
Backward stochastic differential equations with respect

to general filtrations and applications to insider finance

Bernt Øksendal1,2 and Tusheng Zhang3,1

3 September 2009

Abstract

In this paper, we study backward stochastic differential equations with respect to general
filtrations. The results are used to find the optimal consumption rate for an insider from a cash
flow modeled as a generalized geometric Itô-Lévy process.
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1 Introduction

The classical backward stochastic differential equation (BSDE) consists in finding a pair (Yt, Zt) of
Ft -adapted processes such that{

dYt = −f(t, Yt, Zt)dt + ZtdBt; t ∈ [0, T ]
YT = ξ.

(1.1)

where Bt is a Brownian motion on a filtered probability space (Ω,F , {Ft}t≥0, P ) , ξ is a given FT

-measurable random variable and f : [0, T ]×R×R → R is a given function.
If f(t, y, z) = f(t, y) does not depend on z, then an equivalent way of writing (1.1) is

Yt = E
[
ξ +

∫ T

t
f(s, Ys)ds|Ft]; t ∈ [0, T ]. (1.2)

In this paper we extend (1.2) to a general filtration Ht and consider the problem to find an Ht-
adapted process Yt such that

Yt = E
[
ξ +

∫ T

t
f(s, Ys)ds|Ht]; t ∈ [0, T ], (1.3)

where ξ now is a given HT -measurable random variable. Thus we arrive at a BSDE based on a
general filtration Ht, not necessarily the filtration Ft of Brownian motion.

This turns out to be a useful generalization for certain applications, for example in connection
with insider trading in finance.
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Here is an outline of the paper. In Section 2 we give a more detailed presentation of our BSDE
based on a given filtration. In Section 3 we prove existence and uniqueness of solutions of such
equations. In Section 4 we study reflected BSDEs based on a given filtration. We prove existence
and uniqueness of solution and we show that it coincides with the solution of an optimal stopping
problem (for H-stopping times). In Section 5 we give an application to finance. We show that the
optimal consumption problem for an insider can be transformed into a BSDE with respect to the
information filtration Ht of the insider. Then we apply results from previous sections to find the
optimal consumption rate explicitly.

2 Statement of the problem

Let (Ω,H,Ht, P ) be a complete filtrated probability space with a right continuous filtration {Ht, t ≥
0}. Let T > 0 and let ξ be an HT measurable random variable with E[|ξ|] < ∞, where E denotes
expectation with respect to P . Let f(ω, t, y) : Ω×[0, T ]×Rd → Rd be a given P×B(Rd)-measurable
function, where P is the predictable σ-field associated with the filtration {Ht, t ≥ 0}. Consider the
following backward stochastic differential equation (BSDE):

BSDE(1): Find an Ht- predictable process Yt such that

E
[ ∫ T

0
|f(s, Ys)|ds

]
< ∞. (2.1)

and

Yt = E
[
ξ +

∫ T

t
f(s, Ys)ds|Ht]; t ∈ [0, T ]. (2.2)

Next, consider the following BSDE:

BSDE(2): Find an Ht- predictable process Yt and an Ht-local martingale Mt such that{
dYt = −f(t, Yt)dt + dMt

YT = ξ.
(2.3)

An equivalent formulation to (2.3) is that∫ T

0
|f(s, Ys)|ds < ∞ a.s. (2.4)

and

Yt = ξ +
∫ T

t
f(s, Ys)ds− (MT −Mt); t ∈ [0, T ]. (2.5)

There is a close relation between BSDE(1) and BSDE(2): First note that if Yt satisfies BSDE(1),
then we can define

Mt = E[ξ +
∫ T

0
f(s, Ys)ds|Ht]

and we see from (2.2) that

Yt = E[ξ +
∫ T

0
f(s, Ys)ds−

∫ t

0
f(s, Ys)ds|Ht]

= −
∫ t

0
f(s, Ys)ds + Mt.
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Moreover, YT = ξ. Hence (Yt,Mt) satisfies BSDE(2).

Conversely, if (Yt,Mt) satisfies both (2.5) and the stronger version (2.1) of (2.4), then (1.2)
follows by taking conditional expectation of (2.5) with respect to Ht ( stopping if necessary).
Hence Yt satisfies BSDE(1).

We now proceed to study BSDE(2).

Definition 2.1 We say that a pair (Yt,Mt, t ≥ 0) is a solution to BSDE(2) if
(i). Yt is an Ht-predictable, right continuous Rd-valued process.
(ii). Mt, t ≥ 0 is a right continuous Rd-valued Ht-local martingale.
(iii). For every t ≥ 0,

Yt = ξ +
∫ T

t
f(s, Ys)ds− (MT −Mt) (2.6)

P -almost surely.

3 Backward Stochastic Differential Equations

3.1 Existence and Uniqueness

Theorem 3.1 Suppose ξ ∈ L2(Ω) and E[
∫ T
0 |f(t, 0)|2dt] < ∞. Assume that f is uniformly Lips-

chitz with respect to y, i.e., there exists a constant C such that

|f(t, y1)− f(t, y2)| ≤ C|y1 − y2| (3.1)

Then there exists a unique solution (Y, M) to the BSDE(2) satisfying

E[ sup
0≤t≤T

|Yt|2] < ∞. (3.2)

Proof. Let B denote the Banach space of Rd-valued, Ht-adapted processes X such that

||X||B := sup
0≤t≤T

(E[X2
t ])

1
2 < ∞.

Define recursively a sequence Y n
t , t ≥ 0 of processes in B by Y 0 = 0 and

Y n+1
t = E[ξ +

∫ T

t
f(s, Y n

s )ds
∣∣Ht] (3.3)

It is easy to see that Y n ∈ B for all n ≥ 1. Moreover,

E
[
|Y n+1

t − Y n
t |2

]
≤ TE

[ ∫ T

t
|f(s, Y n

s )− f(s, Y n−1
s )|2ds

]
≤ CT

∫ T

t
E[|Y n

s − Y n−1
s |2]ds (3.4)

Set φn(t) = E[|Y n
t − Y n−1

t |2]. Then (3.4) becomes

φn+1(t) ≤ CT

∫ T

t
φn(s)ds (3.5)
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Repeating the above inequality, we get

sup
0≤t≤T

φn+1(t) ≤
(

sup
0≤s≤T

φ1(s)
)(CT )nTn

n!
(3.6)

This implies that Y n, n ≥ 1 is a Cauchy sequence in B. Denote the limit of Y n by Ŷ . Letting
n →∞ in (3.3) we obtain

Ŷt = E[ξ +
∫ T

t
f(s, Ŷs)ds

∣∣Ht] (3.7)

Next we show that Ŷt, t ≥ 0 admits a right continuous version which will be the solution to
BSDE(2). Let Mt, t ≥ 0 be the right continuous version of the square integrable martingale E[ξ +∫ T
0 f(s, Ŷs)ds

∣∣Ht]. Put

Yt = Mt −
∫ t

0
f(s, Ŷs)ds, t ≥ 0

Then Yt is right continuous and for every t ≥ 0,

Yt = E[ξ +
∫ T

t
f(s, Ŷs)ds

∣∣Ht] = Ŷt

P -almost surely. By the Fubini theorem, it follows that

Yt = Mt −MT + ξ +
∫ T

0
f(s, Ŷs)ds−

∫ t

0
f(s, Ŷs)ds

= ξ +
∫ T

t
f(s, Ŷs)ds− (MT −Mt)

= ξ +
∫ T

t
f(s, Ys)ds− (MT −Mt) (3.8)

P -almost surely. This shows that (Y, M) is a solution to the BSDE(2). Let us now prove (3.2).
Using Doob’s inequality, we have

E[ sup
0≤t≤T

|Yt|2] ≤ 2E[ sup
0≤t≤T

|Mt|2] + 2TE[
∫ T

0
|f(s, Ys)|2ds]

≤ C2E[|MT |2] + 4TE[
∫ T

0
|f(s, 0)|2ds] + 4T

∫ T

0
E[|Ys|2]ds

= C2E[|ξ +
∫ T

0
f(s, Ys)ds|2] + 4TE[

∫ T

0
|f(s, 0)|2ds] + 4T

∫ T

0
E[|Ys|2]ds

≤ C(E[|ξ|2] + sup
0≤t≤T

E[|Yt|2] + E[
∫ T

0
|f(s, 0)|2ds] < ∞. (3.9)

It remains to prove the uniqueness. Let (X, Z) be another solution to equation BSDE(2). Then
both Y and X satisfy

Yt = E[ξ +
∫ T

t
f(s, Ys)ds

∣∣Ht] (3.10)
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Xt = E[ξ +
∫ T

t
f(s,Xs)ds

∣∣Ht] (3.11)

Using the Lipschitz continuity of f , as the proof of (3.4), we have

E
[
|Yt −Xt|2

]
≤ CT

∫ T

t
E[|Ys −Xs|2]ds (3.12)

By Gronwall’s inequality, it follows that Yt = Xt, which in turn gives Mt = Zt. The proof is
complete. 2

Next theorem states a result on existence and uniqueness under some monotone conditions on
the coefficients.

Theorem 3.2 Suppose

1. ξ ∈ L2(Ω) and E[
∫ T
0 |f(t, 0)|2dt] < ∞.

2. There exists a constant C such that

(y1 − y2)(f(t, y1)− f(t, y2)) ≤ C|y1 − y2|2 (3.13)

3. f(t, y) is continuous in y and
|f(t, y)| ≤ C1(t), (3.14)

with E[
∫ T
0 C1(s)ds] < ∞.

Then there exists a unique solution (Y, M) to the BSDE(2) satisfying

E[ sup
0≤t≤T

|Yt|2] < ∞. (3.15)

Proof. Take an even, non-negative function φ ∈ C∞
0 (R) with

∫
R φ(x)dx = 1. Define

fn(t, y) =
∫

R
f(t, z)φn(y − z)dz,

where φn(z) = nφ(nz). Since f is continuous in y, it is easy to see that fn(t, y) → f(t, y) as n →∞.
Furthermore, for every n ≥ 1,

|fn(t, y1)− fn(t, y2)| ≤ Cn|y1 − y2|, (3.16)

for some constant Cn. Consider the BSDE:

Y n
t = ξ +

∫ T

t
fn(s, Y n

s )ds + Mn
T −Mn

t ; t ∈ [0, T ]. (3.17)

Equation (3.17) has a unique solution (Y n,Mn) according to Theorem 2.1. Next we show that Y n
t

is a Cauchy sequence. By Itô’s formula, we have

|Y n
t − Y m

t |2 + [Y n − Y m, Y n − Y m]T − [Y n − Y m, Y n − Y m]t

= 2
∫ T

t
(Y n

s − Y m
s )(fn(s, Y n

s )− fm(s, Y m
s ))ds− 2

∫ T

t
(Y n

s− − Y m
s−)d(Mn

s −Mm
s ) (3.18)
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In view of (3.13), (3.14),

(Y n
s − Y m

s )(fn(s, Y n
s )− fm(s, Y m

s ))

=
∫

R
(Y n

s − Y m
s )(f(s, Y n

s − 1
n

z)− f(s, Y m
s − 1

m
z))φ(z)dz

=
∫

R
[(Y n

s − 1
n

z)− (Y m
s − 1

m
z)](f(s, Y n

s − 1
n

z)− f(s, Y m
s − 1

m
z))φ(z)dz

+
∫

R
(
1
n

z − 1
m

z))(f(s, Y n
s − 1

n
z)− f(s, Y m

s − 1
m

z))φ(z)dz

≤ C

∫
R
((Y n

s − 1
n

z)− (Y m
s − 1

m
z))2φ(z)dz + C1(s)

∫
R
(
1
n
|z|+ 1

m
|z|)φ(z)dz

≤ C(Y n
s − Y m

s )2 + C

∫
R
(

1
n2

+
1

m2
)z2φ(z)dz + C1(s)

∫
R
(
1
n
|z|+ 1

m
|z|)φ(z)dz (3.19)

Substitute (3.19) into (3.18), take expectation to obtain

E[|Y n
t − Y m

t |2] + E{[Y n − Y m, Y n − Y m]T − [Y n − Y m, Y n − Y m]t}

≤ C

∫ T

t
E[(Y n

s − Y m
s )2]ds + CT

∫
R
(

1
n2

+
1

m2
)z2φ(z)dz

+CE[
∫ T

t
C1(s)ds]

∫
R
(
1
n
|z|+ 1

m
|z|)φ(z)dz (3.20)

Applying the Gronwall’s inequality, it follows from (3.20) that

E[|Y n
t − Y m

t |2] ≤ CT {
∫

R
(

1
n2

+
1

m2
)z2φ(z)dz + E[

∫ T

t
C1(s)ds]

∫
R
(
1
n
|z|+ 1

m
|z|)φ(z)dz} (3.21)

Hence,
lim

n,m→∞
sup

0≤t≤T
E[|Y n

t − Y m
t |2] = 0 (3.22)

By (3.20) and the Burkholder inequality, (3.22) further implies

lim
n,m→∞

E[ sup
0≤t≤T

|Mn
t −Mm

t |2]

≤ lim
n,m→∞

E([Mn −Mm]T )

= lim
n,m→∞

E([Y n − Y m]T ) = 0. (3.23)

Consequently, there exist a square integrable, predictable process Yt and a square integrable, right
continuous martingale Mt such that

lim
n→∞

sup
0≤t≤T

E[|Y n
t − Yt|2] = 0 (3.24)

lim
n→∞

E[ sup
0≤t≤T

|Mn
t −Mt|2] = 0 (3.25)

In view of (3.14), use the dominated convergence theorem and let n →∞ in (3.17) to get

Yt = ξ +
∫ T

t
f(s, Ys)ds + MT −Mt; t ∈ [0, T ]. (3.26)
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Since the right hand side of (3.26) is right continuous, we can take Y to be right continuous. Thus
Yt, t ≥ 0 is a solution to BSDE(2).

Now we prove the uniqueness. Suppose that (Y 1,M1) and (Y 2,M2) are two solutions to
BSDE(2). Similar to the calculations for (3.18), we have

|Y 1
t − Y 2

t |2 + [M1 −M2,M1 −M2]T − [M1 −M2,M1 −M2]t

= 2
∫ T

t
(Y 1

s − Y 2
s )(f(s, Y 1

s )− f(s, Y 2
s ))ds− 2

∫ T

t
(Y 1

s− − Y 2
s−)d(M1

s −M2
s ) (3.27)

Taking expectation and keeping (3.13) in mind, we get from (3.27) that

E{|Y 1
t − Y 2

t |2 + [M1 −M2,M1 −M2]T − [M1 −M2,M1 −M2]t} ≤ CE[
∫ T

t
(Y 1

s − Y 2
s )2ds]

By Gronwall’s inequality, we deduce that Y 1
t = Y 2

t ,M1
t = M2

t for t ≥ 0, thereby completing the
proof.

3.2 Comparison theorem

Let (Y, M) be the solution to the following linear BSDE:

Yt = ξ + (φT − φt) +
∫ T

t
βsYsds− (MT −Mt), (3.28)

where φt, t ≥ 0 is a given, right continuous process of bounded variation with φ0 = 0 and βt is a
bounded predictable process. We have the following result.

Theorem 3.3 Assume the total variation of φ is integrable. The following representation holds

Yt = E[LT
t ξ +

∫ T

t
Ls

tdφs|Ht], (3.29)

where
Ls

t = exp(
∫ s

t
βudu)

In particular, if ξ ≥ 0, then Yt ≥ 0. Moreover Y0 = 0 implies ξ = 0 and φ = 0.

Proof. Put Lt = exp(
∫ t
0 βudu). By Itô’s formula, we find that

YtLt +
∫ t

0
Lsdφs = Y0 −

∫ t

0
LsdMs

is a martingale. Consequently,

YtLt +
∫ t

0
Lsdφs = E[YT LT +

∫ T

0
Ls

tdφs|Ht]

= E[ξLT +
∫ T

0
Ls

tdφs|Ht].
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(3.29) follows. 2

Let both (ξ1, f1(s, y)) and (ξ2, f2(s, y)) satisfy the conditions in Theorem 2.1. Denote by
(Y 1,M1) and (Y 2,M2) the solutions of the BSDEs associated with (ξ1, f1(s, y)) and (ξ2, f2(s, y)),
respectively.

Theorem 3.4 Suppose f1(s, Y 2
s ) ≥ f2(s, Y 2

s ) almost surely on Ω × [0, T ] and ξ1 ≥ ξ2. Then,
Y 1

t ≥ Y 2
t P -almost surely for all t ≥ 0. Furthermore, if Y 1

t = Y 2
t P -almost surely on an event

A ∈ Ht, then ξ1 = ξ2 on A and Y 1
s = Y 2

s on A for s ≥ t.

Proof. Define

βs =

{
f1(s,Y 1

s )−f1(s,Y 2
s )

Y 1
s −Y 2

s
if Y 1

s 6= Y 2
s ,

0 otherwise.
(3.30)

Then βs is bounded. Moreover, we have

Y 1
t −Y 2

t = ξ1− ξ2 +
∫ T

t
(f1(s, Y 2

s )−f2(s, Y 2
s ))ds+

∫ T

t
βs(Y 1

s −Y 2
s )ds− [(M1

T −M2
T )− (M1

t −M2
t )]

(3.31)
Using Theorem 2.2, we have

Y 1
t − Y 2

t = E[LT
t (ξ1 − ξ2) +

∫ T

t
Ls

t (f
1(s, Y 2

s )− f2(s, Y 2
s ))ds|Ht] (3.32)

(3.32) implies the desired results.2

As a corollary to Theorem 2.4, we have the following

Theorem 3.5 If f(t, 0) ≥ 0 dP × dt, then the solution Yt(ξ) gives rise a price system, that is,

1. At any time t, the price Yt(ξ) for a positive contingent claim ξ is positive.

2. At any time t, the price Yt(ξ) is an increasing function with respect to ξ.

3. No-arbitrage holds, i.e., if the prices Y 1
t and Y 2

t coincide on an event A ∈ Ft, then on A,
ξ1 = ξ2, a.s.

4 Reflected Backward Stochastic Differential Equations

Consider the reflected backward stochastic differential equation:

dYt = −f(t, Yt)dt + dMt − dKt (4.1)

Definition 4.1 Let Lt; t ≥ 0 be a given Ht-adapted process. We say that (Yt,Mt,Kt, t ≥ 0) is a
solution to RBSDE(3.1) with lower barrier Lt, t ≥ 0 if

(i). Yt is an Ht-predictable, right continuous real-valued process
(ii). Yt ≥ Lt P -a.s. for every t ≥ 0.
(iii). Mt, t ≥ 0 is a right continuous real-valued Ht-local martingale.
(iv). Kt, t ≥ 0 is an increasing, continuous Ht-adapted process with K0 = 0.

8



(v). For every t ≥ 0,

Yt = ξ +
∫ T

t
f(s, Ys)ds− (MT −Mt) + KT −Kt P − almostly surely. (4.2)

(vi).
∫ T
0 (Yt − Lt)dKt = 0.

In the following we let T Ht,T denote the set of H-stopping times τ such that t ≤ τ ≤ T a.s.

Theorem 4.2 Let f(t, y) and ξ be as in Theorem 2.1. Assume ξ ≥ LT and one of the following
conditions hold:

(i). Lt is a right continuous, increasing, square integrable predictable process with E[L2
T ] < ∞.

(ii).Lt is absolutely continuous and E[
∫ T
0 (L′t)

2dt] < ∞.
Then :
a) The RBSDE(4.1) admits a unique solution.
b) The solution process Yt can be given the optimal stopping representation

Yt = esssupτ∈T Ht,T
E[

∫ τ

t
f(s, Ys)ds + Lτχτ<T + ξχτ=T |Ht]; t ∈ [0, T ] (4.3)

c) The solution process Kt is given by

KT−t −KT = maxs≤t(ξ +
∫ T

T−s
f(u, Yu)du− (MT −MT−s)− LT−s)−; t ∈ [0, T ] (4.4)

where x− = max(−x, 0).

Proof.
a). We first prove the uniqueness. Suppose that (Y 1

t ,M1
t ,K1

t ) and (Y 2
t ,M2

t ,K2
t ) are two

solutions to the RBSDE(2). By Itô’s formula, we have

|Y 1
t − Y 2

t |2 + [Y 1 − Y 2, Y 1 − Y 2]T − [Y 1 − Y 2, Y 1 − Y 2]t

= 2
∫ T

t
(Y 1

s − Y 2
s )(f(s, Y 1

s )− f(s, Y 2
s ))ds− 2

∫ T

t
(Y 1

s− − Y 2
s−)d(M1

s −M2
s )

+2
∫ T

t
(Y 1

s − Y 2
s )d(K1

s −K2
s ) (4.5)

Take expectation in the above equation, use (ii), (vi) in the definition 3.1 to obtain

E[|Y 1
t − Y 2

t |2] + E{[Y 1 − Y 2, Y 1 − Y 2]T − [Y 1 − Y 2, Y 1 − Y 2]t}

≤ C

∫ T

t
E[(Y 1

s − Y 2
s )2]ds− 2E[

∫ T

t
(Y 2

s − Ls)dK1
s ]

−2E[
∫ T

t
(Y 1

s − Ls)dK2
s ]

≤ C

∫ T

t
E[(Y 1

s − Y 2
s )2]ds (4.6)
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(4.6) and Gronwall’s inequality implies that E[|Y 1
t − Y 2

t |2] = 0 for t ≥ 0, proving the uniqueness.

To prove the existence, we will use the penalization method. For n ≥ 1, consider the penalized
backward stochastic differential equation:

Y n
t = ξ +

∫ T

t
f(s, Y n

s )ds− (Mn
T −Mn

t ) + n

∫ T

t
(Y n

s − Ls)−ds (4.7)

Equation (4.7) admits a unique solution according to Theorem 2.1. By the comparison Theorem 2.4,
we know that the sequence Y n, n ≥ 1 is increasing, i.e., Y n

t ≤ Y n+1
t P -a.s. Set Yt := limn→∞ Y n

t .
Similar to the proof of Theorem 4.2 of [E], we next give an a priori estimate for the L2 bound of
Y n. Put Kn

t = n
∫ t
0 (Y n

s − Ls)−ds. By Itô’s formula, we have

|Y n
t |2 + [Mn,Mn]T − [Mn,Mn]t

= ξ2 + 2
∫ T

t
Y n

s (f(s, Y n
s )ds− 2

∫ T

t
Y n

s−dMn
s

+2n

∫ T

t
Y n

s (Y n
s − Ls)−ds (4.8)

As f has a linear growth in the variable y, it follows that∫ T

t
|Y n

s (f(s, Y n
s )|ds ≤ CT (1 +

∫ T

t
(Y n

s )2ds) (4.9)

For any δ > 0,

2nE

[ ∫ T

t
Y n

s (Y n
s − Ls)−ds

]
= 2nE

[ ∫ T

t
(Y n

s − Ls)(Y n
s − Ls)−ds

]
+ 2nE

[ ∫ T

t
Ls(Y n

s − Ls)−ds

]
≤ 1

δ
E

[
sup

0≤s≤T
(Ls)2

]
+ δE

[
(Kn

T −Kn
t )2

]
(4.10)

On the other hand, in view of (4.7), we see that

E

[
(Kn

T −Kn
t )2

]
≤ CE[|ξ|2] + CE[|Y n

t |2] + C(1 +
∫ T

t
E[(Y n

s )2]ds)

+CE

[
(Mn

T −Mn
t )2

]
≤ CE[|ξ|2] + CE[|Y n

t |2] + C(1 +
∫ T

t
E[(Y n

s )2]ds)

+CE

(
[Mn,Mn]T − [Mn,Mn]t

)
(4.11)
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Take expectation in (4.8) and substitute (4.9)–(4.11) into (4.8) to get

E[|Y n
t |2] + E

(
[Mn,Mn]T − [Mn,Mn]t

)
≤ CδE[|ξ|2] + CδE

[
sup

0≤s≤T
(Ls)2

]
+ Cδ(1 +

∫ T

t
E[(Y n

s )2]ds)

+Cδ

{
E[|Y n

t |2] + E

(
[Mn,Mn]T − [Mn,Mn]t

)}
(4.12)

Select δ so that Cδ < 1 and Apply Gronwall’s inequality to deduce that

sup
n

sup
0≤t≤T

(E[|Y n
t |2] + E([Mn,Mn]T )) ≤ CT E[|ξ|2] + CT E

[
sup

0≤s≤T
(Ls)2

]
(4.13)

This implies supn E[(Mn
T )2] < ∞. Thus, there exists a subsequence nk such that Mnk

T converges
weakly to some random variable MT in L2(Ω) as k →∞. Let Mt, t ≥ 0 denote the martingale with
terminal value MT . Then it is easy to see that Mnk

t converges weakly to Mt in L2(Ω) for every
t ≤ T . Replacing n by nk in (4.7) we get

Knk
T −Knk

t = Y nk
t − ξ −

∫ T

t
f(s, Y nk

s )ds + (Mnk
T −Mnk

t ) (4.14)

Since each term on the right hand side converges, we deduce that there exists an increasing process
Kt, t ≥ 0 such that Knk

t converges weakly to Kt. Moreover, (Y, M, K) satisfies the following
backward equation:

Yt = ξ +
∫ T

t
f(s, Ys)ds− (MT −Mt) + KT −Kt (4.15)

By Lemma 2.2 in [P], it follows from the equation (4.15) that Yt,Kt are right continuous with left
limits. Furthermore, using Fatou Lemma it follows that

E[
∫ T

0
(Yt − Lt)−dt]

≤ lim inf
n→∞

E[
∫ T

0
(Y n

t − Lt)−dt]

≤ lim inf
n→∞

1
n

E[(Kn
T −Kn

t )] ≤ C lim
n→∞

1
n

= 0 (4.16)

As both Y and L are right continuous, (4.16) implies that Yt ≥ Lt P -a.s. for evert t ≥ 0. To show
that (Y, M, K) is a solution to the RBSDE(3.1), it remains to prove∫ T

0
(Yt − Lt)dKt = 0 (4.17)

To this end, we need to strengthen the convergence of Kn to K. Define

φ(u, x) = n[(x− Lu)−]2

11



Then φ(u, x) is convex in x for every u ≥ 0. By smooth approximation, we may assume φ′′(u, x)
exists and φ′′(u, x) ≥ 0, where φ′ stands for the derivative of φ w.r.t. x. By Itô’s formula, we have

φ(t, Y n
t ) = ∂tφ(t, Y n

t ) + φ′(t, Y n
t )dY n

t

+
1
2
φ′′(t, Y n

t )d[Y n, Y n]ct

+d

( ∑
0<s≤t

{φ(s, Y n
s )− φ(s, Y n

s−)− φ′(s, Y n
s−)∆Y n

s }
)

(4.18)

Hence,

φ(t, Y n
t ) +

∫ T

t
[n(Y n

u − Lu)−]2du +
∫ T

t

1
2
φ′′(u, Y n

u )d[Y n, Y n]cu

+
∑

0<s≤t

{φ(s, Y n
s )− φ(s, Y n

s−)− φ′(s, Y n
s−)∆Y n

s }

= −2n

∫ T

t
|{Lu>Y n

u }(Lu − Y n
u )dLu − 2n

∫ T

t
(Y n

u − Lu)−f(u, Y n
u )du

−2n

∫ T

t
(Y n

u − Lu)−dMn
u (4.19)

Since φ(u, x) is convex in x, we have∫ T

t

1
2
φ′′(u, Y n

u )d[Y n, Y n]cu ≥ 0,
∑

0<s≤t

{φ(s, Y n
s )− φ(s, Y n

s−)− φ′(s, Y n
s−)∆Y n

s } ≥ 0 (4.20)

By virtue of the linear growth of f , it is easy to see that

−2n

∫ T

t
(Y n

u − Lu)−f(u, Y n
u )du ≤ 1

3

∫ T

t
[n(Y n

u − Lu)−]2du + CT + CT

∫ T

t
(Y n

u )2du (4.21)

If condition (a) holds, −2n
∫ T
t χ{Lu>Y n

u }(Lu−Y n
u )dLu ≤ 0. In this case, it follows from (4.19)–(4.21)

that
2
3
E

[ ∫ T

t
[n(Y n

u − Lu)−]2du

]
≤ C + E

[ ∫ T

t
(Y n

u )2du

]
(4.22)

On the other hand, if condition (b) is true, then

−2n

∫ T

t
|{Lu>Y n

u }(Lu − Y n
u )dLu ≤

1
3

∫ T

t
[n(Y n

u − Lu)−]2du + C

∫ T

t
(L′u)2du

In this case, we deduce from (4.19)–(4.21) that

1
3
E

[ ∫ T

t
[n(Y n

u − Lu)−]2du

]
≤ C + CE

[ ∫ T

t
(Y n

u )2du

]
+ CE

[ ∫ T

t
(L′u)2du

]
(4.23)

In view of (4.13), we obtain both from (4.22) and (4.23) that

sup
n

E

[ ∫ T

t
[n(Y n

u − Lu)−]2du

]
< ∞. (4.24)
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Choosing a further subsequence if necessary, (4.24) implies that nk(Y nk
u − Lu)− converges weakly

to some function gu in L2(Ω× [0, T ], P × dt) and Kt defined above is given by Kt =
∫ t
0 gudu. Now

we are in a position to prove (4.17). Write∫ T

0
(Yu − Lu)dKu −

∫ T

0
(Y nk

u − Lu)dKnk
u

=
∫ T

0
(Yu − Lu)[nk(Y nk

u − Lu)− − gu]du

+
∫ T

0
(Yu − Y nk

u )[nk(Y nk
u − Lu)−]du (4.25)

Because of the weak convergence, we have

lim
k→∞

∫ T

0
(Yu − Lu)[nk(Y nk

u − Lu)− − gu]du = 0 (4.26)

By the monotone convergence theorem and (4.24), it follows that

lim
k→∞

|
∫ T

0
(Yu − Y nk

u )[nk(Y nk
u − Lu)−]du|

≤ lim
k→∞

( ∫ T

0
(Yu − Y nk

u )2du

) 1
2
( ∫ T

0
[nk(Y nk

u − Lu)−]2du

) 1
2

= 0 (4.27)

Combining (4.26) and (4.27) we obtain∫ T

0
(Yu − Lu)dKu = lim

k→∞

∫ T

0
(Y n

u − Lu)dKnk
u ≤ 0

As Yu ≥ Lu, (4.17) follows. The proof of a) is complete.
b) Next we prove that the unique solution process Yt of (4.3) can be given the representation

(4.4). We do this by adapting the argument used in [EKPPQ] to our setting: First note that if
τ ∈ T Ht,T , then by (4.2) we have

Yτ = ξ +
∫ T

τ
f(s, Ys)ds− (MT −Mτ ) + KT −Kτ (4.28)

Subtracting (4.28) from (4.2) and taking conditional expectation with respect to Ht we get

Yt = E[
∫ τ

t
f(s, Ys)ds + Yτ + Kτ −Kt|Ht]

≤ E[
∫ τ

t
f(s, Ys)ds + Lτχτ<T + ξχτ=T |Ht].

Since τ ∈ T Ht,T was arbitrary, this proves that

Yt ≤ esssupτ∈T Ht,T
E[

∫ T

t
f(s, Ys)ds + Lτχτ<T + ξχτ=T |Ht]; t ∈ [0, T ] (4.29)
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On the other hand, if we define

τ̂t = inf{s ∈ [t, T ];Ys = Ls}

then τ̂ ∈ T Ht,T and

E[
∫ τ̂t

t
f(s, Ys)ds + Lτ̂tχτ̂t<T + ξχτ̂t=T |Ht]

= E[
∫ τ̂t

t
f(s, Ys)ds + Yτ̂t + Kτ̂t −Kt|Ht] = Yt

Here we have used that
Kτ̂t −Kt = 0,

which is a consequence of the requirement (vi) of Definition 4.1, i.e. of the equation∫ T

0
(Yt − Lt)dKt = 0.

This completes the proof of b).
To prove c) we use the following result:
Skorohod Lemma. Let x(t) be a real càdlàg function on [0,∞) such that x(0) ≥ 0. Then

there exists a unique pair (y(t), k(t)) of càdlàg functions on [0,∞) such that
(i) y(t) = x(t) + k(t)
(ii) y(t) ≥ 0
(iii) k(t) is càdlàg and nondecreasing, k(0) = 0
(iv) The function k(t) is given by

k(t) = sups≤tx
−(s) (4.30)

where x−(s) = max(−x(s), 0).
We say that (y, k) is the solution of the Skorohod problem.

Comparing with Definition 4.1 we see that if we put

y(t) = YT−t − LT−t = ξ +
∫ T

T−t
f(s, Ys)ds− (MT −MT−t)− LT−t + KT −KT−t, (4.31)

x(t) = ξ +
∫ T

T−t
f(s, Ys)ds− (MT −MT−t)− LT−t, (4.32)

k(t) = KT−t −KT , (4.33)

then (y, k) solves the Skorohod problem described in Definition 4.1. By (4.30) we conclude that Kt

is given by

KT−t −KT

= maxs≤t(ξ +
∫ T

T−s
f(u, Yu)du− (MT −MT−s)− LT−s)−; t ∈ [0, T ] (4.34)

Since the unique solution Kt of the RBSDE (4.1) is in particular a solution of the corresponding
Skorohod problem and this solution is unique and given by (4.34), we can conclude that (4.34)
defines Kt as an H-adapted process. This completes the proof of c) and hence the proof of Theorem
4.2. �
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5 Application to finance

Suppose we have a cash flow Xt = X(λ)(t) given by

dXt = Xt−
[
(µt − λt)dt + σtd

−Bt

+
∫

R0

θ(t, z)Ñ(d−t, dz)
]
;X0 > 0 (5.1)

where µt, σt and θ(t, z) are given Ht-predictable processes, θ > −1, and d−Bt, Ñ(d−t, dz) indicates
that we use a forward integral interpretation. See e.g. [DMØP] or the monograph [DØP] for a
motivation for the use of the forward integral in this context of insider trading. Here c(t) := λtXt

is the consumption rate, λt being our relative consumption rate. We assume that we are given
a family AH of admissible controls λt ≥ 0 included in the set of Ht-predictable processes, where
Ht ⊇ Ft is a given filtration, such that the solution Xt of (5.1) exists and is given by

Xt = xexp

[ ∫ t

0
{µs − λs −

1
2
σ2

s

+
∫

R0

[log(1 + θ(s, z))− θ(s, z)]ν(dz)}ds +
∫ t

0
σsd

−Bs

+
∫ t

0

∫
R0

log(1 + θ(s, z))Ñ(d−s, dz)
]

(5.2)

Let U1, U2 be given utility functions. Consider the problem to find Φ and λ∗ ∈ AH such that

Φ = sup
λ∈AH

J(λ) = J(λ∗), (5.3)

where

J(λ) = E[
∫ T

0
e−ρsU1(λsXs)ds + e−ρT U2(XT )];

where T > 0, ρ > 0 are given constants.

To study this problem we use a perturbation argument:

Suppose λ is optimal. Choose β ∈ AH, δ > 0, and consider

g(y) := J(λ + yβ) for y ∈ (−δ, δ)

Since λ is optimal we have g′(0) = 0. Hence

0 =
d

dy
E

[ ∫ T

0
e−ρsU1

(
(λs + yβs)X(λ+yβ)

s

)
ds

+e−ρT U2(X
(λ+yβ)
T )

]
y=0

= E
[ ∫ T

0
U ′

1

(
(λs + yβs)X(λ+yβ)

s

)
e−ρs

{βsX
(λ+yβ)
s + (λs + yβs)

d

dy
X(λ+yβ)

s }ds

+e−ρT U ′
2(X

(λ+yβ)
T )

d

dy
X

(λ+yβ)
T

]
y=0

(5.4)
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Now, by (5.2),
d

dy
X

(λ+yβ)
t = X

(λ+yβ)
t

[
−

∫ t

0
βrdr

]
(5.5)

Hence, (5.4) gives

E
[ ∫ T

0
e−ρsU ′

1

(
λsX

(λ)
s

)
{βsX

(λ)
s − λsX

(λ)
s

[ ∫ s

0
βrdr

]
}ds

−e−ρT U ′
2(X

(λ)
T )X(λ)

T

∫ T

0
βrdr] = 0 (5.6)

By the Fubini theorem, ∫ T

0
hs

∫ s

0
βrdrds =

∫ T

0
(
∫ T

s
hrdr)βsds

Hence (5.6) can be written as

E
[ ∫ T

0
{e−ρsU ′

1

(
λsX

(λ)
s

)
X(λ)

s −
∫ T

s
U ′

1(λrX
(λ)
r )λrX

(λ)
r e−ρrdr

−e−ρT U ′
2(X

(λ)
T )X(λ)

T }βsds] = 0 (5.7)

Now apply this to
βs := α(ω)χ[t,t+h](s) (α Ht −measurable)

for a fixed t ∈ [0, T ). Then (5.7) becomes

E
[ ∫ t+h

t
{e−ρsU ′

1

(
λsX

(λ)
s

)
X(λ)

s −
∫ T

s
U ′

1(λrX
(λ)
r )λrX

(λ)
r e−ρrdr

−e−ρT U ′
2(X

(λ)
T )X(λ)

T }αds] = 0 (5.8)

Differentiating w.r.t. h at h = 0 and using that (4.12) holds for all Ht -measurable α, we get

E
[
{e−ρtU ′

1

(
λtX

(λ)
t

)
X

(λ)
t −

∫ T

t
U ′

1(λrX
(λ)
r )λrX

(λ)
r e−ρrdr

−e−ρT U ′
2(X

(λ)
T )X(λ)

T }|Ht] = 0 (5.9)

Define
Yt := e−ρtU ′

1

(
λtX

(λ)
t

)
X

(λ)
t (5.10)

ξ := e−ρT U ′
2(X

(λ)
T )X(λ)

T (5.11)

f(t, y, ω) = λty. (5.12)

Then (5.9) can be written

Yt = E[ξ +
∫ T

t
f(s, Ys, ω)ds|Ht]; t ∈ [0, T ]. (5.13)

This is an equation of the type considered in Section 2. Hence we can apply the results of that
section to study (5.13).
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By Theorem 2.2 the solution of (5.13) is

Yt = E
[
ξexp(

∫ T

t
λsds)|Ht

]
= E

[
e−ρT U ′

2(X
(λ)
T )X(λ)

T exp(
∫ T

t
λsds)|Ht

]
,

which gives

exp(−ρt +
∫ t

0
λsds)U ′

1(λtX
(λ)
t )X(λ)

t

= E
[
exp(−ρT +

∫ T

0
λsds)U ′

2(X
(λ)
T )X(λ)

T |Ht

]
; t ∈ [0, T ].

Note that

exp(
∫ t

0
λsds)X(λ)

t = X
(0)
t ,

where X
(0)
t is the solution of (5.1) when there is no consumption (λ = 0). Therefore, if we write

Zt = X
(0)
t we have the following:

Theorem 5.1 The relative consumption rate λ is optimal for problem (4.3) if and only if the
following holds:

exp(−ρt)U ′
1(λtX

(λ)
t )Zt = E

[
exp(−ρT )U ′

2(X
(λ)
T )ZT |Ht

]
; t ∈ [0, T ]. (5.14)

Equation (5.14) gives a relation between the optimal consumption rate

ct = λtX
(λ)
t

and the corresponding optimal terminal wealth X
(λ)
T . In some cases this can be used to find both.

To see this, note that by (5.14) we get

U ′
1(ct) = exp(ρ(t− T ))E

[
U ′

2(X
(λ)
T )

ZT

Zt
|Ht

]
or

ct = I1(exp(ρ(t− T ))E
[
U ′

2(X
(λ)
T )

ZT

Zt
|Ht

]
), (5.15)

where I1 = (U ′
1)
−1, the inverse of U ′

1. Substituting (5.15) into the equation (5.1) we get

dX
(λ)
t = X

(λ)
t−

[
µtdt + σtd

−Bt +
∫

R0

θ(t, z)Ñ(d−t, dz)
]
− ctdt. (5.16)

The solution of this equation is

X
(λ)
t = X0Gt −

∫ t

0

Gt

Gs
csds, (5.17)
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where

Gt = xexp

[ ∫ t

0
{−1

2
σ2

s +
∫

R0

[log(1 + θ(s, z))− θ(s, z)]ν(dz)}ds

+
∫ t

0
σsd

−Bs +
∫ t

0

∫
R0

log(1 + θ(s, z))Ñ(d−s, dz)
]
; t ≥ 0. (5.18)

Hence, putting t = T in (5.17) we get

X
(λ)
T = GT (X0 −

∫ T

0

cs

Gs
ds)

= GT (X0 −
∫ T

0

1
Gt

I1(
exp(ρ(t− T ))

Zt
E

[
U ′

2(X
(λ)
T )ZT |Ht

]
)dt), (5.19)

which is an equation for the optimal terminal wealth X
(λ)
T . We do not know how to solve this

equation in general. However, there are some solvable cases:

Corollary 5.2 Suppose
U2(x, ω) = K(ω)x (5.20)

where K is a bounded FT -measurable random variable. Then the optimal terminal wealth X
(λ)
T is

given by

X
(λ)
T = GT (X0 −

∫ T

0

1
Gt

I1(
exp(ρ(t− T ))

Zt
E

[
ZT K|Ht

]
)dt) (5.21)

and the corresponding optimal consumption rate ct is given by (5.15)

Corollary 5.3 (Complete future information)
Suppose that (5.20) holds and that Ht = FT for all t ∈ [0, T ]. Then the optimal terminal wealth
X

(λ)
T is a solution of the equation

X
(λ)
T = GT (X0 −

∫ T

0

1
Gt

I1(exp(ρ(t− T ))
ZT

Zt
U ′

2(X
(λ)
T ))dt) (5.22)

and the corresponding optimal consumption rate ct is given by (5.15).

Example 5.4 Suppose U1(x) = K1(ω) 1
γ xγ and U2(x) = K2(ω) 1

γ xγ, where Ki(ω) are bounded FT -
measurable random variables and γ ∈ (−∞, 1) \ {0}. Suppose that Ht = FT for all t ∈ [0, T ].
Then

I1(y) =
( y

K1

) 1
γ−1

So (5.22) becomes

X
(λ)
T = GT

(
X0 −

∫ T

0

1
Gt

(K2

K1
exp(ρ(t− T ))

ZT

Zt

) 1
γ−1 X

(λ)
T ))dt

)
which gives

X
(λ)
T =

GT X0

1 + (K2
K1

)
1

γ−1
∫ T
0

GT
Gt

(
exp(ρ(t− T ))ZT

Zt

) 1
γ−1 dt

(5.23)

18



Thus we see that even with complete information about the future, the optimal consumption problem
has a finite solution. This is in contrast with the optimal portfolio problem, which gives an infinite
value even in the case of a slightly advanced information flow, i.e. with Ht = Ft+δ(t) for some
δ(t) > 0. See e.g. [KP], [BØ], [DMØP].

A special case:

If U1(x) = lnx, U2(x) = Klnx (K constant ) then (5.13) simplifies to

Yt = E[Ke−ρT +
∫ T

t
λsYsds|Ht] (5.24)

By (5.10)

Yt =
e−ρt

λt

Hence, by (5.24),
e−ρt

λt
= Ke−ρT +

1
ρ
(e−ρt − e−ρT )

This gives the optimal consumption rate

λt = λ∗t =
ρ

1 + (ρK − 1)eρ(t−T )
(5.25)

This case was solved in [Ø].
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