
Dept. of Math./CMA University of Oslo
Pure Mathematics
ISSN 0806–2439 June 2011

Singular control and optimal stopping of SPDEs, and
backward SPDEs with reflection

Bernt Øksendal1,2 Agnès Sulem3, Tusheng Zhang4,1

30 September 2012

Abstract

We consider general singular control problems for random fields given by a stochas-
tic partial differential equation (SPDE). We show that under some conditions the op-
timal singular control can be identified with the solution of a coupled system of SPDE
and a reflected backward SPDE (RBSPDE). As an illustration we apply the result to
a singular optimal harvesting problem from a population whose density is modeled as
a stochastic reaction-diffusion equation. Existence and uniqueness of solutions of RB-
SPDEs are established, which is of independent interest. We then establish a relation
between RBSPDEs and optimal stopping of SPDEs, and apply the result to a risk
minimizing stopping problem.
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1 Introduction

As a motivation for the problem studied here we consider a problem of optimal harvesting
from a fish population in a lake D. Suppose the density Y (t, x) of the population at time
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t ∈ [0, T ] and at the point x ∈ D is given by a stochastic reaction-diffusion equation of the
form

dY (t, x) = [
1

2
∆Y (t, x) + αY (t, x)]dt+ βY (t, x)dB(t)− λ0Y (t, x)ξ(dt, x); (t, x) ∈ (0, T )×D

Y (0, x) = y0(x) > 0; x ∈ D
Y (t, x) = 0; (t, x) ∈ (0, T )× ∂D, (1.1)

where D is a bounded domain in Rd and y0(x) is a given bounded deterministic function.
Here B(t) = Bt, t ≥ 0 is an m-dimensional Brownian motion on a filtered probability

space (Ω,F ,Ft, P ), α, λ0 > 0 are given constants, β is a given vector and ∆ := 1
2

d∑
i=1

∂2

∂x2
i

is the Laplacian differential operator. We may regard ξ(dt, x) as the harvesting effort rate
and λ0 > 0 as the relative harvesting efficiency coefficient. The performance coefficient is
assumed to be

J(ξ) = E[

∫
D

∫ T

0

(h0(t, x)Y (t, x)− c(t, x))ξ(dt, x)dx+

∫
D

h0(T, x)Y (T, x)dx], (1.2)

where h0(t, x) > 0 is the unit price of the fish and c(t, x) is the unit cost of energy used in the
harvesting and T > 0 is a fixed terminal time. Thus J(ξ) represents the expected total net
income from the harvesting. The problem is to maximise J(ξ) over all admissible harvesting
strategies ξ(t, x). We say that ξ is admissible and write ξ ∈ A if ξ(t, x) is Ft - adapted, non-
decreasing in t and ξ(0, x) = 0 for each x. In this example we also require that the t-jumps
of ξ(t, x) are less than 1

λ0
. This ensures that Y (t, x) > 0 for all (t, x) ∈ [0, T ]× (D\∂D).

The aim of this paper is to study singular control of stochastic partial differential equa-
tions (SPDE) driven by a multiplicative noise of finite dimension. In particular we want
to establish a stochastic maximum principle and to study relations with some associated
reflected backward SPDEs.

It is well-known that the stochastic maximum principle method for solving a stochastic
control problem for SPDEs involves a backward SPDE for the adjoint processes p(t, x), q(t, x)
(see [ØPZ]). We will show that in the case of singular control problem for SPDE we arrive
at a BSPDE with reflection for the adjoint processes.

Several papers are devoted to the study of backward SPDEs (without reflection) and
maximum principle of SPDEs, see e.g. [B, HP1, HP2, HMY, GM]. In a finite dimensional
setup, maximum principles for singular stochastic control problems have been studied in
[AND, BM, BDM, BCDM] , and in the recent paper [ØS], where connections between singular
stochastic control, reflected BSDEs and optimal information are also established. For the
study of SPDEs with reflection, please see [DP1], [HP], [NP], [Z].

The paper is organized as follows: In Section 2, we study a class of singular control
problems for SPDEs and prove a maximum principle for the solution of such problems. This
maximum principle leads to an adjoint equation which is a reflected backward stochastic
partial differential equation. Both the necessary and sufficient properties of the maximum
principle are discussed and, similarly to the finite dimensional case, the sufficient condition
is established under suitable concavity properties of the coefficients.
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As an illustration we apply the result to the singular optimal harvesting problem above.
In Section 3, we study existence and uniqueness of backward stochastic partial differential
equations (BSPDEs) with reflection. These results are of independent interest. In particular,
a comparison theorem for BSPDEs is also proved in this secion. In Section 4, we establish
connections between reflected BSPDEs and optimal stopping of SPDEs and in Section 5 we
consider an application to a risk minimising stopping problem.

2 Singular control of SPDEs

Let D be a bounded, regular domain in Rd. Denote by a(x) = (aij(x)) a matrix-valued
function on Rd satisfying the uniform ellipticity condition:

1

c
Id ≤ a(x) ≤ cId for some constant c ∈ (0,∞).

Let b(x) be a vector field on D with b ∈ Lp(D) for some p > d and q(x) a measurable real
valued function on D such that q ∈ Lp1(D) for some p1 >

d
2
. Introduce the following second

order partial differential operator:

Au = −div(a(x)∇u(x)) + b(x) · ∇u(x) + q(x)u(x).

Suppose the state equation is an SPDE of the form

dY (t, x) = {AY (t, x) + b(t, x, Y (t, x))}dt+ σ(t, x, Y (t, x))dB(t)

+ λ(t, x, Y (t, x))ξ(dt, x) ; (t, x) ∈ [0, T ]×D (2.1)

Y (0, x) = y0(x) ; x ∈ D
Y (t, x) = y1(t, x) ; (t, x) ∈ (0, T )× ∂D. (2.2)

Here y0 ∈ K := L2(D) and y1 ∈ L2(D × [0, T ]) are given functions. We assume that b, σ
and λ are C1 with respect to y. Let V = W 1,2

0 (D) be the Sobolev space of order one with
zero boundary condition.

Then Y is understood as a weak (variational) solution to (2.1), in the sense that y ∈
C([0, T ];K) ∩ L2([0, T ];V ) and for φ ∈ C∞0 (D),

< Y (t, ·), φ >K = < y0(·), φ >K +

∫ t

0

< Y (s, ·), A∗φ > ds+

∫ t

0

< b(s, ·, Y (s, ·)), φ >K ds

+

∫ t

0

< σ(s, ·, Y (s, ·)), φ >K dB(s), (2.3)

where A∗ is the adjoint operator of A, <,> denotes the dual pair between the space V and
its dual V ∗. Under this framework the Itô formula can be applied to such SPDEs. See [P],
[PR].
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The performance functional is given by

J(ξ) = E

[∫
D

∫ T

0

f(t, x, Y (t, x))dtdx+

∫
D

g(x, Y (T, x))dx

+

∫
D

∫ T

0

h(t, x, Y (t, x))ξ(dt, x)dx

]
, (2.4)

where f(t, x, y), g(x, y) and h(t, x, y) are bounded measurable functions which are differen-
tiable in the argument y and continuous w.r.t. t.

We want to maximise J(ξ) over all ξ ∈ A, where A is a given family of adapted processes
ξ(t, x), which are non-decreasing and left-continuous w.r.t. t for all x, ξ(0, x) = 0 and
ξ(T, x) <∞. We call A the set of admissible singular controls. Thus we want to find ξ∗ ∈ A
(called an optimal control) such that

sup
ξ∈A

J(ξ) = J(ξ∗).

We study this problem by using an extension to SPDEs of the maximum principle in [ØS]:
Define the Hamiltonian H by

H(t, x, y, p, q)(dt, ξ(dt, x)) = {f(t, x, y) + b(t, x, y)p+ σ(t, x, y)q}dt
+ {λ(t, x, y)p+ h(t, x, y)}ξ(dt, x). (2.5)

To this Hamiltonian we associate the following backward SPDE (BSPDE) in the unknown
process (p(t, x), q(t, x)):

dp(t, x) = −
{
A∗p(t, x)dt+

∂H

∂y
(t, x, Y (t, x), p(t, x), q(t, x))(dt, ξ(dt, x))

}
+ q(t, x)dB(t) ; (t, x) ∈ (0, T )×D (2.6)

p(T, x) =
∂g

∂y
(x, Y (T, x)) ; x ∈ D (2.7)

p(t, x) = 0 ; (t, x) ∈ (0, T )× ∂D. (2.8)

HereA∗ denotes the adjoint of the operatorA. We assume that a unique solution p(t, x), q(t, x)
of (2.6)-(2.8) exists for each ξ ∈ A.

Theorem 2.1 (Sufficient maximum principle for singular control of SPDE) Let ξ̂ ∈
A with corresponding solutions Ŷ (t, x), p̂(t, x), q̂(t, x). Assume that

y → h(x, y) is concave, (2.9)

(y, ξ)→ H(t, x, y, p̂(t, x), q̂(t, x))(dt, ξ(dt, x)) is concave, (2.10)

E[

∫
D

(

∫ T

0

{(Y ξ(t, x)− Ŷ (t, x))2q̂2(t, x) + p̂2(t, x)(σ(t, x, Y ξ(t, x))− σ(t, x, Ŷ (t, x))2}dt)dx] <∞,

for all ξ ∈ A. (2.11)
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Moreover, assume that the following maximum condition holds:

ξ̂(dt, x) ∈ argmax
ξ∈A

H(t, x, Ŷ (t, x), p̂(t, x), q̂(t, x))(dt, ξ(dt, x)), (2.12)

i.e.

{λ(t, x, Ŷ (t, x))p̂(t, x) + h(t, x, Ŷ (t, x))}ξ(dt, x)

≤ {λ(t, x, Ŷ (t, x))p̂(t, x) + h(t, x, Ŷ (t, x))}ξ̂(dt, x) for all ξ ∈ A. (2.13)

Then ξ̂ is an optimal singular control.

Proof of Theorem 2.1 Choose ξ ∈ A and put Y = Y ξ. Then by (2.4) we can write

J(ξ)− J(ξ̂) = I1 + I2 + I3, (2.14)

where

I1 = E

[∫ T

0

∫
D

{
f(t, x, Y (t, x))− f(t, x, Ŷ (t, x))

}
dxdt

]
(2.15)

I2 = E

[∫
D

{
g(x, Y (T, x))− g(x, Ŷ (T, x))

}
dx

]
(2.16)

I3 = E

[∫ T

0

∫
D

{
h(t, x, Y (t, x))ξ(dt, x)− h(t, x, Ŷ (t, x))ξ̂(dt, x)

}]
. (2.17)

By our definition of H we have

I1 = E

[∫ T

0

∫
D

{H(t, x, Y (t, x), p̂(t, x), q̂(t, x))(dt, ξ(dt, x))

−H(t, x, Ŷ (t, x), p̂(t, x), q̂(t, x))(dt, ξ̂(dt, x))
}

−
∫ T

0

∫
D

{b(t, x, Y (t, x))− b(t, x, Ŷ (t, x)}p̂(t, x)dxdt

−
∫ T

0

∫
D

{σ(t, x, Y (t, x))− σ(t, x, Ŷ (t, x))}q̂(t, x)dxdt

−
∫ T

0

∫
D

p̂(t, x){λ(t, x, Y (t, x))ξ(dt, x)− λ(t, x, Ŷ (t, x))ξ̂(dt, x)}dx

−
∫ T

0

∫
D

{h(t, x, Y (t, x))ξ(dt, x)− h(t, x, Ŷ (t, x))ξ̂(dt, x)}dx
]
. (2.18)
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By (2.11) and concavity of g we have, with Ỹ = Y − Ŷ ,

I2 ≤ E

[∫
D

∂g

∂y
(x, Ŷ (T, x))(Y (T, x)− Ŷ (T, x))dx

]
= E

[∫
D

p̂(T, x)Ỹ (T, x)dx

]
= E

[∫
D

∫ T

0

Ỹ (t, x)dp̂(t, x)dx+

∫
D

∫ T

0

p̂(t, x)dỸ (t, x)dx

+

∫
D

∫ T

0

{σ(t, x, Y (t, x))− σ(t, x, Ŷ (t, x))}q̂(t, x)dtdx

]
= E

[∫
D

∫ T

0

Ỹ (t, x)

{
−A∗p̂(t, x)dt− ∂H

∂y
(t, x, Ŷ , p̂, q̂)(dt, ξ̂(dt, x))

}
dx

+

∫
D

∫ T

0

p̂(t, x){AỸ (t, x) + b(t, x, Y (t, x))− b(t, x, Ŷ (t, x))}dtdx

+

∫
D

∫ T

0

p̂(t, x){λ(t, x, Y (t, x))ξ(dt, x)− λ(t, x, Ŷ (t, x))ξ̂(dt, x)}dx

+

∫
D

∫ T

0

{σ(t, x, Y (t, x))− σ(t, x, Ŷ (t, x))}q̂(t, x)dtdx

]
. (2.19)

The rigorous meaning of the expressions
∫
D

∫ T
0
Ỹ (t, x)A∗p̂(t, x)dtdx,

∫
D

∫ T
0
p̂(t, x)AỸ (t, x)dtdx

are ∫
D

∫ T

0

Ỹ (t, x)A∗p̂(t, x)dtdx =

∫ T

0

< Ỹ (t, ·), A∗p̂(t, ·) > dt,∫
D

∫ T

0

p̂(t, x)AỸ (t, x)dtdx =

∫ T

0

< p̂(t, ·), AỸ (t, ·) > dt,

here <,> stands for the dual pair between the space V = H1,2
0 (D) and its dual V ∗.

In view of < Ỹ (t, ·), A∗p̂(t, ·) >=< p̂(t, ·), AỸ (t, ·) >, combining (2.14)-(2.19) and con-
cavity of H, we have

J(ξ)− J(ξ̂) ≤ E

[∫
D

∫ T

0

{H(t, x, Y (t, x), p̂(t, x), q̂(t, x))(dt, ξ(dt, x))

−H(t, x, Ŷ (t, x), p̂(t, x), q̂(t, x))(dt, ξ̂(dt, x))− Ỹ (t, x)
∂H

∂y
(t, x, Ŷ , p̂, q̂)(dt, ξ̂(dt, x))

}
dx

]
≤
[∫

D

∫ T

0

∇ξH(t, x, Ŷ (t, x), p̂(t, x), q̂(t, x))(ξ(dt, x)− ξ̂(dt, x))dx

]
= E

[∫
D

∫ T

0

{λ(t, x, Ŷ (t, x))p̂(t, x) + h(t, x, Ŷ (t, x))}(ξ(dt, x)− ξ̂(dt, x))dx

]
≤ 0 by (2.13).

This proves that ξ̂ is optimal. �

For ξ ∈ A we let V(ξ) denote the set of adapted processes ζ(t, x) of finite variation w.r.t.
t such that there exists δ = δ(ξ) > 0 such that ξ + yζ ∈ A for all y ∈ [0, δ].
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Proceeding as in [ØS] we prove the following useful result:

Lemma 2.2 The inequality (2.13) is equivalent to the following two variational inequalities:

λ(t, x, Ŷ (t, x))p̂(t, x) + h(t, x, Ŷ (t, x)) ≤ 0 for all t, x (2.20)

{λ(t, x, Ŷ (t, x))p̂(t, x) + h(t, x, Ŷ (t, x))}ξ̂(dt, x) = 0 for all t, x (2.21)

Proof. (i). Suppose (2.13) holds. Choosing ξ = ξ̂ + yζ with ζ ∈ V(ξ̂) and y ∈ (0, δ(ξ̂)) we
deduce that

{λ(s, x, Ŷ (s, x))p̂(s, x) + h(s, x, Ŷ (s, x))}ζ(ds, x) ≤ 0; (s, x) ∈ (0, T )×D (2.22)

for all ζ ∈ V(ξ̂).
In particular, this holds if we fix t ∈ (0, T ) and put

ζ(ds, x) = a(ω)δt(ds)φ(x); (s, x, ω) ∈ (0, T )×D × Ω,

where a(ω) ≥ 0 is Ft- measurable and bounded, φ(x) ≥ 0 is bounded, deterministic and
δt(ds) denotes the Dirac measure at t. Note that ζ ∈ V(ξ).Then we get

λ(t, x, Ŷ (t, x))p̂(t, x) + h(t, x, Ŷ (t, x)) ≤ 0 for all t, x (2.23)

which is (2.20).
On the other hand, clearly ζ(dt, x) := ξ̂(dt, x) ∈ V(ξ̂) and this choice of ζ in (2.22) gives

{λ(t, x, Ŷ (t, x))p̂(t, x) + h(t, x, Ŷ (t, x))}ξ̂(dt, x) ≤ 0; (t, x) ∈ (0, T )×D (2.24)

Similarly, we can choose ζ(dt, x) = −ξ̂(dt, x) ∈ V(ξ̂) and this gives

{λ(t, x, Ŷ (t, x))p̂(t, x) + h(t, x, Ŷ (t, x))}ξ̂(dt, x) ≥ 0; (t, x) ∈ (0, T )×D (2.25)

Combining (2.24) and (2.25) we get

{λ(t, x, Ŷ (t, x))p̂(t, x) + h(t, x, Ŷ (t, x))}ξ̂(dt, x) = 0

which is (2.21). Together with (2.23) this proves (i).
(ii). Conversely, suppose (2.20) and (2.21) hold. Since ξ(dt, x) ≥ 0 for all ξ ∈ A we see

that (2.13) follows. �

We may formulate what we have proved as follows:

Theorem 2.3 (Sufficient maximum principle II) Suppose the conditions of Theorem 2.1
hold. Suppose ξ ∈ A, and that ξ together with its corresponding processes Y ξ(t, x), pξ(t, x), qξ(t, x)
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solve the coupled system consisting of the SPDE (2.1)-(2.2) together with the reflected back-
ward SPDE (RBSPDE) given by

dpξ(t, x) = −
{
A∗pξ(t, x) +

∂f

∂y
(t, x, Y ξ(t, x)) +

∂b

∂y
(t, x, Y ξ(t, x))pξ(t, x) +

∂σ

∂y
(t, x, Y ξ(t, x))qξ(t, x)

}
dt

−
{
∂λ

∂y
(t, x, Y ξ(t, x))pξ(t, x) +

∂h

∂y
(t, x, Y ξ(t, x))

}
ξ(dt, x) + q(t, x)dB(t); (t, x) ∈ [0, T ]×D

λ(t, x, Y ξ(t, x))pξ(t, x) + h(t, x, Y ξ(t, x)) ≤ 0 ; for all t, x, a.s.

{λ(t, x, Y ξ(t, x))pξ(t, x) + h(t, x, Y ξ(t, x))}ξ(dt, x) = 0 ; for all t, x, a.s.

p(T, x) =
∂g

∂y
(x, Y ξ(T, x)) ; x ∈ D

p(t, x) = 0 ; (t, x) ∈ (0, T )× ∂D.

Then ξ maximises the performance functional J(ξ).

It is also of interest to have a maximum principle of ”necessary type”. To this end, we
first prove some auxiliary results.

Lemma 2.4 Let ξ(dt, x) ∈ A and choose ζ(dt, x) ∈ V(ξ). Define the derivative process

Y(t, x) = lim
y→0+

1

y
(Y ξ+yζ(t, x)− Y ξ(t, x)). (2.26)

Then Y satisfies the SPDE

dY(t, x) = AY(t, x)dt+ Y(t, x)[
∂b

∂y
(t, x, Y (t, x))dt

+
∂σ

∂y
(t, x, Y (t, x))dB(t) +

∂λ

∂y
(t, x, Y (t, x))ξ(dt, x)]

+ λ(t, x, Y (t, x))ζ(dt, x) ; (t, x) ∈ [0, T ]×D
Y(t, x) = 0; (t, x) ∈ (0, T )× ∂D
Y(0, x) = 0 ; x ∈ D (2.27)

Proof. This follows from the equation (2.1)-(2.2) for Y (t, x). We omit the details. �

Lemma 2.5 Let ξ(dt, x) ∈ A and ζ(dt, x) ∈ V(ξ). Put η = ξ + yζ; y ∈ [0, δ(ξ)]. Assume
that

E[

∫
D

(

∫ T

0

{(Y η(t, x)− Y ξ(t, x))2q2(t, x)

+ p2(t, x)(σ(t, x, Y η(t, x))− σ(t, x, Y ξ(t, x)))2}dt)dx] <∞ for all y ∈ [0, δ(ξ)],
(2.28)
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where (p(t, x), q(t, x)) is the solution of (2.5)-(2.7) corresponding to Y ξ(t, x). Then

lim
y→0+

1

y
(J(ξ + yζ)− J(ξ))

= E[

∫
D

(

∫ T

0

{λ(t, x, Y (t, x))p(t, x) + h(t, x, Y (t, x))}ζ(dt, x))dx]. (2.29)

Proof. By (2.3) and (2.26), we have

lim
y→0+

1

y
(J(ξ + yζ)− J(ξ))

= E[

∫
D

{
∫ T

0

∂f

∂y
(t, x, Y (t, x))Y(t, x)dt+

∂g

∂y
(x, Y (T, x))Y(T, x)}dx

+

∫
D

∫ T

0

∂h

∂y
(t, x, Y (t, x))Y(t, x)ξ(dt, x)dx+

∫
D

∫ T

0

h(t, x, Y (t, x))ζ(dt, x)dx].

(2.30)

By (2.4) and (2.27) we obtain

E[

∫
D

∫ T

0

∂f

∂y
(t, x, Y (t, x))Y(t, x)dtdx]

= E[

∫
D

(

∫ T

0

Y(t, x){∂H
∂y

(dt, ξ(dt, x))− p(t, x)
∂b

∂y
(t, x)dt

−q(t, x)
∂σ

∂y
(t, x)dt− (p(t, x)

∂λ

∂y
(t, x) +

∂h

∂y
(t, x))ξ(dt, x)})dx, (2.31)

where we have used the abbreviated notation

∂H

∂y
(dt, ξ(dt, x)) =

∂H

∂y
(t, x, Y (t, x), p(t, x), q(t, x))(dt, ξ(dt, x))

etc.
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By the Itô formula and (2.5), (2.28) we see that

E[

∫
D

∂g

∂y
(x)Y(T, x)dx]

= E[

∫
D

p(T, x)Y(T, x)dx]

= E[

∫
D

(

∫ T

0

{p(t, x)dY(t, x) + Y(t, x)dp(t, x)}+ [p(·, x),Y(·, x)](T ))dx]

= E[

∫
D

(

∫ T

0

[p(t, x){AY(t, x)dt+ Y(t, x)
∂b

∂y
(t, x)dt

+ Y(t, x)
∂λ

∂y
(t, x)ξ(dt, x) + λ(t, x)ζ(dt, x)}

+ Y(t, x){−A∗p(t, x)dt− ∂H

∂y
(dt, ξ(dt, x))}

+ Y(t, x)
∂σ

∂y
(t, x)q(t, x)]dt)dx], (2.32)

where [p(·, x),Y(·, x)](t) denotes the covariation process of p(·, x) and Y(·, x).
Since p(t, x) = Y(t, x) = 0 for x ∈ ∂D, we deduce that∫

D

p(t, x)AY(t, x)dx =

∫
D

A∗p(t, x)Y(t, x)dx. (2.33)

Therefore, substituting (2.31) and (2.32) into (2.30), we get

lim
y→0+

1

y
(J(ξ + yζ)− J(ξ))

= E[

∫
D

(

∫ T

0

{λ(t, x)p(t, x) + h(t, s)}ζ(dt, x))dx].

�

We can now state our necessary maximum principle:

Theorem 2.6 [Necessary maximum principle]
(i) Suppose ξ∗ ∈ A is optimal, i.e. maxξ∈A J(ξ) = J(ξ∗). Let Y ∗, (p∗, q∗) be the corre-

sponding solution of (2.1)-(2.2) and (2.5)-(2.7), respectively, and assume that (2.28) holds
with ξ = ξ∗. Then

λ(t, x, Y ∗(t, x))p∗(t, x) + h(t, x, Y ∗(t, x)) ≤ 0 for all t, x ∈ [0, T ]×D, a.s. (2.34)

and

{λ(t, x, Y ∗(t, x))p∗(t, x)+h(t, x, Y ∗(t, x))}ξ∗(dt, x) = 0 for all t, x ∈ [0, T ]×D, a.s. (2.35)
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(ii) Conversely, suppose that there exists ξ̂ ∈ A such that the corresponding solutions
Ŷ (t, x), (p̂(t, x), q̂(t, x)) of (2.1)-(2.2) and (2.5)-(2.7), respectively, satisfy

λ(t, x, Ŷ (t, x))p̂(t, x) + h(t, x, Ŷ (t, x)) ≤ 0 for all t, x ∈ [0, T ]×D, a.s. (2.36)

and

{λ(t, x, Ŷ (t, x))p̂(t, x) + h(t, x, Ŷ (t, x))}ξ̂(dt, x) = 0 for all t, x ∈ [0, T ]×D, a.s. (2.37)

Then ξ̂ is a directional sub-critical point for J(·), in the sense that

lim
y→0+

1

y
(J(ξ̂ + yζ)− J(ξ̂)) ≤ 0 for all ζ ∈ V(ξ̂). (2.38)

Proof. This is proved in a similar way as in Theorem 2.4 in [ØS]. For completeness we
give the details:

(i) If ξ ∈ A is optimal, we get by Lemma 2.5

0 ≥ lim
y→0+

1

y
(J(ξ + yζ)− J(ξ))

= E[

∫
D

∫ T

0

{λ(t, x)p(t, x) + h(t, x)}ζ(dt, x)dx], for all ζ ∈ V(ξ). (2.39)

In particular, this holds if we choose ζ such that

ζ(ds, x) = a(ω)δt(s)φ(x) (2.40)

for some fixed t ∈ [0, T ] and some bounded Ft-measurable random variable a(ω) ≥ 0 and
some bounded, deterministic φ(x) ≥ 0, where δt(s) is Dirac measure at t. Then (2.39) gets
the form

E[

∫
D

{λ(t, x)p(t, x) + h(t, x)}a(ω)φ(x)dx] ≤ 0.

Since this holds for all such a(ω), φ(x) we deduce that

λ(t, x)p(t, x) + h(t, x) ≤ 0 for all t, x, a.s. (2.41)

Next, if we choose ζ(dt, x) = ξ(dt, x) ∈ V(ξ), we get from (2.39)

E[

∫
D

∫ T

0

{λ(t, x)p(t, x) + h(t, x)}ξ(dt, x)dx] ≤ 0. (2.42)

On the other hand, we can also choose ζ(dt, x) = −ξ(dt, x) ∈ V(ξ), and this gives

E[

∫
D

∫ T

0

{λ(t, x)p(t, x) + h(t, x)}ξ(dt, x)dx] ≥ 0. (2.43)
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Combining (2.42) and (2.43) we get

E[

∫
D

∫ T

0

{λ(t, x)p(t, x) + h(t, x)}ξ(dt, x)dx] = 0. (2.44)

Combining (2.41) and (2.44) we see that

{λ(t, x)p(t, x) + h(t, x)}ξ(dt, x) = 0 for all t, x, a.s. (2.45)

as claimed. This proves (i).
(ii) Conversely, suppose ξ̂ ∈ A is as in (ii). Then (2.38) follows from Lemma 2.5.

�

2.1 Application to Optimal Harvesting

We now return to the problem of optimal harvesting from a fish population in a lake D
stated in the Introduction. Thus we suppose the density Y (t, x) of the population at time
t ∈ [0, T ] and at the point x ∈ D is given by the stochastic reaction-diffusion equation (1.1),
and the performance criterion is assumed to be as in (1.2). In this case the Hamiltonian is

H(t, x, y, p, q)(dt, ξ(dt, x))

= (αyp+ βyq)dt+ [−λ0yp+ h0(t, x)y − c(t, x)]ξ(dt, x) (2.46)

and the adjoint equation is

dp(t, x) = −[
1

2
∆p(t, x) + αp(t, x) + βq(t, x)]dt

+ [λ0p(t, x)− h0(t, x)]ξ(dt, x) + q(t, x)dB(t, x); (t, x) ∈ (0, T )×D,
p(T, x) = h0(T, x); x ∈ D
p(t, x) = 0; (t, x) ∈ (0, T )× ∂D. (2.47)

The variational inequalities for an optimal control ξ(dt, x) are:

− λ0Y (t, x)p(t, x) + h0(t, x)Y (t, x)− c(t, x) ≤ 0; (t, x) ∈ [0, T ]×D, (2.48)

[−λ0Y (t, x)p(t, x) + h0(t, x)Y (t, x)− c(t, x)]ξ(dt, x) = 0; (t, x) ∈ [0, T ]×D (2.49)

Since Y (t, x) > 0 (by assumption on ξ), we can rewrite the variational inequalities above
as follows:

p(t, x) ≥ h0(t, x)

λ0

− c(t, x)

λ0Y (t, x)
; (t, x) ∈ [0, T ]× (D\∂D)

[p(t, x)− h0(t, x)

λ0

− c(t, x)

λ0Y (t, x)
]ξ(dt, x) = 0; (t, x) ∈ [0, T ]× (D\∂D). (2.50)

We summerise the above in the following:
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Theorem 2.7 (a) Suppose ξ(dt, x) ∈ A is an optimal singular control for the harvesting
problem

supξ∈AE[

∫
D

∫ T

0

(h0(t, x)Y (t, x)− c(t, x))ξ(dt, x)dx+

∫
D

h0(T, x)Y (t, x)dx] (2.51)

where Y (t, x) is given by the SPDE (1.1). Then ξ(dt, x) solves the reflected BSPDE (2.47),
(2.50).

(b) Conversely, suppose ξ(dt, x) is a solution of the reflected BSPDE (2.47), (2.50). Then
ξ(dt, x) is a directional sub-critical point optimal control for the performance J(·) given by
(1.2).

Heuristically we can interpret the optimal harvesting strategy as follows:

• As long as p(t, x) > h0(t,x)
λ0
− c(t,x)

λ0Y (t,x)
, we do nothing

• If p(t, x) = h0(t,x)
λ0
− c(t,x)

λ0Y (t,x)
, we harvest immediately from Y(t,x) at a rate ξ(dt, x) which

is exactly enough to prevent p(t, x) from dropping below h0(t,x)
λ0
− c(t,x)

λ0Y (t,x)
in the next

moment

• If p(t, x) < h0(t,x)
λ0
− c(t,x)

λ0Y (t,x)
, we harvest immediately what is necessary to bring p(t, x)

up to the level of h0(t,x)
λ0
− c(t,x)

λ0Y (t,x)
.

Note that an immediate harvesting of an amount ∆ξ > 0 from Y (t, x) produces an
immediate increase in the difference ∆W of the process

W (t, x) := p(t, x)− h0(t, x)

λ0

+
c(t, x)

λ0Y (t, x)
.

3 Existence and uniqueness results of reflected back-

ward SPDEs

In this section we prove the main existence and uniqueness result for reflected backward
stochastic partial differential equations. For notational simplicity, we choose the operator A
to be the Laplacian operator ∆. However, our methods work equally well for general second
order differential operators like

A =
1

2

d∑
i,j=1

∂

∂xi
(aij(x)

∂

∂xj
),

where a = (aij(x)) : D → Rd×d (d > 2) is a measurable, symmetric matrix-valued function
which satisfies the uniform ellipticity condition

λ|z|2 ≤
d∑

i,j=1

aij(x)zizj ≤ Λ|z|2, ∀ z ∈ Rd and x ∈ D
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for some constants λ, Λ > 0
First we will establish a comparison theorem for BSPDEs, which is of independent inter-

est. Consider two backward SPDEs:

du1(t, x) = −1

2
∆u1(t, x)dt− b1(t, u1(t, x), Z1(t, x))dt+ Z1(t, x)dBt, t ∈ (0, T )

u1(T, x) = φ1(x) a.s. (3.1)

du2(t, x) = −1

2
∆u2(t, x)dt− b2(t, u2(t, x), Z2(t, x))dt+ Z2(t, x)dBt, t ∈ (0, T )

u2(T, x) = φ2(x) a.s. (3.2)

From now on, if u(t, x) is a function of (t, x), we write u(t) for the function u(t, ·).
The following result is a comparison theorem for backward stochastic partial differential

equations.

Theorem 3.1 (Comparison theorem for BSPDEs) Suppose φ1(x) ≤ φ2(x) and b1(t, u, z) ≤
b2(t, u, z). Then we have u1(t, x) ≤ u2(t, x), x ∈ D, a.e. for every t ∈ [0, T ].

Proof. For n ≥ 1, define functions ψn(z), fn(x) as follows (see [DP1]).

ψn(z) =


0 if z ≤ 0,
2nz if 0 ≤ z ≤ 1

n
,

2 if z > 1
n
.

(3.3)

fn(x) =

{
0 if x ≤ 0,∫ x

0
dy
∫ y

0
ψn(z)dz if x > 0.

(3.4)

We have

f ′n(x) =


0 if x ≤ 0,
nx2 if x ≤ 1

n
,

2x− 1
n

if x > 1
n
.

(3.5)

Also fn(x) ↑ (x+)2 as n→∞. For h ∈ K := L2(D), set

Fn(h) =

∫
D

fn(h(x))dx.

Fn has the following derivatives for h1, h2 ∈ K,

F ′n(h)(h1) =

∫
D

f ′n(h(x))h1(x)dx, (3.6)

F ′′n (h)(h1, h2) =

∫
D

f ′′n(h(x))h1(x)h2(x)dx. (3.7)
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Applying Ito’s formula we get

Fn(u1(t)− u2(t))

= Fn(φ1 − φ2) +

∫ T

t

F ′n(u1(s)− u2(s))(∆(u1(s)− u2(s)))ds

+

∫ T

t

F ′n(u1(s)− u2(s))(b1(s, u1(s), Z1(s))− b2(s, u2(s), Z2(s)))ds

−
∫ T

t

F ′n(u1(s)− u2(s))(Z1(s)− Z2(s))dBs

−1

2

∫ T

t

F ′′n (u1(s)− u2(s))(Z1(s)− Z2(s), Z1(s)− Z2(s))ds

=: I1
n + I2

n + I3
n + I4

n + I5
n, (3.8)

where,

I2
n =

∫ T

t

F ′n(u1(s)− u2(s))(∆(u1(s)− u2(s)))ds

=

∫ T

t

∫
D

f ′n(u1(s, x)− u2(s, x))(∆(u1(s, x)− u2(s, x)))dxds

= −
∫ T

t

f ′′n(u1(s, x)− u2(s, x))|∇(u1(s, x)− u2(s, x)|2dxds ≤ 0, (3.9)

I5
n = −n

∫ T

t

∫
D

χ{0≤u1(s,x)−u2(s,x)≤ 1
n
}(u1(s, x)− u2(s, x))|Z1(s, x)− Z2(s, x)|2dxds

−
∫ T

t

∫
D

χ{u1(s,x)−u2(s,x)> 1
n
}|Z1(s, x)− Z2(s, x)|2dxds. (3.10)

For I3
n, we have

I3
n =

∫ T

t

∫
D

f ′n(u1(s, x)− u2(s, x))(b1(s, u1(s, x), Z1(s, x))− b2(s, u2(s, x), Z2(s, x)))dxds

=

∫ T

t

∫
D

f ′n(u1(s, x)− u2(s, x))(b1(s, u1(s, x), Z1(s, x))− b2(s, u1(s, x), Z1(s, x)))dxds

+

∫ T

t

∫
D

f ′n(u1(s, x)− u2(s, x))(b2(s, u1(s, x), Z1(s, x))− b2(s, u2(s, x), Z1(s, x)))dxds

+

∫ T

t

∫
D

f ′n(u1(s, x)− u2(s, x))(b2(s, u2(s, x), Z1(s, x))− b2(s, u2(s, x), Z2(s, x)))dxds

≤
∫ T

t

∫
D

f ′n(u1(s, x)− u2(s, x))(b2(s, u2(s, x), Z1(s, x))− b2(s, u2(s, x), Z2(s, x)))dxds

+C

∫ T

t

∫
D

((u1(s, x)− u2(s, x)+)2dxds := I3
n,1 + I3

n,2, (3.11)
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where the Lipschiz condition of b and the assumption b1 ≤ b2 have been used. I3
n,1 can be

estimated as follows:

I3
n,1 ≤ C

∫ T

t

∫
D

f ′n(u1(s, x)− u2(s, x))|Z1(s, x)− Z2(s, x)|dxds

= C

∫ T

t

∫
D

χ{0≤u1(s,x)−u2(s,x)≤ 1
n
}n(u1(s, x)− u2(s, x))2|Z1(s, x)− Z2(s, x)|dxds

+C

∫ T

t

∫
D

χ{u1(s,x)−u2(s,x)> 1
n
}[2(u1(s, x)− u2(s, x))− 1

n
]|Z1(s, x)− Z2(s, x)|dxds

≤ C

∫ T

t

∫
D

χ{u1(s,x)−u2(s,x)> 1
n
}(2(u1(s, x)− u2(s, x))− 1

n
)2dxds

+

∫ T

t

∫
D

χ{u1(s,x)−u2(s,x)> 1
n
}|Z1(s, x)− Z2(s, x)|2dxds

+
1

4
C2

∫ T

t

∫
D

χ{0≤u1(s,x)−u2(s,x)≤ 1
n
}n(u1(s, x)− u2(s, x))3dxds

+

∫ T

t

∫
D

χ{0≤u1(s,x)−u2(s,x)≤ 1
n
}n(u1(s, x)− u2(s, x))2|Z1(s, x)− Z2(s, x)|2dxds

≤ C ′
∫ T

t

∫
D

((u1(s, x)− u2(s, x))+)2dxds

+

∫ T

t

∫
D

χ{u1(s,x)−u2(s,x)> 1
n
}|Z1(s, x)− Z2(s, x)|2dxds

+

∫ T

t

∫
D

χ{0≤u1(s,x)−u2(s,x)≤ 1
n
}n(u1(s, x)− u2(s, x))2|Z1(s, x)− Z2(s, x)|2dxds

(3.12)

(3.10),(3.11) and (3.12) imply that

I3
n + I5

n ≤ C

∫ T

t

∫
D

((u1(s, x)− u2(s, x))+)2dxds (3.13)

Thus it follows from (3.8), (3.9) and (3.13) that

Fn(u1(t)− u2(t))

≤ Fn(φ1 − φ2) + C

∫ T

t

∫
D

((u1(s, x)− u2(s, x))+)2dxds

−
∫ T

t

F ′n(u1(s)− u2(s))(Z1(s)− Z2(s))dBs (3.14)

Take expectation and let n→∞ to get

E[

∫
D

((u1(t, x)− u2(t, x))+)2dx] ≤
∫ T

t

dsE[

∫
D

((u1(s, x)− u2(s, x))+)2dx] (3.15)
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Gronwall’s inequality yields that

E[

∫
D

((u1(t, x)− u2(t, x))+)2dx] = 0, (3.16)

which completes the proof of the theorem. �

Remark. Comparison theorems for BSPDEs were also proved in [MYZ] and [HMY]. How-
ever, the results in these articles could not cover our theorem and the proofs are quite
different.

We now proceed to prove existence and uniqueness of the reflected BSPDEs. Let V =
W 1,2

0 (D) be the Sobolev space of order one with the usual norm ||·||. As before letK = L2(D).
Consider the reflected backward stochastic partial differential equation:

du(t) = −1

2
∆u(t)dt− b(t, u(t, x), Z(t, x))dt+ Z(t, x)dBt, t ∈ (0, T ) (3.17)

−η(dt, x), t ∈ (0, T ), (3.18)

u(t, x) ≥ L(t, x),∫ T

0

∫
D

(u(t, x)− L(t, x))η(dt, x)dx = 0,

u(T, x) = φ(x) a.s. (3.19)

Theorem 3.2 Assume that E[|φ|2K ] <∞ and that

|b(s, u1, z1)− b(s, u2, z2)| ≤ C(|u1 − u2|+ |z1 − z2|).

Let L(t, x) be a measurable function which is differentiable in t and twice differentiable in
x such that ∫ T

0

∫
D

L′(t, x)2dxdt <∞,
∫ T

0

∫
D

|∆L(t, x)|2dxdt <∞.

Then there exists a unique K × L2(D,Rm) × K-valued progressively measurable process
(u(t, x), Z(t, x), η(t, x)) such that

(i) E[
∫ T

0
||u(t)||2V dt] <∞, E[

∫ T
0
|Z(t)|2L2(D,Rm)dt] <∞.

(ii) η is a K-valued continuous process, non-negative and nondecreasing in
t and η(0, x) = 0.

(iii) u(t, x) = φ(x) +
∫ T
t

1
2
∆u(t, x)ds+

∫ T
t
b(s, u(s, x), Z(s, x))ds−

∫ T
t
Z(s, x)dBs

+η(T, x)− η(t, x); 0 ≤ t ≤ T,
(iv) u(t, x) ≥ L(t, x) a.e. x ∈ D, ∀t ∈ [0, T ].

(v)
∫ T

0

∫
D

(u(t, x)− L(t, x))η(dt, x)dx = 0
(vi) u(t, x) = u1(t, x); (t, x) ∈ (0, T )× ∂D

(3.20)
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where u(t) stands for the K-valued continuous process u(t, ·) and (iii) is understood as
an equation in the dual space V ∗ of V .

For the proof of the theorem, we introduce the penalised BSPDEs:

dun(t) = −∆un(t)dt− b(t, un(t, x), Zn(t, x))dt+ Zn(t, x)dBt

−n(un(t, x)− L(t, x))−dt, t ∈ (0, T ) (3.21)

un(T, x) = φ(x) a.s. (3.22)

According to [ØPZ], the solution (un, Zn) of the above equation exists and is unique. We
are going to show that the sequence (un, Zn) has a limit, which will be a solution of the
equation (3.20). First we need some a priori estimates:

Lemma 3.3 Let (un, Zn) be the solution of equation (3.21). We have

sup
n
E[sup

t
|un(t)|2K ] <∞, (3.23)

sup
n
E[

∫ T

0

||un(t)||2V ] <∞, (3.24)

sup
n
E[

∫ T

0

|Zn(t)|2L2(D,Rm)] <∞. (3.25)

Proof. Take a function f(t, x) ∈ C2,2
0 ([−1, T + 1] × D) satisfying f(t, x) ≥ L(t, x).

Applying Itô’s formula, it follows that

|un(t)− f(t)|2K = |φ− f(T )|2K + 2

∫ T

t

< un(s)− f(s),∆un(s) > ds

+2

∫ T

t

< un(s)− f(s), b(s, un(s), Zn(s)) > ds

−2

∫ T

t

< un(s)− f(s), Zn(s) > dBs

+2n

∫ T

t

< un(s)− f(s), (un(s)− L(s))− > ds−
∫ T

t

|Zn(s)|2L2(D,Rm)ds

+2

∫ T

t

< un(s)− f(s), f ′(s) > ds, a.s. (3.26)

where <,> denotes the inner product in K. Now we estimate each of the terms on the right
hand side:
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2

∫ T

t

< un(s)− f(s),∆un(s) > ds

= −2

∫ T

t

||un(s)||2V ds+ 2

∫ T

t

<
∂f(s)

∂x
,
∂un(s)

∂x
> ds

≤ −
∫ T

t

||un(s)||2V ds+

∫ T

t

||f(s)||2V ds (3.27)

2

∫ T

t

< un(s)− f(s), b(s, un(s), Zn(s)) > ds

= 2

∫ T

t

< un(s)− f(s), b(s, un(s), Zn(s))− b(s, f(s), Zn(s)) > ds

+2

∫ T

t

< un(s)− f(s), b(s, f(s), Zn(s))− b(s, f(s), 0) > ds

+2

∫ T

t

< un(s)− f(s), b(s, f(s), 0) > ds

≤ C

∫ T

t

|un(s)− f(s)|2Hds+
1

2

∫ T

t

|Zn(s)|2L2(D,Rm)ds

+C

∫ T

t

|b(s, f(s), 0)|2Hds (3.28)

2n

∫ T

t

< un(s)− f(s), (un(s)− L(s))− > ds

= 2n

∫ T

t

∫
D

(un(s, x)− f(s, x))χ{un(s,x)≤L(s,x)}(L(s, x)− un(s, x))dsdx ≤ 0 (3.29)

Substituting (3.27),(3.28) and (3.29) into (3.26) we obtain

|un(t)− f(t)|2K +

∫ T

t

||un(s)||2V ds+
1

2

∫ T

t

|Zn(s)|2L2(D,Rm)ds

≤ |φ− f(T )|2K + C

∫ T

t

|un(s)− f(s)|2Kds+ C

∫ T

t

|b(s, f(s), 0)|2Kds

+

∫ T

t

||f(s)||2V ds− 2

∫ T

t

< un(s)− f(s), Zn(s) > dBs (3.30)

We take expectation and use the Gronwall inequality to obtain

sup
n

sup
t
E[|un(t)|2K ] <∞ (3.31)
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sup
n
E[

∫ T

0

||un(t)||2V ] <∞ (3.32)

sup
n
E[

∫ T

0

|Zn(t)|2L2(D,Rm)dt] <∞ (3.33)

By virtue of (3.33), (3.31) can be further strengthend to (3.23). Indeed, by the Burkholder
inequality,

E

[
2 sup
v≤t≤T

|
∫ T

t

< un(s)− f(s), Zn(s) > dBs|
]

≤ CE

[
(

∫ T

v

|un(s)− f(s)|2K |Zn(s)|2L2(D,Rm)ds)
1
2

]
≤ CE

[
sup
v≤s≤T

(|un(s)− f(s)|K)(

∫ T

v

|Zn(s)|2L2(D,Rm)ds)
1
2

]
≤ 1

2
E

[
sup
v≤s≤T

(|un(s)− f(s)|2K)

]
+ CE

[ ∫ T

v

|Zn(s)|2L2(D,Rm)ds

]
(3.34)

With (3.34), taking superum over t ∈ [v, T ] on both sides of (3.26) we obtain (3.23). �

We need the following estimates:

Lemma 3.4 Suppose the conditions in Theorem 3.2 hold. Then there is a constant C such
that

E[

∫ T

0

∫
D

((un(t, x)− L(t, x))−)2dxdt] ≤ C

n2
. (3.35)

Proof. Let fm be defined as in the proof of Theorem 3.1. Then fm(x) ↑ (x+)2 and f ′m(x) ↑
2x+ as m→∞. For h ∈ K, set

Gm(h) =

∫
D

fm(−h(x))dx.

It is easy to see that for h1, h2 ∈ K,

G′m(h)(h1) = −
∫
D

f ′m(−h(x))h1(x)dx, (3.36)

G′′n(h)(h1, h2) =

∫
D

f ′′m(−h(x))h1(x)h2(x)dx. (3.37)
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Applying Itô’s formula we get

Gm(un(t)− L(t))

= Gm(φ− L(T )) +

∫ T

t

G′m(un(s)− L(s))(∆un(s)))ds

+

∫ T

t

G′m(un(s)− L(s))(b(s, un(s), Zn(s)))ds

+n

∫ T

t

G′m(un(s)− L(s))((un(s)− L(s))−)ds

+

∫ T

t

G′m(un(s)− L(s))(L′(s))ds

−
∫ T

t

G′m(un(s)− L(s))(Zn(s))dBs

−1

2

∫ T

t

G′′m(Zn(s), Zn(s))ds

=: I1
m + I2

m + I3
m + I4

m + I5
m + I6

m + I7
m. (3.38)

Now,

I2
m =

∫ T

t

G′m(un(s)− L(s))(∆un(s)))ds

= −
∫ T

t

∫
D

f ′m(L(s, x)− un(s, x))(∆(un(s, x)− L(s, x)))dxds

−
∫ T

t

∫
D

f ′m(L(s, x)− un(s, x))(∆L(s, x))dxds

≤ −
∫ T

t

∫
D

f ′′m(L(s, x)− un(s, x))|∇(un(s, x)− L(s, x))|2dxds

+
1

4
n

∫ T

t

∫
D

f ′m(L(s, x)− un(s, x))2xds

+
C

n

∫ T

t

∫
D

(∆L(s, x))2dxds, (3.39)

I3
m = −

∫ T

t

∫
D

f ′m(L(s, x)− un(s, x))b(s, un(s, x), Zn(s, x))dxds

≤ 1

4
n

∫ T

t

∫
D

f ′m(L(s, x)− un(s, x))2ds

+
C

n

∫ T

t

∫
D

(b(s, un(s, x), Zn(s, x)))2dxds, (3.40)
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I5
m = −

∫ T

t

∫
D

f ′m(L(s, x)− un(s, x))(L′(s, x))dxds

≤ 1

4
n

∫ T

t

∫
D

f ′m(L(s, x)− un(s, x))2ds

+
C

n

∫ T

t

∫
D

(L′(s, x))2dxds. (3.41)

Combining (3.38)–(3.41) and taking expectation we obtain

E[Gm(un(t)− L(t))]

≤ E[Gm(φ− L(T ))] +
3

4
n

∫ T

t

∫
D

f ′m(L(s, x)− un(s, x))2ds

+
C

n
E[

∫ T

t

∫
D

(L′(s, x))2dxds] +
C

n
E[

∫ T

t

∫
D

(∆L(s, x))2dxds]

+
C

n
E[

∫ T

t

∫
D

(b(s, un(s, x), Zn(s, x)))2dxds]

−nE[

∫ T

t

∫
D

f ′m(L(s, x)− un(s, x))((un(s, x)− L(s, x))−)ds]. (3.42)

Letting m→∞ we conclude that

E[

∫
D

((un(t, x)− L(t, x))−)2dx]

≤ 3

4
nE[

∫ T

t

∫
D

((un(s, x)− L(s, x))−)2dxds]

−nE[

∫ T

t

∫
D

((un(s, x)− L(s, x))−)2dxds] +
C ′

n
, (3.43)

where the Lipschiz condition of b and Lemma 3.3 have been used. In particular we have

E[

∫ T

t

∫
D

((un(s, x)− L(s, x))−)2dxds] ≤ C ′

n2
. (3.44)

�

Lemma 3.5 Let (un, Zn) be the solution of equation (3.21). We have

lim
n,m→∞

E[ sup
0≤t≤T

|un(t)− um(t)|2K ] = 0, (3.45)
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lim
n,m→∞

E[

∫ T

0

||un(t)− um(t)||2V dt] = 0. (3.46)

lim
n,m→∞

E[

∫ T

0

|Zn(t)− Zm(t)|2L2(D,Rm)dt] = 0. (3.47)

Proof. Applying Itô’s formula, it follows that

|un(t)− um(t)|2K

= 2

∫ T

t

< un(s)− um(s),∆(un(s)− um(s)) > ds

+2

∫ T

t

< un(s)− um(s), b(s, un(s), Zn(s))− b(s, um(s), Zm(s)) > ds

−2

∫ T

t

< un(s)− um(s), Zn(s)− Zm(s) > dBs

+2

∫ T

t

< un(s)− um(s), n(un(s)− L(s))− −m(um(s)− L(s))− > ds

−
∫ T

t

|Zn(s)− Zm(s)|2L2(D,Rm)ds (3.48)

Now we estimate each of the terms on the right side:

2

∫ T

t

< un(s)− um(s),∆(un(s)− um(s)) > ds

= −2

∫ T

t

||un(s)− um(s)||2V ds. (3.49)

By the Lipschitz continuity of b and the inequality ab ≤ εa2 + Cεb
2, one has

2

∫ T

t

< un(s)− um(s), b(s, un(s), Zn(s))− b(s, um(s), Zm(s)) > ds

≤ C

∫ T

t

|un(s)− um(s)|2Kds+
1

2

∫ T

t

|Zn(s)− Zm(s)|2L2(D,Rm)ds. (3.50)
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In view of (3.44),

2E[

∫ T

t

< un(s)− um(s), n(un(s)− L(s))− −m(um(s)− L(s))− > ds]

= 2nE[

∫ T

t

< un(s)− L(s), (un(s)− L(s))− > ds]

+2mE[

∫ T

t

< L(s)− un(s), (um(s)− L(s))− > ds]

+2mE[

∫ T

t

< um(s)− L(s), (um(s)− L(s))− > ds]

+2nE[

∫ T

t

< L(s)− um(s), (un(s)− L(s))− > ds]

≤ 2mE[

∫ T

t

< L(s)− un(s), (um(s)− L(s))− > ds]

+2nE[

∫ T

t

< L(s)− um(s), (un(s)− L(s))− > ds]

≤ 2mE[

∫ T

t

∫
D

(un(s, x)− L(s, x))−(um(s, x)− L(s, x))−dxds]

+2nE[

∫ T

t

∫
D

(um(s, x)− L(s, x))−(un(s, x)− L(s, x))−dxds]

≤ 2m(E[

∫ T

t

∫
D

((un(s, x)− L(s, x))−)2dxds])
1
2 (E[

∫ T

t

∫
D

((um(s, x)− L(s, x))−)2dxds])
1
2

+2n(E[

∫ T

t

∫
D

((un(s, x)− L(s, x))−)2dxds])
1
2 (E[

∫ T

t

∫
D

((um(s, x)− L(s, x))−)2dxds])
1
2

≤ C ′(
1

n
+

1

m
). (3.51)

It follows from (3.48) and (3.49) that

E[|un(t)− um(t)|2K ] +
1

2
E[

∫ T

t

|Zn(s)− Zm(s)|2L2(D,Rm)ds]

+E[

∫ T

t

||un(s)− um(s)||2V ds]

≤ C

∫ T

t

E[|un(s)− um(s)|2K ]ds+ C ′(
1

n
+

1

m
). (3.52)

Application of the Gronwall inequality yields

lim
n,m→∞

{E[|un(t)− um(t)|2K ] +
1

2
E[

∫ T

t

|Zn(s)− Zm(s)|2L2(D,Rm)ds]} = 0, (3.53)
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lim
n,m→∞

E[

∫ T

t

||un(s)− um(s)||2V ds] = 0. (3.54)

By (3.53) and the Burkholder inequality we can further show that

lim
n,m→∞

E[ sup
0≤t≤T

|un(t)− um(t)|2K ] = 0. (3.55)

The proof is complete. �

Proof of Theorem 3.2. From Lemma 3.5 we know that (un, Zn), n ≥ 1, forms a Cauchy
sequence. Denote by u(t, x), Z(t, x) the limit of un and Zn. Put

η̄n(t, x) = n(un(t, x)− L(t, x))−

Lemma 3.4 implies that η̄n(t, x) admits a non-negative weak limit, denoted by η̄(t, x), in the
following Hilbert space:

K̄ = {h; h is a K-valued adapted process such that E[

∫ T

0

|h(s)|2Kds] <∞}

with inner product

< h1, h2 >K̄= E[

∫ T

0

∫
D

h1(t, x)h2(t, x)dtdx].

Set η(t, x) =
∫ t

0
η̄(s, x)ds. Then η is a continuous K-valued process which is increasing in t.

Keeping Lemma 3.5 in mind and letting n→∞ in (3.21) we obtain

u(t, x)

= φ(x) +

∫ T

t

∆u(t, x)ds+

∫ T

t

b(s, u(s, x), Z(s, x))ds−
∫ T

t

Z(s, x)dBs

+η(T, x)− η(t, x); 0 ≤ t ≤ T. (3.56)

Recall from Lemma 3.4 that

E[

∫ T

t

∫
D

((un(s, x)− L(s, x))−)2dxds] ≤ C ′
1

n2

By the Fatou Lemma, this implies that E[
∫ T
t

∫
D

((u(s, x)− L(s, x))−)2dxds] = 0. In view of
the continuity of u in t, we conclude u(t, x) ≥ L(t, x) a.e. in x, for every t ≥ 0. Combining
the strong convergence of un and the weak convergence of η̄n, we also have

E[

∫ T

0

∫
D

(u(s, x)− L(s, x))η(dt, x)dx]

= E[

∫ T

0

∫
D

(u(s, x)− L(s, x))η̄(t, x)dtdx]

≤ lim
n→∞

E[

∫ T

0

∫
D

(un(s, x)− L(s, x))η̄n(t, x)dtdx] ≤ 0 (3.57)
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Hence, ∫ T

0

∫
D

(u(s, x)− L(s, x))η(dt, x)dx = 0, a.s.

We have shown that (u, Z, η) is a solution to the reflected BSPDE (3.17).

Uniqueness. Let (u1, Z1, η1), (u2, Z2, η2) be two such solutions to equation (3.20). By
Itô’s formula, we have

|u1(t)− u2(t)|2K

= 2

∫ T

t

< u1(s)− u2(s),∆(u1(s)− u2(s)) > ds

+2

∫ T

t

< u1(s)− u2(s), b(s, u1(s), Z1(s))− b(s, u2(s), Z2(s)) > ds

−2

∫ T

t

< u1(s)− u2(s), Z1(s)− Z2(s) > dBs

+2

∫ T

t

< u1(s)− u2(s), η1(ds)− η2(ds) >

−
∫ T

t

|Z1(s)− Z2(s)|2L2(D,Rm)ds (3.58)

Similar to the proof of Lemma 3.5, we have

2

∫ T

t

< u1(s)− u2(s),∆(u1(s)− u2(s)) > ds ≤ 0, (3.59)

and

2

∫ T

t

< u1(s)− u2(s), b(s, u1(s), Z1(s))− b(s, u2(s), Z2(s)) > ds

≤ C

∫ T

t

|u1(s)− u2(s)|2Kds+
1

2

∫ T

t

|Z1(s)− Z2(s)|2L2(D,Rm)ds (3.60)
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On the other hand,

2E[

∫ T

t

< u1(s)− u2(s), η1(ds)− η2(ds) >]

= 2E[

∫ T

t

∫
D

(u1(s, x)− L(s, x))η1(ds, x)dx]

−2E[

∫ T

t

∫
D

(u1(s, x)− L(s, x))η2(ds, x)dx]

+2E[

∫ T

t

∫
D

(u2(s, x)− L(s, x))η2(ds, x)dx]

−2E[

∫ T

t

∫
D

(u2(s, x)− L(s, x))η1(ds, x)dx]

≤ 0 (3.61)

Combining (3.58)—(3.61) we arrive at

E[|u1(t)− u2(t)|2K ] +
1

2
E[

∫ T

t

|Z1(s)− Z2(s)|2L2(D,Rm)ds]

≤ C

∫ T

t

E[|u1(s)− u2(s)|2K ]ds. (3.62)

Appealing to the Gronwall inequality, this implies

u1 = u2, Z1 = Z2

which further gives η1 = η2 from the equation they satisfy. �

4 Link to optimal stopping

In this section, we provide a link between the solution of a reflected backward stochastic
partial differential equation and an optimal stopping problem.

Let u(t, x), Z(t, x), η(t, x) be the solution of the following reflected BSPDE.

u(t, x)

= φ(x) +

∫ T

t

1

2
∆u(s, x)ds+

∫ T

t

g(s, x, u(s, x), Z(s, x))ds−
∫ T

t

Z(s, x)dBs

+η(T, x)− η(t, x); 0 ≤ t ≤ T,

u(t, x) ≥ L(t, x), (t, x) ∈ [0, T ]× Rd,∫ T

0

∫
D

(u(s, x)− L(s, x))η(ds, x)dx = 0 a.s. (4.1)
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Choose an adapted process Ẑ(t, x). Let St,T be the set of all stopping times τ satisfying
t ≤ τ ≤ T . For τ ∈ St,T , define

Y τ (t, x) =

∫ τ

t

Ps−tg(s, x)ds+ Pτ−tL(τ, x)χ{τ<T} + Pτ−tφ(x)χ{τ=T} −
∫ τ

t

Ps−tẐ(s, x)dBs,

(4.2)
where g(s, ·) = g(s, ·, u(s, ·), Z(s, ·)) and Pt denotes the semigroup generated by the Laplacian
operator 1

2
∆, i.e.

Ptf(x) = (2πt)−d/2
∫

Rd
f(y)exp(−|y − x|

2

2t
)dy; f ∈ L1(Rd).

Here, and in the following we will use the simplified notation Ptg(s, x) = (Ptg(s, ·))(x) etc.

Theorem 4.1 u(t, x) is the value function of the the optimal stopping problem associated
with Y τ (t, x), i.e.,

u(t, x) = esssupτ∈St,TE[Y τ (t, x)|Ft]. (4.3)

Moreover,
τ̂ := τ̂(t, x) := inf{s ∈ [t, T )|u(s, x) = L(s, x)} ∧ T (4.4)

is an optimal stopping time.

Proof. Observe that u admits the following mild representation:

u(t, x) = PT−tφ(x) +

∫ T

t

Ps−t(g(s, u(s, x), Z(s, x)))ds−
∫ T

t

Ps−t(Z(s, x))dBs

+

∫ T

t

Ps−tη(ds, x); 0 ≤ t ≤ T. (4.5)

More generally, for any stopping time τ with t ≤ τ ≤ T , we have

u(t, x) = Pτ−t(u(τ, x)) +

∫ τ

t

Ps−t(g(s, x))ds−
∫ τ

t

Ps−t(Z(s, x))dB(s)

+

∫ τ

t

Ps−tη(ds, x); 0 ≤ t ≤ τ. (4.6)

Since η(s, x) is increasing in s and u(s, x) ≥ L(s, x) for s ≤ T , it follows that

u(t, x) ≥ Y τ (t, x)−
∫ τ

t

Ps−t(Z(s, x))dB(s) +

∫ τ

t

Ps−t(Ẑ(s, x))dBs

Taking conditional expectation with respect to Ft on both sides we get

u(t, x) ≥ E[Y τ (t, x)|Ft] (4.7)
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As τ is arbitrary, we obtain

u(t, x) ≥ ess sup
τ∈St,T

E[Y τ (t, x)|Ft] (4.8)

Now, define
τ̂ = τ̂(t, x) = inf{s ∈ [t, T )|u(s, x) = L(s, x)} ∧ T.

From the property of η, it is not increasing on the interval [t, τ̂ ]. Thus,
∫ τ̂
t
Ps−tη(ds, x) = 0.

So we have from (4.6) that

u(t, x) = Pτ−t(u(τ, x))|τ=τ̂ +

∫ τ̂

t

Ps−t(g(s, x, u(s, x), Z(s, x)))ds

−
∫ τ̂

t

Ps−t(Z(s, x))dBs +

∫ τ̂

t

Ps−t(Ẑ(s, x))dBs

= Y τ (t, x)|τ=τ̂ −
∫ τ̂

t

Ps−t(Z(s, x))dBs +

∫ τ̂

t

Ps−t(Ẑ(s, x))dBs

= Y τ̂ (t, x)−
∫ τ̂

t

Ps−t(Z(s, x))dBs +

∫ τ̂

t

Ps−t(Ẑ(s, x))dBs. (4.9)

Taking conditional expectation yields that

u(t, x) = E[Y τ̂ |Ft].

Combining this with (4.7) we obtain the theorem. �
�

5 Application to risk minimising stopping

Let τ ∈ S0,T , the set of stopping times with values between 0 and T . Suppose that g(s, x, Z)
is convex with respect to Z for all s, x. Let F (t, x) be a given square integrable adapted
process. In analogy with the definition of a convex risk measure in finance in terms of
(ordinary) backward stochastic differential equations, we may consider F τ (x) = F (τ, x) as
the financial standing at (τ, x), and we define the risk ρ(F τ )(t, x) of F τ (x) at time t ≤ τ
and at the point x by

ρ(F τ )(t, x) = −YF τ (t, x), (5.1)

where Y (t, x) = YF τ (t, x), Ẑ(t, x) is the solution of the BSPDE

dY (t, x) = −1

2
∆Y (t, x)dt− g(t, x, Z(t, x))dt+ Ẑ(t, x)dB(t), (t, x) ∈ (0, τ)× Rd

Y (τ, x) = F τ (x) ; x ∈ Rd (5.2)
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We consider the risk minimising stopping problem to find τ ∗ ∈ S0,T and ρ(F τ∗)(t, x) such
that

ρ(F τ∗)(t, x) = infτ∈St,T ρ(F τ )(t, x) (5.3)

We may consider the space diffusion effect stemming from the Laplacian operator, as a
representation of a mean-field effect in a market with many agents with interacting notions
of risk.

Note that the solution of the BSPDE for YF τ (t, x) is

YF τ (t, x) =

∫ τ

t

Ps−tg(s, x)ds+ Pτ−tF (τ, x)−
∫ τ

t

Ps−t(Ẑ(s, x))dB(s). (5.4)

Therefore, comparing with the equation (4.6) above for Y τ (t, x), we see that Y τ
F (t, x) coin-

cides with Y τ (t, x) if we choose L(t, x) and φ(x) such that

F (t, x) = L(t, x)χt<T + φ(x)χt=T . (5.5)

Applying the Theorem above to this choice of L(t, x) and φ(x) we get the following result,
which is a space-time version of a known result (see Quenez-Sulem (2012)):

Theorem 5.1 (Risk minimising stopping theorem)

infτ∈St,T ρ(F τ )(t, x) = −u(t, x), (5.6)

where u(t, x), Z(t, x), η(t, x) is the solution of the reflected BSPDE

u(t, x) = F (T, x) +

∫ T

t

1

2
∆u(s, x)ds+

∫ T

t

g(s, x, u(s, x), Z(s, x))ds

−
∫ T

t

Z(s, x)dB(s) + η(T, x)− η(t, x); (t, x) ∈ (0, T )× Rd,

u(t, x) ≥ F (t, x); (t, x) ∈ (0, T )× Rd,∫ T

0

∫
Rd

(u(s, x)− F (s, x))η(ds, x)dx = 0 a.s.

(5.7)

Moreover, the stopping time τ̂ = τ̂(t, x) defined by

τ̂(t, x) = inf{s ∈ [t, T )|u(s, x) = F (s, x)} ∧ T

is optimal.
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