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Introduction

1 General context

The main focus of this thesis is primary migration - how oil and gas is trans-

ported through and expelled from the source rock in which it is generated by

thermal decomposition of organic matter. This topic, which is discussed in

more detail in section 4, can be viewed in a broader context, as an example of a

process where the generation and transport of a fluid inside a porous medium is

coupled mechanically to deformation and fracturing of the host medium. Such

phenomena are common in both natural and engineered systems, and the cou-

pling mechanisms can be manyfold. In some systems, the fluid, which may

either be trapped inside, injected into, migrating through or draining from the

solid, may act mechanically on the solid via fluid pressure forces exerted on

external or internal surfaces. In other systems the coupling may be mediated by

chemical or thermal interactions between the fluid and solid components, which

causes the solid to expand or contract [1] and induces stresses that may lead to

fracturing. The fluid may also undergo phase transitions within the porous host

medium, generating stresses as crystals grow from a supersaturated or super-

cooled liquid [2, 3] or as the pressure of exsolved gases accumulates in the pore

space. While the fluid may drive deformation and fracturing of the solid, fractur-

ing may also affect transport and provide new migration pathways for the fluid

to drain from or enter the system. This may, in turn, inhibit further fracturing, by

relieving fluid pressure, or accelerate fracturing, for example by increasing the

supply of fluid available for volume-changing chemical reactions. Evidently,

these are complex processes which can lead to varied and rich dynamics.

Geology provides a range of examples of coupled transport, deformation

and fracturing processes, occurring on every scale. Water, wind and ice shape

the surface of our planet, on large scales by erosion and on smaller scales by

weathering of exposed rocks. In the subsurface, the transport, consumption
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and production of fluids control metamorphic transformation of rocks, which

in turn determines the composition of the lithosphere, from the nanometer to

tectonic scale [4]. The fluid released by dehydration of subducting rocks may

induce sufficient pressure to trigger earthquakes [5]. Another geological exam-

ple, where drainage of fluid is associated with fracturing, is the decomposition

of methane hydrate in sediments [6], which may play a significant role in the

carbon cycle. Fluid magma penetrating the Earth’s crust in explosive volcanic

events is a large-scale example, and even if the magma cannot reach the sur-

face, intrusive complexes of dikes and sills permeate the subsurface and can

serve as an energy source for other geological processes. For example, the heat

from magmatic complexes can trigger the release of over-pressured fluids from

clay or organic rich sediments, manifested in the form of mud volcanoes [7].

Similarly, hydrothermal vents may be formed when organic rich and wet rock

is heated by magmatic intrusions, and this could be an important source of hy-

drocarbon emissions, which can impact our climate and may have contributed

to massive extinctions in the past [8, 9]. The slow heating of sedimentary rock

during burial may drive decomposition of organic contents into hydrocarbons

of lower density, and it is believed that fracturing is an important mechanism of

primary migration, which allows the oil and gas to migrate into distant reser-

voirs [10, 11, 12].

Understanding coupled processes like these is important, from environmen-

tal, safety and economic perspectives. For example, the infiltration of water

into concrete could lead to formation of ice or salt crystals in the pore space,

and is a cause of damage to constructions [2, 3]. Fracturing of nuclear fuel

pellets due to generation of fission gases is a challenge in the nuclear energy

industry [13]. Understanding how chemical or nuclear waste is transported in

and interact with rock formations is essential for evaluating contamination risks,

and knowledge of how precipitation or irrigation water infiltrate soil is impor-

tant for farming and for geological hazard assessment. Similarly, sequestration

of CO2 by injection into aquifers or petroleum reservoirs is a potential miti-

gation mechanism against global warming, but understanding the coupling to

deformation and fracturing of the host rock is important in establishing the vi-

ability of storage sites [14]. For the oil and gas industry, understanding how

petroleum resources migrate and accumulate in the subsurface is essential in

predicting commercial prospects of basins and to increase exploration success.
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Over the past decades, hydraulic fracturing by injection of fluids has become

a popular technology for extracting oil and gas from tight shales. This tech-

nology is driving a major shift in energy markets, which is impacting on the

world’s geopolitical balance. However, there is wide concern in the public and

among professionals that the method may be associated with undesirable envi-

ronmental and health risks [15, 16].

As mentioned above, this thesis was primarily motivated by an interest in the

primary migration problem, however, it may also be relevant to several of the

other examples mentioned above. The scientific contributions of the thesis are

contained in a collection of six enclosed papers. The remainder of this intro-

duction provides relevant background information, and is structured as follows:

The next two sections provide brief introductions to the mechanics (section 2)

and mechanisms of fluid migration (section 3) in porous solids. Primary migra-

tion, and the mechanisms by which it may happen, are then reviewed in section

4. Section 5 outlines the scope of the thesis and provides an overview of the

papers.
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2 Mechanics of porous solids

In this section, the basics of solid mechanics is reviewed and related to porous

solids, and rock in particular. The intention is not to cover every detail of the

subject, but rather to convey the background theory relevant for the applications

in this thesis. For a more complete account of solid mechanics and the theory

of elasticity, the reader may wish to confer sources such as the book by Lan-

dau and Lifshitz [17]. Poromechanics is reviewed in detail by Coussy [18]. A

survey of fracture mechanics is provided by Anderson [19], and an account of

elasticity and fracture mechanics in the context of geology is given by Pollard

and Fletcher [20].

2.1 Displacement and the strain tensor

The configuration of a solid body may be described by the position of the points

in the body. Suppose the initial position of a point is �X and that the current posi-

tion of the same point, after deformation, is �x. The current position is a function

of the initial position, i.e. �x = �x( �X), and one may define a displacement field,

quantifying the motion of the point relative to its original position, as

�u( �X) = �x( �X)− �X. (1)

Consider two points, initially at positions �X and �X ′ = �X + d �X , where d �X

is a small separation. After deformation, the separation of the two points is

d�x = ( �X ′ + �u( �X ′))− ( �X + �u( �X))

= ( �X ′ − �X) + (�u( �X ′)− �u( �X))

= d �X + d�u, (2)

where d�u = �u( �X ′) − �u( �X). If d�u is small, it may be approximated by its first

order Taylor expansion around the point �X ,

d�u = �u( �X ′)− �u( �X)

= �u( �X) +∇ �X�u(
�X) · d �X − �u( �X)

= ∇ �X�u(
�X) · d �X, (3)

where ∇ �X denotes the gradient with respect to the initial configuration. Hence,
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equation 2 may be expressed as

d�x = F ( �X) · d �X, (4)

where F ( �X) = I +∇ �X�u(
�X) is the second order deformation tensor field.

Local deformation can be quantified by how two points �X1 = �X + d �X1 and
�X2 = �X + d �X2, near position �X in the undeformed solid, transform relative

to each other. According to equation 4, the separation vectors after deformation

are d�x1 = F ( �X) · d �X1 and d�x2 = F ( �X) · d �X2, and the scalar product of these

deformed vectors becomes

d�x1 · d�x2 = d �X1 ·F ( �X)TF ( �X) · d �X2

= d �X1 ·
[
I + (∇ �X�u(

�X))T +∇ �X�u(
�X)

+ (∇ �X�u(
�X))T∇ �X�u(

�X)
]

· d �X2

≈ d �X2 ·
(
I + (∇ �X�u(

�X))T +∇ �X�u(
�X)
)

· d �X2. (5)

In the last step, it was assumed that he deformation is small, such that the second

order term may be ignored. Equation 5 can be written as

d�x1 · d�x2 = d �X1 ·
(
I + 2ε( �X)

)
· d �X2, (6)

where ε( �X) is a second order strain tensor field, defined by

ε( �X) =
1

2

(
∇ �X�u(

�X)T +∇ �X�u(
�X)
)
. (7)

The strain tensor field contains information about local deformation, and, from

the definition, it is evident that it is symmetric. Hence, there are three indepen-

dent strain components in two dimensions, and six in three dimensions. The

individual tensor elements of the strain field at a point �X may be expressed

explicitly as

εi,j( �X) =
1

2

(
∂ui
∂Xj

+
∂uj
∂Xi

)
. (8)

The stress tensor ε may be diagonalised by expressing it in the coordinate

system of its three orthogonal eigenvectors. The form of the stress tensor is

5



then, in terms of the eigen strains {ε1, ε2, ε3},

ε =

⎛
⎜⎝ ε1 0 0

0 ε2 0

0 0 ε3

⎞
⎟⎠ . (9)

Using equation 6 in the eigenbasis and assuming that d �Xi is a vector along the

ith eigen direction, one finds |d�xi| =
√
1− 2εi|d �Xi| ≈ (1 + εi) |d �Xi|. Hence,

an infinitesimal volume, V = d �X1 · (d �X2 × d �X3), around the point �X in the

undeformed solid will deform to a volume v = d�x1 · (d�x2 × d�x3) = V (1 +

ε1)(1 + ε2)(1 + ε3) ≈ (1 + ε1 + ε2 + ε3) = (1 + tr(ε))V . The quantity

ε = tr(ε) =
3∑

i=1

εi,i, (10)

is termed volumetric strain, and is an invariant of the strain tensor which quan-

tifies the local volume change (expansion or contraction) due to deformation.

2.2 The stress tensor

If a system is in mechanical equilibrium, the resultant force on any part of it

must vanish. Consider the total force on a small volume Ω,

�F =

∫
Ω

�f( �X) dV, (11)

where �f( �X) is the force per unit volume, and �f( �X) dV is the force on a volume

element dV around the point �X . According to Newton’s third law, if two vol-

ume elements dV1 and dV2 share an interface, they will exert equal and opposite

forces on each other. As a consequence, it should be possible to rewrite equa-

tion 11 in terms of surface forces, and this can be done if �f( �X) is the divergence

of a rank two tensor field, i.e.

�f( �X) = ∇ �X ·σ( �X). (12)

Using the divergence theorem one may then write equation 11 as

�F =

∫
∂Ω

σ( �X) · d�S, (13)
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where ∂Ω is the boundary of the volume Ω and d�S is the surface normal vector

at any point on this boundary. In terms of individual components, equation 13

may be expressed as

Fi =

∫
∂Ω

3∑
j=1

σi,j( �X) dSj. (14)

From this one can see how σ, which is called the stress tensor, may be inter-

preted: σi,j is the force per area in the ith direction, on a unit surface with

surface vector pointing in the jth direction. This is illustrated in figure 1. By

requiring conservation of moments, it may be shown that σ must be symmetric,

i.e. σi,j = σj,i.

Figure 1: Interpretation of the components of the stress tensor.

The internal stresses and strains in a body may be determined from the

boundary conditions. If the boundary forces at a point on the boundary is �P ,

mechanical equilibrium dictates that

�P − σ · n̂ = 0, (15)

where n̂ is the normal vector at the given surface point.

σ may be diagonalised by expressing it in the coordinate system defined by

its three orthogonal eigenvectors. The set of eigenvalues, {σ1, σ2, σ3}, is called

the set of principal stress components, and it is convention to sort the principal

components such that σ1 ≥ σ2 ≥ σ3. The stress state may be displayed as an

ellipsoid with axes defined by the principal vectors (eigenvectors) and corre-

sponding radii given by the principal components, as illustrated in figure 2A.

Alternatively, it may be visualised in a Mohr diagram (figure 2B), which makes
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ΣnΣ1Σ2Σ3

Τn�

Σn�

Σm��Σ1�Σ3��2

Τm��Σ1�Σ3��2

B

Figure 2: Visual representations of the stress state at a point. A: Stress ellipsoid, with axes are

pointing in the principal stress directions and radii scaled by the principal components of the

stress tensor; B: Mohr circle representation, in terms of normal stress, σn̂, and shear stress, τn̂.

the shear and tensile components of the stress explicit. For any surface with

normal vector n̂ in a body, one may define the traction vector

�Tn̂ = σ · n̂. (16)

The magnitude of the traction in direction n̂ and in the plane perpendicular to

it, are σn̂ and τn̂, respectively. It may be shown that for any n̂, the traction

components (σn̂, τn̂) will lie within the gray region in figure 2B.

2.3 Deformation and thermodynamics

The work required to induce a certain deformation may be related to the stress

and strain fields. Suppose the displacement field �u( �X) of a deformed body is

perturbed so that the new displacement field is �u′( �X) = �u( �X) + δ�u( �X). The
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work performed per unit volume is then given by

δW ( �X) = �f( �X) · δ�u( �X). (17)

Hence, the total work done on a volume Ω is

W =

∫
Ω

δW ( �X) dV

=

∫
Ω

�f( �X) · δ�u( �X) dV

=

∫
Ω

(
�∇ �X ·σ( �X)

)
· δ�u( �X) dV

=

∫
∂Ω

δ�u( �X)σ( �X) · d�S −
∫
Ω

σ( �X) : δ
(
∇ �X�u(

�X)
)
dV. (18)

Because of the symmetry of σ, we may substitute ∇ �X�u(
�X) in the last line with

the strain tensor field, equation7. Furthermore, if the volume is considered to be

infinite and the displacements vanish at infinity, the first term may be eliminated.

The work, W , can then be expressed in terms of the stress and strain fields as

W = −
∫
Ω

σ( �X) : δε( �X). (19)

W is the work done by internal stresses, and therefore, −W is the work

performed by the surroundings to deform the body. If the body is elastic, it must,

by definition, return to its original configuration when the loading is relieved,

and W will then vanish, because δ�u → 0.

Conservation energy may be stated in terms of the first law of thermodynam-

ics as

δE = TδS − δW = TδS − σ : δε, (20)

where δE is the internal energy per unit volume, T is the absolute temperature

and δS is entropy change. For hydrostatic pressure, σi,j = Pδi,j, where δi,j is

the Dirac delta function, and hence σ : δε =
∑3

i,j σi,jδεi,j = P
∑3

i,j δi,jδεi,j =

P tr(δε) = Pδε. As noted in section 2.1, the volumetric strain, ε, quantifies lo-

cal volume change, and therefore equation 20 can be stated in the more familiar

form in terms of P and δV ,

δE = TδS − δW = TδS − PδV. (21)
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The Helmholtz free energy is defined as F = E − TS, and therefore

δF = SδT − σ : δε. (22)

Similarly, the Gibbs free energy becomes

G = F − σ : ε. (23)

The stress and strain can be obtained from these free energies by the relations

σi,j =

(
∂E

∂εi,j

)
S

=

(
∂F

∂εi,j

)
T

, (24)

and

εi,j =

(
∂G

∂σi,j

)
T

. (25)

2.4 Stress as a function of strain

If strains are assumed to be small, the Helmholtz free energy, F , may be approx-

imated by a Taylor expansion in the components εi,j around the undeformed

state where ε = 0. From equation 24 it follows that such an expansion cannot

have a linear term. Furthermore, since F is a scalar and must be a invariant

under change of coordinate system, only invariant second order terms may be

included. It may be shown that, to second order,

F (T, ε) = F0(T, ε) +
1

2
λ1tr(ε)

2 + λ2tr(ε · ε), (26)

where λ1 and λ2 are called Lamé coefficients.

A different notation is often convenient, where contributions to the free en-

ergy due to pure compression or expansion are kept separate from contributions

from shear deformation. This may be achieved by writing

ε = e+
ε

3
I, (27)

with

e =
[
ε− ε

3
I
]
. (28)

ε = tr(ε), as defined in equation 10, so that the trace of e vanishes. This shows

that e only contributes a shear component to the deformation. Using equation 27
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in equation 26 yields

F (T, ε, e) = F0(T, ε, e) +
K

2
ε2 +Gtr(e · e), (29)

where K = λ1 +
2
3λ2 is called the bulk modulus, and G = λ2 is the shear

modulus ∗.

By means of equation 24 the relationship between stress and strain can be

found by differentiation of F (T, ε, e):

σ = KεI + 2Ge, (30)

whics is a linear expression in the strain components εi,j. This is the continuum

extension of Hooke’s law, namely that the deformation of an elastic medium is

proportional to the force applied to it. Taking the trace of equation 30 yields

tr(σ)/3 = Kε. (31)

The interpretation of this is that compression/expansion is caused by the diag-

onal part of σ, and the volumetric strain ε is proportional to the average ten-

sile/compressive stress, tr(σ)/3. Inserting equation 31 back in equation 30 and

solving for e gives

e =
1

2G
s, (32)

where

s = σ − 1

3
tr(σ), (33)

is called the deviatoric stress tensor, and accounts for the shear component of

the stress.

2.5 Poroelastic coupling

The fluids in the pore space of a porous solid may induce mechanical defor-

mation by exerting pressure on the pore surfaces. The effect of this is that

equations 31 and 32, which describe the stress-strain relationship in standard

∗The shear modulus is commonly denoted by the symbol μ. The symbol G is used here, to avoid confusion

with chemical potential and viscosity, which are denoted by μ in section 3.
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theory of elasticity, are replaced by the (Biot) poroelastic state equations [18],

tr(σ)/3 = Kε− bP ; (34a)

ψ = bε+ P/N ; (34b)

s = 2Ge. (34c)

Note that equation 34c is identical to equation 32 and not affected by the pres-

ence of pore pressure. Equation 31 is modified to equation 34a, where b is

the Biot coefficient, which can range from 0 to 1. This shows that pore fluid

pressure counteracts compressive tensile stress. In equation 34b, N is the mod-

ulus that relates the pore pressure to the change in porosity, ψ. It shows that

increased fluid pressure may cause both compression of the solid and rise in

porosity.

If the solid is nearly incompressible, any volume change in the system is

manifested as porosity change. Under such conditions, equation 34b reduces to

ψ ≈ ε, and b ≈ 1. By defining an effective stress

σeff = σ + PI, (35)

one may then rewrite equations 34a-34c as

tr(σeff) = 3Kε; (36a)

ψ = ε; (36b)

s = 2Ge. (36c)

The displacements in the elastic body are related to the strain, which is propor-

tional to the effective stress. According to this, an increase in pore fluid pressure

is equivalent to reducing the confining pressure by the same magnitude.

2.6 Fracture mechanics

Elastic deformations, where the system return to its original configuration when

loading is removed, is usually restricted to small strains. When strained beyond

its elastic regime, a system may behave in different ways, depending on factors

such as material properties, loading conditions and temperature. A solid may

deform in a ductile manner, by plastic flow, or in a brittle manner, by fractur-

ing. Rock is brittle near the surface, but tends to become more ductile at depth.
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Figure 3: The three modes of fracturing: A: Mode I (opening mode); B: Mode II (sliding

mode), and; C: Mode I (tearing mode).

The brittle/ductile transition depends on strain rate and rock type, and, in addi-

tion, fracturing and fracture healing on short length scales may result in ductile

behaviour on long length scales.

Fracturing of brittle materials may happen in different modes, as illustrated

in figure 3. In mode I, or opening mode, the opposing fracture surfaces are dis-

placed normal to the fracture plane. This can result from tensile loading, i.e.

stretching normal to the fracture plane. In contrast, shear fractures involve rel-

ative displacement of the fracture surfaces parallel to the fracture plane. Mode

II fractures result from shear stress parallel to the plane of the fracture and per-

pendicular to the fracture front (tip). Mode III fractures, on the other hand, are

activated by shear stresses parallel to both the fracture plane and the fracture

front.

Since the failure of a material is independent of the choice of coordinate

system, it is common to define fracture criteria in terms of principal stresses,

σ1 ≥ σ2 ≥ σ3. Among such criteria, the Mohr-Coulomb and Griffith criteria,

discussed below, are most commonly used in geology and rock mechanics, and

are found to agree well wit experiments [21, 20]. It should be noted, however,

that a criterion of failure in terms of stress may be misleading. In reality it is

the relative displacement of molecules in a body that cause bonds to break and

leads to fracture, and this is more appropriately described by the strain field. In

porous solids, subject to pore pressure, it is the effective stress that cause the

strain, and, therefore, the subsequent fracturing. Hence, in the presence of pore

pressure, the effective stress should be used when evaluating fracture criteria,

such as the ones discussed below.
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The Mohr-Coulomb fracture criterion

The Mohr-Coulomb criterion provides the condition for the formation of tensile

or shear fractures in a given stress field. Tensile fractures is assumed to occur

when the material is stretched beyond its tensile strength, TC . Shear fracturing,

on the other hand, is promoted by shear stress, but resisted by compressive

stress.

Given a plane with normal vector n̂, a traction vector can be defined accord-

ing to equation 16. The magnitude of the tensile and shear components of the

traction are, respectively,

σn̂ = n̂ · �Tn̂ = n̂ ·σ · n̂, (37)

and

τn̂ = |�Tn̂ − σn̂n̂|. (38)

The Mohr-Coulumb criterion states that tensile fracturing occurs along a plane

with normal vector n̂ if

σn̂ > Tc, (39)

where σc is the tensile strength of the material. Otherwise, shear fracturing may

occur if

τn̂ > C + σn̂ tan θ. (40)

In the latter inequality, C is the cohesion of the material, and θ is called the

internal friction angle. Whether the conditions in equations 39 or 40 are met

depends on the orientation of n̂. However, σn̂ and τn̂ for various orientations can

be related to the principal stresses using a Mohr diagram, as shown in figure 2B.

To predict failure, one may therefore check whether the Mohr circles intersect

the Mohr-Coulomb failure envelope, as illustrated in figure 4. In the event of

Τn�

Σn�

Tensile fracture

No fracture

Shear fracture

Tc

Θ C

Figure 4: The Mohr-Coulomb failure envelope. The dashed circles correspond to the outermost

circle in the Mohr circle diagram (figure 2 B).
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fracture, the the fracture plane may also be recovered from the Mohr diagram

in figure 2B.

The Griffith fracture criterion

Although the Mohr-Coulomb fracture criterion can be successfully fitted to ex-

perimental results, the cohesion and internal friction parameters can not be con-

sidered as real cohesion or friction. A more physically based criterion, that

considers how fractures actually form is provided by Griffith [22].

Griffith realised that even under compression, the stress around a flaw in a

material will be tensile at certain points. His fracture criterion is based on the

assumption that a heterogenous material, such as rock, will contain many micro-

flaws of various orientation (figure 5A), and these can serve as nucleation points

for fractures. By approximating flaws as ellipsoids and calculating the stress

field around them, Griffith derived the following fracture criterion (illustrated in

figure 5B): A tensile fracture initiates in the plane perpendicular to the maximal

principal stress σ1, if 3σ1 + σ3 > 0, when

σ1 = TC . (41)

If 3σ1 + σ3 < 0, a shear fracture initiates in the plane at angle

θ =
1

2
cos−1

(
σ1 − σ3

2(σ1 + σ3)

)
, (42)

to the largest principal stress, when

(σ1 − σ3)
2 + 8TC(σ1 + σ3) = 0. (43)

Σ3

Σ1

�3TC

�Σ1�
Σ3�

2 �8
TC
�Σ1�
Σ3�
�0

Σ1�Σ
3

TCA B

Figure 5: A: In Griffith’s theory, fractures nucleate from stress concentration around material

flaws. B: Griffith failure envelope in principal stress space (Failure beyond shaded region).
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It can be argued that the Griffith and Mohr-Coulomb criteria lead to essen-

tially the same predictions when applied in rock mechanics [21]. However,

the Griffith criterion is founded on a physical basis, and has the advantage that

fracture plane directions can be recovered easily from the criterion itself.
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3 Fluid migration in porous media

The driving forces promoting fluid transport within a porous host medium, such

as a rock, could be manyfold. A fluid may migrate into a solid in response to

gradients in pressure or chemical potential, or driven by chemical reactions that

consume the fluid. Alternatively, if a solid undergoes compaction or if fluids

are being injected or generated by chemical transformations or phase transitions

inside the solid, concentration or pressure gradients may build up, providing a

driving force for fluid expulsion.

Which transport mechanisms are active in a particular system depends on the

strength of the driving forces and the respective properties of the solid and fluid,

as well as the thermal and chemical environment. Some of the mechanisms

available for fluids to migrate in porous media are discussed below.

3.1 Diffusion

In a porous solid containing a fluid mixture (solvent), an individual fluid compo-

nent (solute) may migrate through connected pore space by molecular diffusion

through the solvent, driven by gradients in chemical potential∗. If the concen-

tration of the solute is c, the evolution of the concentration field is governed by

the conservation equation
dc

dt
+∇ · �J = γ, (44)

where �J is the flux vector, and γ is a source or sink term associated, for example,

with production or consumption of the solute by chemical reactions or supply

or drainage by an external system. In general, for dilute solutions, the diffusion

flux vector may be expressed as

�J = −Dc

RT
∇μ(c, P, T )

= −Dc

RT

((
∂μ

∂c

)
P,T

∇c+

(
∂μ

∂P

)
c,T

∇P +

(
∂μ

∂T

)
c,P

∇T

)
, (45)

where D is the diffusion coefficient, R is the universal gas constant, T is ab-

solute temperature and μ(c, P, T ) is the chemical potential. Note that the latter

depends on the pressure, P , as well as concentration and temperature. Depend-

∗In principle, molecular diffusion of a fluid molecule through the solid matrix itself is also possible, however

diffusion through solids is typically order of magnitude slower than diffusion through liquids.

17



ing on the system studied, either pressure, concentration or temperature effects

may be dominating or negligible. When pressure and temperature can be ig-

nored, the flux reduces to Fick’s first law, which is the most common form of

diffusion,
�J = −D∇c. (46)

However, in the absence of temperature gradients, and with constant concentra-

tion, one can also have pressure driven diffusion,

�J = −vDc

RT
∇P, (47)

where v = (∂μ/∂P )c,T is the molar volume of the dissolved species.

Equation 44 is a first order differential equation in time and second order in

space, and, as a result, the progression of a diffusion front in space scales as
√
t.

Hence, diffusion is most effective over short distances and long time scales, but

is ineffective over long distances and short time scales.

3.2 Darcy flow

If the permeability of the solid is sufficiently high, connected pore-space may

provide effective pathways for bulk flow of a fluid or mixture of fluids. Pressure-

driven slow or viscous flow through porous media is described by Darcy’s law,

which is based on empirical observations. The Darcy flow velocity, �U , is given

by

�U =
k

μ
∇P. (48)

Here, μ is the viscosity of the fluid∗, in units of Pa · s, and k is the permeability

of the porous space, with units of m2. The oil industry commonly expresses the

latter in units of darcy (1 darcy ≈ 1μm2). A Darcy mass flux may be defined as

�J = ρ�U, (49)

where ρ is the fluid density.

Advective bulk flow described by Darcy’s law scales linearly with time, and,

hence, there is a crossover from diffusion dominated transport to advection

dominated transport in a system as the length scale increases. However, the

efficiency of Darcian flow is also dependent on permeability, k. According to

∗The viscosity should not be confused with chemical potential, denoted by the same symbol in Section 3.1
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Brace [23], the latter ranges from 10−1 − 102 darcy for sand, 10−4 − 100 darcy
for sandstone and 10−10 − 10−2 darcy for limestone. If there is no percolating

pore space, Darcy flow may not be possible at all over long distances. This may

be the case in tight rock, such as shale, where the permeability may be as low

as 10−11 darcy.

3.3 Fracturing as a flow enhancing mechanism

As noted in section 3.2, the efficiency of Darcy flow in a porous solid depends

on the porosity and on how the pore space is connected. To a certain extent,

fluid pressure may alter the porosity through elastic deformation, as indicated

by equation 34b and equation 36b, and this may influence the flow. The porosity

can also changed by fracturing, and fractures may provide new effective path-

ways for fluid flow and contribute to fluid drainage or infiltration. Similarly, the

altered transport may in turn affect the progression of fracture.

The potential causes of fracturing are many, but a common cause is volume

alterations in the solid [1]. Such volume alterations could result from vol-

ume changing chemical reactions between the solid and fluid, or non-uniform

thermal expansion or contraction due to heating or cooling. The latter could, for

example, occur if an infiltrating fluid is much hotter or colder than the solid host

medium. Fracturing could also occur due to swelling of the solid during fluid

infiltration or shrinkage associated with fluid withdrawal. Desiccation fractures

in mud or gels is an example of the latter [24, 25].

Another mechanism of fracture formation is hydraulic fracturing. Stresses

may build up in a solid if fluid pressure rises in the pore space at a higher rate

than the system can compensate by fluid flow. The rise in fluid pressure could

result via poro-mechanical coupling from compression of the solid, or from in-

ternal production of fluids, phase transitions or injection. The latter is exploited

industrially to recover oil and gas from shale, and over a million oil and gas

wells have already been hydraulically fractured [16]. There are also many ex-

amples of hydraulic fracturing occurring naturally. For example, crystals grow-

ing form a supersaturated solution or supercooled liquid may exert a so-called

force of crystallisation on the pore walls. The force of crystallisation due to

formation of salt or ice crystals can reach magnitudes of tens of megapascals,

and be a significant cause of damage to building materials [2, 3]. Similarly, gas

bubbles growing from a supersaturated pore liquid may induce stresses reaching
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hundreds of megapascals [26, 27], sufficient to overcome lithostatic pressure at

10 kilometre depth. Cracks forming by bubble nucleation is a phenomenon

observed in mud or gel-like materials [28]. Release of methane by fracturing

during degassing of sediments is one example, which could have implications

for the Earth’s climate [6, 29]. Another example of hydrofracturing in nature is

magma emplacements and intrusions in the earths crust, which may heat water

or organic matter in rock and cause explosive release of fluids [9]. Release of

fluids from hydrous minerals in subduction zones can trigger earthquakes [5].

Another process, where gases cause hydraulic fracturing, is the generation of

fission gases in nuclear fuel pellets, which poses a challenge to the nuclear

energy industry [13]. Finally, a hypothesis investigated in this thesis, and dis-

cussed in more detail in section 4, is that hydrofracturing may be an important

mechanism for primary migration of hydrocarbons [10, 11, 12].
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4 Primary migration

4.1 Background

Most of the petroleum resources consumed by humanity thus far has come from

relatively accessible sources. Typically, reservoirs of accumulated oil and gas

are found at shallow depth, in permeable rock such as sandstone or limestone,

sealed by less permeable layers of sedimentary rock. These, so-called conven-
tional petroleum resources, may be recovered by drilling wells through the cap

rock, allowing the over-pressured oil and gas to escape. At some locations,

petroleum naturally seeps to the ground, and has been used by people for light-

ing and medicine for generations.

Although natural gas may be formed at shallow depth by methanogenic mi-

crobes, the bulk of oil and gas is formed far from the conventional reservoirs, in

organic-rich sedimentary source rock at larger depths. The source rock is typi-

cally shale, a sedimentary rock formed by compaction of silt (0.0004− 0.063 μm

size) and clay (< 0.0004 μm size). During burial, organic kerogen of high

molecular weight in the source rock is thermally decomposed into lower mass

and lower density hydrocarbons. The kinetics of this process, referred to as

maturation, depends strongly on temperature, which in turn is correlated with

burial depth, as illustrated in figure 6. The formation of oil from kerogen

takes place at depths of 2− 5 km and temperatures of 50− 150 ◦C. Gas is

formed at depths of 3− 6 km and temperatures of 100− 250 ◦C. At even lower

depths hydrocarbon generation is superseded by graphite formation. The time

frame for petroleum conversion under natural conditions is typically in the range

1− 100 million years.

The migration of hydrocarbons from its point of formation (in the source

rock) to its point of accumulation (in the reservoir) may be divided into primary

and secondary migration. Primary migration, which is the focus of this thesis,

refers to the initial part; the migration within, and expulsion from, the source

rock. The mechanisms by which it occurs are discussed in Section 4.3. Sec-

ondary migration refers to the later stage; the transport of the expelled hydrocar-

bon fluids towards the reservoir. The latter process is predominantly buoyancy

driven and takes place by bulk flow through a relatively permeable carrier bed.
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Figure 6: Overview of conversion of kerogen to oil and gas. Source: [10].
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4.2 Unconventional oil and gas

Immature source rock may contain significant amounts of kerogen that has not

been converted to oil and gas, or may contain oil and gas that has not been ex-

pelled. Even in mature source rock, significant amounts of oil and gas will be

retained by sorption, and the expulsion from fine-grained shales is counteracted

by capillary forces. Over the past decades, increasing energy demands, deple-

tion of conventional reservoirs and the introduction of new technology has made

production directly from source rock commercially viable. These petroleum re-

sources are referred to as unconventional reservoirs. The geology of unconven-

tional oil and gas is summarised in figure 7. The unconventional reservoirs are

typically located at larger depths than conventional reservoirs, often in strati-

fied layers of low permeability shale. These shale formations typically range

in thickness from tens to hundreds of meters. For example, in some places, the

Green River Shale is over 800 m thick. The Marcellus and Utica shales are both

up to about 270− 300 m thick. The Bakken shale is much thinner, up to about

40 m.

Figure 7: Geology of conventional and unconventional oil and gas resources. (Source: U.S. En-

ergy Information Administration, http://www.eia.gov/todayinenergy/detail.
cfm?id=110)

Horizontal drilling and hydraulic fracturing are among the technologies that

the industry exploit to extract oil and gas from low permeability reservoirs.
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B C

Figure 8: A: Overview of worldwide basins with assed formations of shale oil/gas. B: Top ten

countries in terms of technically recoverable shale oil resources. C: Top ten countries in terms of

technically recoverable shale gas resources. (Source: U.S. Energy Information Administration,

http://www.eia.gov/todayinenergy/detail.cfm?id=11611)
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To date, more than a million oil and gas wells have been hydraulically frac-

tured [16]. Artificial heating is another method to induce hydrocarbon genera-

tion and fracturing off immature shale.

The boom in shale gas and oil comes with vast geopolitical consequences.

For example, North America (the United States and Canada) are close to becom-

ing energy independent, for the first time in decades. In 2005 the US petroleum

production was 69% of consumption, but in 2012 this number had risen to 84%,

and it is projected to reach 101% by 2035 [30]. Figure 8A shows a map of the

basins around the world where prospects for oil and gas recovery have been as-

sessed. Figures 8B-C show the top 10 countries, ranked according to the known

unconventional reservoirs of oil and gas, respectively.

Figure 9: Scanning electron microscope (SEM) images of samples from different shale forma-

tions, with varying TOC. (Source: [31])

Various measures are used to asses the commercial potential of unconven-

tional reservoirs. One parameter is the total organic carbon content (TOC), i.e.

the total amount of kerogen as percent of the mass. Figure 9 show scanning

electron microscope images of shale samples with varying TOC from various

basins. Another assessment quantity is the thermal maturity of the rock, which

measures the extent of organic metamorphism. It may be used to infer the maxi-
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mum temperature that the rock has been subjected to. Methods used to quantify

the maturity include measuring the reflectance of certain minerals, such as vit-

rinite, or the colour of spores and pollen, which are sensitive to temperature.

The correlation of reflectivity and spore colour index to depth and tempera-

ture is indicated in figure 6. Other quantities that may be measured to evaluate

commercial prospect are the reservoir porosity and the fraction of adsorbed and

free gas, as well as the physical dimensions (thickness and extent) of a shale

formation.

4.3 Mechanisms of primary migration

How primary migration occurs is still poorly understood. To observe it in action,

in geological settings at depth, is not possible, as the process is too slow to

observe. What is certain, however, is that the process involves vastly different

length scales, from the thermal decomposition of kerogen on the nanometer

scale, to kerogen networks on the 100 μm scale and reservoirs on the 
1 m

scale. This is illustrated well by Stainforth and Reinders [32] in figure 10.

The ratio of oil and gas to kerogen is a factor that determines whether migra-

tion can occur by bulk flow or is restricted to molecular diffusion. For low con-

centrations, the oil and gas may be fully dissolved in the kerogen, and, hence,

diffusion is the only available mechanism. On the other hand, even if oil and gas

exist in bulk form, bulk flow may not be possible, because the permeability of

shale is very low (∼ 0.01 nanodarcy) and the pore size is so small that capillary

forces become a significant hindrance of flow (pore size is typically 100Å).

Various diffusion mechanisms for primary migrateion have been proposed.

One of these is diffusion of dissolved oil and gas through aqueous pore space [33].

In this scenario, the dissolved hydrocarbons may also be transported by bulk

flow of pore water, driven, for example, by compaction. Thomas and Clouse

investigate primary migration by diffusion of dissolved hydrocarbons inside

connected kerogen networks permeating the source rock [34, 35, 36]. In ex-

periments, they measure the flux of bitumen through chalk samples coated with

fatty acids, and report that the flux was hundredfold compared to uncoated,

water filled samples. This shows that, in principle, diffusion through kerogen

networks is a more effective transport mechanism than diffusion through wa-

ter [34]. However, in experiments with real shale samples, the kerogen was

only observed to enhance flux for high TOC values (< 2.2%) [35]. In geologi-
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Figure 10: The length scales involved in the primary migration process. A: Macroscopic. B:
Microscopic. C: Molecular. (Source: [32])
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cal settings, they argue that diffusion is pressure driven (obeying Eq. 47), rather

than concentration driven (Eq. 46) and show that realistic fluxes only suffice for

filling small to intermediate size reservoirs [36].

A range of other primary migration mechanisms have been suggested, in-

cluding migration of micro droplets, migration of micelles [37] and migration

of oil dissolved in methane [38]. These, and the other mechanisms mentioned

above, may all contribute to primary migration to various extents, depending on

factors such as the state of maturation, the kerogen content and thermodynamic

conditions.

Fractures may provide effective low capillarity pathways for fluid flow, and

have been hypothesised to play an important role in primary migration [10, 11].

This theory is supported by an increasing body of evidence. Micro-fractures are

found abundantly in mature source rock [39, 40], illustrated in figure 11 (These

observations may even be under-representative, as micro-fractures are expected

to heal rapidly under prevailing conditions in source rock.). The same is found

in experiments involving thermal decomposition of kerogen during heating of

shale samples [41, 42], illustrated in figure 12. Despite this evidence most ex-

Figure 11: Scanning electron microscope (SEM) images Dunkirk shale. A: Sample showing

an isolated large microcrack and two small ones (arrows). B: Sample showing a network of

closely spaced microcracks (Source: [40])

perimental and modelling studies have ignored the effect of fractures [43, 44].

However, a few exceptions exist. Some modelling studies do include fracture

effects, [45, 46, 47], but are based on simplified, idealised fracture geome-

tries that are of limited relevance. Bons and Milligen [12] show experimentally
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Figure 12: Thin section images of Green river shale from heating experiment. A: Sample

before heating. (f) indicates clay-rich layers with high kerogen content, and (c) indicates coarser

layers with siliciclastic grains. B: Enlarged view of kerogen lens from A. C: The same sample

as in A, after heating, with arrows indicating cracks formed during heating, mainly located in

the kerogen rich layers. D: The kerogen in B, after heating, with arrows indicating organic

remains. (Source: [41])
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that fracturing is activated as a transport mechanism when Darcian flow fail to

accommodate sufficient transport, and speculate that it may be important for

hydrocarbon migration.

Even if micro fractures may play a role for large scale migration, it is likely

that diffusion plays an important role on short length scales, within solid kero-

gen and into fractures. Hence, when evaluating the potential importance of frac-

tures as drainage pathways in primary migration, it is important to understand

how fracturing is coupled to fluid supply and transport by other mechanisms.
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4.4 Gelatine model of primary migration

In the first and last articles of this thesis, an analogue model of primary mi-

gration was investigated. The model consist of a layer of gelatine confined

between two glass plates, in a so-called Hele-Shaw cell. Before filling the cell,

the gelatine is mixed with sugar and yeast. Next, it is left horizontally in a fridge

overnight to set. When brought back to room temperature, a fermentation pro-

cess is initiated, where the yeast consumes sugar to produce CO2. The CO2

is dissolved in the water of the gel, but as the water becomes supersaturated,

bubbles may form. It is observed that these bubbles develop into fractures, pro-

viding pathways for the CO2 gas to drain at the external boundaries of the Hele-

Shaw cell. The experimental setup is shown in figure 13, and a time sequence

of an evolving fracture network is displayed in figure 14.

Figure 13: Setup of gelatine experiment. A layer of gelatine of dimensions 30 cm × 30 cm ×
2 mm is confined in a Hele-Shaw cell.

Figure 14: Time development of fracture network in gelatine experiment.
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The advantage of the model is that gelatine is transparent, facilitating imag-

ing throughout the fracturing process. Additionally, the gel is birefringent, al-

lowing strain fields to be observed by means of crossed polarisers (figure 15).

Importantly, the system also shares several features of tight rock. Firstly, on the

experimental time scale, the diffusion of CO2 in the gelatine is slow, and only

effective over short distances. Secondly, the rheomechanical properties of gela-

tine makes it a suitable rock analog [48]. Thirdly, the confinement of the glass

plates suppress and localise elastic interactions. In real source rock, elastic in-

teractions are localised to a certain extent because elastic interactions in three

dimensions decay as the inverse of separation, and long range interactions may

be shielded by the fracture network.

Given its simplicity, but at the same time complex behaviour, these gela-

tine experiments are used as a point of departure for the modelling approaches

proposed in this thesis. It is believed that the insights gained from studying

these experiments may be relevant to primary migration of hydrocarbons in

tight source rock, and that the modelling approaches may later be extended to

model real geological systems.

Figure 15: Time evolution of the strain field around a set of evolving fractures. The strain field

is visualised using cross-polarisers. Note the concentration of strain at the fracture tips.
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5 Scope and overview of scientific papers

As the previous section describes, primary migration is a complex problem,

which involves a long list of processes. To address the full problem, one would

need to consider the kinetics of kerogen decomposition, the coexistence of mul-

tiple fluids and phases in the pore space, the bulk flow of these components and

diffusion of individual fluid components, the coupling of fluid pressure to me-

chanical deformation, as well as the nucleation of fractures and how these prop-

agate. All these aspects depend on thermodynamic conditions, homogeneities

in material properties and the distribution of porosity and organic matter. All of

this, in turn, is associated with uncertainties. Furthermore, different effects take

place at different length and timescales.

In this thesis, the choice was made to focus on a few aspects, namely fractur-

ing and the coupling to transport in the generated fracture network. To this end,

a simplified experimental model of primary migration was used (as described

in section 4.4), and numerical models were constructed. By removing certain

aspects from the complex primary migration problem, these models provide

more controlled environments to investigate the influence of individual factors

in isolation.

The remainder of this thesis consists of a collection of six scientific papers.

The first and last papers describe a fracturing process in an experimental model

for primary migration in a simplified two-dimensional setting, whereas the re-

maining four articles use numerical models to address various aspect of this

complex process. An overview of each paper is provided below, including an

account of my contributions to the work. A brief summary of the papers is also

provided in table 1 (at the end of this section).

Paper I: Drainage fracture networks in elastic solids with internal fluid generation

This paper describes analog quasi two-dimensional experiments used to simu-

late primary migration. The system consists of a layer of gelatine, containing

yeast and sugar, confined between two glass plates in a Hele-Shaw cell. The

yeast consumes the sugar and produce CO2 which is dissolved in the gelatine.

Bubbles form as the saturation of dissolved CO2 increases, and as gas pressure

rises, these bubbles may develop into fractures which evolve to form a network

through which gas may drain out of the system via the external boundaries.
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This paper focus on characterising the final fracture network, which is found

to be topologically intermediate between a tree (typical of drainage networks,

such as river systems) and a polygonal/hierarchical network (typical of fracture

networks). A simple model is proposed to generate such intermediate fracture

networks and used to quantify the experimental fracture patterns.

I was involved in this paper as a co-author, and my main contribution was the

development of a theory to explain the fracturing mechanism and construction

of the simple model which was used to compare with experiments. I also wrote

parts of the discussion and conclusion section, and participated in the editing of

the paper.

Paper II: Classification of fracture patterns by heterogeneity and topology

The fracture patterns described in paper I were found to be intermediate be-

tween trees and polygonal/hierarchical networks, reflecting both the transport

and fracturing nature of the process. In these experiments we also observed

that fractures nucleate far from existing fractures, due to the concentration field,

which controlled the fracture nucleation. Motivated by these observations, a

simple two-parameter model was constructed which can generate fracture pat-

ters with varying topology and heterogeneity (whether fractures cluster together

or nucleate far from each other).

A scheme is described to map real fracture networks onto the model, and

allows fracture patterns to be quantified in terms of the two model parameters

describing topology and heterogeneity respectively. The scheme is applied to

three examples, including one fracture pattern from the gelatine experiments

described in paper I.

I developed this model, following a suggestion by one of the coauthors, Paul

Meakin. I implemented the model with some help from one of the other coau-

thors, Espen Jettestuen. I conducted the analysis included in the paper and was

the main contributor to the writing of the text.

Paper III

After observing the evolution of the experimental fracture patterns described in

paper I, I came up with a simplified model for the fracture network evolution,

where fractures are represented by line segments which propagate at constant

speed in both directions until they meet other fractures. During my participa-
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tion at the Wolfram Science Summer School 2013, I discussed this idea with

Dr Stephen Wolfram, and together we formulated a more general network evo-

lution model, which is not restricted to modelling fracturing processes. This

model, termed Contact Arrested Propagation (CAP), may be formulated on ar-

bitrary networks, and on lattices in two and three dimension in particular. In this

paper we investigate this abstract model and show that it has certain universal

features. The model may be useful for generating artificial fracture networks

and for studying certain fracturing and fragmentation processes. A major ad-

vantage of the model is that it may be easily coupled to any other model that

can be formulated on a network or lattice, and the implementation is completely

independent of the underlying network or lattice being used.

The implementation of the model and the analysis presented in the paper was

conducted by me. I was also the main contributor in the writing of the text.

Paper IV

This paper uses the CAP model proposed in paper III to model fracturing on

square and cubic lattices, coupled to fluid generation and transport. The model

setup closely resembles the experiments described in paper I, where elastic in-

teraction between fractures is limited due to the attachment of the gelatine to the

glass plates. We demonstrate how fractures compete for fluid and may interact

via the fluid concentration field. This form of interaction may be dominant in

many systems, including primary migration systems. Since the model only in-

volves a scalar field it may be scaled up to large systems of interacting fractures

in three dimensions at relatively low computational cost compared to models

that treat mechanical interactions explicitly.

I conducted the bulk part of the coding, analysis and writing of this paper.

Paper V

In this paper, a new discrete element model (DEM) is described, where an

elastic material is represented as a network of nodes connected by springs.

The new model, which is particularly suitable for modelling coupled processes

where fracturing is driven by fluid pressure in fractures, differs from previous

DEM models in the way that fracturing is implemented: rather than break-

ing/removing springs, fracturing is implemented by splitting nodes and recon-

necting the spring network. The model allows fractures to be represented in a
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realistic manner and with less lattice artefacts than in previous DEM models.

Importantly, fracture volumes and surfaces may be explicitly represented, facil-

itating the coupling to fluid transport and mechanical interaction between the

fluid and solid.

The original idea for this new model came out of a discussion between my-

self and one of the coauthors, Espen Jettestuen. I implemented/coded the model

and was in charge of the analysis and writing of the paper.

Paper VI

This paper describes the same experiments as paper I. Here the focus is on the

time evolution of the fracture network and the intermittent dynamics of fluid

expulsion as fractures open and close. The power spectrum of the fracture area

variation is investigated and the correlations are quantified.

I was involved as a co-author in this paper, and have contributed to the plan-

ning of experiments, discussions around the quantities to be measured and the

interpretation of results. I have also been involved in the editing of the paper.
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Paper Model type Description Status

1 Experiment

(quasi-static)

Description/quantification of the frac-

ture networks produced in quasi two-

dimensional gelatine experiments to sim-

ulate primary migration.

Published

2 Model

(quasi-static)

A model for generating and classifying

fracture patterns that are topologically

intermediate between drainage networks

(trees) and fracture networks (polygo-

nal/hierarchical).

Published

3 Model

(dynamic)

A new model termed Contact Arrested

Propagation (CAP), which may be used to

generate fracture networks in two or three

dimensions or to simulate certain fractur-

ing processes.

Published

4 Model

(dynamic)

Extension of the CAP model to incorpo-

rate fluid transport and fluid pressure in

fractures. The system is investigated in

two and three dimensions.

In revision

5 Model

(dynamic)

A new discrete element model for mod-

elling elastic deformation and fracturing

in response to internal fluid generation

and pressure accumulation.

Published

6 Experiment

(dynamic)

Investigation of the evolution and opening

and closing dynamics of fractures in quasi

two-dimensional gelatine experiments to

simulate primary migration.

In press

Table 1: Short summary of enclosed papers.
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Abstract – Experiments in which CO2 gas was generated by the yeast fermentation of sugar
in an elastic layer of gelatine gel confined between two glass plates are described and analyzed
theoretically. The CO2 gas pressure causes the gel layer to fracture. The gas produced is drained
on short length scales by diffusion and on long length scales by flow in a fracture network, which
has topological properties that are intermediate between river networks and hierarchical-fracture
networks. A simple model for the experimental system with two parameters that characterize
the disorder and the intermediate (river-fracture) topology of the network was developed and the
results of the model were compared with the experimental results.

open  access editor’s  choice Copyright c© EPLA, 2013

Published by the EPLA under the terms of the Creative Commons Attribution 3.0 License (CC-BY).
Further distribution of this work must maintain attribution to the author(s) and the published article’s
title, journal citation, and DOI.

Introduction. – The formation of many branched,
hierarchical networks such as rivers, blood vessels, leaf
veins, lightning, etc. are the responses of physical systems
to the transport of fluids, substances dissolved in fluids
or charge. Such directed tree networks are efficient trans-
port systems and they have characteristic statistical prop-
erties [1–4]. It has been postulated that river networks
and the landscapes associated with them minimize hydro-
dynamic energy dissipation [3]. The evolution of river
networks is controlled primarily by erosion, an interaction
between flowing water and the landscape that does not
extend beyond the local drainage basin [4].
Fracture networks are localized strain responses to

stress beyond the elastic limits of solids and the fracture
network characteristics can reveal the nature of the elastic
loading, be it external shear, compression or tension, or
generated by material shrinkage [5–7] or by overpressured
fluids inside the solid [8]. Even if the fluid pressure in
fractures is increased only locally, the elastic interactions
are long ranged and local pressure increases may have
long-range effects such as triggering earthquakes [9,10].
While the statistical topology of river networks has been

investigated for almost 70 years [11], the statistical des-
cription of fractures [12] has only recently been extended
to fracture network topologies [13].
Hydraulic fracturing, used by the petroleum industry to

enhance the permeability of reservoir rocks, is induced by
injecting a fluid at high pressure into the rock via a cased,
cemented and perforated well. In some geological processes
large fluid pressures are generated pervasively inside very
large rock volumes and the fluid is expelled and trans-
ported out of the system. For example, in subduction zones
hydrous minerals are subject to increasing pressure and
temperature until they are no longer thermodynamically
stable and form anhydrous minerals and hydrous fluids
with a smaller solid volume but larger total (solid plus
fluid) volume [9]. Magmas are formed by partial melting of
the Earth’s mantle, the melt segregates and moves through
the crust to form volcanic intrusions, oceanic crust and
volcanoes [14]. As they are progressively burried, organic
rich shales are heated and the organic material is ther-
mally decomposed into low-molecular-mass hydrocarbons
with lower densities and viscosities. The transport of these
lighter hydrocarbons through the virtually impermeable
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shale to adjacent high-permeability rock layers is called
primary migration and if the shale layer is thick the hydro-
carbon drainage must occur via fractures generated in the
shale [15].
Although the generation and drainage of fluids in

subduction zones, magmas and organic rich shales have
each been extensively investigated, the focus of these
investigations has been on physical, chemical and geologi-
cal details rather than generic phenomena. In all of these
systems, the solid is under confining stress, a fluid is gener-
ated internally in the solid and above some length scale,
the fluid migrates through fractures generated in the solid.
Here, a set of experiments, a simple theory and an algo-
rithmic model for a system with these characteristics are
presented. This system demonstrates the evolution of a
new class of networks, drainage fracture networks that
are intermediate between river networks and hierarchical-
fracture networks. River-like drainage networks with loops
has been mentioned as topologically possible, but less effi-
cient, network in studies of transport efficiency [1]. Here we
explore the physical reasons why they exist in our experi-
ments and possibly in Nature.

Experimental set-up. – The experimental set-up
consists of a Hele-Shaw cell with a gel containing water,
gelatin, sugar and yeast. When the yeast consumes the
sugar it produces CO2 and CO2 bubbles nucleate and
evolve into gas-filled fractures. The gas is transported
along these cracks to the edges of the gel layer. The Hele-
Shaw cell consists of two 300× 300× 10mm glass plates
clamped together and separated by 3mm.
The Hele-Shaw cell was filled with liquid gelatine solu-

tion after cleaning the inner surfaces with detergent and
distilled water to ensure good adhesion between gelatine
and glass. A gelatin solution was prepared by dissolving
58 g of gelatine sheets (from Gelita) in 1 dm3 of boiling
water (100◦C). 7.5 g of sugar was dissolved in the gela-
tine solution, which was then cooled to 30 ◦C, mixed with
2.5 g of baking yeast and stirred well to homogenize it.
Half of the liquid solution was poured into an area of
L×L,L= 250mm of the Hele-Shaw cell and the other
half was poured into a bottle connected to a gas volume
meter. Both solutions were kept in a refrigerator at 6 ◦C for
10 hours to obtain a solid, homogeneous gel. It is assumed
that the yeast particles are homogeneously distributed on
large scales and variations in the particle size and local
number density (and gas production rate) are treated as
quenched disorder.
Four experiments were conducted under similar condi-

tions at room temperature (17± 1 ◦C), where the gela-
tine is a transparent, brittle, nearly elastic solid [16].
Two experiments (Exp1, Exp2; see supplementary movie
gel fracture EPL.wmv) were performed with the same
concentration of yeast and sugar (as described above). In
the other two experiments (Exp3, Exp4) half and double
the amounts of yeast and sugar were used. At 17 ◦C,
yeast is activated, consumes sugar and produces CO2 gas.

Fig. 1: Original and processed optical images of Exp1.
A: original image of fracture pattern at time t= 22h.
B: processed binary image used for further analysis of network
topology and geometry. The boundary of the gelatine layer is
not confined and it is the drainage perimeter.

Fracture nucleation and propagation was imaged every
minute at a resolution of 9 pixels/mm. Measurements of
the bubble sizes and fracture apertures have an estimated
accuracy of ±0.1mm. Digital image correlation analysis
showed that the motion of the camera was� 1 pixel length.
Results. – After ≈ 2 hours fracture nucleation and

growth began and the fractures transported gas to the
edges of the gel. Development of the fracture pattern
continued for an additional 20 hours until the “final”
pattern, shown in fig. 1, was obtained.
In parallel with the fracture experiment, the bottle for

measuring the gas production rate, γ, was held at the same
temperature as the Hele-Shaw cell. In the Exp1 and Exp2
the gas production rate increased steadily from zero, after
≈ 2 h the production rate had reached ≈ 0.7ml/h and at
20 h it peaked at ≈ 2ml/h.
Dynamics of fracture nucleation and growth. The first

tiny bubble appeared in the gel after about 2 hours from
the beginning of the experiment and 10–20 bubbles nucle-
ated during the next 20 hours. Bubbles grew until they
reached a diameter of approximately l0 = 2.3± 0.2mm
and then changed into elongated cracks with sharp tips
after 12± 3min. However, for about 50% of the frac-
tures, an initial bubble nucleation and growth stage was
not observed with the image resolution used in these
experiment (see movies in the Supplementary Mater-
ial: crack 1 EPL format.wmv, crack 4 EPL format.wmv).
Crack tips propagated with increasing velocity, at both
ends of the fractures, unless they became blunted or closely
approached the boundary of the gelatine layer or another
crack. During the free propagation regime, before cracks
started interacting with other cracks or with the boundary,
the crack length evolved with time as

l= l0 exp (t/τ), (1)

where t is the time since fracture nucleation. The increase
in the timescale, τ with increasing gas production rate, γ,
could be represented by τ = 0.54/γ− 0.20± 0.017 h. Each
crack tip either propagated until it connected to another
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fracture or reached the gel boundary, or it slowed down
and eventually halted inside the gel matrix, forming a dead
end. When a fracture was not connected to other fractures
or the gel boundary, its aperture a increased with time due
to increasing gas pressure until a maximum aperture of
approximately 3mm was reached along most of the frac-
ture length. When two cracks intersected their apertures
changed rapidly indicating pressure equilibration. When a
crack reached the gel boundary, its aperture collapsed as
the gas drained from the system in less than one second.
Once a crack formed, it continued to serve as an inter-
mittent drainage pathway that closed and opened. New
fractures nucleated and propagated until a steady-state
fracture pattern stabilized, see fig. 1A.
To analyze the development of the fracture pattern, the

images of fractured gelatine were processed such that all
pixels that were once covered by a fracture were preserved
in accumulated images that represent the development
of the fracture network. The final accumulated fracture
pattern for experiment Exp1 is displayed in fig. 1B.
In most cases, both crack tips propagated linearly, with

about the same velocity, until they reached a distance
of λe = 10± 5mm from another crack or a distance of
20± 5mm from the gel edge. In such instances they would
slow down, speed up, or change direction, depending on
the circumstances. We will refer to λe as the elastic
interaction length.
Using digital image correlation [17], the motion of

tracer particles in the gel and of the gel edges was
tracked. When cracks open, new volume is generated in
the system, but no systematic expansion of the gel in
the plane of the Hele-Shaw cell was found. However, by
using an LVDT displacement sensor (Omega Engineering),
we found that the glass plates confining the gel moved
in the direction perpendicular to the plane of the Hele-
Shaw cell plane, allowing the gel to increase in thickness.
The total deflection of the plates corresponded to a total
volume increase of (1.9± 0.1)× 10−6m3. Since the gel is
essentially incompressible, this corresponds to the volume
of the gas trapped in the fractures and the largest total
volume of the open fractures was estimated from image
analysis to be (2.2± 0.1)× 10−6m3.

Spatial distribution of fracture nucleation. To char-
acterize the mechanisms of crack formation and growth
we analyzed to what degree new fractures nucleate either
in the middle of unfractured domains, near existing frac-
tures, or randomly. When a crack formed it was assigned
a number indicating the order in which it was formed as
shown for experiments Exp1 and Exp2 in fig. 2A and B.
Distance maps as shown in fig. 3 were computed where
the colour indicates the distance r(x, y) from the coordi-
nate (x, y) to the closest fracture or free boundary. For
each nucleation event i, the distance ri, position, (xi, yi)
and gradient ∇r(xi, yi) were determined just before nucle-
ation occurred. On a line through (xi, yi) in the direction
∇r(xi, yi), the local maximum of r is denoted rmax,i.

Fig. 2: A, B: nucleation sites and fracture labeling in Exp1 (A)
and Exp2 (B). The fractures are distinguished by their colours
and their numbers indicate the order in which they appeared.
The red circles mark the nucleation sites.

Fig. 3: Map of distance, r(x, y) to the nearest fracture right
before and after the nucleation of fracture 10 in fig. 2A. A: a
line from (x10, y10) in the direction ∇r(x10, y10) up to the
position of the local maximum of r, rmax,10 is drawn in black.
Panel B shows how the distance map is changed immediately
following the nucleation of fracture 10. See supplementary
movie nucl movie EPL standart.wmv.

The normalized distance ri/rmax,i = 0 or 1 correspond
to nucleation at an existing fracture or in the middle
of an unfractured domain. The cumulative distribution
N(r/rmax > ri/rmax,i), which is plotted in fig. 4, charac-
terizes the degree of randomness in the locations of the
nucleation sites and is fitted byN = (ri/rmax,i)

μ, μ= 1.94.
μ� 1 (the exact value depends on the shape of the unfrac-
tured area) corresponds to completely random nucleation
and μ→∞ corresponds to deterministic nucleation in the
middle of an unfractured domain. The inset shows the
cumulative distribution of ri and demonstrates that there
is a minimum distance between nucleation sites and pre-
existing fractures.

Fracture growth direction. The direction of fracture
propagation from the nucleation point was measured and
it was found that the distribution of angles between the
fracture directions and the distance gradients, ∇r(xi, yi),
was uniform between 0 and 90 degrees.

Analysis of steady-state fracture pattern. The steady-
state fracture network shown in fig. 1B was skeletonized
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Fig. 4: Cumulative distribution of the normalized distances,
ri/rmax,i, from nucleation sites to the nearest drainage inter-
face. Green data points correspond to Exp1, red to Exp2. The
black dots correspond to randomly generated networks using
the fragmentation fracture model. The continuous line is a fit
of the data using the function y= xμ, μ= 1.94. The inset shows
the cumulative distributions of ri. This indicates that there is a
minimum distance between nucleation points and pre-existing
fractures, rmin of about 5 and 10mm in the 2 experiments.

Fig. 5: Characteristics of the fracture network of Exp1.
A: fracture segments labeled with different colours. Blue discs
indicate junctions between segments and red squares indicate
dead ends. B: fracture network coloured according to the
fracture generation number, nC , of fracture C intersecting
fractures A and B: nC =max(nA, nB)+ 1. Black: 0; blue: 1;
green: 2; yellow: 3; light blue: 4; red: 5.

and all intersections of fractures (blue circles in fig. 5A)
and fracture tips (red squares in fig. 5A) were identified
and labeled as nodes. A fracture may be divided into
segments consisting of the part of the fracture between
two adjacent nodes or between a node and an end of
the fracture and these segments are identified by different
colours in fig. 5A, (the outer boundary is considered to be
one continuous segment).
At each node we measured the angles between intersect-

ing segments. There were two distinct peaks: one in the
range 180± 5◦ and the other in the range 90± 10◦. By
joining segments that intersect at angles about 180◦, we
reconstructed the continuous fractures which formed by
propagation from a single nucleation point. This fracture
pattern has a temporal order of nucleation (see numbering

in fig. 2). In addition a hierarchical order can be defined
such that if fracture C ends at fractures A and B its gener-
ation number is nC =max(nA, nB)+ 1, where nA and nB
are the generation numbers of fractures A and B [6]. The
draining perimeter is considered to be generation 0. In
the experiments, up to five fracture generations (n= 5)
were measured. In fig. 5B, the fractures of Exp1 have
been colour coded to indicate their fracture generation
numbers. A fracture is “younger” than the youngest frac-
ture it forms a junction with. One possible alternative
generation numbering scheme emphasizing the drainage
aspect of the network would be n′C =min(n

′
A, n

′
B)+ 1,

which corresponds to numbering of river segments in a
drainage basin. Using this scheme the highest drainage
generation is n′ = 3.

Discussion and conclusion. – The experimental
results were used to propose a mechanism of fracture
nucleation and propagation. We now demonstrate that the
fracture network has intermediate statistical properties
between those of river-like and hierarchical-fracture–like
patterns.

A diffusion-nucleation model for fracturing. The
production of CO2 provides the energy required for
fracturing the gel and the fracture network evolution
depends on the coupling between CO2 transport and
elastic interactions in the matrix. The observation that
fractures initiate as bubbles far away from existing bound-
aries suggest that crack nucleation is not determined by
elastic interactions. We therefore propose the following
diffusion-nucleation model:

1) Most of the generated CO2 is dissolved into the
gel, which consists of 95% water. The solubility and
diffusion coefficient of CO2 in the gel are approxi-
mately the same as in pure water, c0 = 1.8 g/l and
D= 1.85 · 10−9m2 s−1 [18]. The dissolved CO2 has
negligible mechanical effects on the gel matrix.

2) Bubbles nucleate when CO2 generation leads to local
supersaturation in the gel. Nucleation is heteroge-
neous and only a small supersaturation is required.

3) As bubbles grow they begin interacting elastically
with the gel matrix and a transition from bubbles
to fractures occurs.

4) The subsequent fracture propagation is driven by
the gas pressure on the fracture walls which induces
elastic stresses in the material.

Growth of a single fracture. After a fracture has
nucleated it propagates when the gas pressure exceeds
some critical value pc. When fractures propagate slowly
the gas pressure is constant and equal to pc. Using the

ideal gas approximation pc =
nCO2RT

V
= const, the change

in fracture volume is

dV

dt
=
RT

pc

dnCO2
dt
. (2)
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The fracture aperture is limited to a= 3mm due to
adhesion of the gel to the walls of the Hele-Shaw cell and
the volume of gas in the fracture is V ≈ lah, where l is the
fracture length and h= 3mm is the distance between the
glass plates. During propagation of a single fracture we
assume a constant CO2 flux, φ, over the fracture surfaces

φ=
dnCO2
dt

1

2lh
= const. (3)

The expression

l= l0 exp

(
2φRTt

pca

)
, (4)

for the fracture length can be derived by combining
eqs. (2) and (3) and integrating. Here, l0 is the integra-
tion constant, which characterizes the critical length above
which a gas bubble evolves into a fracture. This corre-
sponds to eq. (1), which was used to fit the experimen-
tal data and comparison of eqs. (1) and (4) indicate that
1/τ ∝ φ∝ γ.
Size of unfractured domains. Various factors control

the final configuration of the fracture network. Since the
gas production rate is virtually constant for a long period
after the last fracture has stopped propagating we assume
that the system reaches a quasi-steady state in which
the fracture network drains the gel matrix sufficiently
to hinder further fracturing. Using a diffusion-nucleation
model, the characteristic size of unfractured domains, for
which loss of CO2 by diffusion is sufficient to prevent
nucleation of new fractures can be estimated.
Consider a gel segment bounded by two parallel frac-

tures separated by a distance 2δ. Assuming a constant
CO2 production rate, γ, the steady-state equation for the
concentration field in the gel is

D∇2c+ γ = 0. (5)

We assume that the flux φ of CO2 across a fracture surface
is proportional to the difference between the concentration
c of dissolved CO2 at the surface and the concentration
required for chemical equilibrium with the gas pressure
p= kHc in the fracture, i.e.,

φ=D
dc

dx
|x=±δ = k

(
p

kH
− c(±δ)

)
, (6)

where kH is the Henry’s coefficient and k is a rate constant
of CO2 evaporation from the gel. The solution of (5) is

c(x) =
p

kH
+
γδ

k
+
γ

2D
(δ2−x2). (7)

We assume that to nucleate a bubble a critical supersat-
uration cc = pc/kH is needed. Inserting c(x= 0) = cc into
eq. (7) we may solve for the critical distance δc and find
two scaling regimes:

– diffusion limited ( k→∞), δc =
√
2D
γ
pc−p
kH
∝ γ−1/2,

– evaporation limited ( D→∞), δc = kγ pc−pkH ∝ γ−1.

It follows that in the diffusion-limited case γ1/2δc should
have a constant value and γδc should have a constant
value for the reaction-limited (evaporation-limited) case.
In Exp1 the mean production rate was γ = 1.6 ml/h and
2δc = 22.2mm (γδ= 17.76, γ

1/2δ= 14.0) and in Exp4 the
mean production rate was γ = 6.2ml/h and 2δc = 10.7mm
(γδ= 33.2, γ1/2, δ= 13.3). This is consistent with the
diffusion-limited model, but not with the reaction-limited
model. The shape of the cumulative distribution function
(for ri/rmax,i) shown in fig. 4, with μ= 1.94, is also
consistent with the diffusion-limited scenario, but not with
the reaction-limited model since in the reaction-limited
limit μ� 1.
Elastic interactions, directed networks and loops. The

short range of the elastic interactions is a consequence of
the adhesion between the gel and the essentially rigid walls
of the Hele-Shaw cell. A three-dimensional solid full of gas-
filled fractures will also have a limited elastic interaction
length due to the “screening” by open fractures. The
elastic interaction between fractures in the model system
results in the opening and closing of fracture apertures
at junctions, which act as valves to the gas flow. This
dynamic process, causing intermittent gas release, will
be described in detail in a future communication. The
adhesion between the gel and the glass walls of the
Hele-Shaw cell also imposes an effective confinement on
the system similar to the effects of compressive elastic
stress on a three-dimensional system. Under such confining
conditions, neighbouring fractures in analogous three-
dimension systems will interact in a similar manner
—when the aperture of one fracture increases due to
increased fluid pressure it will increase the compressive
stress on neighbouring fractures and this will reduce their
apertures.
It should be noted that although δc ∼ rmin ∼ λe ∼

10mm in experiments Exp1 and Exp2, the similarity
between λe and the other lengths is fortuitous. The
elastic interaction length λe does not depend on the gas
production rate as do δc and rmin and elasticity does not
control δc and rmin.
The direction of gas flow follows the direction of the

pressure gradient, but because confinement induces elastic
interactions between fractures and nearby fractures and
junctions, which may act as valves when the gas pressure is
reduced, the direction of the pressure gradient is not static.
Because of the “valve closing” effect, fractures that are
connected at one end to a fracture network that reaches
the edge of the gel may propagate at the other end until
that end also contacts a pre-existing fracture. The end
result is a network with loops. A hierarchical-fracture
network [6,7] is ideally fully connected.

Model of fracture propagation. A simple model that
captures some of the essential features of our experimen-
tal system and incorporates river-like and hierarchical-
fracture–like networks as limiting cases was developed (see
fig. 6). A lattice model of size L×L was used, where L is

66002-p5

53



Maya Kobchenko et al.

Fig. 6: Fragmentation fracture model with ω= 0.36 shown at
three stages of evolution, lt/L= 2.2, 5.1, 8.56. The lines are
coloured according to the fracture generation number, nC , of
fracture C intersecting fractures A and B: nC =max(nA, nB)+
1. Black: 0; blue: 1; green: 2; yellow: 3; light blue: 4; red: 5.

the size of the gelatine layer. Fractures nucleate and prop-
agate sequentially and form a “final” pattern when the
system is completely drained, i.e., when the cumulative
fracture length in the pattern exceeds or equals the cumu-
lative fracture length lt. lt/L is 8.5 in Exp1 and 8.7 in
Exp2. The nucleation sites are chosen according to a prob-
ability distribution P (x, y) that depends on the distance
from the site to the nearest fracture or boundary. We chose
a power law distribution such that the probability of nucle-
ating a fracture at site (x, y) is

P (x, y) = r(x, y)μ−1/
∑
x,y

r(x, y)μ−1, (8)

where r(x, y) is the distance from the nearest fracture or
the boundary. This choice is justified by the experimental
distribution (fig. 4), where the power law exponent was
determined to be μ= 1.94± 0.06. The black dots in fig. 4
show the resulting cumulative distribution of ri/rmax,i of
nucleation points for 20 realizations of the model. This
demonstrates that although the model was constructed
with a different metric from that used to measure μ
an exponent of μ= 1.94 makes the model nucleation
distribution lie within the range of uncertainty of the
experimental nucleation distribution.
Once a nucleation site is selected, the fracture orien-

tation is randomly selected as horizontal or vertical.
The fracture propagates by the same distance in both
directions until it reaches and forms a junction with
another fracture or the system boundary. At this instance
the fracture may either cease to grow because it is drained
by the joining fracture (with probability 1−ω), or it may
continue to grow until the other end meets an existing
fracture (with probability ω). ω= 1 corresponds to all
fractures connected at both ends which is typical of a
hierarchical-fracture pattern [6]. ω= 0 corresponds to all
fractures connected at one end only which is typical of
river networks. The probability ω of a network can be
deduced from the ratio between the number of dead ends,
nd, and the number of junctions, nj :

nd
nj
= 1−ω1+ω and ω are

0.41 and 0.32 for Exp1 and Exp2.

Conclusion. The generation and exsolution of CO2 in
a gel-filled Hele-Shaw cell generated a new type of drainage
fracture network with topological properties intermediate
between those of directed river networks and hierarchical-
fracture networks. The valve-like opening and closing of
fracture apertures at fracture junctions plays an important
role in the formation of this type of fracture network.
Diffusion of CO2 in the gel inhibits the nucleation of
new fractures in the vicinity of pre-existing fractures and
a simple random nucleation model that takes this and
the probability that fracture propagation stops before
both ends of the growing fracture reach other fractures,
reproduces key characteristics of the experimental fracture
network.
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Abstract – Fracture patterns arise abundantly in natural and engineered systems, and their
geometries depend on material properties and on the ways in which the material is deformed or
forces act on it. Two-dimensional fracture patterns can be characterized by their network topology
(how fractures connect to each other) and their heterogeneity (whether fractures appear clustered
or uniformly distributed in space). We propose a generic model in which the topology can be
adjusted by controlling the ratio between the number of dead ends and the number of junctions
in the fracture network, and heterogeneity can be adjusted by biasing fracture nucleation to occur
near or away from existing fractures. Based on this model we propose a characterization scheme
for natural fracture systems and provide and demonstrate an algorithm for recovering model
parameters from fracture pattern images.
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Introduction. – The geometry of a fracture pattern is
controlled by the forces that act on the fracturing solid,
and depends on rheomechanical properties and material
heterogeneities. The forces that drive fracturing may be
externally imposed and/or internally generated. For ex-
ample, fracturing in rocks may be driven by externally
imposed tectonic forces and body forces (gravitational
forces), or by internal forces, often associated with volume
alterations in the solid [1]. Volume alterations may stem
from volume-changing chemical transformations, phase
transitions or non-uniform thermal expansion or contrac-
tion due to heating or cooling.
In porous solids, deformation may be coupled with

the fluid pressure field in the pore space, and poroelas-
tic phenomena become important [2]. If the permeabil-
ity is high, fluids are effectively transported by Darcian
flow, driven by gradients in fluid pressure, which pre-
vents localized pressure accumulation and large pressure
gradients. If the permeability is low and the fluid pres-
sure changes locally at a higher rate than fluid trans-
port can compensate for, stresses may build up and cause
fracturing. This in turn alters the permeability and may

create pathways for fluids to migrate through or drain
from the solid [3]. Cracking of mud and other uncon-
solidated porous materials during desiccation is a familiar
example of fracturing driven by fluid withdrawal, and hy-
draulic fracturing is an example of fracturing caused by
fluid injection. More than a million oil and gas wells have
already been hydraulically fractured [4], and recent appli-
cation of this technology to the recovery of shale oil and
shale gas has become a topic of great economic importance
and wide public and professional interest and concern [5].
Fracture patterns produced by fluid injection have been
studied experimentally and numerically by several au-
thors, for example [6–8]. Hydraulic fracturing may also be
driven by internal fluid production associated with chem-
ical transformations in the solid. Examples include re-
lease of fluids from hydrous minerals in subduction zones,
which can trigger earthquakes [9], and methane released
by fracturing during degassing of sediments, which may
have implications for the Earth’s climate [10]. Primary
migration (the formation of hydrocarbon fluids in source
rocks and the expulsion of the hydrocarbons into sec-
ondary migration pathways) is believed to be accelerated
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by pressure-induced fracturing when kerogen decomposes
into lighter hydrocarbons [11–13].
The work described in this paper is concerned

with fracturing in quasi–two-dimensional systems. Even
in two-dimensional systems, fracture pattern geometry
varies greatly, ranging from more-or-less polygonal or
hierarchical patterns (osbserved in cracking mud, glazes
on pottery or cracking paint films [1,14–16] and in two-
dimensional simulations of rock weathering driven by solid
volume-changing reactions [17]) to tree-like or branch-
ing patterns (observed in two-dimensional computer sim-
ulations and experiments on hydraulic fracturing [18]).
A recent quasi–two-dimensional experimental model for
fracturing during primary migration [19] generates frac-
ture networks that are topologically intermediate between
polygonal networks (with many loops) and trees (with
many fractures terminating in dead ends). In these ex-
periments, a layer of gelatin containing yeast and sugar is
confined in a Hele-Shaw cell, and fracturing is driven by
exsolution of dissolved CO2 produced via fermentation.
The intermediate topology is related to the complex dy-
namics of opening and closing of fractures and episodic
expulsion of gas.
In the latter experiments CO2 is generated more or less

uniformly throughout the solid gelatin and diffuses down
chemical potential gradients towards the boundaries of the
Hele-Shaw cell and into fractures. Accordingly, fracturing
initiates in the bulk, where CO2 saturation is highest, and
is inhibited near pre-existing fractures. As a result, there
is no fracture branching, and fracture junctions only form
when one fracture reaches another. In other systems, frac-
tures nucleate at the external boundary or near existing
fractures, for example when a brittle solid is cooled from
the outside, when desiccation depends on transport of fluid
to the exterior via open surfaces or when volume-changing
chemical reactions localize near boundaries, where gradi-
ents in chemical potential are steepest [20–23]. In such
cases, fractures penetrate from the outside of the solid to-
wards the inside, and branching may occur. In nuclear fuel
pellets both types of fracturing occur. The generation of
fission gases generates fractures within the pellet [24], and
the internal heating, which swells the inside of the pellet
more than the outside, generates fractures that penetrate
into the pellet from the outside [25]. In other systems,
heterogeneity may play an important role, and can be a
factor that leads to more randomly distributed nucleation.
In the next section we present a generic two-parameter

model for simulating fracture patterns in two-dimensional
systems. One parameter controls the ratio between the
number of fracture junctions and the number of dead ends,
quantifying the network topology. The other parameter
controls the bias in nucleation position determined by the
distance to the nearest fracture or external surface. This
quantifies the heterogeneity of a fracture pattern, as nu-
cleation close to existing surfaces leads to clustering of
fractures. In the subsequent sections we demonstrate how
model parameters may be recovered from the image of a

C D

A B

Fig. 1: Visualization of the model algorithm. (A) A map of dis-
tances di,j to the nearest fracture (indicated by the grey scale)
is calculated and the new fracture is nucleated at a random
position, weighted by the distance map according to eq. (1)
(indicated by the white circle). (B) A fracture direction is cho-
sen randomly. (C) With probability ω the new fracture prop-
agates until both ends meet existing fractures or boundaries.
(D) With probability 1−ω the new fracture halts when one of
the ends meets an existing fracture or boundary.

generated pattern and show how the same scheme may be
applied to quantify the geometry of real fracture networks.

Model. – The following generic model can be used
to generate fracture patterns that vary in heterogeneity
and topology. It is not constructed to mimic an actual
fracturing process, although there may be instances where
the driving mechanism can be related to the model pa-
rameters. Fractures are generated successively according
to the following algorithm, illustrated in fig. 1:

1. Select a nucleation site (i, j) ∈ {1, L} × {1, L} with
probability

Pi,j = dγi,j/Z, (1)

where di,j is the distance to the nearest existing frac-

ture or boundary and Z =
∑L

i,j=1 d
γ
i,j ;

2. Select a random propagation direction;

3. Propagate the new fracture in both directions

– until each end meets an existing fracture or
boundary (with probability ω) or;

– until one of the ends meets an existing fracture
or boundary (with probability 1 − ω) (the frac-
ture extends from the nucleation point by equal
distances in both directions).

The significance of the parameters ω and γ is illustrated
in fig. 2, which shows examples of networks generated with
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Fig. 2: Examples of model fracture networks produced with various values for γ and ω. The heterogeneity of the fracture
patterns increases as γ is reduced, whereas ω regulates the network topology from tree (0) to polygonal (1). All examples were
generated with L = 256 and contain 50 fractures.

this model. The parameter ω, which can be varied from 0
(trees) to 1 (polygons), is a measure of the network topol-
ogy, and it can be related to the expected ratio of dead
ends to junctions, R, by

R = (1− ω)/(1 + ω). (2)

The parameter ω quantifies the tendency of fractures to
divide domains, which in turn may be related to the net-
work’s ability to relieve stresses or drain fluids. In the
gelatin experiments of [19], for example, fractures tend to
halt if they are able to expel gas through existing path-
ways. The parameter γ quantifies where new fractures
nucleate relative to existing fractures, and may depend
on loading, material heterogeneities and the mechanisms
driving the fracturing process. For negative γ new frac-
tures nucleate close to existing ones, so the process is sur-
face driven and produces heterogeneity. For positive γ the
process is bulk driven and leads to homogeneous patterns.

Regularisation of (1) becomes a problem as the reso-
lution L tends to infinity for negative γ. In this case Z
diverges, indicating that fractures prefer to nucleate arbi-
trarily close to existing fractures. This is not a problem
for our finite-resolution simulations, but the probability
for nucleation close to a fracture is sensitive to resolution.
In practice we believe that the case γ 
 0 is of limited
interest, as nucleation near existing fractures dominates
even for moderately low γ values. It should, however, be
kept in mind that higher resolution is required to distin-
guish fracture patterns as γ becomes more negative.

Measurement of network parameters. – Figure 2
illustrates that both γ and ω have visually distinct effects
on the generated fracture patterns, suggesting that these
parameters may be suitable quantities for characterizing
real fracture networks. We introduced a special case of this
model in [19] and were able to estimate model parameters
from the time evolution of experimental networks, but in
order to be more useful for characterizing real fracture
patterns, we require that they can be estimated from a
single image of a developed fracture network.
The quantity ω is readily found by counting the number

of dead ends and junctions in the network and taking the
ratio R. ω can then be recovered from eq. (2).
An approximate temporal hierarchy can be deduced

from the intersections in a fracture network: If a fracture
i terminates on a fracture j, it indicates that i existed
before j. Fracture i is then called a direct descendant of
j, and j is a direct ancestor of i. This observation is ex-
ploited in the algorithm for estimation of γ from images,
which is described below and illustrated in fig. 3:

1. Identify fractures and network connectivity:

(a) Binarize and skeletonize the fracture network.

(b) At each junction, determine which of the adja-
cent segments form part of the same fracture,
and remove a pixel between continuous fractures
and incident (descending) fractures. After this
procedure, each fracture corresponds to a con-
nected set of pixels (not necessarily on a straight
line).
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Fig. 3: Illustration of the algorithm for measuring γ. (A) The
fracture pattern to be analysed. (B) An approximate temporal
hierarchy can be deduced from the fracture intersections. The
fracture pattern at the time of nucleation of a particular frac-
ture is assumed to consist of all fractures not descending from
it (arrows point from ancestors to descendants). (C) Assumed
distance map at the time of nucleation of the fracture (dashed
line). This fracture has a dead end, and, according to the
model, must have nucleated at the midpoint (white dot). (D)
Assumed distance map at the time of nucleation of the frac-
ture (dashed line). This fracture has no dead end, hence the
nucleation point can be anywhere on the dashed line. (E) For a
range of trial values γ∗ and for each fracture i, the cumulative
nucleation probabilities CP γ∗

i (rank) and CP γ∗
i (rank|Inucl) are

plotted (where Inucl is the set of putative nucleation sites, high-

lighted in black). Cγ∗
i , the value of the latter at the point where

the former reaches 0.5, is recorded (probabilities are given by
eq. (1). (F) The most likely value of γ corresponds to the

interception in the plot of
∑

i(C
γ∗
i − 0.5) vs. γ∗.

(c) A fracture’s ancestors are found by searching for
fractures within two pixels from its endpoints.

2. For each fracture i ∈ {1, 2, . . . , N}:

(a) Make a binary image including all fractures but
fracture i and its direct or indirect descendants;
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Fig. 4: γ measured from model systems of size 800 × 800 con-
taining 50 fractures. (50 repetitions per (ω, γ) duplex). Mea-
sured γ as a function of input γ is plotted as mean ± standard
deviation. (A) Using known temporal sequence. (B) Using
approximate temporal sequence.

(b) Calculate the distance transform of this image,
and rank points in the image according to their
distance di,j from existing fractures;

(c) Identify a set of putative nucleation points, Inucl:

– If fracture i has one ancestor, let Inucl be
the center point;

– Otherwise let Inucl be the set of all pixels on
fracture i;

(d) For a list of trial values γ∗:

i. Calculate the cumulative distribution CP γ∗
i

(rank) of nucleation probabilities by accu-

mulating the probabilities Pi,j = dγ
∗

i,j/Z for
the ranked points.

ii. Repeat i) but restrict the sum to putative
nucleation sites to obtain CP γ∗

i (rank|Inucl).
iii. Store Cγ∗

i , the value of CP γ∗
i (rank|Inucl) at

the point where CP γ∗
i (rank) = 0.5.

3. The most likely γ∗ value is the one that minimizes∣∣∑N
i=1(C

γ∗
i − 0.5)

∣∣.
Figure 4 shows the result of measuring γ from images

of networks generated with the model. When the known
temporal sequence is used, our algorithm successfully re-
covers the model parameters, with the exception of small
γ values. When the approximate temporal hierarchy is
used, there is a linear correspondence between the esti-
mated and input values of γ, although there is a system-
atic overestimation of γ which increases with both ω and
the input γ. The discrepancy is not surprising given that
the distance maps used in the measurement algorithm as-
sumes the existence of too many fractures at the time of
nucleation. This shifts the distance map towards smaller

distances and result in a bias towards higher Cγ∗
i values

in step 2(d)iii. of the measurement algorithm.
Using least-squares fitting we determine that the dis-

crepancy can be compensated for by transforming the
measured γ value according to

γ → 0.7γe − 0.6ω − 0.3. (3)
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It may be possible to reduce the systematic errors by
approximating the time evolution differently. Instead of
keeping all fractures but a fracture’s descendants and it-
self, we attempted to keep only direct ancestors, but this
resulted in poorer estimates than the method proposed
here. One could imagine more elaborate schemes, such
as averaging over all allowed temporal sequences, but the
number of possibilities grows rapidly with increasing sys-
tem size, making it impractical. Tests using random tem-
poral sequences resulted in apparently random γ values,
showing again that the temporal sequence matters.

Applications to natural fracture networks. – Fig-
ure 5 show three applications of the proposed classification
scheme to natural fracture systems. The pattern in
fig. 5(A) was produced during CO2 expulsion from a layer
of confined gelatin containing yeast that ferments sugar
and generates CO2, and it is taken from [19]. For this
example we determine that ω ≈ 0.6 and γ ≈ 1.4 using
the procedure described above. The intermediate value
of ω reflects the many dead ends in the network. They
arise because fracturing is driven by gas pressure in the
fractures, and once a pathway exists for the gas to escape
through, further fracture propagation is inhibited. The
positive γ is in accordance with the CO2 transport in the
gelatin being diffusion limited, as discussed in [19]; frac-
tures nucleate far from existing fractures, where the CO2

supersaturation is highest.

Figure 5(B) shows ice fractures on Mars [26]. For this
example we measure ω ≈ 0.5 and γ ≈ 0.3. The pattern
is slightly more heterogeneous than fig. 5(A), with more
variation in domain sizes and fracture spacing. The pat-
terns in fig. 5(A) and fig. 5(B) are topologically similar,
but in some cases the fractures in fig. 5(B) are difficult to
trace so this is subject to interpretation.

Figure 5(C) is taken from [27] and shows spheroidal
weathering fractures observed along a road section at Nico
Malan Pass, South Africa. For this example we measure
ω ≈ 0.9 and γ ≈ −0.1. The pattern is hierarchical with se-
quentially subdivided domains, reflected in the high value
obtained for ω. The sequential splitting of domains also
accounts for the slightly negative γ value. For this exam-
ple the fracture tracing is sometimes ambiguous, and some
regions are finely fragmented. With better resolution one
would therefore expect to measure a lower γ value.

In certain experiments the temporal evolution of a frac-
ture system is recorded, and our scheme can be used to
estimate γ based on actual distance maps at the time of
nucleation. We did this for the gelatin experiments in
in fig. 5(A) and obtained γ = 2.3, which is close to the
value, γ = 1.94, reported by Kobchenko et al. [16]. The
value we found by mapping the crack pattern onto the
generic model and correcting with (5) was γ = 1.4, and
even though both γ values suggest prounounced nucleation
far from other cracks the numerical values differ. There
may be several reasons for this difference: the statistical
uncertainty stemming from the small number of fractures

A B

C

Fig. 5: Examples of natural fracture systems: (A) Fracturing
in a layer of gelatin enclosed in a Hele-Shaw cell driven by the
uniform production of CO2 (from [19]). Measured (corrected)
parameters: ω = 0.6 and γ = 1.4. (B) Ice fractures on Mars
(from [26]). Measured (corrected) parameters: ω = 0.5 and
γ = 0.3. (C) Spheroidal weathering fractures from Nico Malan
Pass, South Africa (S32.50780, E026.80417) (from [27]). Mea-
sured (corrected) parameters: ω = 0.9. and γ = −0.1.

and the differences between the model and the real physi-
cal system. For example, some fractures in fig. 5(A) grow
simultaneously, so the assumption of a strict sequential
growth is not valid. In general we assume that the rate of
nucleation is low compared to the propagation speed for
the model to produced the correct dynamics. Even if this
is not the case we can think of our scheme as a method
to obtain quantitative measures that can be used to com-
pare patterns. The details of the driving mechanism and
evolution are factors that determine where the pattern is
mapped in the model’s parameter space.

Discussion and conclusion. – We have presented a
simple generic model for generating two-dimensional frac-
ture networks, and the two model parameters can be used
to classify fracture networks according to their spatial het-
erogeneity and topology. One of the parameters controls
the bias in the position at which new fractures nucleate,
away from or towards external surfaces or existing frac-
tures, which adjusts the homogeneity of the fracture pat-
tern. The other parameter controls the topology, defined
by the ratio between the number of dead ends and the
number of junctions in the network, and it can range from
0 (trees) to 1 (polygons). We devised a scheme for measur-
ing the model parameters from images of fracture patterns
and were able to recover the parameters from generated
networks. We also classified three natural fracture systems
to demonstrate the scheme.
Our work complements the vast amount of litera-

ture focusing on the scaling of unfractured domain sizes
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and fracture lengths, in the field, in laboratory experi-
ments and in simple fracturing and fragmentation mod-
els [28–30]. The parameters ω and γ are, in principle,
independent of the scale of the pattern. In practice, pa-
rameter estimates are better for larger systems with many
fractures (due to better statistics), but more inaccurate if
the unfractured domains are small compared to the lattice
resolution.

The two parameters of our classification scheme are
intuitively related to the appearance of a pattern, are
relatively simple to measure and work for intermediate
network topologies. However, we stress that the model is
not intended to mimic the dynamics of a fracturing pro-
cess, and it does not address all aspects of fracture network
geometry. For example, the model does not respect the
effects of elastic interactions, which would affect the di-
rection of fracture propagation and intersection angles be-
tween fractures. To include this, one could bias the direc-
tion of fracture propagation depending on the direction of
surrounding fractures. The assumption of random fracture
directions is justified in systems where stress is localized by
the attachment to a substrate, such as drying mud or paint
films [14–16] or experiments in Hele-Shaw cells [18,19].
Certain features of fracture networks cannot be pro-

duced by the model, but can still be accommodated by
the classification scheme: Firstly, the model prohibits frac-
ture branching, but this can be handled in the classifica-
tion scheme by grouping of branches. Secondly, the model
evolves fractures sequentially and avoids situations where
co-evolving fractures mutually descend from each other in
the approximated temporal hierarchy. To resolve this, one
may assume that fractures forming a loop in the tempo-
ral hierarchy nucleated at the same instant. An extension
of the model to three dimensions is possible by represent-
ing fractures as planes propagating radially outward from
nucleation sites. A decision would have to be made con-
cerning, for example, what happens as fractures meet, but
such details should not be a problem for the classification
of natural networks, where ω may be defined as the ratio
of the total length of the free fracture boundaries to the
total length of intersection lines between pairs of fractures.
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h i g h l i g h t s

• A new network growth model is presented, termed Contact Arrested Propagation (CAP).

• The model may be formulated on arbitrary networks or on lattices in any dimension.

• We investigate the scaling of model properties and discover universal features.

• Suggested applications of the model include fracture and fragmentation processes.

• The model could be used to generate three-dimensional fracture networks.
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a b s t r a c t

We propose here a network growth model which we term Contact Arrested Propagation

(CAP). One representation of the CAP model comprises a set of two-dimensional line

segments on a lattice, propagating independently at constant speed in both directions

until they collide. The generic form of the model extends to arbitrary networks, and, in

particular, to three-dimensional lattices, where it may be realised as a set of expanding

planes, halted upon intersection. The model is implemented as a simple and completely

background independent substitution system.

We restrict attention to one-, two- and three-dimensional background lattices and

investigate how CAP networks are influenced by lattice connectivity, spatial dimension,

system size and initial conditions. Certain scaling properties exhibit little sensitivity

to the particular lattice connectivity but change significantly with lattice dimension,

indicating universality. Suggested applications of the model include various fracturing and

fragmentation processes, and we expect that CAP may find many other uses, due to its

simplicity, generality and ease of implementation.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Networks and the processes forming them are topics of interest in a wide range of disciplines. Branching, tree-like
networks are common in systems where effective transport of mass, energy or charge is required, including river networks,
leaf veins, blood vessels and lightning patterns. Rinaldo, Banavar andMaritan discuss scaling properties of such networks [1]
and how they may result from an imperfect search process to optimise network function [2]. Kramer and Marder [3],
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0378-4371/© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/3.0/).
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Fig. 1. Snapshots of fracture evolution driven by CO2 exsolution following fermentation in a confined layer of gelatine containing yeast and sugar. These

experiments are presented in Ref. [28].

Takayasu and Inaoka [4] and Leheny andNagel [5] have shown how river networksmay bemodelled using simple landscape
erosion models, and others have used even simpler models to model drainage network formation, including Leopold and
Langbein [6] andMeakin et al. [7], who represented the process by self-avoiding randomwalks on lattices. Other models for
drainage network formation include diffusion limited aggregationmodels, studied byMeakin [8] andMasek and Turcotte [9],
which produce fractal networks.

Fractal networks also arise in percolation systems, which are reviewed by Stauffer and Aharony [10] and by Sahimi [11].
Percolation models have received attention both from mathematicians and from scientists in more applied fields. For
example, percolationmodels have been used for estimating the permeability in petroleum reservoirs [12] or conductivity of
disordered materials [13], and invasion percolation models are used to model fluid–fluid displacement processes in porous
media [14].

A range of models for generating artificial fracture networks are used in the geosciences to model flow processes
in fractured porous media, with applications to, for example, hydrology, petroleum systems or the spread of chemical
or nuclear contaminants in geological formations. Adler and Thovert [15] discuss several such network models from a
theoretical perspective. Similarly, many authors have proposed simple models of fragmentation processes, including Steacy
and Sammis [16], Hernández and Herrmann [17] and Fortes and Andrade [18]. Korsnes et al. [19] devise a fragmentation
network model to study the dynamic process of breaking and healing of sea ice, and Iyer et al. [20] use a statistical network
approach to model reaction-assisted hierarchical fracturing of rock.

A vast literature has also been devoted to the study of random graphs with random connectivity, starting with Erdös and
Rényi [21]. Recently, much attention has been given to the study of so-called complex networks with non-trivial topology,
for example social, communication and biological networks. Albert and Barabási review common statistical properties
of complex networks and the mechanisms responsible for their formation [22]. They also introduced the preferential
attachment model for organisation of complex networks [23]. Watts and Strogatz propose a model that can tune networks
from regular to random by starting from a regular graph and rewriting connections randomly [24].

Wolfram [25] has pioneered a variety of network forming processes and models based on simple deterministic rules,
and has applied these ideas across scientific disciplines, from the context of biological growth to a fundamental theory of
physics. Networks formed by replacing nodes based on the local network structure has been explored further by Morrow
et al. [26], Southwell et al. [27] and others.

Themodel presented herewas inspired by the kind of fracture networks described byKobchenko et al. [28] and illustrated
in Fig. 1. Uniform production of CO2 by a fermentation process causes nucleation of bubbles, and the bubbles develop into
fractures, as a consequence of accumulating gas pressure. Fractures propagate until meeting other fractures or an external
boundary, allowing the gas to escape through open network pathways. As an idealisation, this process may be viewed as a
set of line segments propagating on a lattice according to some rule. The latter idea was refined and generalised into the
generic model defined in the next section, which we choose to term Contact Arrested Propagation (CAP).

The CAP model may be related to several of the network forming processes mentioned above. It is general, and may be
defined on arbitrary networks, including random graphs, complex networks or lattices (i.e. spatially embedded networks).
In the spirit of Wolfram, the model evolves according to a simple deterministic rule, and, when represented on a lattice,
it may be studied within the framework of percolation theory. Certain realisations of the CAP model bear resemblance to
existing fracture and fragmentation models, such as those referred to above, and this is therefore a field where our model
may find useful applications.

In this study, we focus our attention on certain representations of the CAP model on one-, two- and three-dimensional
lattices, but investigate them as abstract systems without regard to any particular application. This approach allows us
to identify whether aspects of the model’s behaviour are generic, or rather artefacts of the representation on a particular
background. We return to possible applications of the model in Section 4.2.

2. Model

Before presenting a formal definition of the CAP model, we illustrate it by providing a simple example of a particular
model representation. In this example, the elements of our system are the edges of a square lattice, and the edges may
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Fig. 2. Transition rules on a square lattice. Active edges (highlighted) may activate adjacent edges, depending on their local environment (i.e. the states of

neighbours). Configurations that lead to activation of neighbours are highlighted with grey background.

Fig. 3. Sequence of evolution steps for CAP system on a square lattice.

be either active or inactive. The system is initialised with a certain number of active edges, and at each iteration an active
edge may propagate by activating parallel adjacent edges. The condition for propagation in a particular direction is that
all edges adjacent on that side are inactive. This can be stated as a set of transition rules, as illustrated in Fig. 2. On this
particular lattice, an active element may have 64 distinct neighbour configurations, which reduce to 24 by accounting for
symmetries.

A typical evolution of a CAP network on a square lattice is shown in Fig. 3. It is clear that the chosen rules produce line
segments that propagate straight ahead until encountering other segments, illustrating that the CAP model may be set up
to produce behaviour resemblant of fracturing processes, such as those in Fig. 1. However, the specification of the evolution
rules in Fig. 2 is cumbersome and specific to the square lattice. Below we provide a more abstract formulation of the CAP
model, which allows its extension to arbitrary networks.

2.1. Formal definition of the CAP model

The basic entity of the CAP model is a collection of elements, E, where each element e ∈ E is assigned a state variable
se ∈ {0, 1} and is connected to a set of neighbourhoods Ne = {N1

e ,N
2
e , . . .}. These neighbourhoods are ordered lists of

neighbouring elements, i.e. Ni
e = {ni,1

e , ni,2
e , . . .} ⊂ E. The ordering of the neighbourhood lists is discussed below.

Evolution of the system is governed by the following rule: if se = 1, the first element of neighbourhood Ni
e will be

activated (i.e. s
n
i,1
e

→ 1), provided that all the elements in Ni
e are in state 0. Once activated, elements will remain in state 1.

Eventually, the system will reach a final configuration where no further activation is possible.

In the present study we have chosen a synchronous update scheme, because using an asynchronous scheme would
require a justification for the particular choice of update sequence. The effects of synchronous and asynchronous update
methods have been discussed by several authors in the context of cellular automata, including Schönfisch and de Roos [29]
and Bandini, Bonomi and Vizzari [30].

2.2. Representations of the CAP model

The definition of an element and its neighbourhoods is a matter of choice and depends on the underlying network. Fig. 4
shows a few examples of model representations on various lattices. On one- and two-dimensional lattices we choose to
identify elements by lattice edges and group adjacent elements into neighbourhoods according to the vertices they share
(Fig. 4 (A)–(D)). In the two-dimensional systems (Fig. 4 (B)–(D)), for a given element e, the neighbourhoods are sorted in

ascending order, according to the dot product of unit vectors pointing, respectively, from the centre of e and theneighbourn
i,j
e

towards their common node. In this way, propagation is favoured along paths that extend straight ahead. This is generalised
to three dimensions by using planes as elements and grouping neighbours into neighbourhoods by shared edges (Fig. 4 (E)).
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A

B C

D E

Fig. 4. Examples of model representations on various background lattices, illustrating how a typical element is connected to neighbourhoods of adjacent

elements. (A) Linear lattice. (B) Square lattice. (C) Regular triangular lattice. (D) Unstructured triangular lattice. (E) Cubic lattice.

The neighbourhoods are sorted in ascending order according to the dot product of unit vectors lying inside each element
and pointing perpendicularly towards their common edge. Fig. 5 shows examples of networks produced by the CAP model
using the representations illustrated in Fig. 4.

As indicated in Fig. 2, the CAP model could be implemented as a generalised cellular automaton, where each element is
updated at every time step according to its state and the state of its neighbours. However, since any element changes its
state at most once during a simulation, the system may be implemented more efficiently as a substitution system. With
this approach, one starts from a list of initially active elements (‘‘seeds’’), and at every iteration each element in the list is
replaced by the adjacent elements that it activates. In Appendix A we describe a substitution algorithmwhich is completely
background-independent.

3. Results

In this section, CAP networks on linear, square, regular triangular, unstructured triangular and cubic lattices, as illustrated
in Figs. 4 and 5, are considered. All systemswere evolved froma random initial conditionwith a specified density,ρi, of initial
seeds. System size is measured as the number of elements on the respective lattices. Data was collected from 30 repeated
simulations for every set of parameters.

3.1. Density evolution

For the one-dimensional CAP system, growth will only terminate once all elements have been activated, and the final
density, ρf , will be 1, regardless of the initial density, ρi. For the two- and three-dimensional systems, ρf is governed by the
competition between the number of initial seeds that are growing and how far each seed is able to propagate. In general,
the propagation rule will prohibit some elements from being activated, and, unless ρi = 1, the final density will remain
below 1. If ρi is high (i.e. close to 1) very few seeds will be able to activate neighbours, and ρf will remain close to ρi. If the
density of seeds is very low (i.e. ρi close to 0), most seeds can propagate far in each direction before encountering other
active elements, and the density may increase manyfold.
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A

B C

D E

Fig. 5. Examples of CAP networks generated on various background lattices. The colour transition from red to blue indicates the passage of time. In the one-

and two-dimensional examples, time evolution is also indicated by the height of the segments, such that peaks correspond to the initial seeds, which spread

out with time. (A) Linear lattice. (B) Square lattice. (C) Regular triangular lattice. (D) Unstructured triangular lattice. (E) Cubic lattice. (For interpretation of

the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6 shows how the change in density,Δρ = ρf −ρi andρf change as a function ofρi for the two- and three-dimensional
systems. The graphs show that maximal growth occurs at a particular value of ρi. Among the two-dimensional systems, this
optimal ρi is fairly similar and close to 0.1, but the value of the maximal growth varies significantly between the square
and the regular and unstructured triangular lattices. The reason for this is that elements on the square lattice have three
neighbours per neighbourhood, whereas the structured triangular lattice has five neighbours per neighbourhood and the
unstructured lattice was found to have 5.1 neighbours per neighbourhood on average. Growth is more easily restrained
when neighbourhoods are larger, because the number of potential intersections is higher.

For the three-dimensional system maximum growth occurs at a slightly lower value, ρi = 0.064, and the maximum
change in density is 0.5, higher than for any of the two-dimensional systems. The explanation for this is that seeds in the
two-dimensional systems only propagate in two directions, and, hence, only two intersections are required to halt their
propagation. In the three-dimensional system, on the other hand, the seeds spread as planar surfaces, andmany intersections
are necessary to halt the propagation. As can be seen from the inset in Fig. 6(D), the final density of the cubic system is
quite insensitive to the initial density over a large range of intermediate values. For all systems, the density curves seem to
converge with increasing system size.

Some of the effects above are captured by a mean-field approximation of the propagation process, based on a difference
equation formulation of the model (see Appendix B). The mean-field approximations for particular systems are shown as
dashed lines in Fig. 6. It is clear that the approximation is poor for low ρi, which is not surprising, since the mean-field
approximation relies on a homogeneous density field, and this assumption breaks down at low density (because active
elements are mostly surrounded by inactive elements). One would expect the latter effect to be particularly pronounced in
systems with few neighbours per neighbourhood. This is indeed observed in Fig. 6, where the fit at lower densities is better
for the triangular than for the square and cubic systems.

The dotted black lines in Fig. 6(A)–(C) show a first-order approximation, as derived in Appendix C. This approximation
assumes that any two seeds within distance t of a potential intersection point will cause an intersection after t iterations,
ignoring the possibility that one or both seeds are intersected earlier by other elements. This approximation works well at
low densities, where ignoring secondary interactions has the least effect, but also at high densities, where few seeds can

69



A. Hafver et al. / Physica A 413 (2014) 240–255 245

A B

C D

Fig. 6. Density change, Δρ, as a function of initial density, ρi , for various system sizes, N . Dashed and dotted curves show mean-field and 1st-order

approximations, respectively. Insets show the final densityρf = ρi+Δρ as a function ofρi . (A) Square lattice. (B) Regular triangular lattice. (C) Unstructured

triangular lattice. (D) Cubic lattice.

propagate at all, and hence secondary intersections may safely be neglected. The first-order approximation is not applicable
to three-dimensional systems, because propagation from a seed on a three-dimensional lattice is more difficult to stop, and
planes may grow around each other.

3.2. Global growth rate

As shown in Fig. 7, it is found that the total growth rate G(t) of a CAP system may be approximated by a function of the
form

G(t) ∝ ρ
αT
i e−t/βT (ρi). (1)

This is valid for intermediate values of ρi, when the initial density is sufficiently low, so that the final state is not dominated
by the random initial condition, and when the system size is sufficiently large, so that seeds predominantly stop growing
because of collisions with other active elements rather than with the system boundaries.

For the one- and two-dimensional systems it holds that αT = 1.0, and the growth is decreasing exponentially in time.
βT , which may be interpreted as the characteristic time scale of the growth process, is found to scale with ρi as βT ∝ ρ−τ

i ,
with τ ≈ 1.0 for the linear lattice, τ ≈ 0.5 for the square lattice, τ ≈ 0.5 for the triangular lattice and τ ≈ 0.5 for the
unstructured lattice. For the cubic system we find αT ≈ 1.9, which reflects the fact that the growth rate on such a lattice
may increase initially before it reaches a peak and starts decaying. The characteristic time again scales as a power of ρi, this
time with τ ≈ 0.3.

3.3. Growth of individual seeds

The change in density of a CAP system can be expressed as

Δρ = ρi〈S〉, (2)
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A

B C

D E

Fig. 7. Data collapse of the total growth rate G as a function of time, for various initial densities, ρi . The vertical axis is logarithmic and the horizontal axis

is linear. (A) Linear lattice. (B) Square lattice. (C) Regular triangular lattice. (D) Unstructured triangular lattice. (E) Cubic lattice.

where 〈S〉 is the average number of elements that are activated by propagation from a given initial seed (an element may be
activated simultaneously bymore than one neighbour, so this is slightly modified at high ρi). We choose to refer to S as size.
In addition to 〈S〉, which may be deduced from Fig. 7, it is also possible to measure the distribution of S for various initial
densities and system sizes on the various lattices (Fig. 8). The distribution of S is well described by a gamma distribution,
for all lattices. That is,

γ (S, αS, βS) = 1

β
αS
S Γ (αS)

SαS−1e−(S/βS ), (3)

where αS is the shape parameter, βS is the scale parameter and αSβS = 〈S〉. Note that size, S, refers to a length for the one-
and two-dimensional systems and an area for the three-dimensional system.
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A

B C

D E

Fig. 8. Size distribution, S (number of elements activated from a seed), fitted to a gamma distribution γ (S, αS , βS) = SαS−1e−(S/βS )/β
αS
S Γ (αS). Insets show

data collapse by plotting ln
[
S1−αS P(S)β

αS
S Γ (αS)

]
vs. S/βS . (A) Linear lattice. (B) Square lattice. (C) Regular triangular lattice. (D) Unstructured triangular

lattice. (E) Cubic lattice.

For intermediate initial densities, we find that the scale parameter varies with ρi as βS ∝ ρ−σ
i , where σ = 1.0 for the

linear lattice, σ = 0.5 for the square lattice, σ = 0.5 for the triangular lattice, σ = 0.5 for the unstructured lattice and
σ = 0.7 for the cubic lattice.

The shape parameter varies much less with ρi. We find αS = 2.2ρ−0.0
i for the linear lattice, αS = 2.4ρ−0.1

i for the square

lattice, αS = 2.5ρ−0.1
i for the triangular lattice, αS = 3.1ρ−0.0

i for the unstructured lattice and αS = 1.9ρ−0.1
i for the cubic

lattice. Note that since these exponents are very small, their estimation is associated with large errors.

Interestingly, the gamma distribution was previously found to describe the distribution of fracture lengths in a
fragmentation model by Fortes and Andrade [18], which in some sense represents the continuum limit of the CAP model
on two-dimensional lattices. Additionally, in Appendix C.1 we show analytically that the sizes in a one-dimensional CAP
system are gamma distributed, with shape parameter αS = 2 and scale parameter βS = 2ρ−1

I .
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A B

C D

Fig. 9. Distribution of fragment sizes, SF , fitted to a gammadistribution, i.e. γ (SF , αF , βF ) = S
αF −1

F e−(SF /βF )/β
αF
F Γ (αF ). Insets showdata collapse by plotting

ln

[
S
1−αF
F P(SF )β

αF
F Γ (αF )

]
vs. SF/βF . (A) Square lattice. (B) Regular triangular lattice. (C) Unstructured triangular lattice. (D) Cubic lattice.

3.4. Fragment size distribution

In the linear system, all elements will be activated before the growth terminates. However, in the two- and three-
dimensional systems, some of the elements will generally remain inactive. The size of the fragments between active
elements is found to be gamma distributed according to

γ (SF , αF , βF ) = 1

β
αF
F Γ (αF )

SαF−1e−(SF /βF ), (4)

as shown in Fig. 9. Again, this is in accordance with the fragmentation model in Ref. [18], and interestingly the same
distribution is reported for Voronoi cell sizes of Poisson distributed points in two and three dimensions by Ferenc and
Néda [31].

For intermediate initial densities we find that the scale parameter varies with ρi as βF ∝ ρ
−η

i , where η = 0.9 for the
square lattice, η = 0.9 for the triangular lattice, η = 0.9 for the unstructured lattice and η = 1.1 for the cubic lattice.

Just as we found for the size distribution in the previous section, the shape parameter of the fragment distribution varies
little with ρi. We find αF = 2.9ρ−0.1

i for the square lattice, αF = 2.4ρ−0.0
i for the triangular lattice, αF = 2.1ρ−0.1

i for the

unstructured lattice and αF = 1.6ρ−0.0
i for the cubic lattice. Note that since these exponents are very small their estimation

is associated with large errors.

3.5. Percolation

The CAP systems studied here are similar to bond-percolation systems, with the important distinction that the former
evolve from the initially random configuration according to a certain rule. The dynamic nature of the CAPmodel is a feature
shared with invasion percolation (IP) systems [14], and one could think of the CAP model as a special case of an IP system
with a particular invasion rule. Since propagation continues until contact, percolation is always achieved in CAP systems, so,
when defined in terms of ρi, the percolation threshold is 0. Yet, the way in which percolation is reached will depend on the

73



A. Hafver et al. / Physica A 413 (2014) 240–255 249

A

B C

D E

Fig. 10. Time to percolation, TC , and size of the percolating cluster at the time of nucleation, SC , as a function of initial density, ρi , for various system sizes,

N . Note that percolation was measured in one direction, i.e. it was tested if two opposite sides of the system were connected by a path of active elements.

(A) Linear lattice. (B) square lattice. (C) Regular triangular lattice. (D) Unstructured triangular lattice. (E) Cubic lattice.

initial density and may be quantified. The time to percolation in the CAP model is somewhat analogous to the concept of a
breakthrough time in IP systems, i.e. the time it takes for an invading fluid to form a continuous path connecting an inlet to
an outlet. Here, however, we define percolation in analogy to conventional site or bond percolationmodels, as the existence
of a connected path between two opposing external boundaries in the system.

If the density of initial seeds, ρi, is equal to or higher than the percolation threshold of the underlying lattice, percolation
trivially occurs after 0 iterations and the percolating cluster will look like the percolating cluster in a normal percolation
system. If the initial density is lower than the percolating threshold of the underlying lattice, percolationwill only be reached
after a sufficient number of intersections. Fig. 10 shows the time (i.e. number of iterations) to percolation, TC , vs. ρi (full lines)
and the relative size of the percolating cluster at the time of percolation (normalised by the system size), SC , vs. ρi (dashed
lines).

At high initial densities, when percolation exists in the initial conditions, TC = 0 and Sc ≈ ρi for all systems. This is
because the initial network is highly connected, so that most active elements form part of the percolating cluster. Note that
for the linear system, the percolation cluster always includes every element of the system, i.e. SC = 1.

For the two- and three-dimensional systems we observe irregularities in the plots of SC . When ρi falls slightly below
the percolation threshold, a sharp transition can be seen: in this situation only a few more seeds need to be activated in
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Table 1
Summary of scaling exponents for scalingwithρi obtained for various lattices. For the one-dimensional system, analytic exponents are included in brackets.

Linear Square Triangular Unstructured Cubic

Characteristic time (τ ) 1.0 (1) 0.5 0.5 0.5 0.3

Characteristic size (σ ) 1.0 (1) 0.5 0.5 0.5 0.7

Characteristic fragment size (η) – 0.9 0.9 0.9 1.1

Time to percolation (μ) 1.0 (1) 0.5 0.6 0.6 0.4

Percolating cluster size (ν) – 0.5 0.5 0.5 0.3

order to achieve percolation. However, propagation is executed in parallel, and during the first iteration more seeds will
be activated than required to reach percolation. This explains the discontinuities in Sc coinciding with the density where
Tc → 0 in Fig. 10. Similar transitions occur as ρi is reduced further and the number of iterations to percolation increases.
For the two-dimensional systems the first two transitions are apparent in Fig. 10(B)–(D). For the three-dimensional system
the transitions are more pronounced, and we recognise three of them in Fig. 10(E). One could avoid the irregularities in the
SC curves for high ρi by updating elements sequentially instead of synchronously at each iteration. Percolation could then
be reached before all sites have been updated, thereby reducing the number of redundant activations. To do this, one could
either assign an order to the seeds (which may require some motivation), or, alternatively, the update sequence could be
chosen randomly at each iteration. Schönfisch and de Roos [29] note that correlations in the update sequence of cellular
automata typically lead to artefacts, suggesting that random update sequence may be preferred.

For intermediate values of ρi, TC is seen to follow a power law, according to TC ∝ ρ
−μ

i . For the linear lattice μ = 0.9, for
the square lattice μ = 0.5, for the triangular lattice μ = 0.6, for the unstructured lattice μ = 0.6 and for the cubic lattice
μ = 0.4. Similarly, SC ∝ ρν

i for intermediate values of ρi, with ν = 0.5 for the square lattice, ν = 0.5 for the triangular
lattice, ν = 0.5 for the unstructured lattice and ν = 0.3 for the cubic lattice.

For low ρi, finite size effects play a role, and both SC and TC deviate from the power law scaling. In the one-dimensional

case the time to percolation may be found analytically to scale as TC ≈ logN

2
ρ−1
i for low densities, and, although the pre-

factor is size-dependent, the exponent μ = −1 is found to survive in the infinite size limit (see Appendix C.1).

4. Discussion and conclusions

4.1. Universal features of the CAP model

In the previous section, we found that the CAP model evolves in a similar way on the various lattices considered. This
evolution is governed by a trade off between the number of initial seeds and to what extent these initial seeds are able
to propagate. A consequence of this is the existence of an optimal initial density ρi, for which the change in density is
maximised. Our mean-field (Appendix B) and first-order (Appendix C) approximations suggest that the exact form of the
density evolution curve depends on lattice connectivity, which we also observe.

The scaling exponents obtained for the various properties measured in the previous section are summarised in Table 1.
From this table we recognise certain patterns. The characteristic time and size, scale with similar exponents for all the two-
dimensional systems. This indicates that the particular lattice connectivity has little effect on the characteristic time and
size.

The fact that the characteristic time and size for two-dimensional systems scale with approximately the same exponents
is not surprising: the size has units of length for the two-dimensional system, and the scale parameter βS may be thought
of as a ‘mean free path’. Since propagation in the CAP model happens at constant speed, the characteristic time must scale
with the same exponent. For the three-dimensional system, the size, S, refers to an area, and βS could be considered as a
‘mean free area’, with units of square length. This suggests that the exponents for characteristic time and size should differ
by a factor of 2, as observed.

As pointed out in Sections 3.3–3.4, the observation that both the size and fragment size follow gamma distributions is a
feature shared with fragmentationmodels [18] and Voronoi cell size distributions of random packings [31]. We also derived
the gamma distribution analytically for the size distribution of the linear system (Appendix C.1). This suggests that the form
of the distributions is insensitive to the details of the model, and not a unique feature of CAP systems. We observe that the
fragment size distributions scale similarly with ρi across the various two-dimensional systems and with a slightly lower
exponent for the three-dimensional system.

Wenote that, in the large system limit, the time to percolation in theCAPmodel is a quantity that is independent of system
size. This differs from the breakthrough time typically measured in invasion percolation systems, which would depend
on the particular placement of inlets and outlets. The time to percolation scales with approximately the same exponent
as the characteristic time for all systems. This means that after rescaling to characteristic units the time to percolation is
independent of initial density. In invasion percolation models, evolution is typically stopped once breakthrough is achieved
and a flow path has been established. In this sense, invasion percolation systems are percolation systems that automatically
settle at the critical point of the system [14]. The CAP model could be regarded in the same way if evolution is stopped at
the time of percolation.
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For the two-dimensional systems, the size of the percolating cluster at the time of percolation scales with ρi as the
inverse of the characteristic size. For the three-dimensional system, however, the size of the percolating cluster scales with
approximately half the negative exponent of the characteristic size. This could reflect the topology of the three-dimensional
lattice, which makes it relatively easier to create a percolating path, because the percolating cluster is not confined to a
plane. With regard to the one-dimensional system we note that the time to percolation is size-dependent and scales as
logN (Appendix C.1). This is a consequence of the fact that every element must be activated in order for percolation to occur
in one dimension. When the system is larger, the probability of having large gaps in the initial condition is increased, and
in one dimension this implies that TC must increase. In higher dimensions, the connectivity of the lattice provides more
potential percolation paths, and the existence of large gaps locally in a large system should not affect percolation globally.

We note that τ and μ are close to 1/1, 1/2 and 1/3 for the one-, two- and three-dimensional systems, respectively.
Similarly, the exponents for σ are respectively close to 1/1, 1/2 and 2/3. The denominators correlate to the dimensionality
of the lattices, leading one to question whether the deviations are due to error in measurement or finite size effects. In any
regard, it is clear that the various scaling exponents primarily depend on dimensionality, whereas the scaling properties
are relatively insensitive to lattice connectivity among the two-dimensional systems. This is a sign of universality in the
CAP model, similarly to that found in percolation models [10], and it suggests that the CAP model may also be useful for
modelling continuous processes.

4.2. Applications of the CAP model

TheCAPmodel is both simple and general. Itworks on arbitrary networks, and it is not constrained to lattices, as presented
here. However, the lattice representations we have considered are particularly simple and already suggest many potential
applications of the model. As we have shown, the model may be set up to closely emulate certain kinds of fracturing
processes, where active elements are interpreted as fracture segments which propagate until meeting other fractures.
In the three-dimensional version, elements are not allowed to intersect, but planes may still grow around each other,
capturing an important feature of three-dimensional fracturing processes. Although this is a crude approximation, with all
fractures propagating at constant speed along predefined directions, the use of such amodel could bemanyfold. For example,
coalescence of propagating micro cracks is an important mechanism for failure in rock subject to compressional load [32],
and is, for instance, observed in borehole breakouts [33]. Analysing the generic properties of the CAP model in this context
may provide insight into how failure is reached. Additionally, the CAP model may be applicable to fragmentation processes,
and as noted earlier, we already found that the fragment size distributions obtained with the CAPmodel are consistent with
previous fragmentation models, such as [18]. Fracture formation due to pressure accumulation when kerogen is converted
to lighter hydrocarbons is believed to play an important role in the migration of oil and gas in source rock. In laboratory
experiments, where pieces of shale were heated to induce conversion of organic material, fractures were observed to
emanate from kerogen grains [34]. The CAP approach could be adopted as a model to simulate the propagation of such
fractures, if the driving (i.e kerogen conversion) is assumed to happen at the same rate in each grain.

Even if the CAP model is not considered to mimic any particular fracturing process, the model may be used to generate
artificial fracture networks and used as input to discrete fracture network models. Such artificial networks are used, for
example, in reservoir modelling and hydrogeology [15,35,36]. For the purpose of such applications, the fully evolved CAP
systems would provide an upper bound for the connectivity of a fracture set, and it might be more relevant to stop the
evolution before the network is fully developed. For example it could be more realistic, in some applications, to use CAP
networks that are at, or close to, the percolation threshold.

An alternative to considering active elements as forming a fracture network would be to consider the background
network as a pre-existing fracture system. The evolution of the CAP model could then be regarded as a kind of invasion
percolation process on this background. In fact, the prevention of invasion into perpendicular fractures (i.e. preferential
propagation along straight paths) could be motivated by consideration of capillary effects, as argued byWettstein et al. [37]
in an invasion percolation model formulated on discrete fracture networks. Our CAP model could possibly be adapted to
simulate fluid invasion processes of this type, as a simplified alternative to the latter model.

The scope of the CAP model may be extended further by coupling it to other models on the same lattice. For example,
when applied to fracture systems, such as the gelatine experiments in Ref. [28], the propagation of a fracture may depend
on the supply of fluids that drive the fracturing, and the fluid transport can be modelled using a finite element or finite
difference scheme on the underlying lattice.

The conditioning of element propagation on external fields also suggests a range of other applications. Transport of melt
water from glaciers is hypothesised to occur by channel formation, depending on local water supply, landscape form and
ice thickness [38]. Channel formationmay be thought of as a CAP process, in which the fracture propagation is driven by the
prevailing water and ice pressure. Further, coupling a water infiltration model with a crack formation model would allow
for an enhanced simulation of soil water flow, because drying-cracks, for instance, are known to significantly influence this
process [39,40]. The explicit coupling of these processes has received limited attention, largely because crack formation
is an inherently discrete process, whereas most infiltration models are continuous in nature (i.e. Richards equation) [41].
Similarly, the CAP model could be adjusted to simulate the growth of fungi, which evolve into a network of individual
hyphae. The elongation of the latter is largely driven by the internal substrate concentration, which could be accounted for
by extending the current CAP model [42].
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The above topics are only a few suggestions that the authors will explore with collaborators in future publications. Given
its simplicity, flexibility and scalability we believe that there may be many more applications of the CAP model, and we
encourage other researchers to explore how it may be used in their field of research.
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Appendix A. Implementation of the CAP model

The CAPmodel is conveniently and efficiently implemented as a substitution system. Starting from a list A ⊂ E of initially
active elements (‘‘seeds’’), one replaces every element e ∈ A at each iteration by the list of neighbouring elements that they
activate. When no more substitutions are possible, the evolution terminates, and we may say that the system has reached
steady state.

The substitution algorithm is completely background-independent and is effectively accomplished by repeatedly
applying the following single line of Mathematica code:

Union@Select[Flatten[nbs[[A]],1],Nor@@S[[#]]&][[All,1]]

Here S is the vector of element states, {s1, s2, . . .}, and nbs is the list of element neighbourhoods, {{N1
1 ,N

2
1 , . . .},

{N1
2 ,N

2
2 , . . .}, . . .}.

For simplicity, we may divide the above function into algorithmic steps:

1. The part Flatten[nbs[[A]],1] extracts all the neighbourhoods whose first element may possibly be activated in the
current iteration.

2. Those neighbourhoods whose first element will actually be activated are found using Select, with selection criterion
Nor@@S[[#]]&. The latter only yields true if none of the elements in the particular neighbourhood are already active.

3. Only the first element of each neighbourhood is activated, and these are extracted by [[All,1]].
4. Elements may be activated by more than one neighbour simultaneously. Union is applied to eliminate duplicates.

(This may be dropped, but it yields large computational speed-ups for certain systems, depending on the network
connectivity.)

Appendix B. Mean-field approximation

If an element is active in the final configuration of the system itmeans that it was either an initial seed, or it was activated

at one of the subsequent iterations. Let Pt
e and SPt

e = 1 − ∑t
t ′=0 P

t ′
e be, respectively, the probability that an element e is

activated at iteration t or has survived (i.e. not been activated) until iteration t . The probability that element e is activated
at iteration t can then be expressed as

Pt
e = SPt−1

e

⎛
⎝1 −

|Ne|∏
i=1

⎛
⎝1 − Pt−1

n
i,1
e

|Ni
e|∏

j=2

SP
n
i,j
e

⎞
⎠

⎞
⎠ . (B.1)

Here, the multiplication by SPt−1
e checks that the element has not already been activated before iteration t . The contents of

the outer brackets measure the probability that the element will be activated by at least one of its neighbours in the current
iteration. This equals the negation of ‘‘no neighbour will activate the element in the current iteration’’. The activation by
each neighbourhood may happen independently, accounting for the outermost product. A neighbour ni,1 can only activate
element e if it was itself activated in the previous iteration and if the remaining neighbours in neighbourhood i are inactive.
This is accounted for by the expression in the innermost brackets.

We may simplify Eq. (B.1) if we assume that the number of neighbourhoods per element, |Ne| = r , and the number
of neighbours per neighbourhood, |Ni

e| = q, are constant and equal for all elements. If we furthermore assume that every
element is equal, we can approximate the above formula with

Pt
e = SPt−1

e

(
1 − (

1 − Pt−1
e (SPt−1

e )q
)r)

. (B.2)

By assuming P0
e = ρi, the final density of the system is then approximated by

ρf ≈ 1 − SP∞
e . (B.3)

In practice, the latter infinite sum may be cut off at a finite number of iterations, as Pt
e decreases rapidly with t .
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Fig. C.11. Illustration of the first order scheme on a square lattice (q = 3). We consider how the rightward propagation of the black seed element, e1,

may be intersected if we ignore secondary intersections. With this assumption, e0, can only activate e1 in the first iteration if none of the red elements are

seeds. If e1 was activated by e0 in the first iteration, e1 can activate e2 in the second iteration if none of the green elements were seeds. In the same way the

activation of e2 depends on the activation of e1 in the previous step and on the state of the blue elements at the beginning of the simulation. The activation

of e3 is further influenced by the orange elements etc. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)

Appendix C. First-order approximation

Wewish to approximate the density evolution of a two-dimensional CAP system. To this end, we note that at iteration t
an intersection may only happen at a particular point if there is more than one initial seed within distance t from that point.
As a first-order approximation, we will assume that any two seeds within distance t of a point will lead to intersection at
that point (i.e ignore secondary intersections).

Consider propagation in a particular direction froman initial seed on a two-dimensional lattice and suppose for simplicity
that every element has q neighbours per neighbourhood. The probability for propagation to proceed at least one step is

P(t ≥ 1) = (1 − ρi)
q. (C.1)

Whether propagation proceeds one more step is influenced by elements within distance two of the current endpoint, as
illustrated in Fig. C.11. In general we have

P(t ≥ 2) = P(t ≥ 1)(1 − ρi)
2q = (1 − ρi)

3q. (C.2)

As illustrated in Fig. C.11 the subsequent steps will be influenced by t(q − 1) + 2 additional elements, where t is the
number of the iteration. In general we therefore have

P(t ≥ t ′) = P(t ≥ t ′ − 1)(1 − ρi)
t ′(q−1)+2 = (1 − ρi)

q−1
2

t ′2+ q+3
2

t ′−1. (C.3)

The probability hat propagation stops after exactly t ′ iterations is therefore

P(t ′) = P(t ≥ t ′) − P(t ≥ t ′ + 1)

= (1 − ρi)
q−1
2

t ′2+ q+3
2

t ′−1 − (1 − ρi)
q−1
2

(t+1)′2+ q+3
2

(t ′+1)−1

= (1 − (1 − ρi)
1+q+(q−1)t ′)(1 − ρi)

q−1
2

t ′2+ q+3
2

t ′−1. (C.4)

Since every seed in two dimensions can propagate in two directions, the change in density of the entire system may be
approximated as

Δρ = 2ρi〈t〉 = 2ρi

∞∑
t=1

tP(t). (C.5)

A closed form of Eq. (C.5) has not been found. In practice, for finite ρi the sequence is well approximated numerically by
truncating the summation at imax 
 ρ−1.
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C.1. One-dimensional CAP systems

A one dimensional CAP system may be thought of as a particular case of a two-dimensional model, with only one
neighbour per neighbourhood, i.e. q = 1. In this case, the first-order approximation derived above is exact, because
secondary interactions are impossible. Thus, for a one-dimensional system,

P(t) = (2 − ρi)ρi(1 − ρi)
2t−1. (C.6)

Since every seed in the one-dimensional system can grow in two directions the distribution of sizes, S, may be found by
summing up all combinations of propagation to the left and to the right that in total yield a length S, i.e.

PS(S) =
S∑

t=0

P(S − t)P(t)

=
S∑

t=0

(2 − ρi)ρi(1 − ρi)
2(S−t)−1(2 − ρi)ρi(1 − ρi)

2t−1

= (2 − ρi)
2ρ2

i S(1 − ρi)
2S−2. (C.7)

Note that (1 − ρi)
2S = e2S log(1−ρ), and furthermore, for small ρi, log(1 − ρi) ≈ −ρi. Hence, for small ρi, Eq. (C.7) is a

gamma distribution of the form

PS(S) ∝ SαS−1e−S/βS , (C.8)

with shape parameter αS = 2 and scale parameter βS = 1/2ρi. Note that 〈S〉 = αSβS = ρ−1
i , as it should be; for a one-

dimensional systemwithN elements and initial density ρi, the number of initial seeds isNρi. The systemwill only terminate
once every element is active, hence the number of elements activated per seed is N/Nρi = ρ−1

i .
For one-dimensional systems, percolation is reached at the moment when the propagation of the last seed is arrested.

The time to percolation, TC can therefore be approximated from the relation

Nρi

∞∑
t=TC

P(t) = 1, (C.9)

i.e. only one fracture survives until Tc or later. After inserting Eq. (C.6), evaluating the sum and solving for TC , one obtains

TC = 1

2

(
1 − log(Nρi)

log(1 − ρi)

)
. (C.10)

To first order in ρi,

TC ≈ logN

2
ρ−1
i . (C.11)

On a log – log plot, the slope of log TC vs. log ρi is given by

μ = ∂(log TC )

∂(log ρi)

= 1

1 − ρi

(
1

log(1 − ρi) − log(Nρi)
− ρi

log(1 − ρi)

)

=
N→∞

ρi

(ρi − 1) log(1 − ρi)

=
ρi→0

−1. (C.12)

Eqs. (C.11) and (C.12) show that the time to percolation scaleswith the inverse of ρi in the low density limit. TC also increases
logarithmically with system size, N , but the inverse scaling in ρi persists in the large size limit.
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h i g h l i g h t s

• A novel discrete element model (DEM) for fracturing in elastic solids is proposed.

• By splitting nodes, contrary to breaking bonds, lattice artefacts are reduced.

• Fracture volumes and surfaces are naturally represented for all fracture apertures.

• The fracture representation simplifies coupling of fracturing to fluid transport.

• Applications include fracturing driven by fluid generation in geological systems.
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a b s t r a c t

A newdiscrete elementmodel (DEM) has been developed for the purpose of simulating dy-

namic fracturing driven by the internal generation of fluids in lowpermeability elastic solid

bodies. The elasticmaterial is represented by a network of nodes connected by springs, and

fracture nucleation and propagation is implemented by splitting nodes and reconnecting

the spring network. This produces realistic fracture shapes, and reduces lattice artefacts

compared with DEM models in which fracturing is implemented by breaking/removal of

springs. Fracture volumes and surfaces are explicitly represented in terms of the voids in

the reconnected spring network, simplifying the coupling between mechanical deforma-

tion and fluid pressure in the fractures, and facilitating themodelling of fluid transport. The

model is illustrated by applying it to fracturing driven by internal fluid generation in an im-

permeable quasi two-dimensional system. This is relevant for many geological processes,

including primarymigration of oil and gas in low-permeability source rock. Themodelmay

also be adapted to hydraulic fracturing processes, which are of industrial interest in con-

nection with unconventional oil and gas production.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Coupled processes in which fracturing of a solid is driven by fluids flowing through an evolving fracture network are
common in geology and engineering. Hydraulic fracturing is used industrially to recover oil and gas from shale, and it has
become a technology of increasing economic and geopolitical importance, as well as public and professional concern, over
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the past decade [1,2]. A similar process is believed to occur naturally in maturing organic-rich shale, driven by pressure
build-up as kerogen is thermally decomposed into lower molecular mass, lower density hydrocarbons. This may be an im-
portant mechanism for primary migration, the process by which oil and gas is transported within and expelled from source
rocks [3–5]. Fracturing due to internal pressure accumulation also occurs in other geological systems. For example, there is
evidence indicating that the month-long sequence of earthquakes striking the Umbria and Marche regions of northern Italy
in 1997 was sustained by the release of over-pressured trapped CO2 [6,7]. Other examples of coupled fluid drainage and
fracturing include decomposition of methane hydrate coupled with fracturing of sediments, which may have an impact on
Earth’s climate [8], the expulsion of water from rocks in subduction zones, which can play an important role in earthquake
triggering [9], and internal generation of fission gases causing fracturing of nuclear fuel pellets [10], which is a challenge for
the nuclear energy industry.

Pressure driven fracture processes have been studied analytically by several authors for simple and idealised systems
[11–15]. Although such models provide useful insights, numerical modelling is required to study more complex systems.
However, the numerical modelling of these coupled processes presents many challenges. In principle, molecular dynamics
(MD) can be used to model fracturing of a solid in contact with a fluid on the molecular scale, but this approach is practical
only on very small time and length scales. Similarly, continuum approaches, such as finite elementmodels (FEM)may be ap-
plied to dynamic fracturing by resolving the evolving fractures with a fine adaptive mesh, but this is computationally costly.

Many authors have suggested alternative ways to accommodate fracturing in continuum models. For example, a large
number of generalised FEM models, which enable representation and tracking of dynamic fracture boundaries without the
need for remeshing, have been developed [16–19]. However, these frameworks tend to be more elaborate than standard
FEM approaches and require special treatment of the regions near fractures. Also, the fracture volumes and surfaces are
typically defined implicitly, complicating the coupling between the model used to simulate fluids in the fracture apertures
and the deformation and fracturing of the surrounding solid. Phase field models [20–23] can also be used to simulate the
evolution of geometrically complex fracture systems, but, to our knowledge, they have not been coupled with models for
fluid transport and used to simulate hydraulic fracturing. Even if such coupling is possible, the high resolution required to
resolve fractures could be a limiting factor in applications to large fracture systems.

Discrete elementmodels (DEM), sometimes referred to as spring networkmodels or distinct elementmodels, are discrete
alternatives to continuummodels, and they can be used tomodel deforming solids on amacroscopic scale. Depending on the
application, the discrete elements may represent actual grains of a granular material or merely be an abstract discretisation
of an essentially continuous medium. In DEMs, the neighbouring elements, representing the solid material, are connected
by bonds (typically springs or beams), whose properties may be adjusted to achieve a desired material rheology. Fractur-
ing is typically implemented by breaking bonds that are strained beyond a critical threshold. Problems studied with this
approach include cracking of thin films [24], formation of extensional fractures in clay [25,26], weathering processes [27],
fragmentation processes [28,29], fracturing by diffusion controlled volume changing reactions [30] and acoustic emissions
frommicro fracturing in porous rock [31]. An alternative DEMmodel, inwhich the elements represent a Voronoi tessellation
of a continuumand fractures are represented implicitly as shear bands, has been used tomodel failure of concrete [32,33]. As
the above-mentioned examples demonstrate, DEM models are able to simulate complex fracture process realistically, and
it has been shown that such models are able to reproduce isotropic elastic behaviour [34,35]. However, the representation
of fractures in terms of broken springs introduces lattice artefacts. Furthermore, the reconstruction of fracture volumes and
fracture geometries from broken bonds is ambiguous or unrealistic, unless the DEM model represents a granular medium,
in which case fracture surfacesmay be interpreted in terms of node contours. For applications in which fractures are consid-
ered to be empty and fracture surfaces are traction-free, the exact volume of a fracture or location and orientation of fracture
surfaces is not important. The same is not true for applications in which fracturing is coupled to pressure forces exerted on
the solid by fluids contained in fractures. As a result, studies in which DEM models have been applied to hydraulic fractur-
ing [36,35] have represented fractures implicitly, by calculating local porosities from the DEM node positions and using a
Kozeny–Carman or other empirical permeability–porosity relationship to determine local permeabilities. Fluid transport is
thenmodelled as Darcy flow on a finer underlyingmesh. In thesemodels, the forces that fluids exert on the solid are derived
from the fluid pressure gradient. A similar coupling to a fluid pressure field was used in a FEMmodel based on Biot poroelas-
ticity equations in Ref. [37]. Fractured rocks are typically ‘dual porosity’ systems, inwhichmost of the fluid is contained in the
low permeability unfractured rockmatrix, but most of the fluid flow occurs in fractures. A challenge associated withmodels
based on a dual porosity field is the need to resolve sharp changes in pressure gradients if the permeability in the unfractured
solid is small, which makes them most useful for modelling high porosity materials or fractures on a microscopic scale.

The DEM model introduced here extends previous DEM models to applications in which explicit representations of
fracture volumes and surfaces are required. The novel approach differs from previous models in the way in which fractures
are introduced, by splitting nodes, reconnecting the spring network and inserting fracture triangles in the resulting voids.
Fracture volumes and fracture surfaces may be defined in terms of these fracture triangles, and this enables easy coupling to
fluid transport and pressure forces,without the need to invoke additional computationalmeshes or other elaborate schemes.
The triangulation of the elastic solid does not change upon fracturing, and hence there is no need to interpolate or recalculate
properties of the elements during simulations.

An additional advantage of this fracture representation is that fracture propagation directions are less restricted than in
typical DEM models, and fractures may follow straight paths, resulting in realistic fracture shapes even for fractures that
are a few mesh units long. As a result, the stress field around fractures can be well represented with low mesh resolution,
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and this reduces the computational resources required to simulate large systems of many interacting fractures. The model
is particularly suitable for modelling low-permeability or macroscopic systems, in which fractures effectively constitute all
of the permeability, such that pressure forces can be treated as boundary forces on fracture surfaces.

To illustrate the model, a dynamic fracturing process is considered, in which the driving force of fracturing is provided
by accumulation of fluid pressure in the fractures. The modelled system represents an isotropic elastic solid containing a
set of pre-existing fracture seeds and with uniform production of dissolved gas within the solid matrix. The dissolved gas
can diffuse through the solid and exsolve into fractures, and the fracture systemmay evolve in response to the gas pressure
exerted on fracture walls. This model set-up closely resembles experiments performed by Kobchenko et al. [38] in which
fracturing in a layer of gelatine confined between two glass plates was driven by uniform CO2 generation and subsequent
exsolution of CO2 gas. An example of a fracture network generated in one of these experiments is shown in Fig. 1, together
with a visualisation of the stress field around a set of fractures. In these experiments, fractures nucleate as bubbles, governed
by the supersaturation of CO2, however, the nucleation is a complex process, and is ignored here, as it is not essential for
conveying the ideas of the model.

2. Model

2.1. Elastic interactions

In the model presented here, the elastic solid is represented as a triangular lattice of nodes connected by springs. Each
pair of nearest neighbour nodes, i and j, exert equal and opposite forces on each other, given by

�Fi,j = −�Fj,i = ki,j(|�xj − �xi| − li,j)n̂i,j, (1)

where �xi and �xj are the node positions, ki,j is a spring force constant, li,j is the equilibrium separation of the nodes, and n̂i,j is
the unit vector pointing from node i to node j. In order to ensure homogeneous behaviour and consistent scaling of spring
forces with lattice resolution, the individual spring constants are set to ki,j = Ai,jk/li,j, where Ai,j is the area of the Voronoi
interface between node pair (i, j) [32,33]. (The Voronoi interface has unit of length in two dimensions, but the system is
assumed to also have a uniform thickness in the third dimension, as in the experiments of Kobchenko et al. [38].)

For a uniform triangular lattice with a node separation of li,j = l, Ai,j = lh/
√
3 for node pairs in the interior of the lattice,

and ki,j = hk/
√
3, where h is the thickness of the solid layer. The regular triangular latticewith associated Voronoi interfaces

is illustrated in Fig. 2. The Voronoi areas and spring constantsmay be split into contributions Ae = lh/2
√
3 and ke = hk/2

√
3

from the individual triangle elements e, and the spring force per element, for a pair of adjacent nodes i and j, is given by

�Fe
i,j = −�Fe

j,i = ke(|�xj − �xi| − l)n̂i,j. (2)

This separation of forces into element-wise contributions ensures that forces also scale appropriately at system boundaries
(where node pairs are unique to one triangle element), and it ensures that elastic energy and forces are redistributed
consistently, without a need for adjusting springs, when the node connectivity changes during fracturing. Several authors
(e.g. Refs. [34,35]) have shown that regular triangular spring lattices can reproduce isotropic elasticity in the continuum
limit. Since the springs exert only stretching and compression forces, it can be shown that the regular triangular spring

network corresponds to a solid with a Poisson ratio of ν = 1/3 and Young’s modulus of E = 2k/3 = 4ke/
√
3h.

2.2. Substrate attachment

In addition to inter-nodal spring forces, every node is connected to a rigid substrate by weak springs. The spring attach-
ment forces are given by

�Fe
i,substrate = ks

6
(�x0i − �xi), (3)

where �x0i is the original position of node i, and ks is the substrate attachment spring force constant. These forces are con-
veniently defined per triangle, because the lattice topology is subject to change during fracturing. Any node may be part of
six or fewer triangles, and, hence, the attachment strength effectively scales with the associated area of the node that is in
contact with the substrate.

The effect of the weak bonding to the substrate is to localise mechanical interactions, which is realistic in the context of
the gelatine experiments of Ref. [38], in which the gelatine layer is constrained by confinement to a Hele-Shaw cell and ad-
hesion of the gel to the glass walls. Substrate attachment also plays a role in other quasi-two dimensional fracturing process,
for example desiccation fracturing in mud or the formation of drying fractures in paint films [24,39–42].

In addition to elastic forces and substrate attachment, the solid is subject to pressure forces on fracture surfaces, and this
is discussed in the following section.
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A B

Fig. 1. A: Example of a fracture network from gelatine experiments described in Ref. [38]. B: Visualisation of the strain field around fractures, using cross

polarisers.

Fig. 2. The regular triangular lattice used in the DEM model. Nodes (indicated by black dots) are connected by springs to nearest neighbour nodes and

to an underlying rigid substrate. The equilibrium node separation, l, and Voronoi interfaces between nodes are used to scale the spring force constants

(A = hl/
√
3).

2.3. Fracturing and the mechanical coupling to fluid pressure

The novelty of the DEMmodel described here lies in the implementation of fracturing and theway that the fluid pressure
in fractures is coupledwith themechanical deformation. Unlike conventional DEMmodels, fractures nucleate and propagate
by splitting nodes, rather than by breaking springs. The procedure for inserting new fractures is illustrated in Fig. 3, and is
implemented in three steps:

1. Determine where and when a fracture will nucleate/propagate according to a fracture criterion (discussed below);

2. Determine the orientation of the new fracture segment;

3. Reconnect the lattice, by disconnecting springs on one side of the fracture from the old node and attaching them to the
new node. Insert two new fracture triangle elements in the resulting void.

The coupling of fluid pressure to mechanical deformation is implemented by applying normal forces on the fracture
walls. In order to do this, it is necessary to define what is meant by a fracture wall, but there are several alternative ways to
associate a fracture volume and fracture surface to the voids created by node splitting. One obvious approach would be to
define the fracture surface as the interfaces between bulk triangles and fracture triangles (red contours in Fig. 3). However,
using this approach, the relative surface area to volume ratio for a fracture depends on whether the fracture path follows
one of the mesh directions or not (as can be seen from Fig. 3(E)–(F)–(G)). This problem can be resolved by using a projection
of the interface instead (blue contour in Fig. 3).With the first approach, fracture surfaces elements are always oriented along
one of the three mesh directions. With the second approach, fractures are smoothed, and can be made to appear straight
along six different planes. Fig. 4 demonstrates how the fracture surface may be distributed among the nodes on fracture
boundaries using the two proposed approaches. Since the second representation is a projection of the first, the resultant
surface normal vectors per node obtained from the two approaches are equal (the red vectors sum up to the blue vector in
Fig. 4), and hence themechanical coupling to the fluid pressure in the fractures is equivalent. The force contribution to node
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A B

C D

E F

G H

Fig. 3. Illustration of fracturing by node splitting. A: Configuration of springs and nodes before splitting. Each pair of nodes is connected by one spring per

triangle. B: Configuration after splitting of the central node. Springs above the fracture plane (horizontal in this case) are reconnected to the new node. C, D,

E and F: Possible growth sequence of a fracture. Black lines represent springs. The node position atwhich a fracturewill nucleate/propagate next is indicated

with a black dot. The direction in which the fracture will propagate is indicated by thick, black line segments. The fracture triangles (grey) are inserted in

the open voids that form when the springs are reconnected. Two alternative ways are proposed to represent fracture contours on the reconnected mesh.

Alternative 1 (highlighted in red) is to consider the interface between bulk and fracture triangles as the fracture surface. Alternative 2 (highlighted in blue)

is to use a projected contour, as explained in the text and illustrated in Fig. 4. When the projected fracture contour (blue) is used, the fracture path appears

straight even when the split nodes lie on alternating paths along the spring network (e.g. the vertical fracture segment formed in steps E → F → G). The

fractures are drawn with fixed aperture widths for illustration purposes. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

i from fracture triangle f with gas pressure pf is given by

�F f

i = pf �Af

i , (4)

where �Af

i is defined as half the normal vector of the edge in element f that is opposite node i, as illustrated in Fig. 4.

Fig. 5 shows the difference between the fracture representation in the node-splitting model and a typical representation
of fractures in bond-breaking DEM models. Unlike in the approach presented here, straight fractures in bond-breaking
models consist of broken springs with alternating orientation, and the forces are asymmetrically distributed on the opposite
sides of the fracture (Fig. 5(A)–(B)). Also, fractures in bond-breaking models are forced to turn in one of two directions at
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Fig. 4. Illustration of how a fracture surface area may be assigned to nodes on fracture boundaries. One way of representing the fracture surface is in

terms of the interface between bulk triangles (white) and fracture triangles (grey). A part of this interface may be associated with each of the nodes on

the boundary. In this example, the surface element associated with node 1 comprises half the edge between nodes 1 and 3 and half of the edge between

nodes 1 and 2 (indicated by red segments with red normal vectors). An alternative way of associating a surface element to each node is to use the projected

interface (highlighted in blue for node 1 in this example). The associated normal vector (highlighted in blue) can be constructed as a sum of contributions
�Af1
1 ,

�Af2
1 and �Af3

1 from the fracture triangles f1, f2 and f3 adjacent to node 1. The vectors �Afi
1 correspond to half the normal vector associated with the edge of

triangle fi opposite to node 1. The blue normal vector is equal to the sum of the red normal vectors. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)

each propagation step (Fig. 5(C)). In the node-splittingmodel, fracturesmaypropagate in three different directions, including
straight forward (Fig. 5(D)).

Fig. 5(E)–(F) compares how fractures along lattice directions and perpendicular to lattice directions can be realised in
the bond-breaking and node-splitting models, respectively. With the approach in Fig. 5(A), (C) and (E), it is ambiguous how
fracture and material volumes should be represented when apertures become large, but in the node-splitting model the
interpretation of fracture volumes in terms of fracture triangles works for arbitrarily large deformations.

To determine when and where fracturing will occur, the stress field at the position of each node is calculated from the
inter-nodal forces acting on that node [43], i.e.

σ(�xi) =
∑
e,i∈e

∑
j∈e,j�=i

1

2Vi

�Fe
i,j ⊗ (�xj − �xi), (5)

where the first sum is over all elements e containing the node i, and the second sum is over the remaining nodes of e adjacent
to i. Here Vi is the volume of the Voronoi cell associated with node i, and ⊗ denotes a tensor product. This formula is valid
in the interior of the regular triangular mesh, and for small deformations [34,35], but cannot be expected to hold at surfaces
or when the node connectivity is reduced due to broken bonds. This can be a problem in bond-breaking DEMmodels, but in
the current model, no bonds are broken. As a result, nodes at fracture tips have the same spring connectivity as fractures in
the bulk (illustrated in Fig. 6), and, consequently, Eq. (5) may be used to estimate tip stress.

In the particular application discussed here, only openingmode fractures are formed, and a tensile fracture criterion was
used. A fracture propagates if the maximum principal stress at the tip, σ1(�xi), exceeds a critical tensile strength TC , i.e.

σ1(�xi) > TC . (6)

If this criterion is met, the tip node is split and the neighbouring node in the direction that is closest to the direction of the
maximum hoop stress becomes the new tip. The hoop stress is the component σθθ of the stress tensor in polar coordinates,
and it is related to the Cartesian stress by

σθθ = σxx sin
2(θ) + σyy cos

2(θ) − σxy sin(2θ). (7)

2.4. Gas diffusion and exsolution

Although the DEM model described in this paper can be used to simulate a variety of deformation and fracturing pro-
cesses, the current work is motivated by experiments inwhich fracture nucleation and growth is driven by gas generation in
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A B

C D

E F

Fig. 5. Comparison of fracture representations in DEM models where fracturing is implemented by breaking of bonds (A) and by splitting of nodes (B).

The directions of fracture forces exerted on the nearby nodes are indicated with blue arrows. In bond-breaking models a propagating fracture must turn

in one of two directions (C). In the node-splitting model, propagating fractures may turn in one of two directions or advance without turning (D). E–F:

Comparison of fractures along lattice directions and perpendicular to lattice directions in the bond-breaking and node-splitting models, respectively. In

the node-splitting model, fractures along lattice directions are straight (horizontal fracture in F), and fractures perpendicular to lattice directions become

straight when represented in terms of the projected fracture contour (dashed line in F). (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)

the solidmatrix, gas exsolution and diffusion of dissolved gas down chemical potential gradients into fractures. It is assumed
that diffusion of dissolved gas in the bulk material is governed by Fick’s law, i.e.

∂c

∂t
= D∇2c + γ . (8)

Here c is the molar concentration of dissolved gas, and γ is the gas production rate, which was chosen to be uniform in both
time and space. Eq. (8) was solved implicitly by means of a finite difference approximation and a backward Euler scheme
on the same computational mesh that was used for the elastic problem. The concentration ci in node i at time step n + 1 is
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A B

Fig. 6. Nodes in the bulk (central node in A) and nodes at fracture tips (central node in B) are connected to the same number of springs. Hence, for small

apertures, the stress field at fracture tips may be approximated by Eq. (5).

thus given by

Vi

cn+1
i − cni

�t
=

∑
e,i∈e

∑
j∈e,j�=i

κ(cn+1
j − cn+1

i ) + Viγ , (9)

where κ = hD/2
√
3. κ is conveniently defined per triangle, such that the fluid flux may be consistently defined at exter-

nal boundaries and along fracture surfaces, without the need for readjustment when new fractures are formed. The factor

h/2
√
3 in the definition of κ results from the scaling of the diffusion flux by the distance and shared Voronoi interface areas

between nodes, in the same way that the spring force constants per triangle, ke, were scaled in the elastic part of the model
described above.

For the purpose of fluid transport, each set of connected fracture triangles is treated as one single fracture node with a
volume of VF , equal to the sum of volumes of its constituting fracture elements. Combining the fracture elements in this
way is equivalent to assuming that the transport in a fracture is much faster than diffusion in the solid matrix. According
to Henry’s law, the pressure in a fracture is in chemical equilibrium with the dissolved gas at its surface if p = kHc , where
kH is Henry’s coefficient. Assuming that the gas is an ideal gas, the concentration of the gas in the fracture is cF = p/RT ,
where R is the universal gas constant and T is the absolute temperature. The amount of gas contained in a fracture is given by
cFVF . Due to numerical considerations, it is advantageous to quantify fracture concentration in terms of the rescaled variable
uF = p/kH = cF/α, where α = kH/RT (because this allows the full transport problem to be expressed in matrix–vector
notation with a symmetric matrix). For simplicity, it is assumed that the flux across fracture surfaces is proportional to the
deviation from chemical equilibrium [30]. Thus, for fracture F , the concentration is updated according to

αVF

un+1
F − un

F

�t
=

∑
j∈ΩF

βAj,F (c
n+1
j − un+1

F ), (10)

where α = RT/kH , β is a surface evaporation coefficient, ΩF is the set of nodes adjacent to the fracture F , and Aj,F is the

fracture surface associated with node j. To achieve mass conservation, a flux βAj,F (u
n+1
F − cn+1

j ) must be subtracted from
each of the surface nodes j ∈ ΩF . For the surface area Aj,F the magnitude of the blue surface normal vector illustrated in

Fig. 4 (i.e. Aj,F = ∑
f∈F ,j∈f

�Af

j ) was used.

2.5. Lattice relaxation and pressure equilibration

The model is evolved in time by repeating the following procedure at every time step:

1. Update the concentrations ci and uF by solving Eqs. (9)–(10);
2. Obtain new fracture pressures using pF = kHuF ;
3. Repeat the following until no fracturing occurs:

(a) Relax the lattice (described below);
(b) Calculate the new stress state, and create new fractures if the fracture criterion (Eq. (6)) is met.

Lattice relaxation is assumed to occur very rapidly compared with transport, such that the gas content in each fracture
is conserved during mechanical relaxation. When the lattice deforms during relaxation, the fracture volumes may change,
and this requires adjustment of the pressures. To account for coupling between the deformation of the lattice and the fluid
pressures in the fractures, the lattice is relaxed using an iterative scheme, based on the following steps, which are repeated
until all of the forces are below a threshold value:

1. Bring the lattice closer to mechanical equilibrium by solving the linearised mechanical problem, keeping the current
fracture pressures fixed (explained below);

2. Calculate new fracture volumes, VF , based on new node positions, and adjust the fracture pressures according to the ideal
gas law (PFVF = const.).
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Since the solution of the linearised mechanical problem differs from the solution of the full non-linear problem, step 1
does not bring the lattice into equilibriumwith the gas filled fractures. However, the procedure is repeated with readjusted
pressures until force balance is reached, and the forces are consistent with the full, non-linear problem.

The linearised mechanical problem may be stated in matrix–vector form as AdX = B, where dX is the vector containing
the displacements of the nodes at a given iteration. The matrix A and vector B may be set up in various ways. A standard
way to linearise the problem would be to construct a total energy function for the system and to obtain A and B by a Taylor
expansion (i.e. make A the Hessian matrix of the total energy function and B the current forces on each node). In practice,
however, the latter approach is inefficient, because the Hessian depends on node positions andmust be recomputed at each
iteration. This can pose a significant computational cost, and, therefore, an alternativemethodwas used,which only requires
A to be recomputed whenever new fracture elements are introduced.

To construct the matrix A and vector B, let �xi denote the current position of node i and let �x′
i = �xi + d�xi denote the new

node position after displacement by a small distance vector d�xi. The new spring force �F ′e
i,j exerted through element e on node

i ∈ e by node j ∈ e after displacement, may be expressed as (according to Eq. (2))

�F ′e
i,j = ke(|�x′

j − �x′
i| − l)n̂′

i,j

= ke(�x′
j − �x′

i) − keln̂′
i,j

= ke(d�xj − d�xi) + ke(�xj − �xi) − keln̂′
i,j

≈ ke(d�xj − d�xi) + ke(�xj − �xi) − keln̂i,j

= ke(d�xj − d�xi) + �Fe
i,j, (11)

where �Fe
i,j is the spring force before node displacement. In the second to last step of Eq. (11), the unit direction vector n̂′

i,j

associatedwith the new forcewas approximated by the unit vector n̂i,j of the old force,which is valid as long as |d�xj−d�xi| � l
(i.e. for small displacements). The substrate attachment force (Eq. (3)) contributed by an element e on a node i ∈ e already
depends linearly on the node positions, and can be expressed as

�F ′e
i,substrate = ks

6
(�x0i − �x′

i)

= ks

6
(�x0i − �xi − d�xi)

= −ks

6
d�xi + �Fe

i,substrate, (12)

where �Fe
i,substrate is the substrate attachment force before node displacement. The new forces after displacement

(Eqs. (11)–(12)) must balance the pressure forces on the fracture walls. The equation giving the displacement d�xi of a node
i is therefore∑

e,i∈e

(
ks

6
d�xi −

∑
j∈e,j�=i

ke(d�xj − d�xi)
)

= �Fi, (13)

where �Fi is the total (spring, substrate and pressure) force acting on the node before displacement. In Eq. (13), the coupling

between displacements in the x- and y-directions are completely absorbed into �Fi, so the x- and y-displacements can be com-
puted separately. More precisely, the displacements in the x- and y-directions can be obtained from the two matrix–vector
equations,

AdX = Bx and AdY = By, (14)

where dX = {dx1, dx2, . . .} and dY = {dy1, dy2, . . .} contain the node displacements in the x- and y-directions, and Bx =
{Fx

1 , F
x
2 , . . .} and By = {Fy

1 , F
y

2 , . . .} contain the x- and y-components of the node forces. The off-diagonal elements of the
matrix A are given by

Ai,j = −
∑

e,(i,j)∈e

ke, (15)

and the diagonal elements of A are given by

Ai,i =
∑
e,i∈e

(
2ke + ks

6

)
. (16)

A remains constant during the relaxation and pressure equilibration, and by inverting it numericallywhenever new fractures
are nucleated or existing fractures grow, one can obtain the displacements at each iteration by evaluating thematrix–vector
products dX = A−1Bx and dY = A−1By, instead of re-solving the linear problem. The decoupling of displacements in the
x- and y-directions implies additional computational gains for large systems, because the number of numerical operations
required by linear solvers typically increases more than linearly with the number of degrees of freedom.
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Table 1
Summary of dimensionless model parameters.

Parameter Unit Dimension-less form

Equilibrium spring length, l m ≡1

Spring constant, ke = √
3Eh/4 m−1 N ≡1

Time step, �t s ≡1

Gas solubility, kH mNmol−1 ≡1

Substrate attachment, ks m−1 N ks/ke

Critical tensile stress, TC m−2 N TC/E

Bulk permeability, κ = Dh/2
√
3 m3 s−1 D�t/2

√
3l2

Production rate, γ m−3 s−1 γ hl2�t

Fracture capacity, α – kH/RT

Evaporation coefficient, β m s−1 β�t/l

2.6. Dimensionless parametrisation

For convenience, dimensionless parameters are used in the remainder of this article, and they are listed in Table 1. The
dimensionless equilibrium spring length, l, time step, �t , spring constant, ke, and gas solubility, kH , have values of unity.
Defining kH ≡ 1 makes the auxiliary variables u and the fracture pressures equal.

3. Results

Test results are presented in this section, to demonstrate the merits of the model. The parameter space is too large to
explore exhaustively, but insights can be obtained from a few simple examples.

3.1. Fracture shape

The node-splitting DEM model produces realistic fracture shapes, even at low resolution and with fractures that are a
few grid units long. This is demonstrated in Fig. 7, in which the aperture of fractures is plotted for various resolutions and
different fluid pressures in the fracture. The fractures have approximately elliptical shapes, as predicted by linear elastic
theory for cracks with infinitesimal apertures and with uniform internal pressures [44,45]. Even for fairly large fracture
aperture/fracture length ratios, this prediction appears to be valid.

3.2. Effects of fracture orientation

The fractures in the model are not constrained to follow grid directions. As a test for isotropy, Fig. 8 shows how the
total energy, fracture tip energy density, stress tensor invariants and fracture volume depend on the fracture propagation
direction. We find that the total elastic energy of the grid and the energy density at the crack tips are almost identical
functions of the fracture length for horizontal and vertical fractures. The stress invariants I1 = tr(σ ) and I2 = det(σ ) at the
fracture tips are also fairly similar for horizontal and vertical fractures, but are slightly lower for vertical fractures. This is
due to the fact that the nodes at the tip of vertical fractures are positioned slightly off the longitudinal fracture symmetry
axis. The fracture volume as a function of fracture length is not affected by the direction, which is important with respect to
the coupling to fluids in fractures.

3.3. The stress field around fractures

Fig. 9 shows examples of the stress fields around vertical and horizontal fractures of the same length. A direct quantitative
comparison between the two cases is difficult because it requires the stress fields to be rotated, scaled and perfectly aligned.
In Fig. 10 a visual comparison is shown instead, by plotting contours of the principal shear stress (normalised by fluid pres-
sure) for a horizontal and a vertical fracture of equal length, together with the analytic solution found byWestergaard [44].
This analytic solution, as elaborated by Sneddon [45], can be expressed in terms of the stress function

Z = p

(
z√

z2 − a2
− 1

)
, (z = x + iy), (17)

where a is the fracture half length, and the stress components can be obtained from the relations

1

2
(σxx + σyy) = Re(Z),

1

2
(σxx − σyy) = yIm(Z ′),

σxy = yRe(Z ′), (18)

where Z ′ = ∂Z/∂z.
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Fig. 7. Variation of the fracture aperture with grid resolution for different pressures. Each data point represents the position of a node on the fracture

boundary (x is the position along the major axis of the fracture, and w is the displacement in the orthogonal direction). The black lines show fitted ellipses,

indicating that fractures have approximately elliptic shapes. The inset shows that the maximum aperture is proportional to the pressure. The data were

obtained using a fracture with half length a = 0.1L, where L is the system side length (grid resolution). External boundaries were fixed, and there was no

substrate attachment.

A comparison of Fig. 10(B)–(C)with Fig. 10(A) shows that the stress field around both the horizontal and vertical fractures
are fairly consistent with the analytic solution away from the crack tips (the vertical fracture has been rotated for ease of
comparison). Near the crack tip, theWestergaard solution diverges, but this is not captured by a discretemodel with limited
resolution. It should, however, be kept in mind that the stress field divergence is an artefact of the continuum description
and not a physical effect (after all, any material is discrete on short length scales, and its atomic constituents experience
forces, not stress). For the vertical crack, the principal shear stress is slightly asymmetric at the crack tip. This is because the
stress is evaluated at the grid nodes, and the tip nodes of vertical fractures fall slightly off the symmetry axis of the fracture
plane.

3.4. Pressure development in a propagating fracture

Fig. 11 shows the time evolution of the gas pressure in a single propagating fracture, under various conditions. The frac-
ture growth is intermittent, with a pressure drop associated with each propagation event. The results demonstrate that
the pressure required to initiate fracture growth depends on the parameters that determine material properties and the
strength of attachment to the rigid substrate, namely TC and kS .

For lower node breaking thresholds orweaker substrate attachment, fracturing occurs at lower pressures, and thewaiting
time before successive propagation events is shorter. The growth rate increases as α decreases or β and κ increase, because
these parameters influence the time required to inflate fractures with gas. The frequency of events increases as fractures
grow longer, because stress becomes more concentrated at the tips, and a smaller pressure is required to drive fracture
propagation. In addition, the transport of fluid into the fractures increases because of the increase in fracture surface
area. However, the substrate attachment localises elastic interactions, and the tip stress concentration eventually becomes
independent of the fracture length. At some point, the fracture propagates at constant pressure, and this pressure increases
with the production rate, γ , and decreases with the material strength, TC .
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A B

C D

E

Fig. 8. A: Total energy of system containing crack of half-length a. B: Energy density at the tip of a crack with half-length a. C: First stress invariant,

I1 = tr(σ ), at the tip of a crack with half-length a. D: Second stress invariant, I2 = det(σ ), at the tip of a crack with half-length a. E: Fracture volume as a

function of fracture half-length a. Data were obtained using an approximately quadratic domain with L = 70. The dimensionless pressure in the fractures

was P = 0.01, substrate attachment was turned off, and the external boundaries were free.

A B

C D

Fig. 9. A: Volumetric stress around a horizontal fracture. B: Shear stress around a horizontal fracture. C: Volumetric stress around a vertical fracture.

D: Shear stress around a vertical fracture. Data were obtained using a quadratic domain with side length L = 40. The dimensionless pressure in cracks was

p = 0.01, and a weak substrate attachment (kS = 10−3) was used.

102



A. Hafver et al. / Physica A 416 (2014) 61–79 73

2a

a

0

–a

–2a

2a

a

0

–a

–2a

2a

a

0

–a

–2a
–2a –a 0 a 2a

–2a –a 0 a 2a –2a –a 0 a 2a

0.1 0.3 0.5 0.7
Principal shear stress

A

B C

Fig. 10. The principal shear stress normalised by fluid pressure in the fracture. A: Analytic solution; B: Horizontal fracture; C: Vertical fracture (rotated

for ease of comparison). The numerical examples are cropped from a larger, quadratic computational domain with side length L = 80. A dimensionless

pressure of p = 0.05 and aweak substrate attachment (kS = 10−3) were used. The projectionmethodwas used to smooth the fracture contours in B and C.

3.5. Two interacting fractures

Fig. 12 illustrates a simulation in which two short horizontal fracture seeds were placed with a small offset in both the
horizontal and vertical directions. As the fractures inflate, they interact with each other via the stress field, which affects
their direction of propagation. When the breaking threshold is uniform, only the two tips directed away from the other
fracture grow, because the stress field there is more favourable for growth. However, when heterogeneity is introduced, by
distributing TC randomly according to a normal distribution with 10% standard deviation, the material becomes less brittle,
and the facing tips turn towards each other.

3.6. Systems of many fractures

Figs. 13–16 show examples of simulations with many (20) interacting fractures. The initial fractures seeds, formed by
splitting individual nodes, were randomly distributed in space and assigned random orientations selected from {−π/3, 0,
π/3}. (The fracture seed orientations are restricted to the three lattice directions, because initial fractures would need to
be longer in order to continue propagating linearly in other directions.) For ease of comparison, the same set of seeds were
used in all the examples. The external boundary was treated as a preexisting fracture with constant dimensionless pressure
p = 0.01 (because of the small residual pressure, fractures that joined the boundary did not collapse completely).

In the simulation illustrated in Fig. 13 there was no distribution of material strength TC (thematerial was homogeneous),
and many fractures started growing at about the same time. In Figs. 14–16 the node strengths were normally distributed
with a 10% standard deviation, and as a result, growth was more sequential.

Although the fluid production rate was 2.5 times higher and the fracture capacity was 75% lower (promoting faster
pressure build-up) in the simulation illustrated in Fig. 15 compared with the simulation illustrated in Fig. 14, the fracture
network evolvedmore slowly in Fig. 15 due to the faster diffusive fluid transport (κ and β were twice as large). Because fluid
drainage was more effective in the simulation of Fig. 15, two fractures were not activated (the fluid pressure never built up
sufficiently to propagate these fractures).

In the example in Fig. 16 the transportwas so effective that only two fractureswere activated, both located near the centre
of the system,where the concentration of fluid in the solidmatrix reaches the highest value.When these fractures connected
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Fig. 11. Simulation of the pressure evolution in a single evolving fracture, nucleated at the centre of a grid of size 200 × 20 at time t = 0. For all cases a

uniform breaking threshold, TC was used. In each column, two cells are highlighted in colour, indicating that the simulations differed only in the highlighted

parameter. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Simulation of the interaction between two initially parallel fractures on a grid of size 150 × 40 with parameters κ = 0.0025 α = 4.0, β =
0.025, γ = 0.001 and kS = 10−3. TC was normally distributed, with 〈TC 〉 = 0.1 and std(TC ) = 0.01. The colour indicates the concentration of dissolved

gas. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

to the boundary, they were able to drain the system sufficiently to prevent activation of other fractures. The examples in
Figs. 15 and 16 show an important feature of the system, namely that fractures not only interact by elastic coupling, but also
communicate through their effect on the concentration field. The relative importance of these two interaction mechanisms
depends on the various model parameters.

It is known from natural systems that propagating fracture tips tend to connect with existing fractures at right angles
(see for example Refs. [40–42]). In Figs. 13–16 propagating tips do tend to turn towards nearby fractures, but not always,
and sometimes the intersection is not orthogonal. To explain this discrepancy, it should be kept in mind that fracture tips
in this model are restricted to propagate along 12 directions, which limits how abruptly they can turn. In the cases where
the fractures do intersect orthogonally, the pressure in nearby fractures was high, such that its stress field could affect the
approaching fracture from afar and the tip had a long distance over which tomake the turn. In cases where tips did not turn,
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Fig. 13. Simulation with 20 fracture seeds on a quadratic grid of side length L = 90, showing the evolution of the fractures, volumetric stress field and

concentration field. System parameters: κ = 0.005, α = 8.0, β = 0.005, γ = 0.002, kS = 10−2 and TC = 0.1. The initial seeds are identical to those used

in the simulations illustrated in Figs. 14–16.

they were typically incident on external boundaries or deflated fractures, such that the stress field at the tip was dominated
by the contribution from the propagating fracture itself until it intersected the other fracture. With better spatial resolution,
we expect that these intersections would be orthogonal.

4. Discussion

The purpose of the previous sections was to motivate, describe and define a new DEMmodel, and point out its strengths
and weaknesses. In our opinion, the main advantage of the model is that fracture volumes and surfaces are naturally repre-
sented in terms of the computationalmesh. Thismakes it easy to keep track of fluid volumes and to impose fluid pressure on
fracturewalls. Themodel is particularly suitable for simulating very low permeability systems inwhich free fluid is confined
to fracture apertures by large capillary forces and/or by very low permeabilities such that pressure forces can be treated as
boundary forces acting on fracture surfaces. An additional benefit of the model is that the fracture shapes are realistic, even
for small fracture apertures and for fractures that do not follow a particular lattice direction. In particular, straight fractures
may be represented, even at the scale of individual elements. The stress field around fractures is well approximated by the
model, even at crack tips and with low mesh resolution.
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Fig. 14. Simulation with 20 fracture seeds on a quadratic grid of side length L = 90, showing the evolution of the fractures, volumetric stress field and

concentration field. System parameters: κ = 0.005, α = 8.0, β = 0.025, γ = 0.001, kS = 10−2, 〈TC 〉 = 0.1 and std(TC ) = 0.01. The initial seeds are

identical to those used in the simulations illustrated in Figs. 13, 15 and 16.

The increase in the number of nodes during simulations may appear to be a disadvantage with respect to implementa-
tion. However, as we have shown, fracturing causes only local changes to the mesh topology, and the relaxation method
used in the model only requires matrix updates when fractures propagate or when new fractures are nucleated. Addition-
ally, although the number of nodes increases during simulations, the number of triangular material elements is conserved.
By scaling the spring forces according to the Voronoi surfaces between nodes, and by splitting these into element-wise con-
tributions, inter-nodal forces are appropriately re-distributed after node splitting, without the need to adjust any springs. In
principle it should be possible to speed up the matrix updating further by preallocating memory for extra nodes in vectors
and matrices. Updates could then be accomplished by simply subtracting and adding elements at appropriate indices, elim-
inating the need to reassemble entire matrices. This should allow for matrix updates with efficiency similar to traditional
DEMmodels.

The idea of introducing fractures by splitting nodes can in principle be generalised to three-dimensional systems. The
extra book-keeping required for reconnecting themesh and inserting fracture elements upon fracturing seems to be thema-
jor complication. Two methods for representing fractures in the two-dimensional model were suggested. The first method,
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Fig. 15. Simulation with 20 fracture seeds on a quadratic grid of side length L = 90, showing the evolution of the fractures, volumetric stress field and

concentration field. System parameters: κ = 0.01, α = 2.0, β = 0.05, γ = 0.00025, kS = 10−2, 〈TC 〉 = 0.1 and std(TC ) = 0.01. The initial seeds are

identical to those used in the simulations illustrated in Figs. 13, 14 and 16.

which identifies fracture walls with the interfaces of the computational mesh, is directly transferable to three dimensions.
The second approach, which uses a projection of the surface obtained by the first approach, requires some modification in
order to work in three dimensions, because the surface associated with each node will be defined in terms of more than two
points, (i.e. points half way between the node and each of its neighbours on the fracture surface) and these points are not
necessarily coplanar. A solution to this problem would be to introduce an additional auxiliary point, for example the mean
of the other points defining the surface element, in order to triangulate fracture surfaces. Such an approach may reduce lat-
tice artefacts in three-dimensional DEM models. Despite being slightly more complicated, the projection method produces
fractures that are smoother than those achieved with the other method. Since it also ensures that the transport coupling is
independent of grid direction, we believe that the projection method is the superior of the two approaches.

There are many ways in which the DEMmodel presented here could be modified for various applications. More complex
inter-nodal forces could be implemented, for example by adding bending and torsional forces, or by using a different grid.
Mechanical elements with properties such as creep, strain hardening and plastic deformation could also be used. To study
fast processes a fully dynamic implementation, in which masses are assigned to the nodes and the system is evolved by
numerically solving Newton’s second law of motion, could be used, instead of using a quasi-static relaxation approach.
Different fracturing criteria, such as a Mohr–Coulomb criterion for compressive and shear fractures, could also be used.
This could easily be implemented for the fluid pressure-driven fracturing application discussed in this paper, however, an
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Fig. 16. Simulation with 20 fracture seeds on a quadratic grid of side length L = 90, showing the evolution of the fractures, volumetric stress field and

concentration field. System parameters: κ = 0.005, α = 2.0, β = 0.025, γ = 0.0005, kS = 10−2, 〈TC 〉 = 0.1 and std(TC ) = 0.01. The initial seeds are

identical to those used in the simulations illustrated in Figs. 13–15.

appropriate method for dealing with the closure of fractures and the shear forces between closed fracture surfaces would
be required. This could be achieved by using a collision-detection algorithm and imposing penalty forces to restrict overlap
of fracture and bulk elements. Anisotropy in elastic properties or composite materials could be modelled by defining spring
constants andmaterial strength individually for either nodes, springs or triangular elements. Dynamic adjustment of spring
equilibrium lengths would be a method for incorporating local material contraction or expansion, for example in response
to volume-changing chemical reactions with the fluid. With regard to fluid transport, it might be possible to couple the
DEM model with more advanced flow models, for example by decomposing fracture triangles into a finer mesh. A simple
modification to the current model would be to solve fracture flow as a pressure diffusion process on the triangular fracture
elements. Fracturing driven by fluids that do not obey the ideal gas equation of state could also be simulated. For example,
incompressible fluidsmay bemodelled by imposing conservation of fracture volumes during relaxation (similar to Ref. [37]).

To conclude, we believe that the model presented here addresses some of the challenges related to the modelling of
coupled processes of fluid transport, deformation and fracturing.
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A simple and reproducible analog experiment was used to simulate fracture formation in a low-
permeability elastic solid during internal fluid/gas production, with the objective of developing a
better understanding of the mechanisms that control the dynamics of fracturing, fracture opening
and closing and fluid transport. In the experiment, nucleation, propagation and coalescence of frac-
tures within an elastic gelatin matrix, confined in a Hele-Shaw cell, occurred due to CO2 production
via fermentation of sugar, and it was monitored by optical means. We first quantified how a fracture
network develops, and then how intermittent fluid transport is controlled by the dynamics of open-
ing and closing of fractures. The gas escape dynamics exhibited three characteristic behaviors: 1)
Quasi periodic release of gas with a characteristic frequency that depends on the gas production rate
but not on the system size. 2) A 1/f power spectrum for the fluctuations in the total open fracture
area over an intermediate range of frequencies (f), which we attribute to collective effects caused
by interaction between fractures in the drainage network. 3) A 1/f2 power spectrum was observed
at high frequencies, which can be explained by the characteristic behavior of single fractures.

I. INTRODUCTION

In general, the formation of fracture networks in the
rocks of the Earth’s crust is driven by a combination of
external stress applied at the boundaries of a system,
stress generated inside the system and stress generated
by gravitational body forces. Under some circumstances
one of these sources of stress may be dominant. Natu-
ral hydraulic fractures can form inside a rock matrix due
to internal fluid pressure build-up [1, 2]. Fluid pressure
build-up may have various origins including: the com-
paction of the rock matrix in sedimentary basins that
may trap fluids in overpressured reservoirs [3]; the com-
paction of gouge in fault zones [4]; magma emplacement
and rapid heating of either water (phreatic explosions)
or organic-rich rocks [5]; or the partial melting of min-
erals [6]. The internal fluid pressure can also be gen-
erated by chemical reactions which produce fluid in a
tight rock matrix. The reaction-induced fracturing of
low-permeability rocks during hydrocarbon generation in
organic-rich shales during diagenesis [3] is an important
example. In these systems, the fracture network devel-
ops in response to internal pressure generation and the
resulting fracture pattern is therefore the consequence of
energy dissipation at various scales in the rock body. In
the present study, our goal is to better understand the
spatio-temporal coupling between elastic matrix defor-
mation, fracture generation and fluid transport.

Visualizing the coupling between fluid pressure build-
up and the fracturing processes is important. X-ray
micro-tomography can be used to visualize and analyze
the three-dimensional morphology of fractures produced
experimentally in rocks [7, 8]. The capability of inves-
tigating rock deformation and fracturing under a wide
range of thermodynamic conditions (temperature, pres-

sure) with in-situ X-ray imaging is also under develop-
ment. Examples include imaging of microcracks forming
during heating of shales [9], investigation of the dehydra-
tion of gypsum during heating [10] and the generation
of magmatic melt in oceanic olivine-rich rocks [11]. In
such studies, obtaining high temporal and spatial reso-
lutions, under the thermodynamic conditions where the
process occurs, is technically challenging, and the amount
of data that can be collected is smaller than that which
can be obtained under room temperature and pressure
conditions. Moreover, the micro-tomography technique
does not yet allow fast data acquisition for geomateri-
als because of their high absorption of X-rays. Other
experimental techniques that enable fracturing to be in-
vestigated at high temporal and spatial resolutions are
therefore complementary to X-ray tomography and in-
situ studies.

To study fracture formation processes, experiments us-
ing materials analogous to rocks, such as elastic gels, clay,
plasticine or sand, are widely used [12–14]. With such
analog systems, the accumulation and transport of fluid,
as well as hydraulic-fracture propagation, has been stud-
ied [15–18]. In all but one study, fluid was injected at a
single point. Bons and van Milligen [12] simulated homo-
geneous gas production, by using CO2 produced by the
yeast mediated fermentation of sugar. In their experi-
ment, sand was used as the host matrix. Sand behaves
as a brittle solid during fracture formation, but grain
flow occurs when fractures are reactivated after healing.
This system was designed to model the transport of melt
within rock. Bons and van Milligen [12] found that the
power spectrum for the fluctuations in the volume of
trapped gas, exhibited a 1/f frequency dependence at
low frequencies (f) and as 1/f2 behavior at high fre-
quencies. The authors argued that the system exhibited
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self-organized criticality and long range memory effects.
Dahm [16] observed the propagation of hydraulic frac-

tures that open at one end and close at the other end,
providing pathways for fluid expulsion. The intermittent
character of fluid transport in time and space was also ob-
served in the experiments of Bons and van Milligen [12],
and the texture of the minerals in natural calcite veins
has been interpreted in terms of a crack-seal process with
several generations of fracture opening [19]. However, the
intermittency of this fracture opening and closing process
could not be studied in-situ. In low permeability rocks,
the opening, closing and healing of fractures may be the
dominant fluid transport mechanism during compaction
and fluid expulsion. In some systems, phenomena such
as episodic fluid expulsion [20] and porosity waves [21]
are also controlled by these processes.
In a previous study [18] a laboratory experiment, in

which the fracture patterns generated by homogeneous
gas production inside a thin elastic gelatin layer could be
analyzed, served as a model system for fracturing driven
by fluid generation in brittle rocks. Here, we describe an
investigation in which the dynamics of 2D fracture nu-
cleation, growth and coalescence was monitored and an-
alyzed until a fracture network occupied the entire sys-
tem. As time elapsed, the internally produced gas es-
caped from the fractures, which became partially healed.
When the gas pressure increased again, the same frac-
tures were reactivated and served as pathways for gas
discharge. The dynamics of fractures opening, closing
and interaction with neighboring fractures was recorded
using optical imaging and quantified. Our main objec-
tive was to characterize how fractures initiate, grow, and
coalesce, and how the produced gas is expelled from the
system.

II. MATERIALS AND METHODS

II.1. Experimental set-up

We studied experimentally the accumulation, segre-
gation, and escape of fluid from an impermeable solid,
in a model system for the fracturing of organic-rich
shales during hydrocarbon production [9]. A quasi two-
dimensional elastic gelatin layer, in a Hele-Shaw cell with
open boundaries was used to simulate an almost imper-
meable shale rock. CO2 gas was produced by yeast me-
diated fermentation of sugar (sucrose) in the bulk of the
gelatin matrix. The transparency of gelatin enabled high
resolution, high contrast optical imaging and monitoring
of fracture formation during CO2 production. Although
the gelatin medium does not reproduce the complexity
of heterogeneous shales, it does reproduce several basic
features of the fracturing process.
The Hele-Shaw cell consisted of two 10mm thick glass

plates clamped together and separated by 3mm (Fig-
ure 1A). A white light source and photo- and video-
cameras (AF-S Nikkor 18-70 mm, and DX lens on Nikon
D300) were used to record the fracturing process. The

FIG. 1. A: (Color online) The Hele-Shaw cell consisted of two
parallel 10mm thick glass plates separated by a 3mm wide
gap that was filled with a layer of gelatin. The boundaries in
the lateral directions were free of confinement and the gener-
ated gas could escape only through them. The Hele-Shaw cell
stood vertically, and back lighting was used to illuminate the
fracture pattern. B: Thresholded image of a fracture pattern
recorded during experiment D (see Table I).

preparation protocol consisted of cleaning the inner sur-
faces of the Hele-Shaw cell before filling it with an aque-
ous gelatin gel (cross-linked collagenous polymers) to en-
sure maximum filling and adhesion of the gelatin to the
glass plates. A rubber strip was placed between two glass
plates, along their edges, for sealing purposes while the
gel was solidifying. The sealing rubber strip was removed
at the beginning of each experiment.

II.2. Materials

Dry sheets of gelatin (from Gelita) were soaked in wa-
ter (20◦C) for 5-7 min and then mixed with hot water
(100◦C) until they were completely dissolved. The same
gelatin concentration was used in all experiments: 58 g of
gelatin sheets per 1 dm3 of water. Sugar was added to the
hot gelatin mixture and dissolved. The gelatin and sugar
mixture was then cooled to 30◦C, and mixed with fresh
baking yeast while the gelatin/sugar/water mixture was
still liquid, to ensure homogeneous dispersion. The liq-
uid gelatin-yeast mixture was poured into the Hele-Shaw
cell, and kept in a refrigerator (6◦C) in a vertical orien-
tation until the gel solidified (approximately 2 h). After
the gelatin had solidified, the Hele-Shaw cell was placed
in a horizontal orientation and kept for 10 h in the refrig-
erator, in order to obtain a homogeneous elastic gelatin
matrix.

II.3. Experimental protocol

The experiments were conducted at 17◦C, and under
these conditions the gelatin was transparent, brittle and
nearly elastic. The rheological properties of gelatins have
been studied in detail [22] and application of this mate-
rial as a rock analog has been proposed [13]. Inversion
and fermentation of the dissolved sugar by yeast enzymes
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produced CO2. For each experiment, half of the gel was
poured into a bottle, to measure the gas production rate
using a simple volumeter system (Figure 2A).

FIG. 2. A: (Color online) Volumeter system to measure CO2

production rate. Gas generated in the gelatin-filled bottle is
transported inside a closed glass tube filled with water. The
variation of water level (arrow) indicates the amount of pro-
duced gas. B: CO2 production measured using the volumeter
system. Data correspond to an experiment with reference
concentration of yeast and sugar x1. Inset shows the calcu-
lated rate of gas production. C: LVDT transducer is used
to measure the out of plane movement of the Hele-Shaw cell
glass plates relative to each other.

TABLE I. List of experiments and conditions. The yeast and
sugar concentrations are given in Table II. Δt is the time
resolution of the images.

Exp. System size Yeast+sugar Δt Duration

A 32x32 cm x1 60 s 16 h 21 min
B 25x25 cm x1 15 and 60 s 14 h 53 min

video 15 fps 6 h 55 min
C 12x12 cm x1 60 s 29 h 25 min
D 25x25 cm x1 60 s 72 h 26 min
E 25x25 cm 2x1 15 s 36 h 16 min
F 25x25 cm x1/2 15 s 92 h 55 min

Six experiments were conducted under different condi-
tions (see summary in Table I and Supplementary Ma-
terial for the experiment D). Two main parameters were
varied: the system size (the lateral dimensions of the
gelatin filled Hele-Shaw cell) and the concentrations of
yeast and sugar. The duration of experiment D was
longer than the durations of experiments A, B and C,
to investigate the influence of gas production variation.
In experiments A-E, fracturing was observed, but in ex-
periment F the gas production was not sufficient to cause
fracturing. Experiments B and D were performed under
identical conditions, to test for reproducibility.

TABLE II. Variation of gas production.

Concentration x1/2 x1 x2

Amount of yeast (g/dm3) 1.25 2.5 5
Amount of sugar (g/dm3) 3.75 7.5 15
CO2 production rate (cm3/h) 0.4 1.6 6.2

FIG. 3. (Color online) Variation of gas production rate in
three experiments with the same system size. Snapshots are
shown at a late stage after which no new fractures appeared.
A: In Experiment F, the gas production rate was very slow,
no fractures were observed and, gas was transported out of
the Hele-Shaw cell by diffusion. B: In experiment D, the
developed fracture pattern had a medium fracture density.
C: In experiment, E the fully developed fracture pattern was
very dense.

Fracture nucleation and propagation was monitored
by taking images consisting of 4300 × 2800 pixels with
0.1 mm resolution with a time interval of Δt = 15−60 s.
At the same time, in experiment B, video was recorded
at a rate of 15 fps, in order to resolve the fast processes
of fracture collapse and gas escape. The recording was
stopped when the fracture nucleation rate became very
small.
A picture of the unfractured gelatin was taken as a

reference image. The reference image was subtracted
from all subsequent images to correct for the background
lighting. The same threshold value was used to convert
the images into binary form (0 or 1) (Figure1B). Pix-
els with a value of 0 (white color) on the binary images
correspond to unfractured gelatin matrix, while pixels
with a value equal to 1 (black color) correspond to frac-
tured sites. Additional experiments were conducted us-
ing cross-polarizers to image the elastic strain field at
the fracture tips, since gelatin is a photoelastic material
(Figure 4).

III. DEVELOPMENT OF A FRACTURE
NETWORK

III.1. Nucleation and development of fractures

In all experiments, the gas production rate increased
steadily from zero, reached a maximum after several
hours and then decreased (inset of Figure 2B). All mea-
surements were conducted when the gas production rate
was relatively high, i.d. in the interval t = 8− 30 h. The
average production rates for these periods are given in
Table II. We assume that CO2 was produced homoge-
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FIG. 4. (Color online) Time-lapse strain field imaged using
cross-polarizers. The photo-elastic property of the gelatin en-
abled the observation of elastic stress concentration at the
fracture tips and interactions between fractures. Dark color
indicates low stress and light color correspond to high stress.

neously throughout the gelatin layer during the experi-
ments. CO2 is produced by individual yeast cells, which
are well dispersed in the gel. Because the permeabil-
ity of the gel polymer network is extremely low, CO2

was transported by molecular diffusion in the unfrac-
tured gelatin. As gas production increased, small vol-
umes of gas accumulated randomly as bubbles. CO2 dif-
fused from the surrounding matrix into these bubbles,
which grew and transformed into cracks. The first frac-
ture typically nucleated 1 − 3 h after the start of the
experiment (Figure 5A). After nucleation, cracks began
to propagate (Figure 5B), while new cracks were formed.
The fractures propagated in both directions until they
reached the free boundary (the perimeter of the gelatin
layer (Figure 1A)) or another fracture, and if a fracture
reached the open boundary gas escaped from the frac-
ture. When one fracture reached another fracture, they
coalesced and the strain field at the fracture tip decreased
to a value of essentially zero (Figure 4). The pressure in-
side the fracture dropped, and the fracture aperture col-
lapsed when gas escaped from a fracture. When a frac-
tured closed, the fractured pixels disappeared from the
image and the closed fracture is indicated by a dashed
line in Figure 5C. Diffusion of gas into a closed fracture
reopened the fracture, and as a result the fracture pixels
reappeared, and the fractures could be seen as continu-
ous lines in the digital images. The fracture opening and
closing was quasi-periodic, as shown below.

The adhesion of the gel to the surface of the glass walls
of the Hele-Shaw cell caused resistance to movement of

FIG. 5. (Color online) Time-lapse images of fracture forma-
tion in experiment B. Dark pixels correspond to the fractured
sites. A: As yeast produced CO2, gas accumulated in bub-
bles, which nucleated randomly in the gelatin layer, fractures
began propagating. B: Fractures grew and propagated until
coalescence. C: Coalesced fractures formed a network which
provided pathways for fluctuating flow of CO2 to the open
boundaries, and the fractures opened and closed over time.

the gel relative to the glass plates. When cracks open,
new volume is generated in the system, but image corre-
lation analysis [23] showed that no systematic expansion
of the gel in the plane of the Hele-Shaw cell occurred.
However, by using an LVDT displacement sensor, we
found that the glass plates confining the gel moved apart
in the direction perpendicular to the plane of the Hele-
Shaw cell, allowing the gel to increase in thickness and
thus accommodate the generated gas volume. The LVDT
measurements can be found in [18].
When a fracture is formed in the gel, the fracture cross-

section has a lenticular shape with zero width at the glass
plates and a maximum width mid-way between the glass
surfaces. In order to open the fracture, a pressure force
must be applied on the fracture walls to overcome the
elastic resistance. As the pressure in a fracture increases,
the fracture aperture increases and the fracture walls be-
come more curved in the plane perpendicular to the glass
surfaces and the direction of the fracture. The thickness
of the fracture lines on the images represents the max-
imum widths of fracture openings, and it varied from 0
to 5 pixels. The number of dark pixels in an image cor-
responds to the projection of the gas filled fracture aper-
tures onto the plane of the Hele-Shaw cell, the number
of dark pixels is called the fracture area. The variation
of the fracture area is used to quantify the dynamics of
the fracture network evolution and subsequent fluid ex-
pulsion.

III.2. Fracture coalescence

In order to analyze the evolution of fracture networks,
fractures must be identified from the moment at which
they appear. As an input, the time series of binary im-
ages obtained after image analysis was used (Figure 5).
The binary images were superimposed from the first up
to the current time-step, so that all pixels which belonged
to a fracture at any earlier time during the experiment up
to the current time were included. In this way a series of
images of the continuously developing fracture network
was obtained, whether fractures are open or closed (Fig-
ure 6). These cumulative fracture patterns include all
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the potential pathways for gas drainage.

FIG. 6. (Color online) The evolution of the fracture network
for experiment D. Connected fractures are indicated by the
same color. A: New cracks nucleate. B: Fractures propagate
and coalesce. C: Coalesced fractures form large connected
pathway for outgoing gas.

During the early stage of an experiment, the number
of pixels, which measured the fracture area, grew mono-
tonically with increasing time because new fracture pix-
els were constantly added. During this stage, both the
fracture lengths and fracture widths increased. In or-
der to investigate how the fracturing network developed
with time, the fracture length was used as a more accu-
rate representation of the growth of the fracture pattern.
A skeletonization procedure was applied to the overlap-
ping images to reduce the fracture width to one pixel so
that the number of fracture pixels measured the fracture
length.

FIG. 7. (Color online) Evolution of the connected fracture
pathway in experiment D. Blue (upper) curve: Tempo-
ral evolution of the total length of all connected fractures.
Red (lower) curve: Temporal evolution of the largest con-
nected fracture pathway. The abrupt staircase-like increases
in the total fracture length corresponds to fracture coales-
cence events. The three regimes 1,2,3 are described in the
text.

Figure 7 shows the evolution of the total length of
all accumulated fractures with time (blue curve). Three
regimes of fracture growth can be distinguished. In the
first regime, fractures were nucleated and grew slowly.
In the second regime existing fractures grew rapidly and
new ones appeared. In the third regime there was little

or no fracture growth.
Overlapping binary images were used to extract and

analyze connected fractures. A label was assigned to ev-
ery fracture, and they are indicated by different colors
in Figure 6. The analysis of the fully developed station-
ary fracture pattern was performed in another study [18].
Here we use the fracture labeling and information about
fracture connectivity to analyze the spatial correlation of
gas drainage dynamics.
As fractures propagated, they coalesced and formed

connected clusters (Figure 6C). Initially, the length of
the largest connected fracture cluster evolved smoothly.
When cracks started to coalesce, the length of the
largest cluster increased by discrete increments, produc-
ing jumps in the red curve in Figure 7. This dominant
cluster drained the largest gelatin area and its evolution
dominated the drainage of the whole system.

III.3. Evolution of the total fracture area

Figure 8 shows the time evolution of the total fracture
area in the gelatin layer in five distinct experiments (A-
E). The number of fracture pixels was scaled by the area
of the gelatin layer. Three regimes of fracturing could
be distinguished. In the first (fractures nucleation and
propagation) regime, the total fracture area increased ex-
ponentially. In the second regime some fractures closed
while new cracks still appeared and grew in length and
width. This regime is characterized by an overall increase
in the fracture area with superimposed oscillations. Fi-
nally, in the third regime, no new fractures were formed.
However, fractures continued to close and reopen, and
the number of fracture pixels fluctuated around a slowly
varying value.

FIG. 8. (Color online) Total fracture area time series for five
experiments.

The fluctuation amplitude and the time between frac-
ture opening (fracture area increase) and fracture closing
(fracture area decrease) depended on the rate of gas gen-
eration in the system as well as on system size. From
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Figure 8 it can be seen that after about 2000 min, when
the gas production decreased, the fluctuation amplitude
in experiment D decreased by a factor of about two. This
was cause by significant depletion in CO2 production.

IV. DYNAMICS OF THE FRACTURE
PATTERN

IV.1. Temporal fluctuations of single fractures

In this section, we describe the dynamics of frac-
tures that are not connected to other fractures but have
reached the open boundary of the Hele-Shaw cell (Fig-
ure 6). The number of these isolated fractures varied in
the different experiments. In experiment C, almost all of
the fractures were isolated, because of the small size of
the system. The inset of Figure 9 shows the variation of
the fracture area for one of the isolated fractures from ex-
periment C. A clear periodicity in the fracture area fluc-
tuations can be observed. To extract the low frequency
trend from the signal, the original data were smoothed
using a median filter. The obtained low-frequency trend
(the smoothed signal) was subtracted from the time series
and the discrete Fourier transform (| Y (f) |) was calcu-
lated using the fast Fourier transform algorithm. The
power spectrum ((| Y (f) |)2) of the signal featured a
well-pronounced peak. To determine the peak frequency,
the power spectrum was smoothed using a median filter
(Figure 9).

FIG. 9. (Color online) Power spectrum of the fracture area
time series for one of the isolated cracks in experiment C.
Red (light gray) curve: original data. Blue (dark gray) curve:
filtered data. Black dot: peak frequency fc. Inset: Variation
of the fracture area for one isolated fracture in the experiment
C after a low frequency detrending.

Power spectra of opening/closing fracture area fluc-
tuations were calculated for all isolated fractures in ex-
periments A, B, and C. These three experiments were
conducted at the similar gas production rate. Figure 10
shows the distribution of the characteristic frequencies

fci. The characteristic frequency did not depend on
fracture length and it was essentially the same for the
experiments with different system sizes A, B, and C -
fci = (1.97± 0.64)× 10−3 Hz.

FIG. 10. Characteristic frequencies fci for isolated fractures
in experiments A,B, and C versus length of the fractures li.
The average characteristic frequency for each experiment is
indicated in the upper right corner. The characteristic fre-
quency range is indicated by the dashed line and shaded area
on the plot).

The following simple model for periodic fracture open-
ing and closing during homogeneous gas production is
proposed to explain this observation. We consider an
isolated crack which drains from one end to the open
boundary. The rate j at which gas flows into the fracture
is proportional to the area of the drainage basin of the
fracture j ∝ A, which is proportional to the product of
the fracture length l and the basin width wb: A ∝ l×wb.
In [18] we showed that the typical basin width is con-
stant for a given gas production rate, and therefore the
gas flux is proportional to the fracture length, j ∝ l. The
fracture capacity c is proportional to the product of the
fracture length l and the average fracture aperture width,
we, at which gas is expelled from the fracture, and since
we is also constant c ∝ l. Gas escape occurs when the
amount of gas in the fracture exceeds the fracture capac-
ity. From the relations j ∝ l and c ∝ l, it follows that the
time between two escape events (the period of fractured
area fluctuations), τ , does not depend on fracture length
but only on the rate of gas production per unit area.

IV.2. Single fracture behavior in the high
frequency range

High frequency data from experiment B were used to
determine the nature of the power spectrum decay in the
high frequency range. Figure 11 shows the fracture area
fluctuation power spectrum of one of the isolated frac-
tures, and it can be seen that numerical power spectrum
is consistent with a 1/f2 power frequency relationship at

118



7

high frequencies. Similar results were obtained for other
isolated fractures.

FIG. 11. (Color online) Power spectrum of the area fluctua-
tion of one of the single fractures in the experiment B. Pink
(light gray) curve represents power spectrum, smoothed with
median filter. The power spectrum varies as 1/f2.

IV.3. Temporal fluctuations in the total fracture
area

Now, we consider the variations of the total fracture
area with time for all experiments (Figure 8). All data
were detrended as described above (IV.1). The fluctu-

FIG. 12. Fracture area fluctuations after removing the low
frequency trend between 500 and 2000 min in experiment D
(see Figure 8).

ation of the total fracture area features different ampli-
tudes and frequencies (Figure 12). To analyze the fre-
quency distribution the fracture fluctuation time series
for five experiments (Figure 8) were divided into inter-
vals of equal duration. Each interval was detrended sep-

arately, scaled by the standard deviation and fast Fourier
transform algorithm was applied. The power spectra ob-
tained in the manner were smoothed with a median filter
and averaged for all the intervals in each experiment. The
time series from experiment D, which had the longest du-
ration, was divided into two parts: D1 - from 500 min to
2000 min (the period of relatively high gas production)
and D2 - from 2000 min until the end of the experiment,
when the gas production depleted. Figure 13A shows the
smoothed frequency distribution curves. They are char-
acterized by the high frequency slope, the position of the
peak and the low frequency tail. It can be seen that
the peak frequency fp is nearly the same for experiments
A, B, C and D1. These peaks lie in the characteristic
frequency range for isolated fractures (dashed line and
shaded area on the plot). For experiments D2 and E the
peak is shifted in frequency, because experiments A, B,
C and D1 were conducted with approximately the same
gas production rate, whereas during experiments D2 and
E the gas production rate was different.
The power spectrum scaled by fpi (Figure 13B) shows

three distinct features: 1) A periodic release of gas, with
a characteristic frequency that is independent of system
size and depends on the gas production rate; 2) a power
spectrum of the form 1/f2 at high frequencies, which can
be explained by the single fracture characteristic behav-
ior (see section IV.2); and 3) a 1/f power spectrum over
an intermediate range of frequencies, which is thought
to be due to collective effects caused by communication
of fractures during drainage of a connected fracture net-
work. Using R/S analysis, Hurst exponents of H ≈ 0.5
at small time scales (high frequencies) and H ≈ 0 at
larger time scales (intermediate frequencies) were mea-
sured. These results are consistent with the exponent
relationship γ = 1 + 2H expected for self-affine fractal
processes with power spectra of the form P (f) ∝ f−γ .

IV.4. Spatial correlations

We now describe how different parts of the fracture
pattern interact with each other. First, we consider the
dynamics of isolated fractures, the fractures which are
not connected to other fractures but only drain to the
open boundary. The fractures are located at some dis-
tance from each other, and this distance is larger than the
range of elastic interaction λ = 10± 5 mm [18] (the elas-
tic Greens function has a long range, 1/r form, where r is
the distance between the applied force and the displace-
ment response, however, adhesion between the gel layer
and the glass plates localizes the stress and stain fields
thus reducing the range of interaction). The fracture area
time series for each isolated fracture has a characteristic
period.
The autocorrelation function of the fracture area time

series for isolated fractures allows the fluctuation peri-
odicity to be determined. The autocorrelation function
for one of the 12 fractures is presented in the Figure 14A.
The fluctuation period was about 10 min. The average of
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FIG. 13. (Color online) A: Power spectra of the fracture area
fluctuations for five different experiments. The large dots dis-
play the peak height and frequency, fpi, for each experiment.
Peak frequencies for experiments A,B,C and D1 lie in the in-
terval f̄pi = (1.69 ± 0.14) × 10−3 Hz. The dashed line and
shaded area indicate the average and range of characteristic
frequencies for isolated fractures f̄ci (Figure 10). B: Power
spectra of fracture area fluctuations for five different experi-
ments, scaled by the critical frequency fpi and amplitude. All
data collapse onto a single master curve.

the autocorrelation functions for 12 isolated fractures in
experiment B had a well-defined peak, which corresponds
to the average characteristic period, τ � 540 ± 30 s, for
the fracture area fluctuations of all individual isolated
fractures in this experiment (Figure 14B). This confirms
the results obtained via Fourier analysis (Figure 10).
In order to investigate how isolated fractures interact

with each other, a cross-correlation function between all
possible pairs of 12 isolated fractures from experiment B
was calculated. For two time signals a1(t) and a2(t), we
computed the following quantity:

R(τ) =
1

N − |τ |

⎡
⎢⎢⎣

N∑
τ
a1(t) · a2(t− τ), τ > 0

N∑
|τ |

a1(t+ τ) · a2(t), τ < 0
(1)

FIG. 14. Autocorrelation function for isolated fractures in the
experiment B. A An example of the autocorrelation function
for one fracture. B Average autocorrelation function.

where t = [0, N ] is time, and τ is the time lag between the
two signals. Figure 15 A,B shows two examples of cross-
correlation functions for the fluctuations of two isolated
fractures. The opening and closing oscillations of the two
fractures were synchronized. Figure 15A shows an exam-
ple of in-phase oscillations, and Figure 15B shows an ex-
ample of two fractures which open and close out of phase.
For both examples, the average period between cross-
correlation function peaks is 480 s, a periodicity similar
to that indicated by Figure 10. Because the fracture area

FIG. 15. Cross-correlation function for pairs of isolated
fractures in experiment B. A The positive values of cross-
correlation function during the first time period indicates a
zero phase shift in fracture area fluctuations (in phase). B
The negative values of cross-correlation function during the
first time period indicates that fractures open and close with
a half period phase shift (out of phase).

variations for different isolated fractures have different
initial phase shifts, the average of the cross-correlation
functions for all possible pairs does not exhibit any peri-
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odicity (Figure 16, green curve).

FIG. 16. (Color online) Average cross-correlation function
for all pairs of fractures. Green (solid line): The average
of cross-correlation functions for all possible pairs of isolated
fractures in the experiment B. Blue (dotted line): Aver-
age correlation function for fracture branches at a topological
distance of Lt = 1 in experiment D. Red (dashed line):
Average correlation function for fracture branches at a topo-
logical distance of Lt = 2 in experiment D.

We now address the correlation of fractures that are
connected to each other and form a fracture network
through which CO2 can flow from the gelatin to the exte-
rior of the Hele-Shaw cell. We consider fracture branches
between intersection points (Figure 6). If two crack
branches are connected at a junction point, we call them
nearest neighbors and define the topological distance be-
tween them as Lt = 1. If two crack branches have one
neighbor in common, we say that these branches are next-
nearest neighbors and that they are separated by a topo-
logical distance of Lt = 2. In general, if two fractures are
connected by a minimum of n other fractures, the topo-
logical distance between them is Lt = n+1. The fracture
branches with topological distances of Lt = 1 and Lt = 2
can communicate with each other through the junction
points. This means that gas can flow from one fracture
to another through the junctions.

The cross-correlations between all pairs of fracture
branches separated by a topological distance of Lt = 1,
is indicated by the blue curve in Figure 16. Similarly, the
cross-correlations between all pairs of fracture branches
separated by a topological distance of Lt = 2, is indicated
by the red curve in the Figure 16. The instantaneous
correlation for nearest neighbors (Lt = 1) is larger (30%)
than that for fracture branches next-nearest neighbors
separated by a topological distance of Lt = 2 (25%). The
opening and closing of nearest neighbor fractures remain
correlated for at least ten periods.

V. CONCLUSION

A simple and reproducible analog experiment was de-
veloped to simulate the dynamics of fracture patterns
formed in a low permeability elastic solid during inter-
nal fluid production and subsequent expulsion. In this
model, gelatin was used as a brittle elastic medium, into
which dissolved sugar and yeast were incorporated to
generate carbon dioxide at a controlled rate. The nu-
cleation of gas bubbles and the diffusion of CO2 into the
bubbles and fractures that evolved from them produced
overpressures that created a network of fractures. The
gas transport and expulsion out of the system are con-
trolled by intermittent fracture opening and closing. Sin-
gle fractures that reach the boundary of the Hele-Shaw
cell exhibit quasi-periodic opening and closing dynamics,
and the periodicity of gas release is independent of system
size and fracture length, but depends on gas production
rate. The cumulative dynamics of the drainage fracture
pattern area has a 1/f2 power spectrum at high frequen-
cies, which we explain in terms of single fracture dynam-
ics, and 1/f dependence in the intermediate frequency
range, that is argued to be due to collective effects in the
drainage network. The analysis of spatial correlations in
the fracture pattern shows the degree of communication
between fractures through fracture junctions that act as
valves.

This simple analog model exhibits rich dynamical be-
haviors resulting from the coupling between the genera-
tion and transport of a fluid and the deformation and
fracturing of a brittle elastic solid, and it provides a
proxy for several natural processes in the Earth’s crust
in which fluid expulsion is controlled by both internal
fluid production and elastic interactions with the sur-
rounding rocks. It was necessary to work with a simple
experimental model in order to obtain the large quanti-
ties of detailed high resolution information needed to jus-
tify the statistical analysis reported here. In the future,
we expect that advances in X-ray tomography, acoustic
(seismic) imaging, electrical imaging and other methods
will enable similar experiments to be conducted with het-
erogeneous geomaterials under conditions that are more
relevant to geosciences and geotechnology applications.
While we expect that the results of these experiments will
differ in important ways from the results reported here,
we also expect that fluctuations in fracture area (fluid
volume) with power law spectra, correlations between
the opening and closing of neighboring fractures, char-
acteristic fracture opening and closing frequencies and
persistent short time scale fluctuations in the fluid vol-
ume will likely prove to be generic characteristics of both
simple experimental systems and complex natural sys-
tems. In both the 3-dimensional experiments of Bons
and van Milligen [12] and the quasi-two-dimensional ex-
periments reported here a 1/f gas volume/area power
spectrum was found at intermediate frequencies and a
1/f2 power spectrum was found at high frequencies, and
this supports the idea of common generic behavior.
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