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Abstract  

The significant improvements in throughput and quality of DNA sequencing 

technology have revolutionized our ability to identify the genetic sequence of 

human cells. High-throughput genome sequencing of tumor cells has furthermore 

enabled us to identify the complete spectrum of somatically acquired mutations of 

individual tumors. Among the thousands of somatic mutations that can be found in 

a given tumor, only a limited number are likely to be of importance for cancer 

development. A central challenge in cancer genomics research is thus to identify the 

mutations that are causally implicated in tumorigenesis, commonly known as 

cancer driver mutations. Genes that carry driver mutations are known as cancer 

driver genes. Large-scale bioinformatics analysis of tumor genomes have exploited 

different strategies in order to distinguish positively selected driver mutations from 

their neutral counterparts. The different computational approaches are frequently 

implemented as stand-alone software tools, allowing individual researchers with 

tumor sequencing data to predict likely cancer driver genes.  

The actual installation and application of bioinformatics tools can be cumbersome 

for cancer researchers with limited computational competence, and the 

comparative performance of driver gene prediction results with different 

approaches and algorithms would therefore be difficult to obtain. To this end, we 

have implemented a single computational workflow for driver gene prediction 

within the Galaxy framework, a user-friendly web-based platform for data intensive 

biomedical research. Our workflow accepts a single input file with tumor DNA 

variation data and will subsequently run three of the most commonly used tools for 

cancer driver prediction, that is, IntoGen, MutSigCV, and DrGap. A report is 

generated that indicates the comparative performance of the individual tools (i.e. 

where the tools are in agreement, and where they are not) as well as simple 

visualization of their overlapping predictions. The workflow and accompanying tools 

are available at http://insilico.hpc.uio.no:40065. The workflow described in this 

thesis is available at: http://insilico.hpc.uio.no:40065/u/strekerud/w/driver-gene-

tool-comparison. We have applied our workflow on publicly available datasets from 

http://insilico.hpc.uio.no:40065/
http://insilico.hpc.uio.no:40065/u/strekerud/w/driver-gene-tool-comparison
http://insilico.hpc.uio.no:40065/u/strekerud/w/driver-gene-tool-comparison
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six major tumor types, and we discuss how usage of combinations or overlaps of 

driver gene prediction lists can increase the number of true positives found.  



5 
 

Contents 

1 Introduction .............................................................................................................. 7 

2 Background ............................................................................................................. 11 

2.1 DNA and Mutations ...................................................................................... 11 

2.2 Genes ............................................................................................................ 14 

2.3 Cancer and its development ......................................................................... 15 

2.4 Discovering Driver Genes with bioinformatics ............................................. 16 

2.5 Data Representation of  DNA variation ........................................................ 17 

2.6 Data Banks .................................................................................................... 20 

2.7 Statistical Significance ................................................................................... 21 

3 Methods & Implementation ................................................................................... 22 

3.1 Algorithms for cancer driver detection ............................................................ 22 

3.1.1 MutSigCV ................................................................................................... 22 

3.1.2 DrGap ......................................................................................................... 24 

3.1.3 Intogen ....................................................................................................... 26 

3.2 Implementation ................................................................................................ 28 

3.2.1 MAF2DRGAP .............................................................................................. 29 

3.2.2 MAF2INTOGEN ........................................................................................... 30 

3.2.3 Driver Gene Tool Comparison ................................................................... 30 

3.2.4 The Galaxy Project Framework and its implementation ........................... 33 

3.3 Installation documentation .............................................................................. 36 

3.3.1 MutSigCV ................................................................................................... 36 

3.3.2 DrGap ......................................................................................................... 38 

3.3.3 Intogen ....................................................................................................... 41 

4 Results ..................................................................................................................... 43 

4.1 Application of DGTC on cancer mutation datasets .......................................... 43 



6 
 

4.1.1 Colon Adenocarcinoma .............................................................................. 44 

4.1.2 Breast Invasive Carcinoma ......................................................................... 47 

4.1.3 Prostate Adenocarcinoma ......................................................................... 49 

4.1.4 Lung Squamous Cell Carcinoma ................................................................. 50 

4.1.5 Brain Lower Grade Glioma ......................................................................... 51 

4.1.6 Skin Cutaneous Melanoma ........................................................................ 52 

4.1.7 Result summary ......................................................................................... 53 

4.2 Discussion ......................................................................................................... 55 

4.2.1 On Implementation.................................................................................... 55 

4.2.2 Results ........................................................................................................ 56 

5 Conclusion ............................................................................................................... 60 

References .................................................................................................................. 61 

 

  



7 
 

1 Introduction 

The majority of human cancers arise from an accumulation of genetic aberrations in 

somatic cells (Garraway and Lander 2013). That does not mean that all the genetic 

abnormalities present in a tumor genome have been involved in cancer 

development. Tumor genomes of different tissues may contain from tens to 

thousands of somatic mutations. Our current understanding is that only a few, 

critical aberrations are causally implicated in tumorigenesis, while the rest are 

relatively benign and make little or no contribution at all (Vogelstein et al. 2013). 

The conceptual difference between these two types of aberrations in a cancer 

genome is commonly referred to as 'driver' versus 'passenger' mutations.  

A driver mutation is causally implicated in tumorigenesis. It has conferred growth 

advantage on the cancer cell and has been positively selected in the 

microenvironment of the tissue in which the cancer arises (Stratton et al. 2009). 

Genes that carry driver mutations are known as cancer driver genes. In contrast to 

driver mutations, a passenger mutation has not been selected, has not conferred 

clonal growth advantage and has therefore not contributed to cancer development. 

Many passenger mutations are present within cancer genomes because several 

somatic mutations without any phenotypic consequence tend to occur during cell 

division, e.g. as DNA replication errors (De and Michor 2011). Others have also 

suggested that a driver mutation should occur in multiple tumors more often than 

would be expected by chance (Akavia et al. 2010). This frequency-based view will 

however to some extent be confounded by the observation that driver mutations 

appear to target distinct cellular signaling and regulatory pathways (Vandin et al. 

2012). Individual cancer patients may very well exhibit a unique combination of 

somatic mutations that are sufficient to perturb these pathways. Such mutational 

heterogeneity will thus represent a problem when driver mutation prediction is 

done solely from frequency of occurrence. Although predictions of cancer driver 

pathways or merely cancer driver gene sets appear highly relevant, we have limited 

our study to the identification or prediction of single cancer driver genes.  
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In order to understand the underlying mechanisms of tumorigenesis, a first step 

andcentral goal of many large-scale cancer genome analyses is the identification of 

cancer driver genes that, by definition, carry driver mutations. A key challenge in 

this respect is to identify properties that distinguish driver from passenger 

mutations. Various bioinformatics algorithms have been proposed, each exploiting 

different structural signatures associated with somatic mutations that are under 

positive selection. Most methods identify genes that are mutated more frequently 

than expected from the background mutation rate. Such methods are known as 

recurrence-based or frequency-based approaches. A challenge in this respect is to 

correctly estimate the background rate in order to minimize the number of false 

positive predictions (Dees et al. 2012; Lawrence et al. 2013). Driver genes mutated 

at very low frequency are however difficult to detect using this approach (in 

addition to the pathway challenge, as mentioned above), and that is why other 

signals of positive selection across tumor samples have been explored (Tamborero 

et al. 2013b). Examples of such signals include a high rate of non-silent mutations 

versus silent mutations, a bias towards the accumulation of functional or 

deleterious coding mutations, a In order to understand the underlying mechanisms 

of tumorigenesis, a first step and clustering of mutations in certain regions or 

functional domains of a protein sequence, or an overrepresentation of mutations in 

specific functional amino acids, such as phosphorylation sites (Reimand and Bader 

2013; Greenman et al. 2007; Gonzalez-Perez and Lopez-Bigas 2012; Tamborero et al. 

2013a).  

Intuitively, one would expect that the different types of cancer driver genes would 

exhibit the signals of positive selection exploited by the approaches outlined above 

to varying degrees. For example, it has been found that cancer mutations are 

known to cluster in specific residues in oncogenes more strongly than in tumor 

suppressors (Stehr et al. 2011). In addition, since different cancer subtypes display 

great mutational heterogeneity, one could also suspect that the performance of 

different approaches will vary according to tumor type (Vogelstein et al. 2013). 

Consequently, when applying the methods on real cancer mutation data, one 

should expect that different subsets of candidate drivers will rank at the top of lists 
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of driver candidates identified by each method. Furthermore, the implementation 

details of each method are likely to influence its results. For example, frequency-

based methods with a loosely defined background mutation rate will identify a 

larger number of driver candidates at the cost of higher number of false positives. 

On the other hand, methods implementing stricter models will identify shorter, 

more specific lists but might miss some true cancer driver genes.  

To our knowledge, there is no bioinformatics tool available within the cancer 

research community that allows a direct comparison of results produced by 

different approaches for cancer driver gene prediction. Importantly, successful 

installation and application of bioinformatics software often represent a significant 

hurdle for cancer researchers with limited computational or programming 

competence. In fact, software installation may also represent a significant challenge 

even for computational biologists, often as a result of poor documentation by many 

bioinformatics software developers. Making the most common tools for driver gene 

prediction accessible in an easily accessible web framework would thus be of great 

value in itself. The primary aim of this thesis is to develop and implement a tool that 

seamlessly performs gene driver prediction using a set of common approaches, 

followed by a simple visualization of their comparative performance. 

 The prediction algorithms we have included are DrGap, IntoGen, and MutSigCV, 

which exploits most of the dimensions in driver signal detection (Lawrence et al. 

2013; Hua et al. 2013; Gonzalez-Perez et al. 2013). Our tool has been implemented 

as a workflow within the Galaxy Project Framework, which is an open, web-based 

platform for data intensive biomedical research (Giardine et al. 2005). The benefits 

of tool development within Galaxy are diverse, both from a bioinformatics 

developer standpoint as well as the end user that wants to do various genomic 

analyses. The primary benefit for the end user is ease of use, reproducibility and 

analysis flexibility. From a developers view, a generic framework for workflow 

management is especially powerful for development of complex analysis pipelines 

that combine multiple tools.  
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A secondary aim of this project has been to explore how the different approaches of 

driver gene prediction perform for different cancer subtypes, and whether a looking 

at overlapping (i.e. consensus) lists of candidate drivers from different algorithms 

could increase performance. In order to address this question, we have applied our 

cancer driver workflow on publicly available somatic mutation datasets from The 

Cancer Genome Atlas (TCGA) project 
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2 Background 

2.1 DNA and Mutations 

Deoxyribonucleic acid (DNA) holds the biological instructions for life, stored inside 

us. Coiled tightly around proteins called histones, the DNA is packaged within 23 

pairs of chromosomes, found within the nucleus of every cell in our body (Brown 

2006). Our DNA consists of long strings of molecules called nucleotides. These 

nucleotides are linked together consisting of a phosphate group, a sugar group and 

one of four types of nitrogen bases: adenine (A), thymine (T), guanine (G) and 

cytosine (C). These nucleotide strings make up, at the most basic level, the coding of 

our DNA. The most stable form of DNA is organized using hydrogen bonds between 

base pairs, binding adenine with thymine, and guanine with cytosine. This is how 

most people see DNA, in its “ladder” form. Although this form is the most common, 

DNA also appears as single stranded. 

A change in DNA, the genetic sequence, is called a mutation. These changes in the 

genetic sequence can occur when errors are made in the copying of DNA, resulting 

in a copy that is not exactly like the original. Mutations can also occur due to 

external influences or environmental mutagens when these induce damage in DNA 

and the repair machinery in the cells are unable to correctly repair the damaged 

DNA. An important distinction when it comes to mutations is made between 

germline and somatic mutation events. Germline mutations are mutations that 

occur in cells transmitted between generations (i.e. in egg or sperm cells, also 

known as hereditary mutations), while somatic mutations occur in somatic tissue 

that is not inherited. Most cancers are caused by somatic mutations, although there 

are also cases of hereditary cancer types.  

With respect to the actual mutation event in the genetic sequence, there are 

several different types that can take place, the main types being substitutions, 

insertions, deletions and frameshifts: 

  

https://paperpile.com/c/bChWDD/BCig
https://paperpile.com/c/bChWDD/BCig
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Single base substitution -  A single nitrogen base is exchanged for another: 

         CTGGAG --> CTGGGG 

 

Even though only a single nitrogen base has been changed, this can have a 

significant impact on the protein coded. The substitution of this base will lead to a 

different amino acid being coded during translation. There are three different 

outcomes of a substitution when this occurs in the protein-coding sequence. The 

first, a missense mutation, is where an altered codon (set of three nucleotides) 

leads to an incorrect amino acid being coded into the new protein. The second type, 

a nonsense mutation, is where the new amino acid is treated as a stop codon which 

terminates a protein from being coded before it’s supposed to. The third kind is 

called a silent mutation, a case in which the same amino acid is encoded, only with 

a different codon. Missense and nonsense mutations are commonly referred to as 

non-silent mutations. 

 

Base Insertion - new bases have been inserted into the sequence, e.g.: 

         CTGGAG --> CTGGTGGAG 

Here, an extra nucleotide is added to the sequence. This could happen when a 

strand “wrinkles”, allowing room for an extra nucleotide. 

 

Base deletion - a section (one ore more bases) of the sequence is lost: 

         CTGGAG -> CTAG 

As with an insertion, a “wrinkle” in the DNA strand can cause one or more 

nucleotides to be skipped during DNA replication. 
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Frameshift (Insertions or deletions cause the way the sequence is read to 

fundamentally change): 

         The fat cat sat -> he fat can sat (Deletion), 

         leading to the sequence being read as “hef atc ats at” 

  

Because of one or more insertions or deletions, the entire “frame” of codons using 

during translation has been shifted.  This will happen when the number of 

insertions/deletions is not a multiple of three, as codons are coded by groups of 

three amino acids. 

It is important to recognize that mutations come with consequences. Somatic 

mutations influencing cell division, especially those that allow cells to divide 

uncontrollably, have been identified as the basis of many forms of cancer. 

Mutations can also lead to increased susceptibility to illness or disease. In some 

cases, mutations have been proven beneficial to an organism by making it better 

able to adapt to environmental factors. No matter how you see it, changes made to 

molecules can have great impact on the physical characteristics of an organism 

(Miko and Lejeune 2009) 

  

https://paperpile.com/c/bChWDD/j5Hv
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2.2 Genes 

The word “Gene” is a concept that has undergone much change over time.  When 

first coined, it was more of an abstract concept, treated as a unit of inheritance that 

ferried a characteristic from parent to child. When biochemistry became known, we 

learned that each gene was connected to an enzyme or a protein. After a while, 

molecular biology allowed us to picture genes as real, physical things, which are 

sequences of DNA that can be converted into RNA, which is used as the basis for 

building an associated protein. At this point we can picture genes sitting as beads on 

the larger, coiled DNA molecule.  

The ladder concept is the definition stilled used by many scientists today, while 

others argue that this is, at best, only a crude approximation of the actual 

complexities of genes. Recent studies have suggested that ribbons of RNA can be 

generated from both strands of DNA, rather than from just one as was 

conventionally thought. (Pearson H. 2006) 

Karen Eilbeck, coordinator of the Sequence Ontology consortium at the University 

of California in Berkeley states that it took 25 scientiests the better part of two days 

to reach a definition of a gene that they could all work with. “We had several 

meetings that went on for hours and everyone screamed at each other”. This still 

leaves us without a clear definition of what a gene is, which makes life difficult for 

bioinformaticians, who have become dependant on using computer programs to 

spot landmark sequences in DNA that signal where one gene ends and another 

begins. For the purpose of this thesis we will adhere to the definition agreed upon 

by the consortium: "A locatable region of genomic sequence, corresponding to a 

unit of inheritance, which is associated with regulatory regions, transcribed regions 

and/or other functional sequence regions." 

 (Pearson H. 2006) 
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2.3 Cancer and its development 

In our cells we have hundreds of genes that control the process of cell division. 

There is a fine balance between activities promoting cell division, and activities 

suppressing it. As part of this balance, apoptosis (programmed cell death) controls 

the destruction of damaged cells.  

As a cell accumulates mutations, there is a chance that one or more of these 

mutations will affect the balanced cell division, causing the cells to become 

cancerous, growing out of control. The Cancer Genome Project has found that most 

cancer cells possess 60 or more mutations. Many of these mutations will not be 

involved with cancer growth, and finding the ones that are pose a great challenge 

for medical researchers. We want to know which of the mutations involved are 

responsible for different types of cancer. For example, we know that certain 

growth-promoting genes are commonly mutated in cancer cells, such as the gene 

coding the protein Ras. In other examples, genes coding the suppression of cell 

proliferation have been inactivated by mutations. 

Because a cell with a growth advantage is able to copy itself at a faster rate than 

normal cells, eventually it will be able to outperform those normal cells in the battle 

for resources. At this point, the tumor is benign. When following generations of the 

cancerous cell intensify this advantage and becomes able to break through tissue, 

the tumor is defined as malignant. When the cancerous cells start entering the 

bloodstream or the lymphatic system, this allowing them to travel to other places in 

the body, it has entered the stage called metastasis.  

(Cell Division and Cancer, Scitable, Nature.com,  O’Connor and Adams 2010) 

 
  

https://paperpile.com/c/bChWDD/duRE
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2.4 Discovering Driver Genes with bioinformatics 

Several approaches towards the identification of driver genes have been 

implemented through computer software. With mutation data given as input these 

tools are able to return with a list of genes identified as drivers.  Looking through 

gene sequencing data manually would be a herculean task, close to impossible, but 

with the help of computer power we are able to go through large amounts of data 

in a short amount of time. 

Most commonly these methods identify genes that are mutated more frequently 

than expected from the background mutation rate. This approach is applied by tools 

such as MuSIG-SMG (Dees et al. 2012). However, this approach would not be able 

to detect driver genes that are mutated at a very low frequency. Another approach, 

applied by tools such as OncodriveFM (Gonzalez-Perez and Lopez-Bigas 2012), 

attempts to identify genes that exhibit signals of positive selection, such as a high 

rate of non-silent mutations compared to silent mutations (the distinction between 

silent and non-silent mutations are explained in section 2.1). 

 Based on the observation that gain-of-function mutations tend to occur specifically 

in particular residues or domains along the genome, tools like OncodriveCLUST 

exploit the tendency to sustain mutations in certain regions of the protein sequence 

(Tamborero et al. 2013a). Tools like ACTIVEbias exploit the overrepresentation of 

mutations in specific functional residues, such as phosphorylation sites (places 

where a phosphate group is added to a protein or other organic molecule) 

(Reimand and Bader 2013). The three tools used for the purposes of this thesis and 

their approaches have been explained more thoroughly in the Methods and 

implementation part of this thesis. 

 

  

https://paperpile.com/c/bChWDD/Q2HAn
https://paperpile.com/c/bChWDD/hpzQ2
https://paperpile.com/c/bChWDD/R1gTA
https://paperpile.com/c/bChWDD/letPD
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2.5 Data Representation of  DNA variation 

When looking into which tools to use in the comparison done in this thesis, it 

quickly became apparent that there is very little consensus across the board.  

While the information used by the tools to classify the driver genes is often very 

similar, the input formats vary greatly, ranging from customized versions of the 

MAF (Mutation Annotation Format) and VCF (Variant Call Format) formats to 

entirely new tabulated formats made specifically for the tool in question.  

For the purpose of this thesis we will employ the MAF format. Still, because of its 

popularity, information on the VCF format is also included. 

Mutation Annotation Format (MAF) 

MAF is the current format used by The Cancer Genome Atlas (TCGA) to represent 

somatic and/or germline mutations. It is a tab-separated file consisting of 34 

columns containing information on the gene and chromosome affected, as well as 

the specific position and type of mutation for each sample.  

Following categories of somatic mutations are reported in MAF files: 

 Missense and nonsense 

 Splice site, defined as SNP within 2 bp of the splice junction 

 Silent mutations 

 Indels that overlap the coding region or splice site of a gene or the targeted 

region of a genetic element of interest. 

 Frameshift mutations 

 Mutations in regulatory regions 

(TCGA 2013) 

The first line of a MAF file will always look like the line below, containing the names 

of all the headers used in the MAF format. 

 
“Hugo_Symbol    Entrez_Gene_Id    Center    NCBI_Build    Chromosome    Start_posi
tion    End_position    Strand    Variant_Classification    Variant_Type    Reference_All
ele    Tumor_Seq_Allele1    Tumor_Seq_Allele2    dbSNP_RS    dbSNP_Val_Status    T
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umor_Sample_Barcode    Matched_Norm_Sample_Barcode    Match_Norm_Seq_All
ele1    Match_Norm_Seq_Allele2    Tumor_Validation_Allele1    Tumor_Validation_A
llele2    Match_Norm_Validation_Allele1    Match_Norm_Validation_Allele2    Verific
ation_Status    Validation_Status    Mutation_Status    Sequencing_Phase    Sequenc
e_Source    Validation_Method    Score    BAM_file    Sequencer    Genome_Change   
 Annotation_Transcript    Transcript_Strand    Transcript_Exon    Transcript_Position 
   cDNA_Change    Codon_Change    Protein_Change    is_coding    is_silent    categ 
 

The remaining lines will then hold the mutation data, e.g.: 

 

PHTF1    10745    broad.mit.edu    37    1    114242392    114242393    +    Frame_Shif
t_Ins    INS    - 
T    T    LUSC-18-3406-Tumor    LUSC-18-3406-
Normal   Phase_I    Unspecified   Illumina 
GAIIx    g.chr1:114242392_114242393insT    uc009wgp.1    -
    16    2527_2528    c.2075_2076insA    c.(2074-2076)AAGfs    p.K692fs    1    0    7 
A1BG  1    broad.mit.edu    37    19    58861774    58861774    +    Frame_Shift_Del    
DEL    C    -    -    LUSC-18-3406-Tumor    LUSC-18-3406-Normal”    
 

At the moment, several MAF files are available for download from the TCGA 

website hosted by the National Cancer Insitute 

(https://wiki.nci.nih.gov/display/TCGA/TCGA+MAF+Files). The MAF format is 

accepted directly by the MutSigCV tool used in this thesis, and will also possibly 

work as direct input for the Intogen tool in the future. When running the Driver 

Gene Tool Comparison workflow in Galaxy in this thesis, separate tools will be used 

that translate the MAF format into custom formats for the purpose of running the 

Intogen and DrGap tools on the same input file. 

Variant Call Format (VCF) 

The Variant Call Format is another format, like MAF, that is used to stored gene 

sequence variants.  VCF has risen in popularity because it stores variants only, 

unlike older formats like the General Feature Format (GFF) which stored all genetic 

data, which therefore contains large amount of redundant data. The VCF format is 

stored as a text file, containing lines of meta-information, a header line, and then 

data lines containing information about a position in the genome. The variant info is 

https://wiki.nci.nih.gov/display/TCGA/TCGA+MAF+Files
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always contained within eight mandatory columns: #CHROM (chromosome), POS 

(genomic position), ID (unique variant identifier, REF (reference allele), ALT 

(alternate allele), QUAL (quality score for detected variant), FILTER (custom filters 

for variant filtration), and INFO (semicolon-separated tags with various kinds of 

annotations).  

Example metadata and headers: 

##fileformat=VCFv4.0 
##fileDate=20090805 
##source=myImputationProgramV3.1 
##reference=1000GenomesPilot-NCBI36 
##phasing=partial 
##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With 
Data"> 
##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth"> 
##INFO=<ID=AF,Number=.,Type=Float,Description="Allele Frequency"> 
##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Allele"> 
##INFO=<ID=DB,Number=0,Type=Flag,Description="dbSNP membership, build 129"> 
##INFO=<ID=H2,Number=0,Type=Flag,Description="HapMap2 membership"> 
##FILTER=<ID=q10,Description="Quality below 10"> 
##FILTER=<ID=s50,Description="Less than 50% of samples have data"> 
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype"> 
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality"> 
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth"> 
##FORMAT=<ID=HQ,Number=2,Type=Integer,Description="Haplotype Quality"> 
#CHROM POS  ID        REF ALT QUAL FILTER INFO                           FORMAT  
 NA00001     NA00002     NA00003 
  

Example genome data: 

20  14370   rs6054257 G   A    29   PASS   NS=3;DP=14;AF=0.5;DB;H2           
GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:.,. 
20  17330   .      T   A       3 q10 NS=3;DP=11;AF=0.017           
 GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3   0/0:41:3 
20  1110696 rs6040355 A   G,T     67   PASS   
NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2   
2/2:35:4 
 

(VCF (Variant Call Format) version 4.0, 1000genomes.org) 
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2.6 Data Banks 

All of the input files used in this thesis have been provided by The Cancer Genome 

Atlas’ MAF file archive. The Cancer Genome Atlas (TCGA) is a coordinated effort to 

further the understanding of the molecular basis of cancer through the application 

of genome analysis technologies, which includes whole genome sequencing.  TCGA 

is created as a joint effort of the National Cancer Institute (NCI) and the National 

Human Genome Research Insitute (NHGRI). 

In order to provide some sort of accuracy measuring with the results given by the 

tools in this thesis, we have implemented a system that compares all results with a 

list of genes provided by The Cancer Gene Census 

(http://cancer.sanger.ac.uk/cosmic/census). This is a list of genes implicated via 

mutation in cancer compiled by experts at the Trust Sanger Institute. This list is 

updated regularly/as needed and currently more than 1% of all human genes are 

contained in this list. 

For the purpose of allowing the user quick access to more information on the genes 

presented in the final report generated by the tools in this thesis, all genes in the 

report will contain a direct link to the corresponding NCBI (National Center for 

Biotechnology Information) gene information page. This is achieved by comparing 

the gene HUGO id with the corresponding gene id used by the NCBI. NCBI provides 

a file with gene names and corresponding id’s for this purpose. The file used in this 

thesis can be found here.  

  

http://cancer.sanger.ac.uk/cosmic/census
ftp://ftp.ncbi.nih.gov/gene/DATA/GENE_INFO/Mammalia/Homo_sapiens.gene_info.gz
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2.7 Statistical Significance 

For the purposes of this thesis we have considered the results generated by 

MutSigCV, DrGap and Intogen to be statistically significant if they have a p-value of 

less than 0.05. The output files generated by the tools each have a column 

dedicated to p-values for each gene. 

P-values are used in statistics as the estimated probability of rejecting the null 

hypothesis for the study. In this thesis the null hypothesis would be “Is this gene a 

driver gene?”.  Most authors agree that results with a p-value less than 0.05 can be 

considered statistically significant. This means that the result is considered to have a 

less than 1 in 20 chance of being wrong.  

When the Driver Gene Tool Comparison tool goes through the different results 

generated by the tools used in this thesis work, it looks for results with a p-value 

less than 0.05, extracts them, and adds them to the report. 
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3 Methods & Implementation 

In this chapter, we will outline in more detail the different algorithms for cancer 

driver prediction that has been implemented in our comparison tool. We will also 

specify the implementation details of our tool for comparison of algorithms, that is 

the Driver Gene Tool Comparison (DTGC), which has been implemented in the 

Galaxy framework. 

3.1 Algorithms for cancer driver detection 

Each of the three tools used in this comparison utilize different signals and methods 

in order to classify genes as driver genes. This section will cover each of the tools’ 

method of achieving this classification, as well as the underlying scientific 

justifications given for using said methods. Understanding the underlying 

differences between the three tools will give us the necessary clues to understand 

the similarities, as well as the differences, in the results we end up with when 

running our comparison tool on a set of somatic mutation data. 

3.1.1 MutSigCV 

The MutSigCV-developers have found that when current methods used to find 

driver genes are met with very large sample sizes, the number of genes identified as 

significant will be in the hundreds. They have found that based on the biology 

behind them many of these are implausible as driver genes and could in these cases 

be regarded as false positives. They mention encoding olfactory receptors and the 

muscle protein Titin as examples of these biological factors. In one case where they 

tested on data from lung squamous cell carcinoma, a quarter of the genes found to 

be significant were encoding olfactory receptors, and they also found that the list of 

significant genes found also contained an inordinate amount of extremely large 

proteins, such as the before mentioned Titin. 

The developers wanted to show that this problem stems mainly from mutational 

heterogeneity across the genome. By conducting a study based on data sampled at 

the Broad Institute they were able to analyze three types of heterogeneity: 

heterogeneity across patients with a given cancer type, heterogeneity in the 

mutational spectrum of the tumors and most importantly, regional mutational 
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heterogeneity across the genome. It was when studying this third kind of 

heterogeneity that they noticed a significant variation in mutation frequencies 

across the genome. Because of this, they were able to find a strong correlation 

between somatic mutation frequency in cancers and gene expression level. They 

found that the mutation rate is almost threefold high in the bottom expression level 

percentile than in the top one. This observation paired with recent studies reporting 

that germline mutation rates are correlated with DNA replication time proved to be 

the two factors that would explain the false positives previously mentioned. Based 

upon these observations, the team developed MutSigCV, an algorithm that corrects 

for variation by using patient-specific mutation frequency and spectrum, and gene-

specific background mutation rates incorporating expression level and replication 

time. 

When MutSigCV ran the lung cancer data mentioned previously, the number of 

driver genes found was reduced from 450 to only 11 genes, most of these 11 being 

genes previously reported to be lung cancer driver genes. The MutSigCV authors 

could in that way demonstrate that mutational processes have to be taken into 

account when attempting to identify driver genes. They also note that even though 

MutSigCV have solved the most serious current problems with driver gene 

identification, future solutions will probably have to include observed mutation 

rates from whole-genome sequencing (Lawrence et al. 2013) 

  

https://paperpile.com/c/bChWDD/nYnm9
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3.1.2 DrGap 

The DrGap developers define driver genes, from a statistical standpoint, as “[those] 

genes for which the nonsilent mutation rate is significantly higher than a 

background (or passenger) mutation rate”. They also state that some biological 

considerations, such as length of protein-coding regions (called CDS), variation in 

transcript isoforms, variation in mutation types, differences in background mutation 

rates, redundancy of genetic code, and number of mutations in one gene also have 

to be made. According to its developers, DrGap has been developed for the purpose 

of combining common statistical approaches with bioinformatics tools in order to 

find driver genes. In figure 1, you will see the “DrGap Analysis Pipeline”, taken from 

(Hua et al. 2013). In our use of DrGap, only tumor mutation data will be used (not 

the optional user-defined gene sets or BAM) in order for the user to run an entire 

comparison (including MutSigCV and Intogen) on one set of input. 

 

Figure 1: Outline of DrGap pipeline 

The developers have found a way to pair their biological knowledge of the 

properties of driver genes with statistical interpretations. This allows them to run 

statistical analysis on the data to see whether or not each gene possesses the 

required properties to be classified as a driver gene. This pairing is done as 

described in the table below: 

  

https://paperpile.com/c/bChWDD/kRbIz
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Biological 
Knowledge 

Statistical Interpretation 

transcript isoforms sum aggregate of CDS from multiple isoforms of the same 
gene 

variation in 
mutation types 

consider 11 different mutation types 

background 
mutation rates 

beta prior of η i j  which is background rate of mutation 
type j in individual i 

differences in 
background 
mutation rates 

estimate separate mutation rates η i j  for each individual 
tumor 

redundancy of the 
genetic code 

define N j k  and M j k  as the number of base pairs in CDS of 
gene k that can give rise to nonsilent and silent mutations 

multiple mutations 
in one gene 

addressed by the Poisson process 

sequencing 
coverage 

c i k  is the proportion of CDS with a minimum eight sequence 
coverage in both a tumor and its matched normal DNA from 
individual i 

CDS size j ∑ ( N j k + M j k ) = 3 L  where L is length of CDS for gene k 

 

With this approach, the DrGap team has experienced a greater sensitivity when 

looking for driver genes when compared to older statistical approaches such as 

Bernoulli, Binomial, Poisson and Poisson-Gamma. They have noted a particularly 

high sensitivity compared to the other methods when there are multiple types of 

driver mutations in the tumor. In tests against data from TCGA studies DrGap 

consistently outperforms the previously mentioned statistical approaches. 

The developers also compared results using DrGap for identifying driver pathways. 

When compared another piece of software, PathScan, DrGap consistently came out 

on top, especially in cases where there are fewer driver genes that are mutated 

(thus requiring better sensitivity). 

DrGap has also performed well when compared to other cancer sequencing studies. 

Using the same dataset Ding et al. identified 22 driver genes and Young and Simon 

were able to identify 28 driver genes. Collectively they discovered 30 driver genes 

using their methods. Testing on the same dataset, DrGap identified 59 driver genes. 
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Within these 59, 29 were the same as those discovered by Ding, Young and Simon 

with the last one missed by DrGap being the least significant according to their 

studies. 

(Xing Hua 2013) 

3.1.3 Intogen 

Intogen is run as a combination of two tools, OncodriveFM and OncodriveCLUST. 

OncodriveFM is created to detect genes that are biased toward the accumulation of 

mutations with high functional impact, while OncodriveCLUST picks up genes with 

mutations that tend to cluster in particular regions of the protein sequence. Driver 

genes as defined by the developers of both tools as “genes whose mutations are 

selected during tumor development”. Therefore, both tools take this into account 

when looking for driver genes. 

When running Intogen, the tool first measures predicted functional impact. This is 

done by retrieving impact values using three well known methods, SIFT, Polyphen2 

and MutationAssessor. After this is done, Intogen runs OncodriveFM and 

OncodriveCLUST on the data and assigns each gene p-values. The entire pipeline is 

executed by a workflow management system called Wok, which is accessible as 

open source, in the manner shown in Figure 2. 

After a runthrough, the user is presented with p-values for both OncodriveFM and 

OncodriveCLUST as well as a third value called IntogenDriver. In the case where 

Intogen identifies the gene as a driver (based on p-values from OncodriveFM and 

OncodriveCLUST) the IntogenDriver value is set to 1. 

In an example runthrough on 37 medulloblastoma samples, the Intogen were able 

to identify three genes not found by another research team, with the gene SF3B1 

being noted as especially interesting because of its function of “encoding a splicing 

factor known to drive hematopoietic malignancies”. (Gonzalez-Perez and Lopez-

Bigas 2012) 

https://paperpile.com/c/bChWDD/hpzQ2
https://paperpile.com/c/bChWDD/hpzQ2
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Figure 2 
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3.2 Implementation 

 

When starting out with this project, we faced the challenge of running through 

three different driver prediction tools and generating a visualization of the 

comparative performance of those tools. This with only a MAF file given as input. 

We broke the challenge into the following steps: 

1. Handle the conversions between input formats used by the tools 

(MAF2DRGAP, MAF2INTOGEN). 

2. Run each tool using the data given (MutSigCV, DrGap, and Intogen). 

3. Collecting and handling the different output formats given by the tools, and 

then building an HTML report on that data. 

Seeing as we accept a single MAF file as input in our comparison, it will have to be 

converted to the custom DrGap and Intogen formats in order to be run. In order to 

handle this I have created the MAF2DRGAP and MAF2INTOGEN tools, to be run as 

an intermediary between the MAF input file given and the DrGap and Intogen tools 

in the workflow used to run the comparison in Galaxy.  

In the case of MAF2INTOGEN, the developers have told me in emails that they will 

have MAF support in the future, but until then the custom Intogen format will have 

to be used. These two tools extract the corresponding headers from the MAF file 

and write them to new input files.  

Even though MAF2DRGAP and MAF2INTOGEN are quite simple in its usage, similar 

tools for converting MAF files do not exist, or more likely, has not been made 

available to the public. Any person looking to run DrGap or Intogen (locally) today 

will have to adhere to the very specific input formats dictated by the tools. To 

alleviate people who find themselves in my position in the future, I will make the 

tools publicly available through Google Code here: 

https://code.google.com/p/maf2intogen/ and 

https://code.google.com/p/maf2drgap/ 

 

https://code.google.com/p/maf2intogen/
https://code.google.com/p/maf2drgap/
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3.2.1 MAF2DRGAP 

The columns extracted from MAF directly are sample_id, gene, chr, pos, ref and var. 

The mutation types can’t simply be extracted, but have to be translated. 

MAF2DRGAP extract the columns from MAF(left side) and then translates them to 

the custom DrGap format (right side). It ignores any variants with mutation types 

(called variant classifiers in the MAF format) not supported by DrGap. The 

supported types are silent, missense, nonsense, splicing, Fs_indel and nFs_indel 

mutations.  

Missense_Mutation —> missense  
Nonsense_Mutation —> nonsense 
Silent —> silent  
Splice_Site —> splicing 
Frame_Shift_Ins —> Fs_indel 
Frame_Shift_Del —> Fs_indel 
In_Frame_Ins —> nFs_indel 
In_Frame_Del —> nFs_indel 
 

When the translation is complete, the new DrGap format looks like this: 

S003 IPO11 5 61733126 G T missense 
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3.2.2 MAF2INTOGEN 

The custom format required by Intogen  looks as follows: 

chromosome: just the name or number, with or without the ‘chr’ prefix. 
start: start and end are reversed in the case of insertions. 
end 
strand: defined as + (forward) or - (reverse) (+1, 1, -1 are also allowed). 
allele: pair of alleles as REF>ALT, where REF is the reference nucleotide and ALT the 
alternative allele found. REF and ALT can be ‘-’ to express insertion or deletion. 
sample_id: Identifier of the sample. 
 

Example:  

X       37901198        37901198        -       C>T             TCGA-AB-2927-03A-01W-0755-09 

MAF2INTOGEN pulls the necessary columns from the MAF input file, and then 

produces a custom file adhering to the Intogen format. It ignores and discards lines 

(such as comments in the header) in the MAF file that it deems redundant.  

3.2.3 Driver Gene Tool Comparison 

Driver Gene Tool Comparison (DGTC) is the tool I created to take care of the final 

part of the Galaxy workflow used in this thesis, namely the comparison of the 

results given as output from DrGap, MutSigCV and Intogen. It is written in its 

entirety in Java, and is deployed as a JAR file.  

By extracting the p values from the result files, keeping the ones within the limit 

(0.05) and discarding the rest, the program builds a database of significant genes. 

The program also stores where the three tools are in agreement, to be used when 

creating the report later. This information that the program stores, could feasibly be 

put to further use, not only for the purpose of creating the report, but for statistical 

usage. It should be interesting to see which genes are considered significant across 

several data sets, as well as repeatedly across all three tools. 

In order to provide the user with a visualized report of the tool’s findings, the 

program creates an HTML report, which is viewable in Galaxy after a workflow run-

through. The report contains information on the original input file used, the number 
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of significant genes found per tool, as well as a table listing the genes, showing 

which genes are marked as significant by each tool.   

Each gene listed in the report will contain a link to the genes provided by The 

National Center for Biotechnology Information (NCBI). By clicking one of these links, 

the user will be able to look up specific information on the gene, such as genomic 

context or associated conditions. 

Also as part of the report, DGTC cross references its results with The Cancer Gene 

Census (http://cancer.sanger.ac.uk/cosmic/census), which is “an ongoing effort to 

catalogue those genes for which mutations have been causally implicated in cancer”.  

In doing this cross referencing, we are able to provide the user with information on 

whether or not the genes found to be statistically significant are represented in the 

Cancer Gene Census or not. 

The report also contains a Venn diagram, created using the Google Charts API 

(through the charts4j library, requires an internet connection). The diagram 

illustrates the degree to which the tools agree about which genes are significant, as 

such: 

 

Figure 3 

The report itself can be viewed in the results section of this thesis. 

 

http://cancer.sanger.ac.uk/cosmic/census
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Running DGTC 

DGTC takes the following arguments to run: 

1. The path to where you would like the final report created by DGTC to be 

stored. 

2. The path to the original input file used in the comparison (MAF) 

3. Path to MutSigCV result file. 

4. Path to DrGap result file. 

5. Path to Intogen result file. 

Running DGTC from the terminal is done in the following way: 

java --jar reportpath inputpath mutsigcvresults drgapresults intogenresults 
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3.2.4 The Galaxy Project Framework and its implementation 

Galaxy is developed as a collaboration by the Center for Comparative Genomics and 

Bioinformatics at Penn State University and the Mathematics and Computer Science 

departments at Emory University. It is a web-based platform that is designed to aid 

researchers doing computational biomedical research. The project adheres to the 

following three principles as described on their website: 

1. Accessible: Users without programming experience can easily specify 

parameters and run tools and workflows. 

2. Reproducible: Galaxy captures information so that any user can 

repeat and understand a complete computational analysis. 

3. Transparent: Users share and publish analyses via the web and 

create Pages, interactive, web-based documents that describe a 

complete analysis. 

(Galaxy Project Wiki) 

For my implementation I have set up a local installation of Galaxy on Insilico, the 

high performance computer provided by the institute for this purpose. Installing 

and running Galaxy in itself is fairly simple. It is done by cloning a directory from the 

Galaxy Project Bitbucket site, and then using Mercurial to update to a stable version.  

You run Galaxy by moving to your Galaxy distribution directory and then running 

the following command: 

sh run.sh 

Provided that you have either Python 2.6 or Python 2.7 installed on your system, 

Galaxy will run successfully. When all configuration is done by the run script (this 

will take a while during its first runthrough), Galaxy supplies you with a web 

platform at the address specified in the “universe_wsgi.ini” file in your Galaxy 

directory. If no address is given, the platform will be accessible at the localhost 

address (usually 127.0.0.1). 
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At this point the Galaxy platform is ready to run tools on its host. Several default 

tools are available by default through Galaxy, but for this thesis we want to add 

tools of our own (MutSigCV, DrGap and Intogen). These will have to be configured 

manually in order for us to run them through the Galaxy framework. This is done 

through Galaxy’s tool configuration system. 

First you will have to add your tool to Galaxy’s “toolbox” by adding your own 

section to  “tool_conf.xml” in your Galaxy directory as such: 

<section name="Driver Gene Tool Comparison" id="DGTC"> 
        <tool file="DGTC/MutSigCV/MutSigCV.xml" /> 
        <tool file="DGTC/drgap/drgap.xml" /> 
        <tool file="DGTC/Intogen/intogen.xml" /> 
        <tool file="DGTC/MAF2INTOGEN/MAF2INTOGEN.xml" /> 
        <tool file="DGTC/MAF2DRGAP/MAF2DRGAP.xml" /> 
        <tool file="DGTC/DTC/dtc.xml" /> 
  </section> 
 

When starting up, Galaxy will then look for the individual tool configuration files 

given in “tool_conf.xml”. If the configuration files are found, each individual tool will 

be added to Galaxy as a runnable tool. Each tool is configured using the following 

xml-code format: 

<tool id=”[Tool id]” name=”[Name of tool as it is to be presented in Galaxy]”> 
<description> A short description of the tool, to be shown in the tool 
chooser menu </description> 
<help> A longer description of how the tool </help> 
<command>The command used to run the tool from the terminal, allowing 
the tool to be run from within Galaxy </command> 
<inputs> 

<param name=”input” type=”data” label=”Description of the 
required input”> 
</inputs> 
<outputs> 
 Same as inputs, takes params. 
</outputs> 

</tool> 
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The DGTC workflow (Galaxy) 

The Galaxy Project allows the implementation of tool workflows through its web 

interface. Given just a single file as input (In our case, a MAF file), the user is able to 

specify the order in which each tool is to be run. Each tool will not run until all its 

input requirements have been met. In the case of our DriverToolComparator, it will 

not run until it has received output files from all three tools. Using the workflow 

interface provided by Galaxy we were able to create the following workflow:  

 
Figure 4 
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3.3 Installation documentation 

3.3.1 MutSigCV 

Downloading and installing MutSigCV itself is done by retrieving the zip from the 

Broad Institute website after registering and accepting their license. After extraction 

you have to download all the dependencies. Foremost, MutSigCV is dependent on 

Matlab to run, forcing you to either execute the “run_MutSigCV.sh” script within 

Matlab itself, or downloading the Matlab Compiler Runtime (MCR) and then 

referencing its path when running MutSigCV as shown in the figure below. Seeing as 

for this thesis every tool is implemented through Galaxy, we would have to use the 

MCR.  

Furthermore, the following files are also required, to be downloaded separately: 

1. A genome reference sequence, either hg18 or hg19  

2. A mutation type dictionary file, detailing the different variant classifications 

and their effects relevant to MutSigCV 

3. As we are using a single input file, thus not computing the coverage 

ourselves we have to use a pre-prepared file supplied by the MutSigCV 

developers, which they describe as a “territory” file, “A tabulation of how 

the reference sequence of the human exome breaks down by gene, categ 

and effect” (The Broad Institute) 

4. A gene covariate file, used to calculate distances between pairs of genes in a 

“covariate space”. 

When running MutSigCV, as illustrated in the figure below, all these files are 

required as arguments when running the “run_MutSigCV.sh” script: 

run_MutSigCV.sh <path_to_MCR> my_mutations.maf exome_full192.coverage.txt 

gene.covariates.txt result_prefix mutation_type_dictionary_file.txt chr_files_hg19 

MutSigCV is the only tool in our driver tool comparison that can be successfully run 

with a MAF file as its only input, given that you have correctly given the paths to its 

dependencies. This makes MutSigCV fairly easy to implement compared to DrGap 

and Intogen. 
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The only issue with MutSigCV presents itself when it is time to handle its output. 

The result prefix is customizable, but the output files themselves will always go into 

the current working directory. This is not optional. When running MutSigCV from 

the terminal, this is manageable enough, but when running MutSigCV through 

Galaxy the working directory is set to a subdirectory within the Galaxy framework. 

The problem is solved by including the “from_work_dir” option in the Galaxy tool 

configuration file for MutSigCV as such: 

<outputs> 

        <data format="txt" name="mutations" label="mutations output" 

from_work_dir="result_prefix.mutations.txt"/> 

        <data format="txt" name="coverage" label="coverage output" 

from_work_dir="result_prefix.coverage.txt"/> 

        <data format="txt" name="prefix" label="prefix output" 

from_work_dir="result_prefix.sig_genes.txt" /> 

 </outputs> 

 

Galaxy thus retrieves the files with the given prefix from the working directory as 

output from MutSigCV. 
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Figure 5 

3.3.2 DrGap 

To install and run DrGap, you download the tool from the google-code hosted site 

and then extract the contents of the tar file to a folder. DrGap requires the R library 

(http://www.r-project.org/) to run, a tool used for statistical computing as well as 

graphics.  This is simple enough to download and install, given that you have the 

required privileges.  

It is not its download and installation, but rather the custom made input file it 

requires that makes DrGap somewhat more of a task to run. It does not accept 

more standardized mutation files like MAF or VCF as its input. The creators have 

instead chosen to create their own format for the purpose of running data sets 

through DrGap. The format consists of the following headers: 

Sample_ID Gene Chr Pos Ref Var Mutation_type 

S0001 AHDC1 1 27874554 G A missense 

 

http://www.r-project.org/
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The mutation type given has to be one of the following types: silent, missense, 

nonsense, splicing, Fs_indel, nFs_indel. No other mutation types will be accepted by 

DrGap. 

 

DrGap takes three required arguments to run: 

1. The input mutation data file, in the required format. 

2. A predefined gene mutation table supplied by the DrGap creators. 

3. The human reference genome file (hg19) in Fasta format. 

In my Galaxy configuration file for DrGap I have also decided to specify the location 

for the output files given by DrGap, to avoid losing the files within the Galaxy 

working directory. When running DrGap without this option set to a preferred 

directory, the output files could not be found after a run. I have also added a 

preferred prefix, to make the output files easy to grab by the Driver Gene 

Comparison Tool. 

DrGap is then run in the following way (illustrated in the figure below): 

./drgap hg19_refgene.exp hg19.fasta output_path prefix 
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Figure 6 

Output is given in the form of four files placed in the chosen output directory. They 

are distinguished by their suffixes:  

1. Summary: This is the one we use in our implementation as it holds the p 

value required to pin the gene down as statistically significant or not. 

2. Detail:  A more detailed report on each gene and its different counts 

3. Pdf: Graphical representation of mutation values created by R. 

4. Log: A log of the output given by the DrGap run 
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3.3.3 Intogen 

While Intogen is available to be run from the developer website, I had to implement 

a local installation of the tool for the purpose of comparing its results to the results 

of the other two tools. After downloading a small package, a setup script is required 

to be run before you can use the tool. Because the tool requires a vast array of 

other tools to be installed, the developers have opted for running Intogen in a 

virtual environment. After installing the python virtual environment, the following 

python libraries are downloaded and installed as part of the setup script (using pip): 

 

 distribute 0.6.35 

 requests 1.1.0 

 Flask 0.10.1 

 Flask-Login 0.2.7 

 SQLAlchemy 0.8.2 

 blinker 1.3 

 Sphinx 1.2b1 or above 

 pytz 2013b 

 python-dateutil 2.1 

 numpy 1.7.1 

 scipy 0.12.0 

 pandas 0.12.0 

 statsmodels 0.4.3 

 BgCore 
 OncodriveFM 
 OncodriveCLUST 

 

While using pip to download and install all these libraries from predetermined 

locations, you inevitably run into problems with pip not finding all of the libraries, or 

not finding a distribution of the particular version it requires. In this case I had to 

install some of the libraries manually. 

When installing Intogen on my personal laptop I ran into few problems. The main 

issues arose when attempting to install Intogen on the high performance computer 

I used (Insilico). A lot of time was spent trying to get Intogen to run on the HPC. 

https://bitbucket.org/bbglab/bgcore
https://bitbucket.org/bbglab/oncodrivefm
https://bitbucket.org/bbglab/oncodriveclust
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These are the lessons I have learned, hopefully it could save someone hours of 

debugging in the future: 

- Remove the “--upgrade” arguments from the “lib/common.sh”-file in the Intogen 

directory. Those are redundant and will lead to some of the libraries (specifically 

bgcore) to fail its installation. 

- “runtime/pyenv/lib/python2.7/site-packages/wok/core/cmd/native.py” contains 

some commented code on the HPC hindered python from retrieving shared libraries 

such as libpython which crashes Intogen. Morten Johansen [Forklare mer om han?] 

found that by uncommenting the stated code, Intogen ran successfully. The code 

that has to be uncommented in this case is (line 60): 

  #for k, v in os.environ.items(): 
  #env[k] = v 
 

When installation has completed successfully, you run Intogen with the following 

command: 

 ./run analysis -p [Name of run] [Input file] 
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4 Results 

The main purpose of this thesis has been to compare the results of three different 

tools created in order to identify driver genes in mutation data. This section will 

contain the results found in the reports created by our comparator (DGTC). Here we 

will find out how different or similar the tools really are, when boiled down to 

actual results, tested against different types of cancer. 

4.1 Application of DGTC on cancer mutation datasets 

The data used as input has been downloaded from The Cancer Genome Atlas’s MAF 

file archive. This site is hosted by The National Cancer Institute 

(http://www.cancer.gov/) and provides free input data on several different types of 

cancer. The files themselves can be accessed here: 

https://wiki.nci.nih.gov/display/TCGA/TCGA+MAF+Files 

The results are presented in the format X | Y CGC*, where X is the number of genes 

predicted to be drivers by the tool and Y is the number of genes in the list X 

represented in the Cancer Gene Census. 

It is important to note that when results are given where more than one tool is 

involved, intersection is used, not union. An example would be the result of “81 | 7 

CGC*” given as the result of running MutSigCV and DrGap on the Colon 

Adenocarcinoma data set. This means that “81” is the number of genes both 

MutSigCV and DrGap have predicted as driver genes for this data set. 

  

http://www.cancer.gov/
http://cancer.sanger.ac.uk/cosmic/census
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4.1.1 Colon Adenocarcinoma 

Dataset: hgsc.bcm.edu_COAD.SOLiD_DNASeq.1.somatic.maf 
Number of samples: 53 
Deployed: 30/07/2013 
 
Number of genes predicted as drivers by MutSigCV: 121 | 8 CGC* 
Number of genes predicted as drivers by DrGap: 537 | 25 CGC* 
Number of genes predicted as drivers by Intogen: 129 | 55 CGC* 

The gene predictions made by the tools overlaps in the following way: 

 DrGap MutSigCV Intogen 

DrGap  81 | 7 CGC* 25 | 14 CGC* 

MutSigCV 81 | 7 CGC*  7 | 6 CGC* 

Intogen 25 | 14 CGC* 7 | 6 CGC*  

*Number of genes from this list found in the Cancer Gene Census 

Genes found to be significant by all three tools: 

 

 

 

Note: Genes in red not found in CGC file. 

 

 

APC TP53 FBXW7  KRAS SMAD4 

CASP8 NRAS 

   

http://cancer.sanger.ac.uk/cosmic/census
http://www.ncbi.nlm.nih.gov/gene/324
http://www.ncbi.nlm.nih.gov/gene/7157
http://www.ncbi.nlm.nih.gov/gene/55294
http://www.ncbi.nlm.nih.gov/gene/3845
http://www.ncbi.nlm.nih.gov/gene/4089
http://www.ncbi.nlm.nih.gov/gene/841
http://www.ncbi.nlm.nih.gov/gene/4893
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For the purpose of checking the validity of the results given by the tool, we used the 

Genetics Home Reference (http://ghr.nlm.nih.gov/) in order to cross reference the 

identified genes for this dataset with the database of the National Insitute of Health. 

APC  

The Genetics Home Reference (GHR) confirms that mutations in the APC gene has 

led to desmoid tumors (noncancerous growth) and  familial adenomatous polyposis 

(FAP) . In the case of the ladder, GHR states that most people with FAP will develop 

colorectal cancer.  

(http://ghr.nlm.nih.gov/gene/APC) 

TP53 

This gene is in charge of providing instructions for the creation of a protein called 

“Tumor protein p53”. Acting as a tumor suppressor, TP53 regulates cell division. 

TP53 is the most commonly changed gene found in human cancer, occurring in 

about half of all cancer. It is most prevalent however, in breast- and bladder cancer. 

(http://ghr.nlm.nih.gov/gene/TP53) 

FBXW7 

This gene is a member of what is called the F-box protein family. Mutations in this 

gene have been found in the cell lines of ovarian- and breast cancers, which suggest 

that the gene might be involved with the pathogenesis of cancer in humans. 

(http://www.genecards.org/cgi-bin/carddisp.pl?gene=FBXW7) 

KRAS 

KRAS provides instruction for the creation of a protein called K-Ras. This protein is 

involved primarily in regulating cell division. According to GHR, studies suggest that 

mutations in the KRAS gene are common in pancreatic, lung and colorectal cancers.  

http://ghr.nlm.nih.gov/
http://www.genecards.org/cgi-bin/carddisp.pl?gene=FBXW7
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(ttp://ghr.nlm.nih.gov/gene/KRAS) 

SMAD4 

Mutations in the SMAD4 gene, which instructs the creation of a protein involved in 

transmitting signals from the cell surface to the nucleus, can lead to several 

different afflictions according to GHR. In the case of cancer, mutations in the 

SMAD4 are most commonly associated with cancer in the colon or pancreas. It 

seems that even though SMAD4 is not in the Cancer Gene Census, it has a known 

connection with cancer development. 

(http://ghr.nlm.nih.gov/gene/SMAD4) 

CASP8 

The GHR suggests that the protein encoded by CASP8 plays a central role in the 

execution-phase of cell apoptosis (cell death). GHR suggests that mutations of the 

CASP8 gene might be connected to breast cancer, hepatocellular carcinoma (the 

most common type of liver cancer) and lung cancer. While the GHR does not 

suggest that CASP8 could be connected to colorectal cancer, a study done by Kim 

HS et al. concludes the following: 

The presence of caspase-8 mutation in colon carcinomas suggests that caspase-8 
gene mutation might lead to the loss of its apoptotic function and contribute to the 
pathogenesis of colorectal carcinomas, especially at the late stage of colorectal 
carcinogenesis. 

   (http://www.ncbi.nlm.nih.gov/pubmed/12949717) 
 
(http://ghr.nlm.nih.gov/gene/CASP8) 

NRAS 

By providing the instructions for the creation of the protein called N-Ras, which is 

involed in regulating cell division, mutations in the NRAS gene has been associated 

with the development of several types of cancer. GHR notes mutations in NRAS are 

especially common in melanoma, an aggressive form of skin cancer.  

(http://ghr.nlm.nih.gov/gene/NRAS) 

http://ghr.nlm.nih.gov/gene/NRAS
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4.1.2 Breast Invasive Carcinoma 

Dataset: genome.wustl.edu_BRCA.IlluminaGA_DNASeq.Level_2.5.3.0.somatic.maf 
Number of samples:  776 : 801 (Tumor samples : Normal Samples) 
Deployed: 24/06/2013 
 
Number of genes predicted as drivers by MutSigCV: 484 | 28 CGC* 
Number of genes predicted as drivers by DrGap: 2805 | 86 CGC* 
Number of genes predicted as drivers by Intogen: 228 | 83 CGC* 

The gene predictions made by the tools overlaps in the following way: 

 DrGap MutSigCV Intogen 

DrGap  433 | 28 CGC* 84 | 36 CGC* 

MutSigCV 433 | 28 CGC*  32 | 19 CGC* 

Intogen 84 | 36 CGC* 32 | 19 CGC*  

*Number of genes from this list found in the Cancer Gene Census 

 
 
Genes found to be significant by all three tools: 

Note: Genes in red not found in CGC file. 

HLA-B KRAS PIK3CA TP53 ARID1A 

SMAD4 CTCF APC FBXW7  CASP8 

PTEN CDKN2A ELF3  ARID2  HLA-A 

CTNNB1 ACVR1B CUL1  NF1 CDH1  

PIK3R1 CBFB  SOX9  ABCB1  MLL2 

RPL22 TGFBR2 MAP2K4 GATA3 TTK 

ACVR2A  NRAS 

   

http://cancer.sanger.ac.uk/cosmic/census
http://www.ncbi.nlm.nih.gov/gene/3106
http://www.ncbi.nlm.nih.gov/gene/3845
http://www.ncbi.nlm.nih.gov/gene/5290
http://www.ncbi.nlm.nih.gov/gene/7157
http://www.ncbi.nlm.nih.gov/gene/8289
http://www.ncbi.nlm.nih.gov/gene/4089
http://www.ncbi.nlm.nih.gov/gene/10664
http://www.ncbi.nlm.nih.gov/gene/324
http://www.ncbi.nlm.nih.gov/gene/55294
http://www.ncbi.nlm.nih.gov/gene/841
http://www.ncbi.nlm.nih.gov/gene/5728
http://www.ncbi.nlm.nih.gov/gene/1029
http://www.ncbi.nlm.nih.gov/gene/1999
http://www.ncbi.nlm.nih.gov/gene/196528
http://www.ncbi.nlm.nih.gov/gene/3105
http://www.ncbi.nlm.nih.gov/gene/1499
http://www.ncbi.nlm.nih.gov/gene/91
http://www.ncbi.nlm.nih.gov/gene/8454
http://www.ncbi.nlm.nih.gov/gene/4763
http://www.ncbi.nlm.nih.gov/gene/999
http://www.ncbi.nlm.nih.gov/gene/5295
http://www.ncbi.nlm.nih.gov/gene/865
http://www.ncbi.nlm.nih.gov/gene/6662
http://www.ncbi.nlm.nih.gov/gene/5243
http://insilico.hpc.uio.no:40073/datasets/957588f20cb96439/display/null
http://www.ncbi.nlm.nih.gov/gene/6146
http://www.ncbi.nlm.nih.gov/gene/7048
http://www.ncbi.nlm.nih.gov/gene/6416
http://www.ncbi.nlm.nih.gov/gene/2625
http://www.ncbi.nlm.nih.gov/gene/7272
http://www.ncbi.nlm.nih.gov/gene/92
http://www.ncbi.nlm.nih.gov/gene/4893
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4.1.3 Prostate Adenocarcinoma 

Dataset: hgsc.bcm.edu_PRAD.IlluminaGA_DNASeq.1.somatic.maf 

Number of samples: 263:259 (Tumor Samples:Normal Samples) 

Deployed: 08/01/2014 
 
Number of genes predicted as drivers by MutSigCV: 131 | 10 CGC* 
Number of genes predicted as drivers by DrGap: 644 | 33 CGC* 
Number of genes predicted as drivers by Intogen: 145 | 54 CGC* 
 

 DrGap MutSigCV Intogen 

DrGap  98 | 10 CGC* 31 | 17 CGC* 

MutSigCV 98 | 10 CGC*  15 | 8 CGC* 

Intogen 31 | 17 CGC* 15 | 8 CGC*  

*Number of genes from this list found in the Cancer Gene Census 

 
 
Genes found to be significant by all three tools: 

 

 

 

 

Note: 

Genes in red not found in CGC file. 

  

TP53 SPOP PTEN CDK12 FOXA1  

CDKN1B CTNNB1 KDM6A PIK3CA QKI 

IDH1  TP53BP1 SMAD4 

  

http://cancer.sanger.ac.uk/cosmic/census
http://www.ncbi.nlm.nih.gov/gene/7157
http://www.ncbi.nlm.nih.gov/gene/8405
http://www.ncbi.nlm.nih.gov/gene/5728
http://www.ncbi.nlm.nih.gov/gene/51755
http://www.ncbi.nlm.nih.gov/gene/3169
http://www.ncbi.nlm.nih.gov/gene/1027
http://www.ncbi.nlm.nih.gov/gene/1499
http://www.ncbi.nlm.nih.gov/gene/7403
http://www.ncbi.nlm.nih.gov/gene/5290
http://www.ncbi.nlm.nih.gov/gene/9444
http://www.ncbi.nlm.nih.gov/gene/3417
http://www.ncbi.nlm.nih.gov/gene/7158
http://www.ncbi.nlm.nih.gov/gene/4089
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4.1.4 Lung Squamous Cell Carcinoma 

Dataset: step4_LUSC_Paper_v8.aggregated.tcga.maf2.4.migrated.somatic.maf 

Number of samples: 178:178 (Tumor Samples:Normal Samples) 
Deployed: 27/06/2013 
 
Number of genes predicted as drivers by MutSigCV: 266 | 13 CGC* 
Number of genes predicted as drivers by DrGap: 340 | 15 CGC* 
Number of genes predicted as drivers by Intogen: 100 | 30 CGC* 
 

 DrGap MutSigCV Intogen 

DrGap  25 | 4 CGC* 9 | 5 CGC* 

MutSigCV 25 | 4 CGC*  10 | 6 CGC* 

Intogen 9 | 5 CGC* 10 | 6 CGC*  

*Number of genes from this list found in the Cancer Gene Census 

Genes found to be significant by all three tools: 

 

 

  

TP53 CDKN2A KEAP1 NFE2L2 MLL2 

KDM6A 

    

http://cancer.sanger.ac.uk/cosmic/census
http://www.ncbi.nlm.nih.gov/gene/7157
http://www.ncbi.nlm.nih.gov/gene/1029
http://www.ncbi.nlm.nih.gov/gene/9817
http://www.ncbi.nlm.nih.gov/gene/4780
http://insilico.hpc.uio.no:40071/datasets/bbce559eb8251930/display/null
http://www.ncbi.nlm.nih.gov/gene/7403
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4.1.5 Brain Lower Grade Glioma 

Dataset: hgsc.bcm.edu_LGG.IlluminaGA_DNASeq.1.somatic.maf 
Number of samples: 289:289 (Tumor samples: Normal samples) 

Deployed: 10/12/2013 
 
Number of genes predicted as drivers by MutSigCV: 138 | 22 CGC* 
Number of genes predicted as drivers by DrGap: 644 | 38 CGC* 
Number of genes predicted as drivers by Intogen: 136 | 49 CGC* 
 

 DrGap MutSigCV Intogen 

DrGap  123 | 21 CGC* 30 | 23 CGC* 

MutSigCV 123 | 21 CGC*  16 | 16 CGC* 

Intogen 30 | 23 CGC* 16 | 16 CGC*  

*Number of genes from this list found in the Cancer Gene Census 

Genes found to be significant by all three tools: 

 
 
 
 

 

 

 

 

ATRX IDH1  TP53 PIK3CA PTEN 

PIK3R1 IDH2  NOTCH1  SMARCA4  ARID1A 

EGFR PTPN11 MAX NF1 RB1  

RPL22 

    

http://cancer.sanger.ac.uk/cosmic/census
http://www.ncbi.nlm.nih.gov/gene/546
http://www.ncbi.nlm.nih.gov/gene/3417
http://www.ncbi.nlm.nih.gov/gene/7157
http://www.ncbi.nlm.nih.gov/gene/5290
http://www.ncbi.nlm.nih.gov/gene/5728
http://www.ncbi.nlm.nih.gov/gene/5295
http://www.ncbi.nlm.nih.gov/gene/3418
http://www.ncbi.nlm.nih.gov/gene/4851
http://www.ncbi.nlm.nih.gov/gene/6597
http://www.ncbi.nlm.nih.gov/gene/8289
http://www.ncbi.nlm.nih.gov/gene/1956
http://www.ncbi.nlm.nih.gov/gene/5781
http://www.ncbi.nlm.nih.gov/gene/4149
http://www.ncbi.nlm.nih.gov/gene/4763
http://www.ncbi.nlm.nih.gov/gene/5925
http://www.ncbi.nlm.nih.gov/gene/6146
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4.1.6 Skin Cutaneous Melanoma 

Dataset: hgsc.bcm.edu_SKCM.IlluminaGA_DNASeq.1.somatic.maf 
Number of samples: 344:344 (Tumor samples: Normal Samples) 
Deployed: 17/04/2014 
 
Number of genes predicted as drivers by MutSigCV: 82 | 14 CGC* 
Number of genes predicted as drivers by DrGap: 2126 | 67 CGC* 
Number of genes predicted as drivers by Intogen: 232 | 84 CGC* 
 

 DrGap MutSigCV Intogen 

DrGap  67 | 14 CGC* 44 | 29 CGC* 

MutSigCV 67 | 14 CGC*  14 | 13 CGC* 

Intogen 44 | 29 CGC* 14 | 13 CGC*  

*Number of genes from this list found in the Cancer Gene Census 

Genes found to be significant by all three tools: 

*Genes in red not found in CGC file, genes with no link not found in NCBI database 

 

CDKN2A NRAS TP53 BRAF  PTEN 

RAC1  HRAS RPL5  NF1 DDX3X 

RPL22 RB1  ARID2  CTNNB1 

 

http://cancer.sanger.ac.uk/cosmic/census
http://www.ncbi.nlm.nih.gov/gene/1029
http://www.ncbi.nlm.nih.gov/gene/4893
http://www.ncbi.nlm.nih.gov/gene/7157
http://www.ncbi.nlm.nih.gov/gene/673
http://www.ncbi.nlm.nih.gov/gene/5728
http://www.ncbi.nlm.nih.gov/gene/5879
http://www.ncbi.nlm.nih.gov/gene/3265
http://www.ncbi.nlm.nih.gov/gene/6125
http://www.ncbi.nlm.nih.gov/gene/4763
http://www.ncbi.nlm.nih.gov/gene/1654
http://www.ncbi.nlm.nih.gov/gene/6146
http://www.ncbi.nlm.nih.gov/gene/5925
http://www.ncbi.nlm.nih.gov/gene/196528
http://www.ncbi.nlm.nih.gov/gene/1499
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4.1.7 Result summary 

 

Single tool results: 

Cancer 

Type 

MutSigCV DrGap Intogen 

Colon 121 (0.07) 537 (0.05) 129 (0.43) 

Breast 484 (0.06) 2805 (0.03) 228 (0.36) 

Prostate 131 (0.08) 644 (0.05) 145 (0.37) 

Lung 266 (0.05) 340 (0.04) 100 (0.3) 

Brain 138 (0.16) 644 (0.06) 136 (0.36) 
 

Skin 82 (0.17) 2126 (0.03) 232 (0.36) 

Pan-cancer 1222 (0.08) 6452 (0.04) 970 (0.43) 

Note: Numbers given in parenthesis is the fraction of the genes in the given list 

identified by the Cancer Gene Census 

More than one tool used: 

Cancer 

Type 

MutSigCV + 

DrGap 

MutSigCV + 

Intogen 

DrGap + 

Intogen 

All three tools 

Colon 81 (0.09) 7 (0.85) 25 (0.56) 7 (0.85) 

Breast 433 (0.06) 32 (0.59) 84 (0.43) 32 (0.59) 

Prostate 98 (0.1) 15 (0.53) 31 (0.55) 13 (0.6) 

Lung 25 (0.16) 10 (0.6) 9 (0.55) 6 (0.67) 

Brain 123 (0.17) 16 (1) 30 (0.77) 16 (1) 

Skin 67 (0.21) 14 (0.93) 44 (0.66) 14 (0.93) 

Pan-cancer 827 (0.1) 94 (0.72) 223 (0.56) 88 (0.75) 

Note: Numbers given in parenthesis is the fraction of the genes in the given list 

identified by the Cancer Gene Census 

 

 

http://cancer.sanger.ac.uk/cosmic/census
http://cancer.sanger.ac.uk/cosmic/census
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Cancer Gene Census accuracy (Single tool) 

 

Figure 7: This chart illustrates the accuracy of the different tools when compared to the list given by the 
Cancer Gene Census. A score of 1 for a given cancer type means that all of the identified genes by the tool are 
identified by the Cancer Gene census. 

Cancer Gene Census accuracy (more than one tool) 

 

Figure 8: This chart illustrates the accuracy of the different tools when compared to the list given by the 
Cancer Gene Census. A score of 1 for a given cancer type means that all of the identified genes by the tool are 
identified by the Cancer Gene census. 
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4.2 Discussion 

 

4.2.1 On Implementation 

When attempting to implement the three tools used in this comparison there were 

a few areas of concern: The downloading and installation of the tools themselves, 

handling input, output, and dependencies as well as taking care of the 

implementation/configuration of the tools into Galaxy. 

Even though the documentation of the tools might be good (at least in the cases of 

MutSigCV and Intogen) the user bases are quite small (DrGap has been downloaded 

107 times as of 25/04/2014). When faced with problems, finding people who have 

had similar issues in the past proved difficult, as there is no large community of 

people to reach out to. Because of this, we had to communicate with the tool 

developers directly when faced with issues. The Intogen developers were the only 

team that had implemented a way to contact them with questions regarding the 

implementation of their tool through a form on their website. Implementing such a 

form makes it easier for the user to contact the developers with questions, instead 

of having to send out emails to specific people.  

As there are no standards for input used for the three tools, we searched for tools 

used to handle input for the different tools, but no such tools seems to exist, at 

least not readily. Because of this, we had to write them ourselves (MAF2INTOGEN 

and MAF2DRGAP).  Anyone who wishes to run their own installations of DrGap or 

Intogen has to adhere to their custom formats. Now, after downloading the two 

tools we have created from google code, all you need to run all three tools used in 

this thesis will be a single MAF file.  
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4.2.2 Results 

In june 2013, a study called “Comprehensive identification of mutational cancer 

driver genes across 12 tumor types” was conducted by David Tamborero, Abel 

Gonzales-Perez and their colleagues (Tamborero, Gonzalez-Perez et al. 2013).  They 

hoped to show that applying a combination of complementary methods allows 

identifying a comprehensive and reliable list of cancer driver genes. The tools the 

team chose to use were MuSIC-SMG, OncodriveFM, OncodriveCLUST and 

ActiveDriver. Individually, these tools are looking for four different things in order to 

classify a gene as a driver: 

1. More frequent mutations than expected from the background mutation rate, 

or rather, genes that are significantly mutated (MuSIC-SMG) 

2. A bias towards the accumulation of functional mutations (OncodriveFM) 

3. Exploiting the tendency to sustain mutations in certain regions of the 

protein sequence (OncodriveCLUST) 

4. The overrepresentation of mutations in specific functional residues, such as 

phosphorylation sites (ActiveDriver) 

They applied these tools to data from 12 different cancer types and created a list of 

291 high-confidence cancer driver genes: 

 

Figure 9 
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In order to provide some validation to their results, like we have opted to do in this 

project, the researchers compared their results with the list of known cancer drivers 

provided by the Cancer Gene Census (CGC).  Here it’s important to note that while 

CGC is the most reliable catalog of known cancer genes to date, the fact that, 

arguably, many cancer genes are yet to be uncovered means that CGC can only 

serve as a surrogate estimator of the accuracy of each method applied. Genes not 

found in the CGC, but identified by the tools might still be cancer driver genes, but 

are not yet recognized by the CGC. Because of this, it is important to recognize that 

false positives or negatives might occur. 

Like in our thesis, they have supplied the fraction of genes in the lists given by the 

tools and tool-combinations in parenthesis in the figure below:

 

Figure 10 

It is easy to spot that the combination of tools greatly increases the accuracy of the 

gene lists when compared with the CGC. 

In many ways we have automated the process implemented in the study done by 

Tamborero, Abel Gonzales-Perez and their colleagues. While Intogen applies 

OncodriveFM and OncodriveCLUST, MuSIC-SMG and ActiveDriver have been 

swapped for the more modern approaches of MutSigCV and DrGap. 
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So how do these results compare to the results we have come up with in this thesis? 

Across all cancers (pan-cancer) the results corresponds with the following chart: 

 

 

Figure 11 

In the case of DrGap, individually it never exceeds an accuracy of 6% compared to 

17% for MutSigCV and the quite substantial 43% of Intogen. 

Intogen is fairly accurate in itself (while it’s actually a combination of OncodriveFM 

and OncodriveCLUST, as mentioned earlier), at 43% accuracy. When combined with 

MutSigCV (at 8% accuracy individually), however, it is able to reach an accuracy of 

72%. When Intogen is combined with DrGap, with an individual performance at 4% 

accuracy, the combination reaches an accuracy of 56%, which is an increase of 13%. 

These two findings show that a tool’s individual performance might not be a good 

indicator of how well it works in combination with other tools. This matches well 

with the findings of Tamborero, Abel Gonzales-Perez and their colleagues as can be 

seen in the graphs in this section. 
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The combination of MutSigCV and Intogen often provides a large increase in 

accuracy when compared to the individual runs of the tools. For example, the 

individual results on skin cancer are 17% and 36% accuracy individually, for 

MutSigCV and Intogen respectively. Together, however, they reach an accuracy of 

93%, with 13 of the 14 genes identified in by the Cancer Gene Census. 

It quickly becomes apparent that using more than one approach to identifying 

driver genes increases the accuracy when compared to the CGC. Individually, the 

tools are returning large amounts of genes identified as driver genes, with often as 

little as 3%-5% accuracy. Individually the tools range in accuracy from 3% to 43%, 

while in combination the accuracy ranges from 10% to 93%. 

  



60 
 

5 Conclusion 

By running our Driver Gene Comparsion Tool on six different datasets across six 

different types of cancer, we were able to show that the intersecting results of 

more than one tool created for the purpose of identifying driver genes greatly 

exceeded the results given by the tools individually.  

The combination of several approaches towards the identification of driver genes 

has proven to narrow down the often wide net of results cast by the individual 

approaches, greatly improving the accuracy of the results. 
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