
Automatic debris detection
and cell-type classification
in light microscopy images
of cell nuclei
Sigmund Johannes Ljosvoll Rolfsjord
15.08.2014

Abstract

Digital image analysis has proved to be a powerful tool for providing a prognosis
for cancer patients. For the prognosis to be as robust and reliable as possible,
information regarding cell-type is needed, and damaged or overlapping nuclei
have to be removed. Manually labeling the cell nuclei is time-consuming and
expensive. An automatic labeling procedure would be an important contribution
to the preprocessing of cell nuclei.

In this thesis, we have developed a model for automatic classification of
cell-type and removal of debris, using modern machine learning techniques. An
investigation of the manual labeling of a set of experts is performed, to evaluate
the performance of our approach. For removal of different types of debris we
have developed highly specific novel features. We have also evaluated a set of
previously known features, for use in cell-type classification.

We generally found that automatic classification can achieve similar perfor-
mance to that of human experts. The best results were found to be a correct
classification rate of 97 % for cell-type classification and 87 % for the complete
classification of both cell-type and debris. On the same small dataset used for
evaluation of the human experts we found an average correct classification rate
of 79.43 %. This result was better than the worst performing human expert and
within the 0.95 confidence interval (85.14± 7.29%).

Our approach shows promising results for automatic labeling of cell nucleus
images, but may still be less robust than human experts. Further investigation
of the human performance is needed to conclude on whether the whole labeling
process can be fully automated and in order to chart out a direction for the
further development of the automatic procedure.

i

ii

Acknowledgements

This study was carried out at Institute for Cancer Genetics and Informatics
at The Norwegian Radium Hospital and the Department of Informatics at the
University of Oslo. It was started in January 2013 and completed in August
2014.

First I would like to thank my supervisor Professor Fritz Albregtsen for his
thorough scrutiny of my thesis and for his important feedback and advice. I
also would like to thank Andreas Kleppe, as I greatly appreciated his interest
in my work, his advice and especially his input on detection of overlapping cells
and the analysis of the inter-observer data. His thesis has also proved to be of
great help throughout my work. Further I send my thanks Dr. John Maddison
for reading my thesis and providing feedback. I thank my supervisor Professor
Håvard E. Danielsen for providing the necessary material and data for carrying
out the project, his descriptions of how the nuclei are labelled and for putting
me in contact with the right people. The descriptions of the labeling process
and data i received from Tarjei Sveinsgjerd Hveem and Wanja Kildal, were also
much appreciated.

Finally I wish to thank my girlfriend Oda Gundersen for her patience and
support.

iii

iv

Contents

Abstract i

Acknowledgements iii

1 Introduction 3
1.1 The Project . 3

1.1.1 An Overview of Challenges 3
1.1.2 Different Approaches . 4
1.1.3 Our Contribution . 6
1.1.4 Organisation . 6

2 Material 7
2.1 The Datasets . 7
2.2 Preparation of Cell Nuclei Images 8
2.3 Segmentation and Sorting . 8
2.4 The Different Classes . 8

2.4.1 Class 1 - Epithelial Cells 9
2.4.2 Class 2 - Lymphocytes . 9
2.4.3 Class 3 - Plasma cells . 9
2.4.4 Class 4 - Stromal Cells . 9
2.4.5 Class 5 - Automatically Excluded Nuclei 10
2.4.6 Class 6 - Excluded Nuclei 10

2.5 Cell Images . 14
2.6 Study: Determine Inter-Observer Reliability 14

2.6.1 Methods . 15
2.6.2 Results . 16
2.6.3 Discussion . 18

2.7 Further Use of the Classified Cell Images 19
2.7.1 Cell Ploidy . 19

2.8 Challenges with the Material . 20
2.8.1 Class Lables . 20
2.8.2 Differences in the Cell Images 21
2.8.3 Creating Bias in Later Applications 22

2.9 Training and Test . 24
2.9.1 Training-Sets . 24
2.9.2 Independent Test-Set . 24

2.10 How general can we make our model? 25

v

vi CONTENTS

3 Previous Work 27
3.0.1 Cell type classification . 27
3.0.2 Infrared spectroscopy can differentiate tissue types 27
3.0.3 Excluding cells . 29
3.0.4 Summary . 31

4 Methods 33
4.1 Fitting an Ellipse . 33
4.2 Fourier Descriptors . 34

4.2.1 Contour Representation 34
4.2.2 Interpretation of the Coefficients 35
4.2.3 Position Invariance . 37
4.2.4 Scale Invariance . 37
4.2.5 Rotation Invariance . 38
4.2.6 The Effect of Sampling Error 38

5 Removing Debris 41
5.1 Detecting rough edges . 41
5.2 Cut cells . 45
5.3 Overlapping Cells . 51
5.4 Over-segmented cells . 58
5.5 Blurred Images . 60
5.6 Notes on the Implementation . 61

6 A Search For Features 63
6.1 Estimating DNA Content . 63
6.2 Morphological Features . 64
6.3 First-Order Gray-Level Statistics 72
6.4 Texture and Higher-Order Statistics 80

6.4.1 Gray-Level Co-Occurrence Matrix 80
6.4.2 Cartesian Geometric Moments 87

6.5 Granularity . 90
6.6 Summary . 91

7 Classification 93
7.1 Choosing a Method of Classification 93

7.1.1 Intuitive or Black Box . 93
7.1.2 Scaling . 94
7.1.3 Features . 95

7.2 Classifictation and Regression Tree 98
7.2.1 Splitting the Population 99
7.2.2 Pruning the Tree . 101

7.3 Boosting . 101
7.3.1 Loss Functions . 102
7.3.2 Gradient Boosted Trees 103
7.3.3 Important Parameters . 106

7.4 Random Forests . 107
7.4.1 Important Parameters . 107

7.5 A Nesting Problem . 108
7.6 Partial Dependence Plots . 108

CONTENTS 1

7.7 Decison on Classification Model 109

8 Results and Discussion 111
8.1 Cell-Type Classification . 111

8.1.1 Feature Importance . 112
8.1.2 Classification Results . 119

8.2 Feature Value Thresholding . 127
8.2.1 Overlapping Cells . 127
8.2.2 Cut cells . 131
8.2.3 Rough Edges . 136
8.2.4 Over-Segmentation . 140
8.2.5 Combining the Features 141
8.2.6 Overview of the Thresholding 143

8.3 Classification of All Classes . 144
8.3.1 Feature Evaluation . 144
8.3.2 Classification Results . 146
8.3.3 Is The Model Overfitted? 148
8.3.4 Explaining the L41-Result 149

8.4 Summary of Results . 153

9 Conclusion and Further Work 155

References 157

2 CONTENTS

Chapter 1

Introduction

The main aim of this study as been to develop an automatic procedure for label-
ing cell types and removing noise, from microscopic images of human carcinoma.
These classified cells are at a later stage used to provide important prognostic
information. Some cells are already automatically classified at this moment, but
many cells are still manually reviewed and labelled. In fact, for each patient,
thousands of cells are manually reviewed, and this is a very time-consuming
procedure.

Automation of the classification procedure will not only save a substantial
amount of resources, but can also provide an opportunity to analyze a larger
sample of cells for each patient, which in turn may further improve the quality of
the prognostic information. Despite a potentially large payoff possibly achieved
by completing this task, there are very few studies available on exactly this
subject. The studies that are available are mostly very restricted due to limited
datasets. We are in the fortunate position of having access to a much larger
dataset, which enable us to consider more complex methods, with smaller risk
of overtraining.

1.1 The Project

1.1.1 An Overview of Challenges

The main challenge for this project is the relatively large uncertainty related to
the data material. We have a large amount of data, but little or no information
regarding the uncertainty, or the different sources of uncertainty, of this data.
The data have been accumulated through many years, and we have no overview
of all the possibly relevant changes throughout this period. We have no thorough
investigation of the performance of the experts doing the manual classification,
and no knowledge on how their performance change through time or across
different data material.

Another related challenge will then be to find the most general solution
achievable. The search for a general solution also has to be balanced against
achieving an acceptable level of accuracy for the solution. The problem of
finding this balance is further complicated, as we have no measure of what is an
acceptable accuracy.

3

4 CHAPTER 1. INTRODUCTION

The classification task in this study could essentially be divided up in two
different tasks, filtering out cells that are not fit for analysis and classifying cells
based on cell type. For the first task we have better control over the different
criteria that the manual classification is based on. This means that there are
little hope in finding “hidden” relationships between the class and some features
or interaction between features. We are essentially mimicking the judgement of
expert observers, and to look for patterns in their decisions that they are not
aware of, will probably be futile. For the cells-type classification on the other
hand, there may exist hidden patterns in the data, that are indeed relevant.
In this task our ultimate goal is not to mimic observers, but find patterns in
nature. With no experience in cell biology, we have little a priori knowledge to
incorporate into our model and are therefore forced to do a wider search through
different aspects of the cell images, in hope of finding some relations between
the cell images and the corresponding cell type.

With many different classes that are not always visually distinct, this may
be a complex classification task. We still need to make the process somewhat
transparent, so we can discover biases in the algorithm and easily adapt the
approach accordingly.

1.1.2 Different Approaches

To classify a large noisy data-set, we could do a very wide search through a
huge number of features, use a large training set and hope that the noise would
average out. Another approach would be to develop strong features based on a
priori knowledge about the problem.

Our first attempt was to scan the literature for information that we could
leverage in our classification task, but this proved unrewarding. We then chose
a wide-search approach for both the filtration and the cell type classification
problem. We even attempted an extreme version of the wide search approach
were we took the whole cell image as input and used a convolutional neural-net
[51] to generate features from the image. We soon rejected this approach as it
gave us no control over the errors, and no easy way of adapting the algorithm to
different data-sets. We finally ended up with an approach were we focused on
finding a set of features that captured as many aspects of the image as possible.
We reviewed a large range of features, where some have been successfully applied
to other classification tasks related to cell nuclei. Some features were excluded
after investigation in the review process. As mentioned the strategy of a wide
search is most relevant to the cell type classification task, but we still evaluated
the same approach for the filtering as well.

For the filtering task our primary objective was to develop a set of novel
features, specially designed to measure the criteria set for the cell nuclei that
are to be excluded. We could then set thresholds on those measures by visual
inspection. With this approach the different thresholds could be reset to adapt
to different data.

We finally need some methods for evaluation of of the procedure. As we
have no ground truth for the cell type classification, we could possibly evaluate
the performance based on the final result on the prognostic prediction, from the
later applications of the data. Such a method could be called a goal-directed
evaluation [82]. This could be a reasonable evaluation method, at least for
the exclusion of nuclei from further analysis. The exclusion process by the

1.1. THE PROJECT 5

human experts is more subjective in nature, and a goal-directed evaluation would
be a way to get a more objective measure. The problem with this type of
approach in our application is that our classification may be overfit to the given
prognostic analysis. Since the methods of prognostic analysis is rapidly changing
and improving, it would be hard to determine whether the classification method
also is optimal for future methods of analysis. With this in mind we found that
the best methods of evaluation would rather be to measure how well we mimic
human experts. Even though the human evaluation have a certain unreliability,
a result close to that of human experts, would mean that in further applications
the automatic classification would have similar performance, compared to the
only available alternative, namely manual classification. A natural evaluation
metric is then the correct classification rate (CCR), which is the ratio of correct
classified nuclei, in comparison to the total number of cell nuclei. A finial
metric of success will then be to achieve a performance similar to that of human
experts or not significantly different. With this evaluation we have to note that
we cannot possibly achieve a better result than the human experts in general,
but we may outperform some individuals.

To measure the performance for each class individually we use the precision
and recall metrics. To evaluate classification results it is common to define the
samples as true positive, true negative, false positive and false negative. Samples
correctly classified to a given class are called true positives, while samples that
does not belong to the class and are correctly classified as such are called true
negatives. Samples that does not belong to a given class, but are classified to
that class are called false positives, while samples that do belong to a class, but
are classified to another class can be called false negative.

Precision for a class can then be defined as the number of true positives
divided by the total number of samples classified as samples classified to the
class, called positives. Precision is then a measure of the share of unrelated
samples that are mixed into a class. Recall is the number of true positives
divided by the number of samples that should belong to that class. Recall is a
measure of how many samples remain in a class after classification.

Sensitivity and specificity are also popular measures for performance of a
classification for a single class. Sensitivity in this context is the same as recall,
while specificity is the number of true negatives divided by the number of sam-
ples that should be classified as negative; not part of the given class. For our
current project we find it most natural to use the metric pair of precision and
recall, as for each class the most relevant information is how clean the classi-
fied result is and how many samples we loose for each class. Specificity is less
relevant as it primarily refers to the samples that does not belong to a class,
and describe how many of those samples that are are absorbed by the class. In
our multi class application it is unnatural to treat samples that do not belong
to a class as an entity, as they in reality belong to different classes. This es-
pecially holds true in our application, where the distribution of samples among
the classes can be very different.

Another evaluation metrics that is commonly used, if not in our study, is the
area under the curve (AUC) which refer to the area under the receiver operating
characteristic (ROC) curve [36]. The ROC curve describes the tradeoff between
sensitivity and specificity for a classification model. It is created by plotting
the sensitivity for each value of specificity. Sensitivity is usually plotted on the
y-axis and 1− specificity is plotted along the x-axis.

6 CHAPTER 1. INTRODUCTION

1.1.3 Our Contribution
With this study we suggest a novel set of features for identifying cells that are
not segmented or prepared correctly. We also investigate a wide range of fea-
tures suited for identifying different cell types and review some modern methods
for classification in light of the task at hand. We identity challenges with using
image analysis for classification of nuclei, and perform an investigation of possi-
ble sources of errors. Most importantly we provide an algorithm for automating
a very labor intensive task.

1.1.4 Organisation
We consider chapter 1-3 to be related to what is generally call Introduction, in
the commonly used IMRAD structure, even though some parts of chapter 2 is
clearly related toMethods. We choose to present the material as early as possible
in order give the reader some insight into cell-type classification, removal of
debris and an impression of the challenges for the classification, before being
exposed to previous studies. Chapter 4-7 we consider method chapters, and
finally we have Results, Discussion and Conclusion in chapter 8-9.

Therefore, chapter 2 is a presentation of the data material, the different
classes, how the data is created and labelled, and the challenges face in relation
to this data. In chapter 2 we have also included a small study, we performed in
order to evaluate the quality of our data material.

After describing the challenges, a natural next step is to review what prior
research exists on the subject. This is important both to evaluate whether some
of these finding can be used in our project and where we have to focus our
resources to provided the best contribution to the field. Chapter 3 present some
of the few studies that available on our exact subject. Some related to filtering
debris and others related to cell-type classification, with similar classes as in the
current study.

Chapter 4 is a presentation of some details related to two methods especially
relevant to some of the features generated, namely ellipse fitting and Fourier de-
scriptors. The details are included as they proved important when considering
how they features could be generated. In chapter 5, we describe how we applied
the methods from chapter 4 to generate a set of novel features especially devel-
oped to detect some subgroups of K6 cells. The chapter contain a description
of the features and some insight into the thought processes the underlie the
development of these features. Chapter 6 is a presentation of a range of features
gathered from other studies, and an investigation into how they relate to the
different classes of the current study.

In chapter 7 we present the classification methods we used, why these meth-
ods were both appropriate for our project in particular, and some aspects to
consider when choosing and tuning a classification algorithm. In chapter 8 we
present and discuss the result of our classification. Concerning both the effects
of the different features, thresholding features to filter out debris and classifica-
tion. Finally in chapter 9, we conclude and present our view related to further
work on the subject.

Chapter 2

Material

The datasets consists of images of cell nuclei collected from biopsies of human
carcinoma, collected from different patients. Throughout the thesis, these cell
nuclei will often be referred to as solely “cells” or “nuclei”, for simplicity.

There are many cell samples for each patient, and those cells are represented
by a set of 5 images, described in section 2.5. The cells are labelled into one out
of six categories, class 1 - class 6, epithelia nuclei, lymphocytes, plasma cells,
stromal cells, automatically excluded nuclei and manually excluded nuclei, in
the respective order. The labels K1, K2, K3, K4, K5 and K6 will be used as
further reference.

We make a distinction between new and old datasets, primarily because
they are captured with different cameras and therefore are significantly different.
Along with the change in camera, the processing in form of pre-sorting algorithm
and segmentation, have also changed.

2.1 The Datasets

We have one large set consisting of data from 80 biopsies from colorectal cancer,
named M51. The training set comprised of 140533 cells, with 56.64% K1, 0.44%
K2, 15.82% (K3), 0.63% K4 and 26.46% K6 cells. The M51 test set had a total
of 17669 cells, with 61.82% K1, 0.18% K2, 11.11% K3, 0.58% K4 and 26.31% K6
cells. We also had a data-set from breast cancer tissue, named L41, from a total
of 60 patients. In our training-set for L41 we had a total of 75116 cells, with
61.87% K1, 1.49% K2, 6.69% K3, 0.69% K4 and 29.25% K6 cells. The test-set
had 13038 cells with 66.56% K1, 1.93% K2, 3.91% K3, 0.29% K4 and 27.31%
K6 cells. Finally we had a somewhat smaller data-set from cervical cancer from
30 patients, called PLM13. Our training-set had 33221 cells, with 66.32% K1,
0.80% K2, 4.57% K3, 0.65% K4 and 27.86% K6 cells. The test-set had 24433
cells, with 64.44% K1, 0.67% K2, 4.97%K3, 1.31% K4 and 28.60% K6 cells.
From the PLM13 data-set, we also have cell-samples from one patient that have
been classified by 7 different experts, with a total of 2989 cells, were 52.59% of
those cells belong to K1, 8.40% to K2, 21.24% to K3, 0.37% to K4 and 520 cells
belong to K6. With “belong” we mean what the samples are classified as the
official label, used for further analysis.

We also had two sets P02 and P14 from prostate cancer and cervical cancer,

7

8 CHAPTER 2. MATERIAL

with 10 patients in each set. These sets were primarily used for developing the
features for removing debris. Since the sets were small, and we had no test-set,
we did not use these sets to evaluate our results. We also believed that since
the features were developed primarily on these sets, we would experience a sort
of overtraining, using these datasets.

The L41 and M51 are quite old sets, but some of the data have been revised
later in time. There have also been used different segmentation technology
and so on thorough the generation of the data. The PLM13 data-set is newer
and were generated in 2013. Even though there have been used many different
expert labelers, we have to remember that the labeling of this set may have
occurred closer in time and the segmentation technology have probably change
less through just one year, compared to the many years M51 and L41 have been
in use.

2.2 Preparation of Cell Nuclei Images

All the material consists of isolated nuclei, called monolayers. The nuclei were
extracted and prepared, from paraffin-embedded tissue fixed in 4% buffered for-
malin, using a modification of Hedley’s method [40] and Feulgen-Schiff stained
according to the protocol described in [80]. A Zeiss Axioplan microscope with
a 40/0.75 objective lens, a 546 nm green filter was used in the process of cap-
turing the images. For M51 and L41 we used a high-resolution digital camera
(C4742-95, Hamamatsu Photonics K.K., Hamamatsu, Japan) with 1024× 1024
pixels/image and a gray-level resolution of 10 bits/pixel was used to capture
the images. One pixel corresponded to 166 nm on the cell specimen [62]. For
PLM14, PLM14 and P02, we used a high-resolution digital camera (Axiocam
MRM, Zeiss) with 1040 × 1388 pixel/image and a gray-level resolution of 12
bits. The gray-levels was later reduced to 10 bits, by removing the two least
significants bits. The images were shading corrected by dividing each frame by
an image of the background, without nuclei.

2.3 Segmentation and Sorting
The images were automatically segmented, but we have no information in regard
to what method was used at given at time, and only know that they have been
refined and updated many times throughout the years of the data generation.
The images were first automatically sorted by a rule based classification system,
as a part of the Ploidy Work Station (Room4, Crowborough, UK). We only had
access to some detail on this system towards the end of the project, and the
details regarding the current system of pre-sorting have not accessible. Therefore
this system is not thoroughly discussed in this Thesis. Still we include some
features proposed by Maddison, in an early version of the pre-sorting system,
described in [54].

2.4 The Different Classes
As we have no a priori information regarding the cell labels, we cannot provide
a thorough introduction to the different aspects of the cell classes. We also

2.4. THE DIFFERENT CLASSES 9

found much of the information we did acquire to be of little or no importance
for our project. Therefore we only provide a very superficial introduction of the
different classes and some of the characteristics of the classes that we found to
be consistent through the different datasets.

Along with the descriptions of the different classes, there is also included a
set of images of cells from the corresponding class. The selection of images is
aimed both to present characteristic cells of each class and to illustrated the
normal variation in that class.

2.4.1 Class 1 - Epithelial Cells

As our data-set is collected from carcinoma, it is the epithelial cells that are
affected by cancer. In other words this is the most important group for further
classification. As cancer cells are recognized by rapid division and wild muta-
tions, this group is quite heterogeneous and they have many outliers in regard to
most features. There is huge variations in shape, size and texture. This makes
the classification task more complex than detecting healthy epithelial tissue.

Generally the epithelial cells are bigger than plasma cells (K3) and lympho-
cytes (K2). Compared to the stroma cells (K4), epithelial cells usually have a
more circular shape and a more grainy pattern, but there are not always a clear
distinction between the two classes. Examples of K1 cells can be found in figure
2.1.

2.4.2 Class 2 - Lymphocytes

Lymphocytes cells are small compared to the other classes. They are also very
dark, as the DNA in the nuclei is concentrated in over a smaller area. Addition-
ally they are mostly very circular in shape. The fact that they also are easier
to segment, as they have a strong contrast to the background, also attributes
to their smooth contour. These cells does not have a clear distinction relative
to many cells in K6, as they could also be debris from apoptotic nuclei that
often occur in cancer tissue, and should be in K6 for our purpose. A problem
related to the data material is that we have very few samples of this cell type.
Examples of K2 cells can be found in figure 2.2.

2.4.3 Class 3 - Plasma cells

Plasma cells are mostly smaller than epithelial cells and have a quite circular
shape, but it is sometimes hard to differentiate between large plasma cells and
small epithelial cells. Some have a quite grainy texture and some are more
blurred. Often it is the most blurred plasma cells that get sorted out and put
in to K6, but the distinction is not quite clear here either. Examples of K5 cells
can be found in figure 2.3.

2.4.4 Class 4 - Stromal Cells

They are most recognizable for their oblong shape, and some also have a dark
stripe along the middle of the cell. They tend to have a light color, but some
cells have a more grainy pattern similar to that of epithelial cells. We find that

10 CHAPTER 2. MATERIAL

stromal cells and oblong epithelial cell are often confused. Examples of K4 cells
can be found in figure 2.4.

2.4.5 Class 5 - Automatically Excluded Nuclei
For the old datasets, there are generally no cells in this class. The cells that
would otherwise belong to this class are removed as part of the segmentation
process. For the cells in the old datasets, this class was used as a default label,
before the manual classification. For the new datasets on the other and hand, the
cells are presorted, and the cells that are automatically removed are kept in class
5. The images in this category are usually cell images that obviously needs to be
removed. Typically very small objects or large clusters of cells. We consider this
first filtering a solved problem, as this group is mostly ignored through a manual
classification. For this project we consider the removal of these K5 cells to be a
part of the segmentation process, and the class is therefore excluded from our
study entirely. Still we can easily see that there are some mistakes, typically
for cells with irregular shape. Still it would be hard for us to evaluate these
mistakes, as the cells are still kept in K5 after manual classification. Examples
of K5 cells can be found in figure 2.5.

2.4.6 Class 6 - Excluded Nuclei
This group consists of cells that should not be used for further analysis and are
therefore manually removed. In this class there are:

1. Cut nuclei

2. Nuclei with damaged cell membrane

3. Overlapping nuclei

4. Nuclei with foreign objects

5. Nuclei that are badly over or under segmented

6. Nuclei that appear blurred in the image

As K6 nuclei can come from all of the 4 different cell types, this group is indeed
very heterogeneous. It is also overlapping on most features with all of the other
classes. For that reason it is very difficult to find a typical K6 cell. Examples
of K6 cells can be found in figure 2.6.

2.4. THE DIFFERENT CLASSES 11

Figure 2.1: A range of different K1 cells, from the PLM13 training-set. 1 cm
in the image correspond to 5.4 µm on the specimen.

Figure 2.2: K2 cells from the PLM13 training-set. 1 cm in the image correspond
to 5.4 µm on the specimen.

12 CHAPTER 2. MATERIAL

Figure 2.3: K3 cells from the PLM13 training-set. 1 cm in the image correspond
to 5.4 µm on the specimen.

Figure 2.4: K4 cells from the PLM13 training-set. 1 cm in the image correspond
to 5.4 µm on the specimen.

Figure 2.5: K5 images from the PLM13 training-set. These cells are scale to
half the size compared to the images for the other classes. 1 cm in the image
correspond to 2.7 µm on the specimen.

2.4. THE DIFFERENT CLASSES 13

Figure 2.6: K6 cells from the PLM13 training-set. On the bottom right cell the
contour has been has been outlined, to illustrate over-segmentation. 1 cm in the
image correspond to 5.4 µm on the specimen.

14 CHAPTER 2. MATERIAL

2.5 Cell Images

For each cell we have 5 different images. We have the original, a shade corrected,
a shade corrected and segmented and a background image, additionally we have
a mask image which is a binary image, created by an automatic segmentation
algorithm. The region where the binary image is true, corresponds to the cell
area found by the segmentation algorithm and is drawn in white.

Figure 2.7: The leftmost image is shading corrected and segmented, next we
have the shading corrected image, and in the center we have the original image.
The forth image from the left is the cell mask and finally rightmost we have the
background image. The “ticks” along the frame each represent 20 pixels.

2.6 Study: Determine Inter-Observer Reliability

The PLM13 dataset was classified by several different experts. Since the process
was mainly done with visual inspection, we had to assume a certain degree
of inter-observer disagreement. To evaluate the performance of the computer
algorithm we had to at least have some estimate of this unreliability of the
class labels and at the start of this project we had only anecdotal evidence that
the reliability of the data was “very high”. As mentioned the set was first and
foremost classified to gain prognostic information. Therefore a main focus was
to classify enough cells, to get a reliable result. We believed the inter-observer
reliability to be one of the most important factors for discrepancies in the data.
It is also easier to investigate than the how the datasets change through time.

If we were to investigate to what degree there were any significant differences
among the expert we would need the experts to label the same set at least twice
each, so we also could get an estimate of the variation for each individual. This
information is unavailable to us, but for our project this does not have much
relevance. We must presume that the differences in labeling is in part due to
individual differences and variance in personal performance. Since we have no
information about who labelled our set we are more interested in the general
reliability in the data, which we can find as the sum of the two components. In
other words the results we find will be this sum of individual differences and
individual variance.

A question that may be of interest is whether there are some specific parts
of the data that are disputable or if all parts of the data are prone to error,
which may indicate that the discrepancies are mainly due to random errors.

To investigate these questions we run two different test. First we evaluate
the pairwise agreement among the observers and present an average confusion
matrix, indicating what mistakes that are the most common. Then we investi-
gate how the mutual agreement decreases when we combine more observers. If
we have a rapid decline of accuracy as a function of the number of observers we

2.6. STUDY: DETERMINE INTER-OBSERVER RELIABILITY 15

would expect the errors to be more random in nature, and that each expert has
some errors regardless of the data. We have to assume that there is a certain,
smaller part of the data that is inherently hard to classify, if the accuracies on
the other hand do not change much.

2.6.1 Methods

To investigate this we used 7 experts all labeling the same set of 8941 cell images
from one patient in the PLM13 material, where 5952 (67 %) belonged to class
5. The set was first sorted by a rough rule-based algorithm, then reviewed and
“correcte” by the experts. All the experts were informed of the circumstances
of this test prior to their classification work. We found that the largest class,
namely class 5, with the obviously corrupted cell images, was rarely reviewed
at all, but rather trusted to the computer algorithm. Only a total of 15 cells
were actually moved from this class and there seemed to be no agreement of
which cell that should be taken out from this group. Such a large number of
cells not reviewed or moved, would exaggerate the reliability enormously. We
therefore excluded class 5 from our study and from further investigation. The
average marginal probabilities for the classes left was: 0.513 (K1), 0.098 (K2),
0.165 (K3), 0.005 (K4) and 0.219 (K6).

Estimating Pairwise Reliability

We estimated the reliability for all possible combinations of pairs, and averaged
the results. We will also report maximum and minimum agreement and the
confidence interval of the reliability scores. We have to remember that that
the reliability scores, simply calculated as the correct classification rate (CCR),
will be somewhat biased by the uneven distribution among the classes. We
will therefore also report the Cohen’s kappa coefficient [23], which is a measure
that corrects for such an uneven distribution. This measure assumes that the
marginal probabilities for the classes are fixed [9]. This is not necessarily true,
as they could vary for different types of cancers and among individuals, but it
is at least true within a certain degree. The Cohen’s kappa coefficient can be
calculated as

κ =
Pr(a)− Pr(e)

1− Pr(e)
, (2.1)

where Pr(a) is the observed agreement and Pr(e) is the probability that the
observers would agree on a samples by chance, taking the a priori probabilities
for each class into account.

Mutual Agreement

To investigate the mutual agreement between a larger number of observers, we
plot the probability of a given number of observers to agree on a sample. To find
this probability we simply calculate the average agreement among all possible
combinations of observers. The number of combinations is N !

k!(N−k)! , where N is
the total number of observers and k is the number of observers to choose. This
means for example that for two observers we have 21 possible combinations to
average from, for three observers we have 35 combinations, while for 7 observers
there is only one possible combination, namely using all observers. We do

16 CHAPTER 2. MATERIAL

this same procedure for each class as well. Then we calculate the ratio as the
number of cells in the class that all the observers agreed upon divided by the
total number of cells that at least one of the observers label to that class.

Improvement Over Pre-Sorting

In order to investigate whether the agreement is due to either that the pre-
sorting is good, an anchoring effect or a real underlying agreement between the
observers, we measure to what degree the observers actually change the pre-
sorted labels, and if they agree on the label changes. This investigation may
not provide a definite answer as we do not know, for example if the agreement
between human and computer is due to the anchoring effect or actually agree-
ment. In order to test this, the observers would have to do the labeling without
any prior sorting.

For this investigation the samples where an expert agrees with the pre-sorting
will be removed. In other words we will only investigate the samples that each
of the expert relabeled. Then we will again present an average confusion matrix,
estimated from all possible combinations of observer pairs. We also present the
average agreement of relabeling to different the different classes.

2.6.2 Results
The average pairwise reliability was (85.14 ± 7.29%), with a Cohen’s kappa
of 0.772, which is inside what Landis and Koch [50] judge to be substantial
agreement. The highest agreement between any pair of observers was 91.0%,
and the lowest 76.9%. We found that the average reliability for separating
between K6 and the other classes is 86.86 %, which gives a Cohen’s kappa
of 0.607. This kappa is just slightly outside the range deemed as substantial
agreement and in the range of moderate agreement.

Table 2.1: The averaged confusion matrix from pairwise comparison of class
labeling.

Observer 2
K1 K2 K3 K4 K6

K1 1421.4 0.0 0.1 6.5 105.9
K2 0.0 230.8 19.0 0.0 42.1
K3 0.1 19.0 430.8 0.0 44.3
K4 6.5 0.0 0.0 4.3 4.2

O
bs

er
ve

r
1

K6 105.9 42.1 44.3 4.2 457.6
Average CCR between the observers: 85.14%

What does seem sightly worrying is that a pair of observers, on average,
only agreed upon 53.79 % of the cells they wanted to label as K6 and thereby
remove from further analysis. Disregarding the cells that were classified as K6
by at least one of the observers, we are left with an inter-observer agreement of
97.59 %, which gives a Cohen’s kappa of 0.953, where the coefficient is in the
range judged as almost perfect agreement.

From the plots in figure 2.8 we can see that the agreement decreases quite
rapidly and that this decline differ significantly between the different classes.

2.6. STUDY: DETERMINE INTER-OBSERVER RELIABILITY 17

Figure 2.8: The leftmost plot show how the mutual agreement decrease for each
added observer. The green line represents the decrease when the subset of ob-
servers with the highest possible mutual agreement are chosen for each step. The
blue line show the decrease when the subset of observers with the lowest mutual
agreement are chosen for each step. The red line show the average mutual agree-
ment between all possible subset of observer with a given size. The lines meet
at 7 observers since there are only 7 observers in total, and there is only one
possible set of observers for that size. The rightmost plot shows this average
agreement for each of the individual classes.

The observers all agreed upon in total 1214 K1 cells, 65 K2 cells, 342 K3 cells,
0 K4 cells and 294 K6 cells.

In table 2.2, the confusion matrix for relabeling is presented. On average
about 30% of the cells where moved, but a pair of experts only agree on about
half of those relabelings. Of all the relabeling, 94% was to the K6 class. This
means that at the current development point in time, the primary focus of the
expert is to remove additional debris. From table 2.3 it is also clear that K6 is
the class with the highest agreement on the relabeling.

Table 2.2: The averaged confusion matrix from pairwise comparison of class
relabeling. The samples under the label “Pre” was not relabeled from the original
pre-sorting.

K1 K2 K3 K4 K6 Pre
K1 4.52 0. 0. 0. 1.69 3.64
K2 0. 1.71 0. 0. 0.95 0.19
K3 0. 0. 1.86 0. 2.1 18.76
K4 0. 0. 0. 0.38 0.24 2.95
K6 1.69 0.95 2.1 0.24 457.62 191.55
Pre 3.64 0.19 18.76 2.95 191.55 2078.76
The average total agreement of relabeled samples was 51.21%

18 CHAPTER 2. MATERIAL

Table 2.3: The percentage of relabeling agreement for each class.

K1 29.78%
K2 42.86%
K3 4.26%
K4 5.63%
K6 53.80%

2.6.3 Discussion

From our results it seems that the experts agree on large parts of the K1-K4
cells, while the K6 cells are more disputed. We still have to remember that there
are several aspects that may affect the result. We may question whether the
fact that the experts knew they were tested, can have an effect on the result. It
may at least be that some arbitrary mistakes are moved as they may be more
thorough on a test compared to a normal working situation. Secondly we do
not know how much they were influenced by the original sorting of the cells. In
this study we are not able to measure the effect of this as they all used the same
pre-sorting.

The highest achieving result seems very good, but unfortunately the fact that
two experts are in quite high agreement does not necessarily prove very helpful
to us. This is because we will end up with a model trained on a set, labelled by
many different experts and therefore we will come closer to the average. What
is more disturbing is the the lowest agreement of only 76.9%. As we test our
algorithm on comparably smaller data-sets we may end up comparing our result
with only a small number of experts. This means that we can experience great
variance in our test results, purely due to the performance of these experts.

As we might expect, the error seems to stem partly from more arbitrary
mistakes and that there are some parts of the data that are difficult to label.
Even though the plots in either case are expected to flatten out, we can see that
there are differences between the classes. A part of this seems to be related
to the relative number of cells in each class. We can imagine for example that
some of the K4 cells are “lost in the crowd”, with a comparably small number
of cells it may be overlooked in the sorting process. This may at least be part
of the reason for the substantial drop of the K4 class. In the same way we can
also see that the larger classes have a less steep decline. It may of course also
be that K2 cells, looking quite similar, are more arbitrarily classified as K6 cell,
than say K1 cells. If the errors of K6 were purely due to random mistakes, these
mistakes would have to be done in about 26.2 % of the samples, if we calculate
this from the accuracy of all the pairs. This would lead to a final agreement of
all 7 experts on 10.8% of the samples. We see from our plot that this is not the
case. The final agreement between the observers for this class is 23.3%, which
leads us to believe that they are more confident on some parts of the data than
on others, which also seem quite obvious. The problem is that the uncertainty
apparently applies to a large part of the set, perhaps up to 80%. When we have
an inherent uncertainty related to a large part of the data it will be harder to
identify which labels that are uncertain and which are not.

When we investigate which samples is actually relabeled it becomes evident
that the only significant relabelings are those labelled to K6. With this investi-

2.7. FURTHER USE OF THE CLASSIFIED CELL IMAGES 19

gation we cannot know if the apparent agreement for the K1-K1 classes is due
to an anchoring effect or not, but it seem unlikely that the somewhat arbitrary
relabeling of the a small number of nuclei can affect the outcome of a further
analysis.

2.7 Further Use of the Classified Cell Images

For our application the final cell classification is primarily used to provide prog-
nostic information concerning a patient. It has been show that both ploidy and
texture data from the cell images can provide such information. In a study
[48] by Kristensen et al. found that they could differentiate the patient into
different groups with different rate of 10-year relapse-free survival, based on the
histograms of cell ploidy, obtained from cell images. In a long range of studies, it
have also been shown that cell texture from microscopy images can also provide
such prognostic information [61, 62, 63, 64]. Through years of studies, a wide
range of different texture information have been used, so an overview would
demand a large chapter in this thesis, but a review of the subject is already
written by Nielsen et al. [61].

Even though this is slightly outside the field of our study, we still need some
information regarding the use of our final result. At the start of our project
we were urged not to use information related to the information used in this
prognostic applications of the data. This is understandable as a classification
based on this information could create a bias, that could corrupt further analysis.
Unfortunately, as we find that this information is very extensive, that challenge
could prove impossible.

2.7.1 Cell Ploidy

We can divide cell nuclei into different groups based on their DNA content.
Cancer cells with a runaway cell growth, can often have a higher than normal
amount of DNA. Cells that contain a normal amount of DNA, with 46 chromo-
somes, are called diploid. Tetraploid cells contain double the amount of normal
DNA. Normal cells can also contain this level of DNA at at the anaphase of the
cell division process, before the cell divides. Cells called octaploid and hexade-
caploid have four and eight times the normal DNA content. These cells with a
factor of a positive power of two are also called euploid cells.

A tumor could then be classified based on a histogram of the estimated DNA
content in a cell. The DNA content was estimated based on integrated optical
density IOD, calculated from the cell images.

In the study of Kristensen et al. [48] they divided the tumors into 4 different
groups. A tumor was labelled as diploid if there was only one peak in the
histogram at the normal level of DNA, while the number of cells in the tetraploid
area was less than 10% of the total number of cells. A tumor was defined as
tetraploid either if the cells in the tetraploid region exceeded 10% of the total
number of cells, or there were both a peak in the tetraploid and the octaploid
regions. A polyploid tumor had both a peak of octaploid cells and a peak of
hexadecaploid cells. Finally a tumor could be classified as aneuploid when the
histogram had peaks outside the euploid areas or when the number of cells with

20 CHAPTER 2. MATERIAL

DNA content higher than 2.5 times the a normal cell, that were not part of an
euploid region, was higher than 1%.

2.8 Challenges with the Material

If we use a supervised learning strategy, there is no way of getting a better result
than the reliability of our training data, although a large training-set could
average out the individual differences of each expert. As I have no education
in pathology or molecular biology, I am essentially bound to the training data.
This means that the materials have the uttermost importance in this project.

2.8.1 Class Lables

The classes K1, K2, K3 and K4 are biologically different. This means that
for these classes there exist an absolute ground truth. From our inter-observer
reliability study described in 2.6, we can also see that there is a relativity high
agreement for these classes as well. The observers mostly agree upon which are
epithelial cells and which are not. It might be possible to get a result even closer
to the ground truth by using staining procedures, but this type of information
is not available to us for this project. In our study we saw that we have no
certainty regarding the class labeling. In other words we can not get a good
estimate of the true accuracy. If we use a supervised learning strategy, there is
also no way of getting a better result than the reliability of our training labels.
In our reliability study we saw that the classification of the K6 cells seemed to be
somewhat subjective. A major challenge is then to evaluate which mislabeling
can be ignored and how we can make sure that some mislabeled cells will not
corrupt the classification of other cells.

It is not only the effect of multiple observers that is a concern for the qual-
ity of data material. As the data has been collected over a long time period
the technologies have also changed considerably. Additionally there may be a
development of the observers through time, where they change their focus to
different features of the cells. There could also be a tendency that some sets are
classified more thoroughly than others.

The unreliability of multiple observers is a concern, but each individual
expert may also change opinion with time and training, and may be uncertain
in regard to some cells, and therefore label the same cells different at different
points in time. It may be that some sets are more thoroughly classified than
other, depending on the further application that they were primarily intended
for.

Not only do the experts change through time, the technology change as well,
and this may have an effect on the class labels. On the newer data-sets the
cells are first roughly sorted by an automatic algorithm. This first automatic
classification can also have an effect on the manual classification as the observers
can be influenced by the initial labels, as Jacowits and Kahneman have showed
[46]. As the automatic classification procedure have changed drastically for the
material it could possibly result in large discrepancies in the data. This is further
complicated by the fact that we have no information regarding the automatic
classification procedure used at the time of the labeling. The anchoring factor

2.8. CHALLENGES WITH THE MATERIAL 21

of the manual classification should ideally have been investigated to get a better
estimate of the reliability of the data.

In our opinion much of the unreliability in of data are caused by the fact
that the data collection have been dominated by an emphasis on quantity. This
makes sense since the data were originally gathered to develop algorithms for
prognostic information. For prognostic information each patient is treated as
one sample, in comparison to each cell image being treated as a sample in our
case. This means that the need for training data is much higher than in our case
and they had to focus on quantity to simply get enough data. In their case the
uncertainty of individual cells would hopefully be averaged out for each patient.
In our case on the other hand, we are as mentioned in a situation where we
cannot get a better result than the training data and most probably our result
will be worse. This means that a good strategy for improving our automatic
classification could be to develop a training set based on quality, but solving
this challenge is not up to us.

2.8.2 Differences in the Cell Images

Perhaps the main goal of a classification task is to find features or relationships
between features that provide information and thereby predict the class label.
Those relationships between the class label and the features also have to be
stable throughout the population of possible samples. In other words, we have
to search for traits of the different classes that remain the stable for all the data
we want to generalize our approach to. The problem is that it is difficult, if even
possible, to predict what systematic changes may occur in future data, that we
have not investigated. Typical systematic changes may for example occur with
changes in the technology.

Throughout the data collection period there have been used multiple algo-
rithms for image segmentation. The different algorithms have resulted in dif-
ferent types of artifacts. Some segmentation algorithms give very jagged edges,
some tend to over-segment while others tend to under-segment the cells. This
may have a drastic effect on the population of K6 cells. If the boundaries of ac-
cepted cells had not changed in relation to the segmentation algorithm we would
have no concerns. The problem is that the manual labeling is a very subjective
procedure. If for example all of the cells have a very jagged edge, it would make
no sense to exclude all the cells for that patient. Therefore the manual classifi-
cation depends on the quality of the cell images for each individual patient. It is
of course possible to do exactly the same thing for the automatic classification,
using features relative to the other images from a patient. Logically on the other
hand this makes little sense, as if one cell is too blurred to be used in further
analysis for one patient, it should also be too blurred for other patients, but
perhaps that some images are better than no images.

The imaging procedure have also changed throughout the collection period.
First and foremost by changing the microscope, which gave higher resolution and
higher contrast. This means that the cells seem relatively larger and the coloring
and contrast is different. In practice this means that at least the thresholds are
not generalizable from before and after the change of microscope. It has also
been some changes in staining procedures, that for example can result in slightly
different coloring and patterns.

22 CHAPTER 2. MATERIAL

These differences in the image are something that either have to be stan-
dardized or we have to average them out over may different training samples.
There are still differences between the cell images, patients and data-sets that
we cannot easily “escape” by some standardization of our methods. Differences
that we have to average out through a large training-set.

Cancer tissue located in different regions often have different qualities. Cells
from cervical cancer may for example look different than cells from colorectal
cancer. There may also be individual differences between patients; each patient
may also of course have individual differences. The individual differences is ex-
actly what results in important prognostic information. The problem is that we
can not simply compare the data-sets to get a measure of reliability and gener-
alizability as we cannot know if these differences stems from differences between
cancer types, individual differences, different technique or different observers. If
we had the information about who the observer were for each image and what
techniques were used, we would have a better opportunity to derive a better
measure of the reliability of the data.

2.8.3 Creating Bias in Later Applications

As we mentioned in the section on further use of the cell images, section 2.7,
we were urged to not use information that were utilized in the final applications
of the sorted data-set. This basically relates to information about the gray-
level histograms and the texture information. It may be that some information
concerning the gray-level histograms could be used, as the information in the
further application on this subject is primarily IOD, but perhaps also entropy.
IOD consist primarily of information on the mean intensity and area, but it is a
more robust measure for the DNA content as it both accounts for differences in
the background, and disregards over-segmented areas completely. If we include
information of both mean intensity and cell area we will capture much of this
information, but not all.

The main problem in our application is that overlapping cells have very high
levels of IOD, obviously because they contain the DNA of two or more cells,
instead of one. When we see that a prognosis can be decided on the basis of
merely 1% of these high IOD cells, we understand that it may be vulnerable to
such overlapping cells. If we had more overlapping cells in the training set than
these high IOD cells, and these cells were not substantially separated on other
measures, we would end up in a situation where the high IOD were excluded
as overlapping, and this could severely affect the prognosis. The problem is
reenforced by the fact that these high IOD cells exists only in a few patients, and
the overlapping cells will mainly affect the regions indicating polyploid tumors,
as the combination of two cells will of course exactly double the DNA. We can
se that from the study of Kristensen et al. [48], they only classified 10 tumors
as polyploid out of 284 samples in total. Since all samples will usually contain
some overlapping cells, these high IOD cells may very well be outnumbered.

Cut cells will probably not have the same influence. Normally cut cell will
have abnormally low IOD as some of the DNA content is lost in the cut. That
means that these cells, at least for ploidy analysis, will not affect the final
prognosis. Still if many high IOD cells are cut, they can end up with an IOD
outside of the euploid peaks, as the remaining DNA after a cut is rarely a factor
of 2n of the normal DNA content. This means that patients in the polyploid

2.8. CHALLENGES WITH THE MATERIAL 23

prognostic group could be classified as aneuploid. As these are more rare it is
less likely that this will affect the result in any major way.

The effect of using texture information is less clear. Since the K6 cells
represent all groups and texture is not directly one of the criteria for removing
cells, we would not expect to see systematic differences in texture between the
K6 cells an other cell. Still we can easily imagine that overlapping cells or cell
with foreign objects will have an effect on the texture measures. Additionally
blur is mentioned as a criteria for removing cells, and this is obviously related to
texture. Still for affecting the prognosis we believed that texture is more of an
issue in the cell-type classification. It may be that the “less dangerous” cancer
cells have texture more similar to K3 or K4 cells and we could end up classifying
these diploid cancer cells into one of these categories, and thereby remove them
from the correct analysis. Then the part of the most severe cancer cells will seem
relatively larger. This effect can also be viewed in the way where a thresholding
on one of the texture features will cap the range of this parameter for further
analysis and therefore skew the population, which again would probably affect
the result of classification on those features at a later time.

The problem with the texture measures and especially combinations of tex-
ture measures is that it may be very hard to determine what they actually
measure. Especially with the adaptive texture measures, as they are essentially
a linear combination of a huge range of features. This is further complicated
by the fact that such a huge range of texture measures have been tested. One
can easily see that for example adaptive gray-level entropy features [62] also can
provide information on the general entropy of a cell. In the same way many of
the other texture measures can be affected by the general gray-level histogram
of a cell.

To be absolutely sure not to affect the result in any such way we should in
other words not use texture or first order gray-level information. Then the only
possible information left is morphological information. Unfortunately we found
this information to be very unreliable, as the segmentation algorithm change,
both the shape of the contour and the size of the cells change dramatically, also
the experts view on what level of jaggedness is acceptable changes dramatically.
We find that almost no samples are separable purely based on morphological
information and even overlapping cells are far from separable without texture
information, even for a trained human eye.

In stead of restricting our information we use the radically opposite ap-
proach, and hold no information as sacred. If we were to include some gray-level
information, but not IOD, the IOD of a cell would probably still have a huge
effect on the classification, as this is a very strong feature and the classifier com-
bines the information in many ways. As it is hard to interpret this combinations
of features we find it better to include the IOD information directly, so we at
least can study the impact of the feature directly. The IOD features could also
have a positive effect, as many of the high IOD cells have very rough edges, but
the high IOD balance this out in a way so the cells are still kept. The effect of
the texture features is hard to study regardless of how we apply them, but we
believe that the result will probably be less skewed by finding a result as close
to the human experts as possible, rather than a worse result that is unaffected
by the texture information.

24 CHAPTER 2. MATERIAL

2.9 Training and Test

2.9.1 Training-Sets

The training-set will determine the end result and form the decision boundary.
In that sense one could say that choosing the training-set is one of the most
important decisions in the classification process. An ideal training-set is both
accurate and representative for the data we want to generalize the model to. As
is very common in machine learning tasks, we have little knowledge related to
what is accurate and representative, so in our case this selection process is quite
simple. What we do know is that to get a representative training-set we need
at least some cells from different prognostic groups. So we do make sure that
we have include patients from all ploidy groups, as with an unbalance in this
regard we could end up with some prognostic groups being more susceptible to
errors than other, which again may lead to major biases in later analysis.

The best possible solution would be to have one large training-set for all
the different data-sets. Unfortunately we find that the different sets differ to
such a degree that we do think it is best to train different training-sets for each
material in order to get an acceptable accuracy. This do mean that we will
have to train a new model for each major change in the material, which is time
consuming, but perhaps necessary.

One of the main problems with the data-set is the large difference of cell-
samples for each class. In the whole set of M51 there are 613 nuclei from K2,
881 from K4 and 79542 from K1. With a classification process that optimize
the CCR, small groups of cells will be down-prioritized. In the inter-observer
study we learned that also the experts are influenced by this effect. From Table
2.2 we can se that on average only 16.73 % of the cells in K4 were undisputed
on average between two observers. For K2 on the other hand 65.38 % of the
cells were undisputed. By creating a uniform training set we are essentially
valuing each class equally; labeling 2 % of the K2 nuclei as K1 is just as bad
as labeling 2 % of the K1 nuclei as K2. This means that for each patient the
total CCR actually goes down, since 2 % from K1 is a lot more than 2 % from
K2. To get an accurate evaluation of the classification for each class it would
be most natural to keep both an equal training-set and a test-set, but to mimic
the observers it might be most reasonable to keep the data as it is. If we were
to balance out the training data we would end up with very small data-sets,
specially for the K1 and K6 class as they are very heterogeneous groups.

We found that for the cell type classification we will try to even out the data
sets, as we are trying to se how well we can classify the different cells. Wen we
classify the whole data set on the other hand we will use the whole data sets,
both because the K6 cells are very heterogeneous and need many examples,
but in that part of our testing process we want to see how well a computer
can mimic the human experts, as a test to whether we could replace the entire
manual classification procedure.

2.9.2 Independent Test-Set

When we evaluate our algorithm, we want to measure how the classifier is going
to preform when we have no information regarding the labeling of a data-set.
It is quite obvious that training and testing on the same data-set will give

2.10. HOW GENERAL CAN WE MAKE OUR MODEL? 25

optimistic results. The training fits the model to the data-set, and if the model
is complex enough it can be perfectly fit to the training data. It is however easy
to forget that feature selection, grid search and model selection also is a way
to fit the model to the training set. Cross-validation is often used to evaluate
the progression in training, but if this cross-validation result is further used to
optimize the model, a independent test set needs to be held back. Schulerud
showed with a simulation, how feature selection in combination with cross-
validation could lead to dramatic overestimation of the model accuracy , when
she did not use an independent test set [75].

We also have to be aware of any other way of adapting the model to the test
set. Through a long process of developing a classification algorithm, parameters,
scaling and normalization may be chosen in such a way that it fit the training
set. To get an unbiased estimation of the model accuracy we keep one test set for
each training set, untouched until the algorithm is fully developed. Each of the
testing-sets consists of a series of cell from 10 patients. In [61], they discuss how
to optimally divide the data into training- and test-set, as a small training-set
can give a larger classification error, while a small test-set can give high variance
in the error estimation. For the current project this issue is of less importance,
as our test set was first obtained after the development of our procedure. The
number of samples in each set is chosen by the number of patients and not by
the number of sample images. This division is in other words not based on
an optimal selection based on true error rate or dimensionality our model. In
the study [61], they do indicate that when the data have a large true error, it
should be used a large test set, while high dimensionality model should have
larger training-sets. For the current project this might indicate that we need
quite large test-sets to achieve reliable results, as the class overlap is quite high.

2.10 How general can we make our model?
The main reason for creating a general model is to avoid creating multiple
models for different scenarios. To use a different model for each tissue-type, for
example, can be unpractical and perhaps make room for error. We might also
expect that a model that works for different tissue-types will also be more robust
for chances within the tissue-types, as well. The main problem of creating such
a general model is the constant changes and improvement in the preparation of
the image slides and segmentation algorithms. We find that the datasets, differ
substantially, based on when they were generated. Although we find that the
main differences between the datasets can be attributed to changes in time, we
cannot completely rule out differences based on tissue-type. This is because the
data we have for the different tissue-types also are generated at different times.

If a model should be robust for large changes in both gray-level, shape and
size, we would loose much of the differences we base our classification on. In
outer words, we would have to expect a decrease in performance, if we were
to create a very general solution. With a demand for an accurate solution,
we cannot afford to loose this level of performance. We have therefore only
evaluated the performance trained and tested on data from the same tissue,
and the models cannot be generalized across these different tissue-types .

26 CHAPTER 2. MATERIAL

Chapter 3

Previous Work

There are some studies directly related to our project, both concerning cell type
classification and detection of overlapping cells in images. In this section we
present a selection of especially relevant studies.

3.0.1 Cell type classification
Classification with kNN- and Bayesian-classification

A study from 2004 [89] used image analysis techniques for segmenting and clas-
sifying cell nuclei. They classified the cells into the four categories: mesothe-
lial cells (ME), lymphocytes (LY), granulocytes (GR), and macrophages (MA).
They used a set of eight features consisting of: area, perimeter, mean grey value,
standard deviation of grey value, circularity, eccentricity, bending energy, and
fraction of surrounding cytoplasm. For the first seven features they used im-
ages with Feulgen stain (FEU), which is a DNA staining procedure. For the
last feature they used May-Grunwald-Giemsa (MGG) staining, which is a mor-
phological staining. For the classification procedure they tried both a Bayesian
classifier and a kNN-classifier and used a grid search for parameter optimization.
The main problem with this study is the lack of data. All available training data
were: 384 ME, 176 LY, 38 GR, and 44 MA nuclei. Because of this they trained
and validated on the same set using the leave-one-out procedure. The best ac-
curacy after the grid search was 86.1 % for the Bayesian classifier and 87.5 % for
the kNN-classifier. It is problematic that they only report their optimal result,
because with no separate test they tend to be optimistic.

In this study they had no class to represent cells to be ignored. They seg-
mented their cells using B-Spline Snakes [10], and split overlapping nuclei using
a concavity criterion, where they checked if the line between the deepest concav-
ities had an angle of near 90 ◦ to the principal axis. Additionally they checked
if the area under the line was relatively dark compared to the rest of the cell
(see figure 3.1).

3.0.2 Infrared spectroscopy can differentiate tissue types
A different approach used Fourier transform infrared (FTIR) spectroscopic imag-
ing, to classify different tissue types [4]. One of the goals of this study was to
segment the epithelium from other cell types. Even if epithelium was the prime

27

28 CHAPTER 3. PREVIOUS WORK

Figure 3.1: (a) contour after segmentation, (b) detected concavities, (c) prin-
cipal axes and line connecting concavities; the angle between the line and the
principal axis is near 90 ◦, the linear path between concavities is relatively dark,
(d) split contours, ready for individual segmentation. Copied from [89]

target, they chose to segment the tissue into 10 different classes: Epithelium,
Fibrous Stroma, Mixed Stroma, Smooth Muscle, Stone, Blood, Lymphocytes,
Nerve and Ganglion. In addition to taking a spectroscopic image, they also
took a digital image in normal visual light of the same tissue. They matched
each pixel in the spectroscopic and digital image so they both represented the
same exact part of the tissue. Before taking the normal light microscopy im-
age they stained the tissue with hematoxylin and eosin (H&E). With the FTIR
spectroscopic imaging technique they measured the absorbance of multiple fre-
quencies of infrared light, for each pixel. For each pixel they ended up with
multiple absorbance measures, which they call a spectral profile. They spanned
a spectral range of 4000 − 720cm−1 and had a 2cm−1 data point interval. In
other words, they ended up with 1641 values for each spectral profile, in figure
3.2 one such feature image is illustrated. 1641 values is a huge feature set for
further analysis, that will both require much computational power and a large
training set. To combat this, they decided to reduce their feature set. They
first analysed the pair-wise difference in class distribution, using the area under
the distribution curve. They then chose a set 93 features of absorbance ratios,
based on this observations.

To further reduce the set of features, they first sorted the features based on
low and average pairwise error. The error was calculated as the overlapping
area in the feature distribution; calculated with an integral. They then used a
sequential forward selection, first selecting the features with the lowest error.
With this approach the could examine the effect of adding an additional pa-
rameter. For each added feature they applied a classification and evaluated the
classification using receiver operating characteristic (ROC) curves. They found
that the accuracy of the classification flattened out after 20 features. They then
used a “leave-one-out” method on those features and found that the classification

29

Figure 3.2: ((Right) Visualisation of one feature, from spectroscopic imaging.
(Left) The corresponding H&E stained image. Illustration from [5].

accuracy increased when they left out two of the features; so they ended up with
a set of 18 features. For classification they used a discriminant function based
on Bayesian probability, where the class with the highest probability given a
feature vector is assigned to the corresponding pixel. The probability for a fea-
ture given a class is calculated from a sample labelled by experts. They mention
that the classification is similar to a Gaussian maximum likelihood model, but
they do not assume the data distribution to be normal.

This method proved to be a good approach for separating out epithelium
with an area under ROC >0.99, on an independent test-set. This is encouraging
results, but we have to remember that this approach is somewhat different to
ours. This result is based on tissue microarrays, and not monolayers. Addition-
ally they have combined the segmentation and classification process, so they
report correctly classified pixels and not whole cell nuclei.

3.0.3 Excluding cells

Christophe Boudry et al. evaluated three different methods to filter out the cut
and overlapping cells [6]. They used biopsies taken from three different tumours;
two from breast cancer and one from brain cancer. They used a total of 7120
cells for the training and testing procedure.

The first approach is a global one, using only morphological operations on
images containing many cells [7]. To remove overlapping cells, they used a com-
bination of watershed transformation, in combination with the ratio between the
minimum and maximum radius. To remove small damaged cells, they used top-
hat transforms of different size and intensity. For this method, the comparative
study showed a sensitivity of 63% and a specificity of 94%.

The second method is referred to as multiparametric analysis (MA), and
was originally proposed by Masson et al [58]. Here they calculated 38 features
for each segmented nucleus, and used both gray-level images directly and edges
enhanced images. They used 11 features for form factor: area, perimeter, com-
pactness, relative perimeter variation, mean symmetry difference, maximum
symmetry difference, mean concavity ratio, maximum concavity ratio, extent
of concavity, minimum angle between convex contour points, maximum length
between convex contour points. 18 intensity factors (gray-level features): min-

30 CHAPTER 3. PREVIOUS WORK

Figure 3.3: (a) The metrics ranked by pairwise error. (b) Evaluation from
the forward feature selection process. (c) The same process repeated for an
independent test set. (d) Averaged AUC for different tissue types. Illustration
from [5].

31

imum extinction of the object, maximum extinction of the object, extinction
range, skewness, Kurtosis of the extinction density within the object, 1st, 2nd,
3rd and 4th moments of the object for original and edge enhanced images. They
also included 9 texture features, were 4 features were calculated from isotropic
GLCMs (described in section 6.4.1), using the 8-neighbors of the pixels. The 4
features calculated from the GLCM were entropy, energy, contrast and inverse
difference moment, described by Haralick [37]. They used five classes of epithe-
lial cells, based on appearance. They also defined five groups of unwanted cells:
lymphocytes, plasma cells, granulocyte nuclei, fibroblast cells, unidentified non
epithelial nuclei. Finally they defined on of nuclear debris, with overlapping
cells and cut nuclei. They used many classes, but they only report the results
for separating out epithelial cells to be analyzed. In other words they use a fil-
tering approach similar the current project, but are not interested in detection
of cells in K2, K3 or K4.

For each group they calculated the mean and variance in the 38 dimensional
space, so they could represent each group by a multidimensional ellipsoid. All
groups except the group for overlapping and cut nuclei were represented by
such ellipsoid. A sample nuclei is then classified to the closest group or labelled
as debris if the distance is larger than two standard deviations from all group
means. In the original study they found a CCR of 75% for separating out
epithelial cell for analysis and around 70% for the removal of debris. In the
comparative study [6], they only measure the ability to separate out debris and
found a sensitivity of 75% and a specificity of about 80%.

The last method they investigated were a neural network (NN) with mul-
tilayer perceptrons, using the same 38 parameters as the MA approach. They
trained one NN for each pair of classes, so each NN could specialize on separa-
tion two classes. They used the same classes as for MA, labeling those cells not
recognized by any of the NN as damaged or overlapping.

In the comparative study they found a mean sensitivity for the NN approach
of 85%, and specificity of about 75%, for separating out the debris.

3.0.4 Summary

The multiparametric analysis described in [58], bear close resemblance to what
we want to achieve with our project. They also found quite good results for
removing debris, but they only defined overlapping and cut nuclei as debris. In
our case overlapping and cut nuclei is only a small part of the total number of
nuclei labelled as debris. We also consider their method of “outlier detection”
for removing debris to be a dangerous one, as very rare high IOD cells may be
more easily removed by this approach. From this study we also get an overview
of some features used for cell nuclei classification, although they only provide
names of the features and no further description or reference. It may therefore
prove hard implement the features and verify that the calculation is indeed the
same as in the [58] study. From the comparative study [6], we see that perhaps
a method using a range of different features and a flexible classification model
such as a neural network can prove favorable.

The study of Würflinger et al. is very relevant to our tissue-type classifica-
tion. They illustrate that it is possible to do such a classification with just a few
features and a very simple classification model. The downsides of their study is
both that they use a feature, that is not accessible to us and that their method

32 CHAPTER 3. PREVIOUS WORK

of evaluation is questionable. Finally we can see from the study on infrared
spectroscopic imaging [4] that there may be other ways of tackling the problem
than using visible light microscopy, and that infrared imaging may be a viable
alternative.

Chapter 4

Methods

4.1 Fitting an Ellipse
As cells generally have a close to elliptic shape, an ellipse fitting strategy became
essential for our project. One of the most commonly used strategies for ellipse
fitting was proposed in [22], and relies on least squares minimization. It has
proved both robust and effective, and least squares fitting is also a very intuitive
principle. The essential principle is to use a restriction on the general conic
fitting procedure, so that only elliptic fits can be produced. The general conic
can be represented by a polynomial,

F (a,x) = a · x = ax2 + bxy + cy2 + dx+ ey + f = 0. (4.1)

To find the least squares solution to this problem we need to find,

minimize
a

N∑
i=1

F (a,xi), (4.2)

for data points i ∈ 1, 2, ..., N .
To find a representing an ellipse, a needs to fulfill the constraint b2 − 4ac <

0. This is essentially the constraint we are looking for, but this inequality
makes the convex minimization problem unnecessary complex. As the scaling
of the parameters is irrelevant for our purpose, we can simplify the problem by
changing the inequality constraint into the equality constraint 4ac − b2 = 1.
This can be written in matrix form as aTCa = 1, where C is the matrix:

0 0 2 0 0 0
0 −1 0 0 0 0
2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (4.3)

We are then left with the minimization problem:

minimize
a

||Da||2

subject to aTCa = 1
(4.4)

33

34 CHAPTER 4. METHODS

Where D is the n× 6 matrix [x1 x2 ... xn]T With the use of the Lagrange
multiplier and setting the differentiated equation to zero, we get the set of
equations:

DTDa = λCa

aTCa = 1
(4.5)

In [22] they prove that this set of equation have exactly one feasible solution.
For all sets of points with N ≥ 5, you will by this approach find exactly one
ellipse. We finally used an OpenCV [45] implementation of this algorithm as it
proved to be the fastest available.

4.2 Fourier Descriptors
Fourier descriptors [34] can prove highly suitable for describing the shape of the
cell contour for two reasons. The descriptors are both easily interpretable and
the cell contour is a closed curve, so the assumption of a periodic function hold
true.

For our purpose it is essential that a descriptor is both rotation, position
and starting point invariant. The position and rotation in a microscopy image
is obviously random in terms of the cell label and should not effect the outcome
of the labeling process. The starting point is dependent on the contour finding
procedure, but this should not effect the shape representation. In it self, the
Fourier descriptors are not invariant to any of these measures. This is clear
as the Fourier transformation is invertible and no information is therefore lost.
The major advantages of this method is that this information is easily identified
and extracted.

The discrete Fourier transformation is defined as follows:

X̂k =
1

N

N−1∑
n=0

xne
−i2πkn/N , k ∈ Z, (4.6)

where Xk is the k numbered Fourier coefficient. From 4.6 it is easy to see that
the inverse transformation will be:

Xk =

N−1∑
n=0

xne
i2πkn/N , k ∈ Z, (4.7)

4.2.1 Contour Representation
Throughout the literature there have been suggested multiple ways to represent
a contour in order to find fourier descriptors. Already in 1961 Fritzsche [31] sug-
gested using the cumulative angular change and a variant of this was purposed
in [90]. In [90] they also suggested using the curvature function,

κ =
|x′y′′ − y′x′′|
(x′2 + y′2)

3
2

. (4.8)

They found that the two approaches yielded similar results. A third approach,
using complex numbers was first described in [34]. In this study Granlund
simply mapped a closed 2D-contour to 1D, with the function,

4.2. FOURIER DESCRIPTORS 35

z = x+ iy. (4.9)

This could be called a “psudo-mapping”, as no information is lost, but it
creates a possibility of doing a 1D discrete Fourier transform (DCT). As this
turned out to be both efficient and have attractive qualities, we found this to
be the the best approach for our application.

4.2.2 Interpretation of the Coefficients

Here we elaborate on our interpretations of the Fourier coefficients, based on
the descriptions of Granlund [34] and Gonzalez and Woods [32, pp.818–821].
The sections regarding invariance 4.2.3 - 4.2.5, are less formal descriptions of
results, also described in [32, pp.818–821] and [34].

The X̂0 coefficient, also called the DC component, has a special position in
the DCT. It is simply the sum of the functions values,

X̂0 =

N−1∑
n=0

xne
−i2π0n/N =

N−1∑
n=0

xn. (4.10)

For our purpose this means that we can divide X̂0 by N and find the mass middle
of the contour. In other words, the DC component contains the positional
information.

The coefficients are complex numbers in similarity with the contour points,
but they are not directly related to the points on the contour. A common way
to interpret the Fourier coefficient is to use the magnitude spectrum and phase.

Spectrum:
|ẑ| =

√
x̂2 + ŷ2. (4.11)

Phase:

ϕ = angle(x̂, ŷ) =



arctan(ŷx̂) x̂ > 0

arctan(ŷx̂) + π y ≥ 0, x̂ > 0

arctan(ŷx̂)− π ŷ < 0, x̂ < 0
π
2 x̂ = 0, ŷ > 0
−π
2 x̂ = 0, ŷ < 0

indeterminate x̂ = 0, ŷ = 0.

(4.12)

Where x̂ is the real value and ŷ the imaginary value of Xk.
The coefficient for k = 1, 2, ..., N/2 could be said to represent circles and

further on we will illustrate how. From equation (4.7) or the Fourier basis, we
can see that a coefficient X̂k will give the following parametric contour function
in the image domain:

θt =
2πkt

N
(4.13)

x(t) = Re(X̂k(cos(θt) + i sin(θt)))

y(t) = Im(X̂k(cos(θt) + i sin(θt)))
(4.14)

36 CHAPTER 4. METHODS

for t ∈ [0, N). If we expand X̂k to

X̂k = x̂+ iŷ, (4.15)

we can multiply out the equation (4.14), and isolate the real and imaginary part
we get

x(t) = x̂cos(θt)− ŷ sin(θt)

y(t) = x̂ sin(θt) + ŷ cos(θt)
(4.16)

To find the distance of the point (x, y) to origo, we can simply use the
formula r =

√
x2 + y2. We insert (4.16) and find the distance,

r =
√

(x̂cos(θt)− ŷ sin(θt))2 + (x̂ sin(θt) + ŷ cos(θt))2

=

√
x̂2 cos2(θt) + ŷ2 sin2(θt) + ŷ2 cos2(θt) + x̂2 sin2(θt)

=
√
x̂2 + ŷ2.

This means that the distance from origo is independent of t, and therefore each
coefficient has to represent a circle. This also illustrates how the spectrum 4.11
directly relates to the radius of the circle. From 4.14 and 4.13 we can se that
the integer k decides how many rounds the curve will move around the circle.
With only one coefficient this won’t make much of a difference in our image
application, as a circle drawn many times over is just a circle, but with multiple
coefficients it will give important information about the roughness of a contour.
In figure 4.1 we illustrate the effect of two added coefficients, interpreted in a
parametric perspective.

Since the sine and cosine functions that make up the Fourier transform are
periodic, the coefficients are also periodic. Therefore XN is the same as X−1,
and so on. Each coefficient represents a circle, but combined together the pair
of Xk and X−k represent an ellipse. To illustrate this we can use a similar
approach as with the circle. The parameterised curve from only the coefficients
Xk and X−k will be,

(x̂k + iŷk)(cos(θt) + i sin(θt)) + (x̂−k + iŷ−k)(cos(θt)− i sin(θt))

using that sin(−k) = − sin(k) and that cos(−k) = − cos(k). We then get this
expression for the radius:

r2 =x̂2
k + x̂2

−k + ŷ2
k + ŷ2

−k+

2x̂kx̂−kcos(2θt) + 2x̂kŷ−k sin(2θt)

−2x̂−kŷk sin(2θt) + 2ŷkŷ−k cos(2θt)

From this result it is at least possible to see that the distance from origo is√
(|X̂k|+ |X̂−k|)2 on one axis and

√
(|X̂k| − |X̂−k|)2 on the other.

We have now investigated how the pair of coefficient relate to the width
and height of a contour. The last element that we have still not addressed is
the effect of the real and complex part of the coefficients. It is easy to see how
(4.16) is identical to a 2D-rotation matrix. With this interpretation the real and
complex part become the starting point of a circle. The circle is then “created”

4.2. FOURIER DESCRIPTORS 37

Figure 4.1: The curve drawn by the combination X̂1 = 100 and X̂20 = 10 is
drawn in red; the remaining coefficients is zero. The circle created by X̂1 and
X̂20 is drawn in gray.

by increasing t, rotating the starting point. So the ratio between the real and
imaginary part can be interpreted as the rotation of the circle.

In essence all this means that the Fourier descriptors can be interpreted as
a linear combination of arbitrary ellipses.

4.2.3 Position Invariance

As indicated in the previous section, the mass middle point of the contour is
represented by the X̂0 coefficient. We can therefore just exclude that coefficient
from our analysis to make the descriptors position invariant. That is, we make
it position invariant in the sense that exactly the same shape would get the same
descriptors regardless of translation. A problem concerning this solution is that
the mass middle of the contour may not be the most representative for a shape
center. For example if one side of the shape is much smoother than the other,
the mass middle of the contour will be closer to the less smooth side compared
to the mass middle of the shape. This may result in quite different descriptors
for shapes that visually look very similar. In our case this will probably not be
a serious concern, as the shapes are quite regular.

4.2.4 Scale Invariance

To achieve scale invariance it would be natural to divide the coefficients by the
size of the contour. The most natural way of measuring the size may be to use
the average radius. Another measure of size may of course be the area inside

38 CHAPTER 4. METHODS

the contour or the perimeter length. If the shape were a perfect circle X̂1 or
X̂−1 would be exactly the average distance to the center. For our purpose the
contours are very close to circles, therefore these coefficients are a good measure
of a cell scale. If X̂1 or X̂−1 is the correct coefficient depends on whether we
store the contour clockwise or counterclockwise.

4.2.5 Rotation Invariance
The Fourier descriptors can be made rotation invariant by only using the spec-
trum and not the phase of the descriptors, and in that way ignoring the rela-
tionship between the real and imaginary component. The downside by ignoring
the phase is that you loose the ability to differentiate between many shapes that
are visually very different, as so much more information than just the rotation
is lost. A contour with high magnitude for high frequency does not necessarily
have a jagged edge. It could also have a straight line, and the coefficients is just
balanced perfectly. The information regarding how the coefficients are balanced
are to some extent lost by ignoring the phase.

In figure 4.2 we have manipulated the phase but kept the spectrum constant.
In that way we can investigate what shapes that will be indistinguishable when
ignoring the phase. The shapes seem quite similar, but they seem to have a
comparable level of jaggedness.

An alternative to using the Fourier Descriptors as features directly, could be
to use the Fourier transform to filter out high frequencies and then investigate
the differences between the filtered and the original contour. In that way it
is possible to keep the information in the phase and make a rotation invariant
features at a later stage.

4.2.6 The Effect of Sampling Error
As we are working in the discrete domain, we will get an effect of sampling.
At the smallest level the contour is either straight or have a corner of 45◦ or
90◦. This means that we get an extra contribution to the highest frequency, but
other frequencies is also affected. One can say that the other frequencies “need”
to balance out the effect of the high frequency on the rest of the shape. This
means that we at least need to investigate the contribution from the sampling.

The plots in figure 4.3 in the continuos case be zero for all k /∈ [0, 1]. We
can clearly see that that the sampling have an effect and that this effect is not
only restricted to the highest frequency. The contributions of the sampling is
less for a larger radius, first and formost because the contributions is relatively
smaller compared to the radius, but we can also se that the reduction in average
magnitude is bigger than increase in radius. This comes as an effect of increased
degree of freedom, which means that there are more coefficients to distribute
the effect of sampling error to. From this investigation we see that even if we
delete the highest frequencies, to get a smoother and more compact description
of the contour shape, we may still experience the effect of sampling errors.

4.2. FOURIER DESCRIPTORS 39

(a) (b)

(c) (d)

Figure 4.2: Four contours with exactly the same spectrum but different phase.
Figure (a) is the original contour of a cell. (b) has the same spectrum but the
phase is set to zero. That way it has to be symmetric around the a horizontal
axis through the center of mass. (c) and (d) have a randomly generated phase.

40 CHAPTER 4. METHODS

(a)

(b)

(c)

Figure 4.3: The Fourier spectrum of discretized circles of different radius in
terms of pixels. We removed the X0 and X1 components as they only represent
position and radius. Without discretization all other components than X0 and
X1 should be zero. We divided the spectrum by the radius of the circle and did
a logarithmic transform on the y-axis. (a) Is the spectrum of a circle with a
radius of 20 pixels, (b) from a circle with radius of 100 pixels and (c) from a
circle with a radius of 200 pixels.

Chapter 5

Removing Debris

The main problem of this classification task was the extensive number of cells
in K6, with a high degree of overlap against all other classes. There is a large
uncertainty about the manual labels, and with a supervised classifier we are
totally reliant on the labels in the training set. In other words, we cannot
get a better result than the experts. With a complex classification process
it is also hard to determine how we got the results, and therefore difficult to
trace back the operations leading to an error. This in turn makes it hard to
correct the mistakes. If we also use a very general set of features, we often
rely on interaction of features to create the separation. This makes it especially
hard to understand the relationships between the feature values and the class
label. In order to get more control over the process and extract more relevant
information about the problem we chose to develop some very specific features,
designed only to remove different types of cell debris. We focused on trying
to make each feature as independent as possible and making the classification
procedure into merely a thresholding.

Rough edges seem to be one of the primary reasons for classifying cells to K6.
The problem with these cells is that there appear to be less agreement between
the experts on which cells should be removed due to these rough edges. Cut cells
are also a very large group of cells and here the experts tend to agree more in
their decisions. This means that increased attention on this area may be more
fruitful as more debris may be removed this way, and to remove these cell may
also be more important. Even though overlapping cells represent a relatively
small part of K6, they can inflict major bias. That makes the overlapping cells
a primary focus in this chapter.

5.1 Detecting rough edges

There are several difficulties concerning the detection of rough edges. First of all
the discretization of the cell contour can make some edges seem rough. Some
cells have quite sharp corners that could easily be confused as a rough edge.
This is further complicated by the huge variation in cell size. Some irregularities
might seem huge for a small cell, but irrelevant for a large cell. With this in
mind it is clear that our approach have to take size into account. For very small
cells on the other hand the irregularities due to discretization seem comparably

41

42 CHAPTER 5. REMOVING DEBRIS

large. Often are detection of rough edges related to detecting cut cells, both
because the sharp corners of cut cells appear as rough, and because the cut
region often is very rough.

What is obvious is that rough edges are related to high frequencies along
the cell contour. Therefore good way to detect these rough edges are to use the
Fourier descriptors of a complex mapping described in section 4.2. Then the sum
of the spectrum could be used as a simple measure of jaggedness. The different
frequencies can also be weighted differently, in order to detect different shapes.
We attempted some different weightings, for example a linear weighing between
0 and 1, where the highest frequencies was weighted close to 1. Some attempts
of gaussian weighting was also attempted and finally we tried to train a small
artificial neural network, to automate the weighing. Unfortunately we found
that such a weighting only “overfitted the feature”, so only the the training-set
was well separated, and as the training procedure was very time consuming we
quickly abandoned this approach. The best weighting proved to be to simply
remove the 5 lowest frequencies. In other words we sat the coefficients X̂i for
i = −5,−4, ..., 4, 5 to zero. Removing X̂0, makes the feature position invariant.
Before removing these coefficients, we divided all coefficients by X−1, in order
to make the feature scale invariant. The average of the magnitude of these
coefficients finally proved to be the most robust feature for detection of rough
edges, and we name this feature mean Fourier for further use. A downside, with
this measure is that we cannot easily find the jagged regions, which might be
useful for among other things finding cells with partly damaged cell membrane,
or the cut region of a cell.

Another approach using the Fourier descriptors could be to filter the contour,
by simply removing the high frequencies. Then we could measure how much the
filtered and unfiltered contour deviated, to get an estimate of the jaggedness of
a contour. With this approach we also have the opportunity to detect which
areas of the cells that are the most jagged. Also for this approach did the mean
distance turn out to be the best measure, compared to the summed distance or
Hausdorff distance.

From figure 5.1 it is evident that both the distance to the Fourier filtered
contour and the mean of the truncated Fourier spectrum can contribute to the
discrimination of K6 cells. Still from the histograms it is also clear that the
mean of the truncated Fourier spectrum is the strongest feature. We also found
that both features match quite well with our visual impression of rough edges,
as the non-K6 cells with a high value on this feature also had quite rough edges.
Some examples of cells with rough edges can be found in figure 5.2. We found
that this feature worked well for P02, PLM13 and PLM14, but when tested on
the M51 set, we found that all cells tended to have rough edges, as we can see
from the plot in figure 5.3. In figure 5.3, we provide an example of two jagged
cells from M51, which both had a high value on our mean Fourier feature.

Using the mean of the Fourier spectrum is both simple and quite robust,
but it should be possible to find a weighting that correspond even better to the
evaluation of the experts. In this study there was not found any such weighting,
but with further investigation such a weighing may be found.

5.1. DETECTING ROUGH EDGES 43

(a) (b)

Figure 5.1: (a) Is the a scatter plot with mean of the truncated Fourier spectrum
on the x-axis and area on the y-axis, and a histogram over just the x-axis. (b)
Here we have the same representation but for the distance to the Fourier filtered
contour. Both plot are take from a set of 1200 samples of the PLM13 dataset.

Figure 5.2: The leftmost cells was labelled as K1 with a mean Fourier value of
0.11, in the middle there is a K6 cell with a mean Fourier value of 0.105 and
the rightmost cell was labelled as K6 and had a mean Fourier value of 0.12.

44 CHAPTER 5. REMOVING DEBRIS

Figure 5.3: Here are two cell with rough edges from M51. The leftmost cell is
labelled as K1, while the rightmost is labelled as K6. The plot illustrates the
higher overlap of the classes in M51.

5.2. CUT CELLS 45

5.2 Cut cells

Cut cells are quite common in all the datasets and can also disturb ploidy
analysis, as a cut obviously lowers the DNA content for a cell. This can lead
cells that originally had high DNA content, to be measured as having normal
content of DNA, or it could make histograms that originally should have been
classified as polyploid to be classified as aneuploid.

One property concerning the cut cells that immediately comes to mind, is
that they have one edge that is closer to a straight line, compared to the elliptic
shape of the average cell. Our first attempt to find these cells was therefore
to fit a line to the contour of the cell, with the help of a randomized Hough
transform. To get an estimation of how well the line fit with the contour, we
ran a trace along each line and counted the number of hits. A “hit” is counted
when a contour pixel is exactly beneath the line. An example of such fitted
lines can be found in figure 5.4. This approach was quickly discarded as stroma
cells in K4 and some elongated cells in K1 had much longer straight lines. If
we rather scaled by the length of the perimeter, we would only separate very
small cells as the chance that a large part of the contour would follow along a
line is much greater, this comes from the fact that they are relatively small in
comparison to a pixel. The small cells are also often under-segmented in such a
way, that they favor straight lines.

In another early attempt we focused on fitting an ellipse to the contour.
Either to the whole contour or to the largest part of the contour split by two
prominent corners. Then we could measure the distance from our contour to
the contour of the fitted ellipse. If we had a strong cut we would then expect the
distance to the cut region to be much larger than the distance in general. We
found that if we fitted an ellipse to only smaller part of the contour, we would
experience some extreme misses on some irregularly shaped cells. Especially
triangular shaped cells could get very large ellipses, and the distances would be
huge, with or without cuts. If we fitted the ellipse to the whole cell on the other
hand we got somewhat less obscure results.

We found that the best approach using fitted ellipses was to combine it with
a straight line approach. We first calculated the approximate polygon with
the Douglas-Peucker algorithm [20], provided in the OpenCV library, where we
allowed a distance of 5 pixels deviation from the cell contour. For each edge in
the polygon we calculated the summed distance to the ellipse minus the average
distance for all edges. Another approach could of course be to measure the
maximum of the minimum distances, called Hausedorff distance [44], but then
concavities due to under-segmentation could give a very large distance. The
idea is that also the length of lines should count, as we use the sum of the
minimum distances, and not the mean or maximum. The approach did work
for a small portion of the cut cells, but to find the vast majority of the cut
cells we found that we would have to apply other methods. In figure 5.5 we
can see how the summed distance to the fitted ellipse, compare to our final
measure for cut edges, found in equation (5.4). Most of the cells detected can
also be removed by our final measure, but there are also some cells that only the
distance to the ellipse can detect. Therefore we include this features in our set
for the final supervised classification, but we will not use this for our attempt
of thresholding out K6.

Instead of straight lines and ellipses, we focused more on the sharp corner

46 CHAPTER 5. REMOVING DEBRIS

(a) Cut not detected (b) Comparably high trace

Figure 5.4: The colored lines are fitted by Hough transform. The cut in (a)
is not the longest line, with the highest trace. (b) Show a small cell with a
comparably long straight line.

Figure 5.5: We have plotted the distance to the ellipse versus our final measure
for cut edges, in equation (5.4). We can clearly see that Cut Cell is a better
measures, and captures many of the cells also captured by Distance to Ellipse,
but not all.

5.2. CUT CELLS 47

of typically cut cells. As a measure of corners in the cell contour we used the
curvature, defined as

κ =
|x′y′′ − y′x′′|
(x′2 + y′2)

3
2

, (5.1)

where x and y is the indices for each point along the contour. For later use κ is
multiplied with 106 to get values that we think is easier to work with and avoid
truncation errors. In our application where we use a discretized version of the
derivatives, there are some important issues. It is impossible to find a reliable
estimate of the derivative by only using the 8-neighborhood, so we needed to
apply a smoothing function to the contour. We create a 1D gaussian kernel of
size w and standard deviation σ. We convolve it with the Sobel operator once, to
create the kernel for the first derivative ∆G, and twice for the second derivative
∆2G. The estimates of the first and second derivative, can then be obtained
by convolving each of x and y, with the those kernels. We can call the set of
point along the contour for p, and we index the contour in a counterclockwise
orientation, so pi is a point on the contour on index i.

We experimented some with the filter size w and the smoothing function, by
adjusting σ, to make sure the function was robust to noise from the sampling
and segmentation procedures. A good selection of these parameter is essential
for detecting the right corners. A low w and σ will give very local corners, and
essentially only detect some irregularities along the edge. Too large values on
the other hand will not detect the sharp corners we are looking for appropriately,
and give highest values to edges that have high rotation, for example the pointy
ends of an ellipse. We found that the parameter pair of w = 41 and σ = 3,
were best suited to find corners on the scale that we were looking for. Another
possible way to detect comers is to use Harris corner detection [38], but this
measure proved both more unreliable and harder to adjust.

Now the idea was to use the curvature to detect sharp corner, which again
would indicate that a nucleus was cut. For each contour we found the local
maxima, as they should indicate a corner. We used the contour from the convex
hull of the cell mask, as our equation (5.1) can not separate concave corners from
convex corners, and the corners for a cut are obviously convex.

As illustrated in 5.8 this clearly finds the most prominent corners of the
contour. As cut cells often have two sharp corners, a simple indicator would be a
combination of the κ values from the two most prominent corners. For most cut,
both corners are quite sharp, therefore we found that the product of the κ values
would be the best approach. This makes cut nuclei stand out from nuclei that
only have one very sharp corner due to some artifact, for example slight over-
segmentation or just a pointed end. We also applied another method to further
increase the difference between actually cut nuclei, and nuclei with slight over-
segmentation or pointed ends. This was done by using the relative curvature
instead of merely the curvature at some point. By relative curvature we mean
that we measured the difference between the local maximum and minimum of
the curvature. Our measure for the strength of a corner is then the curvature
at the corner point minus the lowest of the closest minima on either side. Since
a cut often have a rounded contour on one side and a straight line on the other,
we expected the curvature of an appropriate corner to have a very low value on
one side. If on the other hand a high curvature point is just a pointed end of a

48 CHAPTER 5. REMOVING DEBRIS

Figure 5.6: Plotting the curvature and the corresponding local maxima. In the
top figure the contour points of local maximum curvature is marked with colored
circles. In the bottom plot we have the curvature for the contour points, and
end each local maximum are marked with circles with colors corresponding with
those in the top figure. In other words, circles with the same color are at the
same point on the contour.

5.2. CUT CELLS 49

Figure 5.7: Our sum of largest curvatures on the x-axis and IOD on the y-axis.
The values on the x-axis is multiplied with 106

cell, the curvature on each side is usually also quite high.
Sometimes the the two points of highest curvature is actually located on

the same corner, as the segmentation process sometimes cause corners to have
a jagged edges. Small cuts are also usually not filtered out by the experts, so
we were not interested in looking for corners in close proximity. We therefore
demanded that the corners should be at least 1

10 of the perimeter apart. We
then finally had a measure for the corner strength for a pair of points pi and pj ,
αi,j .

From figure 5.7 we can se that our feature give quite good separation, with
a threshold of 700 we can remove 37.17 % of the K6 with a loss of 4.9% of the
K1 cells. Despite the fairly good separation there are still many undetected cut
cells, and many of the detected cells only have rough edges, but are not cut.
We also have a problem where some K1 cells have sharper corners in terms of
curvature then expected by looking at the cell image. This comes due to over-
segmentation, and the fact that corners are especially exposed to this problem.
Additionally some K6 cells do not have the “clean cut” we might expect, but
look torn. These cells are hard to detect as using the convex hull “blunts out”
the corners.

Just the corners is obviously not enough information in many cases, as some
cells have spikes and sharp edges without being cut. We want to include the
information about straight edges as well, but this information was very noisy,
as most cuts have some rough edges similar to the cell in figure 5.8b. We could
of course measure the average distance to the contour outside the line, but since
we know that the area outside of this line often are brighter and contain less
DNA compared to the rest of the cell, we want to incorporate this information
as well. To find which side of the line each pixel in the cell mask are, we use the
two point of high curvature pi and pj and the center c calculated as the mass
middle point of the cell mask. We then find the two vector v1 = pj − pi and
v2 = c− pi and calculate for each point pk in the cell mask

Mk = sign(v1 × v2)v1 × (pk − pi). (5.2)

Points counted as inside the line have Mk >= 0, while points outside the line
have Mk < 0. We then simply calculated the IOD as described in (6.1), for the

50 CHAPTER 5. REMOVING DEBRIS

(a) (b) (c)

Figure 5.8: (a) Is easy to detect, (b) is hard to detect and (c) is confused as
being cut. The blue line indicates the selected pair of corners from, all corners
found. Corners are indicated by blue circles. The red line show the contour of
the convex hull.

area outside the line and divided this IOD by the IOD of the whole cell; let us
call this fraction for βi, j. For cells with no area outside the line we set βi,j to
zero.

Long K4 cells can often have a straight line between each end, that cut
through little if anything of the cell and have very high curvature at each end. To
avoid detecting these cells as cut, we searched for a feature that could separate
them from typically cut cells. We found that the line between the two points of
high curvature in K4 cells often passes through quite close to the center of the
cell. We therefore calculate the length of the normal, from the line to the center
and divide this by the maximum radius of the cell to get the measure γi,j . We
then have our final measure of cut strength of two contour points

C(pi, pj) = αi,j(1− 2βi,j)γi,j (5.3)

β is multiplied by two, as the the maximum amount of IOD that it can cut
away is half. The final measure for the detection of a cut cell is then simply
the highest of all the values of C for all combination of pairs from the local
maximum of curvature

Cut Cell = max
i,j∈Imax

C(pi, pj) (5.4)

where Imax is the set set of all possible pair of indexes that corresponds to local
maximum in κ.

The plot from this altered technique is illustrated in figure 5.9. With a
threshold of 620 we can remove 31.92 % with loosing 5.1 % of the non K6
nuclei. In other words we loose some separability compared to using the α

5.3. OVERLAPPING CELLS 51

Figure 5.9: In the left plot we have our Cut Cell measure on the y-axis and IOD
on the x-axis. We present a histogram of Cut Cell to the right. The leftmost
“spike” in the histogram is almost identical for both K6 and other cells, therefore
the blue line is partially hidden.

measure directly, but we detect a larger portion of the cut nuclei and less cell
with only jagged edges. Still we cannot detect all cut nuclei. Some triangular K1
cells have quite high curvature on each corner, and a very straight line between
them, like the cell in figure 5.10a. They might look very similar to the cut cell.
The one thing that seems to make the manual experts label them as K1 is that
they have a very clean edge, in contrast to K6 cells that usually have a rougher
edge. We did try to use the Fourier filtering approach as described in section
5.1 for detecting rough edges on a single part of the contour. This approach was
generally unsuccessful as we found that level of roughness expected to find on
a cut edge depended on the general roughness of the cell, and that relationship
between roughness of the different contour parts seemed to be complex.

(a) (b)

Figure 5.10: Both (a) and (b) are quite similar, and have a “cut value” of around
300. (a) Belong to the K1 group, while (b) belong to K6. One difference is the
rougher edge one (b).

5.3 Overlapping Cells
Overlapping cells often have a higher IOD, but we can not use this as feature
alone, as we would loose important cells from K1. A prominent feature of

52 CHAPTER 5. REMOVING DEBRIS

overlapping cells is their concavities, but this proved not nearly discriminative
enough. Actually a huge part of the overlapping cells were indistinguishable
from the K1 cells, when only considering the image mask. So we definitively
had to take patterns inside the cell into account.

Würflinger et al. had already dealt with overlapping cell in [89], described
in chapter 3. They first found lines between concavities that was close to 90◦

on the principal axis. If the linear path between the concavities was relatively
dark, they detected a split. We first made an attempt to replicate the approach,
but soon discovered that this method would not be sufficient for our data set.
First of all, the line between the concavities were often not close to 90◦ on the
principal axis and secondly the edge between the cells did not follow along a
straight line, but followed instead a similar curvature as the cell contour.

Figure 5.11: An example of typical overlapping cell. To the right we have split
the cell contour into two parts, and fit one ellipse to each part. The two points
chosen for splitting the contour are both points from a concavity in the cell.

After investigating the manually labelled cells, we found that when it was
possible to sense an incoherent edge where cells overlapped, and this corre-
sponded to the expected shape of a cell, then it would probably be thrown into
the K6 category. This resembles a subjective contours effect described in [47].
It turned out to be quite hard to estimate the expected shape of the cell contour
from a smaller part of the cell, but a very simplified way was to expect the cells
to be elliptic. An ellipse could easily be fitted from a part of the contour by the
method described in section 4.1 and implemented in the OpenCV library [45].
We would try to find what parts of the contour, possibly belonging to different
cells, then we would fit an ellipse to each part of the contour. We found that
the best way to do this separation was to use the concavities in the contour.
We searched through all all the possible combinations of pairs of points from
10 deepest concavities, along the contour. We would start greedily with the
deepest concavities and work our way down the list. For each pair of we could
split the contour into two different parts, and then fit an ellipse to each part. To
find the area of the cell mask that "belong" to each ellipse, we find the intercept
between the ellipse and the cell mask, lets call this new areas A1 and A2, and
the intercept between the cell mask and both of the ellipses for S. We set two
requirements for valid points:

1. Each contour part had to be longer that 20 % of the whole contour.

2. Any two ellipses could not have more than 20 % of their area out side of

5.3. OVERLAPPING CELLS 53

the cell mask.

3. The area of S could not be more than 70 % of either A1 or A2

If all those demands were fulfilled we would stop the search and proceed with
those two ellipses (see figure 5.11).

The idea was to trace the contour of the ellipse, in order to see if it was
located in any proximity to an edge of the image. A reliable edge in the image
is often not easy to find, as the texture of the cells can be very grainy. This grainy
texture can both make the edges incoherent and make “false edges”. To remove
the grainy pattern we first applied a denoise filtering. A denoise algorithm
proposed by Chambolle [12] proved excellent for the job, as it keeps the major
structures of the cell quite well (See figure 5.12). Chambolle’s algorithm is
an approach for solving the total variation minimization problem. The total
variation for the discrete image application is defined as the sum of the gradient
magnitude for each pixel. The idea is that there exist a noise free image u, that
we want to restore from a noisy image g. The denoised image is the u that solve

min
u∈X

||u− g||2

2λ
+ J(u), (5.5)

where X simply is the index range of the image and J(u) is the total variation
of u.The denoised cell image, fdenoised, could then be convolved with a Sobel-
operator to obtain the gradient magnitude, and this result was used as our “edge
image”, fe.

To avoid finding a path along the contour of the cell we sought to downscale
the importance of the edges along the cell boundary. We created a linear scaling
of importance, using the distance transform of the cell mask, containing the
distance from inside the cell, to the outside. These distances were capped at 7,
creating a “trapezoidal weighting function”, and then scaled between 1 and 0, to
get a weighting image w. The new values of fe was then set as the point wise
multiplication of fe and w.

Figure 5.12: To the left we have the cell image after filtering with Chambolle’s
noise reduction algorithm. To the right we have the final weighted cost image.

As the ellipse rarely matched exactly with the edge of the cells we searched
for the best path following an edge in proximity to the ellipse contour, by the
use of Dijkstra’s shortest path algorithm [19]. We would find the path from one
of the concavity-points to the other, where each possible step was to any of the

54 CHAPTER 5. REMOVING DEBRIS

8-neighbors, not yet found. For input to the shortest path algorithm we created
a cost image, weighted by both the distance to the ellipse contour and the edge
image. We kept only the part of the ellipse contours where the two ellipses
overlapped, and created a mask image where the remaining part of the ellipse
contours were set to true and the rest of the image to false. Then we used a
distance transform and found and image with the distances to these remaining
parts of the ellipse contours. We call this distance image for fd. The part of
fd that were inside the cell mask, was scaled between 1 and 0, while the area
outside was set to 1. The edge image fe was inverted and then scaled between
1 and 0, lets call this new image f̂e. Then we could create the cost image fc, as
a weighted sum of the edge image and the distance image,

fc = αf̂e + (1− α)fd, (5.6)

where α = 0.4 was found to give the best result. In figure 5.12 there is provided
an example of a cost image. The set of points found by the shortest path
algorithm we call P , where each point is represented by a pair of indices (i, j).
An example of a detected path can be found in figure 5.13. To evaluate how

Figure 5.13: The path found, marked in red. The path is approximately following
the ellipse, but have adapted slightly to the underlying edge.

good the path fits with an edge in the cell, we used the unscaled gradient
magnitude, fe. We simply summed the values of this edge image corresponding
to the detected path. This sum was divided by the standard deviation of the
gray-levels in the fdenoised. This is to normalize the result in terms of contrast,
as high contrast images will get high values for the gradient magnitude, and
any path over the image would get a high value. We found that normalization
in terms of standard deviation to be better than using the edge image, scaled
between 1 and 0, as this would lead to problems were some black spot in the cell
would make the other edge areas negligible. Additionally, if the range is scaled
directly, some low contrast images could get a high value, even without a visual
edge. A temporary measure for overlapping could then be defined as

5.3. OVERLAPPING CELLS 55

overlappingtemp =
1

σ

∑
i,j∈P

fe(i, j), (5.7)

where fe(i, j) is the value of fe at the indices (i, j) and σ is the standard devi-
ation of fdenoised.

Figure 5.14: Samples from PLM14 scattered with our the overlappingtemp fea-
ture on the x-axis and IOD on the y-axis. We use no information regarding the
concavity of the cell contour.

The plot in figure 5.14 show the effect of overlappingtemp. Some K6 nuclei is
separated, with by overlappingtemp. In fact we found all cells in figure 5.14 with
an overlappingtemp value higher than 15 could be interpreted as overlapping.
In figure 5.15 there is one K1 cell, with a value of 15.1, that we mean could be
labelled as overlapping. We also provide an example of a more clearly overlap-
ping nuclei, and illustrate that the feature roughly correspond to our evaluation
of how clearly two cells are overlapping.

With this approach we can capture extreme cases, but there are still quite
a few overlapping cells left. One thing we notice is that some cells K1 have a
set of very small concavities unfortunately alined with some structure inside the
cell, creating a strong edge. To dampen this effect we multiply the value with
the depth of the deepest of the concave points that we used to find the ellipse.
We can then define our final measure for detection of overlapping cells as

overlapping =
d

σ

∑
i,j∈P

fe(i, j), (5.8)

56 CHAPTER 5. REMOVING DEBRIS

Figure 5.15: Some of the cells with a high value for, the overlappingtemp mea-
sure from equation (5.7). The found path is drawn in red, while the fitted ellipses
are drawn in blue. The left cell is a K1 cell, but have a value of a value of 15.1,
while the right cell is a K6 cell with a value of 21.5.

where fe(i, j) is the value of fe at the indices (i, j), σ is the standard deviation
of fdenoised and d is the depth of the deepest concavity in pixels. This gave
us some additional separation as we as may be seen in figure 5.16, but some
under-segmented cells from K1, with not much of an inside edge, got weighted
high because of a deep concavity. Still the final overlapping measure also gave
a result closer to our visual interoperation of overlapping cells.

5.3. OVERLAPPING CELLS 57

Figure 5.16: Here we plot the same data, from PLM14, as for the plot in figure
5.14, but this time we utilize the concavity information by multiplying the results
with the deepest concavity in the contour.

58 CHAPTER 5. REMOVING DEBRIS

5.4 Over-segmented cells
Over-segmented cells could potentially bias texture analysis and other auto-
matic tools for prognostic information. Since many of the overlapping cells not
detected in Section 5.3 were over-segmented, an approach to filtering out this
category could also help us remove the remaining overlapping cells.

One typical characteristic of over-segmented cells is that they have some
regions with very high intensity. This is because the background in the image
have a higher intensity than the inside of a cell, and an over-segmented cell
contains a region that should have been labelled as background. Our first ap-
proach is therefore to look for a region along the edge that has abnormally high
intensities. As many images are grainy and have many pixels with max intensity
value, we needed to smooth the image to find larger regions.

We first set the pixels outside the image mask to 0 and filtered the cell image
with a gaussian kernel, lets call the filtered image B. The qaussian kernel had
the size w, where a = Round(perimeter20) and w = a if a is an odd number or
w = a − 1 if a is an even number. We also filtered the image mask with the
same gaussian kernel, where the pixels inside the mask counted as 1, while the
pixels outside the mask counted as 0. The filtered mask image we will call M .
We could then create a normalized image C = B

M . The normalization stopped,
concave part where the gaussian kernel had a large area inside the cell from
getting a higher value than convex areas.

We then collected the values of C corresponding to the pixels in the cell
contour in an array A, where neighboring pixels in the image also were neighbors
in the array. We then filtered A with a 1D averaging filter, with length 2w, to
find longer stretches of bright pixels, lets called the filtered version of A for Â.
We used the maximum value of â as our final measure for a blurred edge, or over-
segmented cell. In figure 5.17 we have provided two examples of overlapping cells
detected by our approach. We have also drawn the area used for our calculation
of the blurred edge feature.

The plot in figure 5.18 show that we can separate quite a few cells with
this approach, and we found that the most extreme over-segmented cell are
separated. Some cells from K2 and K3 are over-segmented but still not filtered
out in the manual classification. They can therefore easily be confused with
over-segmented cell from K6. We might differentiate theses cell, since they only
have a small segmentation error, and this error is often evenly distributed along
the edge.

5.4. OVER-SEGMENTED CELLS 59

(a) (b)

Figure 5.17: Here we present two over-segmented cells. In the top images we
have drawn the cell contour, to illustrate the the over-segmented area. In the
corresponding images at the bottom row, we have drawn the area used for cal-
culation of this feature in green/yellow. More yellow colors indicates a relative
high value, in the normalized image M . The short segment drawn in red, is
the area contributing to the maximum. The average of the pixels under the red
segment was used as our blurred edge feature.

Figure 5.18: A randomly chosen set of 1200 cells from PLM13, evaluated with
our over-segmentation measure on the y-axis and Area on the x-axis.

60 CHAPTER 5. REMOVING DEBRIS

5.5 Blurred Images

As nuclei out of focus were mentioned as on of the reasons for a K6 labeling, we
wanted to investigate blur related features. The problem is that evaluation of
blur seem to be very subjective. It seems natural that this is a hard boundary
to set, as it is not a binary choice, as with overlapping or cut cells. In con-
trast to those two groups, is the detection of blurred images well represented
in the literature, and there is suggested a huge range of features for detecting
it [67, 56, 69]. We found it hard to evaluate focus manually, and therefore also
hard to intuitively evaluate whether a features was appropriate for our appli-
cation. Instead we chose to test different focus measures presented in [70] and
then simply choose the feature with the highest Mahalanobis distance between
K6 and the other classes. We tested the features called: Gaussian derivative,
Squared gradient, Helmli’s mean method, Variance of laplacian, Steerable filters,
Tenengrad variance and Sum of Wavelet coefficients. In table 5.1 we present
the Mahalanobis distances calculated from the M51 training-set.

Table 5.1: The evaluation of different focus measures. We measured the Maha-
lanobis distance between K6 and non K6 samples.

Focus measure Mahalanobis distance
Gaussian derivative 0.52
Squared gradient 0.30
Helmli’s mean method 0.55
Variance of laplacian 0.32
Steerable filters 0.49
Tenengrad variance 0.62
Sum of Wavelet 0.32

As non of the focus measures gave a good separation, and we could not find
a clear connection between K6 samples and blurred images, we devote little
attention to this topic. As Tenengrad Variance, first suggested in [67], gave the
best separation, we kept this measure as a feature. The Tenengrad Variance,
called TENV for future reference, was calculated as

TENV =
∑
i,j∈f̂m

|S(i, j)− S(i, j)|,

S(i, j) =
1

|f̂m|

∑
i,j∈f̂m

S(i, j),
(5.9)

where S(i, j) is the gradient magnitude at position (i, j) in an image, calculated
with Sobel filter kernels of size 3 × 3. f̂m is the set of points (i, j), in the cell
mask after it has been eroded with a 3 × 3 kernel, and |f̂m| is the cardinality
of f̂m. Originally the feature is calculated for a whole image, but our equation
(5.9) only use pixels inside the cell mask.

5.6. NOTES ON THE IMPLEMENTATION 61

5.6 Notes on the Implementation
The computation of the features was primarily done in Python with the use of
Numpy [83]. We used OpenCV [45] for 2D filtering, contour detection, fitting
ellipses and morphological operations. For Chambolle denoising we used the
implementation provided in the Scikit-image package [84]. For visualizations we
used Matplotlib [43]. For the affinity propagation we used an implementation
from Scikit-learn [68].

62 CHAPTER 5. REMOVING DEBRIS

Chapter 6

A Search For Features

In chapter 5 we developed a set of very specific features for removing certain
groups of K6 cells. This manual investigative approach gave us good control
of the process, but it is both very cumbersome and does not take advantages
of modern machine learning techniques that can discover patterns in the data
that seem incomprehensible for human observers. For K6 cells it is not likely
that there exists such an undiscovered pattern, as the labeling are based on
the subjective interpretation of a series of criteria. When sorting the cells in
to tissue types on the other hand, there is a definitive biological answer to the
classification. This means that there may exist undiscovered patterns in the
data.

As our personal understanding of the cell biology is limited, we cannot search
for answers through biological understanding. A possible solution is to do a wide
search through many different features, designed to capture as many aspects of
a cell image as possible. What can be problematic with a wide search is that the
use of too many features can cause problems, as the best features gets harder
to find. This problem will be later discussed in section 7.1.3. Even without
expert knowledge of the field of cell biology, it is still possible to incorporate
some a priori knowledge. For example can features presumed to include similar
information be excluded and a set of very distinct features chosen. Knowledge
from prior studies can be leveraged by reusing features that already have a
proven connection to cell biology. In this section, therefor, no new features are
generated, but we only preform a search thorough a range of know features.

First we present an approach to estimating the DNA content of cell nuclei,
as this is a very central feature. The other features we divide into three different
categories: Morphological features, features based on first-order gray-level dis-
tribution and features related to how the gray-levels are distributed spatially in
the nuclei. These three category are discussed in the three sections: Morpholog-
ical Features, First-Order Gray-Level Statistics and Texture and Higher-Order
Statistics.

6.1 Estimating DNA Content

Integrated optical density (IOD) is a measure of DNA content in a cell. It is
calculated as

63

64 CHAPTER 6. A SEARCH FOR FEATURES

IOD = −
∑

xf ,xb∈Cm

log10

xf
xb
, (6.1)

where xf is a pixel value in the cell image and xb is the corresponding value in
the background intensity image.

Such a feature could separate out a huge part of the epithelial cells, as they
are primarily the ones with higher ploidy. There are two possible scenarios
where including this feature could give problematic results. The first, and most
likely scenario, is that all cells with higher than normal ploidy will be classified
to K1, as only a very small percentage of cell from other tissue are tetraploid,
at any given moment. This situation is not very dramatic, since this involves so
few cells the introduced bias would be small. The more problematic situation
occurs if diploid K1 cells are less likely to be classified correctly. Then we would
be left with a disproportionate amount of K1 cells with high ploidy, and this may
affect further analysis. This last more dramatic situation may occur whether
we include IOD as a feature or not. The IOD is a very basic combination
that depend on intensity and cell area. The information provided by the IOD
measure may be added implicitly by other features. It is hard to investigate
exactly how a complex classification algorithm combine different features, so an
implicit measure of IOD may be used by the classification algorithm, without
our knowledge. The important thing to remember is that the classification
algorithm makes the decision based on a range of features and it’s evaluation is
not necessarily biased any more by IOD, than human observers. Perhaps it is
easier to include IOD, so we can at least study the effect. Still this is definitively
a problem we have to look out for in our classification and analysis.

6.2 Morphological Features
Area

Area is both a simple and relevant feature. It is simply calculated as the number
of pixel in the cell mask, Cm,

Area = |Cm|. (6.2)

One can easily see from figure 6.1 that a huge part of the cells can be classified
purely on the basis of the cell area. The combination of mean intensity and area
indicates the ploidy of a cell; shown by curved lines of mainly epithelial cells in
the plot. For K4 the high number of tetrapoid and some octaploid cells for the
M51 may indicate that some of the cells labelled as stromal cell actually should
be labelled as epithelial. What is clear is that there is no way of separating K1
and K4 just by the area of the cell.

Cell Perimeter

The perimeter length of a cell is obviously related to cell size, but the combi-
nation of perimeter and area can still give interesting information. First and
foremost it provides information about how circular the cell contour is. If it
is also combined with other measures of circularity, it could give information
about how jagged our irregular the cell contour is. For example if the cell shape

6.2. MORPHOLOGICAL FEATURES 65

Figure 6.1: Area plotted against mean intensity for a random selected sample
from M51. We can clearly see how the cells with different DNA content created
patterns related to the cells ploidy.

is quite close to a circle, but the perimeter is disproportionally long, the contour
has to be jagged or irregular in some way.

We calculate the perimeter, as proposed by Freeman [25], where we sum the
sumer of transitions in the 8-neighborhood contour, but the diagonal transitions
are weighted by

√
2, since this is the distance they confer compared to horizontal

or vertical transitions.

Circularity

A measure of circularity, combines cell perimeter and area. If we expect the
cell contour to be circular we can calculate its radius, either from the cell area
or perimeter. When we divide the two radii we would expect to get 1, if the
contour were a perfect circle. The expression is created by dividing the radius
expected from the area (ra) by the radius expected from the perimeter (rp),
and using the squared result

Circularity =
r2
a

r2
p

= 4π
Area

Perimiter2
. (6.3)

This means that circularity is close to 1 for cells with nearly circular shape and
lower for less circular shapes.

Elongeted cells

There are several methods of measuring to what degree a shape is elongated.
Typical measures use the major and minor axis to estimate this. This types of
features are typically good for separating out K4 cells, since have a long and thin

66 CHAPTER 6. A SEARCH FOR FEATURES

(a) (b)

Figure 6.2: (a) The minimum area rectangle of a K4 cell. (b) Illustrates how
maximum cell length, in combination with area seems to be a good metric for
detecting K4 cells.

shape. We found that a good alternative could be to include the major axis, or
in other words the maximum cell length directly as a feature, and leave it up
to the classification model combine this feature with area or cell perimeter. We
illustrate this effect in figure 6.2b. The maximum diameter feature is measured
as the length of the longest edge of the minimum object oriented bonding box
and is calculated by using the rotating calipers approach [81]. The shortest edge
is somewhat less relevant as it can be quite arbitrary. Some K4 cells can for
example be bent, making the shortest edge relatively large. The same problem
problem arise for example if we use eccentricity as this the combination of the
the major and minor axis

eccentricity =

√
a2 − b2
a2

(6.4)

where a is half the major axis and b is half the minor axis. Still eccentricity can
be a quite strong feature. Another more complex alternative is to skeletonize
[92] the cell mask, find each end of the skeleton and measure the longest dis-
tance between two end-points by following the skeleton. This approach is is not
affected by bent shapes, but is sensitive to abnormal shapes, for example long
thin areas of over-segmentation.

Convex Hull Deficiency

Convex hull deficiency might be most relevant for separating out K6 cells, as they
often are uneven and have irregular shapes, and therefore have more concavities.
We also expect that K4 cells score high on this feature as bent cells have large
convexities. To calculate this feature we used an OpenCV implementation to
find the convex hull of a set of points, that is based on the algorithm of Sklansky
[77], lets call the set of pixels inside the convex hull Ch, those inside the mask
Cm. The convex hull deficiency is then calculated as the cardinality of the
intersect,

6.2. MORPHOLOGICAL FEATURES 67

(a) (b)

Figure 6.3: (a) This is a K4 cell, that is slightly bent and has some typical
irregularities. The convex hull deficiency is calculated as the area of the pixels
marked in red. (b) This plot illustrates how some of the K4 cells are separated
out with the convex hull deficiency feature.

Convex Hull Deficiency = |Ch ∩ Cm|. (6.5)

Figure 6.3 illustrates how convex hull deficiency clearly contributes to separate
some K4 nuclei from K1. In the same figure we also provided an illustration of
the convex hull deficiency for a K4 cell.

Depth of Concavity

This feature is strongly related to the convex hull deficiency and perhaps left
out of the features set. The reason for using this feature is that in combination
with the convex hull deficiency, this feature can help us differentiate cell that
have a long and shallow concavity, compared to cells that have a short, but
deep concavity or several small concavities. K4 cells often tend to have such
long and shallow concavities, while both K1 and K6 often have short but deep
concavities, typically due to under-segmentation. Figure 6.4 show typical cells
in that regard. Figure 6.5, illustrate the difference, where the concavities in
the K1 cells are deep, while K4 have large convex hull deficiency, but relatively
shorter depth of concavity . The depth of a concavity is calculated simply by
looping through the contours of the convex hull deficiencies and finding the
points on each deficiency that is furthest away from the convex hull.

Jaggedness

We already discussed options for detecting rough edges in section 5.1, in addi-
tion to the feature describe in that section, we will test a feature suggested by
Maddison [54], and used in the Ploidy Work Station. The feature is a simple
way of detecting high frequency changes in the contour. The distance of each
pixel in the cell contour to the center of mass is calculated, and represented

68 CHAPTER 6. A SEARCH FOR FEATURES

(a) (b)

Figure 6.4: (a) Is a K1 cell with a short, but deep concavity, while (b) is a K4
cell with a much longer concavity.

Figure 6.5: 200 cells for each class K1-K4, from the M51 dataset. The depth in
terms of pixels can be found by dividing the concavity depth by 256. It is mea-
sured on this scale simply to improve performance, as operations with integers
are faster.

6.2. MORPHOLOGICAL FEATURES 69

(a) (b)

Figure 6.6: (a) The red area’s along the contour have the highest value of jagged-
ness. (b) Jaggedness seems to be a good way to separate K1 and K4.

by the vector d. We then filter d with a median filter of size 5, with a circu-
lar boundary function and call the resulting vector for dm. We then sum the
absolute difference between the values in d and the corresponding values in dm

Jaggedness =

N∑
i=1

|d− dm|. (6.6)

From figure 6.6 we can see that K1 cells tend to have more jagged edges than
K2, K3 and K4. This may be because cancer cells are more irregular shaped,
but it could also be due to the slightly more grainy texture of K1 cells, that
again cause inaccuracies in the segmentation algorithms. Interestingly enough
we found that K1 cell also had a higher Jaggedness than K6, as illustrated in
figure 6.7. The small frequencies detected by this algorithm is not the rough
edges that common among K6 cells, but rather segmentation errors in large
circular cells or small irregular rites due to slight under-segmentation.

Symmetry

This feature is also a feature used in the Ploidy Work Station and first suggested
by [54]. K1 cells tend to be more asymmetrical compared to the other groups.
As a simple measure of symmetry we calculate the difference in length between
a pair of point, to the center of a cell. We start with the set of points that
make up the cell contour pi = (xi, yi), i = 0, 1, ..., N − 1, where N is the length
of the contour. Then we pick two starting points p1 and pbN/2c, as they are
approximately mirroring each other through the cell center. If we translate our
image such that the average of the contour points is located at the indices (0,0),
we calculate our symmetry measure as,

Symmetry =

N
2 −1∑
i=0

|||pi|| − ||pi+bN/2c|||. (6.7)

This means that asymmetric cells will have a high value on this measure, while
completely symmetric cells will have get a symmetry value of zero.

70 CHAPTER 6. A SEARCH FOR FEATURES

Figure 6.7: The jaggedness, sampled from the PLM13 dataset. K1 have higher
jaggedness than K6, as large circular cells will have a larger summed sampling
error and that cells with grainy patterns tend to have slight over-segmentation.

A weakness of this method is that the points will not be exactly opposite;
mirrored through the center point. Whether or not the points are symmetric
about the cell center, depends on the shape of the cell. However we found that
this measure works quite well as an approximate measure for symmetry.

Bending Energy

Bending energy is calculated as the squared sum of the curvature. If pi is a
point along the contour, i = 0, 1, ..., N − 1, and κ(pi) is the curvature at that
point, given by the equation (5.1), then the bending energy is

Bending Energy =

N−1∑
i=0

κ(pi)
2. (6.8)

This can of course be a strong feature for finding rough edges, but when sepa-
rating the classes 1-4, it can actually be a good measure of pointed ends. Since
they allow for some rough edges in some of the data sets, especially M51, we
found that in order to measure the pointed edges of cells, we needed to use the
contour calculated from the convex hull of the cell. Then all concavities are
closed up and the effect of pointed ends is increased dramatically.

6.2. MORPHOLOGICAL FEATURES 71

(a) (b)

Figure 6.8: (a) The green and red line are the vectors (c− p1) and (c− pbN/2).
(b) The plot indicates that K1 tends to be less symmetric.

(a) (b)

Figure 6.9: (a) Plot of the bending energy of the contour with concavities. (b)
Plot of the bending energy of the contour from the convex hull. We can see that
using the convex hull drastically improves the separability for this feature.

72 CHAPTER 6. A SEARCH FOR FEATURES

6.3 First-Order Gray-Level Statistics

First-order statistics are tools that can be used investigate the distribution of
gray-levels for an image. They give no information about the position between
the various pixels, but only on relationships between the different probabilities
for different intensity values in an image. In [59] they found that 4 classes
of cell nuclei from mouse liver, had distinct patterns in gray-level histograms.
In that study they used transmission electron microscopy and used ultra-thin
liver sections instead of monolayers. The cells where categorized into normal,
regenerating, nodule and tumor cells. These are of course other categories than
those we are operating with, but it is still interesting that tumor nuclei were
found to have a distinct pattern in the gray-level distribution, as we hope to find
a similar difference in epithelial nuclei versus other nuclei. In those studies they
differentiated between the 30% peripheral part of a nuclei and the central 70%
of the nuclei. Unfortunately we did not discover a smiliar pattern in our data
set. We plotted the histograms for different parts of the nuclei in figure 6.10,
and they do indeed look different. However with closer investigation we found
that such a division gave no advantages, but rather weakened our predictive
power. Instead we decided to focus on the differences in the histograms from
the whole cell.

As a quick test to whether these features could be relevant, we created a
plot with the average gray-level histogram for the different classes (figure6.11).
In the plot the gray-level resolution is reduced from 1024 to 256 colors, in order
to get a smoother plot.

Inspecting the Class Histograms

When inspecting the histograms, one have to keep in mind that this does not give
us the full information. There may exist subgroups within the different classes,
where each of those groups have very different histograms. This also mean that
no histogram may necessarily look like the histogram we present in the plot, so
assumptions based on the average histograms alone can be futile. For the K6
class we know that there should exist subgroups, as K6 have cells from all the
different classes. We can indeed se from the plot that the average histogram for
K6 looks like somewhat of a combination of the other plots. In other words, we
needed a measure of how much the histograms varied within-class. In order to
find such a within-class variation, we first need to find a distance measure for
histograms. The Kullback-Leibler divergence [49] is a common way of measuring
the difference between probability distributions. We can calculate it as,

D(P || Q) =

G−1∑
i=0

ln

(
P (i)

Q(i)

)
P (i), (6.9)

where P and Q are the different normalized gray-level histograms, and G is
the number of gray-levels. This measure is not symmetric, the D(P || Q) is
not necessarily the same as D(Q || P), so instead we use the Jensen-Shannon
divergence [52] that is based on (6.9), in order to get a symmetric measure. We
take the square root of the Jensen-Shannon to get the metric [21], we used as

6.3. FIRST-ORDER GRAY-LEVEL STATISTICS 73

(a) (b)

Figure 6.10: (a) Here we have plotted the gray-level histogram for the central
70% of the nuclei. (b) The histograms for the peripheral 30% of the nuclei.

Figure 6.11: The average gray-level histogram for the M51 dataset. We see that
K2 mostly consists of very dark pixels, but it also has a small peak with very
high intensity value. The high intensity pixels could be there due to the fact that
the segmentation algorithm tend to over segment K2 cells. K6 is something in
between the other histograms, which is expected as it contains cells from all the
other groups.

74 CHAPTER 6. A SEARCH FOR FEATURES

Table 6.1: The standard deviations from the mean histograms for each class,
measured with Jensen-Shannon divergence.

Class σ
K1 0.22
K2 0.16
K3 0.12
K4 0.27
K6 0.38

our final distance measure DPQ. This metric is calculated as

DPQ =
1√
2

√
(D(P || R) +D(Q || R)),

R =
1

2
(P +Q).

(6.10)

We then say that DPQ is the distance between P and Q. Based on the
measure DPQ, we calculated a standard deviation σ for each class, which is pre-
sented in table 6.1. A table of the Mahalanobis distances between the different
classes is presented in Table 6.2.

Table 6.2: The Mahalanobis distances between the average gray-level histograms
for the different classes, measured with Kullback-Leibler divergence.

K1 K2 K3 K4 K6
K1 2.02 1.22 0.16 0.48
K2 2.06 1.84 1.03
K3 1.15 0.50
K4 0.51

From Table 6.1, we can see, as expected, that K6 have a relatively high
variation of different histograms, while the cells in K2 and K3 have relatively
similar histograms. From table 6.2 we can see K2 cells clearly stands out from
the rest of the classes in terms of gray-level histograms, K3 stands out to some
degree, while K1 and K4 are not distinguishable, as is also quite evident from
figure 6.11.

we can se that the within-class variation for K6 are quite high and similar
to the between class distances from and to K6. The distances between K1 and
K4 are also very small compared to the within-class variation. This can at least
give us an indication that these classes will be hard to separate on the basis
of the gray-level histogram. To further investigate if there exists any apparent
subpopulations of histograms within the different classes we tested a clustering
algorithm on the set of histograms.

Clustering Histograms

Our main purpose of clustering the cell histograms is to find out if the histograms
within a class are similar or if there exist groups of very different gray-level

6.3. FIRST-ORDER GRAY-LEVEL STATISTICS 75

Figure 6.12: The histograms found by affinity propagation.

distribution. If the latter is the case, we will know that the average histogram
is not very representative.

We used a clustering approach suggested by Frey et al. in [27, 28], which
they called affinity propagation. This clustering approach is based on a distance
matrix with distances from all samples to all other samples; we still use the
Kullback-Leibler divergence as a distance measure. With the clustering of 2000
random samples from the M51 set, the clustering process ended up with 18
groups in total. The average histograms for the different groups are plotted in
figure 6.12, while a bar plot over what histograms the samples for each class
was labelled to can be find in figure 6.13. We found that to a certain degree the
clustered histograms looked similar to the average histograms. We also found
that that K2 had almost no overlap in group affiliation with with K1, K2 or K4.
For K3 especially, almost all samples belonged to the same histogram group,
and this group was one of the larges groups also for K1. K1 and K4 on the had
almost a complete overlap, with similar probabilities of belonging to different
groups. As Expected K6 had cells in all different groups and the probability
distribution for group affiliation corresponded to the relative probability for the
different classes.

Our investigation of the gray-level histograms indicate that only K2 can
be well separated, by only using the gray-level histogram. The K3 histograms
stands out from many of the K1 cells, but still have a quite large degree of

76 CHAPTER 6. A SEARCH FOR FEATURES

Figure 6.13: The bars represent the number of cells for each class that are
clustered to a given histogram in figure 6.12. The class is written on top of the
corresponding plot.

6.3. FIRST-ORDER GRAY-LEVEL STATISTICS 77

overlap. Between K1 and K4 there seems to be no significant difference between
the histograms.

Statistical Moments

As K2 and K3 stand out in some ways and also have a comparably small within-
class variance they may be the easiest classes to separate on the basis of gray-
level histograms. The simplest way to use the histogram shape for classification
is to compress the differences in shape into single values. A common way to
represent features of such a shape is to use statistical moments. In general a
moment of degree n around the point c, can be described by the function

µn =

∫ ∞
−∞

(x− c)nf(x)dx, (6.11)

For our purpose the central moments is most intuitive to use, as they describe
the shape, independent of the mean. To get the central moment from (6.11),
we simply make sure that c is the mean value of x and that f is the probability
density function (pdf) of x. The discrete central moments can then be calculated
as

µn =

G−1∑
x=0

(x− x̄)nP (x),

x̄ =

G−1∑
x=0

xP (x),

(6.12)

where P (x) is the probability of a gray-level x, and G is the number of gray
levels. This means that µ0 = 1 and µ1 = 0, which is very logical, but make
these two feature useless for classification purposes. Instead we add the mean
intensity, which is the first moment µ1 when c = 0. For moments of degree three
and up, we choose to standardize the moments in terms of standard deviation,
making the moments independent of variance. This is done by dividing the n-
th moment by σn. The standardized moments γ are in other words calculated
γn = mun+2

σn+2 . γ1 is commonly called skewness, and provide information on
whether the distribution is skewed higher or lower than the mean. γ2 can
be called kurtosis, and can be interpreted as describing the “peakedness” of a
distribution. Most commonly kurtosis is calculated as γ2 − 3, so the kurtosis of
the normal distribution becomes zero, but for our classification purpose this is
irrelevant.

From figure 6.11 we can see that the mean intensity could be a good measure
for separating out K2 and K3. We plotted this on the x-axis in figure 6.1 and we
can clearly see that it contributes to the separation. A problem is that in our
application the mean intensity is very related to the cell area. This is because
most cells have the same amount of DNA, for large cells the DNA are “spread
thin” and with our staining procedure these cells will look brighter. Most of the
information provided by the mean intensity is therefore related to the ploidy of
the cell. In other words we have to look out for the same problems as with IOD
in section 6.1.

Higher degree moments like variance, skewness and kurtosis could also be
relevant for the classification. The pdf of K2 and K3 are relatively wide and
should therefore have a higher variance compared to K1 and K4. The K6 average

78 CHAPTER 6. A SEARCH FOR FEATURES

histogram would also have a quite high variance, but as K6 consist of subgroups
we can not say this for certain for the class as a whole. All the histograms are
somewhat skewed but K2 most of all, while its clear that K2 are more peaked and
therefore will have a higher kurtosis, while K3 will have a relatively low kurtosis.
It is harder interpret the effect of even higher degree moments, and therefore
hard to determine their descriptive power by investigating histograms. What
is clear is that the different moments can indeed separate between the classes
to some extent. What is more unclear is whether each moment provide any
additional information. Do we need different moments to separate different cells
or is it one moment that can give all the separation by it self. To investigate the
effect of moments further we used a more brute force solution. We evaluate the
moments mean, variance, skewness and kurtosis. Using higher order moments
will probably contribute little information, and may only add noise to our model,
as the histograms vary relatively much within each class.

We tested all possible combination of the 4 features, on a part of the M51
training-set with equal class distribution, with a random forest classifier and
cross-validation. Variance alone gave 71% CCR, mean intensity gave 67%,
skewness gave 51% and kurtosis gave 41% CCR. Generally a random forest
get a better accuracy for added features, but we found that adding kurtosis to
the set of the three other features only gave 0.1% increased accuracy, and in
some cases even lowered the accuracy. We therefore decided to exclude kurtosis
in later classifications.

Entropy

Entropy is another measure we can use to draw information from the gray-level
histogram and is said to measure the unpredictability of information or how
much information the histogram contain. For our purpose we can say that it
measures if there are any dominating gray-levels, that covers much of the cells,
or whether all gray-levels have similar probability. We calculate the entropy
with the function

Entropy = −
G−1∑
i=0

P (i) logP (i), (6.13)

Where G is the number of gray-levels and P (i) the probability for a gray-level
i.

We know that K3 often have many different gray-levels occurring with similar
probabilities. This is reflected in the plot in figure 6.11, where we can see
that the red distribution is more flat and wide. Some of this information is of
course covers by the different moments, but they are aimed at close to normal
distributions. The difference is that these moments are influenced by the mean
and standard deviation of the plot, while entropy does not take the value of
the gray-level into account at all, only the probabilities of different gray-levels
to occur. In figure 6.14 we can see that K3 have a high average entropy . By
visually inspecting the cell images, we would expect the difference to be larger,
especially between K2 and K3, as K3 cells have a texture with white spots,
where K2 cells are often completely dark. It seems as though a faded edge
around the K2 cells, give them a higher range of gray levels than the what is
visually apparent.

6.3. FIRST-ORDER GRAY-LEVEL STATISTICS 79

Figure 6.14: A small sample from the PLM14 dataset, where the features are
evenly distributed. The cell area is plotted on the x-axis and entropy on the
y-axis. We can see that K3 primarily stands out with a high entropy.

80 CHAPTER 6. A SEARCH FOR FEATURES

6.4 Texture and Higher-Order Statistics

Texture information is a combination of gray-level and spatial information. In
other words it describes how the different gray-levels are spatially distributed.
Texture analysis of cell nuclei have been shown to provide prognostic information
in several studies [1, 2, 3, 63, 87]. We wanted to investigate whether we could
capitalize on texture information to improve cell-type classification, but again we
have to keep in mind that similar features are used for prognostic information.

There exists a huge range of methods to capture aspects of texture in an
image, but we will focus on methods related to gray-level co-occurence matrices
(GLCM). We will also investigate whether we can find information related to
the more general distribution of DNA in a cell, by using cartesian geometric
moments.

6.4.1 Gray-Level Co-Occurrence Matrix

A co-occurrence matrix can be used as a tool for calculating second-order gray-
level statistics. Second-order means that we investigate the pairwise relationship
between pixels, which can give us information about the texture in the image.
The matrix has one row and one column for each gray-level in the image. The
value at an index i, j, is the probability for a pair of pixels to have intensity
value i and j, when the pair have a certain spatial relationship. The spatial
relationship is often given by a distance d and an angle θ. If we call the co-
occurrence matrix A, the values a each index pair i, j is

Ai,j = P (i, j | d, θ). (6.14)

We get one such matrix for each combination of distance and angle (d, θ). It is
common to first reduce the number of gray-levels in an image before producing
the GLCM, simply to reduce the need for computational power. In figure 6.15
the process of generating the GLCM is illustrated.

To tap into the relevant texture information we need to find the appropriate
distance values, angels and gray-levels. For our purpose it is logical to make
the matrices rotation invariant. This is done by simply averaging matrices for
different values of θ. We choose the most common approach and use 8 direc-
tions θ = {0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦}. That is, we only actually
calculate half the matrices, as the transition back and forth to a pixel will give
the same result. We then calculate the average of the four first matrices and
then average that matrix again by its transposed. To decide on the number of
gray-levels we both did a visual inspection of the images, to find the how much
we could reduce the number of gray-levels without any noticeable difference.
Additionally we did a test on a small number of cells, to find out the number of
gray levels where we stared to loose predictive power. In both cases we ended
up with the same number as many other studies, namely 16 gray-levels. In
order to find the best distance values we simply tested all in a reasonable range,
d = 1, 2, ..., 16.

We only used pixel-pairs where both pixels were inside the cell mask. With-
out this precaution we could introduce a strong bias, for example for long and
thin cells, where many pairs would have one pixel outside the cells, compared
to more circular nuclei.

6.4. TEXTURE AND HIGHER-ORDER STATISTICS 81

Figure 6.15: Illustrates the process of computing the GLCM for a nucleus. For
these figure it is used a inter-pixel distance of 3 (d = 3) and an angle of 0◦

(θ = 0). (a) The cell before and after a reduction in gray-level from 256 to 16
colors. (b) Upper three rows in the cell image and the corresponding GLCM. (c)
The final GLCM for the whole nucleus. This figure is copied from [61].

82 CHAPTER 6. A SEARCH FOR FEATURES

Figure 6.16: The 3D matrix of Bhattacharyya distance of 3D GLCM’s of two
classes. The blobs are were the Bhattacharyya distance are high. Copied from
[86].

GLCM Features

After computing one GLCM for each distance we now have 16 matrices of size
16× 16, or 4096 values in total. We could of course use these values as features
directly, but that would demand an enormous training set to get a robust model.
Such a model would be especially susceptible to changes in gray-level, without
an appropriately sized training set. Instead we want to combine these values
in a way that gives us a robust and strong separation of classes. If we make
sure that values in the same proximate area in the matrix are weighted similar,
we can avoid that the classification becomes overly sensitive to small changes
in average intensity. Walker et al. [86] found that the values best suited for
separating different groups, clustered together both in terms of differences in
gray-level, but also in terms of inter-pixel distances. In other words the clusters
continued across different values of d. They could in other words create a 3D
GLCM and look for clustering differences between classes (see figure 6.16). To
measure how well each value were at separating different groups, they suggested
to use Bhattacharyya or Mahalanobis distance measure, for difference between
the classes. In a study by Nielsen et al. [65], they used a similar approach
for classifying cell nuclei into two different prognostic classes. They separated
each nucleus into two parts and calculated GLCM’s for each part independently.
They also created different groups for different cell sizes, and calculated sepa-
rate distance matrices for each group. They created features by summing over
the GLCM’s, weighted by the the squared Mahalanobis class distance for each
GLCM value. Mahalanobis distance is in fact a quite common measure for fea-
ture selection, so this could be viewed as somewhat of a feature selection or
feature weighting procedure. Walker et al. on the other hand used a clustering
algorithm, based on the Bhattacharyya distance matrix to find groups of values

6.4. TEXTURE AND HIGHER-ORDER STATISTICS 83

with high discrimination that were in close proximity. He then used the sum
of these different regions as features. They also proposed to use a genetic al-
gorithm to to find a 3D gaussian weighting of GLCM values, and this actually
proved to be the best strategy for find discriminatory features between normal
and abnormal cervical cells.

Inspired by these studies we decided to investigate the 6 Mahalanobis dis-
tance matrices, generated from 3D GLCMs from K1-K4 (see figure 6.17). By
looking at the color bars in the plots, we can again see that the distance between
K1 and K4 are much smaller compared to the other pairs. With a max distance
of about one σ, there will probably be some overlap, no matter how good features
we make. The other plots indicate that we can find a quite good separation, but
this has been the case for many other features generated. Additionally it seems
that the area of best separation do not change much with inter-pixel distance.
Still we have to remember that these distances are calculated from averages and
the separation at different values of d may be contributed by different cells.

Predefined features

A simple solution to generate a smaller and more robust set of samples from the
GLCMs is to use a set of predefined features, known to identify certain aspects
of a texture. Haralick et al. and Conners et al. [13, 37] proposed a number
of texture features calculated from GLCMs. Some commonly used features are:
contast, correlation, entropy, energy and cluster shade.

Contrast =

G−1∑
i=0

G−1∑
j=0

P (i, j)(i− j)2. (6.15)

Contrast is basically a measure of how far the the probabilities stretch out
from the diagonal in the GLCM matrix. In other words, the contrast will be
high if the pixel pairs tend to have very different values. Contrast weight the
contribution of values close to the corners (i, j) = (1, 16) and (i, j) = (16, 1), the
highest, and the difference between the matrix for K2 and other classes have an
especially high value at these corners.

Correlation =

G−1∑
i=0

G−1∑
j=0

P (i, j)
(i− µx)(j − µy)√

σ2
xσ

2
y

. (6.16)

Correlation have the function (6.16), but as we use a symmetric GLCM µx and
µy will be equal as well as σx and σy. It measures whether i and j move similarly,
related to the mean. A matrix with perfect correlation (correlation = 1) will
only have values on the diagonal, with correlation close to zero the matrix will
have values evenly distributed, and a with a negative correlation of −1, only the
corners furthest from the diagonal will have values. This is clearly much of the
same information provided by the contrast features. The main difference is that
correlation does not depend on mean value, variance and range, in the same
degree as contrast does. With contrast you cannot achieve the maximum value
without having both the lowest and highes possible gray-levels, and you need
to have a high variance. For correlation you can achieve both perfect positive
and negative correlation, even though the range of gray-levels in an image are
restricted. When we have already included mean and variance as first-order

84 CHAPTER 6. A SEARCH FOR FEATURES

(a) J(K1,K2) (b) J(K1,K3)

(c) J(K1,K4) (d) J(K2,K3)

(e) J(K2,K4) (f) J(K3,K4)

Figure 6.17: The Mahalanobis distances J , between each of the average GLCM’s.
Notice that d range from 1 in the top to 16 in the bottom. (e) is turned so that
i = 16 and j = 16 is facing out, while the other plots have the i = 1,j = 1
corner facing outwards. The color bar to the left of the plot indicates value and
range of the colors for each plot.

6.4. TEXTURE AND HIGHER-ORDER STATISTICS 85

statistical features, it makes sense to use features as de-correlated from them as
possible.

Energy has the function

Energy =

G−1∑
i=0

G−1∑
j=0

P (i, j)2. (6.17)

The function (6.17) means that the energy value will be high if there are only a
few values in the GLCM. That implies that the texture is uniform in some way.
It could either be that there are very high probabilities for a few gray-levels in
the image or that the transitions are very regular, mostly the same transitions.
In our case it will probably be the scenario with a very uneven histogram that
are most influential, as a regular pattern are more unlikely with an isotropic
GLCM, and especially in a biological setting. In other words it is very related
to the first-order entropy.

Entropy = −
G−1∑
i=0

G−1∑
j=0

P (i, j) logP (i, j) (6.18)

Entropy is related to unpredictability of a texture. It will have the highest value
if the probabilities are evenly distributed in the matrix. This feature is obviously
very related to energy in the image. It is a weighting function of the image with
weights = − logP (i, j), as opposed to the weighting function weights = P (i, j)
for energy. In other words they are quite strongly inverse correlated.

ClusterShade =

G−1∑
i=0

G−1∑
j=0

P (i, j)(i+ j − µx − µy)3. (6.19)

Cluster Shade has a very similar function to the first-order measure skewness,
especially since µx = µy, but it also has an effect related to its second order.
First-order skewness has a high absolute value, if it some few extreme gray-level
values, far from the mean and only on one side. For cluster shade to have the
highest values it needs to have a high skewness, but those extreme values also
have to be clustered together, so pixel pairs are picked within the cluster, and
both values are extreme. This could for example be used to detect black spots
on a bright background or bright spots on a black background.

It seems that correlation might be the best GLCM feature for our project,
as it is less correlated to our first-order features, but we may want to use several
features. We want to avoid using all the features, since they measure similar
aspects of the cell, they may only contribute additional noise. In Table 6.3,
we present a table with the correct classification rate achieved by each feature
alone.

We can again see that for each feature the discriminatory power is not af-
fected much by the distance parameter. None of the features are very good
measures, but contrast seems to be the most descriptive.

Adaptive Features

To see if it was possible to draw discriminatory power from the GLCMs, we de-
cided to attempt the approach suggested by Nielsen et al. [65], namely using the

86 CHAPTER 6. A SEARCH FOR FEATURES

Table 6.3: The correct classification rate achieved by each GLCM feature, mea-
sured in percent. The test was done on a randomly chosen part of the M51 set,
with a random forest classifier.

d Entropy Cluster Shade Contrast ASM Correlation
1 52.0 63.1 64.6 68.7 64.4
2 52.1 63.9 64.0 66.8 63.5
3 52.3 65.2 66.3 67.3 66.2
4 53.3 67.2 68.0 68.6 66.6
5 51.6 67.1 70.8 69.0 67.7
6 51.1 66.6 69.5 68.8 66.4
7 50.1 67.0 69.2 68.8 65.6
8 51.2 65.9 71.0 68.6 63.3
9 51.1 65.5 70.8 68.1 64.8
10 51.4 65.5 70.3 68.0 64.6
11 51.6 66.1 72.1 66.6 63.3
12 50.9 65.2 71.5 67.3 63.4
13 50.4 64.9 72.5 67.3 61.7
14 49.5 65.0 72.2 66.4 61.0
15 48.4 64.0 71.9 65.2 59.6
16 46.9 63.9 71.8 65.0 59.4
Average 50.9 65.4 69.8 67.5 63.8

Mahalanobis distance matrix as a feature weighting. We follow the exact same
procedure, except for deciding the cell, based on central and peripheral regions.
First we calculated the mean GLCMs for each class K = K1,K2,K3,K4,

P (i, j | K) =
1

NK

NK∑
n=1

Pn(i, i | K), (6.20)

where NK is the number of cells in K and Pn is the normalized GLCM for a
single cell. Then we computed the difference matrix

∆(i, j | A,B) = P (i, j | A)− P (i, j | B) (6.21)

where A and B are two classes, for all combinations of classes K1-K4. We used
the ∆ matrix to divide each GLCM into two regions, depending on whether
the corresponding value in the ∆ matrix were positive or negative. The division
was done to make sure that positive and negative differences did not cancel each
other out. Finally we could compute our distance matrix

J(i, j | A,B) = 2
(P (i, j | A)− P (i, j | B))2

σ2
P (i, j | A) + σ2

P (i, j | B)
. (6.22)

For all the 6 possible combination of classes, we then calculated two features,
as the sum over each of the regions, weighted by J2

F+ =
∑

i,j:∆(i,j|A,B)>0

Pn(i, j)J(i, j | A,B)2

F− =
∑

i,j:∆(i,j|A,B)<0

Pn(i, j)J(i, j | A,B)2.
(6.23)

6.4. TEXTURE AND HIGHER-ORDER STATISTICS 87

With the total of 12 adaptive features we tested the discriminatory power of
both the features individually and the combined set. The results from Table 6.4,

Table 6.4: A table of the CCRs from a random forest classification of the adap-
tively generated features. The lower left part of the matrix is the F− features,
while the upper right part is the F+ features. We found the adaptive features
by training on a random selected part of the M51, and these samples were not
included in this test.

High value
K1 K2 K3 K4

K1 60.9 56.3 49.2
K2 83.6 80.5 83.6
K3 77.4 68.0 75.8Lo

w

K4 77.4 65.6 47.6

illustrate that our adaptive features definitively provide better discriminatory
power compared to classical predefined features. The adaptive features will be
named after what distance they they are optimized for, and the first class will
be the one with the highest values. So adaptive GLCM (1 vs 2) means that we
summed the Mahalanobis distance between K1 and K2, where K1 had a higher
value than K2.

6.4.2 Cartesian Geometric Moments
It may be that different cell-types differ in how the DNA, or gray-levels in the
image, are generally distributed in the cell. Some cells may have most DNA
along the outer edges of the nuclei, while others have more of the DNA lumped
together in the middle of the cell. It may also be that some cells have the weight
of DNA away from the center of the cell, in other words a skewed distribution
of DNA. When measuring the distribution of DNA, much of the information is
obviously influenced by the cell shape. Since no DNA is outside the cell, the
cell shape defines a very distinct boundary for the distribution.

To specify some features, we treat the gray-level distribution in a cell as a
2D probability distribution P(x,y). Then we can use statistical methods to find
parameters for the shape of this distribution. As statistical measures of the
shape we can use moments, as we did in the section on First-Order Gray-Level
Statistics 6.3. We can define the Discrete Geometrical Moment as

mp,q =

M−1∑
x=0

∑
y=0

xpyqf(x, y), (6.24)

where f(x, y) is the gray-level value at index (x, y). We say that the moment
have order (p+ q). The problem with these measures is that they a not trans-
lation, rotation or scale invariant. They are basically a description of the dis-
tribution along the x and y axis and a combination of the two. In order to get
the moments translation invariant, we simply use the central moments

µp,q =

M−1∑
x=0

∑
y=0

(x− x̄)p(y − ȳ)qf(x, y), (6.25)

88 CHAPTER 6. A SEARCH FOR FEATURES

where
x̄ =

m1,0

m0,0
, ȳ =

m0,1

m0,0
. (6.26)

A set of scale and rotational invariant moments were introduced by Hu [42]. He
uses a combination of normalized central moments, defined as

ηp,q =
µp,q
µγ0,0

, (6.27)

with
γ =

p+ q

2
+ 1. (6.28)

Since the central moments depend on the size of an image and the gray-level
value, it is normalized by dividing by the sum over the whole image (µ0,0). As
µp,q is multiplied to a power depending on p and q, we also need to multiply
µ0,0 to a corresponding power, in order to get a truly scale invariant measure.
Hu proposed 7 rotation invariant moments based on the normalized central
moments, ηp,q.

φ1 =η2,0 + η0,2

φ2 =(η2,0 − η0,2)2 + 4η2
1,1

φ3 =(η3,0 − 3η1,2)2 + (3η2,1 − η0,3)2

φ4 =(η3,0 + η1,2)2 + (η0,3 + η2,1)2

φ5 =(η3,0 − 3η1,2)(η3,0 + η1,2)((η3,0 + η1,2)2 − 3(η2,1 + η0,3)2)+

(3η2,1 − η0,3)(η0,3 + η2,1)(3(η3,0 + η1,2)2 − (η2,1 + η0,3)2)

φ6 =(η2,0 − η0,2)((η3,0 + η1,2)2 − (η2,1 + η0,3)2)+

4η1,1(η3,0 + η1,2)(η2,1 + η0,3)

φ7 =(3η2,1 − η0,3)(η3,0 + η1,2)((η3,0 + η1,2)2 − 3(η2,1 + η0,3)2)+

(3η1,2 − η3,0)(η0,3 + η2,1)(3(η3,0 + η1,2)2 − (η2,1 + η0,3)2)

(6.29)

Later it has been developed methods for generating moment invariants of arbi-
trary order [57, 24]. However using moments of very high order will represent
very specific features in our data and with a huge variation between samples
of the same class, we will focus on finding more general patterns. We use the
inverse image, 1023 − f(x, y), so the outside mask will not be considered and
we get a more direct measure of DNA distribution.

When investigating the general effect of the Hu moments we found that they
all had values very close to zero. If the DNA were uniformly distributed in the
cell and the shape was close to elliptic we would expect that φ3 to φ7 would be
zero. We see that the effect of the DNA distribution is very small. From figure
6.19 we can se that φ1 do indeed have an effect and can separate K4 cells to a
certain degree, but this effect stems primarily from the morphological aspect,
and is very related to circularity, eccentricity andmax diameter. With a uniform
DNA distribution and a shape close to elliptic, we would have φ1 = 1

4π (ab + b
a),

where a and be are the major and minor axes, and this is indeed close to what
we observed.

We tried to do a classification based on each of the Hu moments. From
Table 6.5, we can see that all the features, except from φ1, showed no effect.

6.4. TEXTURE AND HIGHER-ORDER STATISTICS 89

Figure 6.18

Figure 6.19: Histogram over the first Hu moment φ1. The y-range of K2 and
K3 are cut, as they are irrelevant in this setting.

We also tested two slightly more intuitive measures, but related to the moment
based approach. We calculated the distance from the mass middle of the mask
to the mass middle of the IOD distribution, and called this features balance of
IOD. We also investigated the variance in distance from the mass middle of the
IOD distribution and the IOD of each pixel. For each pixel we calculated the
squared distance to the mass middle and calculated a mean, weighted by the
IOD of that pixel. Both features gave quite similar results to the ones obtained
by Hu moments. The balance of IOD seemed to give somewhat noisy results,
but for K4 the probability that the IOD is centered far away from the cell center
is greater in the elongated cells. Our variance measure obviously also gave a
very high value for K4 cells, as they tend to have DNA distributed far away
from the center. We kept the balance of IOD measure, because it seemed to
be able to separate some K6 cells, over-segmented, overlapping or with foreign
objects. We finally tested Zernike moments [79], where we projected our cell
images onto a set of the 15 first Zernike basis functions. We used the center
of mass of the cell mask as center and a radius equal to the the average of the
major and minor axis of the cell. Classification of a part of the M51 dataset
showed that each of the 15 features had between 25% and 55% CCR by them
self, and combined either with gradient boosting or linear discriminant analysis

90 CHAPTER 6. A SEARCH FOR FEATURES

Table 6.5: Classification result for each separate Hu moment on the M51 dataset.

CCR
φ1 63.8
φ2 25.0
φ3 25.0
φ4 25.0
φ5 25.0
φ6 25.0
φ7 25.0

only gave a total CCR of about 58%.
From our measures it seems to be little information regarding the general

distribution of DNA in the cell, that is strongly related to the class labels. The
main reason for the lack of relevant information is most probably due to the
way monolayers are prepared. As the images are projections of 3-D nuclei. If
for example some cells tend to have most DNA far from the cell center, this
DNA will still be projected at the center in our 2-D image. In this scenario we
would still expect more DNA to be found along the edge of our projected cell,
but the effect would be much smaller. Of course there could also be a tendency
that DNA clustered in some part the cell, so the balance could be relevant, but
even this effect could be weakened by the projection. We also have to note
that all our methods have depended heavily on the cell shape, and therefore the
information may be buried in noise from that shape. Perhaps we could still find
relevant information either by using a peel-off-scanning, similar to the methods
applied in [60], or by for example using a geometric transform to standardize
the shape, and then for example use Zernike moments of the transformed data.

6.5 Granularity

Granulometry features can be used as a texture measures and detect grainy
patters, they measuring how much is removed by doing morphological gray-
level openings for different sizes of structuring elements [16, 17]. This attempt
were not very successful and we found that a very simple feature gave the same
separability, namely the sum of the Laplacian of the image. We only use the
central 70% of the cell nuclei to calculate the features, so the cell boundary will
not affect the result. The laplacian ∆2f is obtained by convolving the image
with the 2D kernel: 0 1 0

1 −4 1
0 1 0

 (6.30)

Our feature sum of Laplace is then simply the sum of ∆2f over the region
corresponding to the central 70% of the nuclei. The sum of the Laplacian could
also be used as a focus measure.

6.6. SUMMARY 91

6.6 Summary
In this chapter we evaluated the discriminatory effect of different features. We
tried to encompass as many aspects of the cell images as possible, but still be
restrictive in our selection of features. We found that morphological features
provide quite good discrimination between the classes K1-K4. Many of these
features is related to either cell area or the eccentricity of a cell. We did not
include eccentricity, minor axis length or the skeleton length as features, as
they proved more susceptible to noise, but still very related to many of the
other included features.

The GLCM approaches seemed to capture more information than features
only based on the gray-level histogram. The location or more broad distribution
of DNA in a cell nuclei seemed to be more or less unrelated to the class labels.
For the classification we chose to use: IOD, circularity, maximum diameter,
eccentricity, area, perimeter, convex hull deficiency, concavity depth, bending
energy, longest flat line, jaggedness, symmetry, adaptive GLCM features, GLCM
contrast for d = 12, GLCM ASM for d = 4, mean gray-level, gray-level variance,
gray-level skewness, gray-level entropy, Hu moment φ1 and balance of IOD.

Many of these features are closely related, but as the classification algo-
rithm employ a rough feature selection procedure, correlated features is less of
a concern.

The computation of the features is primarily done i Python with the use of
Numpy [83]. We also use OpenCV [45] for 2D filtering, contour detection, fitting
ellipses and morphological operations. For visualizations we use MatplotLib [43]
and for the 3D visualization of the GLCMs, we used Mayavi [72].

92 CHAPTER 6. A SEARCH FOR FEATURES

Chapter 7

Classification

In this chapter we will give a short discussion concerning our choice of clas-
sification model. We will also provide some details of our chosen methods of
classification, and discuss some of the parameters we can tune in order to adapt
the models to our problem and the effects of adjusting these parameters. Our
interpretation is primarily based on the descriptions in [8, 29, 30, 66] and the
chapters 9, 10, 15 and 16 in the book [39].

7.1 Choosing a Method of Classification

The aim of our classification method is to find a function f(xi) that predicts a
variable yi from a vector xi. For our application this means that we want to find
a function that estimates the class, based on a number of features, calculated
from the cell images. We estimate f with the help of a set of data were we know
both xi and yi, in other words supervised learning. The problem is then to
choose a method of estimating f , so that it predicts yi as precisely as possible,
also for a new set of samples {(x1, y1), (x2, y2), ..., (xN , yN)}. The method that
works best is obviously dependent upon the dataset, but it often comes down
to how complex pattern a model should allow. Throughout the literature there
have been suggested a wide range of methods, and we will discuss some of them,
based on different aspects of or project.

7.1.1 Intuitive or Black Box

There are many examples of advanced classification models that create much
more complex decision boundaries than humans could do. A Neural-Net (NN)
or a Support Vector Machine (SVM) [85] can create arbitrary decision bound-
aries in a high-dimensional space. The problem is that it is also very difficult to
understand for humans, how these models work, why misclassifications happen,
and what could be changed in a model to improve the result. They are what
we could call black box approaches, as we put data in, get a classification result
out, but have little understanding about the decision process. In some applica-
tions human understanding is not of high priority. If there is little information
about the underlying mechanisms, the relationship between the features is very
complicated and we are not looking for a better understanding of the decision

93

94 CHAPTER 7. CLASSIFICATION

mechanisms, a black box approach could be a good solution.
When we want to filter our data sets, we know that the training labels can

be unreliable. With a black box approach it would be very hard to dispute the
labels since we do not know how the decision was made. This could of course
be improved by creating a very good training set, but that would be a very
extensive procedure and not in our power to do, as we lack the expertise to
create such a set. Another important issue that makes the use of a black box
model problematic is the importance of the outliers. In our case we cannot
simply remove the outliers as they may be important as prognostic information.
With a black box approach it would be very hard to make sure that those cell
images were kept. In our filtering problem we also have quite good information
about the cells we want to remove, an important part of the problem is really
where the thresholds should be set. We therefore decided to first attempt to
use simple thresholding to filter out K6 cells. This means that the strictness
and relative importance of different features can easily be chosen by experts,
depending on different situations. We also attempted to make a very specific
set of features directed towards some of the categories of cells contained in the
K6 class, described in section 2.4.6, as this makes the procedure as intuitive as
possible. An important aspect of this is obviously also that it can ultimately
result in a solution that can outperform the manual filtering. This approach is
described in detail in chapter 5.

Using a simple classification procedure will most likely result in a lower
estimated accuracy, but the value of an easily interpretable model may outweigh
the value of lower accuracy for the filtration task.

The classification of the cell types is a quite different situation. The labeling
for this problem is more reliable and at least without education in pathology
or molecular biology we can probably not make much sense of the underlying
mechanisms. If we find that a certain class tends to have a certain size, shape
or texture, we do not have the expertise to use or dispute that information. We
could for example not say whether a feature really is representable for a class or
if this is just a coincidence, based on such information. When we additionally
seem to need a quite complex classifier to find an appropriate decision boundary,
this makes a better case for a more black box approach.

7.1.2 Scaling

In classification methods like Maximum Likelihood, Nearest Neighbor and Sup-
port Vector Machine [14, 73, 78], the effect of the relative scaling between fea-
tures is potentially huge. Classification methods that use Euclidean distance to
find the decision boundary will all be affected by the relative scale of features.
The features with a large scale would give a much higher contribution to the
distance, which gives them more influence on the finial result. The problem is
that the initial scaling of the features is quite arbitrary in our case.

An easy way tackle the scaling problem could be to scale all the features to
a given range or to scale it to a given standard deviation. The problem with
these approaches is the outliers. Features where outliers have extreme values
will get very compressed and the distance between the inliers on this dimension
could end up very small. Then we are essentially left with features that only
contribute to separating out the outliers, but have little effect on the inliers.
This problem is further complicated when we use a feature to help separating

7.1. CHOOSING A METHOD OF CLASSIFICATION 95

multiple classes. For example area is very helpful in separating K1, K3 and K3.
K2 and K3 have quite small average difference in area between them, but as
their variation in area is also very small, they can still be quite well separated
based on this features. K1 cells on the other hand are averagely much larger
than K2 and K3, but the variation in cell size is huge. If we scale this feature
based on the combined standard deviation, the difference between K2 and K3
will be very small in Euclidean distance as the total standard deviation is huge.
Therefore area may count very little compared to other features, even though
it may be the feature with best separation.

Figure 7.1: A histogram over the area for K1, K2 and K3. All the samples are
taken from the M51 data-set. To the left we can see the unscaled distribution,
while on the right is normalized to have mean of 0 and standard deviation of 1.
The two distributions obviously looks similar, but we can se that the difference
between K2 and K3 is only about 0.5 standard deviations on average. This
means that this difference may have very little influence on for example an
optimal margin classifier such as SVM or a KNN classifier. Still we can see
that the two classes are in fact perfectly separated on this feature.

We could instead utilize the relative scaling to intentionally influence the
importance of different features. We actually tested this with an evolutionary
approach; a search for the optimal scaling of the features. Unfortunately we
found that this easily led to an overfitting to the different test set. Each training
set gave very different scaling and as this process was immensely time consuming
we discarded this approach. Instead we focused our attention on classification
methods that worked independent of the relative scaling of the features and only
focus on the separability.

7.1.3 Features

Features are the basis for the classification and if two samples of different class
have exactly the same feature values, there is no way for the classification model
of separating the two. In other words, we need to use enough features to capture
the differences between the classes. The ability to separate classes increase
with the number of features, but for each feature added we will also add noise,
as we have no features that measures differences between classes directly. A
feature may contribute little or no information to a model, either because that
information is already accounted for by other features or the feature is irrelevant

96 CHAPTER 7. CLASSIFICATION

Figure 7.2: An artificial dataset with two groups, randomly generated from two
gaussian distributions. Both groups are generated from distributions with a mean
of 1 and a standard deviation of 100 on the x-axis. On the y-axis both distribu-
tions have a standard deviation of 1, but the distribution that the green circles
are generated from have a mean of 3, while the blue triangles are generated from
a distribution with a mean of 1. The red line is the decision boundary found by
a SVM with a linear kernel and C = 1.

to the class label. If we add irrelevant features, we add noise but no information.
With increased noise our model can easily fit that noise, an loose generalizability.
Such a scenario, where the model fit to the noise is called overfitting.

With higher dimensional feature-space, on can end up in a scenario where
very few samples decide the decision boundary in a region, as the size of the
features-space increase dramatically for each added feature. This effect is usually
referred to as the curse of dimensionality. In figure 7.2 we illustrate how a few
samples can affect the decision boundary, when an irrelevant feature is added
to the model. From this figure we can also see how the irrelevant feature is used
even though the true distribution for that feature only contain noise.

Bias Versus Variance

The balance between the getting a good discrimination and the ability to gener-
alize from a restricted training-set, can be viewed in terms of bias and variance.
For a very restricted model, with small degree of freedom, it may be parts of
the data that is inseparable as we lack some information for describing the class
differences. This remaining part of errors that we cannot improve regardless of
how perfect a training-set we have, can be called bias. A very complex model,

7.1. CHOOSING A METHOD OF CLASSIFICATION 97

with high degree of freedom, may on the other hand include more information,
and therefore have the opportunity to come much closer to the perfect result.
It will also be able to fit the individual differences in the training-set better and
therefore the result will vary much more depending on the training-set. The
variance of a model is then how much the results vary, depending on a given
training-set. The total error of a model will then be a sum of the bias and the
variance.

Feature Selection

To keep a model from falling under the cures of dimensionality, it is often applied
some sort of feature selection procedure. These procedures can be view as a sort
of simplified classifiers. If the classifiers are restricted in some way, they will
only have opportunity to fit to the most discriminatory effects or features, and
these strongest effects are less likely to be caused by a coincidence.

A simple way of feature selection, is to simply evaluate the discriminatory
effect of each feature individually, judged on some criterion, and then choose the
best scoring features. This strategy is a great in order to avoid overfitting, but
it completely ignore interaction effects between features. A feature may have
little or no discriminatory effect by itself, but have a strong effect in combination
with other features. In figure 7.3 we illustrate how two features can have no real
discriminatory effect by themselves, but still have a great effect when combined.
When only considering features individually one will also face a problem that
often prove even worse, namely that many features of the features may correlate
and therefore provide little additional information.

Figure 7.3: An extreme example of interaction effect, where the features have as
good as no discriminatory effect by themselves, but together can provide perfect
discrimination.

Another approach is to consider the discriminatory power from subsets of
features, where the extreme approach is to use the brute force solution and
evaluate the discriminatory power of all possible subsets of features. To best
separate the training-set, the best subset would of course be to use all features.

98 CHAPTER 7. CLASSIFICATION

Therefore it is common to decide the decision boundary using a training-set, and
evaluate the sets of features using a validation-set. The brute force solution will
find the optimal set of features for a validation-set for a given a training-set, but
is very computationally intensive. More common procedures is therefore to use
iterative forward or backward selection, where the feature that provide the best
additional separation is added or the feature that provide the least separation
is removed. This is done iteratively until either a certain number of features is
added or removed, or separability of the validation set is no longer improving.
By using one of these iterative techniques, the problem of picking only highly
correlated features may be avoided. As only one feature will be removed or
added at one time, interaction effects like the one illustrated in 7.3, may still
easily be missed. The situation where the scope of a greedy approach is to
small to capture an effect, and therefore choose a suboptimal solution, can be
referred to as a nesting problem. In the literature there have been suggested wide
variety of solutions to this problem, for example by stepwise forward-backward
selection, where it is possible to both add and remove features for each iteration,
[35]. How nested features may affect gradient boosting and random forests will
be discussed in section 7.5.

Regardless of features selection procedure, using many features will still in-
crease the probability that irrelevant features are chosen by coincidence. With a
training- and validation-set it means that the feature would have to have similar
effect on both sets by a coincidence. Schulerud and Albregtsen demonstrated
in a simulation study [76] how the probability for selection the relevant features
decreased with the number of added feature candidates, and how the added
features demanded more training-samples in order to average out the effect of
the added noise.

All this suggest that we have to limit the set we include in our model at
the very beginning, but if we are excluding features by merely looking at the
training-data we are not necessarily doing any better than a feature selection
algorithm and are exposed to the same effects. What we can do is to avoid
including features that are obviously correlated as this would make us exposed
to all the dangers of added features, but probably provide little additional in-
formation.

7.2 Classifictation and Regression Tree

We decided to base our classification on a decision tree. For our purpose this
gives us several advantages. The whole scaling process becomes irrelevant, as
each step in the training procedure sets a threshold that does not depend on
distances in features space. Feature selection also becomes less essential with
this tree based approach, since a greedy selection procedure is already built into
the algorithm. For illustration purposes we trained a simple classification tree
in figure 7.4.

With a decision tree we group samples together into regions, by their values
in the vector x. All samples in one such region will get the same value for the
estimation of y. So for a given tree we have a number of regions R1, R2, ..., RJ ,
and we have a estimated value for each region γ1, γ2, ..., γJ . The tree is then

7.2. CLASSIFICTATION AND REGRESSION TREE 99

Figure 7.4: An example of a classification tree for filtering out K6 cells. The
depth of the tree is restricted to two, just to limit the size of the figure. The
elliptic node are the leaf nodes and determine the finial class of a sample. A
sample ending up in a node with a gray background will be kept, while a sample
ending up in a white node will be classified as a K6 cell and therefore removed.

defined as a function of xi

T (xi; θ) =

J∑
m=1

γmI(xi ∈ Rj , (7.1)

where θ is the set of p all the regions and values θ = Rj , γj
J
1 . For regression the

estimate is just the value of T (xi; θ) directly. For binomial classification it is
common to use f(xi) = sign(T (xi; θ)), for multinomial classification we create
one tree for each class T1, T2, ..., TK and our estimate is then

f(xi) = arg max
k

Tk(xi; θ). (7.2)

7.2.1 Splitting the Population
A decision tree is created by iteratively splitting a training set into subsets, until
each subset contains only one class or the subset size is appropriately small.
Each leaf node will then represent one class, given by a voting strategy. The
challenge, when training a decision tree, is therefore to find the best thresholds
for splitting the population. There are several different variants of decision trees
[71], but we focused “Classification and Regression Trees” suggested by Breiman
et al. [66].

To find optimal thresholds can obviously be time consuming, so the search is
simplified by using a greedy strategy. For each step we can simply search through
all variables and possible splits and decide on the best one. To decide the best
split we need some way of evaluating the quality of the split quality. For both
classification and regression purposes there exists a variety of such measures;
termed impurity measures for classification and criterion of minimization for
regression problems.

Classification

Perhaps the simplest measure for classification is the misclassification rate. If
pm,k is the proportion of samples of class k in a subpopulation m, then the

100 CHAPTER 7. CLASSIFICATION

Figure 7.5: Displaying how different values of p is valued with different impurity
functions. Copied from the book [39, pp.309].

misclassification rate can be calculated as the proportion of samples in the
population, that is not in the most common class. The misclassification rate
can then simply be expressed as,

Qm = 1−max
k

pm,k. (7.3)

The split with the highest quality will be the one with the lowest sum of (7.3)
for each of the subpopulations, lets call them L and R,

ϕ = QL +QR. (7.4)

The Gini Index (7.5) and Entropy (7.6) are other impurity measures.

Qm =
∑
k

pm,k(1− pm,k) (7.5)

Qm =
∑
k

pmk log pmk. (7.6)

The main difference from the misclassification rate (7.3) is that entropy and
the Gini index will value cleaner splits relatively higher. By cleaner splits we
mean splits where one of the subpopulations have a very low misclassification
rate.

Minimizing the entropy can also be interpreted as choosing the variable
and threshold that contains the most information. If the class labels were not
assigned by majority vote, but instead were assigned with probability pm,k the
Gini index would be the estimated misclassification rate. If you are at a non-
leaf node, the probability of being classified correctly is indeed related to the
class distributions, pm,k. The Gini index is sensible as the impurity measures
are primarily relevant in non-leaf nodes. In [91], Zambon et al. compared the

7.3. BOOSTING 101

effects of different impurity measures. For their data, the Gini index gave the
best result, but they also emphasize that the effects were small.

Regression

For regression problems we do not have the same concerns about the quality
measure of a split and we can simply use the mean squared error. If Rm is a
region from a subpopulation in a split, then we have the quality measure of a
the region

Qm =
∑

Xi∈Rm

(yi − f(xi))
2. (7.7)

The quality measure of the split is then calculated the same way as for a clas-
sification problem with equation (7.4), as the sum of the quality measures for
the two regions.

7.2.2 Pruning the Tree
The splitting process could continue until a node only contained one sample.
This would make the model fit the training set perfectly, with no classification
error. In most circumstances such a perfect fit of the training set is not wanted,
as it would almost certainly lead to overfitting and therefore poor generalization.
We would like to reduce the complexity to avoid overfitting, but not still keep
the most relevant information. We could choose to stop the splitting if the gain
in accuracy is not high enough. The problem with this approach is that one bad
split, may give great splits further down the tree. In other words, the problem
of balancing cannot be solved by a stopping rule alone. A better alternative is
to always split to a given subset size and then prune the tree afterwards.

For pruning procedure we use what is termed minimal cost-complexity prun-
ing, presented in [66]. The idea is to first grow a large tree, which we call Tmax,
and then find the best tree T ⊂ Tmax, where T can be any subtree of Tmax.
Nm is the number of training samples in the subtree Tm and |T | is the number
of leaf nodes in T . A cost complexity criterion is then defined as

Cα(T) =

|T |∑
m=1

NmQm(T) + α|T |. (7.8)

We then want to find a subtree T ⊆ Tmax, for a given α that minimize the cost
function Cα(T). The alpha becomes parameter for adjusting the balance of a
complex tree with high bias or a small tree with high variance. α decides to
what extent you want to take the tree size into account. α = 0 will result in
Tmax as the impurity measure will get better or equal for each split. To find
the best possible value of α we can use a grid-search in combination with cross-
validation, as with a separate validation we avoid the problem that a bigger tree
is always better [39].

7.3 Boosting
Boosting is a very popular machine learning technique and is used in many fields
of research [15, 18]. A classification algorithm based on the boosting principle

102 CHAPTER 7. CLASSIFICATION

often have strong predictive power and is relatively easy to use as an out-of-the-
box classifier. It is a way of combining multiple “weaker” classifiers into a more
powerful model. There are other methods for combining multiple classifiers into
a stronger learner, but boosting stands out in the way in which it changes the
distribution in the training set before training a new classifier. The distribution
change is created by weighting the wrongly classified training samples more than
the correct classified ones.

For our project boosting proves a convenient way of increasing the predictive
power of decision trees, while still keeping the main advantages in that we do
not need any scaling and that we have a built-in method of feature selection.

As for other classification methods we have a set of training samples (xi, yi)
for i = 1, 2, ..., N and we want to find a function f , that maps xi to yi,

f(x) = y.

For a two-class classification problem, all samples with a negative value of f is
classified to one class, and those with a positive value is classified to the other.
For a multinomial classification problem with K number of classes on the other
hand, we fit K functions fk, on for each class. We find the label a sample to the
class with the highest function value,

G(x) = arg max
k

fk(x).

We describe f as sum of basis functions

f(x) =

M∑
m=1

βmb(x; γm), (7.9)

and boosting is a way of fitting the basis functions. M is the number of basis
functions, so m = 1, 2, ...,M and βm and γm are the coefficients to be fitted.
They are fitted with the help of a loss function L,

(βm, γm) = arg min
β,γ

N∑
i=1

L(yi, fm−1(xi) + βb(xi; γ)). (7.10)

This is a sum of the loss function over all the training samples, and N is the
number of samples in the set.

7.3.1 Loss Functions

For a boosting algorithm to work, it is essential to value misclassified samples
more than correctly classified samples. The loss function determine how those
samples are weighted as a function of the margin. By margin we mean the
how “far” the sample where from being labelled to another class, if the sample
were misclassified the margin will be negative. With a two class classification
problem we calculate the margin simply as y · f(x), where y is either 1 or -1.
For multinomial classification we still want to get a measure of how wrong or
how correct a sample were classified. In this situation we calculate the margin
in the exact same way, but we only use the the function f , corresponding to the
correct class y of the sample.

7.3. BOOSTING 103

Two of the most common loss functions are exponential and binomial de-
viance. The exponential loss function is a built-in part of the widely used Ad-
aBoost algorithm, developed by Freud and Schapire [26]. The details concerning
how the loss function works were discovered later, with a slightly alternate inter-
pretation of boosting. Friedman et al. [29] showed that the AdaBoost algorithm,
can be interpreted as a additive model using the following loss function

L(y, f(x) = exp(−yf(x)), (7.11)

and that the expansion produced by AdaBoost is estimating half the log-odds
of

P (Y = 1 | x),

by applying the algorithm to the population joint distribution. The binomial
deviance loss function gives the exact same result for the population joint dis-
tribution, but they differ when applied to a limited training set. The binomial
deviance function

L(y, f(x) = log(1 + e−2yf(x)), (7.12)

can also be adapted to a multinomial problem. We first map f to a probability
function

pk(x) =
efk(x)∑K
i=1 e

fi(x)
(7.13)

and get the multinomial deviance loss function,

L(y, fk(x)) = − log py(x), (7.14)

if y corresponds to k; otherwise we need a mapping function.
The main effect of these loss functions is that exponential loss, weights the

misclassified samples exponentially as a function of the margin. This means
that samples that are classified very wrong get a very high priority in the next
iteration of the algorithm. Deviance loss on the other hand weight the misclas-
sified samples linearly as a function of the margin. This means that extreme
mistakes are weighted relatively less. Both functions are quite similar in how
the weight the correctly classified samples for the next iteration. The different
weighing for these and other functions are illustrated in figure 7.6.

A problem with the the exponential loss is that it can give a somewhat
unstable result. Its high weighting on large negative margin will make the
algorithm vulnerable to outliers and noise in the data. In fact an empirical study
published by R. Maclin et al. [53] confirms that AdaBoost can yield unstable
result for noisy data. Sano et al. demonstrate how AdaBoost is especially
vulnerable to miss-specification of labels and that only a 2% miss-specification
rate can give a drastic decrease in performance [74] (see figure 7.7).

7.3.2 Gradient Boosted Trees

One of the main reasons for choosing an exponential loss function is conve-
nience, but for the current study it might be beneficial to use the slightly more
robust deviance loss. To implement that loss function we need a slimly more

104 CHAPTER 7. CLASSIFICATION

Figure 7.6: An illustration of how the negative margin is weighted much higher
with exponential loss. Source [39].

(a) (b)

Figure 7.7: Plot (a) show the training and test error of standard AdaBoost
algorithm without mislabeled data. Plot (b) show training and test error for the
same algorithm, but with 2% mislabeled data. Sano et al. demonstrates with this
figure the drastic decrease in performance of AdaBoost with a small percentage
of mislabeling. Copied from [74].

7.3. BOOSTING 105

cumbersome, but more general approach. A general boosting tree model can be
described as the sum of the trees,

fM (x) =

M∑
m=1

T (x; Θm). (7.15)

When training the model a tree is fitted, for each iteration, by estimating its
parameters Θ̂m. Θ̂m is found by

Θ̂m = arg min
Θm

N∑
i=1

L(yi, fm−1(xi) + T (xi; Θm)) (7.16)

With an exponential loss function this minimization problem is easily solved,
without the need for the Gradient Boosting technique and steepest decent. The
main advantage of the Gradient Boosting technique is the ability to adapt the
algorithms to any differentiable loss function quite effortlessly [30]. Indeed, for
the deviance loss function, the minimization problem (7.16) cannot be solved
readily, and gradient boosting proves useful.

The idea of Freidman’s approach [30] is to find the gradient of the loss
function gm, with respect to f at the points of the samples,

fm = [fm(x1), fm(x2), .., fm(xN)],

gm =

[
∂L(y1, fm(x1))

∂fm(x1)
,
∂L(y2, fm(x2))

∂f(x2)
, ...,

∂L(yN , fm(xN))

∂fm(xN)

]
.

Then we could “move along” the negative gradient, as we know that this is the
shortest way to reduce our loss function. In other words, a way to decrease L,
with the least change in f . This means that we can update f iteratively, by
adding the scaled negative gradient,

fm = fm−1 − pmgm−1,

where pm is the scaling that determine how far we move along the gradient.
The problem now, is that the vector f and the gradient g are only defined at
the sample points, xi, and we obviously want to build a classifier that can label
new samples. An important idea proposed in [30], is that we can fit a regression
tree to the gradient, the same way that we would normally fit f to the sample
points. Then we can easily fit the tree by least squares

Θ̂m = arg min
Θ

N∑
i=1

(−gi,m − T (xi; Θ))2. (7.17)

In the proposed algorithm they do not actually move exactly along the gradient.
The gradient is only used to find the regions Rj,m, in other words what part of
our function, f , that move in the same direction. A further adjustment to is
made to the direction, when the the value of each region is set, by minimizing
a loss function for each region in the regression tree,

γj,m = arg min
γ

∑
xi∈Rj,m

L(yi, fm−1(xi) + γ),

106 CHAPTER 7. CLASSIFICATION

where γj,m is the estimated value of fm in region Rj,m. The estimated function
at iteration m is then

fm(x) = fm−1(x) +

Jm∑
j=1

γj,mI(x ∈ Rj,m),

where Jm is the number of regions for this iteration. We now have the complete
approach:

1. We start of with and initial guess f0

2. fit a tree to the negative gradient with (7.17)

3. do a line search for values of γ for each region, to minimize the loss function

4. update our current function f , with 7.3.2

Step 2-4 is repeated for a given number of iterations M , and our final model is
fm. This approach can now be used for a number of loss functions, as long as
they are differentiable. The gradient for the multinomial deviance loss (7.14)

∂L(yi, fk(xi))

∂fk(xi)
=

{
1− pk(xi) yi = k

−pk(xi) yi 6= k
(7.18)

To get the best possible result, and adapt this method to our purpose we have
to decide a number of meta parameters.

7.3.3 Important Parameters
There are several ways of tuning the algorithm to find the right balance between
bias and variance for a given application. The two most obvious is the number
of trees created and the depth of trees. As each iteration is weighting the errors
the most, the classification should adapt more to the training set for each tree
added. By restricting the number of iterations we can keep the model from
overfitting to our data. In the same way, we can restrict the depth of the tree,
and prevent it from growing too complex. A complex tree can adapt to noise
in the data and therefore get overfit. In other words, they are both parameters
for regulating the bias versus variance trade-off.

In [39], they point out that the tree-depth are related to interaction effects
in the data. Each tree can tap into interaction effects with degree one lower
than the tree-depth. It is therefore suggested that the tree depth should be
related to the expected interactions in the data. Hastie et al. [39, pp.361–363]
and Friedman [30] found that a tree-depth of 2 (only one split and two terminal
nodes), work best in some situations, and that a tree depth of 4-8, works well in
most situations. With a depth of 2, a tree can only account for main effects of
the features, so the combined model cannot solve XOR-type problems. So for
the appropriate data this could be a good way of preventing overfitting. Smaller
trees will also give more of the power to the gradient of the loss function. In
the extreme case were each training sample have its own terminal node, the
gradient would have no effect, as its only effect is in how to group samples
together. Friedman is there for suggesting to keep the trees small and regulate
overfitting by adjusting the number of iterations [30]. This can be done by

7.4. RANDOM FORESTS 107

applying a validation set under the training procedure, and stop iterating when
the validation error flattens out or increase. Another parameter for regulating
the complexity of the fit, is the shrinkage parameter v. We can control the rate
of learning by scaling the contribution of each tree by with a value 0 < v < 1.
The model can benefit from the smoother decision boundary created by many
iterations, but with a downscaled contribution of each tree, the model can find
a local optimum for the decision boundary very fast, and more iterations only
contribute to overfitting. A lower v, can allow more iterations without overfitting
the model, but this will of course increase the need for computational power.
Friedman found with empirical experiments, that a low value of v and a high
number of iterations can indeed be very beneficial in terms of testing error [30].

7.4 Random Forests

Random forests [8] is a very popular method for classification and regression.
They can accomplish similar result as with boosting algorithms [39], and some-
times even outperform them [55, 88]. A fact adding to their popularity is that
they are easy to understand, tune and parallelize. They are additionally much
faster than boosting. In other words fast, easy and efficient.

The main concept of random forests relies on bagging. Bagging in terms of
machine learning, means that you train multiple classifiers on special subsets of
the training samples. The subsets are created by drawing N samples with re-
placement from the whole population of samples. The final classification result
is then obtained by a majority vote among all the classifiers. Such a procedure
helps to average out high variance of classifiers, to create a more robust clas-
sification model. This is an excellent strategy for high variance classifiers like
classification tress.

A problem when using “bagged” classification trees is that the trees have a
tendency to correlate. The same features are strongest across many different
subset, and are therefore selected first. With high correlation among the trees,
the high variance outcome persist. Breinman suggested to alleviate this problem
with the introduction of random forests. The idea is then when the decision trees
are trained, a subset of features is randomly selected and the node can only
split based on that subset. In that way the trees are forced to choose different
features, and in that way they are de-correlated. The correlation between the
trees can be controlled by adjusting the size of the subset of features available
for each node. The de-correlating effect is obviously zero when the subset is
equal to the set of features. By reducing the number of features available at a
node, the correlation can be decreased, but each tree also loose predictive power.
It is therefore important to find the right balance between predictive power and
correlation. Test indicates that smaller data set benefit from having very small
subsets (1-4 features), while larger data had better effect of more features [8].

7.4.1 Important Parameters

The number variables considered at each tree node is one parameter we can
adjust in order to adapt the algorithm to suit our needs. As with gradient
boosted trees, we can restrict the number of trees in our model, but this has
a slightly different effect for random forests. As the number of trees grows,

108 CHAPTER 7. CLASSIFICATION

the model does not continue to get more overfit. As a result of this, adding
more than a certain number of trees will have very little effect. In two examples
provided by Hastie et al. [39, pp.589–591], they show that the test-error stopped
improving after about 200 trees were added. To adjust the complexity of the
decision boundary we therefore mainly have to adjust features considered at
each node and the maximum depth of a tree. Breiman suggests to keep the tree
complex with little or no restriction in terms of tree depth, reduce the number
of features to a very small set and to use a huge set of trees [8].

7.5 A Nesting Problem

Friedman et al. describes boosting procedure as greedy forward stagewise fitting
[29]. Only from this short description one can sense that the algorithm have a
nesting problem. The selection of the first feature will influence the weighting
of the samples and can therefore affect the selection of all other features. As the
features are chosen greedily, it is easy to imagine how nested features like the
ones presented in figure 7.3, will never be chosen, despite their combined dis-
criminatory effect. Buja argue as a comment in [29], that the suboptimal feature
selection is indeed why boosting is very robust against overfitting. Investigating
the interaction between two features is in many ways similar to investigate a new
feature. With the power of combinatorics we can easily see that there are enor-
mous amounts of possible interactions even for quite small number of features.
Since Holte illustrated that for most common datasets, there are no complex
interactions [41], it may be that using elaborate feature selection schemes can
do more harm than good, for many applications. The importance of feature
interactions do of course depend on the feature generation process. If we use
specific high-level features it is unlikely that features that have very little dis-
criminatory effect individually, will have have a large effect in combination with
other features.

For the Random Forest algorithm, the selection of the first features will
not influence he selection of features in other trees. With semi-random feature
selection it can pick features that appear bad when only the impurity measure is
considered. As the discriminatory power of an individual feature still influence
the selection, the effect of the randomness will be average out, an the algorithm
is still left with a nesting problem. Using deep and pruned decision trees for the
Random Forest might remedy the nesting problem slightly. With deep trees and
small subsets of features to choose from, the probability of choosing a feature
with little individual discriminatory power is relative large. When the tree is
pruned, bottom up, the interacting features are likely to be kept.

7.6 Partial Dependence Plots

With complex classifiers as gradient boosting or random forests it could be
difficult to interpret the model and get an impression of the decision boundary,
when we use more then 3 features. For intuition we are limited to 3 dimensions,
so we need some way of viewing the decision boundary for only a subset of the
features at the time. So we want to investigate a subvector xS of the input
variable x. We could of course hold all the values in the complement vector xC

7.7. DECISON ON CLASSIFICATION MODEL 109

constant. Then we find a cross section of the decision boundary f(x), but the
cross section does not necessarily provide any relevant information. However
in the case where the effect of xS are purely additive, the cross section would
be accurate. So if we use a tree with maximum depth of 2, we could actually
just do a cross section. To investigate more complex decision boundaries, with
interaction effects, we could use the partial dependence, of f(x) on XS . This
means that we average over the complement xC ,

fS(xS) = ExS
f(x). (7.19)

This gives us a way to find the average effect of a set of features. High partial
dependence for some values, means that samples with those values are more
likely to be classified to the given class, by the given classification model. In
other words, samples in figure 8.1d, with a low circularity value are more likely
to be classified to the K4 class.

7.7 Decison on Classification Model
We choose to use ensembles of decision trees, as ensembles like boosting or
random forest, can give a better bias versus variance tradeoff than decision
trees alone. Decision trees are suitable as base learners as we avoid the problem
of scaling features and get a built-in feature selection. By restriction of the
tree depth we can avoid problems with the curse of dimensionality, although
irrelevant features will still reduce the probability of choosing the best subset of
features.

From chapter 10 and 15 in [39], Hastie et al. found that gradient boosting
generally outperformed random forests and other classification models. Caruana
et al. [11] also found that boosted trees out performed random forests, but only
when properly tuned. A comparison of [18] on the other hand, may indicate that
bagging techniques such as random forests can outperform boosting algorithms
under noisy conditions. As we could not find a definite choice for the best
classification algorithm we will evaluate the performance of both a gradient
boosting approach and a random forest. For the Classification Trees in the
Random Forest we will use the Gini index, from equation (7.5), as the Qm
measure. The Gradient Bossted regression trees, will on the other hand use
mean squared error, from equation (7.7), as the Qm measure. The trees will
not be pruned as this is not recommended for random forests [8] or gradient
boosting [30].

For both random forest and gradient boosting we use the implementations
provided i the open source project Scikit-learn [68].

110 CHAPTER 7. CLASSIFICATION

Chapter 8

Results and Discussion

In principal result and discussion should be kept separate, so one can easily
distinguish between facts and opinions. As our results are so extensive, we find
it useful to interleave the two, to improve readability. The section concerning
the feature value thresholding is inherently difficult to separate, as we do not
use an objective thresholding technique, but visual inspection. We have stated
our results clearly in tables, as to leave no doubt concerning the facts.

Our investigation on inter-observer reliability indicated that the K6 labels
may be too unreliable to get a good result from a supervised learning approach.
We therefore first present the results for only the cell-type classification between
the classes K1-K4. Then we test out thresholds for detection K6 cells, and finally
we test a supervised classification model on all classes.

As we indicated in Section 7.4, there are some studies that suggesting that
random forests may be more robust to mislabeling, than boosting techniques,
while other studies have found that gradient boosting are generally superior to
random forests. We will therefore attempt a comparison between a gradient
boosting and a random forest algorithm, as are the two machine learning tech-
nique that we find most suitable for this problem. For both algorithms we use
the features presented in chapter 5 and chapter 6.

8.1 Cell-Type Classification
We first present the parameters that we found to be best for each of the clas-
sifiers. These are the parameters that we use throughout this study. We then
move on to an investigation into the different features and their effects.

Finally we present the classification results. First we present results from
a cross-validation on the training data, as it can be relevant to see the final
results from the data sets that we have manually investigated. Next we present
the classification results for the independent test-sets. And at the end of this
section we discuss how these results can be interpreted.

Gradient Boosted Tree

For gradient boosting, the main parameters are learning rate, subsampling, the
number of estimators and the restriction of the max depth of the regression
trees. To find a good combination of the parameters we used a coarse grid

111

112 CHAPTER 8. RESULTS AND DISCUSSION

search. We used the same parameters for all the datasets as we do not consider
the difference between them large enough to justify different parameters, instead
we expect that it would only lead to an overfitted model. In table 8.1 we present
the parameters found by the grid-search.

Table 8.1: Best parameters for the gradient boosting

Parameter name value
Learning rate 0.02
Subsampling 1.0
Estimators 400
Max depth 3

Random Forest

For the random forest algorithm we tried to adjust the number of estimators,
max tree depth and the number of features considered at each node. We found
that quite restricted trees worked best, contrary to the suggestion of Breiman
[8] suggestion of keeping the tree quite complex. The number of threes are still
high, but we there was almost no improvement after 100 added trees, as show
in table 8.2.

Table 8.2: Best parameters for the random forest

Parameter name value
Features considered 3
Estimators 400
Max depth 6

8.1.1 Feature Importance

Even though our classification models are robust against correlated features,
especially gradient boost, we did remove highly correlated features. One reason
is obviously computational complexity, but the random forest algorithm can be
affected as many similar features will increase the probability that one of those
features are chosen, and in that way bias the selection process. A solution to this
problem could obviously be to perform a method of feature selection. We could
for example perform a brute-force solution or a floating search. Such approaches
seemed to be less ideal for our model, as the feature selection picked a very
small set of features, that actually gave higher generalization error. It seems as
though such feature selection techniques undermine the built-in feature selection
in our ensembles, and again could make our model vulnerable to overfitting and
the curse of dimensionality. Instead we choose to remove only the obviously
redundant features. We picked the best feature among each subset that had
higher correlational coefficients than 0.95. After this selection there was in
fact only 5 GLCM features left, namely GLCM-Contrast (d = 12), GLCM-
ASM (d = 4), adaptive GLCM (4 vs. 1), adaptive GLCM (2 vs. 3), adaptive

8.1. CELL-TYPE CLASSIFICATION 113

GLCM (3 vs. 4). Removing these features did not affect the result of the
cross-validation on the training-sets.

Table 8.3: Feature evaluation for the M51 dataset, with the accuracy for the
individual features applied to the test-set. The CCR is presented in percentage.
Feature importance is a measure of how large a share of the total reduction on
the impurity measure, that each feature contributed to.

Features CCR
(RF)

Feature
Importance

(GBT)
Feature

Importance
Max Diameter 89.06 0.0969 0.0373
Circularity 87.50 0.0913 0.0160
Hu Moment φ1 84.38 0.1054 0.0317
Adaptive GLCM (1 vs. 4) 83.59 0.0665 0.1904
Area 80.47 0.0969 0.0355
Eccentricity 77.34 0.0878 0.2246
Perimeter 75.78 0.0901 0.0362
Bending Energy 68.75 0.0585 0.0263
Variance 68.75 0.0498 0.0261
GLCM-Contrast (d=12) 68.75 0.0507 0.0316
Concavity Depth 68.75 0.0049 0.0048
Mean Intensity 65.62 0.0191 0.0068
Convex Hull Deficiency 65.62 0.0220 0.0089
Adaptive GLCM (2 vs. 4) 60.16 0.0078 0.0054
Skewness 57.81 0.0061 0.0048
IOD 57.81 0.0204 0.0108
Jaggedness 57.81 0.0449 0.0069
Adaptive GLCM (2 vs. 3) 56.25 0.0170 0.0068
Summed Laplace 51.56 0.0307 0.0108
Entropy 48.44 0.0087 0.1457
Symmetry 43.75 0.0016 0.0102
Overlap 43.75 0.0022 0.0160
Blurred Edge 42.97 0.0017 0.0105
mean Fourier 42.97 0.0051 0.0035
GLCM-ASM (d=4) 39.06 0.0076 0.0360
Cut Cell 36.72 0.0015 0.0276
Distance to Ellipse 33.59 0.0008 0.0108
IOD Balance 33.59 0.0031 0.0082
Tennengrad Variance 32.81 0.0010 0.0034

In Table 8.3 we present an evaluation for each of the features, so we can
easily compare their discriminatory power for cell-type classification. The CCRs
is calculated for each of the features individually, and will therefore contain no
information in regard to interaction effects or mutual information between the
features. As we can see both circularity, maximum diameter, area and perimeter
are ranked among the top scoring features. These features are highly correlated,
so it is not necessarily a good choice to use them all in a classification. Each
feature provides much information individually, but they may not contribute

114 CHAPTER 8. RESULTS AND DISCUSSION

Table 8.4: Feature correlations for the top 6 features in table 8.3.

MD C HM AG A E
(MD) Max Diameter 1.00 -0.91 0.92 0.77 0.87 0.75
(C) Circularity -0.91 1.00 -0.90 -0.53 -0.61 -0.89
(HM) Hu Moment φ1 0.92 -0.90 1.00 0.60 0.70 0.80
(AG)Adaptive GLCM (1 vs. 4) 0.77 -0.53 0.60 1.00 0.91 0.27
(A) Area 0.87 -0.61 0.70 0.91 1.00 0.39
(E) Eccentricity 0.75 -0.89 0.80 0.27 0.39 1.00

much additional information when combined with other features. We can see
that max diameter can separate 89.06% of the samples in the M51 test set. This
means that the other features are essentially included to separate the remaining
10% of the cells. This means that it is not necessarily the individual accuracy
that characterize a good feature. If a feature can only separate 5% of the cells,
it may still be valuable if those cells are among the 10% that circularity can not
separate.

Feature importance for a tree is a measure of how much a feature contributes
to the total decrease of the impurity function. The total decrease in impurity
means the impurity of the initial un-split populating, minus the summed impu-
rity of the samples in the leaf nodes. For each node where the feature is used,
we calculate how large the reduction in impurity were, and sum these values.
The final feature importance is then this summed reduction divided by the total
reduction. When we use an ensemble of threes, as with gradient boosting and
random forest, we simply take the average of the feature importance in each
tree.

The measures of feature importance will contain both information about
interactions and correlated features. If one feature is already chosen, it will
be less likely that correlated features are chosen next. This is true for both
methods of classification. Features that interact with a chosen feature will have
a greater chance of being picked. For the gradient boosting algorithm with a
tree depth of only 3, there is of course little room for interaction effects. Despite
this, picking one feature will make some features more likely to get picked next,
compared to others. The gradient boosting selects the features that are best
for separating out those samples it could not separate in the previous iteration.
A feature correlated with previously selected features will then be less likely to
provide further separation.

A problem with the features importance measure is that its value may be
somewhat arbitrary, especially for the gradient boosted tree. If one feature is
picked early in the boosting procedure it will affect how all the other features
are chosen. With a slightly different training-set a different feature may be
picked first and the final result can potentially be completely different. In table
8.3, we can see that eccentricity and Adaptive GLCM (1 vs. 4) have especially
high value of feature importance for the gradient boosted trees (GBT). This is
typically an effect of being among the first selected features. As we know that the
circularity is related to eccentricity, this may also explain why circularity, even
with a CCR of 87.50%, contribute little to the gradient boosting classification.
Table 8.4 shows the correlation coefficients for the top 6 features. We can

8.1. CELL-TYPE CLASSIFICATION 115

se that almost all are highly correlated. This type of correlation is obvious
for many of the features. We know that eccentricity, circularity, φ1 and max
diameter describe many of the same things. Generally the GLCM feature should
be completely unrelated to these features, but as we can see, they still share
some of the variation. This is obviously because they are all related through
class label. Adaptive GLCM is related to area because small cells tend to be
dark, have little patterns and high contrast, compared to larger cells. To find
uncorrelated features, we would have to measure features that are completely
unrelated even in the biology, and they are hard to find. The strength of our
classification models is that we do not need to find such features, but can quite
safely extract information, even from highly correlated features.

For random forest classification, a feature picked at a root node of a tree
will affect all the choices down to the bottom of the tree, and the initial feature
may be quite arbitrarily chosen, but this selection does not have an effect on
the feature selection in other trees. This means that the effect of the initial
selections will be averaged out across the number of trees. Since the random
forest algorithm will have to pick one of the features in a small subset, the
feature importance can also get more distributed among all of the features. If
all the available features were quite irrelevant, at least one of the irrelevant
features would be selected, and gain in feature importance.

It is interesting to note that the best features, especially in terms of features
importance, are either morphological or textural features. Variance have a rela-
tively high CCR compared the importance. One reason for this may be that the
textural features often also provide various information regarding the gray-level
histogram and definitively some information about the variance. Entropy on the
other hand contribute greatly to the gradient boosting, despite a relatively low
CCR. It may be that it contribute information that is unique compared to the
other important features, separating subgroups that may otherwise be strongly
interleaved.

Partial Dependence

We can use partial dependence to investigate how the different features influence
the classification and how the features interact to provide more information. In
figure 8.1 we can see that a cell is more likely to be classified as K1 if it has a
high value for circularity and a long perimeter. This is natural, as K1 and K4
can have similar perimeter length, but then K4 are almost always less circular.
Most cells with short perimeter are K2 or K3 cells, but they tend to be very
circular in shape. Cells are far from circular, but have a short perimeter tend
to be K1 cells. K4 tends to have a longer perimeter than K2 and K3, but
separating those are not much of a problem. Since you cannot separate K1 and
K4 by perimeter, the decision boundary created for K4 is therefore unaffected
by the perimeter length, but focus primarily on circularity.

Figure 8.3 shows the effect of the adaptive GLCM, where we summed the
regions where K1 had higher GLCM values than K4. Naturally we see that cells
with a high value on this feature are more likely to be classified as K1. What
comes as a small surprise is that the K4 decision boundary is so unaffected by
this feature. It shows a small trend that cells with a low value on this feature are
more likely to be classified as K4, but this trend is dwarfed by the huge effect
of circularity. The reason for this may be that K2 and K3 tend to have a small

116 CHAPTER 8. RESULTS AND DISCUSSION

(a) K1 (b) K2

(c) K3 (d) K4

Figure 8.1: A partial dependence plot, displaying the average effects of perimeter
and circularity. The boundary was created by the gradient boosting algorithm.
On the right there is a color bar indicating how significant the effects are. We
can se that there is quite a dramatic effect of circularity on K4.

8.1. CELL-TYPE CLASSIFICATION 117

(a) K1 (b) K2

(c) K3 (d) K4

Figure 8.2: A partial dependence plot, displaying the average effects of bending
energy and entropy. The boundary was created by the gradient boosting algo-
rithm. On the right there is a color bar indicating how significant the effects
are.

118 CHAPTER 8. RESULTS AND DISCUSSION

(a) K1 (b) K2

(c) K3 (d) K4

Figure 8.3: A partial dependence plot, displaying the average effects of Adaptive
GLCM and circularity. The boundary was created by the gradient boosting al-
gorithm. On the right there is a color bar indicating how significant the effects
are.

8.1. CELL-TYPE CLASSIFICATION 119

(a) K4 (b) K4 (c) K1

Figure 8.4: Here we have a set of oblong cells taken from M51. We can see the
K4 cells have two pointed ends, and therefore a higher bending energy.

value for this feature as well, so it is not really a good feature for separating K4
alone. For K2 and K3 this adaptive GLCM feature has a much larger effect. If
we look closer at the magnitude of the Mahalanobis distances in figure 6.17, we
can in fact see that they are much larger between the other classes, compared to
K4, and that they have differences in similar regions as the J(K1,K4) matrix.

From figure 8.2 we can see the effect of the bending energy. It proves valuable
in the separation of K1 and K4. As bending energy is the sum of the squared
curvature, K4 will get a high value relative to its size, as it has very high
curvature at the pointed ends of its oblong shape. There have also been some
indications that even oblong K1 cells tend to have less pointed ends. From figure
8.4, we can see some cells that are typically separated by their bending energy.

8.1.2 Classification Results

In this section we will present both the results for cross-validation of the training
data, and for training on the training-sets and testing on the independent test-
sets. Presenting the classification of the training-sets as well as the test-sets
can give us insight into how the feature generation procedure has affected the
results. This also gives us an opportunity to test the algorithm on a much larger
set of data. Since the distribution of cells among the classes is very skewed, we
are faced with a dilemma. If we use the skewed data-set it will have strange
effects on our results. With the large number of K1 cells, the accuracy will
basically only tell us how good the algorithm is to classify K1. We could in
reality have a classifier that placed all cells in K1 and still got a decent CCR.
Instead we decided to use even training- and test-sets. This on the other hand
have a drastic effect on the amount of data, available. We cut the number of
cells in each class down to the number of the least frequent class. In some cases
that leaves us with only 2 % of the original data, for testing purposes. Therefore
we run the classification multiple times, where we change the samples from the
most frequent classes each time. In that way we can use all the test samples.
We then report the average confusion matrix and CCR, but the most numerous
classes are averaged from a large number of samples, while the more rare cells
used only once. This means that we may not have a representative evaluation
for these classes. Doing cross-validation on the training-set will therefore give

120 CHAPTER 8. RESULTS AND DISCUSSION

us an opportunity of testing the algorithm on a larger data-set. Even if the
results can be slightly optimistic we can get an impression of whether these
results match with the testing results.

Figure 8.5: The leftmost cell is a K1 cells from the M51 test set, that ended
up classified as K4. Second from the left we have a K4 cell correctly classified.
They are not all to similar, but the leftmost cell actually look more similar to a
regular K4 cell than the second cell. The third cell from the left are a K1 cell
classified as K3, and the rightmost cell is a correctly classified K3 cell.

The Table 8.5 present the results for the training-sets, while Table 8.6 give
the results for the test-sets. M51 seems yield very good results and when inves-
tigating the errors we find that the cells confused between K1, K3 and K4 are
generally very difficult do distinguish even visually. Both for M51 and L41 the
results decreased on the testing sets compared to the training-sets. For M51 this
seems quite natural as this was the set we used most in the search for features in
chapter 6. L41 on the other hand has not been much used, so overfitting due to
feature generation seems unlikely. With a small number of cells the poor results
for the L41 test-set could be a coincidence, but this is of course a matter of
concern when regarding the robustness of the classification. When investigating
the L41 test- and training-set we found that they differed in some basic ways.
We tested the Mahalanobis distance for each feature between the training and
test-set. We found that perimeter and area which had large feature importance
in the classification also had the greatest Mahalanobis distance. The difference
was largest for the K2 class, where the distance was 1.86 for perimeter and 1.96
for area. With those two features removed we gained almost 2% in CCR. For
K3 the mean intensity and variance had a distance of about 0.5.

For the PLM13 set we had a smaller training-set, but a larger test-set. There
we found similar results for both the test and training. This set was not used
much in the development of features, and these similar results come as no sur-
prise. The test- and training-set of PLM13 had patient number from 500 to 520
and 521 to 530. Therefore the train and test-set may have been edited closer in
time, and be more similar as a result of a more similar segmentation algorithm
or being classified by the same experts. With a larger test-set we may also even
out the differences in error rates. What we do not know is whether some diag-
nostic groups are more prone to have cells misclassified than other. This should
be investigated as this could affect further results, but such an investigation is
hard in our position where we do not have any knowledge of these prognostic
groups. As we can see from table 8.5 and table 8.7, the primary difficulty was
the separation of K2 and K3. It turns out that some of the patients have sep-
arate K2 and K3 cells very clear cut, at about 1000, similar to what we found
in figure 8.7. As area usually is the best way of separating K2 and K3 we can
easily understand why these cells are misclassified.

The result for the inter-observer set on the other hand gave somewhat more

8.1. CELL-TYPE CLASSIFICATION 121

disappointing results. With such a small number of samples this could again
be somewhat due to chance, but we found significant differences between the
training and test-set also here. We found that the inter-observer set from one
patient belonged to the minority group of patients where K2 and K3 are sep-
arated at an area of 1000. With further investigation we found that not only
did the area differ, but also the color and texture. To be more exact, in the
training-set the K2 cells were usually very dark, almost completely black. In the
inter-observability set on the other hand they had more of a pattern, dark with
white speckles, also somewhat larger and looked more like K3 cells in general.
For K2 the Mahalanobis distance was 4.82 for Mean Intensity, 2.2 for gray-level
variance and 2.1 for gray-level entropy between the classes. The differences may
in part be explained by differences in segmentation, as we found the cells in the
inter-observer set to be slightly more over-segmented than in the training-set.
In figure 8.6 you can see some typical examples of K2 samples from the train-
ing and test data. Over-segmentation obviously affects both intensity, variance,
entropy and area. Another possible explanation for these differences may be
found in the classification of the cells. From figure 8.7 it can look like the cells
are simply classified to K2 or K3 based on whether they had an area larger than
1000. This awakes some suspicion that perhaps different presorting algorithms
have been used. It certainly seems unlikely that the type of separation of cells
found in figure 8.7 can be made by pure coincidence. It could also be that the
imaging techniques have improved and that we now see texture in what earlier
just looked black. The third possibility is obviously that we did not have a rep-
resentative training-set, and that we have not captured that natural variation
of K2 and K3 cells.

(a) K2 - Train (b) K2 - Train (c) K3 - Train (d) K3 - Train

(e) K2 - Test (f) K2 - Test (g) K3 - Test (h) K3 - Test

Figure 8.6: The top row are cells from the PLM13 training-set, while the bottom
row are cells from the PLM13 inter-observer set. The cells are all found along
the boundary of K2 and K3, in the respective dataset. The two left most columns
are K2 cells and the right most columns are K3 cells. We can see how the K2
cells from the training-set are very dark, while the cells from the test-set have
some lighter texture and generally look more like K3 cells. In this figure 1 cm
correspond to 4.98 µm. The biggest effect seem to be due to over-segmentation,
which is quite apparent when comparing the two rows. This may explain the
difference in cell size.

122 CHAPTER 8. RESULTS AND DISCUSSION

Figure 8.7: The scatter plots show how the PLM13 training-set and the PLM13
inter-observer set differ in terms of variance, entropy and area. The circular
markings represent samples from the training-set, while the crosses represent the
inter-observer set.

8.1. CELL-TYPE CLASSIFICATION 123

It is clear that there are differences between the training and test-set for
both the L41 and PLM13 set. In other words it seems like our algorithm is not
robust agains large changes in gray-level, variance and scale. The question is
then how we could have avoided this problem or if it should be avoided at all.
It is clear that we want a general algorithm that can withstand some changes
in the data material and be as robust as possible. The problem is that our
approach has to use some differences to classify the cells, in other words we
cannot make an algorithm that is invariant to all types of changes. We have to
somehow look for what is true differences between classes and what differences
are there by pure coincidence. This problem could have been avoided either if we
had a priori information that size, gray-level variance and color were unreliable
features or if we had a large representative training-set, so the classifier would
learn that these features were not as strong as they seem to be. With a larger
more heterogeneous training-set, or less features we could end up with a less
separable dataset, but one often have to make tradeoffs in order to achieve
higher generalizability. In our case we had no a priori information and based
all or knowledge on the training data ourself, so we believed the training data
to be representative in the same way as the classifier did.

We can note that in many of the tests we achieved close to the expected
results of human experts. We also experienced that the results are less robust
to noise than what we would hope. Based on the approach we used it is not
surprising that the model is not robust to such changes, as we use quite few
features in a very direct way. A possible way to improve the generalizability
could be to use a normalization procedure, where the features depend in some
degree on some average values in a dataset.

Figure 8.8: To the left we have the distribution of IOD for the correctly classified
K1 cells and to the right we have the IOD distribution for misclassified K1 cells.
We can see that the correctly classified cells have a much higher range of IOD.

We found that generally more low IOD K1 cells were misclassified compared
to high IOD cells, as can be seen in figure 8.8. We found no difference in this
distribution if we removed IOD as a feature, so leaving these features out is no
cure to the problem. We still believe that since the K1 class is so frequent and
the misclassified cells seems to be so similar to K3 or K4 that we can not tell
the difference, we do not think that the bias introduced will have any effect on
the further analysis.

124 CHAPTER 8. RESULTS AND DISCUSSION

Table 8.5: Classification results for cross-validation of the training-sets. On the
left side of the table there is a confusion matrix, with the expert labels as rows,
and the classification result as columns. The total number of cells classified are
written inside the parenthesis after the name of the set.

Random Forest: M51-Training (2452) CCR: 98.41%
Class K1 K2 K3 K4 Precision Recall
K1 589 0 3 21 0.97 0.96
K2 0 613 0 0 1.00 1.00
K3 6 0 607 0 0.97 0.99
K4 9 0 0 604 0.97 0.99

Gradient Boost: M51-Training (2452) CCR: 98.36%
Class K1 K2 K3 K4 Precision Recall
K1 587 0 7 19 0.98 0.96
K2 0 613 0 0 1.00 1.00
K3 4 0 609 0 0.99 0.99
K4 10 0 0 603 0.97 0.98

Random Forest: L41-Training (2084) CCR: 97.69%
Class K1 K2 K3 K4 Precision Recall
K1 488 0 10 23 0.98 0.94
K2 0 521 0 0 0.98 1.00
K3 4 0 507 0 0.98 0.97
K4 5 0 1 515 0.96 0.99

Gradient Boost: L41-Training (2084) CCR: 97.45%
Class K1 K2 K3 K4 Precision Recall
K1 495 0 6 20 0.97 0.95
K2 0 613 0 0 0.99 1.00
K3 9 5 520 1 0.99 0.97
K4 6 0 0 515 0.96 0.99

Random Forest: PLM13-Training (1288) CCR: 95.26%
Class K1 K2 K3 K4 Precision Recall
K1 316 0 3 3 1.00 0.98
K2 0 296 26 0 0.91 0.92
K3 1 28 293 0 0.81 0.91
K4 0 0 0 322 0.99 1.00

Gradient Boost: PLM13-Training (1288) CCR: 94.18%
Class K1 K2 K3 K4 Precision Recall
K1 312 0 5 5 1.00 0.97
K2 0 281 41 0 0.92 0.87
K3 0 23 299 1 0.87 0.93
K4 1 0 0 321 0.98 1.00

8.1. CELL-TYPE CLASSIFICATION 125

Table 8.6: Classification results for the independent test-sets, of the two “old
datasets”. On the left side of the table there is a confusion matrix, with the
expert labels as rows, and the classification result as columns. The total number
of cells classified are written inside the parenthesis after the name of the set.

Random Forest: M51-Test (128) CCR: 96.64%
Class K1 K2 K3 K4 Precision Recall
K1 28.2 0.0 0.5 3.3 0.98 0.88
K2 0.0 32.0 0.0 0.0 1.00 1.00
K3 0.5 0.0 31.5 0.0 0.98 0.98
K4 0.0 0.0 0.0 32.0 0.91 1.00

Gradient Boost: M51-Test (128) CCR: 95.94%
Class K1 K2 K3 K4 Precision Recall
K1 27.1 0.0 0.5 4.4 0.99 0.85
K2 0.0 32.0 0.0 0.0 1.00 1.00
K3 0.3 0.0 31.7 0.0 0.98 0.99
K4 0.0 0.0 0.0 32.0 0.88 1.00

Random Forest: L41-Test (152) CCR: 92.24%
Class K1 K2 K3 K4 Precision Recall
K1 31.2 0.0 5.2 1.6 1.00 0.82
K2 0.0 38.0 0.0 0.0 0.88 1.00
K3 0.0 5.0 33.0 0.0 0.86 0.87
K4 0.0 0.0 0.0 38.0 0.96 1.00

Gradient Boost: L41-Test (152) CCR: 91.78%
Class K1 K2 K3 K4 Precision Recall
K1 32.2 0.0 4.0 0.8 0.95 0.85
K2 0.0 38.0 0.0 0.0 0.88 1.00
K3 0.6 5.0 32.4 0.0 0.89 0.85
K4 1.0 0.0 0.0 37.0 0.95 0.97

126 CHAPTER 8. RESULTS AND DISCUSSION

Table 8.7: Classification results for the independent test-sets, of the two “new
datasets”. On the left side of the table there is a confusion matrix, with the
expert labels as rows, and the classification result as columns. The total number
of cells classified are written inside the parenthesis after the name of the set.

Random Forest: PLM13-Test (652) CCR: 96.21%
Class K1 K2 K3 K4 Precision Recall
K1 157.8 0.0 1.2 4.0 1.00 0.97
K2 0.0 156.0 7.0 0.0 0.93 0.96
K3 0.0 12.5 150.5 0.0 0.95 0.92
K4 0.0 0.0 0.0 163.0 0.98 1.00

Gradient Boost: PLM13-Test (652) CCR: 95.49%
Class K1 K2 K3 K4 Precision Recall
K1 159.3 0.0 0.5 3.2 1.00 0.98
K2 0.0 151.0 12.0 0.0 0.92 0.93
K3 0.0 13.2 149.8 0.0 0.92 0.92
K4 0.5 0.0 0.0 162.5 0.98 1.00

Random Forest: P13 - Inter-Observer (44) CCR: 92.23%
Class K1 K2 K3 K4 Precision Recall
K1 10.7 0.0 0.0 0.3 1.00 0.97
K2 0.0 10.4 0.6 0.0 0.87 0.95
K3 0.0 1.6 9.4 0.0 0.94 0.85
K4 0.0 0.0 0.0 11.0 0.97 1.00

Gradient Boost: P13 - Inter-Observer (44) CCR: 91.81%
Class K1 K2 K3 K4 Precision Recall
K1 10.5 0.0 0.0 0.5 0.91 0.95
K2 0.0 11.0 0.0 0.0 0.84 1.00
K3 0.0 2.1 8.9 0.0 1.00 0.81
K4 1.0 0.0 0.0 10.0 0.95 0.91

8.2. FEATURE VALUE THRESHOLDING 127

The overall difference between the two classification algorithms was small,
but for our application random forest generally outperformed gradient boost.
The average accuracy for the random forest was 95.53% and 95.0% for the
gradient boosted trees. It may be that gradient boost could have been improved
with a more thorough grid-search for meta-parameters, as gradient boosted trees
have been found to be more sensitive to parameter selection [11]. Still with a
classification model that works well with different meta-parameters may be the
best choice for our application, as the same model may work better for many
different datasets.

As there was only small differences between the classification models, this
type of study, with a very complex dataset is unsuited for a conclusive model
evaluation. To get a true picture of the differences between the models we would
have to perform a much more rigorous study, where we for example manipulate
the labels, to investigate the robustness against mislabeling. We found this type
of investigation to be outside the main focus of this study and it was therefore
not performed. With this result we decided to only report the result of the
random forest in next classifications, but on the data we did test our results
was very similar for both models. With similar results, we find that a random
forest is the best model for our application, as it seems to be more robust to
changes its meta-parameters and because it is much faster, are easily parallelized
and achieve slightly better performance.

8.2 Feature Value Thresholding

Throughout the development of the features for removing K6, we have been
familiarized with the training-sets. Our features for filtering out K6 cells were
primarily developed using the P02 and PLM14 dataset, but we also did some
investigation on M51. We may have over adapted the features to account for
the variation in these sets. To gain a better understanding of the discriminatory
power of the features, we will attempt thresholding on the independent test-sets.
For evaluation we first set a threshold based on the training samples, and then
use the same threshold for the test data.

As the goal of thresholding is not to obtain the best possible CCR, but
rather to avoid loosing any important K1 cells, the threshold is set through
visual examination of the cells. The threshold is set to a level where only cells
that could have been classified as K6 are removed. All cells with feature a value
above a certain threshold will be detected as K6. We will report how many cells
from other classes than K6 that is lost, and how many K6 cells we can remove
with this feature. To evaluate whether the features work as intended, a visual
inspection is performed.

8.2.1 Overlapping Cells

For the M51 training-set, 500 was found to be a reasonable threshold for the
overlapping value. The main problem for setting the threshold was the many
under-segmented K1 cells in M51. Over-segmented cells have deep concavi-
ties that increase the general overlapping value. Some loss of the most over-
segmented K1 and K4 cells had to be accepted to be able to set a threshold
without modifying the feature calculation. A threshold of 500 removed 1.43 %

128 CHAPTER 8. RESULTS AND DISCUSSION

Figure 8.9: Plot of thresholding on the overlapping feature value at 500, for the
M51 test-set. There are quite a few K1 removed, but they are at least boundary
case overlapping or have deep under-segmentation.

of the non K6 cells and 10.42% of the K6 cells. We found no K1 cells removed
that could not be interpreted as overlapping or very under-segmented. We also
managed to remove most of the obviously overlapping cells.

Table 8.8: The percentage of cells removed from each class when thresholding
the overlapping value on 500.

M51-Train M51-Test
Class 1 1.8 % 1.04 %
Class 2 0.0 % 0.0 %
Class 3 0.09 % 0.0 %
Class 4 2.72 % 3.92 %
Class 6 10.42 % 5.51 %
Non K6 1.43 % 0.91 %

A threshold for the M51 test-set removed 0.91% of the non K6 and 5.51% of
the K6 cells. The figure 8.9 illustrate the cut in the distribution, plotted with
area on the x-axis and overlapping on the y-axis. The K1 cells misclassified as
K6 were not all clearly overlapping, but had some artifacts. In figure 8.10 we
give an example of cells typically wrongly removed by a thresholding in terms
of overlapping. One of the main issues with M51 is when deep concavities align
with a very dark pattern in the cell. We tested a logarithmic transform on the
edge image, that we use to find and evaluate the overlapping features, but found
that these patterns were so strong, that they usually still dominated the edge
image. For some cells with a grainy texture the logarithmic transform also made
the real edges weaker compared to the normal texture of the cell, so we found
a very short path across the cell, instead of following the best edge.

8.2. FEATURE VALUE THRESHOLDING 129

Table 8.9: The percentage of cells removed from each class when thresholding
the overlapping value on 500.

L41-Train L41-Test
Class 1 0.98 % 1.14 %
Class 2 0.0 % 0.0 %
Class 3 0.3 % 0.3 %
Class 4 2.88 % 3.45 %
Class 6 5.49 % 6.03 %
Non K6 0.91 % 1.06 %

For the L41 training-set we used a threshold of 380. This removed 1%
of the non K6 and 4.5% of the K6 cells, and most of these cells were clearly
overlapping. For the test-set 1.5% of the non K6 and 6.4% of the K6 cells were
removed. Even though we did not remove a large part of the cells it seems
that for the test-set this threshold should have been set higher, as some cells,
obviously not overlapping were filtered away. For the training-set a threshold
of about 450 seems to be better.

Figure 8.10: Here we present 3 K1 cells, removed from the set due to a overlap
value higher than 500. The two first cells to the left are very typical for the
removed K1 cells, in that they have deep concavities and some dark patterns
matching with concavity. We are not sure whether the third cell from left is
overlapping or not, but it was labelled as K1. This cell illustrates a typical
problem with the algorithm, were the path adapts to much to the underlying
texture, and in our opinion get a to high value relative to how “overlapping it
looks”. The rightmost cell is presented as it illustrates a more general problem
in finding overlapping cells. It is very hard to determine whether this cell is
overlapping or not, and therefore hard to create general rules for classification.

All cells from the PLM13 data-set with a value over 400, could in our opinion
been classified as K6. With this threshold we could remove 4.92 % K6 cells,
with a loss of of only 0.69% of the non-K6 cells. Some very long K4 cells
proved problematic, as bent cells often have deep concavities. If these concavities

130 CHAPTER 8. RESULTS AND DISCUSSION

Table 8.10: The percentage of cells removed from each class when thresholding
the overlapping value on 500.

PLM14-Train P02-Train
Class 1 0.68 % 0.65 %
Class 2 0.0 % 0.0 %
Class 3 0.26 % 0.0 %
Class 4 3.56 % 3.36 %
Class 6 4.92 % 5.94 %
Non K6 0.69 % 0.66 %

aligned with pattern inside that cell, they could get a high overlapping value.
The PLM13 cells had generally a lower value of this overlapping measure, having
more smooth edges and less concavities. Even with this threshold we were far
from removing all the overlapping cells. To remove most of the overlapping cells
we would need a threshold of about 320. This would also lead to a removal of
several non-overlapping K1 and K4 cells, similar to the cells in figure 8.11. If we
had set the threshold to 320, we would removed 5.73% K6 cells and still only
0.86% of the non-K6 cells. With less rough edges it is perhaps harder to find
a reason for why a cell could be classified as K6. This fact may have lead to a
lower tolerance for loosing non-K6 cells for this data-set.

For the PLM13 test-set we found that the threshold of 400, removed 5.94%
of the K6 cells and 0.66% of the non-K6 cells. We found no obvious mistakes,
but similar to the training-set we found that there were many undetected over-
lapping cells. In figure 8.13, we have presented some of the cells that were
detected, and in figure 8.12 we present some cells that remained undetected.

Figure 8.11: Three K1 cells from PLM13, with a value for overlapping just
below the threshold of 400.

Overview

In all datasets some part of K4 was removed. This was both because the bent
cells had high convexity, but because a dark spot on a very thin cell cover a
much larger part of the path across the cell. The mean edge will therefore be
comparably large.

As a general observation we found detection of overlapping cells incredibly
hard. Cells that may seem obviously overlapping for a human eye, can be very
hard to detect with a general set of rules. The leftmost cell in 8.12, is a typical
example of this, with very small concavities, and irregular and incoherent edges
inside the cells. One of the main problems is the heterogeneity of the cancer
cells, making it hard to predict the possible shapes and variations. We cannot

8.2. FEATURE VALUE THRESHOLDING 131

trust the cell mask alone, as many cells look clearly overlapping judging by the
cell mask, but as long as there are no effect of the overlapping in the cell texture,
the cell rarely classified as overlapping. Minute changes in the texture can be
detected by humans, but when we do not know how the textures can change in
advance it is very hard to write an algorithm that detects them in general. We
did experiments with using texture feature images, to base our cost image on.
Here we calculated different GLCM-features in a sliding window, and the pixels
in our texture image consisted of the GLCM feature for the surrounding area of
each pixel. The problem was that in order to detect the differences in texture
between two overlapping cells, we had to use many different GLCM features.
With many different texture images the probability that an edge in one of the
images match our path by pure coincidence, became very high. The attempt of
utilizing the texture was therefore rejected quite early in our process. We still
acknowledge that in order to get a perfect detection we may need to incorporate
the texture information in some way.

More directly related to our current algorithm, it is clearly an issue that
we have no restrictions on our path in terms of smoothness. For example for
the third cell from the left in in figure 8.10, the path found is very unlikely,
as for most samples the overlapping part of the cell has similar smoothness as
the rest of the cell. Allowing for such paths give some cells a far to high value
on the overlapping measure, compared to how overlapping they look visually.
A solution to this could be to add some constraint to the path, similar to the
stiffness matrix for a snakes in an active contour model [10]. We can imagine a
solution where the stiffness matrix of a snake is determined by the different parts
of the cell contour, but this is not an easy task. A more easily applicable solution
would be to incorporate the bending energy of the path somehow. As always we
have to find a balance, as this could add to an already existing problem. The
algorithm tend to choose the shortest path instead of a path with the strongest
edges. We provided some examples where the shortest path was chosen in favor
of the path with the strongest edge in figure 8.12. By also including the bending
energy of the path, the algorithm would favor short straight paths even more.
We have tried to make the cost of path-length the mean value of the cost image
in stead of a sum, and also to scale the cost image between 1 and −1 instead of
1 and 0. This lead to the algorithm finding strange and long paths through the
cell, to fit black spots perfectly. It is still possible that a combination of this
and an added cost of increased bending energy would be a good approach, but
we did unfortunately not have time to implement this for our project.

8.2.2 Cut cells

On the P02 and PLM14 sets that we primarily developed this feature for, we
found quite promising results, unfortunately we did not get the same results
when we investigated the test-sets. The result for these two sets can be found
in table 8.11. We found that one of the main reasons for this actually was that
PLM14 contained a lot of cut and damaged nuclei, compared to the other data
sets. The results from the other test-sets are not as grim as they may seem, as
many of the “misclassified” cells are actually clearly cut. This was exactly the
reason for developing these features.

To remove all cells in the M51 training-set that we interpret as cut, we would
have to set a threshold on our cut measure to about 430, but then we would also

132 CHAPTER 8. RESULTS AND DISCUSSION

Figure 8.12: This is a set of overlapping cells that was not found by our ap-
proach, but they all had values close to the threshold. The tree left most cells,
especially seems to illustrate the problem where the shortest path is pick instead
of the one with the best edges, and therefore the cell end up with a lower over-
lapping value then it should, based on a visual inspection.

Table 8.11: Thresholding on the cut cell feature value on 580, for both the
PLM14 and P02 training-sets.

PLM14-Train P02-Train
Class 1 3.63 % 5.32%
Class 2 9.09 % 0.0 %
Class 3 6.75% 4.84 %
Class 4 1.52 % 0.0 %
Class 6 43.81 % 29.04 %
Non K6 3.77 % 5.21 %

need to sacrifice several K1 cell that were not cut, and should be kept in the
data-set. With a threshold of 430 we lose 3.7% of the non K6 cells, and remove
22.5% of the cells in K6. To avoid loosing perfectly good cells we actually need
to set the threshold up to 520. Then we lose 1.5% of the non K6 cells and remove
13.5% of the K6 cells, as presented in table 8.12. The main problem for this
measure is that cells with very rough edges due to over- or under-segmentation
can get very high curvatures. The size of the over-segmented areas does not
depend much on the cell size. The effect of the over-segmentation is therefore
larger for K2 and K3 cells, as they are relatively small. This effect is further
reinforced by the fact that small cells have generally higher curvature. Finding
a line from an over-segmented “spike” in the contour, to another high curvature
point on the cell, is therefore easy with these cells.

For PLM13 the main problem is not over-segmentaion, but instead K2 and
K3 cells with a uneven edges or triangular shapes. In table 8.13 we can see
how these cell affect the result. They are visually indistinguishable from a huge
part of the K6 set, so there seems to be no consensus among the experts on this
issue. We do loose many of these K2 and K3 cells, but an even larger group of
indistinguishable cells in K6 are correctly removed. Even though these cells are

8.2. FEATURE VALUE THRESHOLDING 133

Figure 8.13: These cells were detected as overlapping. The second row display
the filters images used to find the overlap. The ellipses found are marked in
blue, and the path is marked in red. The two cells to the left are quite obviously
overlapping and easily found by our approach. The third cell is also visually
clearly overlapping, but it does not look like the algorithm found the best path.
This again illustrates one of the problems with the algorithm, namely that it
tends to take the shortest path, even when another paths seems more suitable.
The right most cells, is found to be overlapping and certainly looks that way, but
we precent this cell since similar cells are often not labelled as overlapping.

K6 cells or could easily be classified as K6, we have to note that our measure
does not achieve its goal. Our attempt was to create a feature that specifically
removed cut cells, while the cells in figure 8.14 are definitively not cut.

For the K1 cells the story is different. We looked through 100 randomly
selected cells over the threshold. Most of the cells were clearly cut, and all were
either questionably cut or over-segmented. In figure 8.15, we provide typical
examples of these three groups.

For the PLM13 test-set there result were much better in terms “misclassifi-
cation” of all the other cells. What we actually found were that the test-set had
much less cut cells in K1, and the difficult cells like the ones presented in figure
8.14 were typically labelled K6. Even the K1-K4 cells that were thresholded out
in this attempt were mostly cut or over-segmented. The different class distri-
butions for the PLM13 test-set on the cut cell measure can be found in figure
8.16.

For L41 we found that many of its cells would have been classified as cut
in other sets. If we set the threshold to 520 as in M51, we can remove most of
the obviously cut cells, but we also lose quite a few K1 and K3 cells that looks
nearly indistinguishable from the cut cells. The results of this thresholding can
be found in table 8.14. With our threshold we also lost some close to triangular
K3 cells, that do not look cut. Since the K1 and K3 cells that looks cut often
have very high value on the cut feature, setting the threshold higher will not
give much of an improvement. Perhaps the main problem related to L41 on
this feature is not directly over- or under-segmentation, but that they often are
segmented in such a way that they get straight edges and sharp corners, looking

134 CHAPTER 8. RESULTS AND DISCUSSION

Table 8.12: The percentage of cells removed from each class when thresholding
the cut cell value on 520.

M51-Train M51-Test
Class 1 1.47 % 2.23 %
Class 2 8.15 % 18.75 %
Class 3 8.15 % 10.79%
Class 4 2.49 % 2.94 %
Class 6 13.48 % 23.96 %
Non K6 3.16 % 3.57 %

Figure 8.14: The top row is K3 cells with cut value over the threshold. The
bottom row is cells found in K6 that looks very similar. All cells are from the
PLM13 training-set.

very similar to cut cells.

Overview

We see that the performance of this feature depends on the different segmen-
tation algorithms used. For the old sets the problems were mostly a rough
segmentation. For the newer sets on the other hand, there are problems related
to artifacts in the segmentation algorithm, causing very high curvature on an
otherwise smooth contour. As in most cases we also have problems with labels
that appear unreliable. More directly related to the algorithm, we have prob-
lems with the triangular cells like the K3 cell, left most in figure 8.18 and how
we can distinguish them from the K6 cell, second from the right. We might be
able to adapt to some of these problem by adjusting the σ for the smoothing
in the curvature measure, but it is hard to find one parameter that works well
for all sizes. An alternative could obviously be to fit a function for σ to the cell
area, and optimize the separability. We usually find appropriate corners with
σ = 6, so we would perhaps need one σ for detecting the corners and one for

8.2. FEATURE VALUE THRESHOLDING 135

Figure 8.15: To the left is a cell the we judge as clearly cut, the cell in the
center is an example of a more questionable cell and the rightmost is a typical
example of an over-segmented cell. On the bottom row we have overlaid the
region registered as possibly cut, with a blue line. The convex contour is drawn
in green, and the points of highest curvature on the cell are drawn as blue circles.

Figure 8.16: Plot of the thresholded PLM13 test-set. The cells removed are
mostly correct with a threshold of 520.

136 CHAPTER 8. RESULTS AND DISCUSSION

Table 8.13: The percentage of cells removed from each class when thresholding
the cut cell value on 520.

PLM13-Train PLM13-Test
Class 1 2.12 % 0.70 %
Class 2 12.15% 3.50 %
Class 3 10.56% 2.38 %
Class 4 6.25 % 0.0 %
Class 6 25.77 % 22.84 %
Non K6 3.01 % 0.84 %

Figure 8.17: Segmented and original images from the L41 set, side by side. The
leftmost cell is from K1 and the rightmost from K6. They are often segmented
in such a way that they end up with straight edges and sharp corners. There are
no clear boundary of what segmentation is acceptable or not.

evaluating the sharpness of a corner.
When developing this features we realized that, no matter how good cor-

ners we find, we will still not be able to mimic how humans find cut edges. In
order to really improve this feature further, we would need to investigate the
contour between the corners, and the remaining contour. Based on the whole
contour humans evaluate the cut areas differently. If the roughness differ sub-
stantially in an area between two maximum curvature points we are more likely
to deem the cell as cut. To utilize this information we tested various approaches
with a mapping of the contour to 1D, and then for example try a multiscale
Laplace operator, to see if frequencies on the contour differed inside the cut
area compared to outside. We also tried to look for differences in entropy of the
Fourier transformed curvature. Unfortunately we only succeeded in creating a
slow algorithm.

8.2.3 Rough Edges

A large part of the K6 cells have somewhat rough edges. The main problem
concerning this features is that some of the large K1 cells with high IOD, also
tend to have rough edges. An additional problem with these high IOD cells is
that they are often over-segmented, which makes the edges even more rough.
With our mean Fourier spectrum we also need to watch out for some long and
thin K4 cells. Since we do not account for the phase, but only the spectrum,
we do not know if all the ellipses are stacked together in the same direction. If
all the major axes are rotated in the same or similar direction, we do not get
a jagged edge, but rather a very long and thin shape. Examples of both these
types of problematic cells are presented in figure 8.19.

We tried to set a threshold above the leftmost cells in figure 8.19, so only

8.2. FEATURE VALUE THRESHOLDING 137

Table 8.14: The percentage of cells removed from each class when thresholding
the cut cell value on 520.

L41-Train L41-Test
Class 1 1.65 % 2.61 %
Class 2 6.80 % 8.36 %
Class 3 6.98 % 8.62 %
Class 4 1.72 % 2.63 %
Class 6 12.10 % 11.93 %
Non K6 4.68 % 3.09 %

Figure 8.18: Some challenges related to finding cut nuclei. The two leftmost
cells are K3 and K4 nuclei. They both possess some attributes that makes them
vulnerable to being classified as cut. The K4 cell, second from the left, have
extremely high curvature, with an almost straight line between them. The only
thing that weights the value down in our algorithm is that the line passes close
to the cell center. The two rightmost cells are K6 cells that are hard to detect.
One has two slightly rounded corners and the other has one strong and one weak
corner. The main problem is that there are many cells with a similar contour
that are not cut, so we can not reduce our threshold.

the rightmost cells on both rows were filtered out. In table 8.15 we present
the results of this thresholding. Some other cells than K6 were filtered out,
especially K4 cells, but these looked either cut, were over-segmented or had
rough edges. In figure 8.20, we present two of these cells.

For M51 we have other and and more serious problems. The jaggedness in
the M51 cells is often due to under-segmentation, and the main problem is that
there seem to be no consensus on what degree of under-segmentation that is
acceptable. In this set cells are generally so jagged that the jaggedness due to
cuts or a damage cell membrane, become less significant. Indeed our features
is not well suited for addressing these problems in the M51 set. We did some
research in order to create a feature that measure the relative jaggedness in
different parts of the cell contour. It proved to be numerous cells with only
partially rough contours also among the K1 cell and the approach was quickly
discarded.

We ended up with a high threshold of 0.115, so we could safely separate
out the most extreme cases as can be seen in table 8.16. When considering
the training-set we noticed that the contour is quite different in these cells.

138 CHAPTER 8. RESULTS AND DISCUSSION

Figure 8.19: Here we display some of the difficulties with setting a threshold.
The top row consist of non K6 cells, that have a value for the measure of rough
edges, that is just around the threshold value. The bottom row is similar K6
cells, with similar feature values. The two leftmost cells in the top row are high
IOD K1 cells, and are especially cells we want to keep in the data set. Still
there seems to be some disagreement among the experts also here, as the cells
on the row below look very similar in our eyes. The cells in the third column
should ideally not be detected by a roughness measure, but as many similar cells
is labelled as K6 it may not be a problem.

Figure 8.20: Two K4 cells removed from the PLM13 training-set.

These cells had a slightly smoother contour and tended more towards over-
segmentation. Still there was many K1 cells with a very jagged edge, and it was
generally hard to see the difference between the jagged K1 and K6 cells. With
a threshold equal to the one for the PLM13 set we could remove most of these
disputed cells, but then we have a quite large loss in non K6 cells. With such a
threshold we could remove 12.2% of the K6 cells, but lost 4.19% of the non K6
cells.

For L41 the contours were smoother compared to both M51 sets. The K1
and K4 cells that had ha high value of jaggedness were indeed similar to the
jagged cells of K6. We therefore felt that we could safely set the threshold to
0.095, similar to the PLM13 sets. In the test-set slightly more jagged cells were
allowed and the consensus on which cells should be excluded seem lower, and
this reflects in the thresholding result in table 8.17.

Overview

Differences in segmentation make this feature more suitable for some sets than
other. We have at least found a feature that measures the general jaggedness of

8.2. FEATURE VALUE THRESHOLDING 139

Table 8.15: The percentage of cells removed from each class when thresholding
the mean Fourier feature value at 0.095.

PLM13-Train PLM13-Test
Class 1 0.75 % 0.60 %
Class 2 0.43 % 0.0 %
Class 3 2.93 % 0.08 %
Class 4 3.52 % 7.17 %
Class 6 12.40 % 15.94 %
Non K6 0.93 % 0.68 %

Table 8.16: The M51 datasets, thresholded at a value of 0.115 on the mean
Fourier feature.

M51-Train M51-Test
Class 1 0.7 % 0.16 %
Class 2 0.0 % 0.0 %
Class 3 0.0 % 0.0 %
Class 4 0.0 % 0.0 %
Class 6 2.94 % 1.27 %
Non K6 0.48 % 0.14 %

a cell contour quite well, but there are also some problems. Especially long and
thin cells have a high mean Fourier. The long and thin cells deviates from an
elliptic shape, because the thickness are similar along the whole length of the
cell. Such a contour needs to be represented by many Fourier coefficients. This
problem was unexpected as we did not have any of those cell among the samples
we used to develop the feature. A solution could be to use the phase of the
Fourier coefficients. We would first have to look at the major and minor axes for

each of the ellipses, represented by the Fourier coefficients, a =

√
|X̂k|+ |X̂−k|

and b =

√
|X̂k| − |X̂−k|. For those pairs of coefficients where b where larger,

we could add 90◦ to the phase. Then the phase would indicate the rotation of
the major axis of each ellipse. We could then measure whether most of these
angles corresponded, as this would indicate that the cell was in fact not jagged,
but rather stretched.

Another problem is that in many cases it seems like the relation between
smooth and jagged areas are more important than the general jaggedness. As
mentioned we tried to create features to tap into that information. We then
discovered that the problem is more complex. A K1 cell can often have some
areas of extreme curvature, but otherwise have a smooth contour, typically due
to over-segmentation. The cells that are excluded typically have a one smooth
area and one area with moderate roughness. With more complex phenomenas as
this, the feature generation quickly becomes difficult, as the number of cells we
can investigate manually are restricted, and we can easily overfit our features.

140 CHAPTER 8. RESULTS AND DISCUSSION

Table 8.17: The percentage of cells removed from each class when thresholding
the mean Fourier feature value at 0.095.

L41-Train L41-Test
Class 1 3.52 % 6.42 %
Class 2 0.0 % 0.0 %
Class 3 0.23 % 0.0 %
Class 4 1.73 % 2.64 %
Class 6 16.65 % 15.28 %
Non K6 1.65 % 5.89 %

8.2.4 Over-Segmentation

Over-segmentation is very common, but it has to be allowed within certain lim-
its. Sometimes it is impossible to tell where the segmentation boundary should
go, for example due to a grainy texture. For the PLM13 set a threshold of 940
was found to capture many of the clearly over-segmented cells and not remove
the cells with only slight over-segmentation. The result of this thresholding can
be found in table 8.18. One of the main challenges here is to not remove pale K1
nuclei, or K2 cells in general as they are often over-segmented, but still included.
Many cells in PLM13 have a bulge out somewhere along the contour, like the
two cell in the center of figure 8.21, some of them are removed and some are
not.

Figure 8.21: Here is a set to illustrate the difficulties in finding a good threshold.
The top row are non K6 cells, that are not counted as over-segmented. On the
bottom row we have three K6 cells, oversegmented or faded.

The cells in 8.21 we generally want to keep in the set and rather focus on
the more clear cases. The PLM13 test-set is similar to the training-set in most
regards, but there were slightly more over-segmented K2 and K4 nuclei. We
also ended up removing some pale cells with faded edges from K1, similar to
the leftmost cells in 8.21. As some of those cells are also in K6 we were not
sure how to judge this, but to completely avoid loosing any of the pale cells, we
would need to set the threshold to 960, and we would only remove 6.89% of the
K6 cells, and not close to the real number of over-segmented cells.

8.2. FEATURE VALUE THRESHOLDING 141

Table 8.18: The percentage of cells removed from each class when thresholding
the blurred edge feature at 940

PLM13-Train PLM13-Test
Class 1 1.65 % 1.58 %
Class 2 2.51 % 5.52 %
Class 3 0.39 % 1.15%
Class 4 2.78 % 0.93 %
Class 6 14.20 % 14.04 %
Non K6 1.59 % 1.57 %

For the M51 training-set, over-segmentation is not a problem except for K2
cells, which tend to have a surrounding white circle. In this set the tendency is
rather towards under-segmentation. Using this feature would therefore do more
harm than good, namely removing the K2 before filtering out any K6 cells. We
have therefore not included a table for these data-sets. The M51 test-set does
in fact have some over-segmented cells, but the over-segmented cells are in all
classes and so this feature to detect any K6 cells. In L41 there are also few over-
segmented cells, our measure would still have some effect, but this is because in
this set they label most of the pale cells as K6. The pale K4 cells are still kept,
so to threshold this feature we would lose many of those cells, therefore we do
not use this feature on this dataset either.

Overview

Our over-segmentation measure work well for finding the over-segmented re-
gions, but is not a very good measure for how much they are over-segmented.
It also dos not use any information from the central part of the cell, so it may
be that the cell is not overlapping at all, just very pale. We tested a seeded
segmentation with the random walker algorithm [33], where the seeds are place
at the location found by our current feature and some pixels in the center of the
cell, but it proved hard to find parameters for the algorithm that worked in a
general setting. We also tried to scale the feature value depending on the mean
intensity, the intensity of the center region or the median intensity. With this
scaling we no longer detected the pale cells, but then slightly over-segmented
K2 and K3 often became prominent. The main point is that over-segmented
cells are often pale, so in scaling by intensity we can no longer detect these cells.
The question is also whether re-segmenting the cells might be outside of the
main topic of the current thesis.

8.2.5 Combining the Features

We now need to investigate to what degree these features interact. We know
that overlapping cells often also are over-segmented. They can also have rough
edges and be cut. If all features find almost the same cells our work has been
in vain.

We can see that even though they interact to some degree, each feature
do provide new information. The results for the PLM13 dataset can be found
in table 8.19. For a loss of 3.89% of the non K6, we can remove 42.45% of

142 CHAPTER 8. RESULTS AND DISCUSSION

Table 8.19: The combined thresholding on all four features

PLM13-Train PLM13-Test
Class 1 3.76 % 3.57 %
Class 2 14.57 % 9.82 %
Class 3 11.39 % 5.51 %
Class 4 9.26 % 11.21 %
Class 6 42.45 % 49.13 %
Non K6 4.38 % 3.9 %

the K6 cells. We also have to remember that many of the removed cells could
easily ended in K6 or should actually be there. Still more than half the K6
cells are left undetected, so there is still room for improvement. We choose two
patients from the PLM13 set and looked through the misclassification. The vast
majority of remaining K6 cells, were those similar to K2 and K3. The problem
with these cells is that we often cannot see the difference ourself. There may
be something related to texture or shape, that we have not understood. Two
typically undetected K6 cells are presented in 8.22.

Figure 8.22: The two leftmost cells are typical examples of the large majority of
undetected K6 cells. The two rightmost cells are K3 cells, that in our eyes look
very similar to the K6 cells.

There were also quite a few cells with some degree of jagged edges or slight
over-segmentation that remained undetected, but they are also well represented
in the other classes. What is perhaps more severe is that we found some unde-
tected overlapping cells, that unquestionably should have been removed. Most
of the “wrongly” removed cells, could be justified to some degree, but here as
well the main culprit was the overlapping detection. Some K1 cells were clearly
not overlapping, but were still removed, as the two cells in the bottom center of
figure 8.23.

Table 8.20: Thresholding M51 on the three relevant features: overlapping, cut
cell and mean Fourier.

M51-Train M51-Test
Class 1 3.31 % 3.52 %
Class 2 6.69 % 15.62 %
Class 3 4.72 % 7.03 %
Class 4 5.9 % 12.75 %
Class 6 20.89 % 27.32 %
Non K6 3.93 % 4.16 %

8.2. FEATURE VALUE THRESHOLDING 143

Figure 8.23: The top row are undetected K6 cells, while the bottom row are K1
cells that were detected as K6 cells. The leftmost cell at the top row are quite
clearly overlapping, it had a overlap value of 311.2, which is quite close to the
threshold of 320. The two cells in the center of the bottom row were detected as
overlapping, where a path was found along the dark grainy pattern.

Table 8.21: Thresholding L41 on the three relevant features: overlapping, cut
cell and mean Fourier.

L41-Train L41-Test
Class 1 4.5 % 8.58 %
Class 2 5.91 % 5.98 %
Class 3 3.28 % 3.73 %
Class 4 5.76 % 5.26 %
Class 6 24.8 % 23.76 %
Non K6 4.31 % 8.24 %

For L41 and M51 the undetected K6 cells are more spread across different
categories, but many are related to obscure shapes. The results for M51 can
be found in the table 8.20 and for L41 they can be found in table 8.21. We
could not threshold these sets with the same force as the newer sets, as all the
cells could have more jagged edges and obscure shapes in general. The cells
falsely detected as K6 were mostly cells with very rough edges, that could be
interpreted as both cut and overlapping as well.

8.2.6 Overview of the Thresholding

We created a set of features to fit our visual impression of the different types
of cell image debris. Some of the debris could be detected by thresholding
these features, but from the results it is evident that there is still much work
left before this thresholding techniques can be applied completely automatic,
without any human supervision. Not only is there a large part of the K6 cells
that we do not fully understand, but even the cells that clearly belong to one of
the groups that we have designed features for, can be difficult to detect. With
large differences in how well the features work for different datasets, we realize
that the features may need to be adapted through the tuning of parameters and
adjustments of the thresholds. That process can prove very cumbersome and
even unreliable. It may be that the rough filtering that these features provide

144 CHAPTER 8. RESULTS AND DISCUSSION

can give a sufficiently clean set for most of the later applications, but that is yet
to be proved.

As we have learned that we were unable to capture the information needed
to separate the K6 cells, we want to see if utilizing these features could help a
supervised leaning algorithm to come close to the human level of accuracy for
K6. We therefore include a section where we test how well we could classify all
the classes, K1-K4 and K6. This means that we loose the level of control we
have with the thresholding procedure, but when we do not have the expertise
necessary to understand the classification fully, it may be better to seek the aid
of the computer.

8.3 Classification of All Classes

Instead of solving this classification as a two-class problem and then later classify
the remaining cell-types, we choose to do a supervised classification of all classes.
We see no reason for the classification to improve by dividing this process into
more stages, as the classifiers create one set of trees for each class, so each
class will have different features associated to it. In this section we do the
classification without balancing the test-sets in terms class distributions. This
is so we can better compare our approach to that of the human experts.

8.3.1 Feature Evaluation

In table 8.22, we present the feature importances for the PLM13 training-set,
for classification of all 5 classes. For this classification we see that the feature
importance for classification of all classes are slightly more distributed among
the features. This is likely because K6 is hard to separate and therefore the
classifier uses every possible feature to “slice off” different extreme valued K6.
As expected we can se that cut cell and mean Fourier features are important for
the classification. Other typical features that indicating uneven or unsymmetric
edges are much more important in this classification, in the evaluation for cell-
type classification found in table 8.3. These features are less correlated than the
top features from the cell-type classification, as we can see in 8.23. This could
partly be due to K6 cells creating “noise”, so the features are less related through
the class labels. In the evaluation for the features for the M51 classification,
found in table 8.24, we see that cut cell is much less important, but area and
perimeter is much more important. For the jagged cells in the M51 training-
set, we have seen that the effect of the cut cell feature is weakened. For the
PLM13 dataset on the other hand we have the problem with large size and
color difference in some of the patients. This is probably the reason why mean
Intensity and area have been found so much less effective for separating the
cells in PLM13. We have no good explanation for why IOD is a so much more
effective feature for the PLM13 dataset, but PLM13 IOD is clearly one of the
more important features, and that may be an issue of concern. We believe
that the overlapping feature did not have a high importance, for mainly two
reasons. The overlapping feature is a very specific feature and therefore good for
classifying only a small part of the K6 cells, and not good for separating among
the other classes. There are much more jagged and cut cells, so these features
will be chosen first, and many of the overlapping cells have cut or jagged edges

8.3. CLASSIFICATION OF ALL CLASSES 145

and are therefore removed before the overlapping feature is applied. Despite the
fact that it is only good for separating a small part of the cells, we still believe
it can be important, due to the effect of the cells the feature remove.

Table 8.22: Feature evaluation for PLM13 training-set, for the evaluation of all
classes.

Features CCR
(RF)

Feature
Importance

(GBT)
Feature

Importance
Cut Cell 76.22 0.0979 0.0301
Bending Energy 75.02 0.0829 0.0549
IOD 74.64 0.1894 0.0352
Variance 74.55 0.0647 0.0420
mean Fourier 74.08 0.0771 0.0218
Hu Moment φ1 73.48 0.0350 0.0216
Adaptive GLCM (2 vs. 4) 73.07 0.0369 0.0068
Area 73.06 0.0518 0.0936
Convex Hull Deficiency 72.76 0.0787 0.0312
GLCM-Contrast (d=12) 72.46 0.0167 0.0038
Max Diameter 72.14 0.0394 0.0238
Mean Intensity 72.10 0.0160 0.0146
Perimeter 71.60 0.0356 0.1568
Adaptive GLCM (2 vs. 3) 71.49 0.0118 0.0278
Summed Laplace 70.94 0.0088 0.0392
Entropy 68.63 0.0104 0.0018
Skewness 68.55 0.0099 0.0287
Blurred Edge 68.48 0.0223 0.0261
Circularity 67.27 0.0221 0.0681
Concavity Depth 67.02 0.0247 0.0639
Overlap 66.86 0.0148 0.0128
IOD Balance 65.85 0.0046 0.0111
Eccentricity 65.43 0.0167 0.1079
Distance to Ellipse 65.10 0.0031 0.0067
GLCM-ASM (d=4) 64.63 0.0025 0.0019
Tennengrad Variance 64.52 0.0038 0.0208
Adaptive GLCM (1 vs. 4) 64.44 0.0052 0.0016
Symmetry 64.41 0.0117 0.0294
Jaggedness 64.27 0.0054 0.0161

We have seen that IOD has an important effect on the classification of
PLM13, and we therefore want to investigate this effect further. From fig-
ure 8.24 we can see that a high IOD increases the probability of a cell to be
classified as K1. This is expected as most of the high IOD cells are K1. We
had a concern that the extreme value of IOD would indicate a K6 cell, as we
do know that this would not be a reliable measure. Fortunately it appears that
our model is restricted enough, so that situation will not occur. It is of course
also a concern that K1 cells with low IOD will be removed. At least we see that
it is more probable that cells with low IOD and smooth edges are classified as

146 CHAPTER 8. RESULTS AND DISCUSSION

Table 8.23: Correlation coefficients for the combinations of the top 10 features
in table 8.22: Cut Cell (CC), Bending Energy (Be), IOD, Variance (V), Mean
Fourier (MF), Hu Moment φ1, adaptive GLCM (2 vs. 4) (AG), Area (A),
GLCM-Contrast (d=12) (GC).

CC BE IOD V MF HM AG A CHD GC
CC 1.00 0.55 -0.23 0.35 0.53 -0.20 0.32 -0.41 0.42 0.31
BE 0.55 1.00 -0.31 0.49 0.50 -0.04 0.48 -0.60 0.57 0.50
IOD -0.23 -0.31 1.00 -0.01 -0.18 -0.11 -0.02 0.42 -0.11 -0.13
V 0.35 0.49 -0.01 1.00 0.32 -0.70 0.83 -0.79 0.25 0.88
MF 0.53 0.50 -0.18 0.32 1.00 -0.03 0.22 -0.33 0.79 0.26
HM -0.20 -0.04 -0.11 -0.70 -0.03 1.00 -0.61 0.64 0.15 -0.56
AG 0.32 0.48 -0.02 0.83 0.22 -0.61 1.00 -0.71 0.16 0.82
A -0.41 -0.60 0.42 -0.79 -0.33 0.64 -0.71 1.00 -0.24 -0.72
CHD 0.42 0.57 -0.11 0.25 0.79 0.15 0.16 -0.24 1.00 0.21
GC 0.31 0.50 -0.13 0.88 0.26 -0.56 0.82 -0.72 0.21 1.00

K1, in contrast to jagged cells.
From figure 8.25 we can see that the IOD distribution is quite similar for cells

misclassified as K6 and cells correctly classified. Still it seems as though IOD
cells have slightly higher probability of begin misclassified. As we saw from the
partial dependence plot in figure 8.24, this can not be due to the IOD features
itself. It is likely due to the fact that high IOD cells tend to be abnormal in
many ways. Still it seems like the bias inflicted on the IOD by the automatic
classification is very small. It is hard to determine this without actually applying
the further analysis, but with this result we are reassured that the automatic
classification is unlikely to affect the ploidy analysis in a major way.

8.3.2 Classification Results

The classification of the PLM13 and M51 sets gave promising results with CCRs
of 87.15% and 86.07%, which is similar to the results of our inter-observer study.
These results can be found in table 8.25 and 8.26. Still we can see that the
precision and recall for the smaller classes are considerably lower than for the
larger ones, but this effect is prominent also when comparing the results of
the experts. The result for the classification of the inter-observer set is on
the other hand more concerning. For the “official labels” of the set we found
a CCR of 79.93 %, and the average CCR tested against all the experts was
79.43%. This result is 0.93 % lower than the average accuracy for the worst
preforming expert, but within the 0.95 confidence interval (85.14±7.29%). The
full confusion matrix can be found in table8.27. What conclusions to draw from
this is uncertain. We know that the data-material in the inter-observer set is
significantly different compared to the PLM13 training-set, as we learned in
section 8.1. When we know that the relationship between K2 and K3 change
dramatically in the set, it may not come as a surprise that these two classes are
mixed up also in this classification. The difference in size and variance certainly
seems to play a role also here. The worst result is clearly for K4, but this was
also very prominent in the inter-observer study, and we have to remember that
together any combination of 6 observers did not agree on any of the K4 cells,

8.3. CLASSIFICATION OF ALL CLASSES 147

Figure 8.24: Here we can see the partial dependence for the K1 class, between
mean Fourier and IOD. We can see that IOD is used for classifying K1 and that
it has a much more pronounced effect than the mean Fourier coefficients.

so these labels are highly unreliable.
With this result we find that we are still undetermined in the question of

whether an automatic classification can perform on a par with the manual clas-
sification. We do not know whether the PLM13 test-set is generally easier to
label, and that the experts would have an even better performance on that
set. On the other hand we cannot be sure if the classification algorithm is that
much worse either. It may be that the experts are in general more coherent
because they had more similar training compared to the expert who labelled
the training-set. We still believe that the most probable answer is that the
performance of the experts is similar on both sets, but that their method of
classification is more robust towards changes in segmentation.

The results for the L41 test-set were markedly worse than for the other sets,
as we can see from table 8.28. As we saw earlier there were some differences
on some central features in the K2 class, between the training- and test-set.
Therefore we wanted to investigate whether we could find similar differences
for K6, and calculated the Mahalanobis distances between the features for each
class. We found the complete opposite of what we expected as they were in fact
quite similar. The largest difference for K6 were for circularity with a distance
of 0.55 and for K1 the largest difference were in bending energy with a value
of 0.45. This is not nearly enough to explain the dramatically worse accuracy
compared to M51 and PLM13. This led us into an investigation on whether we
have overfit our model.

148 CHAPTER 8. RESULTS AND DISCUSSION

Figure 8.25: The left plot is a histogram of the K1 cells that were correctly
classified, while the right plot is the histogram of the wrongly classified K1 cells,
from the PLM13-test set. On the x-axis we have the IOD of the cells.

8.3.3 Is The Model Overfitted?

With the poor results of the L41 classification, we have to investigate whether
we have created a model so complex that it overfits to the training data, and
therefore is less robust to small changes. The results of the other tests indicate
no overfitting, but it may be that those pairs of training and test-sets are similar
in ways we cannot generally expect. If the model is overfitted we can expect
that we would get a very high accuracy when we both train and test on the same
set. In doing this we can get an upper bound for how good separation a model
could get for a data-set given a “perfect” training-set. Therefore we preformed
a classification where we both trained and tested on the L41 test-set, and found
a CCR of 80.66%. Which means that we cannot possibly achieve a higher CCR
than that given our current model. Since 80.66% accuracy is generally quite
low, we could argue that the model may not be complex enough. At least it is
clear that we cannot further restrain the complexity, as we then would get an
even lower optimal result.

There can be several possible reasons why our model could not achieve any
higher CCR on the L41 test-set. It may be that we have not created a set of
features that capture the enough of the information that the experts use in their
labeling process. We may have restricted the complexity of the classification al-
gorithm too much, so that we are not able to capture some complex interactions
of features that the experts use in their labeling. Finally it may be that the
underlying error in the labeling is even higher for this data, compared to the
other sets.

We investigated how the other data-sets performed when we trained and
tested on the same material, and found that M51 had a CCR of 90.39%, PLM13
had 89.03% and the inter-oberver set had 92.34%. Here we have to remember
that the ability to separate a data-set with a given model complexity, decreases
with the number of cells in the data-set, so therefore the separability of the
inter-observer set can be exaggerated, but the test-sets of M51 and PLM13 are
both larger than the test-set of L41.

We did a grid search for the L41 training-set to investigate whether under-
fitting could be a problem and whether increasing the complexity of the classifier

8.3. CLASSIFICATION OF ALL CLASSES 149

could be the whole solution. In fact the grid search showed that for cross-
validation on the L41 training-set, the best tree-depth was 8, instead of 6. With
this parameter change, the CCR of the cross-validation changed from 79.8% to
81.35%. With a tree-depth of 8 for the L41 test-set on the other hand the CCR
was reduced to 74.86%. The increased complexity obviously also increased the
CCR when we trained and tested on the same sets. For the L41 test-set, this
score was now 84.33% which is a marked improvement. With the same test and
parameters on the other sets we found CCR of 94.16%, 92.05% and 96.05 %.
They obviously increased the training accuracy with increased complexity, but
their results decreased. Since L41 still has a much worse training accuracy, this
leads us to the conclusion that the L41 data-sets are indeed more confounded
on our set of features, and no indications of overfitting were found.

8.3.4 Explaining the L41-Result

When we look at the training errors of the two L41 sets, we find that their
types of errors are very similar. They mainly confuse K1 and K6 cells, and
when investigating the cells further we find that there is especially one type of
error that is common. That is that they tend to misclassify jagged cells, one
way or the other. In figure 8.26 we can see some examples of the cells that are
typically confused. We find that none of the features we have calculated can
separate these cells well, and this seems to be the cause of the surprisingly high
test error. Since this set was not used much in the generation and search for
features it may be that we could have found other features where the differences
between these cells were apparent.

Figure 8.26: Typical problematic cells in L41. The two leftmost cells are K1
cells and the rightmost are K6 cells. They all have rough edges and it is hard to
find a systematic difference between them.

This can explain why the L41 tests have a lower CCR than the other sets up
to a certain point, but we find that if we do cross-validation on each of the sets
we see that there are still a difference between the sets. The cross-validation ac-
curacies of 79.8% for the training-set and 78.8% for the test-set are still markedly
better than the test result. The difference between the cross-validation errors
and the test errors is that for the test case, we have some additional confusion
around the K2 and K3 classes. This has obviously a connection to what we
found in the section on the isolated cell-type classification. We find that in the
test-set they tend to classify very small black cells as K6 instead of K2. This is
a quite common incoherence among all the sets. A more dramatic difference is
that they in the test-set have a greater tendency to classify cells that lie between
K3 and K1 to K1, while they in the training-set were more prone to label these
cells as K3. This can be seen on the Mahalanobis distance of the area for the
K3 class, between the two sets. The Mahalanobis distance in area is 1.1, and

150 CHAPTER 8. RESULTS AND DISCUSSION

the K3 cells in the training-set have on average 263 pixels larger area. So larger
cells, that were classified as K3 in the training-set are now classified as K1. This
have less effect on the mahalanobis distance on the much larger K1 set, but the
K1 cells in the test-set are on average 362 pixels smaller.

8.3. CLASSIFICATION OF ALL CLASSES 151

Table 8.24: Feature evaluation for the M51 training-set,for the evaluation of all
classes

Features CCR
(RF)

Feature
Importance

(GBT)
Feature

Importance
Bending Energy 81.82 0.2395 0.1710
Area 80.54 0.0970 0.1142
Perimeter 80.41 0.1031 0.1488
Adaptive GLCM (1 vs. 4) 79.98 0.0719 0.0072
Max Diameter 79.22 0.0532 0.0049
Mean Intensity 78.37 0.0389 0.0004
Variance 77.84 0.0458 0.0088
Adaptive GLCM (2 vs. 4) 76.04 0.0250 0.0013
GLCM-Contrast (d=12) 74.80 0.0342 0.0728
Skewness 73.05 0.0124 0.0144
Adaptive GLCM (2 vs. 3) 71.94 0.0148 0.0013
Summed Laplace 71.50 0.0355 0.0192
Circularity 69.58 0.0132 0.1069
Cut Cell 68.45 0.0152 0.0101
Entropy 67.30 0.0081 0.0076
Concavity Depth 66.38 0.0095 0.0027
GLCM-ASM (d=4) 64.92 0.0088 0.0090
Eccentricity 64.45 0.0103 0.1400
Tennengrad Variance 63.95 0.0120 0.0250
Convex Hull Deficiency 63.05 0.0175 0.0035
Overlap 62.80 0.0082 0.0046
IOD Balance 62.44 0.0065 0.0141
Symmetry 62.31 0.0031 0.0001
Summed Fourier 62.26 0.0208 0.0140
Hu Moment φ1 61.96 0.0526 0.0022
Jaggedness 61.72 0.0127 0.0432
Blurred Edge 61.42 0.0020 0.0017
Distance to Ellipse 60.56 0.0043 0.0138
IOD 58.61 0.0237 0.0372

Table 8.25: Test result for the PLM13 dataset.

Random Forest: PLM13 - Test (18 148) CCR: 87.15%
Class K1 K2 K3 K4 K6 Precision Recall
K1 14152 79 75 47 1471 0.95 0.90
K2 0 79 42 0 42 0.74 0.48
K3 6 10 912 0 287 0.71 0.75
K4 34 0 0 196 91 0.75 0.61
K6 748 18 250 19 5954 0.76 0.85

152 CHAPTER 8. RESULTS AND DISCUSSION

Table 8.26: Test result for the M51 dataset.

Random Forest: M51 - Test (17 669) CCR: 86.07%
Class K1 K2 K3 K4 K6 Precision Recall
K1 10175 0 58 281 409 0.97 0.93
K2 0 32 0 0 0 0.22 1.00
K3 173 0 1130 0 660 0.68 0.58
K4 7 0 0 95 0 0.19 0.93
K6 168 112 466 128 3775 0.78 0.81

Table 8.27: Test result for the inter-observer dataset.

Random Forest: P13 - Inter-Observer (2 989) CCR: 79.93%
Class K1 K2 K3 K4 K6 Precision Recall
K1 1307 0 0 0 70 0.83 0.95
K2 0 221 100 0 11 0.88 0.67
K3 1 22 443 0 2 0.70 0.95
K4 41 0 0 11 30 1.00 0.13
K6 223 8 92 0 407 0.78 0.56

Table 8.28: Test result for the L41 dataset.

Random Forest: L41 - Test (13 038) CCR: 75.33%
Class K1 K2 K3 K4 K6 Precision Recall
K1 7871 0 352 0 455 0.82 0.91
K2 0 250 1 0 87 0.65 0.65
K3 46 43 383 0 321 0.22 0.26
K4 35 0 0 0 3 0.00 0.00
K6 1694 79 135 0 1653 0.66 0.46

8.4. SUMMARY OF RESULTS 153

8.4 Summary of Results
The test results for cell-type classification ranged 91.78-96.64% CCR. For the
older datasets L41 and M51, the classification model had a tendency to mislabel
cells between K1 and K3, and K1 and K4. For the PLM13 dataset the classifi-
cation model tended to confuse K3 and K4 nuclei. We found that more K1 cells
with low IOD were mislabeled compared to high IOD cells, but the effect was
worse when IOD was not included as a feature. The random forest classification
model achieved slightly better performance than the gradient boosting model.

We found that for the PLM13 test-set we could remove 49.13% of the K6
cells by a mere thresholding of the features designed to detect debris, with a loss
of 3.9% of non K6 cells. These lost cells could by our account also have been
classified as K6. For M51 we could remove 27.32% of the K6 cells with a loss
of 4.16% of the non K6 cells, with a similar thresholding. For the L41 test-set
the result was even worse and we could only remove 23.76% of the K6 cells at
a loss of 8.24% of the non K6 cells. The debris detection measures seemed to
be somewhat “overfitted” to the newer datasets, as they were developed for the
newer datasets and also performed best on those sets.

The test results for the classification of all classes ranged from 75.33-87.15%.
For the worst performing dataset, L41, our investigation indicated that the
classes were less separable with our feature set, compared to the classes in other
datasets. This could either be due to the lack of appropriate features or a
generally lower reliability for that dataset.

We find that in general, the performance of the automatic classification is
comparable to that of the manual work of humans, but that the automatic
classification probably is much easily corrupted by systematic changes in the
data-set. The specifically designed features can also be overfitted to a given
data-set. We saw that the performance of our novel set of features degraded
when tested on the older data-sets, that the features were not designed for. The
re-adaption of such features can also be much harder than simply re-training a
classification model, but we also have to remember the large amount of work
demanded to manually label a new training-set.

154 CHAPTER 8. RESULTS AND DISCUSSION

Chapter 9

Conclusion and Further Work

With this study we aimed to develop an automatic algorithm for classification
of cell-types and removal of debris in form of damaged or overlapping nuclei.
We searched through a range of features used in earlier work on classification of
cell nuclei and developed a set of novel features explicitly targeted to the task
at hand. We classified a part of the PLM13 set into 5 categories with an CCR
of 87.15%, which we found to be similar to the results of human experts. The
reliability of human experts were tested in a small study on the data from one
patient, classified by 7 experts, where they achieved an average CCR of 85.14%.
On the same data our classification algorithm had a CCR of 79.43% which is
similar to the worst of the human experts and not significantly different from
the sample of experts with the average CCR of (85.14± 7.29%). We found that
the data-sets differed greatly in terms of essential features and suggest that the
quality of the manual classification may vary to the same degree. Therefore we
are inconclusive on whether these results may be generalized to other data-sets.

Making the algorithm robust to different changes in the data material proved
difficult as the data differed on many different aspects. This can make our
specific features fail for unexpected reasons. We found that creating very specific
features can be a rewarding but cumbersome process. Such an approach can also
very easily lead to overfitting due to restricted capacity of humans for reviewing
large data-sets. We found that our approaches for detecting overlapping, cut
and over-segmented cells were partly corrupted in the data-sets where large
parts of the samples had irregular contours. A method of more general features
that span a large set of different aspects of a cell may therefore be preferred
in combination with a powerful classifier. Our study indicate that a supervised
classification can adapt to the manual labeling quite well, and perhaps good
enough for a full autonomous procedure.

Further work should be put into identifying different sources of changes in
the data. For example one could run a test, where human experts tried to
label a combined set of data from many different datasets. That way one could
learn whether humans really are superior in robustness against changes in the
material. If they are, there have to be theoretically possible to develop a set
of features that are more robust. If humans are not more robust, we could
for example, develop a set of features that include information of attributes
related to the slide the images stem from or the patient the tissue is extracted
from. The work done on detecting different forms of debris, can advantageously

155

156 CHAPTER 9. CONCLUSION AND FURTHER WORK

be incorporated into the segmentation algorithm. As part of the segmentation
itself, it may be easier to adapt the features to changes in the segmentation.
Detected overlapping cells could perhaps be separated and used, and over- or
under-segmented cells could be resegmented.

For cell-type classification, developing a gold-standard in the form of ob-
jective staining methods would prove invaluable, but this have proved to be a
difficult task. An easier alternative could be to develop a more reliable training-
set, by focusing on quality before quantity. This could be done continuously
viewing and reviewing a that can be relatively small, but preferably more bal-
ance in terms of distribution among the classes.

References

[1] Fritz Albregtsen, Yogesan Kanagasingam, George Farrants, and Havard E
Danielsen. Texture discrimination of normal and malignant mouse liver
cell nuclei. In Theory and Applications of Image Analysis: Selected Papers
from The 7th Scandinavian Conference on Image Analysis, pages 324–335,
1992. 80

[2] Fritz Albregtsen, Helene Schulerud, and Luren Yang. Texture classification
of mouse liver cell nuclei using invariant moments of consistent regions. In
Computer Analysis of Images and Patterns, pages 496–502. Springer, 1995.
80

[3] S Baheerathan, Fritz Albregtsen, and Håvard E Danielsen. New texture
features based on the complexity curve. Pattern Recognition, 32(4):605–
618, 1999. 80

[4] Rohit Bhargava, Daniel C Fernandez, Stephen M Hewitt, and Ira W Levin.
High throughput assessment of cells and tissues: Bayesian classification
of spectral metrics from infrared vibrational spectroscopic imaging data.
Biochimica et Biophysica Acta (BBA) - Biomembranes, 1758(7):830–845,
2006. 27, 32

[5] Rohit Bhargava, Daniel C Fernandez, Stephen M Hewitt, and Ira W Levin.
High throughput assessment of cells and tissues: Bayesian classification
of spectral metrics from infrared vibrational spectroscopic imaging data.
Biochimica et Biophysica Acta (BBA)-Biomembranes, 1758(7):830–845,
2006. 29, 30

[6] Christophe Boudry, Paulette Herlin, Benoit Plancoulaine, Eric Masson,
Abderrahim Elmoataz, Hubert Cardot, Michel Coster, Daniel Bloyet, and
Jean-Louis Chermant. Automatic morphological sieving: comparison be-
tween different methods, application to DNA ploidy measurements. Ana-
lytical Cellular Pathology, 18(4):203–210, 1999. 29, 31

[7] Christophe Boudry and Brigitte Sola. Mathematical Morphology: Applica-
tion to DNA Ploidy. Microsc. Microanal. Microstruct, 7(1996):477, 1996.
29

[8] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001. 93,
107, 108, 109, 112

157

158 REFERENCES

[9] Robert L Brennan and Dale J Prediger. Coefficient kappa: Some uses,
misuses, and alternatives. Educational and psychological measurement,
41(3):687–699, 1981. 15

[10] Patrick Brigger, Jeff Hoeg, and Michael Unser. B-spline snakes: a flexible
tool for parametric contour detection. Image Processing, IEEE Transac-
tions on, 9(9):1484–1496, 2000. 27, 131

[11] Rich Caruana and Alexandru Niculescu-Mizil. An empirical comparison
of supervised learning algorithms. In Proceedings of the 23rd international
conference on Machine learning, pages 161–168. ACM, 2006. 109, 127

[12] Antonin Chambolle. An algorithm for total variation minimization and
applications. Journal of Mathematical imaging and vision, 20(1-2):89–97,
2004. 53

[13] Richard W Conners, Mohan M Trivedi, and Charles A Harlow. Segmen-
tation of a high-resolution urban scene using texture operators. Computer
Vision, Graphics, and Image Processing, 25(3):273–310, 1984. 83

[14] Thomas Cover and Peter Hart. Nearest neighbor pattern classification.
Information Theory, IEEE Transactions on, 13(1):21–27, 1967. 94

[15] Glenn De’Ath. Boosted trees for ecological modeling and prediction. Ecol-
ogy, 88(1):243–251, 2007. 101

[16] Andrew G Dempster and Cecilia Di Ruberto. Using granulometries in
processing images of malarial blood. In Circuits and Systems, 2001. ISCAS
2001. The 2001 IEEE International Symposium on, volume 5, pages 291–
294. IEEE, 2001. 90

[17] Cecilia Di Ruberto, Andrew Dempster, Shahid Khan, and Bill Jarra. Anal-
ysis of infected blood cell images using morphological operators. Image and
Vision Computing, 20(2):133–146, February 2002. 90

[18] Thomas G Dietterich. An experimental comparison of three methods for
constructing ensembles of decision trees: Bagging, boosting, and random-
ization. Machine learning, 40(2):139–157, 2000. 101, 109

[19] Edsger W Dijkstra. A note on two problems in connexion with graphs.
Numerische mathematik, 1(1):269–271, 1959. 53

[20] David H Douglas and Thomas K Peucker. Algorithms for the reduction of
the number of points required to represent a digitized line or its caricature.
Cartographica: The International Journal for Geographic Information and
Geovisualization, 10(2):112–122, 1973. 45

[21] Dominik Maria Endres and Johannes E Schindelin. A new metric for
probability distributions. Information Theory, IEEE Transactions on,
49(7):1858–1860, 2003. 72

[22] A. Fitzgibbon, M. Pilu, and R.B. Fisher. Direct least square fitting of
ellipses. IEEE Transactions on Pattern Analysis and Machine Intelligence,
21, 1999. 33, 34

REFERENCES 159

[23] Joseph L Fleiss and Jacob Cohen. The equivalence of weighted kappa and
the intraclass correlation coefficient as measures of reliability. Educational
and psychological measurement, 1973. 15

[24] Jan Flusser. On the independence of rotation moment invariants. Pattern
recognition, 33(9):1405–1410, 2000. 88

[25] Herbert Freeman. Boundary encoding and processing. Picture processing
and psychopictorics, 241, 1970. 65

[26] Yoav Freund and Robert E Schapire. Experiments with a new boosting
algorithm. In ICML, volume 96, pages 148–156, 1996. 103

[27] Brendan J Frey and Delbert Dueck. Mixture modeling by affinity propa-
gation. Advances in neural information processing systems, 18:379, 2006.
75

[28] Brendan J Frey and Delbert Dueck. Clustering by passing messages be-
tween data points. science, 315(5814):972–976, 2007. 75

[29] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic
regression: a statistical view of boosting (with discussion and a rejoinder
by the authors). The annals of statistics, 28(2):337–407, 2000. 93, 103, 108

[30] Jerome H Friedman. Greedy function approximation: a gradient boosting
machine. Annals of Statistics, pages 1189–1232, 2001. 93, 105, 106, 107,
109

[31] David L Fritzsche. A systematic method for character recognition. Tech-
nical report, 1961. 34

[32] Rafael C Gonzalez and Richard E Woods. Digital Image Processing (3rd
Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2006. 35

[33] Leo Grady. Random walks for image segmentation. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 28(11):1768–1783, 2006. 141

[34] Gösta H Granlund. Fourier preprocessing for hand print character recog-
nition. Computers, IEEE Transactions on, 100(2):195–201, 1972. 34, 35

[35] Isabelle Guyon and André Elisseeff. An introduction to variable and feature
selection. The Journal of Machine Learning Research, 3:1157–1182, 2003.
98

[36] James A Hanley and Barbara J McNeil. The meaning and use of the
area under a receiver operating characteristic (ROC) curve. Radiology,
143(1):29–36, 1982. 5

[37] Robert M Haralick, Karthikeyan Shanmugam, and Its’ Hak Dinstein. Tex-
tural features for image classification. Systems, Man and Cybernetics, IEEE
Transactions on, (6):610–621, 1973. 31, 83

[38] Chris Harris and Mike Stephens. A combined corner and edge detector. In
Alvey vision conference, volume 15, page 50. Manchester, UK, 1988. 47

160 REFERENCES

[39] Trevor Hastie, Robert Tibshirani, Jerome Friedman, T Hastie, J Friedman,
and R Tibshirani. The elements of statistical learning, volume 2. Springer,
2009. 93, 100, 101, 104, 106, 107, 108, 109

[40] David W Hedley. DNA analysis from paraffin-embedded blocks. Methods
in cell biology, 41:231–240, 1994. 8

[41] Robert C Holte. Very simple classification rules perform well on most
commonly used datasets. Machine learning, 11(1):63–90, 1993. 108

[42] Ming-Kuei Hu. Visual pattern recognition by moment invariants. Infor-
mation Theory, IRE Transactions on, 8(2):179–187, 1962. 88

[43] John D Hunter. Matplotlib: A 2D graphics environment. Computing in
Science & Engineering, 9(3):90–95, 2007. 61, 91

[44] Daniel P Huttenlocher, Gregory A Klanderman, and William J Rucklidge.
Comparing images using the Hausdorff distance. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 15(9):850–863, 1993. 45

[45] Itzees. Open Source Computer Vision Library. 34, 52, 61, 91

[46] Karen E Jacowitz and Daniel Kahneman. Measures of anchoring in esti-
mation tasks. Personality and Social Psychology Bulletin, 21:1161–1166,
1995. 20

[47] Gaetano Kanizsa. Subjective contours. Scientific American, 234(4):48–52,
1976. 52

[48] G B Kristensen, W Kildal, V M Abeler, J Kaern, Ignace Vergote, C G
Trope, and H E Danielsen. Large-scale genomic instability predicts long-
term outcome for women with invasive stage I ovarian cancer. Annals of
oncology, 14(10):1494–1500, 2003. 19, 22

[49] Solomon Kullback and Richard A Leibler. On information and sufficiency.
The Annals of Mathematical Statistics, pages 79–86, 1951. 72

[50] J Richard Landis and Gary G Koch. The measurement of observer agree-
ment for categorical data. biometrics, pages 159–174, 1977. 16

[51] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998. 4

[52] Jianhua Lin. Divergence measures based on the Shannon entropy. Infor-
mation Theory, IEEE Transactions on, 37(1):145–151, 1991. 72

[53] Richard Maclin and David Opitz. Popular ensemble methods: An empirical
study. arXiv preprint arXiv:1106.0257, 2011. 103

[54] J Maddison. Digital image processing for prognostic and diagnostic clinical
pathology. PhD thesis, University of Huddersfield, 2005. 8, 67, 69

[55] Gjorgji Madjarov, Dragi Kocev, Dejan Gjorgjevikj, and Sašo Džeroski.
An extensive experimental comparison of methods for multi-label learn-
ing. Pattern Recognition, 45(9):3084–3104, September 2012. 107

REFERENCES 161

[56] Aamir Saeed Malik. Comparison of focus measures under the influence of
various factors effecting their performance. Depth Map and, 2012. 60

[57] A G Mamistvalov. n-dimensional moment invariants and conceptual math-
ematical theory of recognition n-dimensional solids, 1998. 88

[58] Eric Masson, Paulette Herlin, Isabelle Galle, Françoise Duigou, Philippe
Belhomme, Daniel Bloyet, and Anne-Marie Mandard. Automatic classifica-
tion of cellular elements of solid tumors: application to DNA quantitation.
Acta Stereologica, 13(1):75–81, 1994. 29, 31

[59] Birgitte Nielsen, Fritz Albregtsen, Sivalingam Baheerathan, and Havard E
Danielsen. Peel-off-scanning to obtain radial differentiation of fractal and
complexity features in cell nuclei. In Proceedings, Vision Interface, pages
54–60, 2000. 72

[60] Birgitte Nielsen, Fritz Albregtsen, and Håvard E Danielsen. The use of
fractal features from the periphery of cell nuclei as a classification tool.
Analytical Cellular Pathology, 19(1):21–37, 1999. 90

[61] Birgitte Nielsen, Fritz Albregtsen, and Havard E Danielsen. Statistical
nuclear texture analysis in cancer research: A review of methods and ap-
plications. Critical Reviews in Oncogenesis, 14(2-3), 2008. 19, 25, 81

[62] Birgitte Nielsen, Fritz Albregtsen, Wanja Kildal, Vera M Abeler, Gunnar B
Kristensen, and Håvard E Danielsen. The prognostic value of adaptive
nuclear texture features from patient gray level entropy matrices in early
stage ovarian cancer. Analytical Cellular Pathology, 35(4):305–314, 2012.
8, 19, 23

[63] Birgitte Nielsen, Fritz Albregtsen, Wanja Kildal, and Håvard E Danielsen.
Prognostic classification of early ovarian cancer based on very low dimen-
sionality adaptive texture feature vectors from cell nuclei from monolayers
and histological sections. Analytical Cellular Pathology, 23(2):75–88, 2001.
19, 80

[64] Birgitte Nielsen and Håvard E Danielsen. Prognostic value of adaptive
textural features-The effect of standardizing nuclear first-order gray level
statistics and mixing information from nuclei having different area. Ana-
lytical Cellular Pathology, 28(3):85–95, 2006. 19

[65] Birgitte Nielsen and Håvard E Danielsen. Prognostic value of adaptive
textural features-The effect of standardizing nuclear first-order gray level
statistics aNielsen, B., & Danielsen, H. E. (2006). Prognostic value of adap-
tive textural features-The effect of standardizing nuclear first-order gr. An-
alytical Cellular Pathology, 28(3):85–95, 2006. 82, 85

[66] R A Olshen, L Breiman, J H Friedman, and Charles J Stone. Classification
and regression trees. Wadsworth International Group, 1984. 93, 99, 101

[67] José Luis Pech-Pacheco, Gabriel Cristóbal, Jesús Chamorro-Martinez,
and Joaquín Fernández-Valdivia. Diatom autofocusing in brightfield mi-
croscopy: a comparative study. In Pattern Recognition, 2000. Proceedings.
15th International Conference on, volume 3, pages 314–317. IEEE, 2000.
60

162 REFERENCES

[68] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, and Vincent Dubourg. Scikit-learn: Machine learning in Python.
The Journal of Machine Learning Research, 12:2825–2830, 2011. 61, 109

[69] Said Pertuz, Domenec Puig, and Miguel Angel Garcia. Analysis of focus
measure operators for shape-from-focus. Pattern Recognition, 46(5):1415–
1432, 2013. 60

[70] Said Pertuz, Domenec Puig, and Miguel Angel Garcia. Analysis of focus
measure operators for shape-from-focus. Pattern Recognition, 46(5):1415–
1432, 2013. 60

[71] John Ross Quinlan. C4. 5: programs for machine learning, volume 1.
Morgan kaufmann, 1993. 99

[72] Prabhu Ramachandran and Gaël Varoquaux. Mayavi: 3D visualization of
scientific data. Computing in Science & Engineering, 13(2):40–51, 2011. 91

[73] Richard A Redner and Homer F Walker. Mixture densities, maximum
likelihood and the EM algorithm. SIAM review, 26(2):195–239, 1984. 94

[74] Natsuki Sano, Hideo Suzuki, and Masato Koda. A robust boosting method
for mislabeled data. Journal of the Operations Research Society of Japan-
Keiei Kagaku, 47(3):182, 2004. 103, 104

[75] Helene Schulerud. Bias of error rates in linear discriminant analysis caused
by feature selection and sample size. In Pattern Recognition, 2000. Pro-
ceedings. 15th International Conference on, volume 2, pages 372–377. IEEE,
2000. 25

[76] Helene Schulerud and Fritz Albregtsen. Many are called, but few are chosen.
Feature selection and error estimation in high dimensional spaces. Com-
puter methods and programs in biomedicine, 73(2):91–99, 2004. 98

[77] Jack Sklansky. Finding the convex hull of a simple polygon. Pattern Recog-
nition Letters, 1(2):79–83, 1982. 66

[78] Johan A K Suykens and Joos Vandewalle. Least squares support vector
machine classifiers. Neural processing letters, 9(3):293–300, 1999. 94

[79] Amir Tahmasbi, Fatemeh Saki, and Shahriar B Shokouhi. An effective
breast mass diagnosis system using zernike moments. In Biomedical En-
gineering (ICBME), 2010 17th Iranian Conference of, pages 1–4. IEEE,
2010. 89

[80] H J Tanke and E M Van Ingen. A reliable Feulgen-acriflavine-SO2 staining
procedure for quantitative DNA measurements. Journal of Histochemistry
& Cytochemistry, 28(9):1007–1013, 1980. 8

[81] Godfried T Toussaint. Solving geometric problems with the rotating
calipers. Proc. IEEE Melecon, 83:A10, 1983. 66

REFERENCES 163

[82] Oeivind Due Trier and Anil K Jain. Goal-directed evaluation of binarization
methods. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 17(12):1191–1201, 1995. 4

[83] Stéfan van der Walt, S Chris Colbert, and Gaël Varoquaux. The NumPy
Array: A Structure for Efficient Numerical Computation. Computing in
Science & Engineering, 13(2), 2011. 61, 91

[84] Stéfan van der Walt, Johannes L Schönberger, Juan Nunez-Iglesias,
François Boulogne, Joshua D Warner, Neil Yager, Emmanuelle Gouillart,
and Tony Yu. scikit-image: Image processing in Python. Technical report,
2014. 61

[85] Vn Vapnik. the nature of Statistical Learning theory. New Yorc Springer
Verlag, 1995. 93

[86] R F Walker, P T Jackway, and I D Longstaff. Recent developments in the
use of the co-occurrence matrix for texture recognition. In Digital Signal
Processing Proceedings, 1997. DSP 97., 1997 13th International Conference
on, volume 1, pages 63–65. IEEE, 1997. 82

[87] Ross F Walker, Paul Jackway, Brian Lovell, and I D Longstaff. Classifica-
tion of cervical cell nuclei using morphological segmentation and textural
feature extraction. In Intelligent Information Systems, 1994. Proceedings
of the 1994 Second Australian and New Zealand Conference on, pages 297–
301. IEEE, 1994. 80

[88] Baolin Wu, Tom Abbott, David Fishman, Walter McMurray, Gil Mor,
Kathryn Stone, David Ward, Kenneth Williams, and Hongyu Zhao. Com-
parison of statistical methods for classification of ovarian cancer using mass
spectrometry data. Bioinformatics, 19(13):1636–1643, 2003. 107

[89] Thomas Würflinger, Jens Stockhausen, Dietrich Meyer-Ebrecht, and Alfred
Böcking. Robust automatic coregistration, segmentation, and classification
of cell nuclei in multimodal cytopathological microscopic images. Comput-
erized Medical Imaging and Graphics, 28(1):87–98, 2004. 27, 28, 52

[90] Charles T Zahn and Ralph Z Roskies. Fourier descriptors for plane closed
curves. Computers, IEEE Transactions on, 100(3):269–281, 1972. 34

[91] Michael Zambon, Rick Lawrence, Andrew Bunn, and Scott Powell. Ef-
fect of alternative splitting rules on image processing using classification
tree analysis. Photogrammetric Engineering and Remote Sensing, 72(1):25,
2006. 100

[92] T Y Zhang and Ching Y Suen. A fast parallel algorithm for thinning digital
patterns. Communications of the ACM, 27(3):236–239, 1984. 66

	Abstract
	Acknowledgements
	Introduction
	The Project
	An Overview of Challenges
	Different Approaches
	Our Contribution
	Organisation

	Material
	The Datasets
	Preparation of Cell Nuclei Images
	Segmentation and Sorting
	The Different Classes
	Class 1 - Epithelial Cells
	Class 2 - Lymphocytes
	Class 3 - Plasma cells
	Class 4 - Stromal Cells
	Class 5 - Automatically Excluded Nuclei
	Class 6 - Excluded Nuclei

	Cell Images
	Study: Determine Inter-Observer Reliability
	Methods
	Results
	Discussion

	Further Use of the Classified Cell Images
	Cell Ploidy

	Challenges with the Material
	Class Lables
	Differences in the Cell Images
	Creating Bias in Later Applications

	Training and Test
	Training-Sets
	Independent Test-Set

	How general can we make our model?

	Previous Work
	Cell type classification
	Infrared spectroscopy can differentiate tissue types
	Excluding cells
	Summary

	Methods
	Fitting an Ellipse
	Fourier Descriptors
	Contour Representation
	Interpretation of the Coefficients
	Position Invariance
	Scale Invariance
	Rotation Invariance
	The Effect of Sampling Error

	Removing Debris
	Detecting rough edges
	Cut cells
	Overlapping Cells
	Over-segmented cells
	Blurred Images
	Notes on the Implementation

	A Search For Features
	Estimating DNA Content
	Morphological Features
	First-Order Gray-Level Statistics
	Texture and Higher-Order Statistics
	Gray-Level Co-Occurrence Matrix
	Cartesian Geometric Moments

	Granularity
	Summary

	Classification
	Choosing a Method of Classification
	Intuitive or Black Box
	Scaling
	Features

	Classifictation and Regression Tree
	Splitting the Population
	Pruning the Tree

	Boosting
	Loss Functions
	Gradient Boosted Trees
	Important Parameters

	Random Forests
	Important Parameters

	A Nesting Problem
	Partial Dependence Plots
	Decison on Classification Model

	Results and Discussion
	Cell-Type Classification
	Feature Importance
	Classification Results

	Feature Value Thresholding
	Overlapping Cells
	Cut cells
	Rough Edges
	Over-Segmentation
	Combining the Features
	Overview of the Thresholding

	Classification of All Classes
	Feature Evaluation
	Classification Results
	Is The Model Overfitted?
	Explaining the L41-Result

	Summary of Results

	Conclusion and Further Work
	References

