
Department of Physics

Near-field Characterization of
Sonars

Asle Tangen

Master’s Thesis, September 8th 2014



1 

 

 

  



2 

 

Abstract 

Sonars are used in a wide range of marine applications. The advantage of using sound waves 

in water has made the sonar technique ideal to detect underwater objects, imaging of the 

seafloor and detection of vessels. Sound waves can propagate over long distances in water 

unlike other waves. The ability to see underwater using acoustic waves has made the sonar 

technique important for marine and military industry. Most sonars uses the far-field when 

imaging. To characterize a sonars ability to depict one can measure the sonars far-field 

characteristics. This is usually done in big water tanks because the far-field boundary often is 

several meters away. This thesis investigates the possibility of characterizing the sonar using 

near-field measurements. This is done with simulations in matlab and measurements on a 

Simrad SH-90 transducer in a [     ]                water tank at the University in Oslo. 

This was the first time measurements like these were done in the water tank so development 

of hardware and procedures were necessary. A method of simulating the wave field with 

parameters as close to the conditions in the water tank as possible was developed. The result 

of simulations showed that the system was sensitive to changes in the sound velocity. We 

found that it was possible to characterize a transducer if we had a calibrated system were the 

only unknown parameter is the speed of sound. By using the least square method of errors it 

was possible to characterize a transducer by finding the elements weights and phase. This 

gave us a basis for trying to match up the data in the measurement experiment. When trying to 

match up the simulated and measured data we found that there were too many unknowns in 

the measuring experiment. Due to time limitations of this thesis we were not able to do an 

optimal calibration of the measuring system. The work on this thesis showed us that it was 

possible to characterize a transducer in the simulations but more work has to be done on the 

measuring system.         
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Chapter 1 

1. Introduction 

Sonar is a technique that uses sound propagation of acoustic energy from low to high 

frequencies to extract information from the surrounding environment. Sound waves can 

propagate over long distances in water unlike other waves, such as electromagnetic or optical 

that will quickly dissipate in the ocean. This makes the sonar technique ideal to detect 

underwater objects and has been important for the marine and the military industry for more 

than a century. The ability to see underwater using acoustic waves is advantageous to many. 

About 75% of the Earth’s surface is covered by ocean and with most of the floor beneath the 

sea water uncharted; the mapping of the earth’s seafloor is an important scientific goal. In 

addition, many commercial gains can be achieved, from planning underwater communication 

links or oil and gas pipelines to discovering underwater mining resources. Besides mapping 

the seafloor, the ability to see underwater allows us to explore. For example monitoring and 

locating underwater archaeological sites. In a military defense capacity, acoustic waves are 

useful for locating submarines, mines and guiding of underwater weaponry. 

Throughout the 20
th

 and the 21
st
 century sonar has become an important technology for the 

fishing industry. Sonars ability to locate object over vast distances gives the fishing vessels 

ability to detect schools of fish several kilometers away from the vessel. This has rationalized 

the fishery and has resulted in the need for cheap reliable sonars that is easy to operate. With 

its long coastline, Norway has a rich fishing industry with different seasons for different fish 

species and geographical location. This makes Norway ideal for developing sonar technology 

for the fishing industry. 

Simrad is a Norwegian firm and one of the world's leading manufacturers of sonars. The firm 

has developed sonars since 1953. Simrad develops sonars for both short and long range and 

use advanced broadband transducer design combined with digital output amplifiers and 

receivers. A frequency modulated signal with special filters ensures detection and 

identification of fish even under difficult conditions, and without losing the large distance 

range. The SH-90 transducer which is used in this thesis is a Simrad transducer. The 

production of these sonars involves testing of the sonar ability to depict. Since this testing 

must be done several meters away from the sonar, the industry has to use big water tanks. A 

problem with testing in big water tanks is that one sonar can be tested at a time. The question 
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is can this be optimized by doing the same measurements in a smaller environment in the 

near-field.         

 

1.1 Objectives of this thesis 

The sonars that are used for imaging usually operate with a center frequency in the range of 

10 to 100 kHz. The images are formed in the sonars far-field and the smallest distance is 

limited and given by Eq. (1.1): 

 

  
   

 
 

(1.1) 

 

Where   represents the range;   represents the sonars diameter or extent; λ is the wavelength.  

 

To characterize a sonars ability to depict one can measure the sonars far-field characteristics. 

This is done in a water tank. Because the far-field boundary often is several meters away, a 

big water tank is used to implement such a measure. 

The DSB-group at IFI has a water tank that measure[     ]              . This is a small 

tank compared to what the industry uses to test sonars. In this Master thesis we investigate the 

possibility of estimating a sonars far-field characteristic by measuring its near-field 

characteristics. The water tank also has a dynamic positioning system that is used in this 

master thesis to carry out the necessary measurements for an acoustic near-field to far-field 

transformation.  

This thesis is divided into the following objectives:   

 Simulating the sonar field. This will be done in matlab and in the ultrasound 

simulation program Field II [13]. 

 Programing the dynamic position system so measurements can be made in the water 

tank.  

 Preparing the SH-90 transducer. Make necessary hardware. 

 Calibrating the system, this is done both with the measured and simulated data. 
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 Measuring the sonars near-field in the water tank. 

 Characterizing the transducer based on these near field measurements.  

 Comparing the measured near-field characteristics with the simulated near-field 

characteristics. This is done by looking at the response, amplitude, phase difference 

and element weights. 

 Try the same with different delays in the elements. This is to see if the same result 

can be produced with simple signal processing.    

 

1.2 Thesis outline  

In this thesis the work on the objectives given in Chapter 1.1 is presented. It gives a 

presentation of the results of the measurement experiments and the simulations. It also 

contains a review of some of the basic sonar theory, wave theory, underwater acoustic theory 

and far-field/near-field theory. These underlying principles are important concepts to 

understand these theses. A presentation of the equipment used is also a part of this text. The 

water tank and the dynamic position system were used for the first time; therefore some 

information about this is also included. Including this one the thesis consists of 7 chapters, 

appendices and a bibliography. 

Chapter 2 gives the presentation of the theory which is the basis for this thesis. The first part 

gives a short introduction to sonar history. The second part presents the basic physics and 

under water acoustic theory. The third part looks at the near/far-field theory. The last part of 

chapter 2 looks at the signal processing used in sonar. 

Chapter 3 presents the methods and implementations used in this thesis. The chapter focuses 

on the simulation programs used for curved and linear arrays. It looks at the geometry’s and 

calculations used to program the simulation programs. All of the simulations were done in 

matlab and some early tests were done in Field II. The chapter also presents the recording 

equipment used in the water tank experiment. 

Chapter 4 looks at the measuring experiment. The first part of the chapter presents some of 

the equipment used, mainly the SH-90 transducer, the water tank and the dynamic position 

system. The recording equipment was presented in the previous chapter. The second part 

presents the measurements and how they were done. This part also looks at the first tests and 

the measurement of the speed of sound in the water tank. This is an important concept for the 

simulations and the processing of data. 



12 

 

Chapter 5 is the main chapter where the results of the measurement experiment and the 

simulations are presented. This chapter gives a thorough review of the results of the 

simulations and measurement data. The chapter gives a small review of the linear array results 

but the main focus is on the simulations with the curved array and the measurement data. In 

the first part we look at the optimization of the simulations. The second part looks at the 

results of the measurement experiment and in the last part of chapter 5 the results are 

discussed. 

Chapter 6 summarizes and the conclusion regarding this work is made. 

Chapter 7 presents suggestions for further work         
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Chapter 2 

2. Background 
In this chapter an introduction to SONAR theory will be given. This theory is the basis for 

this master thesis. The main focus will be the basic underwater acoustic theory and the near-

field/far-field theory. This chapter is based on lecture notes from imaging systems [9][16] and 

corresponding literature in statistical signal processing[11] and signal processing in space and 

time[14]    

2.1 A short introduction to Sonar history 

The use of sound in water for transmitting and receiving information has been of great interest 

for humans throughout centuries. Animals like dolphins and bats have used sound to 

communication and object detection for millions of years. The first recorded use of sound in 

water by humans was initially by Leonardo da Vinci in 1490. By inserting a tube into the 

water and placing an ear to the tube, one could detect vessels. 

But the use of sound propagation in water wasn’t utilized until the 19
th

 century when one of 

the earliest human applications of underwater sound was used to provide warning of hazards. 

By installing submerged bells on lightships, sound from these bells could be detected at 

considerable distances by hydrophones mounted in the hull of a ship. If two hydrophones 

were located on opposite sides of the hull the sounds received by each could be transmitted 

separately to the right and the left ear of the listener, with this separation the approximate 

bearing of the lightship could be determined.  

The use of sound to locate objects underwater the same way bats use sound for aerial 

navigation, seems to have been prompted by the Titanic disaster in 1912. The first ever patent 

for an underwater echo ranging device was filed out at the British Patent Office by the 

English meteorologist Lewis Richardson one month after the Titanic disaster. The use of 

submarines during World War I prompted more research into the use of sound. A technique 

for detecting submarines was needed.  The British made use of hydrophones, while the French 

physicist Paul Langevin and the Russian engineer Constantin Chilowski, worked on the 

development of an active sound device that could detect submarines by using the crystal 

quartz. Although piezoelectric and magnetostrictive transducers later superseded the 

electrostatic transducers that they used, this work influenced future designs.  
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During the 1930s the Americans developed their own underwater sound detection technology. 

This was when important discoveries were made and the Americans began to use the term 

SONAR for their systems. SONAR is coined as the equivalent of RADAR and is an acronym 

for sound navigation and ranging. The SONAR uses transmitted and received underwater 

sound waves to detect and locate objects by measuring distance under water. Today SONARs 

are used for navigation, communication, detection and imaging, both in military and civil 

applications.  

2.2 Principals of sonar 

The principal of sonar in the simplest terms is an electrical impulse from a transmitter 

converted into a sound wave by a transducer and sent into water. This can be a short burst of 

electrical energy converted into a very short burst of high frequency sound energy called a 

pulse. When this pulse strikes an object, it rebounds. This echo is detected by the transducer, 

which converts it back into an electric signal. This signal is amplified by a receiver and sent to 

a display. 

  

 

Figure 2.1: Principal of sonar transmitted and received sound wave, a: vertical b: horizontal [FAO 

2014] 

The sonar utilizes the piezoelectric effect
1
. The transducer is made up of flat cut quartz wafers 

layered with intermediate metal electrodes. If these wafers are exposed with electrical 

                                                      
1
 A piezoelectric substance (usually a crystal) is one that produces an electric charge when a mechanical stress is 
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impulses they send out sound. When sound waves hit the transducer the piezoelectric effect 

generates electrical impulses.  

2.2.1 Basic physics 

In this master thesis some basic physics about sound waves is used to produce and describe 

the results. Sound is a pressure perturbation that travels as a wave. We can also refer to sound 

as compressional waves, longitude waves and mechanical waves. To characterize these 

acoustic vibrations we use the following terms: 

 Wave period  
 

    
 , the duration of one cycle. 

 Frequency   
 

 
 (Hz), number of cycles per unit time. 

 Sound speed c (m/s), the distance travelled per unit time by a sound wave 

propagating through a medium. 

 Wavelength   
 

 
  (m), the spatial period of the wave, the distance over which the 

wave's shape repeats. 

 Amplitude A, a periodic variable that is a measure of how much the wave change 

over a single period 

 

 

Figure 2.2: Simple illustrations of basic wave physics showing the amplitude, wavelength and time 

[iGCSE Physics 2011] 

Sound pressure is often measured as a level on a logarithmic scale, referred to as decibel (dB). 

The dB scale is defined as:  
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               (2.1) 

 

Where     is the intensity in dB and   is linear intensity. 

If we look at the dB scale we see that 10 dB is a factor 10, 20 dB is a factor 100, 30 dB is a 

factor 1000 etc. The dB scale increases exponentially and the reason for using this scale is that 

the acoustic signal strength varies several orders of magnitude over a typical distance 

travelled. 

 

 

2.2.2 Basic underwater acoustic theory 

Underwater acoustics describes the propagation of sound in water. The water may be salt 

water or fresh water. The frequencies typically associated with underwater acoustics are 

frequencies between 10 Hz and 1 MHz. The propagation of sound in water at frequencies 

lower than 10 Hz is usually not possible because the low frequencies penetrate deep into the 

seabed; frequencies above 1 MHz are rarely used because they are absorbed very quickly. 

Sonar operation is affected by a variation of factors which are important to discuss for the 

results in this thesis. The most important are Speed of sound, spherical spread, absorption, 

refraction, scattering and noise. 

Speed of sound is slower in fresh water than in sea water, though the difference is small. The 

speed is determined by the water's temperature, mass density, salinity and pressure (depth). 

The sound travels slower in cold water than warm water. 

Spherical spread is when an acoustic wave expands as a spherical wave in a homogeneous 

medium
2
, as shown in Figure 2.3. The acoustic intensity   decreases with range R as the 

surface of the sphere expands throughout the medium. The intensity decreases with the factor: 

 

  
 

  
 

(2.2) 

 

                                                      
2
 A medium is homogenous if the physical properties are unchanged at different points.  
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We see in Eq. (2.2) that the intensity decrease proportional to the range squared. For the two 

way propagation the acoustic wave expands as a spherical wave to the reflector and the 

reflector spreads the signal in all directions as spherical waves. When the wave hits the 

receiver the two way loss become: 

  
 

  

 

  
 

 

  
 

(2.3) 

 

As we can see in Eq. (2.3) the loss of intensity in the signal proportional to range is significant 

in two way spherical spread.  

 

  

Figure 2.3: spherical wave spread from a single point in a homogenous medium [Wikipedia 2014] 

Absorption is frequency dependent, the higher the frequency, the greater the absorption. This 

means that lower frequencies has longer range than higher frequencies. Temperature does also 

influence on absorption, the higher the temperature, the greater the absorption. This means 

that the waves goes faster in warm water but has shorter range. The absorption also depends 

on the salinity of the water. For normal sea water (with salinity of 35ppt) the absorption at 

400 kHz is approximately 100dB/km and 50dB/km at 200 kHz. Fresh water has little, if any 

salinity (0,5ppt), so absorption is considerably less. Approximately 40dB/km at 400 kHz and 

10 dB/km at 200 kHz. 
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Refraction happens when the sound velocity continuously changes with the change in 

pressure. An acoustic ray will continuously refract into a new direction at different depths. 

This is because the ray passes through a sound speed gradient from a region of one sound 

speed to a region of a different sound speed. How much the ray bend is dependent upon the 

amount of difference between sound speeds, the variation in temperature and the salinity and 

depth of the water.  

 

Scattering of acoustic waves in water can be divided into the two categories surface scattering 

and volume scattering. Surface scattering is scattering from the surface or the seafloor and 

volume scattering is scattering from fluctuations, marine life or objects. Surface scattering 

from a smooth surface will mainly give specular reflection
3
. With rough surfaces will parts of 

the radiated acoustic energy be scattered diffusely in random directions. If the surfaces are 

very rough more acoustic energy will be scattered diffusely. This means that for non-normal
4
 

incident waves the surface has to be rough for the signals to reach back to the receiver. The 

scattered field is dependent on the roughness of the surface and the difference between media. 

 

Noise is error or unwanted disturbance in a signal. There are a wide variety of noise sources 

present in the underwater environment. In sonar there are three important noise sources that 

effect sonar performance. Background noise also called ambient noise, reverberation and self-

noise. 

Background noise is sounds that interfere with the sound the sonar is monitoring. Background 

noise can be thermal, biological, from surface (wind, rain etc.) or human made (Distant ship 

traffic etc.). Background noise is location and frequency dependent. At the lowest 

frequencies, from about 0.1 Hz to 10 Hz, ocean turbulence is the primary contributors to the 

noise background. Distant ship traffic is one of the dominant noise sources in most areas for 

frequencies of around 100 Hz, while wind-induced surface noise is the main source between 1 

kHz and 30 kHz. At very high frequencies, above 100 kHz, thermal noise of water molecules 

begins to dominate. 

                                                      
3
 Specular reflection is when the reflection angle corresponds to the angle of incidence. 

4
 Non-normal incident waves have an incident angle that is not 90 degrees.  
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Reverberation is mainly caused by multiple reflections of the transmitted signal. It is the echo 

of the signal off of the environment. Surface and bottom reverberation and scatters in the 

water also called volume reverberation. 

Self-noise is the noise that the sonar and the platform it is mounted on make. The sources for 

self-noise can be electrical, machinery or flow of water across the transducer. Flow noise is 

usually the dominant source of self-noise for a moving sonar system.    
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2.2.3 Range and bearing estimation  

Range is defined as the distance between the sonar and the reflector. Range estimations are a 

very important application of sonar. To measure the distance to an object, the time from 

transmission to reception is measured and converted into a range by the speed of sound. This 

shows the importance of knowing the speed of sound.  

 

 

 Figure 2.4: Range estimation in a sonar system, A is transmitter and receiver. B is reflector [Tryggve 

Sparr 2014] 

 

 In Figure 2.4 we see a pulse      of duration     transmitted from a transmitter A in the 

direction of a reflector B. The receiver records the signal until the echo from the reflector 

arrives. The pulse arrives at the reflector with a time delay     and is reflected back to the 

receiver with a reflection coefficient η. The pulse is received at the receiver with a time delay 

2  . This gives us a received signal    : 

 

               (2.4) 

 

Where 2   is: 

 

    
   
 

 
(2.5) 

 

If we say that 2   is the delay   we can find the range: 



21 

 

   
  

 
 

(2.6) 

 

The sound velocity   has to be known to be able to map the delay into distance. The accuracy 

of which the range is estimated is related to the length of the pulse   . A short pulse gives 

better range resolution. However, short pulses can have less energy, which again gives shorter 

propagation range. 

 

Bearing is the estimation of direction. There are some key elements in estimation of direction 

in sonar: Transducer size and the grouping of transducers into arrays. A transducer is directive 

if the size of the transducer is large compared to the wavelength. The directivity pattern 

generally contains a main lobe with a beam width. To find the beam width of a transducer we 

can use the equation: 

  
 

 
 

(2.5) 

 

where   is the beamwidth,   is the diameter of the transducer and λ is the wavelength .Since 

  
 

 
  we can see in Eq. (2.5) that the beam width is frequency dependent: 

 

  
 

  
 

(2.6) 

 

 

We see in Eq. (2.6) that higher frequencies gives narrower beam for a given transducer size or 

smaller transducer size for a given angular spread. This is the single most important reason for 

choosing high frequencies in sonar imaging. 
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2.2.4 Imaging sonar 

Imaging sonars transmit sound pulses and convert the returning echoes into digital images, 

much like a medical ultrasound. The process of imaging in sonar can be described by: 

 The aperture is excited by an electrical signal, so that it emits a wave field into the 

water. 

 The wave field propagates through the water, experiencing attenuation, diffraction, 

scattering and reflection. 

 The reflected and scattered wave field propagates back towards the transducer, where 

upon reception the measured wave field is converted into electrical signals. 

 These electrical signals are processed so that they can be used to form an image. 

The advantage with sonar is that they can “see” through dark or turbid water in zero visibility 

conditions. Sound wavelengths in water are about 2,000 times longer than the wavelengths of 

visible light. Because the wavelengths are so much longer, sound can go around particles that 

would otherwise block and scatter light waves. This makes optical systems like underwater 

cameras ineffective and unable to penetrate over long distances. Another disadvantage with 

optical imaging is that it lacks the range information found in sonar images. 

 

 

 Figure 2.4: Synthetic aperture sonar image of a sunken WWII submarine done with the HUGIN AUV. 

[Roy Edgar Hansen 2007]   
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The principle of imaging sonar is to estimate the reflectivity for all calculated ranges and in 

all selected directions. The field of view is given by the angular width of each element in an 

array. The azimuth resolution is given by the array length measured in wavelengths. The 

range resolution is given by the bandwidth of the system. To characterize a sonars ability to 

depict one can measure the sonars far-field characteristics.  

 

2.3 Near-field/Far-field 

Transducers have both near-field and fare-field boundaries. In sonar theory the near-field/far-

field boundary is an important concept. The reason for this is that a targets scattering 

characteristics is different in the near-field than in the far-field. In long ranges a underwater 

target is seen as point expressed by a single highlight. But from short ranges an extended 

underwater target can have several distribution characteristics.     

 

2.3.1 Near-field 

The near-field region can be divided into 2 regions. Reactive near-field and radiating near-

field also called the Fresnel region. The reactive near-field region is very close to the 

transducer were the fields are out of phase by 90 degrees of each other. This region can be 

described by: 

 

      √
  

 
 

(2.7) 

 

 The radiating near-field is the region between the reactive near-field and far-field. In this 

region the reactive fields are not dominant and the radiating fields begin to emerge. In this 

region the shape of the beam pattern may vary greatly with distance. The radiating near-field 

region can be described by: 

 

    √
  

 
    

   

 
 

(2.8) 
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Within the near-field the wave fronts produced by the transducer is not parallel. The intensity 

of the wave oscillates with range. This means that the echo levels from targets within the 

near-field region can vary greatly with small changes in location. If the source is located close 

to a transducer, the wave front of the propagating wave is curved with respect to the 

dimensions of the transducer and the wave propagating direction depends on sensor location. 

2.3.2 Far-field 

The far-field, also called the Fraunhofer region is the region far from the transducer. Within 

the far-field region the direction of propagation is approximately equal at each sensor and the 

propagating fields within the transducers aperture consists of plane waves. When the sonar 

transmits, the sound is projected from the whole surface of the transducer. This means that the 

near/far-field transition occurs when the sonar beam is equal to the size of the transducer. This 

is illustrated in Figure 2.5. 

 

Figure 2.5: the near-field/far-field transition zone, the transition point is when the beam equal to the 

size of the transducer L.[Kongsberg-mesotech 2014] 

 

To find this transition zone we can use the Eq. (1.1) with the conditions that R>>D and 

R>>  . The far-field region is the most important because this is where we determine the 

sonars beam pattern.   
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2.4 Sonar signal processing 

When sonar receives an acoustic signal from a target the information in the signal cannot be 

utilized and used without signal processing. Signal processing is altering the properties of a 

signal to achieve some effect. Useful information has to be extracted from the signal. This is 

done in several steps. In this section we look at array theory, beamforming, beam pattern, real 

and complex signals, sampling and time frequency signal processing witch is important 

concepts for this thesis.     

 

2.4.1 Arrays 

Arrays of elements are used in a wide range of applications where the goal is to gather 

information from the surrounding space. Arrays consists of a number of sensors that each 

could be an aperture or Omni-directional transducer. The sensors are combined in a discrete 

space domain to produce a single output. Arrays have the advantage that a two-dimensional or 

three-dimensional volume can be scanned by adding phase or time delay to the array elements 

without the system having to contain moving mechanical parts. Another advantage of sensor 

arrays is that an array can increase the antenna gain in the direction of the signal and decrease 

the gain in directions of unwanted noise. This means the sensor array can increase the signal 

to noise ratio. Sensor arrays can come in many different shapes both regular and irregular. 

A commonly used array is the one containing M spaced elements on a flat line referred to as a 

uniform linear array. Uniform linear arrays have the element placement: 

 

  

   (  
   

 
)                           

(2.9) 

    

where   is the distance between each element. The time delay required for the mth element to 

steer the wave field in the direction    in the far-field can be described as: 
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(2.10) 

 

where   is the speed of sound. 

 

2.4.2 Focusing 

All sonar systems suffer in noisy environments which can cause significant degradation to the 

sonar systems performance. To improve the sonars it is desirable to increase the received 

signal to noise ratio. Signal to noise ratio is the level of desired signal to the level of 

background noise. One way of increasing the SNR is through focusing of the wave field. This 

means focusing the wave field to one focal point. With arrays this can be done by imposing a 

time delay on each element making the different wave fields arriving at the focus point at the 

same time. This is referred to as beam forming.   

2.4.3 Beam forming 

Beam forming is the technique of using an array of transducer elements to focus or steer a 

wave field. Beam forming can be implemented both on transmission and reception. At 

transmission both the amplitude and time of excitation is controlled at each element so that 

propagating waves add up constructively in the focal point. 

2.4.4 Beam pattern 

The way to describe the amplitude profile of an array is to plot a beam pattern also called a 

radiation pattern. The beam pattern is the function of the angle of transmission. A plot of the 

beam pattern shows the magnitude of the main lobe and the associated side lobes. The side 

lobes are unwanted radiation in undesired directions. The power density in the side lobes is 

generally much less than that in the main lobe. It is generally desirable to minimize the side 

lobe level. Ideally the peak of the first side lobe should be between 10-15 dB below the 

maximum main lobe power but this depends on the shape of the aperture, rectangular or 

circular.  

The beam center is the average values of the angle of transmission. Ideally it is centered on 0 

degrees. The width of the main lobe is specified by the half power beam width, the angle 

between the points on the side of the lobe where the power has fallen to -3 dB of its maximum 

value. A beam pattern is illustrated in Figure 2.5. 

 



27 

 

 

Figure 2.5: Beam pattern of a transducer, shows the main lobe with side lobes. Half power limit at -

3dB [Cornell University 2014] 

The beam pattern is an important concept in this master’s thesis because the beam pattern of 

sonar is defined in the far-field. Like stated in Chapter 1.1 the main objective of this thesis is 

investigating the possibility of transforming the near-field measurements to the far-field and 

creating a beam pattern for the SH-90 transducer.  

 

2.4.5 Real and complex signals 

Acoustic signals are disturbances in the background pressure level in the medium. We can say 

that it is a disturbance in the normal background environment that conveys information. The 

information is contained in the way the disturbance changes in time, frequency, direction and 

space. All signals in the real world are real. However in signal processing applications it is 

convenient for the purpose of analyze and data reductions by means of band pass sampling to 

represent a signal as a complex-valued function of space and time. Sonar normally operates 

with a small bandwidth. For purely mathematical reasons, the concept of complex number 

representation is closely connected with many of the basics of signal theory, such as 

frequency response, transfer-function, Fourier etc.     
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2.4.6 Fourier analyze 

All signals real or complex that vary in time, can be broken into its spectrum. We can 

compare this to how light get broken into different colors with a prism. The mathematical 

expression for this is called Fourier transform. The Fourier transform of a time signal gives 

the frequency content of the signal. Much signal processing is done on the frequency domain 

by mathematical operations on the Fourier transform of the signal in interest. These results of 

the Fourier transform can be converted back to a time signal with the inverse Fourier 

transform.  

        

2.4.7 Sampling 

In the field of signal processing sampling is a fundamental link between the analog domain 

and the digital domain. Sampling is the process of converting a signal of continuous time or 

space to a numeric sequence of discrete time or space. The sampling rate    is defined as the 

number of samples obtained in one second to represent the signal digitally. Suppose we want 

to recreate a continuous sin wave, how often do we need to sample it to recreate the wave? 

If we sample at one time per cycle we can think it is a constant. If we sample it 1.5 times per 

cycle we can think it is a lower frequency sine wave. If we sample at twice the sample 

frequency we see that the sin wave can be closely recreated. This makes an important theorem 

in the spectral analysis, the sampling theorem. It states that a real, band limited, finite signal 

can be reconstructed from samples taken at 2 times the Band width. This is called the Nyquist 

rate. Sampling at less than the Nyquist rate can result in overlap in the frequency domain also 

called aliasing. The result is distortion of the reconstructed signal.  
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Chapter 3 

3. Methods and implementation 
This chapter presents the methods and the implementation used in this master thesis. We look 

at the theoretical calculation of the field, the simulations in matlab, the experiment and the 

implementation of the recording equipment used in the water tank. All the results of the 

simulations and the water tank experiment are presented in more detail in Chapter 5. 

3.1 Theoretical calculations and principals 

This section presents the theoretical calculations and principals that form the basis for the 

simulation programs and measurement experiment.  

3.1.1 Huygens principle 

Huygens principle states that every point on a wave front can be regarded as a new source of 

waves. The wave front is defined as the point which wave motion is in the same phase. The 

idea is that any point in the medium where the wave motion takes place, can be regarded as 

the starting point for waves, elementary waves, which propagate uniformly in all directions. 

The real wave motion is equal to the sum of all elementary waves at a given moment that 

spreads from a wave surface. By calculating the elementary waves and summing them we can 

find the shape of the wave surface at a specific time. 

 

3.1.2 Least square method 

The least squares method is a mathematical model that describes a set of data in a way that 

minimizes the difference between the model and the data. In signal processing the least 

squares method can be used to find the parameters that produce the least difference between 

the desired and the actual signal. The least squares method looks at the squared sum of the 

errors between the desired and the actual signal. The squared sum of errors can be described 

by: 

    

  ∑|    | 
 

   

 
(3.1) 
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Where   is the sum of errors,   is the number of data points and      is the error between the 

desired and the measured data. For an optimal fit between the desired and the actual signal the 

sum of errors must be as close to zero as possible. This can be used in the simulation program 

to find the optimal parameters. 

  

3.2 Simulations 

This part will present the simulation methods used in this master thesis. The simulations have 

been done in three different matlab scripts. Linear array, curved array and back propagation.  

3.2.1 Purpose 

The purpose with the simulations was to recreate the environment in the water tank and 

simulate the sonar fields. By simulating the sonar fields it was easier to find the distance and 

the number of measuring points needed for the water tank experiment. The results of the 

simulations can then be compared with the sonar fields measured in the water tank. The idea 

was to see if we could characterize an array element with regard to weight and phase based on 

near field measurement. If so it will be possible to calculate the far-field response. The 

simulations were first done with a linear array in matlab and then with a curved array. The 

reason for doing it with a linear array was to look at the field response with a simple flat 

array. The simulations with the curved array were done in the ultrasound simulation program 

field II and a simulation program KjorKode.m m.   

3.2.2 Field II 

Field II is a program for simulating the ultrasound transducer fields and imaging using linear 

acoustics.  It is developed by Jørgen Arendt Jensen [13] at the Department of Electrical 

Engineering at the Technical University of Denmark. The program is running under Matlab 

and uses the Tupholme-Stepanishen method [13] for calculating pulsed ultrasound fields. 

Field II is developed for ultrasound transducers but is capable of calculating the emitted and 

pulse-echo fields for both the pulsed and the continuous wave case for a large number of 

different transducers. In this thesis a curved linear array is used as the transducer. The 

program can simulate any kind of linear imaging as well as realistic images of human tissue. 

Field II is currently free to use under certain restrictions [13]. 

3.2.3 Linear arrays 

The first simulations we did were with a linear array. This was to see if it was possible to 

produce a result and simulate a sonar field with a simple flat array. Two matlab scripts was 

made, one for measuring the field and one to back propagate the measured field data. The 
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experience we got from the linear arrays would help us program simulation programs for a 

cylindrical array in Field II and matlab. 

An important aspect with simulating any array shape is to look at the geometry in the 

simulation sequence. It is important that the pulse is sent at the right time and is measured at 

the right time and place. The shape of the array and the behavior of radiating waves from each 

element are important to describe the geometry of the measuring sequence. In this section we 

look at a flat linear array where the geometry can be described as: 

 

 

Figure 3.1: Geometry for an 11 element linear array. The distance between measuring points and 

array is set to extreme near-field to illustrate the different distances.  

 

Figure 3.1 illustrates the geometry of the simulation sequence. In this example the array 

consists of 11 elements but the same geometry applies for arrays with more elements. The 

measuring points are set with a distance R0 from the array. The focus point is a distance of R0 

from the array center. The focus point is where all the elements are focused. This means the 

field has to be recorded when the radiating waves from all the elements reaches the focus 

point at the same time. In Figure 3.1 this is illustrated with the element one on the left side. If 

we want to see what the pulse is in the measuring point in Figure 3.1 we have to look at the 

distance from the element to the measuring point, element to focus and measuring point to 
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center. By focusing from the center of the array the difference in the pulse traveling distance 

from each element to focus point is delta. This means that to get a focused array the elements 

have to start sending a time equivalent of delta before the center element for all the pulses to 

reach the focus point at the same time. In the measuring point the pulse for element 1 has then 

traveled a distance of Delta+delta past the measuring point this is illustrated in figure 3.2. 

 

 

Figure 3.2: The pulse traveled from element 1. The green half circle illustrates the radiated field from 

element 1 at a distance Delta+delta from the measuring point.  

 

Since element 1 is closer to the measuring point than the focus point we get an additional 

Delta from the measuring point to the center of the array. The pulse has traveled a distance of 

Delta +delta past the measuring point when all the pulses have reached the focus point and 

Delta+delta shorter at the measuring points furthest from the element. This means we have to 

make a measuring window greater than the pulse length on each side of the measuring points 

to see the whole field. With this geometry we could start looking at the simulation program. 

To see what the field looks like at a given distance from the array we have to look at the 

response in every measuring point at a time window. The field can be described as: 
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      ∑    

 

 
(3.2) 

 

Where   is the measuring position and   is the element position.        is the response in the 

measuring points and      is the pulse. This is in the time domain. In our case we have to put 

in a time delay equivalent to our deltas. We call this    . This gives us the expression: 

 

      ∑        

 

 
(3.3) 

 

The time delay has to be equivalent to the deltas in our geometry in Figure 3.1 and 3.2. This 

means that  

 

       
      

     
 (3.4) 

 

   Where    
    is the traveling distance between measuring position and element position and 

  
     

 is the distance between element position and focus. This gives us: 
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(3.6) 

 

 

By dividing on the speed of sound c we get the distance over in the time domain. By creating 

a big enough time windows for the measuring points these formulas will give us the field at a 

given distance.   In the matlab program ForoverPropagering.m a simple linear array transmits 

a pulse, and a given number of points at a given radius measure the sonar field.  
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In the matlab program BakoverPropagering.m the measurements are made at the array and the 

response measured in ForoverPropagering.m is transmitted from the measuring field. By 

doing it this way the field is back propagated to see what the responses are over all elements. 

In this program the geometry is a little different since the measuring points are now the 

elements and vice versa. This gives us 

 

      ∑         

 

 
(3.7) 

 

In this case        is the response in the elements and             is the response in the 

measuring points with the time delay     witch in this case is 
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(3.8) 

 

 

This gives us a delay on the traveling distance. 

 

3.2.4 Simulating with linear arrays 

The simulation is done in the far-field. The distance between the measuring points and the 

array is set to 1000 meters. This gives us a sonar field close to infinity. The pulse is set to 3 

cycles the same as in the water tank experiment. The number of measuring points is set to 

121. This is the minimum number of measuring points that can be used and still get a good 

resolution.  
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Figure 3.3: The measuring points and the linear array. The number of measuring points is 121 and the 

number of elements in the array is 10.  

 

3.2.5 Curved linear array 

This simulation was done with two different simulation programs and a matlab program 

created by the author. The first simulations with the curved array were done in Field II. The 

reason for using Field II was to create a sonar field and see how it looked and then create a 

program that did the same thing and could be use to back propagate the measured data from 

the water tank. 

 Field II: To create a transducer in Field II with the same dimensions as the SH-90 transducer 

used in the water tank, a curved linear array is used in the simulations. This array is created in 

the matlabfile xdc_curved_array.m. This matlab file is created by Jan Egil Kirkebø[15]. By 

using this matlab file we can create a cylindrical array with the same specifications as the SH-

90 transducer. Like the SH-90 transducer we create an array with 48 elements where each 

element is divided into 10 sub elements. This gives us a full cylinder with the same 

dimensions as the SH 90 transducer (figure 3.3).  
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Figure 3.3: Curved linear array, full cylinder with 48 elements divided into 10 sub elements 

 

In the water tank experiment we only use one element with 10 sub elements. The 

measurements in the water tank are made from +90 degrees to -90 degrees in front of the 

transducer in a 180 degrees part of the full cylinder. This means that only 24 elements are 

needed to create the same sonar field as in the water tank (Figure 3.2).     

 

 

Figure 3.2: Curved linear array with 24 active elements 
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The matlab program: This program was created in the matlab script KjorKode.m. The only 

difference in the geometry is the curved array, were the elements are placed with a radius    

from center. 

 

 

Figure 3.6: Geometry of a 11 element curved array with a distance    from center 

 

We see in Figure 3.6 that the geometry is similar to the linear array except from the radius    

in the array. This gives us a new delay time in   
     

: 
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Where   is: 
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        ‖                      ‖  (3.10) 

 

 

By putting this into the program KjorKode.m we get a simulation program that works for the 

curved array. It is not necessary to look at the field from +90 to -90 degrees in the 

simulations. To look at a sector of 120 degrees in front of the transducer should be sufficient 

to characterize a transducer.   

3.2.6 The simulations in Field II 

In the matlab file LagSimulering.m, a measuring sequence is set up. In this program the center 

frequency is set to 100 kHz and the sampling frequency is set to 100 MHz. In 

LagSimulering.m it is possible to set the parameters of the transducer and the number of 

measurement points in the simulation. One can also control the distance between the 

transducer and the measuring points. This provides the opportunity to recreate the conditions 

in the tank and get measurements as close to the SONAR field of the SH-90 transducer as 

possible. The pulse is set to 3 cycles like in the water tank experiment. 
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3.3 The experiment and recording equipment 

In this part we will present the experiment and recording equipment used. This part only looks 

at the recording equipment and the SH-90 transducer, the water tank and the dynamic position 

system will be presented in more detail in chapter 4.  

3.3.1 Purpose 

The purpose with the experiment and recording equipment was to record the measurements 

done with the SH-90 transducer in the near-field in order to fully characterize the transducer 

and then calculate the far-field response. The measurements can be done at different distances 

from the transducer by using the dynamic positioning system. It was also a objective to test 

and learn how use the existing equipment at the sonar lab at Ifi since it had never been used in 

this purpose.  

3.3.2 Experiments 

The experiments were done in the water tank at Ifi with a SH-90 transducer, a hydrophone 

and a dynamic position system. A matlab script was made to control the measurements and 

process the results. The transducer and the hydrophone were mounted on the two carriers on 

the dynamic positioning system. To do the experiments the tank had to be filled with water. 

That was done with a water hose over a period of 2 hours. The water would remain in the tank 

until the experiment was over. That also meant that the transducer had to remain in the water 

until the experiment was over. That could be several days or weeks. We were unsure if the 

transducer could stay in the water for several weeks. We filled the tank with a water level of 

1.20 m, which meant there was a problem getting the transducer out of the water due to 

limitations in the ceiling height, the water level and limitations in carrier movement. Filling 

and emptying the tank between each measurement would be a tidies and time consuming task. 

After each filling we had to wait up to a week to get the right temperature in the water. When 

testing the system we saw that the results got better if we waited a longer period. This was due 

to the water bubbles in the water. The water got more saturated if we left it undisturbed for a 

period of time. This meant we had to find a method of getting the transducer out of the water. 

The solution was pulling a boat fender over the transducer and removing the water inside the 

fender. The transducer could then stay dry between each measurement. This is illustrated in 

Figure 3.3  
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Figure 3.3: The transducer in the water tank with a boat fender pulled over it. The water is removed 

and the transducer stays dry between measurements. 

 

The hydrophone is mounted on the carrier were the movement in x, y and z direction can be 

controlled by the computer. This means that we can steer the carrier between the pipes in the 

ceiling and emerge the hydrophone between each measurement. This is illustrated in Figure 

3.4. 
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Figure 3.4: The hydrophone emerged and steered between the pipes in the ceiling. 

 

Since there is no purification method we try to keep the water tank filled for short periods. 

This means filling the tank, waiting a week for the water and temperature to settle and then 

doing the experiments. All measurements in this thesis are done that way.   
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3.3.3 Recording equipment 

To do the measuring experiment we had to set up a measuring system that could send and 

record a pulse. Everything had to be controlled using a computer and the result had to be 

processed in matlab. The transducer is a fishing sonar from Kongsberg Maritime [24], the rest 

of the equipment belongs to the sonar lab at Ifi. The equipment used in the recording rig is 

 

Table 3.1: Equipment used in the recording system 

         Equipment recording rig 

                  Oscilloscope 

                Signal generator 

                 JBL amplifier 

              Ultrasonic preamp 

                  Hydrophone 

              SH-90 transducer 

 

 

The oscilloscope and the signal generator are connected to a computer running matlab. The 

dynamic position system is also connected to this computer. The pulse is sent from the signal 

generator to a transducer via a JBL amplifier. The transducer sends the pulse through the 

water and the pulse is captured by the hydrophone. The pulse is then sent through an 

ultrasonic preamp and into the oscilloscope. The matlab script then captures the pulse through 

the oscilloscope. This is illustrated in Figure 3.5 
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Figure 3.5: The Flowchart of the recording system 

 

To connect the transducer to the JBL amplifier we made a simple circuit board. The 

transducer has 8 connectors which connect all elements with the possibility to connect to 60 

elements. In this experiment we wanted to use 10 elements which meant we had to connect 

one connector with one circuit board. With the information we got from Kongsberg maritime 

we were able to connect the 10 elements stacked in front of the transducer close to 0 degrees. 

To find out how the elements were stacked we had to do a simple measurement experiment. 

This experiment is discussed in Chapter 4.2. 

 

 

 

 

 

 

 

 



44 

 

3.3.4 Recording of data 

The recording of data is done with a matlab script programed by the author with help from a 

fellow student, Mohamed Kidash. In this matlab script it is possible to set the parameters for: 

 Number of measuring points in x,y and z direction 

 Rotation in degrees of transducer 

 Parameters for oscilloscope and signal generator 

 Delay time for recording in automatic mode  

The program runs automatically or manually. In manually mode a button has to be pressed 

before each capture. All data captured are saved in mat files. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



45 

 

Chapter 4 

4. Measuring experiment 

4.1 Equipment 

The equipment used in the water tank experiment was a sonar transducer SH-90 [24], a 

dynamic position system and a water tank. 

4.1.1 Sonar SH-90 

The Simrad SH90 is omnidirectional high frequency sonar (Figure 4.1). The operational 

frequency is 114 kHz. The SH90 is a cylindrical multi-element transducer that allows the 

omnidirectional sonar beam to be tilted electronically from +10 to -60 degrees. 

 

 

Figure 4.1 Omni beam principle of the SH-90 sonar [Simrad 2014] 

 It has 480 individual elements spread around the cylindrical transducer. The SH-90 

transducer beam has a vertical opening angle of 7,5 degrees and a horizontal opening angel of 

360 degrees [25]. The SH-90 transducer has a range up to 2000 meters.    

 

4.1.2 Water tank 

The tank used in this thesis is a [     ]               big water tank. It is located at the 

sonar laboratory at the Ifi building at Blindern. A picture of the water tank can be seen in 

Figure 4.2. 
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Figure 4.2: Water tank at the sonar laboratory with the dynamic position system mounted on top   

 

4.1.3 Dynamic positioning system  

The dynamic position system is mounted on the top of the water tank. The system is custom 

made by Fosstech AS [7] and is a semiautomatic system that can position a hydrophone and a 

transducer in x-, y- and z- directions and rotate about the z- axis. The positioning system 

communicates via a computer and is controlled with a matlab script. There are two 

positioning carriers on the system. The one farthest from the laboratory door, in the southern 

end of the room, can be operated programmatically along four axes. The four axes are three 

for spatial positioning and one for rotation angle. We call this carrier the 4D carrier. The one 

in the northern end only has a single computer operated axis (rotation angle). The other axes 

must be handled manually. We call this carrier the 1D carrier. A drawing of the system can be 

seen in figure 4.3  
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Figure 4.3 Schematic drawing of Fosstech dynamic position system [Fosstech 2014] 

 

The carriers can hold a transducer and both of them can work as a transmitter or receive. One 

can hold a transducer while the other holds a passive object (phantom). The 4D carrier has a 

weight limitation of 0.5 kg and the 1D carrier has a weight limitation of 8 kg. 

The 4D carrier can move in X, Y and Z directions at a speed of 0-100 mm/s with an accuracy 

of ± 0.2 mm when it is stationary. Rotational movement has a speed of 0-10 r/min with a 

precision of ± 0.1 °. 

The 1D carrier can manually move in X, Y and Z direction. By entrenched position accuracy 

of ±0.5 mm. Rotational movement is automatic and has a speed of 0-10 r / min with a 

precision of ± 0.1 °. 

Due to the limited headroom in the sonar laboratory there are some limitations to transducer 

and hydrophone movement. This is mainly in the z direction due to ventilation pipes in the 

ceiling. This is something you have to take into account when programing the position 

system.  

4.2 Measurements and data 

4.2.1 Determining the speed of sound in the water tank 

The speed of the sound is dependent on several different factors. Sound travels faster in 

liquids and solids than it does in air. In water the sound travels about 4 times faster than in air. 
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Determining the exact speed of sound in the water tank is therefore important for the results 

of the measurements. The speed of sound in water is dependent on temperature, salinity and 

depth. In the water tank we use freshwater and the depth is so small that the speed of sound is 

only dependent on the temperature. This means we can use the Lubbers and Graaff’s equation 

[22]   

 

where   is the speed of sound and   is the temperature in Celsius. The range of validity on 

this equation is 15-35   and it has a maximum error of          . 

By using Eq. (4.1) on different temperatures we get: 

Table 4.1 Calculated speed of sound in fresh water at different temperatures 

Temperatures 

(  ) 

Speed of sound 

(m/s) 

              16              1469.3 

              17              1472.6 

              18              1475.9 

              19              1479.2 

              20              1482.3 

              21              1485.4 

              22              1488.3 

              23              1491.2 

              24              1494.1 

              25              1496.8 

              26              1499.5 

              27              1502.0 

 

To confirm these results we did a simple experiment in the water tank. By measuring the 

temperature in the water tank and the time of arrival a pulse at two different ranges i.e. 

different points in the y direction, we can look at the time difference between the two points. 

Since we know the distance between the two points we can use the equation for speed:  

 

                     (4.1) 
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(4.2) 

 

where   is the speed,   is the distance and   is the time, in our case the time difference. 

By using Eq. (4.2) we can find the speed the pulse travels with and thereby the sound speeds 

in the water tank. We did a measurement at 20 degrees Celsius. We measured the temperature 

in the water tank and measured the received pulse at 17.5 cm and 37.5 cm i.e. a range 

difference 20 cm. By doing this we compared the result with the calculated results in Table 

4.1   

 

Figure 4.4: The received pulses at 17.5 cm and 37.5 cm 

 

We see in Figure 4.4 that the two pulses arrive at two different times. The first pulse arrive 

sometime around 150 µs the second pulse arrive sometime around 185 µs. If we zoom in on 

the plot we can get a more exact time. 
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Figure 4.5: times when the pulses is received at hydrophone 

We see in Figure 4.5 that the first pulse is received at 147.8 µs, this is the beginning of the 

oscillation. The second pulse is received at 282.2 µs. The time difference is 282.2 µs – 147.8 

µs = 134.4 µs. If we use equation 4.6 the speed of sound in the water tank becomes: 

 

  
    

       
            

(4.3) 

 

  

We see in Eq. (4.3) that the speed of sound in the water tank was measured to 1488.1 m/s. If 

we compare this result with those calculated in Table 4.1, we see that this speed corresponds 

to a temperature between 21 and 22 degrees Celsius. For 20 degrees Celsius the speed should 

be somewhere between 1482.3 m/s and 1485.4 m/s. The measured speed is a little faster but 

there can be many sources of error. The measured temperature is not exact. Measuring the 

exact temperature is difficult. The temperature may differ +/- 1 degree. The distance of 0.2 m 

is not exact due to transducer placement. The reading of time values is not exact. We see that 

for a 0.1 or 0.2 µs difference in time value the speed of sound changes significantly. An 

example: if the second pulse arrives at 282.4 the speed of sound is 1485 m/s. That gives us a 
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temperature between 20 and 21 degrees. With a 0.3 difference the speed of sound is 1483 m/s 

around 20 degrees.         

 

4.2.2 Testing the measuring system and determining element position  

This was done as one of the first things to test the measuring system and to determine how the 

different elements are stacked in the transducer and where the maximum values in the main 

lobe are. It also gave us an idea on what the sonar field looked like. By measuring at 11 

different positions in the x direction and 27 different positions in z direction, we got 297 

measuring points in a grid 0.33 meters from the transducer. The reason for 27 points in the z 

is to get a good resolution in z direction. By using equation for the wave length   
 

 
 and Eq. 

(2.5) we can find the transducers opening angle in the vertical z direction. 

  
       

      
                  

(4.4) 

  

In Eq. (4.4) we used 1480 m/s which are the speed of sound at 19 degrees Celsius. This gives 

us a wavelength of 14.80 mm. The outer dimension of the transducer is slightly more than 11 

cm in vertical z direction. If we assume that the transducer has 10 elements stacked in the z 

direction and choose each element height to be 10 mm with a minimum spacing of 1 mm we 

get an array length of 110 mm which gives us an opening angle of:  

 

  
       

     
           

(4.5) 

 

By using the equation for conversion between radians and degrees we get an opening angle. 

   

                 
   

 
           

   

 
                

 

(4.6) 

 

In the specs for the SH-90 transducer [25] it is said that the transducer has an opening angle of 

7.5 degrees. Our calculation is not far from that, an error around 0.2 degrees. The causes for 
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this error can be the temperature in the water is not exact and the spacing between the 

elements is different. The size of the elements can also differ. This result confirms that the 

transducer has an opening angel on 7.5 degrees in the vertical direction. To get a good 

resolution in the vertical z direction we have to have more than one point inside the opening 

angle at range 0.33 m. To find how big the opening is at 0.33 m we used simple trigonometry. 

A simple drawing of the aperture is illustrated in Figure 4.6. 

 

 

          SH-90 transducer 

                                              Opening angle: 7.5 degrees/2= 3.75 degrees                           

                                                                                    Distance: 0.33m   x                                                                                   

                                                                               

 

Figure 4.6: the aperture angle in the vertical z direction on the SH-90 transducer 

 

By dividing the aperture angel on two we get an orthogonal triangle with an adjacent leg 

0.33m and half an opening angle 3.75 degrees. We can then use the tangent function to find 

the opposite leg.  

 

     
        

        
 

(4.7) 

 

We are interested in finding the opposite leg, so by turning the tangent function around we get 

 

                               (4.8) 
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This gives us an opening at 0.33 m which is                 . This means 27 points 

in vertical z directions we can have 19 points inside the opening angle and 8 points outside. 

By moving the hydrophone  
       

        
         steps for each measuring point, gives us a 

total of 0.634 m of total movement in vertical z direction. 

Instead of moving the hydrophone in 297 different positions around the grid we placed the 

hydrophone in front of the transducer, only moving it in 27 different positions in vertical z 

direction. By rotating the transducer 7.2 degrees for each measurement we got a grid of points 

around the transducer 0.33 meters in y direction. This gave us a sonar field with a 72 degrees 

opening in x direction. The main goal with this experiment was to find the main lobe of the 

transducer and the maximum point in vertical z direction. The experiences from these 

measurements were use in later experiments were the measurements were done in one plane. 

By finding the maximum in vertical z direction, we were able to do rest of the measurements 

in this thesis in this z point. This meant that we only had to move in x and y direction in the 

tank. 

The measurements were done automatically with a series of matlab scripts. The dynamic 

position system is controlled by matlab scripts programed by engineer Svein Bø [2] at the 

DSB group. The recording of the data were done with matlab scripts programed by the author.    

The measurements in this experiment were done over 2 hours in November 2013 in automatic 

mode. The signal generator was set to send a sinus pulse with 3 cycles and center frequency at 

100 kHz. The data were processed in the matlab. 

By looking at the plots of the data we can see that this experiment answers some of the basic 

questions, does the system work? What does the field look like and where is the vertical 

maximum point? 

To answer the first question does the system work, we can look at the received pulse at one of 

the measuring points.  
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Figure 4.7: Received pulse at measuring point 150 

 

We can see in Figure 4.7 that the received pulse oscillates more than the transmitted pulse. 

We transmit a pulse with 3 cycles and receive a pulse with 8 cycles. This suggests that there is 

certain inertia in the transducer. The elements use time to get the pulse to oscillate. The pulse 

also uses time to calm down i.e. we get ringing in the tail of the pulse. This means the 

transducer is narrow band. The system works and the transducer transmits and the 

hydrophone receives. 

What does the sonar field look like? After doing the measurements in the water tank we 

process the data and plot a dB plot of the sonar field:  
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Figure 4.8: Sonar field in dB with 11 points in the x direction and 27 points in the z direction a grid of 

297 measuring points at a distance of 0.33 m from the transducer. 

 

We see in Figure 4.8 that when we plot the sonar field in dB the resolution in x direction is 

not very good with only 11 measuring points. But we get a good idea of what the sonar field 

looks like. For future measurements it is necessary with more measuring points in x direction 

to get an acceptable resolution. In figure 4.8 we can see that the maximum values lie some 

were between point 100 and 200. If we look at the field in a three dimensional plot it is easier 

to see that the maximum point lies in the middle of the transducer. 
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Figure 4.9: Three dimensional plot of the sonar field. The x, y and z axis is placed like the coordinate 

system in the water tank. 

 

In Figure 4.9 we see that the maximum values are around measuring point 15 in z direction 

and point 6 in x direction. This means that the transducer has its maximum in front with the 

main lobe pointing outward from the transducer. By closely looking at the values in the data 

files we find the vertical z positions for the maximum values. This z positions are used in later 

measurements in one plane. In the x direction we see that the main lobe do not meet the -3dB 

limit. This suggests that we need a bigger opening angle in x direction than 72 degrees.       
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4.2.3 Testing the sonar field in one plane 

The idea with this experiment was to test the sonar field in one plane. With the experience we 

made in the last experiment the main focus in this measurement was increasing the resolution 

in x direction and the opening angle. We also wanted to test the manual mode and see if this 

had an impact on the measurements. The questions for this experiment were how the sonar 

fields in one plane are and how many measuring points are needed for a good measurement. 

In this measurement we choose to use 180 measuring points in x direction. The reason for this 

was that we wanted to do the measurement from +90 to -90 degrees which would give us a 

180 degree opening around the transducer. With 180 points the transducer would have to 

rotate 1 degree for each measurement. This would give us an idea on the sonar field with 

better resolution in a wider angle.  

We did two measurements in this experiment with two different ranges. One measurement 

was done close to the transducer 17.5 cm and one at 37.5 cm from the transducer. By doing 

two measurements with different range we could see if the sonar field changed with distance.  

The measurements in this experiment were done over 8 hours in February 2014 in manual 

mode. The signal generator was set to transmit a sinus wave in burst mode with 3 cycles and 

center frequency at 100 kHz. The data were processed in the matlab script maling_10_4. 

By looking at the plot from these measurements we see that the resolution was increased 

significantly with 180 measuring points.  
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Figure 4.10: Sonar fields at R= 17.5 cm and R= 37.5 cm. Both measurements were done with 180 

measurements.   

We see in figure 4.10 that the resolution in x direction is good with 180 measuring points. 

There is some quantization noise in both measurements; it is evident in the areas with low dB 
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value. There are more ringing in the received pulse in the 17.5 cm measurement than in the 

37.5 cm measurement. We can also see that since the measurement at 17.5 cm is closer to the 

array there is slightly more curvature in the field. The problem with these measurements is 

that with 180 measuring points there is not an even number of measuring points for each 

element. This can be a problem in the summation of different points and back propagation of 

the field. This will be addressed in the next experiments.      

 

4.2.4 Measuring the sonar field 

The measurements done in the tank up to this point has been to find the speed of sound in the 

water tank, test and calibrate the system, test number of measuring points and determine how 

the sonar field looks. To measure the sonar field in the tank we have to determine how many 

measuring points we need to get a good resolution. In the simulations we saw that if I used 

under 100 measuring points in x direction the resolution was not very good. This was 

confirmed by the early measurements in the tank. The resolution is dependent on the number 

of measuring points for each element. This can be found by doing a simple calculation. We 

have a 360 degree cylinder with 48 elements stacked around the cylinder. Since the 

measurements are dependent on the rotation of the transducer we have to find how many 

degrees each element represents.  

 

    

           
      

(4.9) 

 

We see in Eq. (4.9) that each element is representing 7.5 degrees. This means that we have to 

use an even number of measuring points inside 7.5 degrees. We do the measurements from 

+90 to -90 degrees which means we use 24 elements in front of the transducer. To get a good 

resolution we need more than four measuring point for each element,         points. 

This means that the minimum number of points for each element is 24 elements*5 points=120 

points. This will give us a good resolution and with 5 points for each element the transducer 

has to rotate 
          

       
             for each measurement. This gives us a field of view of 

180 degrees around the transducer.  
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Two measurements with 120 points were made with two different ranges. The first 

measurement was done with a radius 0.5 m from the transducer. The second measurement 

was done as close to the far-field as possible with a radius 1 m from the transducer. These 

measurements and results are presented in Chapter 5.2.         
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Chapter 5 

5. Results and discussion 
In this part the results of the measurements and simulations are presented. We mainly look at 

the results from the measurements presented in Chapter 4.2.4 and the simulations in Field II 

with a curved array presented in Chapter 3.1.5. The first measurements leading up to the 

measurements presented in this Chapter were for testing and calibration and the result from 

these are presented in Chapter 4. 

 

5.1 Simulation data 

5.1.1 Linear array 

The results from the simulations with the linear array provide the foundation for the 

simulations with the curved array. The objective with these simulations was: 

 Measure the sonar field in the far-field. 

 Back propagate the field and look at the response over the elements. 

By confirming these statements with a linear flat array it is easier to try to recreate the same 

data with a curved array.  

The simulations with the flat array were done with the matlab scripts ForwardProp.m and 

BackwardProp.m. The first simulation was done with a 10 element flat array with 120 

measuring points at a distance 1000 m from the array. The measuring points were placed in a 

180 degree half circle around the array and the pulse period was set to 3.5 periods. The sound 

speed was set to the measured sound speed of 1488 m/s. When we plot dB plot of the field 

we get: 
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Figure 5.1: dB plot of the wave field with a 10 element linear array with 120 measuring points 

In Figure 5.1 we see the dB plot of the wave field. In Chapter 3 we discussed the geometry of 

the measuring sequence (Figure 3.2). If we compare the field in Figure 5.1 to what we 

expected in Figure 3.2 we can clearly see the difference in arrival time of the different pulses. 

When we back propagate the wave field back to the array we get: 

 

Figure 5.2: Response over all 24 elements with 120 measuring points distance 1000m 
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We observe in figure 5.2 that we have some fluctuations in the amplitude values in the outer 

elements but the response is smoother in the inner elements. We tried to improve the result by 

placing the measuring points in a 120 degree sector in front of the array. When back 

propagating these data we got: 

 

 

Figure 5.3: Response over all 24 elements with 120 measuring points at distance 1000m in a 120 

degree sector in front of the array. 

  

We observe in figure 5.3 that by measuring in a sector of 120 degrees in front of the array we 

get a slightly better result. The amplitude values are a little higher than in the first simulation 

and the fluctuations in the outer elements are a little less.  This gives us an idea of how to do 

the simulations with a curved array 

 

5.1.2 Curved array 

The simulation with the curved array was done with the matlab script KjorKode.m. The main 

purpose with these simulations was too see if the measurements in the near-field were 

possible and if we could characterize a transducer in the near-field. By looking at the response 

over all the elements we could see how sensitive the system was. By testing the system with 

different sound speeds, number of elements and pulse lengths, the idea was to find the setup 

that gave the minimum least square error. 
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In the ideal situation the response over all elements are the same when we back propagate. In 

the ideal situation we set the parameters to: 

 10 elements in the array 

 Input signal frequency 100 KHz 

 Sampling frequency 100* Input signal frequency 

 Speed of sound was measured to 1488 in the water tank so c is set to 1488 

 120 measuring points 

 Distance of 1 m, this gives us measurements in the near-field 

 Measuring points in a 120 degree sector in front of the array 

These parameters are set in the matlab script Parameters.m and by running KjorKode.m we get the 

response over all elements: 

 

 

Figure 5.4: Response over all 10 elements in ideal situation with distance 1m and speed of sound 1488 

m/s. 
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We see in Figure 5.4 that the response over all elements is the same, centered on 1. This gives 

us a least square error of 2.98e-23 which is neglectable. This means the program and approach 

works when the different parameters are known.   

To examine how sensitive the system is and if the least square error is a good indication on 

the response we can change some of the parameters to  see what happens to the response and 

the least square error. In this sensitivity analyze we examined three different parameter 

changes: 

 The change in sound speed 

 Number of elements in the array 

 Pulse length, number of periods in the pulse 

 

Speed of sound 
To see how the response changes with the sound speed we did simulations with three different 

sound speeds, 1487 m/s, 1486 m/s and 1483 m/s. The other parameters were set to the same as 

in previous simulation. By changing the sound speeds the result was: 

 

Figure 5.5: response over all 10 elements with distance 1m and speed of sound1488 m/s and 1487 m/s 
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Figure 5.6: response over all 10 elements distance 1 m and speed of sound 1488 m/s and 1486 m/s. 

 

 

Figure 5.7: response over all 10 elements distance 1 m and speed of sound 1488 m/s and 1483 m/s. 
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We see in figure 5.5 that the response over all elements changes with 1 m/s difference in the 

sound speed. The least square error becomes 4.67e+3. This proves that the system is sensitive 

for small changes in sound speed. This becomes more visible when we change the sound 

speed by 2 m/s to 1486 m/s. We see in figure 5.6 that the response of the elements varies more 

and more with small changes in the speed of sound. The least square error becomes 1.72e+4. 

This gives us a large deviation from the ideal situation where the least square error was close 

to zero. We see in Figure 5.7 that with a difference in the sound speed of 5 m/s the response 

has a significant drop in value and start to vary for each element. The least square error is 

5.94e+4. This shows that the system is sensitive for small changes in sound speed and thereby 

also the temperature in the water. 

 

Number of elements 
In the first example we used 10 elements in the array. Will the response and the least square 

error improve by increasing the number of elements to 20 and 40 elements? We use 1486 m/s 

when we try to improve the result: 

 

 

Figure 5.8: response over all 20 elements distance 1m speed of sound 1488 m/s and 1486 
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Figure 5.9: response over all 40 elements distance 1m speed of sound 1488 m/s and 1486 

 

With 20 elements in the array the least square error in Figure 5.8 is 3.17e+4. The error with 

10 elements was 1.72e+4 which suggest no improvement. It becomes clearer when we 

increase the number of elements to 40 elements: The least square error in Figure 5.9 is 

5.53e+4. The error increases with the number of elements. We observe in Figure 5.9 that there 

are some fluctuations in the outer elements. This is also the case in the previous simulations 

with 10 elements but becomes more apparent when we increase the number of elements to 20 

and 40. It is symmetric on both sides and becomes more apparent when we increase the 

number of elements.  

Pulse length 
We have seen in the previous simulations that increasing the number of elements does not 

decrease the least square error or improve the response. If we look at the pulse that is 

transmitted in the first simulations the pulse periods is set to 3.5. Will the least square error 

decrease if we increase or decrease the pulse periods? The pulse used in the previous 

simulations is illustrated in Figure 5.7. 
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Figure 5.10: Transmitted pulse with pulse periods 3.5 

 

If we change the  pulse periods to 8 and 1 we get the transmitted pulses: 

 

 

Figure 5.11: Transmitted pulse with pulse periods 8 
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Figure 5.12: Transmitted pulse with pulse period 1 

 

This gives us the responses:  

 

 

Figure 5.13: response over all 20 elements distance 1m speed of sound 1488 m/s and 1486. Pulse 

period 8 
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Figure 5.14: response over all 20 elements distance 1m speed of sound 1488 m/s and 1486. Pulse 

period 1 

We see in Figure 5.13 that by increasing the length of the pulse to 8 periods does not give a 

uniform response in the elements. The least square error is 7.48e+4 so by increasing the pulse 

periods we increase the least square error. This is a clear indication that the result is wrong. If 

we decrease the length of the pulse from 3.5 periods to 1 period we get a sinusoid with one 

period. We see in Figure 5.14 that by decreasing the length we reduce the fluctuations in the 

outer elements but the response over all the elements is slightly smaller than with pulse period 

3.5 and 8. The least squares error is 3.27e+4 which is still very high.  

To sum up the simulations done we see that the system is sensitive to small changes in the 

sound speed. By examining the changes in different parameters we have seen how the 

response changes over the elements. By adding more elements in the array we saw 

fluctuations in the outer elements and an increased in the least square error. The length of the 

pulse did not improve the result. In these simulations the lowest least square error was by a 

factor of ten raised to the power of 3. This suggests that the system is very sensitive for small 

changes in the sound speed.  This works if we have an array where we know the pulse length 

and the response to the elements. This means that the least square error can be used if the only 

unknown parameter is the speed of sound. This means that the least square error can be used 

to find the right speed of sound and therefore give us a calibrated system. 
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We can take some of the measurements done in this simulation as an example. We know that 

the speed of sound is 1488 m/s but if we were to find it we could make a matlab plot of the 

least square errors. If we make a matlab plot of the least square errors from 1486 to 1490 m/s 

we get: 

 

 

Figure 5.15: Plot of the least square errors from 1486 to 1490 m/s 

 

We see in Figure 5.15 that we have a minimum on 1488 m/s which means that the speed of 

sound is 1488 m/s. We see in the plot that +/- 1 m/s difference in sound speed has a 

significant increase in least square error.  
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Characterize a transducer 
To characterize a transducer we have to know the element weights and phase. If we know the 

elements weights and phase it is possible to calculate the transducers far- field response. 

Given a calibrated system where the speed of sound is known, can we then determine the 

elements weights?  Can we also find out if any of the elements have a delay? 

 

Element weights 
In the previous simulations the elements were weighted one over all elements. If we use the 

previous simulated result as the measured signal we can try to find the element weights. By 

trying different weights we can compare weighted signal to the window function and find the 

max amplitude difference between the window function and the response. The array has 24 

elements and the speed of sound is known and set to 1488 m/s. The test is done with two 

different weights first using a set window function and then a random window function. A 

window is shaped so that it is exactly zero at the beginning and end of the data block and has 

some special shape in between. The random window function is random values set around 

one. In this example we used a hanning window which has a bell shape. 

 

Figure 5.16: Response on all elements with a hanning window 
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Figure 5.17: Response over all elements with random weights 

 

We see in Figure 5.16 that by putting a hanning window on the data we get a bell shaped 

response similar to the shape of the window function. We can see that the amplitude values 

for the window function and the weighted data is the almost the same. If we compare the two 

amplitude values we find that the max differences for all elements are 1.94e-14 which is 

virtually zero. In Figure 5.17 we see the response after a random weighting of the elements. 

Like Figure 5.16 the difference in amplitude values is close to zero. The maximum difference 

in the elements is 8.95e-14. We also see that the least square error is 6.24e-24 with a hanning 

window and 1.12e-22 with random weights which is neglectable. 

By doing this test we see that with a calibrated system it is possible to find the element 

weights.  
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Element Phase 
We are interested in determining if any of the elements or system channels has an extra delay 

compared to the others. In a narrow band system, a time delay can be approximated by a 

phase delay. In a broad band system using a short pulse this approximation is less valid. To 

determine the delay of an element we approximate this with the phase of the element. To do 

this we have to analyze the complex signals. This is done in the same matlab script 

KjorKode.m. In the previous simulations the parameters for the simulations is set in the 

matlab function Parametre.m. When operating with complex values the parameters are set in 

the matlab function ParametreKompll.m. When analyzing the phase the pulse has to be altered 

to get a good result. The reason for this is that phase is narrowband. In the previous 

simulations we have used a pulse with 3.5 periods. This pulse is too short and contains too 

many frequencies which make it broadband. With a short pulse we get problems with the 

response and the phase. An example, if we use the same parameters as the previous 

simulations. Pulse period set to 3.5 and speed of sound 1488 m/s. We put a small time delay 

on the third element which corresponds to a 45 degree phase shift of the center frequency. 

This should give us a phase change in the third element: 

 

 

Figure 5.18: Response over all elements with phase shift in third element and with a pulse period 3.5 

periods.  
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We see in figure 5.18 that by using a pulse period of 3.5 periods we get some fluctuations in 

the response and some phase changes in all elements. We get a least square error of 117.77 

and in the third element we get a phase shift of -48 degrees. This is because of the short pulse 

and if we use a longer pulse with more periods we should get a better result. If we set the 

pulse period to 15 periods we get: 

 

 

Figure 5.19: Response over all elements with phase shift in third element and with a pulse period 15 

periods.  

 

In Figure 5.19 we see that by using longer pulse we get a better result in the response and the 

phase. We get a least square error of 3.75 and a phase shift of -45.5 degrees in the third 

element. This is can be improved by using more periods in the pulse. We set the pulse period 

to 40 periods and get: 
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Figure 5.20: Response over all elements with phase shift in third element and with a pulse period 40 

periods.  

 

We see in Figure 5.20 that with 40 periods we get a better response over all elements. This 

gives us a least square error of 0.0024 and a phase shift in the third element of -45 degrees. 40 

periods correspond to a pulse length more than 1 m. This is a very long pulse when we do 

measurements in a small water tank. We saw in Figure 5.19 that 15 periods should be 

sufficient.  With these results we could start testing the system by putting a random phase on 

the elements. We have seen that the system works with phase shift in one element. How does 

the system preform if there is a random phase shift in all the elements? 

. 



78 

 

 

Figure 5.21: Response over all elements with random phase shift in all elements and with a pulse 

period 15 periods. 

 

We see in Figure 5.21 that the phase is different in all elements. We see that there is some 

difference in phase and response in the elements but this is small. If we look at the maximum 

amplitude difference in the response it is 0.036 and the phase difference is 1.9 degrees. This is 

relatively small. We get a least square error of 1.58e+4. This is very high and can indicate that 

the least square error is not a god estimate when there is extra delay in the elements. In all the 

simulations we have used 120 measuring points. If we use the maximum amplitude difference 

and phase difference, can we find how many points is needed before the results starts 

degrade? This is important when trying to match the simulated data with the measured later in 

Chapter 5. In Table 5.1 we have tested different number of measuring points. We have put a 

hanning window on the elements and a random phase:   
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Table 5.1: Number of measuring points needed for a good response 

 Number of measuring points Max amplitude diff. Max phase diff. 

                     120              0.036     1.9 degrees 

                     110              0.036     2.0 degrees 

                     100              0.034     1.8 degrees 

                      90              0.033     1.7 degrees 

                      80              0.058     2.8 degrees 

                      70              0.069      3.8 degrees 

                      60              0.039      1.8 degrees 

                      50              0.050     2.8 degrees 

                      40              0.038     2.0 degrees 

                      30              0.026     2.1 degrees 

                      20              0.178   12.5 degrees  

                      10              0.732 348.5 degrees 

 

 

We see in Table 5.1 that the difference in amplitude and phase compared to the window 

function and random phases is small for all measurements with more than 30 measuring 

points. It has some small variations in the measurements over 30 points but at 20 and 10 

measuring points the max amplitude and phase the differences becomes big and thereby the 

response becomes more random. This means it is possible to do measurements with 

significantly lesser measuring points than 120. This becomes important when processing the 

measured data in Chapter 5.2.2 when trying to fit the measured data to the simulation 

program.   
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5.2 Experiment data  

The results presented in this chapter are the result of the measurements done with 120 

measuring points at a distance 1m and 0.5 m from the transducer. The measurements were 

done in the water tank at Ifi and controlled by the dynamic position system 

 

5.2.1 Measured Sonar Field 

The measurement data was first processed in the matlab script maling10_4.m. This was to see 

the dB plot of the sonar field. 

 

 

Figure 5.22: dB plot of the sonar field at distance 0.5m with 121 measuring points. 
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Figure 5.23: dB plot of the sonar field at distance 0.5m with 121 measuring points. 

 

We see in Figure 5.22 and 5.23 that the resolution in x direction is good with 120 measuring 

points. There is some quantization noise in both measurements but much better than the 

measurements done with 180 measuring points that is presented in Chapter 4. There is more 

ringing in the received pulse in the 1 m measurement than in the 0.5 m measurement. 

We compare the measured field with the simulated field in Field II. All the parameters in 

Field II is set to the same values as in the measuring experiment. The speed of sound is set to 

1488 m/s, frequency set to 100 kHz, distance 0.5 m and 1m and the number of measuring 

points is set to 120. In the water tank we only used one element with 10 sub elements; in Field 

II we used the same. The element is placed in front of the array illustrated in Figure 5.24 and 

the simulation of the sonar fields is illustrated in Figure 5.25 and 5.26: 
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: 

 

Figure 5.24: Array with 24 elements and 240 sub elements in field II. The front element is active and 

sending. 
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Figure 5.25: dB plot of the simulated sonar field with 121 measuring points at a distance 0.5 m from 

the transducer. 

 

 

Figure 5.26: dB plot of the simulated sonar field with 121measuring points at a distance 1 m from the 

transducer. 
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If we compare the measured sonar field with the simulated we see in Figure 5.25 and 5.26 that 

they are fairly similar. There is more noise in the measured data but the simulation is the ideal 

world were noise don’t exist. We see also that using one element produces similar results in 

the simulation and the measurement experiment. We can assume that using all elements in the 

SH-90 transducer will produce the same results as the simulations in Field II. This is not 

tested in this thesis since we only have a one-channel transmit-receive system and is only an 

assumption. After verifying the measurements with the simulations in Field II we can look at 

back propagating the measured data. 

 

5.2.2 Processing of measured data 

The processing of the measured data is done in the matlab script Testmaal.m. This program is 

based on the simulation program KjorKode.m. The idea is that by replacing the simulated 

field with the measured we could propagate the measured field back to the array.  In the 

measurements the 121 measuring points were spread over a 180 degree sector covering the 

half circle around the transducer. We have seen in the simulations that 120 measuring points 

is more than we need and Table 5.1 show that everything over 30 measuring points is 

sufficient for a good result. In the simulations the measuring points and the array elements is 

placed in a sector of 120 degrees. This means we have to convert the measured data to match 

the sector of 120 degrees. The 121 measurements are done between -90 degrees and 90 

degrees which gives us one measurement per 1.5 degrees. This corresponds to 81 

measurements in a sector of 120 degrees. Because we want to use a 120 degree sector of the 

transducer, 17 elements in the array will give us an array equivalent to the SH-90 transducer 

which has 24 elements in the 180 degree radius. This was done with both measurements. 

After converting the measurement matrices the sonar field became: 
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Figure 5.27: The sonar field after converting it to 81 measuring points in a sector of 120 degree and 

17 elements in the arrays. Distance is 1 m from the array. 

 

We see in Figure 5.27 that by converting the measurement matric we get a field of view of 

120 degrees. To get the front view of the field we used the measuring points 21 to 101. With 

this data we could propagate the data back to the array to see the response over the elements. 

We have observed in the simulations that by knowing the speed of sound we get a response of 

one over all the elements. Since we don’t know the speed of sound but have measured it, we 

can assume that the sound velocity is 1488 m/s and get a response of one over all elements. 

This can be illustrated by plotting the response for both measurements at distance 1 m and 0.5 

m with assumed sound velocity 1488 m/s.  
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Figure 5.28: The response over all elements with measured data at a distance 1 m from the transducer 

 

 

Figure 5.29: The response over all elements with measured data at a distance 0.5m from the 

transducer 
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If we compare the measured data with the simulated data we can look at the least square error. 

This will give us an overview of the difference of the measured and simulated data. We have 

seen in Figure 5.28 and 5.29 that the response over the elements with the measured data is one 

with the sound speed at 1488 m/s. If we use a simulated pulse with 3.5 periods we get the 

response: 

 

 

Figure 5.30: Response over all elements with a pulse with 3.5 periods at distance 1 m 

 

We see in Figure 5.30 that the amplitude values are low, ten to the power of minus three. That 

is very low amplitude values that implicate that we have some problems with the parameters 

in the measured data. Since we only used 1 element in the measurements we know that the 

elements have the same phase. This should give us a low error but the least square error is 

7.19e+3 which mean that the simulated and the measured data do not match up. Is this 

because of incorrect sound velocity? We test with 1487 m/s to see if there is a difference in 

the least square error. The least square error becomes 7.18e+3 which implicate that there is a 

trend of descending error with descending sound velocity. Can this be used to find the exact 

sound velocity? We test different sound speeds.      
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Table 5.2: Least square error with different sound velocities 

Speed of sound (m/s) Least square error 

              1486              7.178e+3 

              1485              7.170e+3 

              1484              7.164e+3 

              1483              7.157e+3 

              1482              7.150e+3 

              1481              7.144e+3 

              1480              7.136e+3 

              1479              7.131e+3 

              1478              7.123e+3 

              1477              7.117e+3 

              1476              7.109e+3 

              1475              7.103e+3 

 

 

We see in Table 5.2 that the difference in error is very small. The smallest error we could 

obtain was when the speed of sound was at 1342 m/s where the least square error was at 

12.67. This sound velocity is too slow. This indicates that there are more factors that have to 

be taken in to consideration than the sound velocity.  This will be discussed in Chapter 5.3. 
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5.3 Summary and Discussion 

In this part we sum up and discuss the results in the master thesis. 

5.3.1 The simulations 

As we have seen in the simulations, the system is sensitive to small changes in the sound 

speed. A difference of 1 m/s gives a least square error which suggests there is a large variation 

in the response. With differences of 2-5 m/s the response values drop and the least square 

error is significant. We also saw fluctuations in the outer elements when the sound speed was 

changed. These fluctuations appear to increase with more elements in the array. The least 

square error also seems to increase with the number of periods in the pulse. Some 

improvements can be done by changing the pulse periods. The fluctuations seemed to 

decrease with fewer periods. The least square error was still high, ten to the power of four, but 

that was the best result. This suggests that the system is sensitive to changes in sound speed, 

number of elements and pulse form. 

Does this give us a working system? We have seen in the simulations that this works if we 

know the pulse length and the response to the elements. The least square error can be used to 

calibrate the system if the only unknown parameter is the speed of sound. By using the 

systems sensitivity to sound velocity it is possible to find the true sound speed. The correct 

sound velocity is when the least square error is closest to zero.  

How can we use this? When we have a calibrated system and know the speed of sound we can 

characterize an unknown transducer. This is important if you want to calculate the transducers 

far-field response. To calculate the transducers far-field response you have to determine the 

element weights and the elements phase. This was done by implementing different weights on 

the elements and trying out random phases. By comparing the responses with the window 

functions we could see if the amplitude values changed. High max amplitude difference 

between the weighted signal and the window function indicated wrong weighing on the 

elements. This worked when the sound velocity was known but with a small change in the 

sound speed the amplitude difference became higher. We also saw that the system worked 

with different phase in one element as long as we used longer pulse. With a random phase in 

each element we saw that least square was not a god estimate on the error but the response 

was still one over all elements. By looking at the maximum amplitude difference between the 

window function and the response, and the difference in the random phase it was possible to 

find out how many measuring points that are needed to give a god response. With a hanning 

weight and random phase in the elements we could try out different numbers of measuring 
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points. We found that with less than 30 measuring points the amplitudes in the response 

started to vary. This means that in a measuring experiment it is possible to use 30 measuring 

points and still get a good response. 

With these simulations it is possible to calculate the transducers far-field response. The 

simulations showed us that with a calibrated system it is possible to characterize a transducer 

in the near-field. The important parameters to know are the weights and the phase of the 

elements. To get these we have to have a calibrated system which means we have to know the 

speed of sound. If all this is known it is possible to calculate the far-field response. 

 

5.3.2 The experiment 

In the water tank we measured the temperature in the water. By calculating the time period 

between two measurements and using Lubbers and Graaff’s equation (equation 4.5) we found 

that the speed of sound in the water was 1488 m/s. If we look in table 4.1, we see that this 

speed corresponds to a temperature between 21 and 22 degrees Celsius. Since the measured 

temperature in the water tank was 20 degrees Celsius the speed could be somewhere between 

1482.3 m/s and 1485.4 m/s. This is a difference of 6-3 m/s from the measured speed and there 

could be a number of sources for this error. The most important is probably that the measured 

temperature is not exact. The measurement was done with a thermometer and measuring the 

exact temperature is difficult. The temperature may differ +/- 1 degree or more. As we see in 

table 4.1, +/- 1 degree makes a significant difference in sound speed. The simulations showed 

us that the system was sensitive to small changes in the sound speed and when simulating we 

used the measured speed as the true sound velocity. With the simulations we had found a way 

to characterize a transducer. This helped us find the parameters for back propagating the 

measured data to a transducer similar to the SH-90 transducer. The simulation programs were 

made so they would match the conditions in the water tank, so with a characterized transducer 

we could back propagate the measured data with a program based on the simulation programs. 

The back propagating of measured data proved to be a little difficult. Implementing the 

measured data into the simulation system was done by replacing the simulated pulses with the 

measured pulses and back propagating this to the array. Since the simulation programs were 

made so they would match the conditions in the water tank, implementing these data was not 

a problem. Since we only used one element in the measurements all the elements should have 

the same phase and amplitude. The problems came when comparing the measured to the 
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simulated pulses. Ideally when using the same sound speed those two results would match up 

and the least square error would be close to zero. If not we could use the least square error to 

find the correct sound velocity. This proved to be difficult since the amplitude values in the 

simulated response were so low compared to the measured and the least square error became 

high. By trying out different sound speeds we saw small improvements in the error with 

descending sound speed but the improvements were so small that there were more factors 

contributing to the errors. 

So the big question is what are the contributing factors to these errors? When reanalyzing the 

system we saw that there were some new unknowns that contribute to the problem. If we have 

a calibrated system the pulses from the measured data and the simulated data would match up 

in the measuring points. For this to happen we have to know four main parameters, the 

distance, the speed of sound, the time of arrival and the pulse shape. We have seen in Chapter 

4, equation 4.6 that the distance is dependent on the sound velocity and the time. In the 

simulations there is an ideal situation where these parameters can be set and found accurately. 

The problem with the measurement data is that in the measurement experiment these 

parameters had an approximate value. The reason for this is that we get an extra time delay in 

the measuring equipment. When sending from the pulse generator trough the oscilloscope in 

to the transducer we get a time delay in the system called instrumental delay, a Δt. That means 

to find the exact speed of sound we have to take into account that we have a time which is 

t+Δt. This means that if we don’t know Δt we can only get an approximate distance, speed of 

sound and time. This gives us a mismatch in the time of arrival in the measuring points 

between the simulated and the measured data. If this mismatch is greater than λ/8 we get a 

problem with the response.  

The pulse shape can also be a contributing factor to the mismatch. In the simulations we send 

a pulse with 3.5 periods and measuring points measure a pulse with 3.5 periods. Since the 

transducer is a physical object sending out a pulse the elements will use some time to start and 

end the oscillations. This means that sending a pulse with 3.5 periods will give a longer pulse 

with ringing noise in the measuring points. Matching the two pulse shapes is something to 

take into account and can be difficult but an approximate matching of the pulse length will 

improve the result. But without knowing Δt the matching of pulse shapes will not have a 

significant impact on the response. From these disheartening discoveries, we concluded that 

we could not use the measured data to verify the method.  Since collecting new data would 

not be possible due to the MSc project limited time, we chose not to pursue this.             
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Chapter 6 

6. Conclusion 

The work in this thesis can be divided into two main parts, the measurement experiment and 

the simulations. Like stated in the objectives in Chapter 1, preparing the SH-90 transducer, 

making the necessary hardware and learning the dynamic position system was important tasks 

to make the necessary measurements in the water tank. This was work that had never been 

done at the sonar lab at Ifi so a lot of testing was necessary in order to get these 

measurements. This had an impact on the final result. 

 As we have seen in this thesis it was difficult to get the measured data to match up with the 

simulated data. The simulations showed that characterization of a transducer in the near-field 

by finding the right element weights and element phase is possible. The system was sensitive 

to changes in the sound velocity. We saw drops in the response and an increase of the least 

square error with small changes in the sound velocity. When the sound velocity is known it 

was possible to accurately estimate the weights of the elements and the phase characteristics. 

With the least square error we saw that we could find the right sound speed with the least 

square error closest to zero. This showed us that in theory it is possible to characterize a 

transducer in the near-field and calculate the far-field response. The problem with the 

measured data was probably the time aspect. When comparing it with the simulated pulses we 

saw a significant drop in the amplitude values in the response. The results didn’t improve 

noticeably by changing the sound velocity. 

 There can be a number of reasons for the poor response. The main reason might be the delay 

in the measuring system called the instrumental delay which gives us a Δt on the arrival time 

at the measuring points. To get a good response over all elements it is important that the 

timing of the pulses is right in the measuring points. A mismatch in the arrival time gives us a 

poor result. The pulse shape is also an important aspect. A mismatch in the pulse shape will 

contribute to the errors in the response. By matching the periods in the measured and the 

simulated pulses it should be possible to minimize the errors. It is also important to emphasize 

that this was the first time a measurement was done on this system. A lot of the time went in 

to getting the system operational. Waiting for the right temperature in the water, air bubbles 

on the transducer surface, leakages in the water tank and optimization of the dynamic position 
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system made the measurements in the water tank a time consuming task. A master thesis is a 

time limited project so to get a fully calibrated system more work is needed in the water tank. 

But despite this the conclusion at the end of the project is that this method could work. The 

simulations have showed that in theory we can characterize a transducer in the near-field and 

by that calculate the far-field response. With more work on the measuring experiment we 

believe it is possible to match the measured data to the simulated data. By compensating for 

the instrumental delay it should be possible to get the timing right in the measuring points and 

improve the element response. An answer to the underlying question whether it is possible to 

say something about the sonars far-field by measuring the near field depends on the 

calibration of the system. With a good calibrated measuring system it is possible to 

characterize the transducer with measurements in the near field.        
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Chapter 7 

7. Further work 
The propositions for further work could be several but only the ones considered interesting is 

mentioned. The first that comes to mind is trying to improve the results done in this work. In 

the measurement experiment it is possible to optimize the calibration of the system as stated 

in Chapter 5. To find the instrument delay would be a first priority and try to match the 

simulated and measured data better. This is a problem that can be investigated more and 

hopefully gives better results. Other things that would be natural to examine are: 

 

 The element directivity, will it have an impact on the results. 

 We saw in the simulations that 30 evenly spaced measuring points was sufficient for a 

good result, what about uneven placement of the measuring points. Is it possible to 

further reduce the number of measuring points? 

 Measure at multiple depths and combine data. By doing this we get more data and 

possibly a better result. 

 Look at the reflection effects in the tank. Since the tank is small they will come from 

different angels at various depths. 

 Do the measurements with a 2D array. The SH-90 transducer is a 2D cylindrical 

array. We used the SH-90 transducer as a 1D array. An investigation of what is 

needed to characterize a 2D array is a natural extension of this work.     
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Appendix A 

This appendix contains the matlab scripts used in this thesis. Several scripts were made during 

the project but only the most important programs to recreate the simulation results and the 

processing of the measured data is included in this chapter. The scripts that control the 

dynamic position system is not included and are only available for those doing research at the 

sonar lab at Ifi.  

A1. Linear array 

Contains the scrips ForoverPropagering.m and BakoverPropagering.m 

ForoverPropagering.m 

%%Simulerer bølgefelt med et lieært array 

clear all 

format long 

  

M=24;                   %antall elementer 

R0=1000;                %avstand til målepunkter 

numPoints=121;          %antall målepunkter 

t = [ 0 : 1 : 450 ];%Time Samples Puls 

f =100e3;              %Input Signal Frekvens KHz Puls 

fs =100*f;            %Sampling frekvens MHz Puls 

Length=length(t);              %Lengde hammingvindu 

%  

P.fs=100e3; 

P.c=1488; 

P.dato=today; 

P.focus= [0 R0 0]'; 

  

  

%% Linært array med 10 elementer med avstand lambda/2 mellom hvert element 

P.M = M; 

lambda=P.c/P.fs; 

d= lambda/2;            %Element avstand 

%d= lambda;            %Element avstand 

L=(M-1)*d;              %lengde array 

x=[0:d:L]-L/2;          %Element posisjon 

y=zeros(1,length(x));   %Element posisjon 

  

 

    P.elpos=zeros(3,M); 

    P.elpos(1,:) = x; 

    P.elpos(2,:) = y; 

    P.elpos(3,:) = 0; 

     

 

%legger på elementvekter på elementene 

elVekt = 0.5 + .5*hamming(M); 

  

 for i=1:M 

 elVekt(:,10) = 0; 

 elVekt(1)=1; 

 end 

%  

  

if 0 

    figure(100); clf 

plot(X,Y,'o'); 

axis([-0.6 0.6,0 0.5]); 

grid on 

hold on 

end 

%% Målepunkter 

z=0; 
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Th=linspace(0,pi,numPoints);  

Th=linspace(pi/6,pi-pi/6,numPoints);  

%Th=linspace(-pi/2,2*pi-pi/2,numPoints); 

%Th = ([1:numPoints]-1)/numPoints*pi; 

%Th=([1:numPoints]-1)/numPoints*2*pi;  

rho=ones(1,numPoints)*R0; 

[X,Y] = pol2cart(Th,rho,z); 

P.malepos=zeros(3,numPoints); 

P.malepos(1,:) = X; 

P.malepos(2,:) = Y; 

P.malepos(3,:) = 0; 

P.numPoints = numPoints; 

  

figure(1);clf 

%subplot(1,2,1); 

plot(1e2*P.elpos(1,:),1e2*P.elpos(2,:),'o'); 

hold on 

plot(1e2*X,1e2*Y,'o','linewidth',2); 

hold on 

plot(1e2*P.focus(1),1e2*P.focus(2),'r+'); 

hold off 

xlabel(['R0=',num2str(R0*1e2,'%.1f'),' cm, array in center origo']); 

ylabel(['R0=',num2str(R0*1e2,'%.1f'),' cm']); 

title('Linear array with 10 elements, 121 points') 

axis equal 

grid on 

  

x1 =sin(2*pi*f/fs*t);         %Genererer Sinus Wave 

vindu=hanning(Length);        %Hammingvindu 

V=vindu'; 

%V=1; 

Puls=V.*x1;                   %Sinusbølge med hammingvindu 

figure(2); 

plot(Puls); 

grid on 

hold on 

%Puls=S(:,60); 

%% Målesekvens 

  

el_focus_norm =  sqrt(sum(bsxfun(@minus,P.elpos, P.focus)'.^2,2)); 

[dmin] = min(el_focus_norm); 

  

tm_f = (el_focus_norm - dmin)./P.c; 

  

%Array for time delays 

tmn = zeros(P.M, P.numPoints); 

  

for n = 1:P.numPoints 

     

   el_male_norm = sqrt(sum(bsxfun(@minus, P.elpos, P.malepos(:,n))'.^2,2)); 

   tmn_ra = el_male_norm./P.c; 

    

   tmn(:,n) = tmn_ra - tm_f; 

end 

  

max_delay = max(max(tmn)); 

min_delay = min(min(tmn)); 

  

%Array for output 

left_margin = 2000; right_margin = left_margin; 

window_size = round( (max_delay-min_delay)*fs + Length + left_margin + right_margin); 

Resp = zeros(P.numPoints, window_size); 

%% 

for n = 1: P.numPoints 

   for m = 1: P.M 

       

       from = left_margin + round((tmn(m,n)-min_delay)*fs); 

       to = from + Length-1; 

        

        ra = sqrt(sum(bsxfun(@minus, P.elpos(:,m), P.malepos(:,n))'.^2,2)); %reise avstand 

       Resp(n,from:to) = Resp(n,from:to) + Puls;%*1./ra./ra; 

        

   end 

end 

%% 

figure(3) 

imagesc(db(Resp'),[-25,max(max(db(Resp)))]); 
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colorbar; 

  

xlabel('Measuring points'); 

ylabel('Length of measuring time'); 

  

%% -------------------------------------------------- 

  

% Lagre resultater 

P.Resp = Resp'; 

P.tidMale = [round(min_delay*fs): round(min_delay*fs) + window_size-1 ] ; 

P.Puls = Puls; 

P.tidPuls = P.tidMale; 

  

  

figure(4) 

kx=linspace(-2*pi/lambda,2*pi/lambda,numPoints); 

phi=radtodeg(kx/(90*pi)); 

plot(phi,db(max(Resp'))); 

axis([phi(1),phi(length(phi)),-10,30])  

xlabel('Phi(degrees)'); 

ylabel('Response [dB]'); 

grid on; 

  

figure(5) 

imagesc(db(Resp')); 

colorbar; 

xlabel('Measuring points'); 

ylabel('Sampling time'); 

 

BakoverPropagering.m 

%Array for time delays 

tmn = zeros(P.M, P.numPoints); 

  

for n = 1:P.numPoints 

     

   el_male_norm = sqrt(sum(bsxfun(@minus, P.elpos, P.malepos(:,n))'.^2,2)); 

   tmn_ra = el_male_norm./P.c; 

    

   tmn(:,n) = tmn_ra; 

    

    

end 

%  

  

%max_delay = max(max(tmn)); 

%min_delay = min(min(tmn)); 

  

%Array for output 

Resp_tilbake = ones(M,window_size*2); 

  

  

for m = 1:P.M 

    for n = 1:P.numPoints 

         

    from = round(min_delay*fs - tmn(m,n)*fs)+4000+1; 

    to = from + window_size-1; 

     

    ra = sqrt(sum(bsxfun(@minus, P.elpos(:,m), P.malepos(:,n))'.^2,2)); %reise avstand 

  

    Resp_tilbake(m,from:to) = Resp_tilbake(m,from:to)+ Resp(n,:);%*ra; 

    

    end 

end 

  

  

figure(4) 

stem((max(Resp_tilbake'))); 

xlabel('Number of elements'); 

ylabel('Amplitude'); 

  

% plot(db(max(Resp))) 
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A2. Field II script 

Contains the script LagSimulering.m. This script needs the Field II program to run. 

LagSimulering.m 

 
addpath FieldII 

  

%  

%  

% Generate the transducer apertures for send and receive 

f0=100e3; 

fs=100e6; 

c=1488; 

  

lambda=c/f0; 

  

  

kerf_h = 0.001%(0.47-0.7)*lambda; % avstand mellom elementer, gir 0.7 %lambda bredde 

kerf_w = 0.001; 

  

width = 0.1; % dvs 10 cm 

height = 0.47*lambda-kerf_h; % 48 elementer gir full sylinder 

  

no_sub_x =10; % 10 cm er 6.6 lambda. Må ha sub-biter mindre enn lambda/2 

no_sub_y =1; %2*2; 

  

  

  

focus=[0 0 0.5];  %focus point 

  

%Radius = 3; 

Radius = 0.1078/2; 

%a_cnf= 1; 

a_cnf =  ones(1,23); 

if 0 

    a_cnf(:) = 1e-7; 

    a_cnf(12) = 1; 

    a_cnf(23) =0; 1e-7; 

end 

  

field_init(0); 

  

Th = xdc_curved_linear_array(width, height, kerf_w, kerf_h, ... 

    no_sub_x, no_sub_y, focus, Radius, a_cnf); 

figure(1); 

show_xdc(Th); 

hold on 

  

% Set the exitation 

excitation=1e6*sin(2*pi*f0*(0:1/fs:3/f0)); 

xdc_excitation (Th, excitation); 

% 

% Set the impulse response for the  aperture 

impulse_response=sin(2*pi*f0*(0:1/fs:2/f0)); 

impulse_response=impulse_response.*hanning(max(size(impulse_response)))'; 

  

xdc_impulse (Th, impulse_response); 

  

% Which points to observe the pulse: 

% 

Rad = 0.5;  % radius in meter. 

Theta = deg2rad(-35:7:35); % Degrees 

Theta = deg2rad(linspace(-90,90,120)); % Degrees 

[z,y] = pol2cart(Theta,Rad); 

  

xpoints = [-60:5:70].'*1e-3; 

xpoints = 0; 

points = zeros(length(Theta)*length(xpoints),3); 
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for ii=1:length(y) 

    points(((ii-1)*length(xpoints)+(1:length(xpoints))),1) = xpoints; 

    points(((ii-1)*length(xpoints)+(1:length(xpoints))),2) = y(ii); 

    points(((ii-1)*length(xpoints)+(1:length(xpoints))),3) = z(ii); 

end 

% 

%points = [0 0 1.5] 

  

disp(points) 

%points = points(10,:) 

  

% Calculate the received response 

[hp, start_time] = calc_hp(Th, points); 

  

 

 % Here the display of the data is inserted 

% 

figure(2); 

plot3(points(:,1),points(:,2), points(:,3),'*') 

  

figure(3); 

plot(hp) 

  

figure(4); 

imagesc(db(hp/max(hp(:)))); colorbar 

xlabel('Measuring points'); 

ylabel('Length of measuring time'); 

title('dB plot simulated sonar field 120 measuring points R=0.5m'); 

  

figure(5); 

plot(rad2deg(Theta),db(max(hp))) 

xlabel('Measuring points'); 

ylabel('Response in dB'); 

  

figure(6); 

imagesc(hp); 

colorbar; 

xlabel('Measuring points'); 

ylabel('Length of measuring time'); 

  

figure(7) 

mesh(db(hp));  

 

 

A3. Curved array 

Contains the main script KjorKode.m and the functions Parametre.m,ParametreKompl1.m and 

CalcField.m. 

 

KjorKode.m 
% Script som kjører kode ved hjelp av funksjonene CalcField og  

%Parametre og Parametrekompl1. Simmulerer sonar felt med et krumt array 

%Siste versjon er endret 05.09.2014 

  

% 1: Definerer P (Kan kalle Parametre.m) 

P = Parametre; 

  

% 2: Beregner feltet som måles i målepunkter(Kaller på CalcField.m): 

B = CalcField(P); 

  

% 3A: Finner et eksempel på målt signal, gitt parametre i P: 

  

BB = reshape(B.Pulser,length(P.MalePkt.tMalePkt)*P.MalePkt.numPoints,P.M); 

  

%  

Vekt1 =ones(P.M,1); 

MaltSignal =  BB* Vekt1; 

  

% LS-løsning 



100 

 

disp('Ideell verden, rett lydhastighet') 

x1 = BB\MaltSignal 

  

% LS-Feil: 

sum((MaltSignal - BB*x1).^2) 

 

%% 

% 3B: Forandrer lydhastighet og lager annet målt signal: 

Pny = P; 

Pny.c = 1486; 

  

B2 = CalcField(Pny); 

  

%  

  
BBny = reshape(B2.Pulser,length(P.MalePkt.tMalePkt)*Pny.MalePkt.numPoints,Pny.M); 

  

%Legger på random vekter 

Window=ones(Pny.M,1)+0.1*randn(Pny.M,1); 

Vekt2 =ones(Pny.M,1)+0.1*randn(Pny.M,1); 

MaltSignal2 =  BBny* Vekt2; 

  

% LS-løsning:Tester målematrise BB (beregnet med P.c = 1500) med  

% målte data gitt at lydhastigheten i vannet var 1488m/s: 

disp('Ideell verden, feil lydhastighet') 

x2 = BB\MaltSignal2 

  

% LS-Feil: 

sum((MaltSignal2 - BB*x2).^2) 

%% 

% 4A: Lager kompleks signal. I tillegg langt signal ... 

% 1: Definerer P (Kan kalle ParametreKompl1.m) 

Pkomp = ParametreKompl1; 

  

% 2: Beregner feltet som måles i målepunkter: 

BBkomp = CalcField(Pkomp); 

  

% 3A: Finner et eksempel på målt signal, gitt parametre i P: 

  

BBkomp = 

reshape(BBkomp.Pulser,length(Pkomp.MalePkt.tMalePkt)*Pkomp.MalePkt.numPoints,Pkomp.M); 

  

% Lager vekt hvor et element er kompleks ... 

Vekt = ones(Pkomp.M,1); 

Vekt(3) = cosd(45)+i*sind(45); 

MaltSignalkomp =  BBkomp * Vekt; 

  

% LS-løsning 

disp('Ideell verden, rett lydhastighet') 

x3 = BBkomp\MaltSignalkomp 

[abs(x3) angle(x3)/2/pi*360] 

  

% LS-Feil: 

sum(abs(MaltSignalkomp - BBkomp*x3).^2) 

 

% 4B: Lager hack, legger til litt tid til en av elementene 

PkompEkstra = Pkomp; 

PkompEkstra.EkstraDelay = zeros(PkompEkstra.M,1); 

%Legger til random fase i alle elementer 

PkompEkstra.EkstraDelay(:) =(360*rand(PkompEkstra.M,1 )-180)/360*PkompEkstra.fs / 

PkompEkstra.f; 

%PkompEkstra.EkstraDelay([3]) =(45)/360*PkompEkstra.fs / PkompEkstra.f; 

  

BkompEkstra = CalcField(PkompEkstra); 

  

% 3A: Finner et eksempel på målt signal, gitt parametre i P: 

  

BBkompEkstra = 

reshape(BkompEkstra.Pulser,length(PkompEkstra.MalePkt.tMalePkt)*PkompEkstra.MalePkt.numPoints,

PkompEkstra.M);  

  

% Vekt =hann(PkompEkstra.M); %ones(PkompEkstra.M,1);%+ 0.1*randn(PkompEkstra.M,1); 

Vekt =ones(PkompEkstra.M,1);%+ 0.1*randn(PkompEkstra.M,1); 

MaltSignalkompEkstra =  BBkompEkstra * Vekt; 
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% LS-løsning: NB: Tester målematrise BB (beregnet med P.c = 1500) med  

% målte data gitt at lydhastigheten i vannet var 1488M/s: 

disp('Ideell verden, rett lydhastighet') 

x = BBkomp\MaltSignalkompEkstra 

[abs(x) angle(x)/2/pi*360] 

  

% LS-Feil: 

sum(abs(MaltSignalkompEkstra - BBkomp*x).^2) 

  

disp('Maks feil i amplitude og fase:') 

[max(abs(Vekt-abs(x))) max(abs(angle(x)/2/pi*360 - (-

PkompEkstra.EkstraDelay*PkompEkstra.f/PkompEkstra.fs)*360))] 

  

Calcfield.m 
function B = CalcField(P); 

% 

% Function that calculates the field measured in a set of measuring points, 

% P.MalePkt, when a signal P.Pulse are sent from a set of transmit points, 

% P.elpos. 

% 

% Input: Struct P: 

%  

% MalePkt.numPoints : No. of points to measure the response 

%     MalePkt.Coord : [3xP.MalePkt.numPoints], array of (x,y,z) 

%                      coordinates [meter] 

%                 f : Center frequency [Hz] 

%                fs : Sampling frequency [Hz] 

%                 c : Speed-of-sound [m/s] 

%             Focus : Coordinates for focus point [3x1] [meter] 

%             Pulse : Pulse sent from each element 

%            tPulse : Time axis for P.Pulse [1xlength(P.Pulse)] 

%                 M : No of transmit elements  

%             elpos : Coordinates of Tx element positions [3xP.M] [meter] 

%          elCenter : Coordinate of element center  

%                    (from which the focus is calculated from) [3x1] [meter] 

%          tMalePkt : [1x1001 double] 

% 

%       [optional] 

%       EkstraDelay : Add extra constant delay for one or more channels [1xP.M] 

% 

% Output: Struct B: 

% 

% 

%     AA, 18/6-2014 :    First version 

%     AA, 19/6-2014 :    Added "P.EkstraDelay" 

  

  

  

% Allocate memory 

B.Pulser = zeros(length(P.MalePkt.tMalePkt),P.MalePkt.numPoints,P.M); 

  

% For all measuring points, calculate the contribution from each Tx element, 1..P.M 

  

% figure(1); clf; grid on; hold all 

for i_m = 1:P.MalePkt.numPoints  % for-løkke over målepunkter 

    % Koordinat dette målepunkt: 

    for i_el = 1:P.M  % for-løkke over elementer 

%         

        % Tidspkt element starter å sende, målt i sampler 

        tauEl = P.fs/P.c*(norm(P.Focus- P.elCenter) - norm(P.Focus - P.elpos(:,i_el))); 

         

        if isfield(P,'EkstraDelay') & P.EkstraDelay(i_el) ~=0 

            tauEl = tauEl + P.EkstraDelay(i_el); 

        end 

        % Når når pulsen fra dette elementet fram til dette målepkt 

        narFram = P.fs/P.c*(norm(P.MalePkt.Coord(:,i_m) - P.elpos(:,i_el)) + norm(P.elCenter)) 

+ tauEl; 

  

        % Dette elementets bidrag til puls i dette målepunkt 

        Bidrag = interp1(P.tPulse + narFram,P.Pulse,P.MalePkt.tMalePkt,'linear',0).'; 

        %Bidrag = interp1( P.Pulse,P.MalePkt.tMalePkt,'linear',0).'; 

         

        %plot(P.tMalePkt,2*i_m + Bidrag) 

         

  

        B.Pulser(:,i_m,i_el) = Bidrag; 
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        %pause 
        % keyboar 
    end 
end 
  

 

Parametre.m 
function P = Parametre 

  

% Function that sets up a struct of parameters needed for CalcField() 

P.verbose = 1;  %  

  

P.f = 100e3;   % Input signal freq. in Hz 

P.fs = 100*P.f;   % Samplingsfrekvens 

P.c = 1488; 

% Definerer målepunkter: 

P.MalePkt.R0 = 1e0;  % Avstand til målepunkt målt i meter 

if 0, 

    P.MalePkt.numPoints = 2; % Antall målepunkter 

    P.MalePkt.Theta = deg2rad([0 -45]); 

else 

    P.MalePkt.numPoints = 81; % Antall målepunkter 

    P.MalePkt.Theta = deg2rad(linspace(-60,60,P.MalePkt.numPoints)); 

    %P.MalePkt.Theta = deg2rad(linspace(0,358,P.MalePkt.numPoints)); 

    %P.MalePkt.Theta = 2*pi*[0:P.MalePkt.numPoints-1]/P.MalePkt.numPoints; 

    %P.MalePkt.Theta = linspace(-pi/2,pi/2,P.MalePkt.numPoints); 

end 

P.MalePkt.Coord = zeros(3,P.MalePkt.numPoints); 

for i_m=1:P.MalePkt.numPoints 

    [y,x,z] = pol2cart(P.MalePkt.Theta(i_m),P.MalePkt.R0,0); 

    P.MalePkt.Coord(:,i_m) = [x y z].'; 

end 

  

  

% Definerer måletidspunkter: 

antMalePer = 1*10; 

P.MalePkt.tMalePkt = (-P.fs/P.f*(antMalePer/2):P.fs/P.f*(antMalePer/2)) + ... 

    P.MalePkt.R0 / P.c *P.fs; 

  

P.Focus = [0, 1*P.MalePkt.R0, 0].'; 

  

  

  

% Definerer pulsen 

P.PulsePeriods =3.5; % Antall perioder i pulsen 

P.tPulse = -P.fs/P.f*(P.PulsePeriods/2):P.fs/P.f*(P.PulsePeriods/2);  % Time samples pulse 

% Lage puls som ikke har DC 

% Må tilpasses til lengden av pulsen. 'pdfStartStop' er testet for 

% P.Pulsperiode == 3, 3.5 og 4. 

pdfStartStop =3.01874285; 

P.Pulse = (-1)^floor(P.PulsePeriods)*sin(2*pi*linspace(0,P.PulsePeriods,length(P.tPulse))).* 

... 

    normpdf(linspace(-pdfStartStop,pdfStartStop,length(P.tPulse))); 

%P.Pulse=(S(:,60)); 

P.Pulse = P.Pulse / max(P.Pulse); 

figure(4) 

plot(P.Pulse); 

xlabel('Puls period[{\mu}/s]') 

ylabel('Amplitude ') 

P.lambda = P.c/P.f; 

  

% Definerer elementposisjoner 

if 0, 

    P.M = 2;  % Antall elementer 

    P.elpos=zeros(3,P.M); 

    P.elpos(1,:) = [0 P.MalePkt.R0/4]; 

    P.elpos(2,:) = 0; 

    P.elpos(3,:) = 0; 

    P.elCenter = [0 0 0]'; 

elseif 0, 

    P.M = 2;  % Antall elementer 

    P.elpos=zeros(3,P.M); 

    tmpTh = atand(-4/3); 



103 

 

    P.elpos(1,:) =  P.MalePkt.R0/4*[sind(0) sind(tmpTh)]; 

    P.elpos(2,:) = P.MalePkt.R0/4*[cosd(0) cosd(tmpTh)];; 

    P.elpos(3,:) = 0; 

    P.elCenter = P.MalePkt.R0/4*[0 cosd(0) 0]'; 

elseif 0 

    P.M = 3;  % Antall elementer 

    P.elpos=zeros(3,P.M); 

    P.elpos(1,:) = P.lambda.*[-(P.M-1)/2:(P.M-1)/2] 

    P.elpos(2,:) = 0; 

    P.elpos(3,:) = 0; 

    P.elCenter = [0 0 0]'; 

else % sylinderarray 

    P.M = 17;  % Antall elementer 

    P.elpos=zeros(3,P.M); 

    % Buen skal være (P.M-1)*lambda/2 lang 

    b = (P.M-1)*P.lambda/2; 

    % Arrayet skal dekke +-60 grader 

    Th = 2*deg2rad(30); 

    P.ElTheta = linspace(-Th/2,Th/2,P.M); 

    % Kan da regne radius på sylinder 

    P.ElR = b/Th; 

    [y,x,z] = pol2cart(P.ElTheta,P.ElR,0); 

  

    P.elpos(1,:) = x; 

    P.elpos(2,:) = y; 

    P.elpos(3,:) = z; 

    P.elCenter = [0 P.ElR 0]'; 

end 

  

  

  

ParametreKompl1.m 
 function P = Parametre 

  

% Function that sets up a struct of parameters needed for CalcField() 

% 

  

  

P.verbose = 1;  %  

  

P.f = 100e3;   % Input signal freq. in Hz 

P.fs = 100*P.f;   % Samplingsfrekvens 

P.c = 1488; 

% Definerer målepunkter: 

P.MalePkt.R0 = 1e0;  % Avstand til målepunkt målt i meter 

if 0, 

    P.MalePkt.numPoints = 2; % Antall målepunkter 

    P.MalePkt.Theta = deg2rad([0 -45]); 

else 

    P.MalePkt.numPoints = 10; % Antall målepunkter 

    P.MalePkt.Theta = deg2rad(linspace(-60,60,P.MalePkt.numPoints)); 

    %P.MalePkt.Theta = deg2rad(linspace(0,358,P.MalePkt.numPoints)); 

    %P.MalePkt.Theta = 2*pi*[0:P.MalePkt.numPoints-1]/P.MalePkt.numPoints; 

    %P.MalePkt.Theta = linspace(-pi/2,pi/2,P.MalePkt.numPoints); 

end 

P.MalePkt.Coord = zeros(3,P.MalePkt.numPoints); 

for i_m=1:P.MalePkt.numPoints 

    [y,x,z] = pol2cart(P.MalePkt.Theta(i_m),P.MalePkt.R0,0); 

    P.MalePkt.Coord(:,i_m) = [x y z].'; 

end 

  

  

% Definerer måletidspunkter: 

antMalePer = 1*20; 

P.MalePkt.tMalePkt = (-P.fs/P.f*(antMalePer/2):P.fs/P.f*(antMalePer/2)) + ... 

    P.MalePkt.R0 / P.c *P.fs; 

  

P.Focus = [0, 1*P.MalePkt.R0, 0].'; 

  

  

  

% Definerer pulsen 

if 0, 

    P.PulsePeriods = 3.5; % Antall perioder i pulsen 

    P.tPulse = -P.fs/P.f*(P.PulsePeriods/2):P.fs/P.f*(P.PulsePeriods/2);  % Time samples pulse 



104 

 

    % Lage puls som ikke har DC 

    % Må sikkert tilpasses til lengden av pulsen. 'pdfStartStop' er testet for 

    % P.Pulsperiode == 3, 3.5 og 4. 

    pdfStartStop = 3.01874285; 

    P.Pulse = (-

1)^floor(P.PulsePeriods)*sin(2*pi*linspace(0,P.PulsePeriods,length(P.tPulse))).* ... 

        normpdf(linspace(-pdfStartStop,pdfStartStop,length(P.tPulse))); 

    P.Pulse = P.Pulse / max(P.Pulse); 

else 

    tmp = cos(2*pi*(0:1/(P.fs/P.f):15)); 

    P.Pulse= tmp.*tukeywin(length(tmp),.4).'; 

     

    P.Pulse = P.Pulse / max(P.Pulse); 

    P.tPulse = [ -(length(P.Pulse)-1)/2 : (length(P.Pulse)-1)/2]; 

end  

if 1, 

    % lager kompleks puls 

    P.Pulse = hilbert(P.Pulse); 

end 

P.lambda = P.c/P.f; 

  

% Definerer elementposisjoner 

if 0, 

    P.M = 2;  % Antall elementer 

    P.elpos=zeros(3,P.M); 

    P.elpos(1,:) = [0 P.MalePkt.R0/4]; 

    P.elpos(2,:) = 0; 

    P.elpos(3,:) = 0; 

    P.elCenter = [0 0 0]'; 

elseif 0, 

    P.M = 2;  % Antall elementer 

    P.elpos=zeros(3,P.M); 

    tmpTh = atand(-4/3); 

    P.elpos(1,:) =  P.MalePkt.R0/4*[sind(0) sind(tmpTh)]; 

    P.elpos(2,:) = P.MalePkt.R0/4*[cosd(0) cosd(tmpTh)];; 

    P.elpos(3,:) = 0; 

    P.elCenter = P.MalePkt.R0/4*[0 cosd(0) 0]'; 

elseif 0 

    P.M = 3;  % Antall elementer 

    P.elpos=zeros(3,P.M); 

    P.elpos(1,:) = P.lambda.*[-(P.M-1)/2:(P.M-1)/2] 

    P.elpos(2,:) = 0; 

    P.elpos(3,:) = 0; 

    P.elCenter = [0 0 0]'; 

else % sylinderarray 

    P.M = 24;  % Antall elementer 

    P.elpos=zeros(3,P.M); 

    % Buen skal være (P.M-1)*lambda/2 lang 

    b = (P.M-1)*P.lambda/2; 

    % Arrayet skal dekke +-60 grader 

    Th = 2*deg2rad(30); 

    P.ElTheta = linspace(-Th/2,Th/2,P.M); 

    % Kan da regne radius på sylinder 

    P.ElR = b/Th; 

    [y,x,z] = pol2cart(P.ElTheta,P.ElR,0); 

  

    P.elpos(1,:) = x; 

    P.elpos(2,:) = y; 

    P.elpos(3,:) = z; 

    P.elCenter = [0 P.ElR 0]'; 

end 

  

  

  

A2.Prosessing of measured data 

Contains the matlab scripte for prosessing and back propagating of of the measured data 

Testmaal.m 

Testmaal.m 
%Prosesserer målte data. 

load('exp_front120p_d100cm.mat'); 
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Sgm = S; 

S = S(:,21:101); 

  

%Avstanden mellom transducer og målepunkter er 1m  

%Lydhastigheten i tanken er på 1488 ved 20 grader celsius 

%Ble gjort 120 målinger tilsvarened 120 målepunkter 

  

% 1: Definerer P (Kan kalle Parametre.m) 

P = Parametre; 

  

% 2: Beregner feltet som måles i målepunkter: 

B = CalcField(P); 

  

% 3A: Finner et eksempel på målt signal, gitt parametre i P: 

  

%BB = reshape(B.Pulser,length(P.MalePkt.tMalePkt)*P.MalePkt.numPoints,P.M); 

%% 

Data=zeros(1000,81,17); 

for i_el =1:17 

    PhiElSer = (i_el-9)*7.5+[-60:1.5:60]; 

    Phi_ind = find(PhiElSer >= -60 & PhiElSer <= 60); 

    Data(:,Phi_ind+(i_el-9)*5, i_el)=S(:,Phi_ind); 

end 

  

  

if 0 

for ii=1:17 

     

    imagesc(squeeze(Data(:,:,ii))); 

    %title(int2str(ii)); 

    xlabel('Number of measuring points'); 

    ylabel('Sampling time'); 

    disp('Press any key to continue;-)'); 

    pause 

end 

end 

  

%% 

%  

  

BB = reshape(Data,(length(P.MalePkt.tMalePkt)-1)*P.MalePkt.numPoints,P.M); 

Vekt1 =ones(P.M,1); 

MaltSignal =  BB* Vekt1; 

  

% LS-løsning 

disp('Ideell verden, rett lydhastighet') 

x1 = BB\MaltSignal; 

% LS-Feil: 

sum((MaltSignal - BB*x1).^2) 

figure(1) 

stem(x1); 

xlabel('Number of elements'); 

ylabel('response over all elements'); 

title('Response over all elements distance 1m'); 

%% 

% 3B: Forandrer lydhastighet og lager annet målt signal: 

Pny = P; 

Pny.c = 1488; 

  

B2 = CalcField(Pny); 

  

%  

B2.Pulser=B2.Pulser(1:1000,:,:); 

Skalering = max(BB(:)); 

B2.Pulser = B2.Pulser/max(B2.Pulser(:))*Skalering; 

BBny = reshape(B2.Pulser,(length(P.MalePkt.tMalePkt)-1)*P.MalePkt.numPoints,P.M); 

  

% 

Window=ones(Pny.M,1)+0.1*randn(Pny.M,1); 

Vekt2 =ones(Pny.M,1); 

MaltSignal2 =  BBny* Vekt2; 

  

% LS-løsning: NB: Tester målematrise BB (beregnet med P.c = 1500) med  

% målte data gitt at lydhastigheten i vannet var 1496: 

disp('Ideell verden, feil lydhastighet') 

x2 = BB\MaltSignal2; 
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% LS-Feil: 

sum((MaltSignal2 - BB*x2).^2) 

figure(2) 

x2=abs(x2); 

stem(x2); 

xlabel('Number of elements'); 

ylabel('Response over all elements'); 

title('Response with Pulse 3.5 periods'); 

  

  

  

  

figure(3) 

stem(x1); 

hold on 

stem(x2,'r'); 

xlabel('Number of elements'); 

ylabel('Response over all elements'); 

hleg=legend('1488 m/s','1486 m/s'); 

title('Response different speed of sound') 

return 

figure(4) 

subplot(2,1,1); 

stem(Vekt2); 

%xlabel('Number of elements'); 

ylabel('Response over all elements'); 

title('Amplitude of random weighting') 

subplot(2,1,2); 

stem(Vekt2); 

hold on 

stem(x2,'r'); 

axis([0 25 0 1.5]); 

xlabel('Number of elements'); 

ylabel('Response over all elements'); 

title('Data with random weighting'); 

%hleg=legend('Hanning','Data with Hanning'); 
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