reads x1 = 1. ♣

Let us return to the problem of restoring the sparse Fourier spectrum from the signal given
by (4.9). We can now attempt to restore the signal by `1-minimization. We will get back to
exactly how to do this in section 4.12.2, but here we will just assume some pre-made program
can do this for us. The result of such a minimization is shown in figure 4.3. This restores exact
signal within numerical errors in this case. We should note that we have performed no analysis
of the set of equations defined by F †Λ to guarantee such a strong performance, so this might
be considered a lucky case, for now. We will see later why we get such a good results for the
Fourier measurements.

4.1.2 Signals with noise: different variations of the sparsity-seeking LIP

When dealing with exactly sparse signals, lemma 4.1.3 provides a complete characterization of
when an sparse recovery is possible. However, real measured signals will usually contain some
noise, and thus will not be exactly sparse in a any reasonable basis, even though we might
expect the noiseless signal to be exactly. The task is then to solve the equation Ax = b + ε,
where ε represents the noise in the measurements. In this case, (P1) can intuitively be altered
as

minimize ‖x‖1,
subject to ‖Ax− b‖2 ≤ σ.

(P1-σ)

To use the `2 norm in the inequality here might seem ambiguous, and it is, but this ensures
that “small” deviations from equality spread across all coefficients are acceptable, while large
deviations on only a select few coefficients are heavily punished, which seems very reasonable
when dealing with noise. The exact `1-reconstruction is often referred to as Basis Pursuit (BP),
while the case for σ > 0 is called Basis Pursuit De-Noising (BPDN).
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Figure 4.2: The figure shows the norm minimizing solutions of an under-determined
system of equations. The solutions lie along the blue line.

Another version, which is often called the Lasso problem and which was explored by [36] is
posed as

minimize ‖Ax− b‖2,
subject to ‖x‖1 ≤ τ.

(P1-Lasso)

This problem can be (and often is) posed in its a way that is related to its Lagrangian form,
which was studied in [37],

minimize ‖Ax− b‖22 + λ‖x‖1. (P1-LL)

One should note that while the names of the methods presented here are the historically
correct ones, one may find that this last method is referred to as BP, BPDN, the Lagrangian
of the Lasso or sometimes just the Lasso in literature. Generally, the BP and BPDN monikers
are wildly used for any `1-minimization scheme.

It can be shown that for appropriate values of σ, τ and λ, these three variations yield the
same solution. However, unless A is orthogonal, we can not know a priori what these values
are. Let us investigate this in an example.

Example 4.1.5 (Different `1-minimizing strategies). In this example we will try to restore the
vector x = (0, 1)T , from under-sampled coefficients in some basis, and check that we are able
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Figure 4.3: A reconstructed Fourier spectrum based on partial time measurements
and `1 minimization.

to find the same result for all methods if we can choose the parameters freely. In this case, we
choose the matrix A to be

A =
1√
5

(
1 2

)
(4.13)

Which means that b = Ax = 2√
5
. Let us assume that we only have access to the first element

of the matrix. We will investigate this problem using each of the different methods.

1. Let us first find the relaxed `1-minimization solution, where we choose σ = 0.01. We want
to solve

minimize ‖x‖1

subject to

∥∥∥∥ 1√
5

(
1 2

)(x1

x2

)
−
(

2√
5

)∥∥∥∥
2

≤ 0.01.
(4.14)

The minimization constraint can be written as |x1 +2x2−2| ≤
√

5/100. It is easy to check
that the solution of this problem with the minimal `1 norm is the point (0, 1−

√
5/200)T .

2. Next we look at the Lasso formulation. If we choose τ = 1−
√

5/200, We want to solve

minimize ‖x1 + 2x2 − 2‖2,
subject to |x1|+ |x2| ≤ 1−

√
5/200.

(4.15)

and it should be clear from figure 4.4 that in this case the solution is once again (0,
1−
√

5/200)T .

3. Finally, we solve the Lagrangian form of the Lasso,

minimize (x1 + 2x2 − 2)2/5 + λ(|x1|+ |x2|). (4.16)
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Figure 4.4: Different `1-minimizing schemes solutions. The blue lines illustrate the
relaxed `1 minimization. The red line illustrates the LASSO solution, where we search
for solutions within the requirements ‖x‖1 ≤ τ . The purple line is a contour line for
the Lagrangian version of the LASSO, for a value slightly larges than the value we
find if we insert x = (0, 1 −

√
5/200)T and λ = 4/(100

√
5), as found in the example

text. This is meant to illustrate that the Lagrangian version of the LASSO gives the
same result.

In this case it is not quite as obvious what value we should assign to λ. However, numerical
investigations will show that for λ > 0, the optimal value for x1 will always be 0. This leaves us
with the expression (2x2− 2)2/5 +λ|x2|. If x2 > 0, the optimal value for x2 is x2 = 1− 5λ/8. If
we choose λ = 4/(100

√
5), we find the optimal solution once again to be x∗ = (0, 1−

√
5/200)T .

♣

Total Variation minimization

For a digital signal y, we can define the Total Variation (TV) as

V (y) =
∑
i

|yi+1 − yi|, (4.17)

or for a 2-D signal,

V (Y ) =
∑
i,j

√
|yi+1,j − yi,j |2 + |yi,j+1 − yi,j |2. (4.18)

Minimizing the TV is a popular alternative alternative to minimizing the `1 norm, for cases
where the signal has a sparse gradient. Most notably, this has produced great results for
reconstructing images such as the Shepp-Logan phantom, in cases where the Fourier coefficients
are sampled along radial lines at different angles (see [38] for a demonstration). The restoration
is often done using the exact or relaxed equality constraint with the `1 minimization replaced
with a TV-minimization, or the Lagrangian of the Lasso, with the `1 norm again replaced.
Additionally, another approach, usually called the Dantzig TV minimization, aims to solve the
problem

minimize TV (x),

subject to ‖A†(Ax− b)‖∞ ≤ γ.
(TV-Dantzig)
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Figure 4.5: A simple model of seismic data acquisition. From [39].

We will get back to the details of solving (P1) and its variations in section 4.12.2. For now
we will simply assume some black box is able to solve this problem for us. The rest of this
section will be devoted to introducing some common cases of LIPs, and briefly explore how
they relate to sparse solutions.

4.1.3 Deconvolution

Deconvolution of sparse spikes is one of the oldest inverse linear problems, and has its origins
in recovery in seismic imaging. The ground is modeled as a 1-D profile x, mostly zeros with
a few spikes accounting for interfaces between layers in the ground. In order to measure this
signal, typically a sound wave is sent down in the material, and for each layer transition, the
signal will be partly reflected because the new layer will have a somewhat different propagation
speed, as follows from elementary wave mechanics.

The problem is that because the wave used is not perfectly sharp, and because the transition
is not perfectly sharp, the actual measurement will be considerably blurred. The task at hand
is then to restore the sharp layers. An overview of this problem is shown in figure 4.5.

It is easy to make a “toy model” of this process, here we present the model used in [40]. Let
x be the sparse vector. Then the measured signal can be modeled as

y = Dx + ε, (4.19)

where D is some filter representing the spread of the wave, and ε represents measurement noise.
Here we choose D to be the second derivative of a Gaussian function,

D(t) ∝
(

1− t2

σ2

)
exp

(
t2

2σ2

)
. (4.20)

We have briefly seen this filter this earlier, in section 3.3, as the Mexican hat wavelet. In
addition, we let D be of size 2N × N . This simply reflects the fact that we make a lot of
measurements of the signal, and will help ensure a stable recovery. If we let the noise be i.i.d.
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Figure 4.6: A toy seismic signal and its measured counterpart.

Gaussian variables, then the resulting signal may look like in figure 4.6. The task is then to
restore the original sparse vector x from only y.

It is reasonable to attempt to solve this as the optimization problem (P1-σ). The result
of such an optimization is shown in figure 4.7. The result, while not exact, is certainly good
enough to find the edges of the real signal.

4.1.4 Denoising

Image denoising is one of the most studied fields in DSP. The problem is easy to state. Some
image x has been exposed to some form of additive noise ε, resulting in the polluted version of
the image y,

y = x + ε. (4.21)

There are many ways to approach the problem of restoring x. Here we will focus on repre-
sentation based sparsity-promoting methods, often referred to as Thresholding methods.

Consider the Lena image, and its polluted counterpart, as shown in figure 4.8. Figure 4.8
also shows the logarithm of the DWT CDF 9/7 wavelet coefficients, as well as the logarithm of
the DWT of the noisy signal. We see here that the noise hits the first detail spaces the hardest,
while in the second, third and fourth detail space the features of the image are still apparent.
We know that the image will still be of high quality if we set the first detail space to zero. It
seems like the DWT is somehow able to sort the noise from the coherent signal.

We will now attempt to remove the noise from the image by simply compressing it; we set
all coefficients less than some threshold equal to zero. This approach is called hard thresholding,
and can be likened to solving the relaxed (P0) problem. The result is shown in figure 4.9. The
result is fairly good. We could have introduced a new wavelet which might perform better, but
this would detract from the discussion at this point.

It is interesting to repeat this experiment with the curvelets introduced in section 3.6. This
will highlight the advantage of overcomplete dictionaries, which was somewhat unmotivated
when we had only discussed the application of compression. The result for the DCUT2-based
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Figure 4.7: A restoration of the toy signal based on (P1-σ). The red points is the
original data, while the black points is the restored signal.

PSNR, σ = 0.1

Noisy Image 68.1693
DWT-97 75.6077
DCUT2 73.3452

Table 4.1: The results for a simple denoising experiment. The image was normalized
to [0,1], and Gaussian noise was added with a standard deviation, σ, as specified.

denoising is shown in figure 4.10. One should note that for this result we have used a different
threshold for the coarsest scale, which in the CurveLab-implementation is computed as a regular
wavelet transform. This is reasonable, as these coefficients are not as strictly related to the rest
of the wavelet coefficients as is the case for the DWT. The performance is somewhat poorer that
the DWT in terms of error, but one should note that the error is less coherent for the DCUT2,
in the sense that the error along edges is larger for the DWT than the DCUT2. One should also
note that these test are very basic, and do not provide definitive answers as to which method
generally performs better. Such an analysis would, once again, detract from the discussion at
hand. The interested reader might look to [41] for a more in-depth analysis.

The results are gathered in table 4.1. Finally, we mention that we might try to solve this
problem as (P1-σ), i.e. with `1 minimization. This approach is called Soft Thresholding.

4.1.5 Inpainting

What about cases where some information is perfectly kept, but some parts of the signal is
missing completely? The process of filling in missing data in a signal is called signal inpainting.
Like with denoising, there are many ways to approach this problem, some involving sparse
representations, and some not. For a more complete review of methods, see [42].

A simple example of an inpainting process in shown in figure 4.11. Here we consider the
cage to be “corrupted” data, and we would like to paint in the missing parts of the signal.

In a way, we already considered this problem for the most part in our introductory Fourier
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Figure 4.8: The Lena image and the noise polluted version.

example. The idea is that if we can restore the signal in the Fourier basis, then the IDFT will
provide the reconstructed of inpainted signal. Formally, we let x ∈ RN be some signal, and let
xus ∈ RM be the subsampled version,

xus = Dx, (4.22)

where D is the a downsampling operator, an M ×N matrix created from removing rows from
the N ×N identity matrix.

The inpainting problem can can be formulated as the task of finding a “good” y ∈ RL such
that

DΨy = xus, (4.23)

where Ψ is an N × L matrix such that the rows of Ψ are atoms in a dictionary (possibly

basis elements in a basis). In the example introduced earlier, Ψ was the IDFT matrix, F †N ,
which means the rows of Ψ are the complex exponentials {e2πikl/N}, while D was a random
subsampling operator. The term “good” here means a y such that Ψy is as close to x as
possible. If we know that the signal should be sparse in the Ψ basis, then we may approach
this problem as (P1) or one of its variants, with the matrix A = DΨ.
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(a) Lena restored (b) Restoration error

Figure 4.9: The denoised image and the error

(a) Lena restored (b) Restoration error

Figure 4.10: The denoised image and the error for the DCUT2-based denoising.

MCALab - Reproducible Research in Signal and Image Decomposition and Inpaint-
ing

A notably user friendly MATLAB toolkit for solving such inpainting problems has been devel-
oped by M.J. Fadili et al, called MCALab [43]. MCALab has support for DCUT2 representations
as well as a structure that is easily modified to add additional transforms.

It is worth noting that MCALab does not solve (P1), but instead two related problems. The
first one is

minimizey1,...,yL,σ λf(y) + ‖xus −DΨy‖22/(2σ2), (4.24)

which is solved with the function with the function EM_Inpaint(...). Here f(y) can be
any (convex) function. Setting f(y) = ‖y‖1 gives a problem formulation equivalent to (P1-LL).

The second function, MCA2_Br(...), solves the problem

minimize ‖y‖1,
subject to ‖DΨy− xus‖2 ≤ σ,

(4.25)
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Figure 4.11: Inpainting of a cage in a parrot image.

which is simply (P1-σ). The names of these functions are derived from the algorithms used to
solve the minimization problems; the problem we have so far chosen to overlook.

MCALab is available for download on their website: https://fadili.users.greyc.fr/demos/
WaveRestore/downloads/mcalab/Home.html.

Numerical experiments with MCALab

In the introductory example, we tried to restore the Fourier spectrum of a signal based on
partial samples. We have also noted that if we are able to find the correct Fourier spectrum, we
can simply apply an IDFT to obtain the restored signal. Here we will attempt this task using
the various transforms we have introduced so far, the DFT, the Haar DWT, the CDF 9/7 DWT
and the DCUT2. In each case, we restore the signal in the relevant basis, and then apply the
inverse transform to restore the image in the spatial basis.

We will once again use the Lena image for our tests. We will look in particular at the cases
where we subsample the image randomly by factors of 1/4 and 1/16 (as exemplified in Figure
4.12), and then restore the image using MCALab. The result of these simulations are shown in
Table 4.2, as well as Figures 4.13 and 4.14.

There are several interesting things to note about these results. Even though the Lena image
is, as we saw in section 3.5, more approximately sparse in the CDF 9/7 basis than the DFT
basis (in the sense that that it is compressible with a smaller s, as defined in Definition 3.5.4),
the restoration is far worse for the CDF 9/7 transform, both qualitatively and in terms of the
PSNR. Clearly, sparsity is not the only feature which determines the quality of the restored
signal. We also note that the DCUT2 seems to come out as the winner amongst these methods.
Finally, even though the Haar DWT performs the worst for M = N/4, it catches up to, and
passes, the CDF 9/7 transform for M = N/16. We will not attempt to explain these phenomena
presently, but we note them as we move on to the next section, where we will begin to study
the theory necessary to understand these results.

https://fadili.users.greyc.fr/demos/WaveRestore/downloads/mcalab/Home.html
https://fadili.users.greyc.fr/demos/WaveRestore/downloads/mcalab/Home.html
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Number of samples Transform PSNR

N/4 zero-filling 6.56
DFT 27.27
Haar 22.91
CDF 9/7 24.27
DCUT2 31.37

N/16 zero-filling 5.97
DFT 22.27
Haar 19.19
CDF 9/7 18.82
DCUT2 25.31

Table 4.2: The table shows the results of inpainting the Lena image, solved as a LIP
with (P1-σ) with different representations.

(a) M = N/4 (b) M = N/16

Figure 4.12: Subsamples of a N = 512 × 512 Lena image, with M = N/4 and
M = N/16 randomly selected pixels kept.
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(a) DFT (b) Haar

(c) CDF 9/7 (d) DCUT2

Figure 4.13: Inpainting of the Lena image from M = N/4 randomly selected pixels.
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(a) DFT (b) Haar

(c) CDF 9/7 (d) DCUT2

Figure 4.14: Inpainting of the Lena image from M = N/16 randomly selected pixels.
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4.1.6 Atomic Decomposition

So far we have considered signal restoration methods. Here we will briefly introduce a signal
analysis method based on overcomplete representations. Consider a signal which consists of a
single sine as well as a few large singularity. To make this more concrete, consider the signal x
defined by

xi = sin

(
2π10× i

1000

)
+ δi,100 + δi,300 + δi,470, i = 0, 1, . . . , 999, (4.26)

where δi,j is the Kronecker-delta function, defined by

δi,j =

{
1 if i = j,

0 otherwise.
(4.27)

This signal in shown in figure 4.15(a). The singularities creates a lot of noise in the DFT
spectrum. In order to analyze the signal it would be better if we had some frame which includes
both pure tones and singularities. This is the idea behind atomic decomposition: Let Ψ1 and
Ψ2 be two bases. Now let Ψ = Ψ1∪Ψ2 be the dictionary created by using all basis elements in
Ψ1 and Ψ2. Even though x might not be sparse in the basis of delta functions or in the Fourier
basis, it might have a sparse representation in the dictionary defined by combining them. This
approach is called it atomic decomposition, as we separate the information in x into two separate
domains. The result of such a decomposition into Diracs and Fourier functions is shown in figure
4.15(b). A more involved 2-D image separation performed in MCALab is shown in figure 4.16.
This test was done by J.-L. Starck and can be viewed at http://jstarck.free.fr/mca.html.

We note the following result, shown in [44], which tells us that we can predictably find such
sparse representations by `1-minimization.

Theorem 4.1.6. Let x be a signal of length N . Let Ψ1 be a Fourier basis, let Ψ2 be a
Dirac basis and let Ψ = Ψ1∪Ψ2 be the combined dictionary, with elements (Ψ)n. Assume
that there is a y of length 2N such that

x = Ψy, (4.28)

and y is
√
N/2-sparse. Then the problem

minimize ‖z‖1,
subject to Ψz = x,

(4.29)

has a unique solution, and it is given by z = y.

http://jstarck.free.fr/mca.html
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Figure 4.15: The figures show 4.15(a) a signal with a sine and some singularities,
along with its DFT, and 4.15(b) its sparse decomposition into the Fourier and Dirac
bases.
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(a) An image of lines and Gaussians and a polluted version of the same image

(b) Decomposition by curvelets and wavelets of the noisy image

(c) The noise-free sum of the decompositions and the residual compared to the noisy
image

Figure 4.16: The figures illustrate the image separation and denoising of a signal
with lines and Gaussian functions.
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4.1.7 Compressed Sensing

In the inpainting problem, we were limited to M samples of an N -length signal x. These samples
were selected by some sub-sampling operator D. Consider now a similar situation. You can
still make M measurements on the system, but you can make these measurements in any way
you want. Formally, we obtain a vector of measurements z ∈ RM as

z = Φx, (4.30)

Then, in a similar vein as the inpainting problem, we assume that x has a sparse represen-
tation in some dictionary Ψ, i.e.

x = Ψy, (4.31)

where y is a sparse vector. There are two possible ways to approach to this problem. The first
is called the Synthesis solution, and involves simply substituting x = Ψy into the minimization
problem. In this case, we solve the problem

minimize ‖y‖1,
subject to ΦΨy = z.

(4.32)

The other approach is called the Analysis solution. In this case, we solve the problem

minimize ‖Ψ†x‖1,
subject to Φx = z.

(4.33)

Note that in the case where Ψ is an orthobasis, these problems are equivalent, but this is
not true for general dictionaries. Some work has been made in comparing the two approaches
[45], but one does not appear to be universally superior to the other. Throughout this thesis,
we will use the synthesis restoration approach, due to the fact that the `1-minimizing software
used here (see section 4.12.2) in general only handles this approach. Note however that in the
case where Ψ is invertible, but not orthogonal, we may rewrite the analysis problem by defining

y = Ψ†x. (4.34)

We can then solve the problem as

minimize ‖y‖1
subject to Φ(Ψ†)−1y = z

(4.35)

This result is useful for non-orthogonal bases, such as the CDF 9/7 wavelet, but it is not valid
for the frames we have investigated, such as the DCUT2 or the Wave Atom, as they do not
have explicit inverses.

This is the formal description of the CS problem, and is the problem we will focus on for
the rest of this chapter. As such, we should properly introduce its players.

Definition 4.1.7 (Sensing matrix). The sensing matrix or measurement matrix Φ de-
scribes the measurements performed on a system. These measurements are all some linear
combination of the N -length signal vector x. Φ is an M ×N matrix, where M < N , such
that z = Φx is an M -length measurement vector. We denote the individual measurement
(the rows of Φ) by φj , j = 1, . . .M .
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From these measurement in Φ, we now want to try to restore the signal. To do this, we
choose a representation dictionary.

Definition 4.1.8 (Representation dictionary and matrix). The representation dictionary
{ψk}Lk=1 is the dictionary in which we will try to restore the signal. Ideally, the signal
should be sparse in this dictionary. Ψ refers to the N × L “change of basis matrix” from
the position basis to the representation basis, in the sense that

x = Ψy. (4.36)

Note however that the atoms in the dictionary do not necessarily constitute a basis. It
might be a frame. It may also have rank lower than N , but some care should be taken in
this case, as then x might be impossible to restore.

The CS problem in the synthesis form is really just another formulation of (P1). If we collect
the product ΦΨ into a single L ×M matrix, we recover the familiar formulation. As such,
we may consider the matrix ΦΨ to be the sensing matrix, and solve this problem in the Ψ-
basis.

Definition 4.1.9. We define
Φtot = ΦΨ, (4.37)

to be the total sensing matrix.

We can then simplify the problem by trying to restore the sparsest possible y such that Φtoty =
z. This view will be useful now, when we will investigate some theoretical aspects of CS.

4.2 Overview of the rest of this chapter

Let us quickly recap what we know so far. We have seen that (P0) has a unique solution in
some circumstances (Lemma 4.1.3). We have also argued that solving (P1) will “in a lot of
cases” provide the same solution as (P0). In the rest of this chapter, we will want to investigate
the following.

1. What properties of Φ guarantee that (P1) will exactly reproduce the measured signal x?

2. Are we able to construct such matrices in a predictable way?

3. What kind of guarantees can be established for noisy signals which are not exactly sparse?
What about compressible signals?

4. What considerations must be made when extending our results from 1-D to 2-D?

The known theory of CS is spread across many articles, and no known dogma-defining
textbook has emerged as of yet. By keeping this path in mind, the goal is to present an as clear
and consistent version of the CS-theory as possible. The theory here is collected from [46], [47]
and [48], along with several articles which will be cited when relevant.
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4.3 Warm up: Mutually incoherent bases

In this section we present one of the first results for recovery guarantees with compressed sensing.
This result somewhat skips to the ending of our theoretical investigations, however, it is useful
to present it early. It will be put in a wider setting in section 4.7.3.

We saw earlier that a reconstruction of a picture using a DWT basis gave surprisingly poor
results. In order to explain this we will introduce the concept of incoherence. Coherence in the
context of CS can mean a few different things. First we will use the version suggested in first
in [44] and studied in [49].

Definition 4.3.1 (Coherence of elements). Let U be an N × N matrix where the rows
have unit `2 norm. The coherence of elements of U , M(U), is defined as

M(U) =
√
N max

k,j
|Ukj |. (4.38)

The parameter M(U) can be interpreted as a “worst case” measure of how concentrated the
rows of U are. Since each row of U has `2 norm equal to 1, M(U) will take a value between 1
and
√
N . If U is simply single measurements in position space µ(U) =

√
N , while if U consists

of Fourier measurements, M(U) = 1. For any m-level Haar DWT, the coherence is
√
N/2.

We can relate the coherence of a total measurement matrix to the relationship between the
sensing matrix and the representation matrix.

Definition 4.3.2 (mutual coherence property). Let Φ be an N × N orthogonal sensing
matrix, let φk be the N -length measurement vectors of Φ. Let Ψ be an N ×N orthogonal
representation matrix, and let ψk be the rows making up Ψ. Then we define the mutual
coherence of Φ and Ψ, M(Φ,Ψ) as

M(Φ,Ψ) =
√
N max

1≤k,j≤N
|〈ψk, φj〉| (4.39)

Loosely speaking, if a pair of bases Φ and Ψ have a low (i.e. not dependent on N) coherence
are said to have the Mutual Incoherence Property (MIP).

Note that if Φtot = ΦΨ, then M(Φ,Ψ) = M(Φtot). The mutual coherence of Φ and Ψ is
directly related to the performance quality of CS, as the following theorem shows.

Theorem 4.3.3 (Incoherence of bases). Let Φ+ be an N ×N sensing matrix, and let Φ
be the M × N matrix constructed from drawing M rows from Φ+ uniformly at random.
We want to restore the signal x from the measurements y = Φx. If x is k-sparse when
represented in a basis Ψ, then if

M ≥ CM2(Φ+,Ψ)k log(N) log(ε−1), (4.40)

the probability of achieving an exact reconstruction of x exceeds 1− δ.

This is the main result of [49], and one of the most important early results of CS. We are
now able to understand the somewhat disappointing results we obtained when attempting to
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restore the Lena image with a DWT basis. Because the position basis and the DWT basis
are quite coherent, we would need a much larger number of measurements to obtain a good
reconstruction.

The formulation of this result is somewhat strange. We begin by creating an N ×N sensing
matrix, only to reduce it to an M × N matrix for the actual sensing. The result is also
probabilistic in nature, which is not optimal. Let us briefly look at why we cannot provide an
absolute guarantee by this random subsampling, and why it is still preferred.

Subsampling schemes and aliasing-effects

We have mandated a random subsampling of signals, rather than a uniform one. Let us now
address this point. We know that if we subsample a sound signal uniformly, we will experience
problems with aliasing. Let us consider this idea in some more detail. Assume we have a signal
x, which is sampled with a frequency of Nf = 1200 Hz. The signal is a pure sine signal of 440
Hz. The elements of x are then

xj = sin(2π440(j/1200)), j = 0, . . . , 1199. (4.41)

This vector can we written as xj = (e2π440i(j/1200)− e2πi760(j/1200)/(2i). Which means the DFT
of x is the vector y where y440 = −y560 = 1

2i
√

1200
and the rest of y is zero.

Now, if we first imagine every second sample is stored in a vector z, where

zi = x2i = sin(2π440(2i/1200)), i = 1, . . . 599. (4.42)

If we perform a CS restoration in a Fourier basis, the same vector y would still be a solution to
the `0 norm minimization. However, as we saw in example 2.1.3, the vector x∗ with elements
x∗i = − sin(2π160(i/1200)), i = 0, . . . , 599 would yield the exact same z. The full length (1200

point) DFT of x∗, however, would be y∗, where
y∗160=−y∗1040=1

2i
√

1200
, and the rest is zero. Which

means that the `0-norm would be just as minimized for this solution. To make matters worse,
since we only minimize the `1 norm, any solution of the form

yrec = ay + (1− a)y∗ (4.43)

where 0 ≤ a ≤ 1 would give the exact same `1 norm, and thus none of these would be preferred
as the CS solution above the others. The result of an attempted restoration is shown in figure
4.17(a), where the minimizing Matlab routine has chosen the solution corresponding to a = 1/2.

If we kept every third sample, then we can in a similar fashion work out that while an
acceptable result is y, another just as acceptable result is the DFT of the signal x∗∗ where x∗∗i =
− sin(2π(−40)(i/1200)) = sin(2π(40)(i/1200)), i = 0, . . . , 399. The DFT of this vector we will
denote y∗∗. Another possible solution in this case is x∗∗∗, where x∗∗∗i = − sin(2π360(i/1000)),
with a DFT denoted y∗∗∗ A CS restoration will then return

yrec = by + cy∗∗ + (1− b− c)y∗∗∗ (4.44)

with suitable constraints for b and c. This problem will get progressively worse as we try to
increase the sub-sampling distance, with more and more pure tones fitting the signal. The result
of an attempted restoration is shown in figure 4.17(b).

Now let us consider what happens if we alternate sampling every 2nd and third sample. We
let z = (x0, x2, x5, x7, x10, . . . , x997)T . Now we might expect the situation to improve somewhat.
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Figure 4.17: Attempted CS restoration of a sparse Fourier spectrum.

Now neither y∗,y∗∗ or y∗∗∗ are possible solutions. The result of this restoration is shown in
figure 4.17(c)

The trend here is that if the sampling is equidistant, the aliasing effects that may occur
between each subsampled point will build itself up, which will lead to poor performance. We
will follow the terminology of [2] which first discussed this in some detail, and refer to this as
coherence of undersampling artifacts. Similar effects will occur for other transforms as well,
but we will not go into detail on this here. For good performance of CS, we will require
that the undersampling artifacts must be incoherent (noise-like) in the sparse domain (the
representation basis). The best way to ensure that these artifacts are incoherent is to sample
the signal randomly.
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4.3.1 Known MIP-pairs

We have already noted that the Fourier basis and the position basis are maximally incoherent.
Here we will consider another pair of maximally inchoherent bases, Haar Wavelets and noiselets
[50].

Definition 4.3.4 (Noiselets). Noiselets are functions designed to be completely incom-
pressible under the Haar transform. The family of noiselets are constructed on the interval
[0, 1) as follows:

f1(x) = χ[0,1)(x) (4.45)

f2n(x) = (1− i)fn(2x) + (1 + i)fn(2x− 1) (4.46)

f2n+1 = (1 + i)fn(2x) + (1− i)fn(2x− 1) (4.47)

where χ[0,1)(x) = 1 for x ∈ [0, 1) and 0 otherwise.

It can be shown that the set of functions {fn}2
N−1

n=0 is an ortonormal basis for the vector space
V2N . We can then discretize the noiselets the same way we did wavelets. Figure 4.18 show some
noiselet transform matrices.

It can be shown that the Noiselets are maximally incoherent with any m-level Haar DWT
[51]. Furthermore, the noiselets have fast (of order O(N log(N))) implementations, which makes
them preferable to random measurements.

4.4 Null Space Property

In this and the next few sections, we will develop some of the “modern” theory for when an
exact reconstruction is possible (modern here is of course relative, as the MIP-result only dates
back to 2006 in the form presented here). We will consider properties of the total sensing matrix
Φtot. For convenience we will dub this matrix A in most results. We first look back to Lemma
4.1.3. Let us define the property that “A is an m×n matrix such that every set of 2K columns
of A are linearly independent”.

Definition 4.4.1 (Spark). The spark of a matrix A is the smallest number of columns if
A that are linearly dependent.

With this definition, Lemma 4.1.3 states that we can achieve exact reconstruction if spark(A) >
2k. This lemma gives a necessary condition for x to be recoverable by (P1). It is however not
sufficient; there is no guarantee that the relaxed optimization will find the correct solution. We
will call this property the Exact Recovery Property (ERP). Before we go further, one should
refresh on the terminology and notation given in Definition 3.5.2, which will be used thoroughly
in the remainder of the section. We also remind readers that the null space or kernel of A,
ker(A) is the space of all vectors x such that Ax = 0.
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(a) Real part of 8× 8 noiselet matrix (b) Imaginary part of 8× 8 noiselet matrix

(c) Real part of 64× 64 noiselet matrix (d) Real part of 64× 64 noiselet matrix

Figure 4.18: Noislet bases.

Definition 4.4.2 (Exact Recovery Property). Let Λ ⊆ {0, 1, . . . , N − 1} be of cardinality
|Λ| = k. An M × N total sensing matrix A is said to satisfy the ERP for Λ if for any x
such that supp(x) = Λ, x is the unique solution to (P1), i.e. x can be restored exactly
from the measurements Ax = y, by `1-minimization. If A satisfies the ERP for any Λ such
that |Λ| ≤ k, A is said to be k-ERP.

So how do we determine if A is k-ERP? One possible sufficient condition is the Null Space
Property (NSP).

Definition 4.4.3 (Null Space Property). Let Λ ⊆ {0, 1, . . . , N − 1} be of cardinality
|Λ| = k. An M × N sensing matrix A is said to satisfy the NSP for Λ if for every
x ∈ ker(A) \ {0} satisfies ‖xΛ‖1 < ‖xΛc‖1. If A satisfies the NSP for any Λ such that
|Λ| ≤ k, A is said to be k-NSP.

The null space property ensures that the elements of ker(A) are not too concentrated on a
few indices. If A is k-NSP, and x is k-sparse, then there is a Λ of cardinality k such that
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‖xΛc‖1 = 0. The NSP condition then ensures that ‖xΛ‖1 = 0 as well, which means that if A is
k-NSP, then the only k-sparse vector in ker(A) is the zero-vector. This is naturally important for
a reconstruction to be possible, as if the measurement of k-sparse vector were to yield the zero
vector, a reconstruction would be impossible. We should also note the following reformulations
of the NSP:

• If we add ‖xΛ‖1 to both sides, then (as ‖x‖1 = ‖xΛ‖1 + ‖x‖Λc) the NSP reads

2‖xΛ‖1 ≤ ‖x‖1. (4.48)

• Let A be k-NSP. Letting Λ be the index set of the k largest elements of some vector x
and adding ‖xΛc‖1 shows that

‖x‖1 ≤ 2σk(x)1, (4.49)

where σk(x)1 is the k-term approximation error introduced in Definition 3.5.3.

The following result shows the NSP is both necessary and sufficient for the ERP.

Theorem 4.4.4. A satisfies the NSP for Λ, if and only if A satisfies the ERP for Λ.

Proof. This proof is from [52].
We use contrapositive arguments. First, assume that A does not satisfy the the NSP for Λ.

Then there exists z ∈ ker(A) \ {0} such that ‖zΛ‖1 > ‖zΛc‖1. If we set x1 = zΛ and x2 = −zΛc ,
then Ax1 − Ax2 = Az = 0, which implies Ax1 = Ax2. Since ‖x2‖1 < ‖x1‖1, `1 minimization
will not be able to restore x1 (such an approach will at the very least prefer x2 as the solution),
and thus A is not ERP for Λ.

Now assume that A is not ERP for Λ. Then there is at least one one x1 with support on Λ
which is not recovered by (P1). This in turns means that there is a x2 such that Ax1 = Ax2

and ‖x1‖1 > ‖x2‖1. If we set z = x1 − x2, then Az = 0. As such, z ∈ ker(A) \ {0}. From the
triangle inequality, it follows that

‖zΛc‖1 = ‖(x2)Λc‖1 (4.50)

= ‖x2
Λc‖1 + ‖x2

Λ − x2
Λ + x‖1 + ‖x‖1 (4.51)

≤ ‖x2
Λc‖1 + ‖x2

Λ − x2
Λ‖1 + ‖x‖1 + ‖x‖1 (4.52)

= ‖x2‖1 + ‖zΛ‖1‖x1‖1 (4.53)

≤ ‖zΛ‖1, (4.54)

which shows that A is not NSP for Λ
It follows directly from this that A is k-ERP if and only if A is k-NSP.
We can note a few more properties of the NSP. The NSP is a necessary and sufficient

requirement on A to exactly recover any x from y = Ax through (P1). It is also necessary and
sufficient to restore x through (P0). Let z be the solution of (P0) for some k-NSP A. Then
‖z‖0 ≤ ‖x‖0, i.e. z is at least k-sparse. However, since every k-sparse vector is uniquely restored
by A, it follows that z = x.

If the measurements are stretched, rotated or shifted, the NSP is still satisfied, as

ker(A) = ker(BA), (4.55)

where B is an invertible M ×M matrix. Furthermore, if we add more measurements, i.e. let
B be an M ′ × N matrix such that M ′ > M and the first M rows of B are equal to A, then
ker(B) ⊂ ker(A).
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4.4.1 An alternate definition of the null space property

As we noted at the beginning of this chapter, the theory of CS is still in its adolescent stage.
As such, there are some competing formulations of results. Here we highlight one of these
inconsistencies, by noting an alternative definition of the NSP. We shall denote this as the
NSP-2 for clarity, but in the literature it is simply referred to as the NSP.

Definition 4.4.5 (NSP-2). A is said to be k-NSP-2 if there is a constant C > 0 such that

‖xΛ‖2 ≤ C
‖xΛc‖1√

k
, (4.56)

for all x ∈ ker(A) and all Λ such that |Λ| ≤ k.

The connection between the NSP and the NSP-2 can be made with the help of the following
small result:

Lemma 4.4.6. For any k-sparse vector x ∈ CN ,

‖x‖1 ≤
√
k‖x‖2 ≤ k‖x‖∞. (4.57)

Proof. For a vector x, let y = sign(x) be the vector defined by

yi =


1 if x > 0,

−1 if x < 0,

0 if x = 0.

(4.58)

With this definition, we have that ‖x‖1 = |〈x, sign(x)〉|, and for a k-sparse x, ‖ sign(x)‖2 =
√
k.

From the Cauchy-Schwartz inequality, it then follows that ‖x‖1 ≤
√
k‖x‖2. The upper bound

is obtained by noting that

‖x‖2 =

(
N−1∑
i=0

x2
i

)1/2

, (4.59)

and if we replace all nonzero xi with maxk{xk} = ‖x‖∞ we obtain

‖x‖2 ≤

(
k−1∑
i=0

‖x‖2∞

)1/2

=
√
k‖x‖∞. (4.60)

We can now show the following.

Lemma 4.4.7. If A is k-NSP-2 with constant C < 1, then it is also k-NSP.
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Proof. Let Λ be an index set with |Λ| = k, and let x ∈ (A). Then xΛ is k-sparse. We know
that ‖xΛ‖1 ≤ ‖xΛ‖2

√
k, and because A is NSP-2 with C < 1, we also have ‖xΛ‖2 < ‖xΛc‖1/

√
k,

which in total gives us

‖xΛ‖1 ≤
√
k‖xΛ‖2 < ‖xΛc‖1. (4.61)

We can also show a similar implication in the other direction.

Lemma 4.4.8. If A is k-NSP, then it is also k-NSP-2 with constant C =
√
k.

Proof. Note that ‖x‖1 ≥ ‖x‖2, as

‖x‖21 =

(∑
i

|xi|

)2

=
∑
i

|xi|2 +
∑
i 6=j
|xi||xj | ≥

∑
i

|xi|2 = ‖x‖22. (4.62)

If A is k-NSP, then for any x ∈ ker(A) \ {0}, then for any set Λ with |Λ| = k, we have

‖xΛ‖2 ≤ ‖xΛ‖1 < ‖xΛc‖1 = C
‖xΛc‖1√

k
, (4.63)

if C =
√
k.

The NSP-2 is somewhat more general than the the NSP. Guarantees from the NSP-2 are
usually of the form “Let ∆ : CM → CN be some specific recovery method. Then if A is k-NSP-2,

‖∆(Ax)− x‖2 ≤
Cσk(x)1√

k
, (4.64)

for any x”.

4.5 Coherence of measurements

The NSP is both necessary and sufficient for perfect reconstruction. However, checking for
which k a sensing matrix is NSP is difficult. Here we introduce a useful tool for considering the
quality of a sensing matrix, the coherence.

Definition 4.5.1 (Coherence). Let A be anM×N total sensing matrix, with `2-normalized
columns a1,a2, . . . ,aN . The coherence of A, µ(A) is defined as

µ = max
i≤i 6=j≤N

|〈ai,aj〉|. (4.65)

When there is risk of confusion with the coherence of elements introduced in section 4.3, we
will refer to this as the coherence of measurements.

It is possible to show that the coherence of measurements will always fall in the range[√
N−M
M(N−1) , 1

]
(we will do this in the proof of theorem 4.7.3). This is known as the Welch

bound [53].
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Consider the case where two columns aj and ak of A are exactly equal. In this scenario, there
will be no information in the measurements to distinguish the values of the signal components
xj and xk. This will also cause the maximal possible coherence of µ(A). We might be able to
restore what the value of some linear combination of xj and xk is, but we will not be able to
find xj and xk, and exact reconstruction is impossible. We can make the importance of the
coherence more clear by the following theorems. First we introduce the notion of the Gramian
of a matrix A.

Definition 4.5.2 (Gramian of a matrix). Let A be an M ×N matrix. The Gram matrix
or Gramian G, of A is defined as the N ×N matrix

G = A†A. (4.66)

The coherence of measurements can be related to the Gramian of A. If we let G be the
Gramian of A, then the following properties hold:

• Gii = 1.

• Gij < µ(A) for i 6= j.

• µ(A) = maxj 6=k |Gjk|.

This will be useful when in proving some theorems later. We also need one more result, which
gives an easy to calculate bound on the eigenvalues of an N ×N matrix A.

Theorem 4.5.3 (Gershgorin circle theorem [54]). For each eigenvalue λ of a k× k matrix
A, there is an index i ∈ {1, 2, . . . , k} such that

|λ−Aii| ≤
∑
j 6=i
|Aij |. (4.67)

This can be interpreted geometrically as saying that the more diagonally dominant this
matrix is, the closer the eigenvalues will lie to the diagonal values. This result will be useful
later as well. Now we are ready to prove the following:

Theorem 4.5.4 (Incoherence of measurements and reconstruction). For any M ×N mea-
surement matrix A,

spark(A) ≥ 1 +
1

µ(A)
. (4.68)

Additionally, if

k <
1

2

(
1 +

1

µ(A)

)
, (4.69)

then (P0) has a unique solution, and if

k <

(
1 +

1

3µ(A)

)
, (4.70)

then A is k-ERP.
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Proof. This proof is a slightly expanded version of the one found in [46] p. 24-25. Let
Λ ⊆ NN−1

0 with |Λ| < p be an index set and let AΛ be the M × p reduced measurement matrix

constructed from selecting the p columns in A with indices found in Λ, and let GΛ = A†ΛAΛ be
the Gramian of AΛ. As we have noted Gii = 1, which implies that (GΛ)ii = 1 as well.

Assume now that p ≤ spark(A). This implies that the columns of AΛ are linearly indepen-
dent. This in turn implies that GΛ is positive definite, which means that

(GΛ)ii ≤
∑
j 6=i

(GΛ)ij . (4.71)

Now, since |(GΛ)ij | ≤ µ(A), this inequality takes the form

1 ≤ (p− 1)µ(A), (4.72)

or 1 + 1/µ(A) ≤ p. Bringing this all together, we have shown that

1 +
1

µ(A)
≤ p ≤ spark(A), (4.73)

which proves the first part of the theorem.
The second part now follows directly from lemma 4.1.3, as 2k ≤ 1 + 1/µ(A) implies that

2k ≤ spark(A), which is the condition presented in the lemma. The proof of the last part will
come in the next section.

This result deserves some discussion. If we combine this result with the Welch bound, we find
some the theoretical “best case” performance under these requirements. We pose the question:
For a k-sparse signal, how many measurements are at the very least needed in order to restore
the signal? Let us assume A obeys the Welch bound, such that

µ(A) =

√
M −N
N(M − 1)

. (4.74)

To ensure that A is k-ERP, we must require that

k < 1 +
1

3

√
M(N − 1)

N −M
, (4.75)

which can be solved for M as

M >
9(k − 1)2N

N + 9(k − 1)2 − 1
, (4.76)

which motivates the following result regarding the number of measurements needed to guarantee
a restoration of a signal according to the coherence.

Lemma 4.5.5. For a k-sparse signal we can ensure perfect reconstruction with

M ≥ Ck2 (4.77)

measurements, where C is some constant.

Next we consider a more general `1 coherence function.
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Definition 4.5.6 (Generalized `1 coherence function). Let A be a total sensing matrix,
with `2-normalized columns a1,a2, . . . ,aN . The `1 coherence function µ1 of A, µ1(s) is
defined as

µ1(k) =
N−1
max
i=0

max
Λ

∑
j∈Λ

|〈ai,aj〉| : |Λ| = k, i 6∈ Λ

 . (4.78)

For k = 1 this simplifies to the regular coherence. It is straightforward to check that for
1 ≤ s ≤ N − 1,

µ ≤ µ1(k) ≤ kµ. (4.79)

We end this section with a result that may seem unimportant and and of little use at first
sight, but will be useful in the next section.

Theorem 4.5.7. Let A be an M×N matrix with `2-normalized columns and let k ∈ NN−1
0 .

For all k-sparse vectors x ∈ CN ,

(1− µ1(k − 1))‖x‖22 ≤ ‖Ax‖22 ≤ (1 + µ1(k − 1))‖x‖22. (4.80)

We will delay the proof of this result to the next section.

4.6 Restricted Isometry Property

The coherence is a simple and useful measure of the quality of a measurement matrix. The
performance guarantee given by the coherence is however quite poor, which leads to ensured
recovery only for very small sparsity levels. Here we introduce a finer requirement, called the
Restricted Isometry Property (RIP), also known as the uniform uncertainty principle. This
property is considered to be the state of the art when it comes to ensuring success of sparse
recovery.

Definition 4.6.1 (Restricted Isometry Property). An M ×N matrix A is said to obey the
RIP of order k with constant δk (or be (k, δk)-RIP) if δk is the smallest positive constant
such that

(1− δk)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22, (4.81)

for all k-sparse vectors.

If we let A satisfy the RIP or order 2k with constant δk < 1 and x,x′ be k-sparse vectors. Then
the RIP essentially says that the distance between vectors x − x′ is (roughly) conserved when
transformed by A. Note that the factors on the RIP bounds do not really need to be symmetric
about 1, we could also allow arbitrary bounds

α‖x‖22 ≤ ‖Ax‖22 ≤ β‖x‖22, (4.82)

for any positive and finite α and β.
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For any matrix A which obeys the RIP of order k with parameter δk, if we select an index
set Λ with cardinality |Λ| ≤ k and store only the columns of A with indices in Λ as the M × k
matrix AΛ, then the eigenvalues of the k × k matrix GΛ = ATΛAΛ will always lie in the interval
(1− δk, 1 + δk) [55]. To see this, let x be a k-sparse vector of unit length, and let Λ be the set
{λ1, λ2, . . . , λk} of indices where x is nonzero. Now let AΛ be the M × k matrix constructed
from keeping only the columns of A belonging to Λ. Then AΛxΛ = Ax, and

‖AΛxΛ‖22 = (AΛxΛ)†(AΛxΛ) (4.83)

= x†ΛA
†
ΛAΛxΛ (4.84)

= x†ΛGΛx, (4.85)

where GΛ is the Gramian of AΛ. Since ‖Ax‖22 ∈ (1 − δk, 1 + δk), so is x†ΛGΛx. Since we can
choose Λ any way we want, and similarly choose x any way we want (as long as it is k-sparse),
the result holds for any k-sparse vector which implies that all the eigenvalues of GΛ lie in the
interval (1−δk, 1+δk) for any Λ with cardinality k. These steps can be repeated in the opposite
direction, which shows that this statement is equivalent to the RIP. We can also phrase this as
that for any index set Λ the eigenvalues of (GΛ − Ik), where Ik is the k × k identity matrix,
have a magnitude less than or equal to δk, because for any matrix A, if λ is an eigenvalue of A,
then λ− 1 is an eigenvalue of (A− Ik).

With this equivalence shown, we are ready to prove Theorem 4.5.7.
Proof.[Proof of theorem 4.5.7] Let Λ be an index set with |Λ| ≤ k. We will show that if the

eigenvalues of GΛ = A†ΛAΛ lie in the interval (1− µ1(k − 1), 1 + µ1(k − 1)), which is equivalent
to the statement in the theorem, for the same reasons as above. From the Gershgorin circle
theorem,

|λi − 1| ≤
∑
j 6=i
|〈ai,aj〉|, (4.86)

where λi are the eigenvalues of GΛ, from the definition of µ1(k) we also have

∑
j 6=i
|〈ai,aj〉| ≤ max

i∈NN−1
0

max
Λ

∑
j∈Λ

|〈ai,aj〉| : |Λ| = k − 1, i 6∈ Λ

 = µ1(k − 1), (4.87)

which implies that |λi − 1| ≤ µ1(k − 1) for all i.
If A satisfies the RIP of order k with bound δk, the it also satisfies the RIP of order k′ < k

with a bound δk′ < δk. Generally we have

δ1 ≤ δ2 ≤ . . . ,≤ δN . (4.88)

We also have the following result.

Theorem 4.6.2. If the M ×N matrix A has `2-normalized columns, then

δ1 = 0, (4.89)

δ2 = µ, (4.90)

δk ≤ µ1(k − 1) ≤ (k − 1)µ, k ≥ 2. (4.91)



102 Theory of Compressed Sensing Chapter 4

Proof. This proof is from [47], p. 135.
The `2-normalization means that ‖Aej‖22 = ‖ej‖22 for all j. This implies that δ1 = 0.
For the second point, remember that µ(A) = maxi 6=j |〈ai,aj〉|. For an index set Λ with

Λ = 2, i.e. Λ = {i, j}, i 6= j, we have

GΛ =

(
1 〈ai,aj〉

〈aj ,ai〉 1

)
, (4.92)

which can be shown to have the eigenvalues λ = 1± |〈ai,aj〉|. This means that

|1− λ| = |〈ai,aj〉| ≤ µ(A), (4.93)

with equality for the optimal choice of i and j.
The last set of inequalities follow directly from Theorem 4.5.7 and equation (4.79).
What is perhaps more surprising is that we can sometimes also guarantee that A satisfies

the RIP of order k′ > k. The following is a result first published in [56].

Lemma 4.6.3. Suppose that A satisfies the RIP of order k with constant δk. Let γ be
a positive integer. Then A satisfies the RIP of order k′ = γbk2c with constant δk′ < γδk,
where b·c denotes the floor operator.

Note that this will allow us to extend the RIP to higher orders if γδk is sufficiently small.

4.6.1 The ERP and the RIP

We will now show a relation between the ERP and the RIP. We first need a small result.

Lemma 4.6.4. Given q > p > 0, if u ∈ CS and v ∈ CT satisfy

‖u‖∞ ≤ min
j∈NT−1

0

|vj |, (4.94)

where we remember that ‖u‖∞ = maxi∈NS−1
0
|ui|, then

‖u‖q ≤
S1/q

T 1/p
‖v‖p. (4.95)

As a special case, for p = 1, q = 2 and T = S, we have

‖u‖2 ≤
1√
S
‖v‖1. (4.96)

Proof. We have that

‖u‖q
S1/q

=

(
1

S

S−1∑
i=0

|ui|q
)1/q

≤ ‖u‖∞, (4.97)

‖v‖q
T 1/q

=

 1

T

T−1∑
j=0

|uj |q
1/q

≥ min
j∈NT−1

0

|vj |, (4.98)
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which implies that
‖u‖q
S1/q

≤ ‖u‖∞ ≤ min
j∈NT−1

0

|vj | ≤
‖v‖p
T 1/p

. (4.99)

We need one further result.

Lemma 4.6.5. Let u,v ∈ CN be k-sparse vectors and let A ∈ CM×N be (2k, δ2k)-RIP. If
supp(u) ∩ supp(v) = ∅. Then

|〈Au, Av〉| ≤ δ2k‖u‖2‖v‖2. (4.100)

Proof. This proof is from [47], p. 142.
Let Λ = supp(u) ∪ supp(v), and let uΛ,vΛ ∈ C2k be the vectors constructed from keeping

only the elements with indices in Λ. Note that 〈uΛ,vΛ〉 = 0 because supp(u) ∩ supp(v) = ∅.
We have

|〈Au, Av〉| = |〈AΛuΛ, AΛvΛ〉 − 〈uΛ,vΛ〉 | (4.101)

= |〈(A†ΛAΛ − I2k)uΛ,vΛ〉| (4.102)

≤ ‖(A†ΛAΛ − I2k)uΛ‖2‖vΛ‖2 (4.103)

≤ ‖A†ΛAΛ − I2k‖2‖uΛ‖2‖vΛ‖2 (4.104)

= δ2k‖u‖2‖v‖2, (4.105)

where we have used that the `2 matrix norm as defined in Definition 3.5.11 is bounded by the
largest eigenvalue of the matrix.

We can now show the following, which is a very good example of a performance guarantee
with the RIP.

Theorem 4.6.6 (The RIP and the ERP). Suppose A satisfies the RIP of order 2k with
constant

δ2k <
1

3
. (4.106)

Then A also satisfies the ERP of order k.

Proof. This proof is from [47], p. 142-143. We will show that A satisfies the NSP, which is
equivalent to the ERP. We aim to the version from equation (4.48),

‖xΛ‖1 <
1

2
‖x‖1. (4.107)

If this hold for any x ∈ kerA \ {0}, and all index sets Λ such that |Λ| = k, then A is k-NSP.
This will follow from showing that

‖xΛ‖2 ≤
ρ

2
√
k
‖x‖1, (4.108)

where

ρ =
2δ2k

1− δ2k
. (4.109)
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which satisfies ρ < 1 whenever δ2k < 1/3. Given x ∈ kerA, we notice that it is enough to
consider an index set Λ = Λ0 of the indices k entries with the largest magnitude of the vector
x. We partition the complement Λc of Λ in NN−1

0 as Λc = Λ1 ∪ Λ2 ∪ . . . ,∪ΛJ , where

Λ1 : index set of k entries with the largest magnitude in Λc (4.110)

Λ2 : index set of k entries with the largest magnitude in (Λ ∪ Λ1)c (4.111)

and so on. We have sorted the elements of x into J = dN/ke − 1 bins according to magnitude.
Since x ∈ kerA, we have AxΛ0 = A(−xΛ1 − xΛ2 − . . .xΛJ ), which means

‖xΛ0‖22 ≤
1

1− δ2k
‖AxΛ0‖22 (4.112)

=
1

1− δ2k
〈AxΛ0 , A(−xΛ1 − xΛ2 − . . .− xΛJ )〉 (4.113)

=
1

1− δ2k

J∑
j=1

〈AxΛ0 , AxΛj 〉. (4.114)

From lemma 4.6.5 we also have

〈AxΛ0 , AxΛj 〉 ≤ δ2k‖xΛ0‖2‖xΛj‖2. (4.115)

These inequalities can be combined to show

‖xΛ0‖2 ≤
δ2k

1− δ2k

J∑
j=1

‖xΛj‖2 =
ρ

2

J∑
j=1

‖xΛj‖2. (4.116)

note that the largest element of xΛj+1 is smaller than the smallest element of xΛj , so we have

‖xΛk‖2 ≤
1√
k
‖xΛk−1

‖1. (4.117)

This gives

‖xΛ0‖2 ≤
ρ

2

J∑
j=1

‖xΛj‖2 ≤
ρ

2
√
k

J∑
k=1

‖xΛk−1
‖1 ≤

ρ

2
√
k
‖x‖1, (4.118)

which is what we aimed to show.
Note that in (4.112), we used that xΛ0 was 2k-sparse. This is true, but it is in fact k-sparse,

which implies ‖xΛ‖22 ≤ ‖AxΛ0‖22/(1− δk). Using this would give the sufficient requirement

δk + δ2k ≤ 1, (4.119)

which is easier to satisfy than (4.106). We can now show a weaker version of the last part of
theorem 4.5.4 (the ERP-requirement for the coherence). We have shown that

δ2k ≤ (2k − 1)µ, (4.120)

which means that A is k-ERP if (2k − 1)µ < 1/3, or k < 1/2 + 1/(6µ). A better bound on the
δ2k needed for k-ERP will give a better bound for the coherence result.

Finally we return to the question on the number of measurements needed to ensure restora-
tion of a k-sparse signal x. The following result is from [57].
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Theorem 4.6.7. Let A be an M ×N matrix that satisfies the RIP of order k ≤ N/2 with
constant δk ∈ (0, 1). Then

M ≥ Cδkk log(N/k), (4.121)

where Cδk < 1 is a constant depending only on δk.

Because the log-function so greatly dampens the dependency on N , this is usually a much
smaller number of measurements needed that with the coherence, which is proportional to k2.
This is the reason why matrix constructions based on the RIP have been more popular than
constructions based on the coherence.

4.6.2 Better bounds on the RIP constant

Here we have shown δ2k < 1/3 to be a sufficient requirement. We used many approximations,
and it is possible through a more elegant approach to bring the requirement up substantially.
In this section we briefly highlight the improvements and bounds made on the RIP constant.

The first results involved both δ2k and δ3k or similar combinations.

Theorem 4.6.8 (Candès and Tao, 2005 [58]). If δ2k + δ3k < 1, A is k-ERP.

Theorem 4.6.9 (Candès and Tao, 2006 [59]). If δ3k + δ4k < 2, A is k-ERP.

The first notable result involving only δ2k came in 2008.

Theorem 4.6.10 (Candès, 2008 [60]). If δ2k < 1, the problem (P0) has a unique solution.
Furthermore, if δ2k < 1−

√
2, A is k-ERP.

This result was improved on several times, notably:

Theorem 4.6.11 (Foucart, 2009 [61]). If δ2k < 0.4531, A is k-ERP.

Theorem 4.6.12 (Foucart, 2010 [62]). If δ2k < 0.4652, A is k-ERP.

Theorem 4.6.13 (Cai, Wang and Xu, 2010 [63]). If δ2k < 0.472, A is k-ERP.

This paper also introduced the shifting inequality, which has been a key tool in producing
better bounds. The same authors also introduced the square root lifting inequality in [64] which
further helped improve bounds.
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Theorem 4.6.14 (The shifting inequality and the square root lifting inequality). Given
a1 ≥ a2 ≥ . . . ≥ ak+l ≥ 0,√

a2
l+1 + . . .+ a2

l+k ≤ ck,l(a1 + . . .+ ak), where ck,l = max{ 1√
k
,

1√
4l
}. (4.122)

This is known as the shifting inequality. Furthermore, for a1 ≥ a2 ≥ . . . ≥ ak ≥ 0,√
a2

1 + . . .+ a2
k ≤

a1 + . . .+ ak√
k

+

√
k

4
(a1 − ak), (4.123)

which is known as the square root lifting inequality.

Using these, a new bound was shown in 2011.

Theorem 4.6.15 (Mo and Li, 2011 [65]). If δ2k < 0.4931, A is k-ERP.

The newest bound, available on arXiv, but has yet to be published in a peer-reviewed journal.

Theorem 4.6.16 (Andersson and Strömberg, 2013 [66]). If δ2k < 4/
√

41 ≈ 0.62, A is
k-ERP.

The following was shown in 2009, giving an upper bound on the RIP constant.

Theorem 4.6.17 (Davies and Gribonval, 2009 [67]). There are matrices An with RIP
constants arbitrarily close to 1/

√
2 ≈ 0.7071 such that An is not k-ERP.

Some bounds have also been made on δk directly.

Theorem 4.6.18 (Cai, Wang and Xu, 2010 [64]). If δk < 0.307, A is k-ERP.

This was improved on recently.

Theorem 4.6.19 (Cai and Zhang, 2013 [68]). If δk < 1/3, A is k-ERP.

This is the result we have used in the last part of theorem 4.5.4.

4.7 Known good sensing matrix constructions

With the theory developed, we are now ready to investigate some of the known popular matrix
constructions used in CS. The most popular constructions are based on the RIP, but we can
obtain decent constructions based on the coherence as well. Let us first study this approach.
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4.7.1 Matrices with low coherence

We begin this section by defining some properties relevant to matrices with minimal coherence,
before we will give some specific examples of such matrices. The columns of a coherence-optimal
matrix form an equiangular tight frame (ETF). Equiangularity and tightness are two properties
which we will define separately.

Definition 4.7.1 (Equiangular dictionary). A system of `2-normalized vectors (a0,a1, . . . ,
aN−1) is called equiangular if there is a constant c such that

|〈ai,aj〉| = c, i 6= j. (4.124)

We have already given the definition of a tight frame in the context of curvelets, but here
we include a somewhat more complete definition.

Definition 4.7.2 (Tight frame). A system of vectors (a0,a1, . . . ,aN−1) ∈ CM , is called a
tight frame if there exists a constant λ such that one of the following equivalent statements
hold:

1. ‖x‖22 = λ
∑N−1

j=0 |〈x,aj〉|2 for all x ∈ CM ,

2. x = λ
∑N−1

j=0 〈x,aj〉aj for all x ∈ CM ,

3. AA† = 1
λIM , where A is the matrix with columns a0, . . . ,aN−1.

We now have the following result.

Theorem 4.7.3. Let A be an M ×N matrix with `2-normalized columns. The coherence
of A satisfies the Welch bound if and only if A is an ETF.

Proof. This proof is from [47], p. 114.

Let G = A†A be the Gramian of A, and let H = AA†. We have that

tr(G) =

N−1∑
i=0

‖ai‖22 = N, (4.125)

where tr(G) is the trace of G (the sum of the diagonal elements). In general, for any matrices
X and Y ,

tr(X†Y ) = tr(XY †), (4.126)

which means tr(H) = N as well.

We now introduce the Frobenius norm for matrices,

‖A‖F =

∑
i,j

|Aij |2
1/2

=
√

tr(A†A). (4.127)
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The inner product which induces this norm is given by

〈A,B〉F = trAB†. (4.128)

The Cauchy-Schwartz inequality yields

tr(H) = 〈H, I〉F ≤ ‖H‖F ‖I‖F =
√
M
√

tr(HH†). (4.129)

We now observe that

tr(HH†) = tr(AA†AA†) = tr(A†AA†A) = tr(GG†) =
∑
i,j

|〈aj ,aj〉|2 (4.130)

= N +
∑
i 6=j
|〈aj ,aj〉|2. (4.131)

Putting this together, and squaring everything, we have

N2 ≤M

N +
∑
i 6=j
|〈aj ,aj〉|2

 . (4.132)

If we now let µ = µ(A), then
|〈ai,aj〉| ≤ µ, (4.133)

which we can use to obtain
N2 ≤M(N + (N2 −N)µ2), (4.134)

which can be rearranged to show the Welch bound. Furthermore, this holds with equality only if
and only if (4.129) and (4.133) hold with equality, i.e. if and only if |〈ai,aj〉| = µ (equiangularity)
and 〈H, I〉F = ‖H‖F ‖I‖F , which holds if and only if H = 1

λI (tightness version 3).
In the setting of CS, we would like to construct matrices which are maximally incoherent

matrices M × N matrices, where N is as large as possible compared to M (we want as few
measurements as possible). The following result give a useful upper bound to how large N can
possibly be for an ETF.

Theorem 4.7.4. Let A ∈ KM×N where K is either R or C, with `2-normalized columns
(a0,a1, . . . ,aN−1) such that the columns of A form an equiangular system. Then

N ≤M(M + 1)/2 when K = R, (4.135)

N ≤M2 when K = C. (4.136)

If equality is achieved, then the system (a0,a1, . . . ,aN−1) is also a tight frame.

The proof for this theorem is perfectly understandable, but quite lengthy, so we omit it here.
It can be found in [47], page 117-119.

There is no known guarantee that systems of this maximum size exist. In fact, for the case
K = R, it can be shown that there are some M where no such system exists. For K = C,
numerical experiments have found maximally sized ETFs for M < 45 [69], but it remains at
open question whether they exist for any M .

The theory of creating sensing matrices based on coherence is usually centered around
creating ETFs. Let us now turn to some examples of these.
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Examples of matrix constructions with low coherence

There are many ways to construct ETFs. Here we will only highlight a few. The first, which
serves as an example without much use in CS, will be defined by the vertices of a regular simplex.

Definition 4.7.5 (Simplex). Let e1 = (1, 0, . . . , 0)T , e2 = (0, 1, . . . , 0)T and so on up to eN .
the standard simplex in N dimensions is constructed by considering all linear combinations

x =
∑
i

ciei, (4.137)

such that ci ≥ 0 and
∑

i ci = 1. This is a point in 1-D, a line in 2-D, a triangle in 3-D and
so on.

The regular simplex is constructed by considering a collection of N + 1 points in RN
such that,

1. There is a point b such that all N + 1 points ei are equally far from b. b is called
the center of the simplex.

2. the angle between any two points and the center is arccos(−1/n)

This is a line in 1-d, an equiangular triangle in 2-D, a regular tetrahedron in 3-D and so
on.

The final point can be interpreted as saying that if we choose a coordinate system with b as its
origin, the the dot product of any two points ei, ej is −1/N .

Theorem 4.7.6. The N+1 vertices of a regular simplex in RN centered around the origin
form an equiangular tight frame.

Proof. We have already noted that |〈ei, ej〉| = 1/N . The Welch bound for the case of an
N × (N + 1) matrix is given by √

N + 1−N
N(N + 1− 1)

=
1

N
, (4.138)

which is sufficient to prove that the vertices form an ETF by theorem 4.7.3.
This example shows that we are able to create ETFs, but in the context of CS it is not very

useful as we usually want the number of measurements to be far smaller than N . The next
example will be more relevant. We will now show that under certain conditions, the partial
Fourier measurements we have already studied will form equiangular tight frames.

The following equivalence was proved in two parts in [70] and [71]:

Theorem 4.7.7. Construct Φ by collecting rows from the N ×N DFT which are indexed
by Λ. Then Φ is an ETF if and only if Λ is a difference set for NN−1

0 . That is, there exists
a positive integer λ such that every nonzero element in {0, 1, . . . , N − 1} can be expressed
as the difference of members of Λ in exactly λ different ways.
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N M DFT row indices µ Largest allowable k

7 3 {1, 2, 4} 0.4714 1

7 4 {0, 3, 5, 6} 0.3536 1

13 4 {0, 1, 3, 9} 0.4339 1

11 5 {1, 3, 4, 5, 9} 0.3464 1

21 5 {3, 6, 7, 12, 14} 0.4 1

11 6 {0, 2, 6, 7, 8, 10} 0.2886 2

31 6 {1, 5, 11, 24, 25, 27} 0.3727 1

15 7 {0, 1, 2, 4, 5, 8, 10} 0.2857 2

15 8 {3, 6, 7, 9, 11, 12, 13, 14} 0.25 2

57 8 {1, 6, 7, 9, 19, 38, 42, 49} 0.3307 2

13 9 {2, 4, 5, 6, 7, 8, 10, 11, 12} 0.1925 2

37 9 {1, 7, 9, 10, 12, 16, 26, 33, 34} 0.2940 2

73 9 {1, 2, 4, 8, 16, 32, 37, 55, 64} 0.3143 2

40 13 {0, 1, 3, 5, 9, 15, 22, 26, 27, 34, 35, 38} 0.2308 2

Table 4.3: Some known difference sets, along with µ and the largest k for which
reconstruction is possible according to Theorem 4.5.4.

Finding difference sets is no easy task, and as we will see have seen, we can get better
performance guarantees with a RIP-analysis, so this approach is rarely used. It does however
give deterministic restoration guarantees. Table 4.3 is taken from [71] and lists some known
difference sets, along with the highest possible k for which the k-ERP is obeyed according to
theorem 4.5.4.

We now leave the coherence based constructions behind, and focus on constructions based
on the RIP. These allow for the best known performance guarantees.

4.7.2 Random sensing matrices

We have noted that the RIP will allow for larger M than the coherence, as the best-case RIP
is bounded by

M ≥ Cδkk log(N/k) = O(k), (4.139)

while the coherence gives bounds by

M ≥ Ck2 = O(k2). (4.140)

By matrices with good RIP properties, we generally mean matrices which improves on the
coherence bound. This has proven to be a difficult task, and for this reason the coherence
bound is often referred to as the “quadratic bottleneck” (or “square root bottleneck” if you
consider it a bound on k). As of writing, there are no known deterministic ways of constructing
matrices with bounds of order O(k).

There are, however, a few constructions which has been shown to yield good RIP constants
with high probability. In this section we will highlight the existence of such matrices. We will
forgo most proofs, as they would require theory which is beyond the scope of this text. Let us
first define the matrices we will be studying.
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Definition 4.7.8 (Random matrices). Let A be an M ×N matrix.

1. If the elements of A are independent Bernoulli random variables, taking values +1
or -1 with equal probability, then A is a Bernoulli random matrix.

2. If the elements of A are independent Gaussian random variables, then A is a Gaussian
random matrix.

3. A random variable x is called subgaussian if there are parameters β, κ such that

P(|x| ≥ t) ≤ βe−κt2 , (4.141)

where P(|x| ≥ t) is the probability that |x| ≥ t.
If the elements of A are independent zero-mean subgaussian random variables then
A is a subgaussian random matrix.

It is easy to check that Gaussian and Bernoulli matrices are both examples of subgaussian
matrices. The following is the main result on the RIP for subgaussian random matrices.

Theorem 4.7.9. Let A be an M × N subgaussian random matrix. Then there exists a
constant C > 0, depending only on κ and β, such that the restricted isometry constant of

1√
M
A satisfies δk ≤ δ with probability at least 1− ε, provided

M ≥ Cδ−2(k ln(eN/k) + ln(2ε−1)). (4.142)

Setting ε = 2 exp(−δ2M/(2C)) yields the condition

M ≥ 2Cδ−2k ln(eN/k), (4.143)

with probability at least 1 − 2 exp(−δ2M/(2C)), which is a result often quoted in literature.
This result was shown independently by Mendelson et al. [72] and Baraniuk et al. [73]. This
result holds for Gaussian and Bernoulli matrices as special cases. For Gaussian matrices, the
factor 2 in (4.143) can be removed. This is currently the best known matrix construction for
sensing.

Another advantage of a random sensing scheme is in the cases where x is not sparse in the
canonical basis, but rather in some basis Ψ, it is really the total sensing matrix AΨ which
should obey the RIP. In [73] Barniuk et al. showed that if the RIP holds for a subgaussian
random matrix A, it also holds for AΨ with high probability, where Ψ is any orthonormal
basis.

Random sensing is very efficient in terms of the number of measurements needed for restora-
tion, but in real settings often not very viable. In the next section we will look at a construction
which gives better results than the coherence, and is more plausible in practice.

4.7.3 Structured random sensing matrices

In the opening section we highlighted random Fourier measurements as giving very good recovery
properties (optimal recovery properties, as we have seen now). This will turn out to be a special
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case of a much wider class of sensing matrices, constructed from Bounded Orthonormal Systems
(BOS). The following is a somewhat edited/simplified presentation of the result collected in [74].

Let D ⊂ Rd be endowed with some probability measure ν. Formally a probability measure
is a real valued function defined on a set of events in probability space that satisfies measure
properties such as countable additivity. We will not pay much attention to this property here,
but it is necessary to define what follows. Further, let Φ = {φ1, . . . , φN} be an orthonormal
system of real-valued functions on D, that is, for j, k ∈ NN1 ,∫

D
φj(t)φk(t) dν(t) = δj,k. (4.144)

Definition 4.7.10. We say that Φ is a BOS with constant K if it satisfies (4.144) and if

‖φj‖∞ = sup
t∈D
|φj(t)| ≤ K for all j ∈ NN1 . (4.145)

The smallest value that the constant K can take is K = 1. In this case, we necessarily have
|φj(t)| = 1 for ν-almost all t ∈ D (ν-almost means the probability for |φj(t)| 6= 1 is 0 with the
given probability measure).

We consider functions of the form

f(t) =
N∑
j=1

xkφk(t). (4.146)

Let t1, . . . , tM be some sampling points and suppose we are given the sample values

yl = f(tl))
M∑
j=1

xjφj(tl). (4.147)

Introducing the sample matrix A ∈ CM×N with entries

Alk = φk(tl), (4.148)

the vector y of sampled data can be written as

y = Ax. (4.149)

We next highlight some examples of BOSs.

1. Trigonometric polynomials. Let D = [0, 1] and for j ∈ Z set

φj(t) = e2πijt. (4.150)

The probability measure is the regular integral measure on [0, 1]. Then

1∫
0

φjφl dt = δj,l, (4.151)
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and the constant K is K = 1. We then consider trigonometric polynomials on the form

f(t) =
∑
j∈Λ

xjφk(t) =
∑
j∈Λ

xje
2πijt, (4.152)

where a common choice for Λ is Λ = {−q,−q + 1, . . . , q − 1, q} which yields the normal
Fourier series for continuous functions. Note however that we can chose Λ in other ways.
The sampling points t1, . . . , tM will be chosen independently and uniformly at random
from [0, 1]. The sensing matrix is then

Al,j = e2πijtl . (4.153)

This is sometimes called a non-equispaced Fourier matrix, as the sampling times are not
chosen equidistantly.

2. Real Trigonometric Polynomials. Rather than using complex exponentials, we can
use sums of sines and cosines such as

φ2j(t) =
√

2 cos(2πjt), j ∈ NN−1
0 , (4.154)

φ2j+1(t) =
√

2 sin(2πjt), j ∈ NN−1
0 . (4.155)

3. Discrete Orthonormal Systems. Let U ∈ CN×N be a unitary matrix. The normal-
ized columns

√
Nuk form an orthonormal system with respect to the discrete uniform

probability measure on NN1 . This means than

1

N

N∑
t=1

√
Nuk(t)

√
Nul(t) = 〈uj ,ul〉 = δj,l. (4.156)

The boundedness requires that the normalized columns are bounded, i.e.,

M(U) =
√
N max

j,k∈NN1
|Ujk| = max

j∈NN1
|
√
Nuj(t)| ≤ K. (4.157)

where M(U) is the coherence of elements introduced in section 4.3.

Choosing the points t1, . . . , tM uniformly at random corresponds to creating the random
matrix A by selecting its rows independently and uniformly at random from the rows of√
NU , that is,

A =
√
NRTU, (4.158)

where RT is the random subsampling operator.

4. Incoherent Bases. We have already noted this one in section 4.3. Let Ψ, Φ ∈ CN×N be
two unitary matrices with columns (ψ1, . . . , ψN ) and (φ1, . . . , φN ), respectively. Assume
that a vector z ∈ CN is sparse with respect to the basis {ψj} rather than the canonical
basis, i.e. z = Ψx for some sparse x. Further, assume that z us sampled with respect to
the basis {φl}, i.e. we obtain measurements

yl = 〈z, φtk , k = 1, . . . ,M, (4.159)
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with {t1, . . . , tM} ∈ NN1 . The matrix form of this equation is then

y = RTΦ†z = RTΦ†Ψx. (4.160)

The boundedness condition now reads

M(Φ,Ψ) =
√
N max

j,l
|〈φj , ψl〉| ≤ K. (4.161)

Examples of highly incoherent bases are, as we have seen, the canonical and the Fourier
bases, and the Haar and Noiselet bases.

5. Legendre Polynomials. The Legendre polynomials Pj are a system of orthogonal
polynomials, where Pj is a polynomial of precise degree j, and orthogonality is with
respect to the integral inner product measure on [−1, 1]. Their supremum norm is given
by ‖Pj‖∞ =

√
2j + 1, so considering the polynomials P1, . . . , PN gives the constant

K =
√

2N − 1. Unfortunately, K grows rather quickly with N . This problem can be
avoided with a small trick. One takes sampling points with respect to the “Chebyshev”
measure dν(x) = π−1(1−x2)−1/2 dx and uses a preconditioned measurement matrix. The
reader is invited to investigate [75] for details.

Nonuniform vs uniform recovery

If we look back to theorem 4.3.3, we note that the formulation of this theorem is slightly
different than the performance guarantees given in section 4.4. The theorem states that “for
a given sparse vector x...”, while the other theorems give statements of the form “for any
sparse vector x...”. This marks the difference between nonuniform and uniform recovery. For
nonuniform recovery, we look at the probability that a randomly chosen sensing matrix can
restore a specific k-sparse vector, while for uniform recovery, we look at the probability that
a randomly chosen matrix can restore any k-sparse vector. We have the following results for
nonuniform and uniform recovery.

Theorem 4.7.11 (Nonuniform recovery). A fixed k-sparse vector can be reconstructed
via `1-minimization with probability higher that 1− ε if measurements are made using M
uniformly random samples from a BOS with constant K ≥ 1 provided that

M ≥ CK2k ln(N) ln(ε−1), (4.162)

where C is a universal constant.

The proof of this first given by Candès and Plan in 2011 [76]. Notably, in the case of random
partial Fourier measurements, this can be improved to

M ≥ CK2k ln(N/ε), (4.163)

which is better. However, the proof of this relies heavily on the structure of the Fourier trans-
form. It is presently not known whether the bound for general BOSs can be improved to reach
the Fourier version.
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Theorem 4.7.12 (Uniform recovery). Let A ∈ CM×N be a random sampling matrix
associated to a BOS with constant K ≥ 1. If, for δ ∈ (0, 1),

M ≥ CK2δ−2k ln3(N), (4.164)

then with probability at least 1 − N ln3(N) the restricted isometry constant δk of 1√
M
A

satisfies δk < δ. C is a universal constant.

The first bound was found in the early papers on CS by Candès and Tao asM ≥ Ck ln5(N) ln(ε−1)
in 2006 [77]. This was improved by Rudelson and Vershynin in [78] later that same year. The
bound as presented above was published by Cheraghchi et al. in 2013. The proof can be found
in [79].

Other structured random sensing matrices

• random circulant Toeplitz matrices It turns out we can use the circulant Toeplitz
matrices introduced in section 3.3.2 as a basis for sensing matrices. The following result
was noted in [80].

Theorem 4.7.13. Let b ∈ RN be a vector with elements randomly set to +1 or
-1 with equal probability, and let b be the filter for a circulant Toeplitz matrix Tb.
Further, let Λ ⊆ NN−1

0 be a set of M random chosen indices, and let Tb
Λ be the

M ×N matrix constructed from keeping only the rows indexed by Λ. Now let x be
a k-sparse vector and let y = Tb

Λ . Then if

M ≥ Ck log3(N/ε), (4.165)

x can be restored with `1-minimization with probability at least 1− ε.

• Spherical Harmonics. It has also been noted that one can find signals with a sparse
representation in spherical harmonics quite efficiently. In [81] it was noted that if we let
f(φ, θ) be some function defined on N points on the unit sphere {(φ1, θ1), (φ2, θ2), . . . ,
(φN , θN )}, and also let f have a k-sparse , and one draws M points uniformly at random
from this set, then the function f could be recovered with high probability given

M ≥ Ck log3(k)N1/4 log(N). (4.166)

4.8 Signals with noise

So far we have considered signals which were exactly sparse. In a realistic setting, there will
always be some noise in the measurements, which means that y is only an approximation to
Ax, with

‖Ax− y‖ ≤ η. (4.167)

where the norm used is typically the `2 norm (though any norm can be used). In this case we
want to solve (P1-σ), and hopefully make guarantees of the form ‖x−x#‖ ≤ f(σk(x), η), where
x# is the solution found by the minimization.



116 Theory of Compressed Sensing Chapter 4

Guarantees can be made in this relaxed case. First we define a more robust null space
property.

Definition 4.8.1. The matrix A ∈ CM×N is said to satisfy the robust null space prop-
erty(RNSP) with respect to a given norm ‖ · ‖, with constants 0 < ρ < 1 and τ > 0 relative
to a set Λ (or to be Λ-RNSP) if

‖vΛ‖1 ≤ ρ‖vΛc‖1 + τ‖Av‖2, (4.168)

for all v ∈ CN .

Note that in this case, we do not require v ∈ ker(A). If this holds, then the Av term disappears,
and we are left with something similar to the regular NSP. A is said to be k-RNSP if A is Λ-
RNSP for any set Λ such that |Λ| ≤ k

The following result is just what we want in terms of performance guarantees.

Theorem 4.8.2. Suppose that A ∈ CM×N is k-RNSP with constants ρ and τ . Then for
any x ∈ CN , a solution x# of (P1-σ) with tolerance η, and with y = Ax + e and ‖e‖ ≤ η
approximates the vector x with `1-error

‖x− x#‖1 ≤
2(1 + ρ)

(1− ρ)
σk(x)1 +

4τ

1− ρ
η. (4.169)

We will prove this by proving a stricter property for any index set Λ.

Theorem 4.8.3. The matrix A ∈ CM×N is Λ-RNSP if and only if

‖z− x‖1 ≤
1 + ρ

1− ρ
(‖z‖1 − ‖x‖1 + 2‖xΛc‖1) +

2τ

1− ρ
‖A(z− x)‖2, (4.170)

for all vectors x, z ∈ CN .

Note that if this property holds, then the previous theorem follows simply by setting z = x#

and noting first that from the triangle inequality,

‖A(x# − x)‖ ≤ ‖Ax# − y‖+ ‖y−Ax‖ ≤ 2η, (4.171)

and secondly that if we chose Λ to be the index set of the k largest elements of x, then ‖xΛc‖1 =
σk(x), and since x# is the result of (P1-σ), ‖x#‖1 ≤ ‖x‖1, so

‖x#‖1 − ‖x‖1 + 2‖xΛc‖1 ≤ 2‖xΛc‖1 = 2σ(x)1. (4.172)

We now continue with the proof.
Proof. This proof is from [47] p. 86-87, but some details have been added to make it more
digestible. Assume first that (4.170) holds for all vectors x, z ∈ CN . Then let x = −vΛ and
z = vΛc . Then xΛc = (−vΛ)Λc = 0, so inserting this into (4.170) we get

(1− ρ)‖vΛ + vΛc‖1 ≤ (1 + ρ)(‖vΛc‖1 − ‖vΛ‖1) + 2τ‖Av‖2. (4.173)
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This can be rearranged to

‖vΛ‖1 ≤ ρ‖vΛc‖1 + τ‖Av‖2, (4.174)

which shows that A is k-RNSP.

Now assume that A is k-RNSP. First note that

‖xΛc − zΛc‖1 ≤ ‖z‖1 − ‖x‖1 + ‖xΛ − zΛ‖1 + 2‖xΛc‖1. (4.175)

This can be shown by adding the the two inequalities

‖x‖1 = ‖xΛc‖1 + ‖xΛ‖1 ≤ ‖xΛc‖1 + ‖xΛ − zΛ‖1 + ‖zΛ‖1 (4.176)

‖xΛc − zΛc‖1 ≤ ‖xΛc‖1 + ‖zΛc‖1. (4.177)

Now set v = z− x. Then,

‖xΛ − zΛ‖1 ≤ ρ‖xΛc − zΛc‖1 + τ‖A(z− x)‖2 (4.178)

≤ ρ
(
‖z‖1 − ‖x‖1 + ‖xΛ − zΛ‖1 + 2‖xΛc‖1

)
+ τ‖A(z− x)‖2, (4.179)

which can be rearranged to

(1− ρ)‖xΛ − zΛ‖1 ≤ ρ
(
‖z‖1 − ‖x‖1 + 2‖xΛc‖1

)
+ τ‖A(z− x)‖2. (4.180)

Using the RNSP again we have

‖v‖1 = ‖vΛ‖1 + ‖vΛc‖1 (4.181)

≤ (1 + ρ)‖vΛc‖1 + τ‖Av‖2. (4.182)

If we insert vΛc = zΛc − xΛc into this expression we get

‖v‖1 ≤ (1 + ρ)‖zΛc − xΛc‖1 + τ‖Av‖2. (4.183)

Inserting (4.175) gives

‖v‖1 ≤ (1 + ρ) (‖z‖1 − ‖x‖1 + ‖xΛ − zΛ‖1 + 2‖xΛc‖1) + τ‖Av‖2 (4.184)

Finally, we insert (4.180) to get

‖v‖1 ≤ (1 + ρ)

(
‖z‖1 − ‖x‖1 +

1

1− ρ

(
ρ
(
‖z‖1 − ‖x‖1 + 2‖xΛc‖1

)
+ τ‖Av‖2

)
+ 2‖xΛc‖1

)
+ τ‖Av‖2

(4.185)

= (1 + ρ)
( 1

1− ρ
(‖z‖1 − ‖x‖1 + 2‖xΛc‖1)

)
+

(
1 + ρ

1− ρ
+ 1

)
τ‖Av‖2 (4.186)

=
1 + ρ

1− ρ
(‖z‖1 − ‖x‖1 + 2‖xΛc‖1) +

2τ

1− ρ
‖A(z− x)‖2, (4.187)

which is what we aimed to show.

The k-RNSP can be further generalized to arbitrary `q-norms.
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Definition 4.8.4. A matrix A is said to be `q-k-RNSP if for any set Λ with |Λ| ≤ k, there
exists some constants 0 < ρ < 1 and τ > 0 such that

‖vΛ‖q ≤ ρ‖vΛc‖1 + τ‖Av‖2, (4.188)

for all v ∈ CN .

In this case we have the following result.

Theorem 4.8.5. Suppose A is `2-k-RNSP with respect to the `2 norm. Then, for any
x ∈ CN , the solution x# of (P1-σ) with tolerance η, y = Ax+e and ‖e‖2 ≤ ν approximates
the vector x with `p-error

‖x− x#‖p ≤
C

k1−1/p
σ(x)1 +Dk1/p−1/2η, (4.189)

for some constants C and D depending only on ρ and η.

The proof of this is very similar to that for the k-RNSP property. Note in particular that for
p = 1 and p = 2 this gives

‖x− x#‖1 ≤ Cσ(x)1 +D
√
kη, (4.190)

‖x− x#‖2 ≤
C√
k
σ(x)1 +Dη. (4.191)

We can also give performance guarantees for recovery of noisy vectors in terms of the RIP.
These are related to the guarantee from the RNSP, as the following theorem shows.

Theorem 4.8.6. If A is (2k, δ2k)-RIP, with

δ2k <
4√
41
≈ 0.6246, (4.192)

then A is `2-k-RNSP with constants ρ and τ depending only on δ2k

The proof of this theorem is fairly long, and somewhat similar to the proof of the exactly sparse
RIP-recovery, so we refer to [47], p. 144-147 for the details. The constants are shown to be

ρ =
δ2k√

1− δ2
2k − δ2k/4

, (4.193)

τ =

√
1 + δ2

2k√
1− δ2k − δ2k

. (4.194)

The requirement ρ < 1 gives the particular bound on δ2k. We should note that like the bound
on δ2k to ensure k-NSP, this bound can be improved significantly.
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4.8.1 Compressible signals

A nice feature of the theory we have developed in this section is that the theoretical results
place no restrictions on the measured signal x, and for this reason the results are also valid
for compressible signals. Remember that compressible signals are signals which, when ordered,
decay by some power law,

xj = Cj−1/s. (4.195)

In section 3.5 we showed that this gives a bound on σk(x)2. The bounds we have developed
here are mostly in terms of σk(x)1. We therefore include the following result.

Lemma 4.8.7. If a signal x is compressible with parameter s, then its k-term approxima-
tion error is bounded by

σk(x)1 ≤
Cs

1− s
k1−1/s, s < 1. (4.196)

Proof. The proof is similar to that of σk(x)2. The main difference is that in this case σ(x)1

is bounded by

σk(x)1 ≤
N∑

j=k+1

Cj−1/s. (4.197)

We then make the same integral approximation and arrive at the above result.
For compressible signals, we can enter this into the bounds we have found, should we want to
investigate the error in a recovery.

4.9 Sensing matrices in 2-D

In this Chapter, after the introductory examples on LIPs, we have essentially treated the recov-
ery as a problem for a 1-D signal. This is fine, as we have noted that a 2-D matrix signal can
be transformed to a long 1-D signal by choosing the appropriate direct product representation.
There are however some caveats we should investigate regarding CS of 2-D signals. for instance,
we now that random lines from a Fourier matrix will create a good sensing matrix, but what
about random lines from a 2-D Fourier matrix? How is the RIP of a Kronecker product related
to the RIP of its constituents? Here we will try to answer some of these questions.

4.9.1 CS properties of Kronecker products

This section is based on results published in [82], [83] and [84]. We begin with a simple result
for the mutual coherence.

Lemma 4.9.1. Let Ψd,Φd ∈ RNd be orthonormal bases for d = 1, . . . , D. Then

M(Φ1 ⊗Φ2 ⊗ . . .⊗ΦD,Ψ1 ⊗Ψ2 ⊗ . . .⊗ΨD) =

D∏
d=1

M(Φd,Ψd). (4.198)
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Proof. The coherence can be written as

M(Φ,Ψ) = ‖ΦTΨ‖∞, (4.199)

where ‖ · ‖∞ is the maximum norm, equal to the largest magnitude of any element in ΦTΨ.
The following two properties are easy to prove, and sufficient for the theorem to follow.

1. For any set of matrices A1, . . . , AD and B1, . . . , BD,

(A1 ⊗A2 ⊗ . . .⊗AD)T (B1 ⊗B2 ⊗ . . .⊗BD) = A1B1 ⊗ . . .⊗ADBD. (4.200)

2. For any matrices ‖A⊗B‖∞ = ‖A‖∞‖B‖∞.

This is good news, as this would imply that our results from using maximally incoherent
basis, such as the Fourier basis, or the Noiselet/Haar combination will carry over directly, as
they have the minimal mutual coherence of M(Φ,Ψ) = 1 in 1-D, and therefore have the same
in 2-D, as well as in higher dimensions.

Next, we consider the coherence of measurements. We have the following theorem.

Theorem 4.9.2. Consider the M1 × N1 matrix A and the M2 × N1 matrix B, with
normalized columns and coherence µ1 = µ(A) and µ2 = µ(B). The coherence of A⊗ B is
given by

µ(A⊗B) = max{µ1, µ2}. (4.201)

Proof. We denote the columns of A and B by a1,a2, . . . ,aN1 and b1,b2, . . . ,bN2 . Let C be
the M × N matrix C = A ⊗ B, where M = M1M2 and N = N1N2, and denote the columns
of C by c1, c2, . . . , cN . Note that the columns ci and cj are made up by ci = ap ⊗ bq and
cj = ar ⊗ bs. for some p, q, r, s, which implies that

〈ci, cj〉 = 〈ap ⊗ bq, ar ⊗ bs〉 = 〈ap,ar〉 · 〈bq,bs〉. (4.202)

The coherence of C is then

µ(C) = max
p,q,r,s

(p,q) 6=(r,s)

{|〈ap,ar〉〈bq,bs〉|} (4.203)

= max
p,q,r,s
p 6=r,q 6=s

{|〈ap,ar〉〈bq,bs〉|, |〈ap,ar〉|, |〈bq,bs〉|}. (4.204)

Because of the column normalization, |〈ap,ar〉| ≤ 1 and similarly |〈bq,bs〉| ≤ 1, which means

µ(C) = max
p,q,r,s
p 6=r,q 6=s

{|〈ap,ar〉|, |〈bq,bs〉|} (4.205)

=
{

max
p 6=r
|〈ap,ar〉|,max

q 6=s
|〈bq,bs〉|

}
(4.206)

= max{µ1, µ2}. (4.207)
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This can immediately be generalized to any number of dimensions, in the sense that if
A = A1 ⊗ . . . ,⊗AN , then

µ(A) = max
i=1,...,N

{µ(Ai)}. (4.208)

This is a far more unfortunate result. Recall that for large N , the Welch bound for an M ×N
matrix A scales as

µ(A) ≈ 1√
M
, (4.209)

while if A is the Kronecker product of two
√
M ×

√
N matrices (so A is still M ×N), then the

best case coherence of A scales as 1/M1/4, which is a much weaker result.

We have a similar result for the restricted isometry constant δk.

Theorem 4.9.3. Let A ∈ Rp,q and B ∈ Rr,s have normalized columns and restricted
isometry constants δAk , δ

B
k , respectively. Then,

δA⊗Bk = δB⊗Ak ≥ max{δAk , δBk }. (4.210)

Proof. We first note that as B⊗A is simply a permutation of the columns in A⊗B, it follows
from

δAk = max
|Λ|≤k

eig(A†ΛAΛ − I), (4.211)

that a permutation of the columns in A does not change δk. It is therefore sufficient to show
that δA⊗Bk ≥ δAk .

Now assume there is some B such that δA⊗Bk < δAk . We know that δAk is the smallest constant
such that for all k-sparse x, we have

(1− δAk )‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δAk )‖x‖22. (4.212)

Now let x be some k-sparse vector, and let y = (1, 0, 0, . . . , 0)T . The `2-norm of a Kronecker
product can be evaluated as

‖x⊗ y‖22 =
∑
i

∑
j

x2
i y

2
j =

∑
i

x2
i ‖y‖22 =

∑
j

y2
j ‖x‖22, (4.213)

which in our case gives x⊗ y =
∑

j y
2
j ‖x‖22 = ‖x‖22. Furthermore,

‖(A⊗B)(x⊗ y)‖22 = ‖(Ax)⊗ (By)‖22 = ‖(Ax)⊗ b1‖22 (4.214)

where b1 is the first column in B. This gives

‖(A⊗B)(x⊗ y)‖22 =
∑
i

(b1)2
i ‖Ax‖22 = ‖Ax‖, (4.215)

as the columns of B are normalized. Since this works for any x, we have a contradiction on the
assumption δA⊗Bk < δAk .

We also have an upper bound on δA⊗Bk .
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Theorem 4.9.4. Let A and B be matrices with normalized columns and restricted isom-
etry constants δAk and δBk respectively. Then

δA⊗Bk ≤ (1 + δAk )(1 + δBk )− 1. (4.216)

Proof. Let AΛ as usual denote the M ×k submatrix created from selecting k columns in some
way, with indices found in the set Λ. Then all the eigenvalues of A†ΛAΛ lie in the interval (1−δAk ,
1+δAk ), and similarly for B, all the eigenvalues of B†ΛBΛ lie in the interval (1−δBk , 1+δBk ). Now
let the eigenvectors of A and B are given as v1, . . . ,vNA and w1, . . . ,wNB , with eigenvalues
λA1 , . . . , λ

A
NA

and λB1 , . . . , λ
B
NB

, respectively. Then the eigenvectors of A⊗B are given by vi⊗wj

with eigenvalues λAi λ
B
j .

Let now Λ be an index set with |Λ| ≤. The submatrix (A×B)Λ can not be simply constructed
from a direct product of submatrices of A and B. However, it is easy to check that we can
build index sets Λ1,Λ2 with |Λi| ≤ k such that (A × B)Λ is a submatrix of AΛ1 ⊗ BΛ2 . The
Gramian of this matrix will have eigenvalues in the range

(
(1− δAk )(1− δBk ), (1 + δAk )(1 + δBk

)
.

Furthermore, it is possible to show [85] that the eigenvalues of the Gramian of a submatrix are
nested within the range of the eigenvalues of the Gramian of the full matrix. This shows that
the eigenvalues of the Gramian of (A×B)Λ lie in the range

(
(1− δAk )(1− δBk ), (1 + δAk )(1 + δBk

)
,

which is what we wanted to prove.

This bound is once again not very strong. If A and B both have restricted isometry constants
δAk = δBk = 1/2, then the bound only guarantees that the restricted isometry property of A⊗B
is bounded by 5/4, not enough for any reconstruction guarantee. To understand why these
guarantees are so weak, we will consider the random sensing approach in 2-D.

4.9.2 Random Sensing in 2-D

One of the best sources for generating good sensing matrices turned out to be Gaussian inde-
pendently random elements. Figure 4.19 shows a 100 × 100 Gaussian random matrix, as well
as the Kronecker product of two 10 × 10 Gaussian random matrices. While the last one still
has random elements, they are clearly not independent, and in fact they are not even Gaussian.
This all shows us that some care must be taken when using Kronecker products to measure a
signal. We could of course avoid this problem by creating M Gaussian random matrices and
measure the signal for each of them, but for large datasets, this is not feasible in practice.

Not much theory exist on to what degree results from 1-D are transferable to 2-D. Notably,
[86] gives a bound for restoration using the Kronecker product of two sub-Gaussian matrices,
however, this bound does not beat the quadratic bottleneck (it requires M ≥ O(k2)), which
leaves it somewhat unimpressive.

We have seen that incoherent discrete orthonormal systems works fairly well for constructing
sensing matrices. We have also seen that the mutual coherence framework was highly trans-
ferable to 2-D. This might motivate the following idea: If we can create orthonormal random
matrices which have low coherence with the canonical basis, they may have low coherence with
other bases as well, and they may be suitable for reconstruction.

The following theorem, from [44] helps us get started.
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Figure 4.19: The figure shows a Gaussian random matrix and the Kronecker product
of two Gaussian random matrices.

Theorem 4.9.5. Let A denote a random real orthogonal matrix, uniformly distributed on
the unit sphere. Then the exceedance probability,

Pε,N = P
(

max
ij
|Uij | > 2

√
log(N)/N(1 + ε)

)
, (4.217)

obeys Pε,N → 0 as N →∞.

In other words, for large N , the mutual coherence of A with the identity matrix IN , will
with large probability not be much larger than 2

√
logN . The cited articles also argues that

this result can be extended to any orthogonal basis (rather than just IN ).

When we compare the to theorem 4.7.11, which gives a bound on M for nonuniform recovery
for a general BOS, and we note that in this case, the boundedness constant with large probability
can be set to K =

√
2 logN , we immediately get the following result.

Theorem 4.9.6. Let A be a matrix constructed by orthonormalizing M vectors selected
from a uniform distribution on the N -dimensional unit sphere. If N is large, then a fixed
k-sparse vector can be reconstructed via `1-minimization with probability higher than 1−ε
provided that

M ≥ 4Ck ln3(N) ln(ε−1), (4.218)

where C is the same constant as in theorem 4.7.11.

The good news on this result is that it also extends to 2-D. Let C = A⊗B be the Kronecker
product of two random orthogonal n × n matrices, where n2 = N . The largest elements of
the direct product of two n× n random orthogonal matrices will be the product of the largest
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elements in each of the two smaller matrices. If we now assume that n is large, then the largest
magnitude of A⊗B will high probability be bounded by 4 log(n)/n = 2 log(N)/

√
N . This gives

us the following corollary.

Corollary 4.9.7. Let A = RT (B⊗C), where B and C are n×n matrices constructed by
orthnormalizing n vectors selected from a uniform distribution on the n-dimensional unit
sphere, and RT is a random subsampling matrix selecting M rows uniformly at random
from the N × N matrix (B ⊗ C). If n is large, then a fixed k-sparse vector can be
reconstructed via `1-minimization from the measurements y = Ax with probability higher
than 1− ε provided that

M ≥ 4Ck ln5(N) ln(ε−1), (4.219)

where C is the same constant as in theorem 4.7.11.

This result beats the quadratic bottleneck, which makes it noteworthy. We could also
recreate the results for uniform recovery for these matrix constructions. Note that the result
does not really require B and C to be distinct, so we can let B = C in order to conserve memory.
This result is not found elsewhere in literature, so we will explore it here numerically.

Figure 4.20 shows several examples of a common numerical analysis technique called phase
plots. The idea is to numerically investigate the recovery properties of a matrix structure by
creating several test vectors for various scenarios (i.e. values of M and k), and recording the
result of reconstructions as either successes or failures.

The following four experiments were carried out. The length of the signal in each experiment
was set to N = 400.

1. First, I simply let A consist of Gaussian i.i.d. elements. The result of this is shown in
figure 4.20(a), and are good, as is to be expected.

2. Then, I let A = Q1 ⊗Q2, where Q1 and Q2 were matrices with Gaussian i.i.d. elements.
The result of this is shown in figure 4.20(b) and is very poor. Again, this is to be expected,
based on our discussion in this section.

3. Then, I let A = RT (orth(Q)), where Q consists of N uniformly random vectors on the
unit sphere, orth refers to the operation of orhogonalizing Q, and RT is a random sub-
selection operator, selecting M rows at random. In order to create Q, I used the method
noted in [87], which consist of letting the elements of Q be Gaussian i.i.d. elements, and
normalizing each row in Q. The rows were then orthogonalized using the Gram-Schmidt
method. The result of this simulation is shown in figure 4.20(c).

4. Finally, I let A = RT (orthQ1 ⊗ orthQ2), where Q1 and Q2 where n × n matrices, with
n =
√
N , created as in the previous case. The result of this method is shown in 4.20(d),

and almost identical to the third experiment, which can be expected, given that they
share their dependence on k.

The whited out areas of each plot corresponds to areas where k was set to 0, because of our
limit on N . These will naturally give a perfect reconstruction, as it is very simple to restore
the zero vector.

Surprisingly, the third and fourth methods give better results than the first experiment, even
though the theoretical result for the first case is better. This might be because the numerical
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`1-minimizer used (spgl1) prefers orthogonal measurements, but I have not looked into finding
a definite answer for this effect. The area which this method outperforms the first methods are
in reality not very interesting, as they correspond to cases where the measurement matrix is
almost of full rank.

One tendency that is worth noting, is that for we are not able to achieve 100% restoration
for small values of k/M for the final two methods. This effect is highly surprising, and at the
time of writing, I do not have a good explanation for them.

(a) A = Q (b) A = RT (Q1 ⊗Q2)

(c) A = orth(Q) (d) A = RT (orth(Q1)⊗ orth(Q2))

Figure 4.20: The figures show phase plots for various random matrices when used
in restoration. Dark red corresponds to 100% success, while dark blue corresponds
to 100% failures. The white areas of the plots indicates areas where the experiment
parameters made x 0-sparse, i.e. x = 0. The length of the signal was set to N = 400.



126 Theory of Compressed Sensing Chapter 4

Number of samples Transform PSNR

N/4 zero-filling 8.20
Haar 31.81
CDF 9/7 35.1

N/16 zero-filling 6.25
Haar 23.46
CDF 9/7 26.85

Table 4.4: The table shows the results of a CS restoration of missing information
using partial random noiselet measurements.

4.10 Examples on the Lena image

In this section we will once again turn to the Lena image to explore some of the results we have
found. First, let us see if we can improve the on the inpainting results of the Haar and CDF
9/7 wavelets by sampling the image in the proper basis.

4.10.1 Wavelet reconstruction based on partial noiselet samples

Because the wavelet bases and the canonical basis are highly coherent, the inpainting results for
wavelets in section 4.1.5 were poor. Since then, we have introduced the noiselet basis, designed
to be maximally incoherent with the Haar wavelet basis. While noiselets are not maximally
incoherent with the CDF 9/7 wavelets, they are still fairly incoherent, and we include the
results also for these wavelets. The results are shown in figures 4.21 and 4.22, and the errors
are summarized in table 4.4. It is worth noting that the CDF 9/7 wavelets give better results
here that both the DFT and the DCUT2 did in the section on inpainting.

4.10.2 Image reconstruction based on random sensing

Here we use the orthogonal random sensing matrices discussed in section 4.9.2. We will attempt
to restore the image in the Fourier, Haar, CDF 9/7, DCUT2 and Wave Atom basis. In this case,
the sampling should be equally useful for any of the bases, which makes this a good indicator
as to which basis is the best (sparsest) one to represent the Lena image. We should keep in
mind that only two experiments are performed, so we can not make any definitive claims from
our results.

Throughout, an image X of size N = n×n where n = 512 pixels were used. We will denote
the vectorization of X by x. Two orthogonal matrices Q1 and Q2 were created. The direct
product of these was then applied to the image X as b = Qx = vec(Q1XQ

T
2 ), where vec(A) is

the vectorization of a matrix A. M samples were then collected at random from b by a random
sampling operator R, y = Rb. We then aimed to find the signal x such that

y = RQx, (4.220)

and Ψx is as sparse as possible, where Ψ is the matrix corresponding to the elements of the
different bases. Alternatively, if z = Ψx such that x = Ψ−1z, we can formulate this as

minimize ‖z‖0,
subject to RQΨ−1z = y,

(4.221)
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Number of measurements Transform PSNR

N/4 zero-filling 6.95
DFT 28.01
Haar 27.86
CDF 9/7 31.30
DCUT2 31.68
Wave Atom 30.95

N/16 zero-filling 5.96
DFT 22.61
Haar 21.54
CDF 9/7 24.03
DCUT2 25.04
Wave Atom 23.66

Table 4.5: The table shows the result of CS restorations on random orthogonal
samples of the Lena image.

which is really the standard `1-minimization problem we have explored in great detail. The
results for our experiment is shown in 4.5, and the restoration for M = N/16 is shown for the
various transforms in figure 4.23. It is interesting to note the different artifacts from the various
transforms.

4.11 A note on performance guarantees

While the RIP is considered a “holy grail” in terms of recovery guarantees, one should always
keep in mind that the RIP gives a sufficient, but not necessary condition for reconstruction.
We have already noted that for partial Fourier measurements, we are able to show stronger
results for nonuniform recovery than for uniform. In section 5.1 we will see that one of the
most prominent used of CS, efficient MRI imaging, gives impressive result despite offering no
guarantees in terms of the RIP.

A recent paper by Adcock et al. [88] note this gap between theory and practice in CS. In this
paper, they note that the recovery property of signals is highly dependent on the the structure
of the signal, not just the sparsity. In this paper, they suggest a new version of sparsity, called
sparsity in levels, which also puts bounds on what level of an MRA the non-zero coefficients of
a signal x may be in. Here, we simply note that even though we may not be able to guarantee
reconstruction in terms of the RIP or even the k-NSP, we should not be deterred from trying
to restore signals we are interested in.

4.12 Implementation

So far we have discussed to great length when we are able to restore a signal by `1-minimization,
but we have not said anything about how we should perform this minimization. Now we finally
add some details on how to perform this minimization. The details and examples will be
MATLAB-specific, but they are easily transferable to other languages.
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4.12.1 Setting up a numerical experiment

Let us first note how to set up a test case for compressed sensing in MATLAB. We should define
the signal length N as well as the sparsity level k, or alternatively the compression coefficient
s. After this is done, we randomly spread the sparse or compressible coefficients randomly
throughout the signal x. For this, two useful MATLAB functions are randsample(N,k), which
draws k numbers at random without replacement from the set NN1 , and randperm(N), which
performs a random permutation of the set NN1 .

The following code will generate an exactly sparse vector,

function [x, i d x nonze ro] = g e n e r a t e s p a r s e v e c t o r(N,k)
x = z e r o s(N,1);
i d x nonze ro = randsample(N,k);
x( i d x nonze ro) = rand(k,1)

end

while the next one will generate a compressible signal.

function x = g en e r a t e c omp r e s s i b l e v e c t o r(N,s)
x = (1:N) .ˆ(−1/s);
x = x(randperm(N));

end

Note that these signals will be strictly positive, but it is a simple procedure to switch some of
the signs in the signal if we do not want this feature.

Once this signal has been generated we generate some sensing matrix. Generating a gaussian
random matrix is very simple, we simply use the MATLAB function randn(M,N) which generates
an M×N matrix with i.i.d. random Gaussian variables with standard deviation 1. We can also
use the function rand(M,N) to help us construct a Bernoulli matrix. Finally, we can use the
function dftmtx(N) which generates the N × N Fourier matrix, to generate a partial Fourier
matrix. The following code generates the different matrices.

% Gaussian matrix:
A = randn(M,N);

% Bernoulli Matrix:
B = 2*(rand(M,N) < 0 . 5)−1

% Fourier Matrix:
C = dftmtx(N);
i d x u s = randsample(N,M);
C = C( i d x u s ,:);

Once this matrix has been created, we simply measure the signal as y=A*x. Now, the task
is to restore the signal.
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4.12.2 `1-minimization

Here we will describe in very simple terms how to construct an `1-minimizer with equality
and inequality constraints. To start with, we dismiss these constraints in order to simplify our
discussion.

Unconstrained minimization

We want to minimize some function f(x) : RN → R. We first introduce some useful concepts.

Definition 4.12.1. Let f : RN → R be a continuous function. We denote the gradient of
f by

∇f(x) =

(
∂f

∂x1
, . . . ,

∂f

∂xN

)T
. (4.222)

Furthermore, we denote the Hessian of f by

Hf (x) =


∂2f
∂x21

. . . ∂2f
∂x1∂xN

...
. . .

...
∂2f

∂xN∂x1
. . . ∂2f

∂x2N

 . (4.223)

We now have the following, which should be known, but is repeated for convenience.

Theorem 4.12.2. Assume that f : RN → R has continuous partial derivatives, and that
x∗ is a local minimum of f . Then

∇f(x∗) = 0. (4.224)

Furthermore, if f has continuous partial derivatives, then Hf (x∗) is positive semidefinite.

The proof of this is straight forward, but widely available in textbooks, so it is omitted here.
Furthermore, note that the only function we want to minimize, f(x) = ‖x‖1, does not have
continuous derivatives. They are discontinuous at xi = 0. Still, these are terms which should
be a part of any discussion on function optimization. One redeeming quality of ‖x‖1 is that it
is convex. Let us define this property.

Definition 4.12.3. A function f(x) is said to be convex if for any two points x1 and x2,
and any λ ∈ [0, 1]

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2), (4.225)

If x1, x2 ∈ R, this can be interpreted as saying that the line through the points (x1, f(x1))
and (x2, f(x2)) will lie above the function.

This makes the problem much more approachable, as it can be shown that if f is convex, then
a local minimum of f is a global minimum.

Any numerical minimization algorithm will begin with some first guess x0 for the minimum.
From here there are two main categories of methods.
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1. Line search methods: Here we chose a direction dk from the current point xk, and move
according to

xk+1 = xk + αkdk, (4.226)

for some choice of αk.

2. Trust region methods: Here one chooses an approximation f̂ to f in some region around
xk, and then minimizes f̂ in this area. The point of minimization is then the next point
of the iteration xk+1.

Here we will focus on line search methods. A simple example of such a method is the steepest
descent method, where one moves in the direction where the function falls the fastest accoring
to the gradient. This corresponds to setting

dk = −∇f(xk), (4.227)

for each k. This is a very stable method, but it is not very fast, so other methods have been
developed.

Notably, Newton’s method offers faster convergence. Here, one moves according to

dk = −αkHf (xk)
−1∇f(xk). (4.228)

While the steepest descent can be thought of as approximating f with a linear function, New-
ton’s method can be thought of as approximating f with a quadratic function. If we set
αk = 1 we arrive at the classical Newton’s method, which will find xk+1 as the minimum for
the quadratic approximation around xk.

The steepest descent method has a linear convergence, while Newton’s method has a quadratic
convergence. Roughly speaking, this means that while we may expect each iteration of the
steepest descent method to give us one more correct leading digit to the minimum, we can for
Newton’s method expect the number of correct leading digits to double each iteration. One
should note however that the proof of the quadratic convergence of Newton’s method relies
on f having continuous partial derivatives, so these convergence properties may not hold for
f(x) = ‖x‖1.

Equality constraints

We now look to solve the problem

minimize f(x),

subject to hi(x) = 0, (i = 1, . . . ,M).
(4.229)

In order to solve this we introduce the Lagrangian function, L : RN × RM defined by

L(x,λ) = f(x) +

M∑
i=1

λihi(x) = f(x) + λTh(x), (4.230)

where h(x) = (h1(x), . . . , hM (x)). One can show that the minima of f obeying hi = 0 satisfy

∇xL(x∗,λ∗) = 0, (4.231)

∇λL(x∗,λ∗) = 0, (4.232)
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where ∇x is the normal gradient, and ∇λ is the gradient with regards to the variables λi. Again
we refer to any standard textbook on multi variable calculus for the proof. The second equation
here simply states that h(x∗) = 0.

Now we consider the problem of optimizing f(x) under the constraint Ax = b. We can
use Newton’s method for this problem as well, with two small modifications. First, we need to
make sure that the initial point is feasible, i.e. Ax0 = b. We then need to make sure that the
next point is feasible as well. This holds if Adk = 0, i.e. dk ∈ ker(A).

The Lagrangian for this constrained optimization, with x = xk + dk is

L(x,λ) = ∇f(xk) +Hf (xk)dk +ATλ. (4.233)

All in all, we need to solve the linear system(
Hf (xk) AT

A 0

)(
dk
λ

)
=

(
−∇f(xk)

0

)
. (4.234)

Inequality constraints

When we would rather solve (P1-σ), the relaxed optimization problem, then we are are looking
at a problem of the form

minimize f(x),

subject to gi(x) ≤ 0, (i = 1, . . . , R).
(4.235)

In our case, the only inequality would be ‖Ax− b‖2 − σ ≤ 0.
A simple way to solve this is by the interior-point barrier method. We replace the original

problem by the problem
minimize f(x) + µφ(x), (4.236)

where

φ(x) = −
R∑
j=1

ln(−gj(x)), (4.237)

and µ > 0 is some parameter. The function φ is called the logarithmic barrier function, as it
ensures that f(x) + µφ(x) → ∞ as gj(x) → 0, effectively creating a barrier for the feasible
solutions. Furthermore, one can show that if x∗ is the solution to (4.235), and x(µ) is the
solution to (4.236), then x(µ) → x∗ as µ → 0. Typically, we modify our program by adding
an external loop where we first choose some µ and solve (4.236), then decrease µ and use the
previous solution as the starting point for the new iteration.

Minimization software

We have described in a minimalistic way. There are far more sophisticated `1-minimizers avail-
able. Here we will describe the ones used in this thesis.

1. `1-MAGIC. This was one of the first packages made specifically for solving compressed
sensing problems. It uses a Newton method with an interior-point logarithmic barrier
method, much like what we have described here. It can solve most of the problems
described in section 4.1.2. Drawbacks of this package are somewhat poor performance
compared to other tools on large systems and fast implementations of operators (see
4.12.3 for details). Details on this package can be found in [89]



132 Theory of Compressed Sensing Chapter 4

2. SPGL1. This more sophisticated solver is based on the paper [90], where they show that
the there is a curve parameterized by a single parameter that traces the optimal trade-off
between the `2 error ‖Ax − b‖2 and the `1-norm of x, which they refer to as the Pareto
Frontier. They further show that this curve is convex and continuously differentiable. The
package attempts to find the best solution along this curve. Details on the package can
be found in [91]. This package works far better for large systems than `1-MAGIC, and it
also works well with fast implementations of operators.

3. Sparco. Sparco is not a minimization software, rather it is a wrapper which makes it easy
to implement several transforms and useful tools for any `1-minimizer. It includes several
operators, such as the curvelet, Fourier and Haar transforms, as well as a framework which
allows user to easily add more operators.

4. MCALab/SplittingSolvers This package is more of a complete software for doing CS
experiments than simply an `1-solver. MCALab was mentioned as a tool for inpainting
in section 4.1.5. SplittingSolvers expands on this package to allow for sampling in bases
other that the canonical one. The package is fast, and notably has built-in support for
many exotic operators such as the curvelet and the Wave Atom bases. The package can
be downloaded from http://www.multiresolutions.com/sparsesignalrecipes/software.html.
For documentation of the package, refer to the documentation of MCALab [43].

All the tests performed in this thesis are performed using either MCALab or spgl1.

4.12.3 Efficient implementation of fast operators

When describing how to set up a numerical example in section 4.12.1, we set up a partial Fourier
transform by first constructing the whole Fourier matrix and then removing rows from it, leaving
us with an M × N sensing matrix A. Calculating Ax and A†b will be required at each step
in the iteration. calculating Ax as explained so far, will require O(MN) operations. For most
applications, it would be preferable if we were able to use some efficient implementation such as
the FFT, which requires O(N log2N) operations. However, the partial Fourier matrix cannot
be split in the same way that the full Fourier matrix can, as the frequencies are not equally
spaced. Here we show another approach which allows us to implement these fast operators.

The idea is that rather than selecting the M relevant rows from FN as A = RTFN , where
FN is the DFT matrix and RT is the row selection matrix, we consider a scheme where we
instead compute FNx, and then select the appropriate elements of x (the elements with the
same indices as the kept rows in A). This will clearly produce the same results, as it can be
interpreted as making N measurements on the signal, and then trowing away N−M of them. If
we use a regular matrix, then this is inefficient, as if requires O(N2) operations, however, since
we now use a complete Fourier matrix, we can replace this with an FFT function, effectively
reducing the order to O(N log2N). When computing ATb, we can rather place b into a larger
vector bN of length N such that if Λ = {λ1, λ2, . . . , λM} is the index set of the rows of the DFT

kept in A, then bNi = bλi . If we then compute F †NbN , this gives the same result as F †Nb. Once
again, this allows us to use fast operators such as the IFFT.

As an example, we may write the partial IFFT function as

http://www.multiresolutions.com/sparsesignalrecipes/software.html
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function [ y ] = par t i a lFFTImp l( idx , N, x, mode )
if mode==1

y = f f t (x)* s q r t(N);
y = y( i d x);

else
y = z e r o s(N,1);
y( i d x) = x;
y = i f f t (y)/ s q r t(N);

end
end

which uses the built-in MATLAB FFT and IFFT functions (note that these are normalized
differently from the version presented here, which is the reason for the factors

√
N). Here, idx

contains the indices in Λ, N is the size of the signal, mode defined whether to compute A or AT ,
and x is either x or b, depending on mode (it is the vector we would like to multiply with either
A or AT ).

Going even further, since x will typically be sparse, there are much work presently going
on to find even more efficient Fourier transforms for sparse data, often referred to as Sparse
Fourier Transforms. Notably, Hassanieh et al. recently published an algorithm computing the
Fourier transform of an exactly k-sparse vector in O(k log2N) iterations [92].

Implementation of 2-D signals

Most packages will require x to be a vector. We have seen that an image X can be represented
as a long vector x, but computing the operation (A⊗k B)x will computationally be much more
taxing than computing (A ⊗ B)X = AXBT . We can solve this problem in the same way we
did for the FFT. For an image X represented by a vector x, we want to compute Ax, where A
is M ×N matrix constructed from selecting M rows from A⊗kB with indices in the set Λ. We
can do this by first turning x into a matrix X, then calculating Y = AXBT , then turn Y into
a vector y, and finally remove all the elements with indices not in Λ. We can naturally apply
fast operators such as the 2-D FFT in the same way.
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(a) Zero filling (b) Haar basis

(c) CDF 9/7 basis

Figure 4.21: The figure shows reconstructions based on partial noiselet samples.
The reconstructions are made in the Haar and CDF 9/7 bases with M = N/4 mea-
surements.
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(a) Zero filling (b) Haar basis

(c) CDF 9/7 basis

Figure 4.22: The figure shows reconstructions based on partial noiselet samples.
The reconstructions are made in the Haar and CDF 9/7 bases with M = N/16
measurements.



136 Theory of Compressed Sensing Chapter 4

(a) Zero filling (b) Haar basis

(c) DFT basis (d) CDF 9/7 basis

(e) Curvelet basis (f) Wave Atom basis

Figure 4.23: The figure shows reconstructions based on partial random samples.
The reconstructions are made with M = N/16 measurements.



Chapter 5

Applications of Compressed Sensing
in Computational Physics

Now that we have developed the theory we need to be operative in CS, it is finally time to
highlight its uses in computational physics. This chapter will be split in two parts; Sections 5.1,
5.2, 5.3 and 5.4 highlight notable work already made in Physics with CS, explaining the work
and its significance. Sections 5.5, 5.6, 5.7 and 5.8 represent original work.

5.1 Compressed sensing MRI

Compressed sensing saw its first applications in medical imaging, so it is natural to start our
discussion on applications here. We here detail the basics of Magnetic Resonance Imaging
(MRI), and explain how CS can improve the MRI quality.

The MRI signal is generated by protons in the body, mostly those in water molecules. A
strong static field B0 polarizes the protons, yielding a net magnetic moment oriented in the
direction of the static field. A radio frequency applied to the protons will “flip” the magnetic
moment to the opposite direction. This flip happens at a characteristic frequency

f0 =
γ

2π
B0 (5.1)

where γ/2π is a constant. The transverse component of the precessing magnetization produces a
signal detectable by the receiver coil. The transverse magnetization at a position r is represented
by the complex quality m(r) = |m(r)|e−iφ(t) where |m(r)| is the magnitude of the transverse
magnetization, and φ(t) is its phase. The signal of interest is m(r), which may represent many
different physical properties of the tissue. A common property is the proton density.

In order to find m(r), we need the spatial resolution of the image. In order to get this, we
apply a gradient field of the form B(x) = B0 + Gxx, where Gx is some constant. This gives a
characteristic frequency

f(x) =
γ

2π
(B0 +Gxx), (5.2)

This gives different frequencies for different points in space, giving us the spatial resolution.
More generally, in 2-D or 3-D, the additional frequency contributed by gradient fields can be
written as

f(r) =
γ

2π
G(t) · r, (5.3)
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where G(t) is a vector of the gradient field amplitudes. The phase of the magnetization is the
integral of frequency starting from time zero (immediately following the RF excitation):

φ(r, t) = 2π

∫ t

0

γ

2π
G(s) · r ds (5.4)

= 2πr · k(t), (5.5)

where

k(t) =
γ

2π

∫ t

0
G(s) ds. (5.6)

The receiver coil integrates over the entire volume, producing a signal

s(t) =

∫
R
m(r)e−2πik(t)·r dr. (5.7)

This is the signal equation for MRI. In other words, the received signal at time t if the Fourier
transform of the object m(r) sampled at the spatial frequency k(t).

Magnetization decays exponentially with time. This limits the useful acquisition time win-
dow. Also, the gradient system performance and physiological constraints limit the speed at
which k-space can be traversed. These two effects combine to limit the total number of samples
per acquisition. As a result, most MRI imaging methods use a sequence of acquisitions; each one
samples part of k-space. The data from this sequence of acquisitions is then used to reconstruct
an image.

Let us look at a toy model for how this sampling works in practice. Figure 5.1(a) shows the
Shepp-Logan phantom, a simple model for MRI data. Figure 5.1(b) shows a typical sampling
pattern in the frequency space. Note that this representation has the low frequencies near the
center of the image, and the high frequencies near the edge. Figure 5.1(c) shows the zero-filling
reconstruction, i.e. the simple IDFT with zeros padded for the missing samples. This is the
traditional reconstruction method, and for this reason, a high number of radial lines are needed
for a reconstruction.

Note however, that the image has an extremely sparse gradient. This inspires us to attempt
to restore the image using TV-minimization. This restoration is shown in figure 5.1(d), and is
in fact exact.

Note that we have not made any guarantees in terms of the RIP or NSP in this case. Still,
the quality of the result speaks volumes of the potential of this method. We are also free to
try other bases such as the DCUT2 or a wavelet basis. See [2] for a complete investigation of
CS-based MRI.

In 2009, CS MRI was implemented at Lucile Packard Childrens Hospital as part of a two-
year test program. Reports concluded that they were able to speed up the MRI process by a
factor of 6, allowing faster treatment times and increased capacity [93].

5.2 Compressed Sensing in Astronomy

The Herschel/Photodetector Array Camera and Spectrometer mission of the European Space
Agency is faced with a strenuous compression dilemma: it needs a compression rate equal to
= 1/P with P = 6. A first approach has been proposed, which consists of averaging P = 6
consecutive images of a raster scan and transmitting the final average image. Nevertheless,



Section 5.2 Compressed Sensing in Astronomy 139

(a) Complete data (b) Sampling pattern

(c) Zero-filling reconstruction (d) TV reconstruction (exact)

Figure 5.1: Reconstruction of the Shepp-Logan phantom based on partial Fourier
samples. The figure is from a CS demonstration available at http://www.cs.tut.fi/
∼comsens/

doing so with high-speed raster scanning leads to a dramatic loss in resolution. We emphasize
the redundancy of raster scan data: 2 consecutive images are almost the same images up to
a small shift t = (t1, t2) (t1 and t2 are the translations along each direction). Then, jointly
compressing/decompressing consecutive images of the same raster scan has been proposed to
alleviate the Herschel/PACS compression dilemma. The problem consists of recovering a single
image x from P compressed and shifted noisy versions of it:

xj = Stjx + ηj , j = 1, . . . , P, (5.8)

where Stj is an operator that shifts the original image x with a shift tj . The term ηj is
instrumental noise or model imperfections. According to the compressed sensing paradigm, we
observe

yl = Hlxl, (5.9)

where the sampling matrices are such that their union spans RN . In this application, each
sensing matrix Hl takes bN/P c measurements such that the measurement subset extracted
by Hl is disjoint from the other subsets taken by Hj 6=l. Obviously, when there is no shift

http://www.cs.tut.fi/~comsens/
http://www.cs.tut.fi/~comsens/
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between consecutive images, this condition on the measurement subset ensures that the system
of linear equations in (5.9) is determined, and hence x can be reconstructed uniquely from the
measurements yl. When there is a time shift, there is no such guarantee.

Figure 5.2 shows the result of a CS restoration, compared to the averaging approach. The
CS approach appears to give superior results.

This application was highlighted along with several other applications of CS in astronomy
by Bobin et al. [94]. We refer to their article for more details.

Figure 5.2: (top left) Original image. (top right) One of the 6 noisy images observed
by the instrument. (Bottom left) Average of 6 noisy images. (Bottom right) Noiselet-
based CS reconstruction. The figure is from [94].

5.3 CS for seismic data and surface metrology

The following problem introduction is from an example problem at [95], which explains how the
problem of seismic data inpainting arises better than I could, given that this is not my area of
expertise.

In reflection seismology, sound waves are sent into the ground using an energy
source such as dynamite or vibrator trucks. These waves are reflected off of, and
transmitted through, different rock layers. The reflections are recorded at the surface
via receivers called geophones that are planted in the ground. The recorded data
set is an ensemble of seismic traces (time series from the different receivers). These
help create an image of the subsurface, which is then interpreted for oil and gas
exploration.

These days, seismic data is collected as massive data volumes with up to five
dimensions (one for time, two for the receiver positions, two for the source positions).
This data shows a 3D volume of the Earth. In our example, we work with 2D
seismic data, i.e., data showing a single slice of the Earth. It is set up as a three-
dimensional matrix - one coordinate for time, one for the receivers, and one for the
sources. Furthermore, we will work with only one shot gather (the data from a single
source), which is a function of receiver index and time sample.
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Seismic data are often spatially undersampled due to physical and budget con-
straints, resulting in missing traces (receiver positions) in the acquired data. A
solution to this problem is trace interpolation, which estimates the missing traces
from an undersampled dataset.

The data used in this example is fully sampled, so we will first simulate the effect of missing
traces by removing the data from random receiver indices. We will then interpolate to try to
fill in the gaps. From our earlier discussion on LIPs, this would be classified as an inpainting
problem, but the lines between compressed sensing and inpainting are not very strict.

Figure 5.3: Overview of seismic data acquisition. Image from http://lingo.cast.
uark.edu/LINGOPUBLIC/natgas/search/index.htm

An example of seismic data is shown in figure 5.4. This example data is included in the
distributed Wave Atom toolkit for MATLAB, available at http://www.waveatom.org/. This
data can be shown to be sparse in the curvelet, Wave Atom and Fourier basis. As a simple test,
we remove 25% of the transceivers, which corresponds to removing 25% of the samples along
vertical lines in the data set, as shown in figure 5.5.

We now try to fill in the missing samples. In this test we used the spgl1 solver to find the
`1-minimizing in the respective bases. The results are shown in figure 5.6, and summarized in
table 5.1. All the reconstructions are quite good, giving only notable errors at the edges of
the signal. The curvelet and Wave Atoms transforms give roughly the same quality, while they
both outperform the DFT.

The result of a larger test is given in figure 5.7 shows that for extremely small fractions of
gatherers used, the curvelet performs somewhat poorly, while for a decent number of gatherers,
the DFT falls behind the curvelet and the Wave Atom.

This problem is studied in more detail in [5], [96], [97] and [98], where they note that
performance can be improved somewhat by using a jittered subsampling, which ensures there
are no large areas going completely unsampled.

Surface metrology is the science of measuring small-scale features on surfaces. In, [99], J. Ma
introduces CS on a number of such problems. Engineering surfaces are composed of multiscale
topographies, such as roughness, waviness, form errors, random ridges and valleys and peak-
s/pits. These features directly impact performance and physical properties of the system, such

 http://lingo.cast.uark.edu/LINGOPUBLIC/natgas/search/index.htm
 http://lingo.cast.uark.edu/LINGOPUBLIC/natgas/search/index.htm
http://www.waveatom.org/
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Figure 5.4: An example of seismic data.

as wear, friction, lubrication, corrosion, fatigue, coating, and paintability in many disciplines,
including tribology, fluid mechanics, optics, semiconductors, microelectronics, manufacturing,
biology, and medicine. For instance, during the functional operation of interacting surfaces,
peaks and ridges act as sites of high contact stress and abrasion, whereas the pits, valleys, and
scratches (i.e., polish line or line-like wear) affect the lubrication and fluid retention properties.
Surfaces also play a vital role in biology and medicine with most biological reactions occurring
on surfaces and interfaces, in vivo. Multiple methods were implemented to measure different
characteristics, including engineering surfaces. Methods including scan, ultrasonics, and scatter
have also been developed. Methods include scanning electron microscope, scanning tunneling
microscope, magnetic force microscopy, computer tomography and MRI, which we have already
seen in the context of medical imaging.

Figure 5.8(a) displays a raw surface topography from a worn metallic joint head with mor-
phological structures consisting of roughness and deep scratches. We then simulate partial
measurements by measuring the surface at random points in the Fourier space. If we fill in the
missing samples in the Fourier space with zeros, we get figure 5.8(b). Two CS approaches are
shown: In figure 5.8(c) a TV-minimization is performed, while in figure 5.8(d) a curvelet-based
approach is shown. These figures are from [99], where several more illustrated examples are
given.
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(b) Subsampled data

Figure 5.5: Masking of seismic data.

Number of traces Transform PSNR

75% zero-filling 11.41
DFT 40.90
DCUT2 46.02
Wave Atom 45.90

Table 5.1: The table shows the result of inpainting of seismic data with 25% missing
traces.
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(b) DFT Error
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(c) Curvelet Restoration
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(d) Curvelet Error
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(e) Wave Atom Restoration
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(f) Wave Atom Error

Figure 5.6: Inpainting of seismic data using different bases.



Section 5.3 CS for seismic data and surface metrology 145

0 0.2 0.4 0.6 0.8 1
10

−4

10
−3

10
−2

10
−1

10
0
Relative ℓ1 errors for seismic inpainting

Ratio of gatherers used

R
el
a
ti
v
e
er
ro
r

 

 

Wave Atom
Curvelet
DFT
zero-filling

(a) `1-error

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

PSNR values for seismic inpainting

Ratio of gatherers used

P
S
N
R

 

 

Wave Atom
Curvelet
DFT
zero-filling

(b) PSNR

Figure 5.7: The result of a large inpainting experiment, varying the number of
gatherers used in the restoration.
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(a) Original Surface (b) Restoration by zero-filling

(c) TV-minimization (d) Curvelet restoration

Figure 5.8: Restoration of a raw joint surface based on partial Fourier Measure-
ments. The figure is from [99].
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5.4 Properties of molecular dynamics

This section aims to reproduce the results of two recent articles by Andrade and Sanders et al.
([3] and [4]) and put the ideas presented there in a more general setting. In [3] they approach
the problem of measuring the Continuous Time Fourier Transform (CTFT), defined by

F (ω) =

∫ ∞
−∞

f(t)e−iωt dt, (5.10)

in a numerical setting. To be precise, the article studies the Continuous Time Cosine Transform
(CTCT), given by

Fc(ω) =

∫ ∞
−∞

f(t) cos(ωt) dt, (5.11)

which is just the real part of the CTFT. The approach is to evaluate the integral numerically
at a discrete set of frequencies {ωj}M−1

j=0 , over a finite time t ∈ [0, T ). The frequency and time
samples are uniform, so that ωk = ω0+k∆ω and tj = j∆t. The integral is evaluated numerically,
which may give the crude formula

Fc(ωk) = δt
N−1∑
j=0

f(tj) cos(ωktj) dt. (5.12)

If we denote the sample vectors Fc(ωk) by y and f(tj) p x, this set of equations can be written
as the matrix equation

y = Fx, (5.13)

where F is an M × N (where M > N) matrix with elements Fkj = ∆t cos(ωktj). This looks
a lot like our definition of the Fourier Transform. However, it is quite different. First of all,
we have made no restrictions on lower or upper bounds of frequencies, or the spacing between
them. This means that there is no guarantee that the columns in F are orthogonal. There is
also no requirement to have the same amount of points in time and frequency. To a point, we
would like to have as many points in frequency and time as possible. Typically, we can use any
number of frequencies that we like, but experimental considerations may often not allow large
T and/or small ∆t. Let us begin by investigating the effects of only measuring the signal for a
short time.

We begin by creating a signal xj = cos(ftj). Here we will set f = 2π, and ∆t = 0.01. We
will use frequencies from ω0 = π to ωM−1 = 6π, with M = 1000. A final time of T = 1 will
ensure one complete oscillation. Let us see what happens if we use final times of T = 0.5, 2 and
10. The resulting transforms are shown in figure 5.10. One standard way to improve the result
of the CTCT is to multiply the signal with some damping function, and then add a symmetric
extension of the signal [100]. We use the damping polynomial

p(t) = 1− 3

(
t

T

)2

+ 2

(
t

T

)3

, (5.14)

which has the properties p(0) = 1, p(T ) = p′(T ) = p′(0) = 0. This causes the function to vanish
smoothly at T . This is illustrated in figure 5.9. The resulting CTCT is also shown in figure
5.10
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(b) Dampened and extended time series

Figure 5.9: The figures show the effect of applying a damping polynomial to a signal
and symmetrically extending it.

Now we will attempt to approach the problem in a different way. The inverse continuous
time cosine transform (ICTCT) is given by

f(t) =
2

π

∫ ∞
−∞

Fc(w) cos(ωt) dω, (5.15)

and using the same discretization, we can formulate this as the matrix equation

Gy = x, (5.16)

where G is an M ×N matrix (where M > N) with elements Gjk = ∆ω cos(ωjtk). Now, since
M > N , the system is underdetermined, and we can choose any solution from the solution
space. We also know that the CTCT should show only a sharp peak at the selected frequency.
This motivates us to look for the sparsest possible solution, which is why CS might be well
suited for this problem. Using the same parameters as previously, figure 5.11 includes the result
of `1 as well as `2 minimization of the inverse problem. We note that even for time spans of less
than one full oscillation, the CS method gives very reasonable results.

We should also check if the frequency found by the `1 minimization is correct. We follow
the analysis of [3]. We consider the CS result to have no standard deviation, and use a Gaussian
fit to model the result for the symmetrically extended CTCT result. The results are shown in
figure 5.12, and are at least as good as the results for the traditional approach of symmetrically
extending the signal.

This is of course highly related to the sparse spikes deconvolution problem, but the idea
presented here is somewhat different.
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(c) T = 10

Figure 5.10: The figures show the numerical CTCT results for various measurement
times.

Idea 5.4.1. If some property, such as a transform, when sampled for a sufficiently long
time, converges to a sparse signal, we may be able to find a sparse solution of the inverse
problem after a much shorter time period.

This feature hold for many properties in molecular dynamics, such as vibrational spec-
trum, optical absorption spectrum, spectroscopy data and more, as highlighted by Andrade
and Sanders et al..
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Figure 5.11: The figures show the numerical CTCT and the ICTCT restoration
results for various measurement times. The peaks of the CS results have been cropped
in order to show more detail of the other curves.
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methods, as well as the standard deviation of the CTCT frequency.
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Figure 5.13: The figure shows some curves with different Hurst exponents created
by the midpoint displacement method.

5.5 Characterization of rough surfaces

In fractal geometry, the Hurst exponent H is a measure of how wild the randomness of a time
series is. It is directly related to the fractal dimension of a series. A value of 0 < H < 0.5
will mean that a high value will typically be followed by a low value. A value of H = 0.5 will
correspond to no correlation between adjacent values, a Brownian motion is an example of this.
A value of 0.5 < H < H means a high value will typically be followed by another high value.
Figure 5.13 shows some time series with different Hurst exponents. Let us properly define the
Hurst exponent.

Definition 5.5.1 (Hurst exponent). The Hurst exponent H is defined in terms of the
asymptotic behavior of the rescaled range as a function of the time span of a time series as〈

R(n)

S(n)

〉
∝ nH as n→∞, (5.17)

where R(n) is the range of the first n values and S(n) is the standard deviation

Bassingthwaighte and Raymond [101], they analyze the problem of determining the Hurst
exponent of a short time series. Here, we will investigate whether or we are able to determine
the Hurst exponent using only a small amount of samples with reasonable accuracy. In order
to estimate the Hurst exponent, we will use the same approach as in [101]. The reader may
investigate the theoretical underpinning of this method in the cited article. The method consists
of the following steps:
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1. Calculate the successive differences, y, of the signal x,

yi = xi+1 − xi, i = 0, . . . , N − 1. (5.18)

2. Calculate the standard deviation of the set of observations:

σ1 =
1

N

√√√√N
∑
i

y2
i −

(∑
i

yi

)2

. (5.19)

3. Collect the averages in consecutive groups of two elements in a new signal y(2), and
calculate the standard deviation of this new group σ2. We refer to these groups as bins
with bin size m. The bins should have bin size m2 = 2 at this stage.

4. Repeat the previous step until you are left with Ni ≤ 4 elements (4 here is arbitrary, in
the sense that we could have stopped at 8 or 2 as well).

5. Plot log(σi) vs. log(mi). The slope of this curve is related to the estimated Hurst exponent
Ĥ as Ĥ = 1 + slope.

We can alter this method in order for the slope to find Ĥ as the slope of the curve directly by
plotting log(σimi) along the y-axis.

This approach has already been implemented and made available on the MATLAB Central
File Exchange, and this version was used in these tests. The function is available at http:
//www.mathworks.com/matlabcentral/fileexchange/9842-hurst-exponent.

The problem discussed in [101] was the signal length needed to accurately find the Hurst
exponent of the whole time series. The problem is illustrated in figure 5.14, where a time series
x of length N = 212 = 4096 was created, and the algorithm described above was applied. The
slope was then calculated. Then, we repeated the process using only the first 2048, 1024, 512, 256
and 128 elements of the signal. We note that when attempting to estimate the Hurst exponent
from only a fraction of the data set, the result fluctuates wildly. This is further explored in
[101].

http://www.mathworks.com/matlabcentral/fileexchange/9842-hurst-exponent
http://www.mathworks.com/matlabcentral/fileexchange/9842-hurst-exponent
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Figure 5.14: The figures show the results of attempting to reconstruct the signal
from only the first signal samples.
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It can be shown that the Fourier spectrum of such a series on average will be proportional to
1/fβ, where β = 2H+ 1 [102]. For this reason, we expect the series to be fairly compressible for
large H, and for a signal restoration to be efficient. It has also been shown that for Daubechies
wavelets (a family of wavelets we have not discussed), the wavelet detail spaces will follow the
power law wn ∝ 1/n1/2+H [102], showing that wavelets will also be a suitable candidate for such
a restoration. The theoretical argument in the mentioned article only uses the general scaling
relation valid for any MRA wavelet, so it is very reasonable to expect the same for the Haar
and CDF 9/7 wavelets as well.

Some work has already been done with the goal of restoring an under-sampled time series of
Brownian motion (see [103]). Here we will check the quality of such a restored signal by mea-
suring the Hurst exponent before and after the under-sampling and restoration. The question
of whether such parameters can be recovered well by CS techniques was posed by Ma [99], but
has not been explored much in literature.

We will create datasets using the midpoint displacement method, which allows us to create
series which will on average have a Hurst exponent which can be chosen freely. The following
experiment was performed. For Hurst exponents H = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 100 experiments
where performed where either Nus = N/2 or Nus = N/4 samples were chosen randomly. The
experiment was repeated for N = 128 and N = 1024, as well as for a DFT and a CDF 9/7 DWT.
For the DWT, a random projection was applied first, in order to ensure an optimal restoration.
The Hurst exponent of the restored signal, Hr, was then measured, and the relative error
|H −Hr|/H was then measured. The results are shown in figure 5.15.

The results turned out to be quite poor. For Nus = N/2 the estimates are decent, for smaller
Nus however, the errors are large. This is because all the Fourier coefficients are needed to give
the signal its multi-scale features. We also note that the wavelet transform gives slightly better
results overall, but this approach remains unimpressive.
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(a) DFT, N = 128, Nus = N/2
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(b) DFT, N = 128, Nus = N/4
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(c) DFT, N = 1024, Nus = N/2
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(d) DFT, N = 1024, Nus = N/4
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(e) CDF 9/7 DWT, N = 1024, Nus = N/4

Figure 5.15: The figures shows the relative errors when measuring the Hurst expo-
nent of restored signals.
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5.6 Learned Dictionaries for characterization of rough surfaces

We have tried to find the Hurst exponent for rough surfaces by looking for sparse representations
in several known bases. The problem with this approach is that components in these bases
(Fourier, Wavelet), only provide information on particular length/frequency scales. For a correct
calculation of the Hurst exponent, one must consider the signals properties on all length scales,
which does not work well with a sparse representation, unless the basis elements also contain
information on all length scales.

One approach to a basis or frame with such properties is to consider a basis consisting of
several different rough surfaces. We will call such a collection of suitable functions a dictionary,
drawing on the terminology from section 3.7. A dictionary may may have a number of elements
far larger than the dimensionality of the system, but it does not necessarily have full rank (i.e.
it can not be reduced to a basis).

Variants of this approach is to look at a dictionary of transforms of rough surfaces, such
as dictionaries of DFTs, DWTs or differences. The idea is that, when looked at the right way,
different surfaces with the same Hurst exponent will be similar.

The goal of such an approach would obviously be that our method, when selecting M
measurement points in whichever basis we choose, should outperform simply selecting the M
first points of the signal and calculate the Hurst exponent based on those samples.

Figure 5.16 shows the result of such a preliminary investigation, where we test dictionaries of
surfaces, differences, DFTs and DWTs. Here N = 512, and the number of samples is Nus = 64
in 5.16(a) and Nus = 32 in 5.16(b). The number of learning surfaces were M = 2000, with H
in the range [0.45, 1.05]. The Fourier and Wavelet approaches seem to give poor performances,
while the surface and difference approaches seem more promising. It is worth noting that in
5.16(b), there were too few points to calculate the Hurst exponent by simply sampling the first
Nus samples.

We should also check the convergence properties of this approach. In a second experiment,
we choose a fixed H, in this case H = 0.7, and attempt to find the Hurst exponent using
different numbers of samples. This should error should converge to 0 for all methods. This
holds, but it is interesting to note that the convergence appears better for the straight forward
sampling approach. This is shown in 5.16(c).

We should check if this methods predicts the surface curve. We do a simple check where we
sample 64 points in the basis we investigate, and plot the restored curves. The result is shown
in figure 5.16(d), and shows that only the surface dictionary has this property.

So far we have used dictionaries of M = 2000 surfaces in all our experiments. It is interesting
to check the effects of using different fewer surfaces in our simulations. We can easily test this,
and the result is shown in figure 5.17(a), where we have used an subsampling factor of 1/8, and
a Hurst parameter of H = 0.7. We might expect the result to drop with the number of surfaces,
and this is true for the direct surface measurements. However, for the difference based method,
the number of test surfaces does not significantly effect the results.

Another feature we are interested in is whether this method can be used to distinguish
smaller differences in the Hurst parameter if the dictionary is more fine-tuned around a specific
set of Hurst parameter values. Once again, we can simply test this. We can create a dictionary
of differences with Hurst parameters in the range [0.74, 0.80], and attempt to restore surfaces
with Hurst parameters within this range. The result of this is shown in figure 5.17(b). We note
that while there might be some improvement compared to the wide-scale searches in terms of
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the relative error, the result is not adequate to distinguish such similar Hurst parameters.
Finally, there is no a priori reason to spread the samples randomly out over the the entire

domain. Aliasing effects do not necessarily occur with this dictionary. We perform two more
tests: one where all the samples are taken from the first elements of the surface (or the relevant
transform of the surface), and one where the samples are spread out equidistantly. The results
of this test is shown in figure 5.18.

Somewhat surprisingly, the approach of sampling only the first few points shakes up the
results quite a bit. The difference approach is still superior, but now the Fourier measure-
ments follow right behind. The surface measurements, however, now produce poor results.
This approach also greatly improves the performance of the difference dictionary for low Hurst
parameters.

The impact of sampling equidistantly seems insignificant for most of the methods, except for
the Fourier dictionary, which improves its performances with this sampling scheme compared to
random sampling. It still performs better when only the first Fourier coefficients are sampled,
however.

To conclude, based on the method where we used only the first samples, and restored the
signal using a dictionary of differences, we have here presented a method for estimating the
Hurst exponent of a signal, using only a small fraction of the elements needed normally.
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0.4 0.6 0.8 1 1.2 1.4
−0.2

0

0.2

0.4

0.6

0.8

Hurst parameter

R
el
a
ti
v
e
er
ro
r

 

 

only first samples
surface
difference
Fourier transform
Wavelet transform

(b) Restoration from M = N/16 samples
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Figure 5.16: Preliminary tests for the restoration of Hurst exponents. Figure 5.16(a)
and 5.16(b) show the error in the restoration for different Hurst exponents, figure
5.16(c) shows the error when the number of samples is varied and the Hurst exponent
is kept fixed, and finally figure 5.16(d) shows the attempt to restore the surface curve
using the various methods.
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(a) Nus = N/8, first elements sampled

0.4 0.6 0.8 1 1.2 1.4
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Hurst parameter

re
la
ti
v
e
er
ro
r

 

 

only first samples
surface
difference
Fourier transform
Wavelet transform

(b) Nus = N/8, equidistant sampling
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(c) Nus = N/16, first elements sampled
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(d) Nus = N/16, equidistant sampling

Figure 5.18: Tests using different sampling schemes.
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5.7 Super-Resolution based on curvelet sparsity

This is not strictly connected to physics in itself. Rather, it reflects original work that was made
while working on this thesis, and introduces concepts which will be relevant later.

5.7.1 Introduction

The problem of super-resolution amounts to solving the inverse problem of estimating a high
resolution signal x ∈ Rn from only m measurements, where m < n. In a general setting,
the measurements may also be contaminated by an additive noise, w, yielding the problem
formulation

x = Uy + w, (5.20)

where U is some operator.
Image interpolation is an important example of super-resolution. For images, a bicubic

interpolation often provide nearly the best result among linear operators [104].
Much work has already been done regarding super-resolution using CS, some using learned

dictionaries as representation bases [105], [106], some non-adaptive bases [107]. Additionally,
other super-resolution schemes based on sparsity have been proposed [108] as well other DCUT-
based methods [109], [110].

Here we will suggest a new way of looking at the super-resolution problem, connecting it
to the problem of restoring information from incomplete measurements in CS. For an image
x, consider its 1-level discrete Haar-wavelet transform (DWT). An example is shown in Figure
5.19 using the “Lena” image. The upper left part of the DWT represents a low-resolution
of the image. Because of this, we can consider a sensing matrix Φ which computes only the
low-frequency part of the Haar DWT.

The low resolution image will be quite jagged, and it is reasonable that the curvelet transform
of can be made sparser by smoothening the image. For this reason, we will let Ψ be the curvelet
transform. We want to find the sparsest possible curvelet transform such that the low-res
version of the inverse CT matches to the low resolution version of the original image. Of course,
in a realistic setting, we would simply start with the low resolution image and use the same
procedure.

Once this method has been established, it is easy to change the CT for some other curve-
promoting basis, as well as change the amount of levels we want to upscale the image, simple
by letting Φ correspond to an m-level DWT, where m > 1.

5.7.2 Experimental results

The outlined method was tested using MCALab [43], which can solve the `1-minimization
problem

minimize ‖z‖1
subject to ‖ΦΨz− y‖2 ≤ σ,

(5.21)

by Morphological Component Analysis (MCA) [111], as well as the alternative formulation

minimizez,σε
1

σ2
ε

‖ΦΨz− y‖22 + λ‖z‖1, (5.22)

based on the estimation maximation (EM) algorithm [112].
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Figure 5.19: The Lena image and its Haar DWT.

m = 1 zero-filling bicubic EM MCA

Lena 31.56 34.31 33.03 34.71
Mandril 27.28 29.66 29.52 30.93
Boat 28.57 30.11 29.71 30.61
Cameraman 31.12 36.01 33.92 35.55
Straws 19.05 20.54 21.91 21.53
Peppers 29.93 32.07 31.04 32.06

Avg. gain -2.534 0 -0.5978 0.4465

Table 5.2: Results for the curvelet transform for super-resolution, upscaled by a
factor of 2× 2. The columns show the PSNR value of the restorations. The average
gain is compared to the bicubic interpolation.

The approach was tested on the test images “Lena”, “Peppers”, “Mandril”, “Cameraman”,
“Boat” and “Straws”, see Figure 2.4. These are all accessible through the USC-SIPI image
database [6]. The results are shown in tables 5.2. Figure 5.20 shows the restored Lena image
using the different methods, along with the absolute errors. Note that in particular the error for
the MCA based algorithm is less pronounced along edges, which would, along with an improved
PSNR, seem to indicate that the method is successful at improving sharpness of the image.
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(a) Bicubic (b) Bicubic error

(c) EM (d) EM error

(e) MCA (f) MCA error

Figure 5.20: A super-resolution reconstruction for an m = 1 level down-sampling,
along with errors, for different methods.
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Figure 5.21: Seismic data acquired with different signal frequencies. The figure is
from http://folk.uio.no/hanakrem/svalex/E-learning/geophysics/Seismic resolution.
pdf

5.8 Seismic data restoration based on data with varying reso-
lution

In seismic such as the one described at the beginning of section 5.3, there is always a trade-off
between the amplitude of the signal and the resolution. The is controlled by the frequencies used
in the data acquisition, as illustrated in figure 5.21. Often, this is mitigated by sampling the
signal at high frequencies in only a select few places, and relying on low-resolution measurements
for most of the image. In this section we will explore how to use the framework we have developed
in order to improve on sampled data in this form.

Using terminology from section 3.3, we would line to make measurements along different
lines in each of the resolution spaces Vm, Vm−1, . . . , V0. This operation is linear, but it cannot be
written as a simple direct product of two operators. Rather, an explicit sensing matrix like that
would require a large sum of direct products. However, we may use the DWT theory developed
as an inspiration for how to model this process in a way that will not require an unreasonable

http://folk.uio.no/hanakrem/svalex/E-learning/geophysics/Seismic_resolution.pdf
http://folk.uio.no/hanakrem/svalex/E-learning/geophysics/Seismic_resolution.pdf
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amount of memory or CPU usage. There are two clear ways of doing this.

1. We could simply select samples in the m-level DWT. This has the advantage of giving
orthogonal measurements, and is very simple to implement. However, the DWT is really
the representation of the basis V1 ⊗W1 ⊗W2 ⊗Wm, which means we have to chose our
samples in a very specific way if we want the samples to reflect samples made in Vm, Vm−1,
. . . , V0.

2. Another Approach is to collect samples from each of the spaces Vm, Vm−1, . . . , V0 as we
work our way down through the stages of the DWT. There measurements might not be
orthogonal (we might measure a particular line both with high and low resolution, giving
some overlap).

Let us begin by exploring the first option. In order to ensure that we collect samples from
the DWT which corresponds to only making samples in Vm, . . . , V0, we must make sure that if
we sample a particular area in Wk, then we must make sure that we have sampled the same
area in Wk−1, . . .W0, V0, i.e. we must make sure that we do not add fine details to an area of
the image if we have not added coarse details. We must also sample from all the detail spaces

W
(0,1)
m , W

(1,0)
m and W

(1,1)
m

In an 1-level DWT this would mean that we do not sample from the detail spaces W0

unless we have already sampled the low-resolution space V0, as illustrated in figures 5.22(a)-
5.22(b). In a 2-level DWT we may only sample from the finest detail spaces W1 if we sample
the corresponding areas in the detail spaces W0 and the low resolution space, as illustrated in
figures 5.22(c)-5.22(f).

Generating acceptable masks can be done in the following way.

1. Sample all of the low-resolution space.

2. Make some mask of traces for one of the first detail spaces, and copy this mask for every
other detail space.

3. The mask for the next detail space can now be generated by doubling the resolution of
the previous detail space mask, and then removing some number of traces.

The result of a few experiments using this strategy is shown in table 5.3. The result indicates
that as long as we have a decent number of total samples, we can improve the signal significantly
using this method. The result of one experiment is shown in figure 5.23

In order to implement the second method, we may draw some inspiration from the idea
used in Atomic Decomposition. In atomic decomposition, we tried to restore the signal from
an overcomplete dictionary, consisting of two or more bases or frames. Here, we would instead
like to make our measurements from such a dictionary. The dictionary is the combination of
the low-resolution parts of various m-level DWTs, as well as the original data itself.

The easiest way to implement this is to implement this in our toy model is the following:

1. Generate all the m-level DWTs of the signal X, and store these as one long signal x.

2. Mask all the detail spaces of all the DWTs, as well as the non-sampled parts of the
low-resolution spaces.
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Number of measurements Transform PSNR

32% zero-filling 32.5
DFT 32.54
DCUT2 33.21
Wave Atom 33.31

57% zero-filling 35.79
DFT 37.53
DCUT2 39.73
Wave Atom 39.13

67% zero-filling 38.42
DFT 41.40
DCUT2 45.73
Wave Atom 45.49

78% zero-filling 40.30
DFT 43.31
DCUT2 47.29
Wave Atom 47.25

Table 5.3: The table shows the result of single CS restorations on seismic data with
varied resolution using the first method.

3. Now we attempt to find the sparsest possible set of DFT coefficients consistent with all
these measurements (or any other transform).

4. Once the sparse coefficients have been found, we apply the inverse transform to found the
restored signal.

The fact that we overproduce a lot of the DWT coefficients which take part in several of
the m-level DWTs does not really matter, as we only compare the signal to the non-masked
coefficients. The result of a few experiments using this method is shown in table 5.4. The
results are comparable to the other method. Note that in this case the zero-filling would not
make sense, as the sensing vectors are not orthogonal.

Number of measurements Transform PSNR

55% zero-filling N/A
DFT 34.74
DCUT2 38.44
Wave Atom 38.38

65% zero-filling N/A
DFT 36.72
DCUT2 42.37
Wave Atom 42.52

Table 5.4: The table shows the result of single CS restorations on seismic data with
varied resolution using the second method.
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(a) 1-level DWT, allowed (b) 1-level DWT, not allowed

(c) 1-level DWT, not allowed (d) 2-level DWT, allowed

(e) 2-level DWT, not allowed (f) 2-level DWT, not allowed

Figure 5.22: The figures shows different attempts to create masks in the DWT
spectrum of an image which corresponds to measurements in the spaces Vm. 5.22(a)
and 5.22(c) are allowed. 5.22(d) is not allowed, as we have sampled some of the detail
spaces, but not all (see the rightmost white line in the image, which is not there for
the lower left detail space). 5.22(b) is not allowed as we have sampled details in an
area where we have not sampled the low-resolution signal. 5.22(e) is not allowed, as
we have sampled fine details in an area where we have not sampled coarse details (i.e.
we sample the leftmost line of the fine detail space). 5.22(f) is not allowed as sample
from both detail spaces, but do not sample from the low-resolution space.
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(c) Curvelet restoration
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(d) Curvelet error
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(e) Wave Atom restoration

Receiver number

T
im

e
sa
m
p
le

Wave Atom Error

 

 

100 200 300 400 500

100

200

300

400

500
0

2

4

6

8

10

12

14

16

18

20

(f) Wave Atom error

Figure 5.23: The figures show the result of restoring an image where 67% of the
DWT spectrum of a 4-level DWT was sampled. All the lowest resolution measure-
ments were samples, and the detail space sampling mask followed the rules laid out
in the text.
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5.9 Seismic Data Restoration based on learned dictionaries

Here, we will go back to the problem of inpainting missing shots in a seismic signal. Rather
than any of the fixed bases we have used so far, we will here try to restore the signal based on a
learned dictionary of image patches. Such dictionaries have been explored for image denoising
([113], [114], [115]) super-resolution ([105], [106], [116]) as well as the general compressed sensing
problem ([117], [118], [119]), but the problem of inpainting is less well explored (some mentions
are made in [115]). We briefly introduced the concept of learned dictionaries in 5.6, but here
we will use some more finesse in constructing our dictionary.

The reason for using patches is two-fold. First, the learned dictionaries do not have fast
implementations, nor can they be written as simple Kronecker products of 1-D operators, which
means that dictionaries of full scale signals are impossible both to store and use, as exemplified
in section 3.4.2, where we noted that an explicit representation of the 2-D DFT of a 512× 512
image would require a 5122×5122 complex matrix, which in turn would use 1024 GB of memory.
Secondly, we expect a signal to behave in a highly coherent way locally (in patches), but the
signal might look less coherent over large distances in the data, making it more difficult to
construct a basis in which the signal is sparse.

In order to create a suitable dictionary of patches, we can rely heavily on the established
theory for denoising (if a learned dictionary is effective for denoising, it is reasonable that it
is effective for inpainting). Ahron et al. published an algorithm for training a dictionary to
represent certain data in a sparse way [120], called the K-SVD algorithm. For the sake of
brevity, we will not go into detail on the numerics on the algorithm, but we note that several
efficient MATLAB implementations already exist (notably, R. Rubinstein et al. published an
efficient version [121], which is available online [122]). The main points of the algorithm are the
following:

1. The algorithm is first fed some initial dictionary, as well as a large set of training patches.
A good initial dictionary will ensure a fast convergence, but generally, any starting point
is acceptable. Typically, an overcomplete Discrete Cosine Transform (DCT), a real-valued
version of the Fourier transform, is a suitable starting point for many signals. The training
data should be relevant to the data we want to restore later using our trained dictionary.

2. Then, the dictionary is iteratively updated, to make the training patches have an as sparse
as possible representation in the data set. The dictionary elements are changed in order
to improve the sparsity.

Figure 5.24 shows the result of such a training process, when the training data is made from
random patches from figure 5.4. Note that the basis of patches effectively have a lot in common
with the wave atom and curvelet bases, as they have local (due to the patches) oscillatory
behavior along various angles. The dictionary patches were chosen to be of size 16 × 16. The
size of the patches must be selected to ensure that the area that should be inpainted (i.e. single
pixels) is small compared to the size of the patches. At the same time, the patches should be
small enough to ensure that the behavior of the signal is fairly coherent across the patch. For
denoising, a typical patch size is 8× 8, but through testing this turned out to be too small for
inpainting.

In setting up the experiment for inpainting seismic data, we should make sure that the
missing shots are not on the en of the patches, as this would be outpainting, a much more
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Number of measurements Transform PSNR

75% zero-filling 11.41
Wave Atom 46.52
Learned dictionary 48.68

Table 5.5: The table shows the result of single CS restoration on seismic data using
a learned dictionary, compared to the Wave Atom transform.

difficult problem than inpainting. In order to do this, we remove every 4th column of the data,
starting with the 2nd column. The result of the restoration is shown in figure 5.25. The same
restoration was attempted with the Wave Atom transform, and the learned dictionary gave a
better result. The results are compared in table 5.5

Some notes should be made on this result. First, the training patches were made by selecting
random patches from the same data set. This is somewhat unfair, and was done due to lack of
available data. In addition, in order to achieve good results, I had to relax the minimization
somewhat (i.e. solve (P1-σ) rather than (P1)). This improves the result for the learned dictio-
nary, but a similar relaxation does not improve the result for the Wave Atom restoration. In
the experiment, I set σ = 5. The experiment was carried out using the spgl1-package. Finally,
we should note that this result is likely not extendable to cases with a very high ratio of samples
missing to the same degree as the other bases, without altering the experiment parameters (at
the very least, one would expect to need larger patches).
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(a) Original dictionary

(b) Trained dictionary

Figure 5.24: The image show an initial dictionary of 16× 16 pixels, and the result
of training the dictionary to provide sparse representations of seismic data.
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(a) Original dictionary
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(b) Trained dictionary

Figure 5.25: The figure shows the result of inpainting a seismic data set using
learned dictionaries.





Chapter 6

Conclusion and discussion

6.1 Summary

After briefly introducing classical digital signal theory in chapter 2, we studied in great detail
various ways to construct sparsifying bases in chapter 3, from classics like the Fourier and the
wavelet bases, to modern approaches such as the curvelet, which are not usually studied at
a sub-graduate level. At the start of chapter 4, we introduced the general problem in filling
in missing or corrupted information in a signal, in the form of linear inverse problems. In
section 4.1.1 we demonstrated how sparsity could give very good results for signal restoration
by experimenting with signal restoration in 1-D and 2-D. We noted, however that sparsity alone
was not enough to ensure a high quality restoration, by performing experiments using wavelet
based inpainting, with poor results. The rest of chapter 4 was then spent on introducing the
theory of compressed sensing, in order to explain why some approaches work and some do not.
We also developed some theory for good robust ways of sensing a 2-D signal, notably corollary
4.9.7 and the phase plots in figure 4.20.

Armed with the results and theory from the first chapters, we then highlighted some pre-
vious application of compressed sensing methods to areas of science related to computational
physics. We then showcased some new attempted concepts. First, we showed that the tradi-
tional approach of partial samples in some basis does not necessarily restore all the statistical
properties of the signal, highlighted by poor performance in restoring the Hurst exponent of a
rough surface. This question was highlighted by Ma [99], but has not been explored in published
literature. We also noted that by generating a dictionary with the “right” statistical properties,
we could obtain much better results. The word “right” here is ambiguous; it simply means a
basis which produces good results! We will get back to this point in the discussion. We then
introduced the concept of super-resolution by inpainting the wavelet detail spaces of a signal
using curvelet sparsity. This approach is not explored in the literature surveyed for this thesis,
and outperforms other curvelet based super-resolution schemes, such as the one presented by
Mallat and Guoshen [108]. This framework was then applied to the problem of filling in seis-
mic data in the case where measurements are made with varying resolution. Finally, we once
again approached the problem of seismic inpainting, this time using a trained dictionary. Using
this method, we were able to reconstruct the signal with higher quality than using the frames
explored earlier in the chapter.

It is relevant at this point to revisit the goals made at the outset of this project, stated
in the introduction. We certainly developed a solid understanding of the current theoretical
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results in CS, and were able to apply CS for simply reconstructions. We also spent some time
on the formalism required to implement CS in 2-D, and performed CS reconstructions for fairly
large data sets (512×512 samples), using methods which could easily scale to even much larger
data sets, by applying fast operators of order O(N log2N). While we did not reproduce the CS
MRI results, we reproduces results in seismic imaging and molecular dynamics reconstructions,
and developed a skillset where a reproduction of MRI results would be straight forward. This
was not done, as it would not have produced any useful insights in itself. We were also able to
study problems which have not been explored previously in CS literature, and suggested new
methods for further investigation.

6.2 Discussion

The most useful end product of my thesis work, is a solid understanding of the principles of CS.
By working through other published applications, I have learned a very useful and unique skill,
which will undoubtedly prove itself useful in future work. I am certain that the understanding
of how to apply CS to a problem, and the ability to understand when it can be applied, will be
highly sought after in both industry and academia as the theory matures further and becomes
more well known.

That being said, the work done in this thesis also holds potential. There are four key results
which may, in time, be matured to the point of being suitable for stand-alone publications;
the 2-D random sensing results, the investigation of rough surfaces, the approach to super-
resolution and the applications of learned dictionaries to seismic inpainting. Given the short
time span of a Master’s degree, all of these results to be polished further, and some more
understanding of the underlying mechanisms would still be useful to further explain the results
in both super-resolution, Hurst exponent estimation and dictionary-based inpainting.

Compressed sensing is a relevant tool whenever data points are expensive to make (where
expensive can refer both to the price of making the measurement equipment, or the time needed
to make sufficient measurements), and can be used to great effect in many areas of science when
applied correctly. One should however note the ambiguity in this statement. What does a
“correct” application entail? Because of the large gap between the current theory and state-of-
the-art applications, one must essentially try a compressed sensing approach on manufactured
problems, much like we have done in this thesis, and decide on whether or not the application
is suited for CS. We have also noted that while the a CS-based restoration way give a small
error in terms of signal values, the statistical properties of the signal may be altered, a property
which is largely overlooked in existing literature.

If one considers using a CS method for a particular problem, one must naturally find some
representation which the relevant signal should be sparse in, whether it be some non-adaptive
frame or a learned dictionary. One must then consider whether a sampling scheme suited for
CS is possible in practice. A completely random sensing of seismic data using Gaussian sensing
matrices would most likely perform better than the case of missing some fraction of traces,
but such a sampling scheme is unrealistic in practice, and thus of little interest in this case.
This also discourages us from trying to use wavelets as the sparsifying basis, as we noted that
wavelets are not able to perform high quality inpainting. One then has to consider whether the
available subsampling scheme will cause aliasing effects. In section 5.9 we used a equidistant
set of missing traces in the data. This approach works for the learned dictionaries and the wave
atom, but would give terrible results for a Fourier based reconstruction, as it would give aliasing
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effects similar to those explored in section 4.3. We have not discussed how to avoid aliasing
effects explicitly for the curvelets or wave atoms, as very little theory exists for this at the time
of writing. We note, however, that a randomized sampling will usually avoid any major aliasing
effects.

We also note here that while the performance guarantees give bounds in terms of the `p-
norm error, the reconstructed signal might display significantly different statistical properties
than that of the original surface, even when the `p-norm error is small. This is a feature often
overlooked in existing literature, which may be of great importance to physicist looking to use
this method.

6.3 Future work

For a physicist, I do not believe working on compressed sensing full time is currently the most
useful way to spend their time at the outset of their career. As the methods are still not
well known among physicist, you might and up with a solution, without having any relevant
problems to apply it to. Rather, it is useful to be aware of this method, and then expose
yourself to other areas of physics. Then, there is a good chance that applications will emerge.
For instance, in many lab settings, many experiments will be greatly dictated by the time it
takes to make measurements of sufficient quality. Experimentalists may need to reserve time to
use equipment such as CT scanners or electron microscopes, which takes some time to collect
a sufficient number of samples. Knowledge of CS may prove itself useful in such cases in order
to cut down the time spent acquiring the needed samples. As noted by the applications to
molecular dynamics, CS can also prove itself useful in a purely computational setting.

Immediate future work in CS will likely involve further studies of the original work in this
thesis. Each of the highlighted results require further theoretical understanding. Outstanding
questions are:

• For the random orthogonal sensing matrices, why are we seemingly not able to guarantee
reconstructions for the range where k � M? What are the effects of changing to similar
but slightly different schemes such as A = RT ((Q1 ⊗ Q2) ⊗ (Q3 ⊗ Q4)), where Qi are
random orthogonalized matrices of size N1/4 ⊗N1/4, or sampling from two different sets

of Kronecker products A = R
(1)
T (Q1 ⊗ Q2) + R

(2)
T (Q3 ⊗ Q4)? The first suggestion may

produce results of lower quality, but will have a faster implementation, while the second
procedure may produce higher quality results at the cost of higher computation times.

• For the estimation of Hurst exponents based on partial data and learned dictionaries,
more work should be done in order to understand why the difference based reconstruction
works well, while the other approaches do not. The method should also be tested further
on real data, which was not readily available during the work on this thesis.

• For the learned dictionaries applied to the seismic data inpainting problem, much more
testing is needed. First, a larger amount of similar data sets should be obtained, in order
to train the dictionary with patches from one group of data sets and then apply this
dictionary to another group. A much larger scale test should also be run, similar to that
in figure 5.7 for the non-adaptive frames.

There is also prospects of starting up a small group for CS activity at the University of Oslo,
with collaborations between the physics and mathematics department, of which I hope to take
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part. Apart from this, my future work in CS will depend largely on the applications which may
appear as I move on to my graduate work in computational physics.
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