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Abstract

In recent years, there has been a growing focus on how GPUs can be
utilized for general purpose computations. However, this leads to less
focus on the CPU as a computational resource. As a consequence,
heterogeneous computers with both a CPU and a GPU may not utilize
all its resources. To address this, I present a heterogeneous CPU and
GPU implementation based on a high-resolution explicit scheme for the
shallow-water equations on a single GPU (Brodtkorb et al. 2012) . I
perform two levels of parallelism: First, a row domain decomposition
method is used to decompose the computational domain to utilize both the
CPU and the GPU in parallel. Secondly, the CPU code is multi-threaded
to take advantage of all cores. Furthermore, systems of conservation
laws often involve large computational domains where only parts of the
domain has to be computed, e.g., water or other fluids. This can lead
to imbalance in the workload if the computations between the GPU and
the CPU are not balanced. To address this, I present dynamic auto-tuning
methods that automatically tune the domain decomposition between the
CPU and the GPU during runtime, as well as optimization techniques to
skip computations for "dry" domain areas.
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Chapter 1

Introduction

This thesis explores auto-tuning techniques between CPUs and GPUs
in a heterogeneous system. These techniques have been applied for
shallow water simulations to automatically tune itself to achieve real-
time performance. However, the general principles of the auto-tuning,
including the implementation of a heterogeneous system applies well to
any systems of conservation laws, e.g., the Euler equations [12] and MHD
equations [28].

Shallow water simulations can be used to model a vast range of physical
phenomena such as tsunamis, floods, storm surges and dam breaks. Such
simulations are important for a number of reasons [4]: First off, to evaluate
possible scenarios to help with creating inundation maps and emergency
plans. Secondly, to gain a better view over ongoing events, for example
simulating possible scenarios in real-time. These scenarios often involve a
huge computational domain which yields high computing requirements to
achieve such simulations in real-time.

I therefore present a shallow water simulator running on the CPU
alongside the GPU, forming the basis of the heterogeneous system. The
implementation is based on an existing simulator that runs on a single GPU
[9]. The simulator has been implemented with a second-order accurate
explicit finite-volume scheme for the shallow water equations. I first
extend this scheme to a heterogeneous hybrid CPU/GPU system to utilize
the CPU concurrently alongside the GPU. Secondly, I apply auto-tuning
techniques between the CPU and the GPU. Section 1.1 continues by arguing
for this field of study and presenting the motivation. Furthermore, the
research questions that this thesis attempts to answer are presented in
section 1.2. Finally, an overview of the thesis is given in section 1.3.

1.1 Motivation

The main motivation behind using a heterogeneous implementation of
the shallow water simulations is the speedup potential over a single GPU
implementation. Typically one would use GPUs to achieve a large speedup
over the CPU, as done by many scientific papers in recent years [9, 16, 3, 41].
For shallow water simulations, its use of finite volume stencil computations
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is a primary motivation behind using GPUs, as stated in [9] and [35].
These types of stencil computations are highly parallel and well suited to
implement on GPUs. The reason for this is that a GPU is optimized for net
throughput, as it contains several SIMD processors that execute blocks in
parallel [9]. As a result, many scientific papers rely only on the strength of
GPUs to optimize certain parallel tasks, leaving the CPU idle [35, 1].

However, CPUs have also evolved into a more parallel nature by
the addition of more and more cores [7]. Modern desktop servers can
have CPUs with up to 15 cores [17] and servers therefore have a lot of
computing power which can be utilized for speeding up shallow water
simulations, especially if performed concurrently with the GPU. As a
result, one can gain large speedup for computers with a weaker GPU,
going from simulations with poor performance to real-time. I present
performance results were the obtained peak performance was increased
by 141% over a single GPU by utilizing a CPU together with the GPU. This
makes it an exceptional resource for computations of parallel nature. This
is supported by Lee et al. [25] which compared an Nvidia GTX 280 GPU
and an Intel Core i7 960 CPU by running 14 different throughput kernels on
both. After optimizing the code for both the CPU and GPU, the GPU had
a performance advantage of only 2.5 times the CPU. These results indicate
that the CPU is not necessary far worse than the GPU when it comes to
throughput computing. By extending the current shallow water algorithms
[9] to a hybrid CPU/GPU system and utilizing both these computational
resources, one can perform the simulations faster or increase the spatial
resolution and perform the simulations in the same amount of time.

1.2 Research question

There are many scientific papers that describe how to utilize GPUs in par-
allel algorithms to achieve real-time performance [9, 35, 15, 40, 1, 16]. How-
ever, most of this research focus only on the GPU, while papers describing
how to effectively utilize both the CPU and the GPU as computational re-
sources are lacking [6]. This is a problem as the performance of multicore
CPUs and GPUs continues to scale with Moore’s law, making it more com-
mon to use a heterogeneous architecture where both the CPU and GPU are
utilized to attain the highest performance possible [33]. This thesis will try
to identify this problem and poses two main questions:

1. How to implement a heterogeneous CPU/GPU simulator that
provides good performance for systems of conservation laws?

2. What type of auto-tuning techniques can be applied to gain ideal load
balancing between CPUs and GPUs in a real-world case?

The first question asks how one can implement a heterogeneous simulator
effectively that utilizes the CPU in addition to the GPU. This mainly in-
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volves how the computational domain can be decomposed between the
GPU and the CPU to achieve an effective decomposition that minimizes
communication between them, and maximizes their ability to perform the
computations in parallel. The second question asks how different auto-
tuning techniques can be applied to improve performance for real-world
cases. A typical flood simulation consists of a domain with both dry and
wet areas. As the water propagates, one essentially wants the GPU and
the CPU to receive a balanced distribution of the workload as they are not
necessary equally powerful. This means the wet parts of the domain, i.e.,
the water should be distributed between these according to their compu-
tational power. Also, computing for dry areas are not necessary, which
means it should be skipped to avoid wasting compute resources.

1.3 Organization of thesis

The following chapter provides relevant background information to this
thesis. More specifically, a short introduction to GPUs and CPUs are given,
in addition to the computing platform used by the single-GPU simulator
[9]. Then, the mathematical background for the simulator is introduced.
Finally, I explain the single-GPU simulator [9], and give an introduction to
auto-tuning.

Chapter 3 goes into the details of implementing a heterogeneous
simulator that utilizes both the CPU and the GPU. It first provides details
about the multi-core CPU implementation. Then, an explanation of the
domain decomposition is given. Additional techniques are also explained,
i.e., Ghost Cell Expansion and Early Exit. Finally, I provide performance
results of the heterogeneous implementation.

Furthermore, auto-tuning techniques are explained in chapter 4. I first
discuss challenges related to dynamic auto-tuning. Then, a Bounding box
technique is implemented on the CPU, as an alternative to early exit. This
technique provides a way to only iterate through wet cells by surrounding
all wet cells by a two dimensional bounding box. Finally, I focus on the
implementation of two dynamic auto-tuning techniques. Both techniques
are combined together to load balance the simulation between the CPU
and the GPU. Lastly, performance results of these auto-tuning techniques
are given.

Finally, I give my concluding remarks in chapter 5 and review the most
important results from this thesis.
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Chapter 2

Background

GPU development was traditionally driven by computer games where each
pixel can be rendered individually to the screen using several processors to
calculate the color of these pixels in parallel [7]. Their steady increase in
performance and their ability to process parallel tasks soon made them
attractive for high-performance computing. This gave rise to the field
of GPGPU (General-Purpose computing on Graphics Processing Units)
[25], using GPUs to perform computations that the CPU traditionally
was used for. GPGPU became even more relevant as vendors launched
programming models directly suited for this purpose, such as the CUDA
computing platform which was introduced by Nvidia in 2006 [30]. As a
result, GPUs became widely used processors for scientific computing.

Section 2.1 first provides a detailed overview of CPUs and GPUs,
including the main differences between these two. In addition, a short
introduction to CUDA is given in section 2.2. Furthermore, the shallow-
water equations are discussed in section 2.3, together with numerical
schemes to solve this system of equations. Then, in section 2.4, I introduce
the existing single-GPU simulator [9] that this thesis is based on. I also
give a closer description of how the explicit scheme for the shallow water
equations is implemented. Finally, an introduction to auto-tuning is given
in section 2.5.

2.1 Overview of GPUs and CPUs

As mentioned, GPUs became the primary processor for many computa-
tional problems that CPUs were traditionally being used for. However,
this does not mean that the CPU should be excluded from these kind of
problems, as it is perfectly capable of running many different type of ap-
plications [25]. In addition, it has evolved from a single-core to a multi-
core processor, making it suitable for parallel tasks as well [25]. Still, there
are several important differences between GPUs and CPUs that indicates
what kinds of computational problems they are suited for. Section 2.1.1 will
discuss some differences between these from an architectural perspective,
while section 2.1.2 discusses the concepts of threads for both, highlighting
the primary differences between them.
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2.1.1 Architectural design

The architecture of the CPU and the GPU differs broadly. The CPU is
designed with a latency oriented design in mind [34, 30]. As a result, it
has complex logic for cache control where large caches are used to convert
memory accesses with long latency into short latency cache accesses. In
addition, it also has branch prediction to effectively reduce the latency
of branches. A CPU devotes many of its transistors to this. This design
orientation limits the number of processing cores that the CPU can pack on
the same die due to the increasing area and power consumption [25].

The GPU on the other hand is designed as a throughput oriented
device [34, 30] and in contrast to the CPU, it does not have complex
cache control or branch prediction. Instead, GPUs are suited for data-
parallel computations. This means that a large amount of threads executes
GPU programs on many data elements in parallel, giving GPUs a lower
requirement for control flow. In addition, the GPU has a relatively high
ratio of arithmetic operations to memory operations. This enables it to hide
memory latencies by performing calculations instead of using large caches
like the CPU. GPUs also have caches, but these are smaller with the goal to
achieve higher memory throughput, in turn giving it more efficient access
to memory. Furthermore, the GPU is also accessed and controlled by the
CPU, effectively forming a heterogeneous system. In addition, it executes
asynchronously from the CPU which enables concurrent execution and
memory transfers [7].

When it comes to throughput computing, the CPU is a good candidate
because it has been the main choice of processor for traditional workloads
[25]. Its design orientation has also made CPUs provide the best single
thread performance for throughput computing workloads [25]. However,
since the CPU has relatively few processing cores, it limits how much data
that can be processed in parallel when compared to a GPU that has many
parallel processing units suited for throughput computing [25].

2.1.2 Threads

Multi-threading by making use of more than one thread is essential to
utilize modern CPUs. However, the concept of multi-threading is quite
different between the GPU and the CPU.

For example, context switching between CPU threads are different than
context switching between GPU threads [29, 30]. A context refers to the
content of different registers and the program counter. For CPU threads
the context switching is performed by the operating system. More precisely,
this involves suspending the current running thread and store its context
in memory, and then loading the context for the next thread into the
CPUs registers. Finally, it resumes the thread by returning to the address
indicated by the program counter. This is generally a slow and expensive
operation. As a result, CPU threads are referred to as heavyweight entities.

In comparison, GPU threads are significantly more lightweight. The
lowest unit of execution on a GPU is called a warp and consists of 32
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threads. If a GPU has to wait for a warp of threads it can simply begin
executing another one, effectively hiding latencies. There is no context
switching involved since each context is maintained on-chip during the
warps entire lifetime. As a result, there is no overhead related to context
switching on the GPU.

Modern GPUs also support several thousand threads compared to a
CPU [29]. For instance, modern NVIDIA GPUs can support up to 1536
threads concurrently per multiprocessor. A GPU with 16 multiprocessors
therefore supports more than 24000 active threads concurrently. A CPU on
the other hand is much more limited than this. Servers with four hexa-core
processors can only run 24 threads concurrently or 48 if the CPU support
Hyper-Threading.

2.2 CUDA

Compute Unified Device Architecture (CUDA) is a parallel computing
platform by Nvidia for GPGPU programming [30]. GPGPU refers to
the use of graphics processing units (GPUs) to perform general purpose
computations. CUDA makes it possible to program towards Nvidia GPUs
without having to implement the code in graphics APIs like OpenGL [18].
Programming on the CUDA platform is done through the use of C/C++
as the programming language. CUDA also includes extensions to the C
language and runtime library to handle the GPU specific parts of the code.

2.2.1 Host and device model

In the CUDA programming model, the CPU and the GPU is known as
the host and device, together forming a heterogeneous system [30]. A
typical CUDA program consists of C/C++ code that is executed on the
host and functions called kernels that are executed on the device. A kernel
is an extended CUDA C function that is executed on the device N times in
parallel by N numbers of threads. The host will usually execute sequential
code while the device takes care of the parallel computations. The host is
also responsible for calling CUDA kernels. For example, the code run by
the host can consist of initializing data and writing to or reading from files.
The device can then use several threads to execute a kernel that perform
computations on these data.

The host and device also has their own memory spaces referred to as
host memory and device memory [30]. The host memory is the computers
RAM while the device memory is the global memory on the GPU. Since
they do not share the same memory, an explicit data transfer is required to
transfer data between the two memory spaces. This is performed by the
host through CUDA runtime functions.

2.2.2 Thread hierarchy

CUDA organizes threads into a hierarchy consisting of thread blocks and
grids [30]. A thread block can be viewed as a one, two or three-dimensional

7



array that contains several threads, up to 1024 threads on modern GPUs.
Similarly a grid can also be viewed as a one, two or three-dimensional
array consisting of several thread blocks. As a result, a CUDA application
can contain several thread blocks with multiple threads each. A kernel can
be executed by multiple thread blocks in parallel. This makes it possible
for several thousand threads to execute a certain kernel in parallel.

Figure 2.1: Overview of the thread hierarchy in CUDA. A grid contains
multiple thread blocks and a thread block contains multiple threads. A kernel
can be executed by several thread blocks in parallel. Original figure from
CUDA C Programming Guide [30]

2.2.3 Memory hierarchy

There are multiple different types of memory spaces in a CUDA application
[29, 30]. These are shared memory, local memory, global memory, and two
additional read-only memory spaces called constant and texture memory.
In addition, each thread also has its own registers.

Registers are the fastest memory that can be used by threads. This is
where variables that threads allocate inside kernels are stored. For current
high-end GPUs each multiprocessor can contain up to 64000 32-bit registers
and as much as 255 registers per thread [30].

Shared memory is the second fastest type of memory and can be as fast
as registers if accessed correctly. This memory is shared between all threads
for a given thread block making it suitable for effective communication
between threads inside a thread block. However, it is very limited in size
with a maximum of 48 KB of space per multiprocessor [30].

Local and global memories are considerably slower because these
memory spaces are located off-chip. Local memory is per thread meaning
each thread has access to its own private local memory. The nvcc compiler
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Figure 2.2: Overview of the most important memory spaces in CUDA.
From the top, each thread has access to its own local memory. They also
have access to shared memory which is shared by all threads inside a
thread block. Finally, all thread blocks have access to the same global memory.
Original figure from CUDA C Programming Guide [30]

determines what kind of variable will be stored in local memory. Usually,
this is variables that are too large to fit in registers, for example structures
or arrays. Global memory is the largest memory space, and is as its name
suggests global, which means it is shared by the whole application. All
threads and thread blocks inside a grid therefore have access to the same
global memory. This kind of memory is normally allocated using runtime
functions provided by CUDA.

Constant and texture memory are read-only memory spaces and are
also shared by all threads. These usually have high access latency similar
to global and local memory. However, constant memory can be as fast
as registers if all threads of a warp access the same location in memory.
Texture memory will get the best performance when threads from the same
warp read texture addresses that are close together. All Nvidia GPUs has a
constant memory size of 64 KB [30].

2.3 Mathematical background

The shallow-water equations are a set of hyperbolic partial differential
equations. These equations can model physical phenomena like tidal
waves, tsunamis, rivers and dam breaks. In two dimensions the equations
can be written in conservative form:
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where h is the water depth, hu and hv is the momentum along the x-
axis and y-axis on a Cartesian coordinate system and g is the gravitational
constant. This can also be expressed in vector form:

Qt + F(Q)x + G(Q)y = 0. (2.2)

Here, Q represent the variables
[
h, hu, hv

]
while F and G is the flux along

the x-axis and y-axis on a Cartesian coordinate system.
To numerically solve hyperbolic conservation laws, such as the shallow-

water equations, one introduces explicit schemes defined over a grid where
each grid cell can be updated independently of each other. Two classical
schemes for solving this system of equations are the Lax-Friedrichs scheme
[23] and the Lax-Wendroff scheme [24]. The Lax-Friedrichs scheme is a
first-order scheme [15] while the Lax-Wendroff scheme is a second-order
accurate scheme in both space and time [24, 15]. I will describe the Lax-
Friedrichs scheme more closely since it is a good introduction to solving
the shallow water equations. This scheme can be written in the following
way [23]:

f̂ n
i−1/2 =

1
2
( fi−1 + fi)−

∆x
2∆t

(un
i − un

i−1), (2.3)

where f is the flux on a cell interface and u is either the water depth or
momentum. The notation un

i means that u is a given value on the cell i for a
timestep n. Another way to write this is un

i = u(xi, tn). However, the Lax-
Friedrichs scheme does not produce very good approximation qualities for
solutions containing discontinuities since it smears the solutions as shown
in [15]. To improve approximation, high resolution schemes can be used,
for example the REA with piecewise linear reconstruction [26].

To correctly simulate tsunamis, dam breaks and flooding over realistic
terrain, source terms for bed slope and bed shear stress friction has to be
included in the shallow-water equations:
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z

 ,

(2.4)
where B is the bottom topography and Cz is the Chézy friction coefficient.
This is expressed in vector form by extending (2.2) to:

Qt + F(Q)x + G(Q)y = HB(Q,∇B) + H f (Q), (2.5)

where HB is the bed slope source term and H f is the bed shear stress source
term.
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Figure 2.3: Illustration of the water flow and flux computations in one
dimension. a: Water flow over a bottom topography represented by the
continuous variables. b: Discretization of conserved variables Q at cell
centers and the bottom topography B at cell intersections. c: Reconstruction
of the slopes using the generalized minmod flux limiter. d: The slopes are
modified to avoid negative water depth at the integration points. e: The
conserved variables are reconstructed at the cell interfaces Q+ and Q−. f:
Finally, from these values, the fluxes are computed at each cell interface by
using the central-upwind flux function [21]. Original figure from Brodtkorb
et al. [9]

From now on, I make a distinction between the water elevation w and
the water depth h (see figure 2.3a), and use Q = [w, hu, hv]T as the vector
of conserved variables. Therefore, I use Q1, Q2, and Q3 to denote the water
elevation, and water momentum along the x and y-axis respectively. It
is important that the numerical scheme to solve this system of equations
handles both dry and wet cells to simulate dam breaks and flooding. In
addition, Brodtkorb et al. [9] required other properties as well, such as
well-balancedness and second-order accurate flux calculations. The explicit
Kurganov-Petrova scheme [22] fits well with these requirements and was
therefore used in [9]. In this scheme, Q is given as cell averages, and the
bathymetry B as a piecewise bilinear surface defined by the values at cell
corners, see figure 2.4. Fluxes are computed across all cell interfaces. The
spatial discretization of this scheme can be written:

dQij

dt
= H f (Qij) + HB(Qij,∇B)

− [F(Qi+1/2,j)− F(Qi−1/2,j)]− [G(Qi,j+1/2)− G(Qi,j−1/2)]
(2.6)

where H f is the bed shear stress source term, HB is the bed slope source
term, and F and G are the fluxes across cell interfaces along the x-axis and
y-axis on a Cartesian coordinate system.

2.4 Shallow water simulations

In this section, a detailed description of the state-of-the-art single-GPU sim-
ulator by Brodtkorb et al. [9] is given. Furthermore, their implementation
of the explicit Kurganov-Petrova scheme for the shallow water equations
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is explained. To gain better knowledge of this work I recommend reading
[9]. Finally, I also discuss related work for the shallow water equations.

2.4.1 Single-GPU simulator

The single-GPU implementation by Brodtkorb et al. [9] consists of three
parts: A C++ interface, a set of CUDA kernels and an OpenGL visualization
that renders the simulation to the screen.

The C++ interface handles data allocation, initialization and dealloca-
tion. It also moves data between the CPU and GPU as well as invoking the
CUDA kernels on the GPU. The CUDA kernels handle the core of the simu-
lation and are used to solve the numerical scheme. There are four different
CUDA kernels:

Cell center A

Cell corner B

Stencil C

D Global ghost cells
E Global domain padding

F Local ghost cells
G Block

Figure 2.4: This overview shows the computational domain divided into
thread blocks and cells. The data variables Q, HB, and H f are defined at cell
centers while the bathymetry B is defined at cell corners. Original figure
from Brodtkorb et al. [9]

Flux calculation: This kernel is responsible for the flux calculation across
all cell interfaces in addition to the bed slope source term for all cells. It
starts by reconstructing the bathymetry B at each interface midpoint along
the x and y directions, making it aligned with Q. The rest of the steps
performs the computations outlined in figure 2.3. First, the slopes of Q are
reconstructed by using the generalized minmod flux limiter as shown in
figure 2.3c. This limiter can be written:

(Qx)j = MM
(

θ
Qj −Qj−1

∆x
,

Qj+1 −Qj−1

2∆x
, θ

Qj+1 −Qj

∆x

)
Qx = MM(θ f , c, θb), (2.7)

where f , c and b are the forward, central, and backwards difference
approximations to the derivative, while θ controls the numerical viscosity
present in the scheme. Brodtkorb et al. [9] used θ = 1.3 which was found
to be the optimal value by Kurganov and Petrova [22]. Furthermore, the
minmod function is defined as:

MM(a, b, c) =


min(a,b,c) if a, b, c > 0
max(a,b,c) if a, b, c < 0
0 otherwise.

. (2.8)
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However, instead of using branches as in (2.8), a branchless minmod slope
limiter [15] was used as this avoids thread divergence on the GPU. When
using this reconstruction, one can end up with negative water depth close
to dry zones. As the eigenvalues of the system are u±

√
gh, the numerical

scheme will not handle dry zones when the water depth is negative. To
solve this, Brodtkorb et al. [9] simply modified the slopes (Figure 2.3d) to
avoid negative water depth at the integration points. Furthermore, the con-
served variables are then reconstructed on both sides of the cell interfaces
(Figure 2.3e), from which the one dimensional fluxes, F and G from (2.6)
are computed (Figure 2.3f) using the central-upwind flux function [21]. It
also computes the bed slope source term, HB from (2.6), for all cells. It then
finds the net contribution to each cell by summing the fluxes with the bed
slope source term. Finally, the flux kernel is also responsible for computing
the eigenvalue at each integration point. Instead of storing one eigenvalue
per integration point, it performs efficient shared memory reduction to find
the minimum eigenvalue per block. These are stored in a per block buffer
which is the input to the next kernel.

Maximum timestep: The second kernel computes the maximum timestep.
This is computed by finding the minimum eigenvalue among all eigenval-
ues in the per block buffer computed in the previous kernel. The timestep,
∆t is also limited by the CFL (Courant-Friedrichs-Lewy) condition [26]

∆t ≤ 1
4

min
{

∆x/maxΩ | u±
√

gh |, ∆y/maxΩ | v±
√

gh |
}

(2.9)

which ensures that the fastest propagation speed is a maximum of one
quarter grid cell per timestep.

Time integration: This kernel computes the bed shear stress source term,
more precisely H f from (2.6). Finally, the maximum timestep is used to
solve the equations forward in time.

Boundary conditions: The last kernel sets the values of global ghost cells
on the data variables Q to apply boundary conditions. This has nothing
to do with the numerical scheme, but is essentially used as a condition for
handling the boundaries of the domain. One type of boundary condition
implemented is wall which simulates a wall around the domain. The wa-
ter elevation, and water momentum variables Q1, Q2, and Q3 at the inner
boundaries of the domain are copied into the ghost cells. Q2 is also reversed
in the horizontal direction while Q3 is reversed in the vertical direction. As
a result, the water flows in the opposite direction as soon as it hits the do-
main boundaries. In addition, there are also three other types of boundary
conditions implemented. These are fixed discharge, fixed depth, and free out-
let. I will not describe these further as they are not important for this thesis.

The numerical scheme is implemented both with first-order Euler and
second-order accurate Runge-Kutta time integration. For second-order,
each timestep is implemented as two substeps. The first substep runs all
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four kernels in order while the second substep only runs flux calculation,
time integration and boundary conditions, see figure 2.5.

First substep

A single GPU step

Flux computation Max timestep Boundary conditionsTime integration

Second substep Flux computation Boundary conditionsTime integration

Figure 2.5: An overview of the GPU step function that calls the CUDA
kernels. Flux computation computes the fluxes F and G together with the
bed slope source term HB. Furthermore, Max timestep finds the maximum
∆t. Time integration computes the bed shear stress source term H f and
solves Q forward in time. Finally, Boundary conditions sets the global ghost
cells on Q. First-order Euler only executes the first substep while second-
order Runge-Kutta executes both substeps.

For the floating point precision of the scheme, single precision is used
instead of double precision. The benefit is that data transfers and arithmetic
operations can execute twice as fast, while data storage only takes half the
space. Brodtkorb et al. [8] have shown that this is sufficiently accurate
for the selected scheme. Furthermore, a good block partitioning is crucial
for the performance of the numerical scheme on GPUs. Several factors that
can affect the performance was found [9], more precisely: Warp size, shared
memory access, shared memory size, number of warps for each streaming
multiprocessor and global memory access.

The visualizer is implemented in OpenGL. It renders the terrain with
a satellite image and the water surface with Fresnel equations to produce
photo-realistic rendering. Alternatively it can render the data using a color
transfer function in HSV color space which gives a good overview of the
water depth.

2.4.2 Related work

There have been many publications on the shallow water equations, both
on a single GPU and CPU, but also on multiple GPUs as well. For
single GPU solutions, Seitz et al. [32] implemented a two-dimensional
shallow water simulation on the GPU using the 2D predictor-corrector
MacCormack method. They demonstrated a speedup of more than 100
times on large domain resolution comparing their GPU code to a serial
CPU implementation in Fortran on same-generation hardware. de la
Asunción et al. [10] implemented a one-layer shallow water system using
a first order well-balanced finite volume scheme on GPUs using CUDA.
Their CUDA code was implemented with both single precision and double
precision. Furthermore, they compared their CUDA implementation to
a serial and multi-core CPU version and a GPU version implemented
in Cg on same-generation hardware. Their single precision CUDA code
achieved a speedup of more than 140 and 40 times over the single-core
CPU and multi-core CPU versions respectively. It was also faster than the
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Cg GPU version. In addition, their double precision CUDA code achieved
a speedup of 5.7 times over the multi-core CPU version.

Many authors have published multi GPU solutions as well. Acuña and
Aoki [1] solved the shallow water equations for tsunami simulations using
the CIP Conservative Semi-Lagrangian IDO Method. They decomposed
their computational domain among multiple GPUs to utilize a multi-node
GPU cluster. Their results showed high scalability, both on a single node
with multiple GPUs and a cluster of GPUs with multiple nodes. Viñas
et al. [40] also implemented shallow water simulations for multi-GPUs
and discretized the domain using a first order Roe finite volume scheme.
In addition, they included a transport equation to simulate transport of
contaminants. As a result, their simulator is able to predict areas that are
affected by the propagation of a discharge of pollutant. They performed
their benchmarking on a heterogeneous cluster with two nodes, each node
containing two M2050 GPUs and an Intel Xeon X5650 CPU with 6 cores
and 12 threads via hyperthreading. Their fastest speedup achieved using
all four GPUs was 78 times over a single Intel Xeon X5650 CPU.

2.5 Introduction to auto-tuning

Auto-tuning refers to how an application can automatically tune itself to
gain increased performance. A common method is to auto-tune specifics
parameters to adapt to the underlying hardware. This can increase
performance on a number of different hardware configurations, and one
avoids manually tuning on different hardware. In this section, I briefly
discuss related work for auto-tuning between CPUs and GPUs in addition
to stencil computations, as this is the primary focus for this thesis.

2.5.1 Auto-tuning stencil computations

Zhang and Mueller [42] created an auto-generation and auto-tuning
framework for 3D stencil codes on GPUs. Their framework generates
auto-tuned executable code based on a stencil specification as input. Their
auto-generation and auto-tuning framework works in the following way:
A stencil specification file is first provided by users as a stencil equation
together with parameters such as its dimension and data type. Then,
the framework parses this specification and detects necessary information
such as names of input/output arrays, in addition to number of floating-
point operations for the stencil. This information is used by the code
generator to generate executable code that is auto-tuned to the best
configuration of parameters based on run-time profiling. The auto-tuning
framework performs a search over a parameterized search space for
different parameters, such as the CUDA block size and whether to map
read-only input arrays into texture memory or not. Their experimental
results further showed the performance was competitive to manual code
tuning.

Lutz et al. [27] presents a framework to automatically distribute
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and optimize stencil computations across multiple GPUs on the same
node. Their primary focus is related to optimizing communication, more
precisely, the exchange of halo cells. Therefore, they used six varied
(in terms of number of stencil points, reads, writes, and floating point
operations per point) stencil applications that requires communication
between sub-domains: Game of Life, Reverse Edge, and Swim which are
2D stencils, and Hyperthermia, Himeno, and Tricubic which are 3D stencils.
To perform communication optimizations, they increased the halo size to
achieve less frequent communication at the cost of more computations.
They found that the optimal halo size varied among the different stencils.
In addition, they noted that using all GPUs available in a system is not
always the most optimal solution. In some cases, the computational
domain is too small to be decomposed into multiple sub-domains. In other
cases, a large communication cost can negatively affect the scalability. As
a result, they implemented an auto-tuning algorithm that tunes on these
parameters, like GPU selection and partitioning, the halo size, as well as other
parameters such as volume orientation and swapping strategy.

Their tuning for the GPU selection and partitioning decides which GPUs
to use, including how many. It also decides how to assign partitions to
them. Furthermore, the halo size was auto-tuned using three different
strategies that changes the halo size dynamically as the application runs:
exhaustive search, hill climbing search, and dichotomic search.
exhaustive search: The first simply tries every possible halo size and selects
the best.
hill climbing search: The second starts at a minimum halo size and
increases linearly until the performance decreases for several consecutive
points.
dichotomic search: Since both of the previous searches linearly, they may
not find the most optimal halo size if it is in the middle of the range. To
counter this, their third strategy simply finds the optimal halo size within
the best interval.

Their auto-tuning framework gave an average speed up of 1.83 times
on two GPUs over a single GPU, and 2.86 times on four GPUs over a
single GPU. The three different strategies for the halo size auto-tuning
performed similarly. However, on larger input sizes, hill climbing search
and dichotomic search performed slightly better than exhaustive search.

2.5.2 Auto-tuning between the CPU and the GPU

Song et al. [33] implemented a heterogeneous tile algorithm to utilize
multi-core CPUs in addition to GPUs for dense matrix multiplication. This
algorithm first partitions a matrix into tiles of size B× B and further divides
this into smaller tiles of size B× b. These tiles are assigned to the CPU and
the GPU. They implemented an auto-tuning technique to decide how to
partition the top-level tiles of size B × B to achieve good load balancing.
This is done in three steps, but only the first two are the most important
here. It starts with the two-level partitioning scheme that is used to further
divide a matrix given the top-level tile size B where B is simply found by
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searching for the smallest matrix size that gives the best performance for
the dominant GPU kernel. It then attempts to find the best partition of size
B× Bh that will be cut from each top-level tile of size B× B. Song et al. [33]
further uses the following formula to find Bh:

Bh =
Per fcore · #Cores

Per fcore · #Cores + Per fgpu · #GPUs
· B, (2.10)

where Per fcore and Per fgpu is written in Gflops and is the maximum
performance of a dominant computational kernel of the algorithm on either
a CPU core or a GPU.
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Chapter 3

A shallow water simulator on
heterogeneous architectures

The implementation of a heterogeneous simulator is a two-step approach.
The single-GPU implementation [9] is first extended to run on a single CPU
core, and then multi-threaded to utilize all CPU cores, forming the basis of a
multi-core CPU implementation that can be utilized together with the GPU.
To finish this, the computational domain has to be decomposed between
the GPU and the CPU, giving each their own sub-domain. First of all, this
involves the implementation of a domain decomposition technique. This
creates additional challenges such as the propagation of water between
the sub-domains. To solve this, a simple communication technique called
ghost cell exchange is implemented. In addition, important concepts such
as asynchronous execution are also taken into account to be able to execute
the sub-domains in parallel.

Section 3.1 explains how the single-GPU implementation [9] is extended
to the CPU. Several optimization techniques were performed on the CPU
code, including multi-threading to take advantage of all cores. This is
discussed in section 3.2. Then, the domain decomposition is introduced
by giving an overview of several decomposition techniques in section
3.3, together with an implementation where the algorithmic details are
explained. Additional techniques that can give better performance and
help reducing the overhead of data transfers are also introduced. More
precisely, section 3.4 explains a technique called Ghost cell expansion to
reduce data transfer overhead, while section 3.5 explains an optimization
technique called Early exit. Finally, I present extensive performance
benchmarks for the heterogeneous implementation in section 3.6.

3.1 CPU implementation

The single-GPU implementation [9] already utilizes the CPU to perform
the sequential parts of the code, for example initializing data which is done
only one time at startup. The simulation itself which is highly parallel
in nature is executed only on the GPU. Throughout the simulation the
CPU only takes care of work like launching CUDA kernels and initiating
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memory copies between the CPU and the GPU. As a result, the shallow
water simulation does not utilize the heterogeneous architecture to its full
potential since the CPU can have several cores that are mostly idle. It is
therefore important to extend the parallel parts of the code to the CPU so
its parallel resources can be taken advantage of.

As discussed in [33] there are several features that have to be taken
into consideration when extending the simulation to utilize the CPU as
well. First off, the CPU and GPU each have their own memory space
which requires an explicit memory copy to transfer data from one memory
space to another. Secondly, these data transfers go through the PCI-Express
bus that the GPU is connected to. As the speed gap between a GPU and
its PCI-Express connection increases, the network will eventually become
the bottleneck for the entire system. Finally GPUs are optimized for
throughput while CPUs are optimized for latency. As a result, GPUs needs
a larger computational domain size to be effectively utilized while smaller
domain sizes apply better for CPUs.

To implement the shallow-water simulations on the CPU, I base my
implementation on the four CUDA kernels explained in section 2.4.1. As
a result, the CPU implementation uses the same numerical scheme as the
GPU code, more precisely the Kurganov-Petrova scheme [22]. The CPU
implementation is non-trivial since the GPUs data-driven programming
model is quite different from the instruction-driven programming model
on a CPU. However, the CUDA kernels contain for the most part standard
C++ code which makes it easier since the CPU code will be implemented in
C++. Listing 3.1 and 3.2 shows a simple implementation of a CUDA kernel
and an equivalent C++ function. This should give an idea of the difference
in implementation details between the GPU and the CPU code. The CUDA
code in listing 3.1 uses the built in CUDA variables blockIdx and threadIdx to
map each thread to a unique cell in the domain. The CPU code in listing 3.2
introduces loops to iterate over the two dimensional domain and perform
computations for each cell at a time.

Listing 3.1: CUDA kernel for the GPU

__global__ void gpu_kernel ( i n t x , i n t y )
{

/ / C e l l i n d e x v a r i a b l e s f o r a t h r e a d
i n t j = blockIdx . x * x + threadIdx . x ;
i n t i = blockIdx . y * y + threadIdx . y ;

/ / Computat ions f o r c e l l [ i ] [ j ]
}

Listing 3.2: C++ function for the CPU

void cpu_function ( i n t x , i n t y )
{

/ / Loop through e a c h c e l l [ i ] [ j ] f o r a 2D domain
#pragma omp p a r a l l e l for pr ivate ( i , j )
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for ( i n t i = 0 ; i < y ; ++ i )
{

for ( i n t j = 0 ; j < x ; ++ j )
{

/ / Computat ions f o r c e l l [ i ] [ j ]
}

}
}

The CUDA kernels discussed in section 2.4.1 are implemented as C++
functions to run on the CPU. However, the computation of the minimum
timestep can be performed as part of the flux computations. As a result, the
CPU code only contains three functions, Flux and max timestep computation,
Time integration, and Boundary conditions, as can be seen in figure 3.1.

First substep

A single CPU step

Flux and max timestep computation Boundary conditionsTime integration

Second substep Flux computation Boundary conditionsTime integration

Figure 3.1: An overview of the CPU step function that calls the CPU
equivalent versions of the CUDA kernels from figure 2.5. Flux and max
timestep computation computes the fluxes F and G together with the bed
slope source term HB, and finds the maximum ∆t. Time integration
computes H f and solves Q forward in time. Finally, Boundary conditions
sets the global ghost cells on Q. First-order Euler only executes the first
substep while second-order Runge-Kutta executes both substeps.

The maximum possible timestep is found by finding the minimum
timestep. The CUDA kernel uses a minimum reduction to calculate
the maximum timestep from the eigenvalues of each cell. For the CPU
code, this computation is straightforward since each iteration can simply
compare its eigenvalue with the previous iteration to find the minimum.
However, this solution does not work well for a multi-core implementation
since it requires a critical section to avoid race conditions. This can in turn
decrease the performance. The most efficient solution found was to use
the minimum reduction operator available in OpenMP [37] to first let each
thread find its minimum value, and then compute the minimum among
these.

3.2 Multi-core implementation and optimizations

Several optimization techniques have been implemented to improve the
performance of the CPU implementation. First off, it was multi-threaded
to fully utilize all CPU cores. In addition, several optimizations have been
applied, both general code optimizations and optimizations that are more
relevant to the CPU architecture. I also measure the speedup of the most
important optimizations.
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Multi-threading: The multi-threading was performed by using OpenMP
[37]. There are several alternatives to OpenMP. For instance, Boost threads
which is part of the Boost C++ library [2]. However, OpenMP is much
less error prone since it lets the compiler do the work of decomposing
the workload between all threads. Boost threads requires the programmer
to create the threads and decompose the domain between these, using a
significant amount of time to make sure the code is implemented correctly.
Multi-threading using OpenMP works simply by adding the line pragma
omp parallel for before the loops as shown in listing 3.2.

Kuhn and Petersen found that converting a threaded C program
to OpenMP increased robustness without sacrificing performance [20].
They concluded that implementing SMP type parallelism was easier with
OpenMP than hand-threading because the last mentioned would require
several adjustments to the serial code contra the OpenMP version. First
off, hand-threading would require the parallel regions to be moved into
a separate subroutine. The programmer would also have to create a data
structure off all the private variables for each thread. In OpenMP, these
tasks mainly involve adding pragmas to let the compiler perform them.
These results show that using OpenMP can save a significant amount
of time. In addition, it does not necessarily decrease performance over
programmer threaded code.

General optimizations: The flux function was found to be a large
bottleneck, using around 90% of the total runtime. This result is similar
to the GPU version of the code where Brodtkorb et al. found that the
flux kernel used around 87.5% of the total runtime [9]. As a result, I first
performed a change in the trade-off for the bathymetry between memory
usage and performance. Then, I outline some additional optimizations on
the multi-core CPU code.

Initially, for the flux computations, the bathymetry B is reconstructed
at each timestep to make it aligned with Q. However, since B is constant
through the whole simulation, this reconstruction can instead be performed
a single time at the startup. The single-GPU code [9] performed this
each timestep as a performance trade-off for less memory and bandwidth
usage. However, the CPU is generally not limited by memory size as
a CPU typically have access to more RAM compared to the amount of
memory available on GPUs. Therefore, I perform this reconstruction a
single time at the startup instead of every timestep, effectively improving
the performance slightly by using more memory.

Then, the reconstructions of the conserved variables Q were optimized
to fit the CPU architecture. As mentioned in section 2.4.1, the GPU
code uses a branchless minmod slope limiter since this avoids thread
divergence, resulting in better performance on the GPU. However, for the
CPU, I utilized the branched version of the minmod function as defined in
equation (2.8) since this yielded better performance.

The original GPU code [9] was also compiled with the fast math
compiler flags, producing faster but less accurate floating point math, for
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example related to division and square root. However, their verification
and validation experiments showed their solution to be accurate enough
to correctly capture analytical solutions and real-world cases. Inaccuracy
in floating point computations is often not among the larger problems as
other errors such as model errors related to numerical schemes tend to
drown the floating point errors [5]. I performed the same optimization on
the CPU code, by compiling with -ffast-math, yielding faster floating point
arithmetic and math functions, but less accurate results.

The numerical accuracy of compiling with -ffast-math was further veri-
fied. The verification was run on a case with flat bathymetry and an
idealised circular dam break surrounding a water column with radius
R = 20m in a square computational domain of 200m × 200m with center
at xc = 100m, yc = 100m. It was further run with wall boundary conditions
and second-order accurate Runge-Kutta. The initial conditions for the ba-
thymetry B was set to B(x, y, 0) = 0, while the water momentum in x and y
directions, Q2 and Q3 were set to Q2(x, y, 0) = Q3(x, y, 0) = 0 throughout
the domain, and the water elevation Q1:

Q1(x, y, 0) =

{
Q1 = 1m if (x− xc)2 + (y− yc)2 ≤ R2

Q1 = 0.1m if (x− xc)2 + (y− yc)2 > R2.

At time t = 0, the dam is instantaneously removed, resulting in an out-
going circular wave.

Figure 3.2 shows the results from this verification, more precisely the
water elevation at the centerline of the domain at a given timestep is
provided in figure 3.2a. The high-resolution reference is run at a resolution
of 40962 while the solutions with fast math enabled and disabled is run at
a resolution of 10242. Figure 3.2b shows the numerical difference between
enabling and disabling fast math, taken from the same centerline. As can
be seen, the numerical difference in accuracy is very small. However, it
becomes considerably larger at the shocks. Overall, utilizing -ffast-math still
gives a very accurate approximation.

Performance gains: The speedup of each optimization, including the
multi-threading was verified by performing a simulation on a large domain
with a resolution of 40962. The simulations were run on the Intel Core i7-
2600K. The results are provided in table 3.1, showing the speedup of each
optimization with respect to the previous.

A reference version has also been provided, running only on a single
core and with no optimizations enabled. The multi-core optimization (using
four cores and 8 threads via hyper threading) resulted in a significant
performance gain, running 4.8 times faster than the reference. The minmod
optimization gained a speedup of 1.2 times. Finally, compiling with -ffast-
math also resulted in a 1.2 times speedup.
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Figure 3.2: Centerline plot of a second-order accurate Runge-Kutta
simulation on an idealised circular dam break with radius R = 20m placed
in the center of a domain of size (x, y) ∈ [0, 200]m × [0, 200]m. The left
plot shows the accuracy by executing with fast math enabled and disabled
compared to a high-resolution reference solution. The right plot shows the
numerical difference in accuracy between enabling and disabling fast math.
The difference is overall very small, but becomes larger at the shocks.

Optimization Speedup
Reference 1x
Multi-core 4.8x
Minmod 1.2x
Fast math 1.2x

Table 3.1: Shows the speedup of each optimization with respect to
the previous. The reference runs only on a single core and with no
optimizations enabled.

3.3 Domain decomposition techniques

Domain decomposition is a task of decomposing a domain in N number
of sub-domains where N can equal the number of GPUs and CPUs in the
system. Each sub-domain can be computed on its own GPU or CPU. There
exist many decomposition techniques that can be used when partitioning
a computational domain into several smaller parts. Many papers have
investigated such techniques, including [35, 33, 39, 31]. In this section,
I will compare different techniques that have the potential to work well
when decomposing between a GPU and a CPU.

First of all, there are several challenges related to decomposing a
domain into sub-domains. One challenge that arises is the need for
communication between the sub-domains. The water has to propagate
between all sub-domains. To perform this, the sub-domains have to
exchange rows of cells between each other. To address this issue, a
communication technique that transfers data between the sub-domains

24



has to be implemented. A second challenge is related to how the various
sub-domains can be executed asynchronously of each other, and when to
synchronize to make sure the global solution is correct. Finally, one also
has to make sure that the timestep, ∆t is computed correctly.

These challenges raise several requirements for a good decomposition
technique. First off, it needs to be effective when it comes to communica-
tion between GPUs and CPUs. Secondly, the technique will have to work
well in utilizing all CPU cores and GPUs in the system. Multiple techniques
can be used to decompose a domain, for example row based decomposi-
tion, column based or even a tile based technique, illustrated in figure 3.3.
The following section will discuss these different techniques, while section
3.3.2 will explain the implementation of domain decomposition and ad-
dress the different challenges related to simulation on multiple domains.

3.3.1 Strategies for decomposition

Row based decomposition One technique is to decompose the domain
horizontally in a row wise fashion resulting in N number of sub-domains
that each contains several rows of cells. By assuming a global domain
of size 600 × 600, any decomposition can be applied, for example two
domains of size 600× 300 or three domains of size 600× 200. However, it is
not limited to sub-domains of the same size. A configuration that contains
two domains with a size of 600 × 400 and 600 × 200 is also valid. This
can work well when the processors in the system are not equally fast. For
example, a system with one GPU and one CPU where the GPU is faster
and therefore needs to compute on a larger domain to achieve a balanced
workload.

Sætra and Brodtkorb have implemented a row decomposition tech-
nique similar to this in [35] for a multi-GPU system where they decompose
the domain into multiple sub-domains, each consisting of several rows of
cells. They further emphasize two advantages with this technique, both re-
lated to the communication for transferring data between the sub-domains.
The first advantage is that for data transfers between GPUs, it will trans-
fer continuous parts of memory. The data transfers only have to include
continuously rows. It is able to achieve this since all the data, row by
row are allocated continuously in memory. The second advantage is the
small amount of data transfers needed when exchanging cells between sub-
domains since each sub-domain has a maximum of two neighboring sub-
domains.

A very similar technique is also implemented in [39] by Venkatasub-
ramanian and Vuduc for a hybrid CPU/GPU system that works for both
multi-CPU and multi-GPU systems. Is uses the 2D Poison equation using
the Jacobi’s iterative method over a structured 2-dimensional grid. Their
technique performs a decomposition of the domain into several blocks of
rows. It first assigns a block to the CPU(s) while the rest of the blocks are
divided between the GPUs.

After the domain decomposition, the computations are performed in
three steps:
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1: The first step computes one iteration of Jacobi for the blocks that were
assigned to the GPUs.
2: The second step performs the same computation for the block that was
assigned to the CPU(s). This is done simultaneously as the first step.
3: The last step simply exchange data between the CPU and GPU, more
specifically the boundary rows.

They explain the performance of this technique more closely: Because
of the overhead in step 3, this technique is only good if step 2 can do most of
its computations before step 1 finishes. If the decomposition assigns more
rows to the CPU, the time for step 2 increases while the time for step 1
decreases. The ideal decomposition is when step 1 and 2 finishes at almost
the same time. Therefore a well-balanced decomposition is crucial for an
implementation like this.

Column based decomposition The second technique decomposes the
domain vertically in a column wise fashion. The way this works is
similar to the row wise fashion. By assuming the same global domain
of size 600 × 600 and decomposing this into two domains vertically, the
result is two sub-domains of size 300 × 600 instead of 600 × 300 as in
the horizontal technique. These two techniques look very similar on
first impression. However there is one important difference between the
two related to communication. The column based decomposition has to
exchange columns on the right and left side of the domain. As a result,
it is not possible to transfer continuous parts of memory. In addition, it
requires many memory copies to transfer a single column. Therefore, this
technique will not work as well in a GPU/CPU system as the row based
decomposition since it requires a lot of small transfers over the PCI-Express
bus instead of a few larger ones. To maximize memory throughout, one
should in general minimize the amount of data transfers between the GPU
and the CPU, especially minimize the amount of many small transfers since
there is an overhead associated with each transfer [30].

Tile based decomposition Finally, it is possible to combine both of
these techniques together and divide both in the horizontal and vertical
direction, resulting in several square or rectangular sub-domains. Song et
al. presents a technique similar to this in [33]. It introduces techniques
to utilize all CPU cores in addition to all GPUs in heterogeneous multi-core
and multi-GPU systems for dense matrix multiplication. They implement a
heterogeneous tile algorithm. This algorithm uses a two-level partitioning
scheme. As input it takes a matrix and divides this into several tiles, small
tiles for CPUs and large tiles for GPUs. The reason for using two different
tile sizes is that large tiles work better for GPUs performance wise, while for
CPUs it is the opposite. The algorithm starts by dividing a matrix into large
square tiles of size B× B. Each of these top-level tiles are then divided into
a number of smaller rectangular tiles of size B× b and one remaining tile.
For example a 12× 12 matrix can be divided into four tiles of size 6× 6.
Each of these tiles can further be divided into two 6 × 1 and one 6 × 4
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rectangular tiles. A similar algorithm could be implemented to partition
the computational domain of systems of conservation laws. However,
it would include expensive communications, essentially having the same
problems as the previous technique.
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Figure 3.3: Illustration of the three different domain decomposition
techniques. All techniques show how an initial domain can be decomposed
into four sub-domains. The left figure applies row based decomposition
technique to divide the domain into sub-domains with several rows of cells.
The middle figure apples a similar column based decomposition technique
to divide the domain into sub-domains of several columns. The right figure
applies the tile based decomposition technique to divide the domain into
several tiles.

3.3.2 Implementation

I have chosen to use the row based decomposition technique because of
its advantages. As mentioned, this is also the technique used in [35] for a
multi-GPU system. The advantages with this technique still applies for
a GPU/CPU system since all data transfers will have to be transferred
between system RAM and GPU global memory. The initial global domain
can be decomposed into multiple sub-domains. However, to keep it simple,
I first perform a static decompose with two sub-domains equal in size. For
example, if the initial domain have a size of 400× 400, this is decomposed
into two sub-domains each of size 400× 200. Using this decomposition, one
sub-domain is assigned to the GPU and the other sub-domain is assigned
to the CPU. Both sub-domains are updated independently of each other.
The GPU updates its sub-domain by executing the CUDA kernels in figure
2.5 while the CPU updates its sub-domain by executing the C++ functions
in figure 3.1. The implementation is performed for both first-order Euler
and second-order Runge-Kutta time integration.

In the rest of this section I therefore focus on explaining all implement-
ation details related to a multi-domain simulation given only two sub-
domains. However, in the final parts of the section, more precisely in sec-
tion 3.3.5, I will explain how it is extended to a simulation with N number
of sub-domains. In addition, the section will also explain how the initial
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global domain can be decomposed into sub-domains of different sizes.

Timestep calculation As mentioned in section 3.3, one challenge related
to simulations with multiple domains, is the calculation of the timestep, ∆t.
This value will most likely differ between the sub-domains. In [35], Sætra
and Brodtkorb discuss two strategies for solving this. The first is simply to
use a globally fixed timestep for the whole simulation. However, there is
one problem with this strategy: The solution will most likely not propag-
ate as quickly as possible since it requires a timestep which is smaller or
equal than the smallest timestep allowed by the CFL condition. The second
strategy is to compute the smallest timestep among the timesteps for each
sub-domain. This is a better strategy since the solution will propagate as
fast as possible. The only downside is that it requires synchronization to
make sure all sub-domains have computed their own timestep before find-
ing the smallest of these. This was deemed as the most suitable strategy
and is therefore explained in greater detail below together with the tech-
nical details of running a multi-domain simulation.

Technical implementation details Listing 3.3 shows the implementation
of a simulation that computes on a single domain. A single loop is used
to iterate through all timesteps. The number of timesteps depends on
the simulation length. At each timestep, a single step function executes
the GPU and CPU code shown in figure 2.5 and 3.1. More precisely, it
computes the fluxes and the maximum timestep. Then it integrates the
equations forward in time, and finally performs boundary conditions on
the boundaries of the domain.

Listing 3.3: A single simulation step for one domain

while ( s imulat ion i s not f i n i s h e d )
{

/ *
* P e r f o rm s a s t e p on a s i n g l e domain
* /
s tep ( ) ;

}

In listing 3.4 this code is extended to a simulation that updates multiple
domains. It uses the appropriate strategy for selecting the minimum ∆t.
Since this code updates multiple sub-domains instead of only a single
domain, an array is used to store all the sub-domains. Similarly as in
listing 3.3, a single loop is used to iterate through all timesteps. The second
strategy for computing the minimum timestep requires us to first compute
the fluxes and timestep for all sub-domains. Then, select the minimum
of these timesteps, and finally perform time integration and boundary
conditions on all sub-domains. As a result, the step function is instead
split into two functions: step1 and step2. step1 computes the fluxes and the
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timestep while step2 performs time integration and boundary conditions.
At the start of each timestep, it performs ghost cell exchange between
the sub-domains. This is further explained in section 3.3.3. Then, it
iterates through all sub-domains and calls step1 to compute fluxes and
the minimum ∆t for each sub-domain. The computations on these sub-
domains are performed asynchronously. As a result, synchronization is
performed to make sure all sub-domains have computed their ∆t. More
details regarding the asynchronous execution is given in section 3.3.4.
When the synchronization have finished, the CPU iterates through all ∆t
values to find the minimum of these. This is then distributed to all sub-
domains. Finally, it iterates through all sub-domains and calls step2 to
perform time integration and boundary conditions on each sub-domain.

Listing 3.4: A single step for a simulation with multiple sub-domains

while ( s imulat ion i s not f i n i s h e d )
{

runStep ( ) ;
}

void runStep ( )
{

/ / Ghost c e l l exchange
exchange ( ) ;

/ / Each sub−domain computes f l u x e s and t i m e s t e p
for each subdomain
{

step1 ( ) ;
}

/ / Per form s y n c h r o n i z a t i o n

/ / CPU r e c e i v e s and f i n d s t h e minimum t i m e s t e p
for each sub−domain
{

min ( dt , getDt ( ) ) ;
}

/ / CPU t r a n s f e r s minimum t i m e s t e p t o a l l sub−domains
for each subdomain
{

setDt ( ) ;
}

/ *
* Each sub−domain p e r f o r m s t ime i n t e g r a t i o n
* and a p p l i e s boundary c o n d i t i o n s
* /
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for each subdomain
{

step2 ( ) ;
}

/ / Per form s y n c h r o n i z a t i o n
}

3.3.3 Ghost cell exchange

All sub-domains have global ghost cells forming overlapping regions.
These ghost cells functions as boundaries that connect the sub-domains
together since the stencil needs values from the neighboring sub-domain
when computing the fluxes. See figure 3.4 for an illustration of this.
This brings us to another challenge mentioned in section 3.3 related to
simulations with multiple domains, more precisely the propagation of
water between the sub-domains.

To correctly propagate the water between sub-domains, a communic-
ation technique that exchanges the ghost cells between the sub-domains
has been implemented. It has to exchange a total of four rows of cell data
between two sub-domains. The exact data to be copied for each of these
cells are the water elevation Q1, as well as the water momentum Q2 and Q3
along the x and y-axis. The technique is illustrated in figure 3.4. Each sub-
domain contains internal cells as well as ghost cells around the internal
cells. Cells are copied between the sub-domains in the following way:
From the bottom sub-domain, the two internal rows at the north boundary
are transferred to the bottom ghost cells on the top sub-domain. Likewise,
from the top sub-domain, the two internal rows at the south boundary are
transferred to the top ghost cells on the bottom sub-domain. The size of
the ghost cell overlap between the sub-domains is decided by the stencil
which uses two values in each direction. The global overlap therefore con-
tains four rows of ghost cells, thus two rows for each sub-domain.

From a technical point of view the exchange is implemented by first
downloading the ghost cells from all sub-domains to pinned, page-locked
CPU memory. Pinned memory can be accessed directly by the GPU
and can therefore be read or written with higher bandwidth than regular
pageable memory [30]. The ghost cells are first downloaded from the GPUs
sub-domain by using the CUDA runtime function cudaMemcpy2DAsync
that copies data from the GPU to the pinned CPU buffer. Then, the
ghost cells from the CPUs sub-domain are downloaded by using the C
function memcpy and copy this directly to the pinned CPU buffer similar
to the GPU data. Notice that the downloading from the GPU is initiated
first using the cudaMemcpy2DAsync function. Since this function executes
asynchronously, the CPU will not block while the data is transferred
from the GPU to the CPU. Instead, it can proceed directly to retrieve
the CPU data asynchronously along with the GPU data. At this point
synchronization is performed to make sure all data is downloaded before
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uploading to both sub-domains. The uploading is performed similarly as
the download. The data downloaded from the CPU to the pinned CPU
buffer is first uploaded to the ghost cells on the GPUs sub-domain by using
the CUDA runtime function cudaMemcpy2DAsync. Then, the pinned CPU
buffer containing the data downloaded from the GPU is uploaded to the
CPU using the C function memcpy. Again, these operations are executed
asynchronously.

Figure 3.4: A multi-domain solution using two sub-domains. Each sub-
domain has a resolution of 5× 5 cells, or 9× 9 including ghost cells. The
dark blue cells indicate internal cells while the light blue cells represents
ghost cells. At the start of each timestep, cell values are copied between
both sub-domains. The cell values inside the red rectangle in the bottom
sub-domain are copied to the ghost cells in the top sub-domain. Likewise,
the cell values inside the yellow rectangle in the top sub-domain are copied
to the ghost cells in the bottom sub-domain.

3.3.4 Asynchronous execution

For a solution with multiple domains where the sub-domains have been
divided between the CPU and the GPU, it is critical that the computations
are executed asynchronously to maximize the parallelism. For example
given two sub-domains where sub-domain A represents the top sub-
domain while sub-domain B represents the bottom sub-domain. A is
assigned to the GPU while B is assigned to the CPU.

When executing a single timestep, the ghost cell exchange is first
performed between A and B. As already described this ghost cell exchange
is executed asynchronously. Then, the flux and timestep computations
are performed for both sub-domains. It is important that as much of
these computations are executed in parallel. From a technical point of
view this means the GPUs sub-domain, in this case A will have to begin
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computing first. The CPU asynchronously executes the flux and timestep
kernel for the GPU. When performing this asynchronously the GPU starts
its computations as soon as the kernels are executed while the CPU
immediately continues to perform the flux and timesteps computations
for its own sub-domain B without blocking and waiting for the GPU to
finish. This means as much as possible of these computations will be run
in parallel.

When the CPU is finished with its computations, it synchronizes to
make sure the GPU have finished and found the minimum timestep.
Then, the CPU finds the minimum timestep of the sub-domains A and B
and transfers this timestep to all sub-domains. This transferring is also
best performed asynchronously. The CPU first transfers the minimum
timestep to the GPU by using the CUDA function cudaMemcpy2DAsync.
This function immediately returns enabling the CPU to set the minimum
timestep for its own sub-domain while the timestep is still transferred to
the GPU.

Then, the time integration and boundary conditions are performed for
both sub-domains. Similarly to the flux and timestep computations, these
will also have to be performed asynchronously which means the CPU first
executes the CUDA kernels enabling the GPU to start time integration on
its sub-domain A while the CPU continues executing time integration on
its own sub-domain B.

Finally, it is completely valid that sub-domain B is assigned to the GPU
instead of A and that sub-domain A is assigned to the CPU. In this case the
CPU updates the upper part of the global domain while the GPU handles
the bottom part. However, the GPU will still have to be executed first to
enable asynchronous execution. In this case the simulation is started for
the bottom part first instead of the upper part. Listing 3.5 is a modified
version of listing 3.4 to show how the asynchronous execution works.

Listing 3.5: A single step for multiple sub-domains with asynchronous
execution

while ( s imulat ion i s not f i n i s h e d )
{

runStep ( ) ;
}

void runStep ( )
{

/ / Asynchronous g h o s t c e l l exchange
exchange ( ) ;

/ *
* GPU computes f l u x e s and t i m e s t e p
* CPU a s y n c h r o n o u s l y computes f l u x e s and t i m e s t e p
* /

GPU. step1 ( ) ;
CPU. step1Async ( ) ;
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/ / Per form s y n c h r o n i z a t i o n

/ *
* CPU f i n d s minimum t i m e s t e p
* CPU a s y n c h r o n o u s l y t r a n s f e r s t i m e s t e p
* t o a l l sub−domains
* /

/ *
* GPU p e r f o r m s t ime i n t e g r a t i o n
* and boundary c o n d i t i o n s
* CPU a s y n c h r o n o u s l y p e r f o r m s t ime i n t e g r a t i o n
* and boundary c o n d i t i o n s
* /

GPU. step2 ( ) ;
CPU. step2Async ( ) ;

/ / Per form s y n c h r o n i z a t i o n
}

3.3.5 Extending to N sub-domains and sub-domains of different
sizes

The row based decomposition technique has also been extended to work
with N number of sub-domains as illustrated in figure 3.5. As a result,
there are several sub-domains in the middle that has two neighboring sub-
domains instead of only one. A simulation with N number of sub-domains
is mostly similar to a simulation with only two sub-domains. The only
difference is related to the ghost cell exchange. As mentioned, the middle
sub-domains have two neighbors. This means they have to exchange cells
between both the upper neighbor and lower neighbor instead of only a
single neighbor.

The solution has also been extended to work with sub-domains of
different sizes. The main reason for this is that a simulation is implemented
to run on both the GPU and the CPU in parallel. It is important that the
GPU and the CPU receives a balanced amount of workload to maximize the
parallelism. Otherwise, one of them will have to wait for the other to finish.
Since a GPU often is faster than a CPU, it needs a larger computational
domain than the CPU.

For example if an initial global domain is statically decomposed into
two sub-domains A and B, where both A and B is 50% of the initial global
domain. Assume A is assigned to the GPU while B is assigned to the CPU.
Both receive the same amount of work. If the GPU is considerably faster
than the CPU, it may perform the computations for a given timestep on A
faster than the CPU performs the equal amount of work on B. As a result,
the workload is highly imbalanced. This is problematic since a speedup of
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Figure 3.5: A solution with N number of sub-domains. In this case, all the
middle sub-domains have to exchange between both the north and south
neighbor since they are surrounded by sub-domains on both sides.

the simulation will most likely not be achieved and the GPU has nothing to
compute on until the CPU has finished its own computations. A solution to
avoid this is therefore to decompose the domain into two sub-domains that
are not equal in size. For example, sub-domain A can contain 80% of the
initial global domain while sub-domain B can contain 20% the initial global
domain. As a result, the CPU will receive less work than the GPU and may
finish computations for its sub-domain in almost the same execution time
as the GPU. How large each sub-domain should be depends on the size of
the initial global domain and how powerful the GPU and CPU used for the
simulation are.

To decompose sub-domains into different sizes, some extra calculations
have to be performed. I introduce a simple straightforward formula for
this:

ws =
ywp
100

, (3.1)

where ws is the workload each sub-domain receives specified in number of
rows, y is the total number of rows for the initial global domain, and wp is
the workload for each sub-domain given in percent. This is performed for
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each sub-domain which is seen in listing 3.6. It also handles any rest cases
of the workload and gives this to the first sub-domain

Listing 3.6: Decomposition into sub-domains of different sizes

for each subdomain
{

ws = y * wp / 100
sum += ws

}

i f sum i s l e s s than y
{

r e s t = y − sum
/ / F i r s t sub−domain r e c e i v e s t h e e x t r a r e s t

}

3.4 Ghost cell expansion

As described in section 3.3.3, I implemented a communication technique
that exchanges the ghost cells between the sub-domains to properly
propagate the water. This exchange is performed between the GPU and
the CPU. Such data transfers can often represent a bottleneck in different
systems, mainly because the data has to be transfered over the PCI-
Express bus between the CPU and GPU main memory. In [14], Gregg
and Hazelwood argue that it is necessary to include the memory transfer
overhead when reporting the speed of a particular GPU kernel. To support
this they performed benchmarking on a set of kernels for several different
GPUs and showed that when including the memory transfer times, it could
take 2 to 50 times longer to run a kernel than the GPU processing time
alone. They further specified that a faster GPU would be more affected by
the PCI-Express overhead than a slower GPU with a similar PCI-Express
bandwidth because the fastest GPU is able to perform computations faster
than the slower GPU. This results in the overhead being more visible on the
fastest GPU. To reduce the overhead related to data transfers, a technique
called Ghost cell expansion (GCE) has been implemented. GCE has been
implemented by several others [35, 11, 40]. A similar technique was also
implemented in [19].

The technique is related to ghost cell exchange between sub-domains in a
simulation with multiple domains. This exchange involves several data
transfers between the CPU and the GPU, possibly creating a overhead.
GCE is implemented by increasing the global domain overlap. For
example, a global overlap of eight cells gives an overlap of four cells per
sub-domain. Similarly, a global overlap of sixteen cells gives an overlap
of eight cells per sub-domain. The increased overlap is implemented
by creating slightly larger sub-domains. Increasing the global overlap
therefore enables it to run N number of timesteps before having to swap
the overlapping ghost cells between sub-domains, where N is decided by
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the size of the global overlap. Essentially GCE trades more computations
for smaller overheads. For example, by increasing the global ghost cell
overlap from four to eight cells, one can run two timesteps before having
to exchange. Increasing the overlap again to sixteen cells gives four
timesteps before having to exchange. The GCE technique results in fewer
data transfers, but more data to transfer at a time. This means the total
amount of data transferred over N timesteps are still the same for all global
overlaps.

I use two formulas introduced by Sætra and Brodtkorb in [35] to explain
this more closely. The time it takes to perform ghost cell exchange every
timestep can be written:

w1 = T(m) + cT + C(m, n) + c. (3.2)

Here m and n represents the domain dimensions, T(m) is the time it takes to
exchange ghost cells, cT is the transfer overhead, C(m, n) is the computation
time for the sub-domain while c represents additional overheads. This
formula can be extended to give the time when using GCE to exchange
ghost cells every kth timestep:

wk = T(m) + cT/k + C(m, n + O(k)) + c. (3.3)

Here the transfer overhead is divided by k and the increased overlap is
introduced with O(k) which effectively increases the size of each sub-
domain.

The GCE technique has resulted in both positive and negative perform-
ance in several systems. Sætra and Brodtkorb implemented this technique
in [35] for a multi-GPU system and benchmarked it on three different sys-
tems: A Tesla S1070 consisting of four Tesla C1060 GPUs, a SuperMicro
SuperServer consisting of four Tesla C2050 GPUs, and lastly a desktop
with two Geforce GTX 480 GPUs. Exchanging overlapping ghost cells each
timestep gave the best result for the Tesla S1070 system. They argued that
this was because of the overhead related to data transfers was small. How-
ever, a more positive result of GCE was seen on the Tesla C2050 system.
They further argued that this was a result of the GPUs being faster, there-
fore making the data transfers overhead larger. The desktop with two Ge-
force GTX 480 GPUs had equivalent behavior as the Tesla C2050 system.
Overall, the GCE technique resulted in only a small impact. However,
when the overhead related to ghost cell exchange is larger, for example
when exchanging across multiple nodes, Sætra and Brodtkorb expected the
GCE technique to have a better performance effect.

Further experiments related to GCE has also been done in other
publications. In [11], Ding and He proposed a GCE technique for reducing
communications in cluster systems for partial differential equations (PDE)
problems. They achieved a communication speedup of up to 170% with
the GCE technique on an IBM SP and Cray T3E. Kjolstad and Snir [19]
implemented a similar technique they called Deep Halo that can be used for
stencil algorithms. The technique is similar to GCE in that it can be used to
trade more computations for less frequent communication.
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Figure 3.6 shows a standard ghost cell overlap of four cells. Figure
3.7 shows the GCE technique with an overlap of eight cells. The left part
of 3.6 shows an initial global domain with 10 × 20 cells. This domain is
decomposed into two sub-domains to the right, each of size 10× 10 cells.
The cells outside the black boundaries are the global ghost cells. Cells that
contain water are marked in blue. The two sub-domains to the right also
contain some light blue cells. These cells are the ghost cells which forms the
overlapping region between the sub-domains. Each sub-domain contains
two rows of cells from the boundary of the opposite sub-domain. In this
case the global overlap is four cells, two on each sub-domain.
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Figure 3.6: A normal ghost cell overlap of four rows, where each sub-
domain contains two rows of ghost cells. As a result, the ghost cell
exchange is performed every timestep.

Figure 3.7 shows how the GCE technique works. I have used the same
initial global domain as in figure 3.6, but this time the global overlap is
extended to eight cells, four on each sub-domain. As a result, both sub-
domains have been extended in size, as illustrated by the new black line
on the two sub-domains. Each of them now has a size of 10 × 12 cells.
Both sub-domains now contain four rows of cells from the boundary of the
opposite sub-domain. For the ghost cell exchange this means they now
exchange twice the amount of data, but does so every second timestep
instead of every timestep.

3.5 Early Exit

The early exit optimization aims to improve the runtime of the simulation
by avoiding expensive flux calculations for dry cells in the domain since
there is no point in updating these cells. This optimization was implemen-
ted on both the GPU and the CPU. The performance can be improved a
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Figure 3.7: Ghost cell expansion with an overlap of eight rows, where
each sub-domain now contains four rows of ghost cells. The ghost
cell exchange is now performed every second timestep instead of every
timestep, resulting in fewer data transfers, but larger transfers each time.

lot for larger domains with a lot of dry areas which is typical for flood
simulations. However, as the simulation progress, more water will fill the
domain and reduce the performance effect, but should still be quite good
in most cases. On the negative side, early exit also involves more work
since it needs to write and read from a buffer as well as performing shared
memory reduction on the GPU. The time used for this should be minimal
compared to the performance benefit. In this section, I first describe how
early exit was implemented on the GPU and the CPU on a simulation with
only a single domain. Then, I describe the changes performed to make it
work on simulations with multiple domains.

Implementation of early exit on the GPU:
The flux and time integration kernel (see section 2.4.1) on the GPU both
divide the domain into blocks where each block is computed in parallel by
a CUDA block. Each block contains 16× 12 cells that are updated by indi-
vidual threads. The early exit optimization on the GPU involves skipping
blocks that only contains dry cells. Since the flux kernel does not know if
cells are dry or not, some additional computations has to be performed by
the time integration kernel to mark blocks that can be skipped. In the time
integration kernel, each thread in a CUDA block updates an independent
cell for the block. If a cell contains water, the thread writes 1 to a shared
memory buffer. Otherwise, it writes 0. Each CUDA block then performs
shared memory reduction on its block to find the maximum value in the
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buffer. This means that for a block to be defined as dry, all cells inside this
block has to be dry. Finally, this value is written to a dry map which keeps
track of blocks that are dry or contains water. It therefore contains 1 for wet
blocks and 0 for dry.

Listing 3.7: Early exit optimization on the GPU

__device__ bool e a r l y E x i t ( )
{

/ / R e t r i e v e t h e i n d e x o f t h e c u r r e n t b l o c k
i n t bx = blockIdx . x ;
i n t by = blockIdx . y ;

/ / Get c u r r e n t b l o c k and i t s f o u r n e i g h b o r s
current = Drymap[ by ] [ bx ]
top = Drymap[ by−1][bx ]
bottom = Drymap[ by +1 ] [ bx ]
l e f t = Drymap[ by ] [ bx−1]
r i g h t = Drymap[ by ] [ bx +1]

/ / I f c u r r e n t and a l l n e i g h b o r s a r e dry , e a r l y e x i t
i f current == 0 and top == 0 and bottom == 0

and l e f t == 0 and r i g h t == 0
{

return true
}
return f a l s e

}

__global__ void f l u x _ k e r n e l ( i n t x , i n t y )
{

/ / C e l l i n d e x v a r i a b l e s f o r a t h r e a d
i n t j = blockIdx . x * x + threadIdx . x ;
i n t i = blockIdx . y * y + threadIdx . y ;

i f ( e a r l y E x i t ( ) )
return ;

/ / Computat ions f o r c e l l [ i ] [ j ]
}

In the flux kernel each CUDA block reads from this dry map to
determine if the block it is updating is dry. If the block and its four closest
neighboring blocks are defined as dry, the computations for this block can
be skipped. The algorithm for the GPU early exit optimization is shown
in listing 3.7. The neighboring blocks has to be checked for dryness since
each block in the flux function contains local ghost cells that overlap with
the neighboring blocks. Figure 3.8 shows a domain with 6× 5 blocks. The
green color is used for land areas that are dry while the blue color is used
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for water. Several of the blocks contain only dry cells which mean these
blocks are defined as dry. The upper blocks are both dry and wet and will
therefore be defined as wet since they contain at least one wet cell. The
stencil shows the four neighboring blocks that has to be checked in addition
to the current block.

Dry block

Wet block

Dry and wet block

Figure 3.8: Early exit on the GPU: A simplified domain with 6× 5 blocks.
The green color is used for dry blocks while blue is used for wet blocks.
Each block performs a lookup in the dry map to check if it is dry. The
orange stencil marks the current block and its four neighbors that has to
check for dry area.

Implementation of early exit on the CPU:
The early exit optimization on the CPU is performed in a similar way.
However, as there is no notion of blocks since the flux and time integration
functions (see section 3.1) simply loops through each cell in the domain to
perform updates, the early exit is performed on a per cell basis. The time
integration checks each cell for water. If it contains water, the cell is marked
with 1 in the dry map, otherwise 0. Similarly to the GPU implementation,
the flux function will read from the dry map, which is done for each cell
in the domain. If the cell and its four closest neighboring cells are dry,
the computations can be skipped for that cell. The algorithm for the CPU
implementation of early exit is also provided in listing 3.8. The four closest
neighbors have to be checked because each cell update involves a four
point stencil operation that uses values from the neighboring cells. Figure
3.9 shows the same domain as used in figure 3.8. However, the domain
is now divided into cells instead of blocks. The stencil shows the four
neighboring cells that have to be checked in addition to the current cell.

The implementation of early exit on the CPU required a small redesign
of the flux function to make it easier to implement it. Unfortunately, the
redesigned function did not attain the same performance as the previous
function, being slightly slower. The main reason behind this slowdown
is the way it performs reconstructions of the cell values. The original
flux function performs a single iteration over the domain one time at the
start of the function to perform reconstructions for each cell before any
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Dry cell

Wet cell

Figure 3.9: Early exit on the CPU: The same domain divided into cells
instead. The green color is used for dry cells while blue is used for wet
cells. Each cell performs a lookup in the dry map to check if it is dry. The
orange stencil marks the current cell and its four neighbors that has to check
for dry area.

computations at all. The new function performs the reconstructions in
the same loop that iterates over the domain to update it. For each cell,
it first performs reconstructions and then computations before handling
the next cell. At any given cell it reconstructs the cell values needed
for that cell before it performs computations for the cell. Since this cell
needs values from its four nearest neighboring cells, it also has to perform
reconstructions for the four neighboring cells as well as the current cell.
When processing of the next cell starts, it also performs reconstructions
for that cell and its four nearest neighbors meaning that for some cells,
reconstructions are done at least twice which adds a considerably overhead
for larger domains. As a consequence, I decided to keep the original
function to use for simulations that does not utilize early exit and use the
new code in a new function that is executed when early exit is utilized.

Listing 3.8: Early exit optimization on the CPU

bool e a r l y E x i t ( i , j )
{

/ / Get c u r r e n t c e l l and i t s f o u r n e i g h b o r s
current = Drymap[ i ] [ j ]
top = Drymap[ i −1][ j ]
bottom = Drymap[ i +1 ] [ j ]
l e f t = Drymap[ i ] [ j −1]
r i g h t = Drymap[ i ] [ j +1]

/ / I f c u r r e n t and a l l n e i g h b o r s a r e dry , e a r l y e x i t
i f current == 0 and top == 0 and bottom == 0

and l e f t == 0 and r i g h t == 0
{

return true
}
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return f a l s e
}

void f l u x _ f u n c t i o n ( i n t x , i n t y )
{

/ / Loop through e a c h c e l l [ i ] [ j ] f o r a 2D domain
#pragma omp p a r a l l e l for pr ivate ( i , j )
for ( i n t i = 0 ; i < y ; ++ i )
{

for ( i n t j = 0 ; j < x ; ++ j )
{

i f ( ! e a r l y E x i t ( i , j ) )
{

/ / Computat ions f o r c e l l [ i ] [ j ]
}

}
}

}

Multi-threading problem: Unfortunately, the early exit optimization
introduces one problem related to load balancing of the multi-threaded
CPU code. Each thread should get as equal workload as possible to make
sure all CPU cores are busy most of the time. An imbalanced workload
between threads can cause some threads to finish significantly before others
resulting in idle CPU cores. As specified in [13] OpenMP assumes that all
iterations of a loop have equal runtime. By default, OpenMP will therefore
split a loop in large chunks that are equal in size. For example, given two
threads, OpenMP splits a loop in a first half assigned to one thread and
a second half assigned to the other thread. Since the early exit test skips
computations for cells that are dry, this assumptions may not necessarily
work well since iterations will either be completely skipped or computed.
For example, given the domain in figure 3.9, OpenMP may divide the
domain so that the first half that contains rows with a lot of water are
assigned to one thread while the next half that contains only dry cells are
assigned to the second thread. As a result, the second thread will skip
computations for all its cells and finish significantly before the other thread.

According to [36] and [13] it is possible to adjust how OpenMP dis-
tributes the workload between threads by changing loop scheduling. For
example, a different scheduling mechanism which can be used in the case
of the early exit optimization is schedule(dynamic). According to [36] and
[13], the dynamic keyword will cause OpenMP to use a work queue that
contains blocks of iterations. Each thread will retrieve a block of iterations
from the top of the queue and execute these. When the thread is finished, it
will repeat this process. The number of iterations that a block contains can
be specified as an optional parameter. By using this scheduling technique
for the early exit case each thread can retrieve a small amount of cells at
a time and perform computations for these, and when finished repeat the
process. As a result, it is more likely that dry and wet cells are divided
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more evenly between the threads.

Implementing early exit for multiple domains: The early exit optimiza-
tion also introduces a problem on simulations that uses multiple domains.
For example, given a simulation with two sub-domains A and B, where A
contains water while the whole sub-domain B is dry. The dry map com-
puted in the time integration of B will only contain dry cells which means
all flux calculations will be skipped in the next timestep. However, at the
start of the next timestep, before fluxes are computed, both sub-domains
exchange ghost cell. As a result, water can have propagated over to sub-
domain B from A. This makes the dry map computed for B in the previous
timestep invalid since B no longer contains only dry cells. Some of the
ghost cells can contain water which means the cells on either the lower or
upper boundary has to perform flux computations.

First substep

A single GPU step

Flux computation Max timestep Boundary conditionsTime integration

Second substep Flux computation Boundary conditionsTime integration

Dry map

Dry map

Figure 3.10: An overview of the GPU step function from figure 2.5 with
the additional dry map computation for early exit. This computation is
optional as indicated by the circle and is only executed if early exit is
enabled.

First substep

A single CPU step

Flux and max timestep computation Boundary conditionsTime integration

Second substep Flux computation Boundary conditionsTime integration

Dry map

Dry map

Figure 3.11: An overview of the CPU step function from figure 3.1 with
the additional dry map computation for early exit. This computation is
optional as indicated by the circle and is only executed if early exit is
enabled.

There are several solutions for solving this. An easy solution is to
make sure the boundary cells are always computed even if they are
dry. However, this is not an optimal solution since it adds slightly more
computations than needed and negatively affects the performance. A better
solution is to create a new kernel and function for the GPU and CPU
as shown in figure 3.10 and 3.11 which computes the dry map instead
of computing this in the time integration. The new function is therefore
executed after the ghost cell exchange but before the fluxes are computed.
When updating the dry map it also has to check the ghost cells for water in
addition to the internal domain.
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3.6 Performance results

To evaluate the performance of the heterogeneous shallow water simulator,
several benchmarks have been performed. These are performed on
a desktop with an Intel Core i7-2600K CPU and a Geforce GTX 480
GPU. In section 3.6.4, I also compare this system with another system
consisting of an Intel Core i7 Q 740 CPU and Quadro Q1800M GPU.
First, I perform benchmarks for the CPU code in section 3.6.1. The multi-
threaded code shows very good scalability when utilizing the CPUs four
cores together with hyper-threading. Furthermore, the single-threaded and
multi-threaded implementation of the CPU code is compared, including
the use of early exit for both of them. The multi-threaded CPU code
shows great performance increase over the single-threaded CPU code.
This is more apparent for larger domains than smaller. In addition, the
performance increases for the CPU on larger domain resolutions when
early exit is utilized. Section 3.6.2 continues by showing performance
results between the GPU and the multi-core CPU code. These results also
include the use of early exit. The main results shows that the GPU is around
12 times faster on very large domain resolutions. The GPU also shows a
solid performance increase for larger resolutions when early exit is utilized,
but a decrease for smaller.

In addition, section 3.6.3 provides benchmarks for the GCE technique.
The primary result is a linear decrease in performance when increasing the
GCE overlap. As a result, using no GCE overlap therefore provides the best
performance. Finally, in section 3.6.4, I provide benchmarks that shows
the optimal workload balancing between the GPU and the CPU. These
benchmarks are executed on the two different systems mentioned above,
a desktop with an Intel Core i7-2600K and a Geforce GTX 480, and a laptop
with an Intel Core i7 Q 740 and Quadro Q1800M. Solid performance is
gained when utilizing the CPU together with a weaker GPU, as the system
with an Intel Core i7 Q 740 and Quadro Q1800M shows a performance gain
when 20% of the domain is assigned to the CPU. However, the results from
the system with Intel Core i7-2600K and a Geforce GTX 480 does not show
any relevant performance increase when utilizing the CPU together with
the GPU, but it does not necessarily decrease performance either.

All benchmarks have been run using a known test case described in [38]
that consider the domain as an idealised circular dam break surrounding a
water column placed in the center of the domain. The initial conditions for
the benchmarks are further described in each section.

3.6.1 Single-thread and multi-thread CPU performance

I first perform a benchmark that shows the scalability of the multi-threaded
CPU code. This benchmark was run on a case with flat bathymetry and
an idealised circular dam break surrounding a water column with radius
R = 200m in a square computational domain of 2000m× 2000m with cen-
ter at xc = 1000m, yc = 1000m. It was further run with wall boundary
conditions and second-order accurate Runge-Kutta. The initial conditions
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(a) (b)

Figure 3.12: Example of an idealised circular dam break. Left: At time
t = 0, the circular dam instantaneously collapses which causes the water to
flow in all directions. Right: The water flow at time t = 10.

for the bathymetry B was set to B(x, y, 0) = 0, while the water momentum,
Q2 and Q3 were set to Q2(x, y, 0) = Q3(x, y, 0) = 0 throughout the domain,
and the water elevation Q1:

Q1(x, y, 0) =

{
Q1 = 1m if (x− xc)2 + (y− yc)2 ≤ R2

Q1 = 0.1m if (x− xc)2 + (y− yc)2 > R2.

At time t = 0, the dam is instantaneously removed, resulting in an out-
going circular wave that flows through the domain until time t = 30. The
domain resolution used was 40962 to make sure all threads were fully util-
ized.

The results for this benchmark are provided in figure 3.13. The x-
axis for this plot shows the number of threads used for the simulation
while the y-axis shows the performance. Furthermore, it contains two
graphs: One that shows the ideal scaling for up to sixteen threads, and
one that shows the achieved scaling. The code scales very good from one
to four threads across the four physical cores. However, the scaling is
not perfect. There are mainly two reasons for this: First off, the threads
stalls as a result of memory latencies when reading data from system
RAM. This will negatively affect the performance since the threads will not
execute perfectly in parallel. A second reason can be related to overhead
when multi-threading. For example, a result of OpenMP using more
time to decompose the workload between the threads as the thread count
increases, but also because that each thread receives less work since there
are more threads to use for the total workload.

As this CPU features hyper-threading technology, it benefits from an
additional four threads. This means that each core has the ability to switch
between executing two threads, giving a total of eight threads that can be
utilized. However, only four of these threads can be executed in parallel
since the CPU has four physical cores. As a result, when utilizing the
additional four threads via hyper threading, it does not scale perfectly
up to eight times. This is expected as hyper-threading does not give
any more parallelism since there are, as mentioned, only four physical
cores. The multi-threaded performance still increases to better than four
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Figure 3.13: Multi-thread scaling using up to sixteen threads on an
idealised circular dam break: The red graph shows the ideal scaling while
the blue graph represents the scaling achieved with the Intel core i7-2600K
(four cores and eight threads via hyper threading). It achieves better
than perfect scaling when utilizing all eight threads available via hyper-
threading, as only four of these threads run completely in parallel. This
means it is able to hide memory latencies. No further performance is
gained when increasing the thread number from eight to sixteen, but this
is expected as the CPU can only utilize a total of eight threads.

times over the single-threaded performance. As a result, hyper-threading
manages to perfectly hide the memory stalls as each core can switch to
executing another thread when one of its threads stalls on a memory
operation. Finally, the plot shows the performance when further increasing
the number of threads to sixteen. No additional performance is gained
from this as expected, since the CPU cannot execute any more threads in
parallel. It is also apparent that executing with five, nine or thirteen threads
gives a slight decrease in performance. I expect the main reason for this to
be because not all cores are executing the same amount of threads.

In addition, I have performed a benchmark between the single-
threaded CPU code and the multi-threaded CPU code. This benchmark
was also run on a case with flat bathymetry and an idealised circular dam
break surrounding a water column with radius R = 20m in a square com-
putational domain of 200m× 200m with center at xc = 100m, yc = 100m.
Furthermore, it was executed with wall boundary conditions and second-
order accurate Runge-Kutta. The initial conditions for the bathymetry B
was set to B(x, y, 0) = 0, while the water momentum, Q2 and Q3 were set
to Q2(x, y, 0) = Q3(x, y, 0) = 0 throughout the domain, and the water elev-
ation Q1:
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Q1(x, y, 0) =

{
Q1 = 1m if (x− xc)2 + (y− yc)2 ≤ R2

Q1 = 0.1m if (x− xc)2 + (y− yc)2 > R2.

At time t = 0, the dam is instantaneously removed, resulting in an out-
going circular wave that flows through the domain until time t = 30.

The benchmarking was performed with early exit enabled and disabled
for both single-threaded and multi-threaded code. In addition, it has
been executed on several different domain resolutions from 642 and up to
20482. I have provided two plots to show the results. Plot 3.14a shows the
execution time between the single-threaded and multi-threaded code with
early exit enabled and disabled for both. The y-axis shows the execution
time in seconds. Plot 3.14b shows the relative increase or decrease in
performance by enabling early exit, shown along the y-axis. In both plots,
the x-axis shows the domain resolution. Furthermore, the execution times
are also provided in table 3.2 and 3.3.

101 102 103 104

Domain resolution (x, y)

10-2

10-1

100

101

102

103

104

Ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
)

Single-thread and multi-thread execution time

MT: Early exit disabled
MT: Early exit enabled
ST: Early exit disabled
ST: Early exit enabled

(a)

101 102 103 104

Domain resolution (x, y)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Re
la

tiv
e 

Ea
rly

 e
xi

t p
er

fo
rm

an
ce

Single-thread and multi-thread EE performance

MT: Relative EE performance
ST: Relative EE performance

(b)

Figure 3.14: Performance comparison between a single-threaded and
multi-threaded (4 cores and 8 threads via hyper threading) CPU simulation
on an idealised circular dam break. MT and ST is short for multi-threaded
and single-threaded respectively. By comparing the CPU code when early
exit is enabled and disabled, the former becomes better as the domain
resolution is increased. In the right plot, notice that the single-threaded
code is able to better utilize early exit than the multi-threaded code.

There are several interesting findings based on the results. First off,
a very good performance increase is shown when utilizing all cores on the
CPU. However, it is noticeable that the performance increase is better when
early exit is disabled. In this case, the average speed up for the multi-
threaded code between the domain resolutions is almost 4. Overall, the
results shows that the multi-threading scales well with the number of cores.
However, when early exit is enabled, the speedup never goes above 4 for
any domain resolution. In other words the performance gain from multi-
threading is considerably lower. I expect the main reason behind this is that
the cores are not utilized as well when early exit is enabled, mainly because
of the problem discussed in section 3.5 related to imbalance in workload
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Domain CPU single-threaded CPU multi-threaded Speed up
642 1.2E-1 3.6E-2 3.3
1282 1.0E+0 2.4E-1 4.2
2562 7.9E+0 1.8E+0 4.4
5122 6.2E+1 1.7E+1 3.6
10242 5.1E+2 1.4E+2 3.6
20482 5.4E+3 1.2E+3 4.4

Table 3.2: The execution times in seconds of the single-threaded and a
multi-threaded (4 cores and 8 threads via hyper threading) CPU simulation
with early exit disabled.

Domain CPU single-threaded EE CPU multi-threaded EE Speed up
642 1.8E-1 6.9E-2 2.6
1282 1.1E+0 3.4E-1 3.2
2562 7.1E+0 2.0E+0 3.5
5122 5.0E+1 1.4E+1 3.6
10242 3.8E+2 1.1E+2 3.4
20482 3.6E+3 9.3E+2 3.9

Table 3.3: The execution times in seconds of the single-threaded and a
multi-threaded (4 cores and 8 threads via hyper threading) CPU simulation
with early exit enabled.

between the threads.
Secondly, for smaller domain resolutions the speedup is not as great

compared to the larger resolutions. This is the case both when early exit
is enabled and disabled, where it is noticeable that the speedup is only
around 3 times. This shows that the CPU cores are better utilized on larger
domain resolutions compared to smaller. I expect the reason for this to be
because of the overhead when OpenMP load balances workload between
threads. This is less noticeable on larger domains since each thread receives
a larger part of the domain, in turn leading to more computations.

Finally, the results also show that enabling early exit increases perform-
ance for larger domain resolutions, but decreases for smaller resolutions.
I expect the main reason for this to be because of the overhead when en-
abling early exit. This overhead has less impact on larger resolutions due
to the fact that there are many more cells to perform computations for. As
a result, when most of the domain is dry, there are more cells that can take
advantage of the early exit technique.

3.6.2 GPU vs CPU performance

A performance benchmark between the GPU and the multi-core CPU im-
plementations has also been performed. This benchmark have been ex-
ecuted on a flat bathymetry and an idealised circular dam break surround-
ing a water column with radius R = 20m in a square computational do-
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main of 200m× 200m with center at xc = 100m, yc = 100m. It was also run
with wall boundary conditions and second-order accurate Runge-Kutta.
The initial conditions for the bathymetry B was set to B(x, y, 0) = 0, while
the water momentum, Q2 and Q3 were set to Q2(x, y, 0) = Q3(x, y, 0) = 0
throughout the domain, and the water elevation Q1:

Q1(x, y, 0) =

{
Q1 = 1m if (x− xc)2 + (y− yc)2 ≤ R2

Q1 = 0.1m if (x− xc)2 + (y− yc)2 > R2.

At time t = 0, the dam is instantaneously removed, resulting in an out-
going circular wave that flows through the domain until time t = 30.

Again, I have included the early exit performance by enabling early
exit for both the GPU and the CPU. Several different domain resolutions
have been executed, ranging from 642 to 40962. In addition, two plots are
provided to show the results. Plot 3.15a shows the execution time between
the CPU and the GPU with early exit enabled and disabled for both. The y-
axis shows the execution time in seconds. Plot 3.15b shows the relative
increase or decrease in performance when early exit is enabled, shown
along the y-axis. For both plots, the x-axis shows the domain resolution.
Furthermore, the execution times of the GPU and CPU are also provided in
table 3.4 and 3.5.
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Figure 3.15: Performance comparison between a GPU and CPU (4 cores
and 8 threads via hyper threading) simulation on an idealised circular
dam break. Again, by comparing with early exit enabled and disabled,
the former increases in performance as the domain resolution is increased.
In the right plot, notice that the GPU is able to better utilize early exit,
especially for larger domain resolutions, and gains a better performance
increase than the CPU.

The results indicates that the GPU is only slightly faster on small
domain resolutions like 642 and up to 12 times faster on larger resolutions
like 40962 when early exit is disabled. It is also apparent that the GPU
performs better than the CPU for each increasing domain resolution. This is
a result of GPUs architecture; they are optimized for maximum throughput
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and are able to run thousands of threads in parallel while CPUs are
optimized for latency. GPUs are therefore utilized better when used for
computations on larger domains compared to smaller, while for CPUs it
is the opposite. For larger resolutions like 10242 and upwards, this trend
starts to even out. The main reason for this is that this particular GPU has
reached its maximum potential in performance and is no longer able to run
more threads in parallel for each increasing domain resolution.

These findings are also supported in [33] by Song, et. al for their
heterogeneous tile algorithm explained in section 3.3.1. They found that
large tiles will clobber a CPU core while small tiles do not obtain the best
utilization of GPUs. Because of these findings, they used small tile sizes for
CPUs and larger tile sizes for GPUs.

The early exit optimization also provides a good performance gain for
both the GPU and the CPU implementations. However, the GPU gains
a larger speedup compared to the CPU when using early exit. This means
the early exit optimization gives better performance increase on the GPU or
the overhead related to early exit is higher on the CPU. However, for both
the GPU and the CPU, it is apparent that for small domain resolutions,
enabling early exit gives a decrease in performance while it increases
performance for larger domain resolutions. The main reason for this is the
same as discussed in the previous section. As domain resolutions increase,
the performance gain from using early exit also increases. This increase
is relatively the same for both the GPU and the CPU. However, for very
large domain resolutions, the GPU has a slightly better performance gain.
The main reason for this is that the overhead related to early exit is slightly
higher on the CPU.

Domain CPU GPU Speed up
642 3.4E-2 2.6E-2 1.3
1282 2.4E-1 7.9E-2 3.0
2562 2.0E+0 3.2E-1 6.2
5122 1.7E+1 1.9E+0 8.9
10242 1.4E+2 1.4E+1 10.0
20482 1.2E+3 1.0E+2 12.0
40962 9.8E+3 8.2E+2 12.0

Table 3.4: The execution times in seconds of the GPU and multi-threaded
(4 cores and 8 threads via hyper threading) CPU simulation with early exit
disabled.

3.6.3 Ghost cell expansion

The GCE technique has also been benchmarked by increasing the over-
laps. The results are shown in Plot 3.16. The benchmark was run on a
case with flat bathymetry and an idealised circular dam break surround-
ing a water column with radius R = 20m in a square computational do-
main of 200m× 200m with center at xc = 100m, yc = 100m. In addition, it
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Domain CPU EE GPU EE Speed up
642 5.6E-2 3.0E-2 1.9
1282 3.3E-1 9.0E-2 3.7
2562 2.0E+0 3.4E-1 5.9
5122 1.4E+1 1.6E+0 8.7
10242 1.0E+2 9.5E+0 10.5
20482 9.2E+2 6.4E+1 14.4
40962 7.0E+3 4.7E+2 14.9

Table 3.5: The execution times in seconds of the GPU and multi-threaded
(4 cores and 8 threads via hyper threading) CPU simulation with early exit
enabled.

was run with wall boundary conditions and second-order accurate Runge-
Kutta. The initial conditions for the bathymetry B was set to B(x, y, 0) = 0,
while the water momentum in x and y directions, Q2 and Q3 were set to
Q2(x, y, 0) = Q3(x, y, 0) = 0 throughout the domain, and the water eleva-
tion Q1:

Q1(x, y, 0) =

{
Q1 = 1m if (x− xc)2 + (y− yc)2 ≤ R2

Q1 = 0.1m if (x− xc)2 + (y− yc)2 > R2.

At time t = 0, the dam is instantaneously removed, resulting in an out-
going circular wave that flows through the domain until time t = 30. The
domain resolution used is 10242. The x-axis shows the percentage of the
domain that is assigned to the CPU. The y-axis shows the number of the
global GCE overlap. I have used overlaps ranging from 8, 16, 24 and up
until 200. The z-axis shows the execution time measured in seconds.

Plot 3.16 shows a linear decrease in the performance when increasing
the GCE overlap. In other words, the best result is obtained when using no
additional GCE overlap. These results indicates that the overhead related
to data transfers is small, therefore resulting in worse performance when
increasing the overlap since this gives more computations.

To confirm this finding, I added the possibility to increase the execution
time of the function that performs ghost cell exchange by introducing a
constant delay. This delay is performed by calling the function usleep
at the start of the ghost cell exchange function. The point of this is to
simulate slower data transfers and run experiments to see if varying the
GCE overlap will result in improved performance. I therefore performed
an additional benchmark with a constant delay of 20 ms applied to the
ghost cell exchange. This benchmark uses the same initial conditions as the
previous one. The ghost cell exchange is now guaranteed to use at least 20
ms to complete in addition to the actual data transfers which results in an
execution time slightly higher than 20 ms. The result of this can be seen in
plot 3.17. I used the same overlaps as in plot 3.16, ranging from 8 to 200
on a domain with resolution of 10242. The plot shows that when increasing
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Figure 3.16: Execution time of ghost cell expansion on an idealised circular
dam break with a domain resolution of 10242. It performs best when no
additional GCE overlap is used. This is also true when the part of the
domain assigned to the CPU is increased. Also notice the small spikes
at points (60, 128), (90, 24), (90, 200), and (40, 200). These spikes shows
configurations that performs considerably worse than the rest.

the global overlap, the performance improves. This is because there are
fewer and fewer calls to the expensive exchange function as the overlap
increase, and since the additional computations are not very expensive,
the performance increases. This improvement in performance continues
up to an overlap of about 72. At this point the additional computations
starts to get noticeably expensive, which is why the performance gradually
decreases. As a result, the ideal overlap in this case is around 72.

Both GCE plots also contains several small spikes where the simulations
performs slightly worse. These are noticeable at points (60, 128), (90, 24),
(90, 200), and (40, 200). These sudden spikes are related to the CPU code
as they are only visible when parts of the domain have been assigned to
the CPU. I expect the main reason for these spikes to be because that the
specific domain resolution used in these cases does not fit well with the
CPU architecture. In addition, I expect this can be optimized to run better.

To conclude, this shows that my original exchange function without
any constant delay is sufficiently fast which is why plot 3.16 shows the best
performance is gained when using no additional overlaps. As a result, this
means that there are not much overhead related to data transfers between
a CPU and GPU in the same computer. However, these findings are only
supported for the desktop I benchmarked on.
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Figure 3.17: Execution time of ghost cell expansion on an idealised circular
dam break with a domain resolution of 10242. It performs best when
the GCE overlap is around 72. This is also true when the part of the
domain assigned to the CPU is increased. Also notice the small spikes
at points (60, 128), (90, 24), (90, 200), and (40, 200). These spikes shows
configurations that performs considerably worse than the rest.

3.6.4 Static domain decomposition

So far, I have only shown performance results between the CPU and the
GPU. In addition, it is also important to examine the performance of the
heterogeneous shallow water simulator when utilizing both the GPU and
the CPU simultaneously for computations. The goal is to be able to run
a simulation faster using both these resources compared to only a single
GPU. This performance benchmark therefore gives some insight into how
the workload should be split between the GPU and the CPU for different
domain resolutions to achieve the best execution time.

As mentioned earlier, this benchmark is executed on two different
systems: The first system is a desktop that consists of an Intel Core i7-2600K
and a Geforce GTX 480. The second system is a laptop with an Intel Core
i7 Q 740 and Quadro Q1800M. The results for the first system is shown in
plot 3.18 while the results for the second system is shown in plot 3.19. I will
refer to these two systems as the desktop and laptop. The x-axis for both
plots shows the percentage of the domain that is assigned to the CPU. The
y-axis shows the domain resolution while the z-axis shows the execution
time in seconds

The benchmark for the desktop was run on a case with flat bathymetry
and an idealised circular dam break surrounding a water column with ra-
dius R = 20m in a square computational domain of 200m × 200m with
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center at xc = 100m, yc = 100m. It was further run with wall boundary
conditions and second-order accurate Runge-Kutta. The initial conditions
for the bathymetry B was set to B(x, y, 0) = 0, while the water momentum,
Q2 and Q3 were set to Q2(x, y, 0) = Q3(x, y, 0) = 0 throughout the domain,
and the water elevation Q1:

Q1(x, y, 0) =

{
Q1 = 1m if (x− xc)2 + (y− yc)2 ≤ R2

Q1 = 0.1m if (x− xc)2 + (y− yc)2 > R2.

At time t = 0, the dam is instantaneously removed, resulting in an out-
going circular wave that flows through the domain until time t = 20.

When the CPU is assigned around 5 to 10% of the domain, there is
almost no improvement over only utilizing the GPU. However, a small
improvement can be noticeable at larger domain resolutions. As the CPU
is assigned even larger percentages of the domain, it is clear that the
performance quickly decreases. The reason for this is simple. The GPU
used is very powerful compared to the CPU. The results from section 3.6.2
shows that the Geforce GTX 480 is around 12 times faster than the Intel
Core i7-2600K on large domain resolutions. The GPU should therefore be
assigned most of the computational domain.

The benchmark for the laptop has been executed on the same test case
as the desktop. However, the simulations were executed until time t = 5.
The peak performance is achieved when 20% of the domain is assigned to
the CPU. This applies for both small and large domain resolutions, but is
more noticeable at the larger resolutions. When 25% or more of the domain
is assigned to the CPU, the performance gradually decreases. As a result,
the GPU and the CPU for the laptop are much more close to each other in
performance than the GPU and the CPU for the desktop. Therefore, it is
apparent that significant increases in performance can be achieved when
simulating on a laptop or desktop with a weaker GPU, and not too strong
compared to the CPU.

Also, for both systems, notice the spikes that shows configuration
with a considerably worse performance. Both the desktop and laptop
benchmarks contains large spikes at point (40, 1800) and (70, 2000). Plot
3.18 for the desktop also contain a smaller spike at point (40, 800). I expect
these spikes to be related to the CPU since they only occur when specific
parts of the domain are assigned to the CPU. Most likely, this can be
optimized to run better by modifying the CPU code.
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Figure 3.18: Desktop: Static decomposition between the Geforce GTX 480
GPU and Intel Core i7-2600K CPU on an idealised circular dam break with
several different domain resolutions. Notice that when assigning around 5
to 10% of the domain to the CPU, the performance almost equals to only
using the GPU. However, it quickly decreases when larger parts of the
domain are assigned to the CPU.
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Figure 3.19: Laptop: Static decomposition between the Quadro Q1800M
GPU and Intel Core i7 Q 740 CPU on an idealised circular dam break with
several different domain resolutions. The peak performance is achieved
when 20% of the domain is assigned to the CPU.
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Chapter 4

Auto-tuning

In chapter 3, I presented a heterogeneous system that utilizes both the
GPU and the CPU as computational resources. However, when performing
computations using both of these resources, it is important that the
workload between these is distributed such that ideal simulation speed
is obtained. In this chapter, I focus on dynamic auto-tuning techniques
on heterogeneous architectures to improve the heterogeneous system
presented in chapter 3. In section 4.1, I first discuss auto-tuning for three
different parameters that can be applied, more precisely GCE (section 3.4),
Early exit (section 3.5), and Domain decomposition (section 3.3). In addition, I
discuss challenges related to dynamic auto-tuning. Then, an alternative
technique to the early exit optimization was implemented for the CPU,
to specifically increase the CPUs performance related to auto-tuning.
This technique is discussed in section 4.2. I continue by presenting the
implementation details for the auto-tuning techniques. Section 4.3 explains
the auto-tuning technique implemented for early exit while section 4.4
explains how auto-tuning is implemented to dynamically decompose the
computational domain. Finally, in section 4.5 I present the performance
results for these auto-tuning techniques. 1

4.1 Dynamic auto-tuning

Dynamic auto-tuning refers to how an application can apply auto-tuning
techniques during runtime. In other words it dynamically tunes the
computational domain based on the hardware it is executing on. As a
result, the domain automatically adapts to the underlying hardware given
specific parameters that the auto-tuning is based on.

1Unlike the benchmarks from the previous chapter, this chapters performance section
will feature some benchmarks with non-zero bathymetry, i.e., where the bathymetry either
contains synthetic terrain values or terrain values from a real world case. When testing that
these simulations were mathematically correct, it was discovered that the correct ∆t value
was not chosen when using additional overlap with the GCE technique. Through further
testing, I believe this is related to a bug when initializing the bathymetry ghost cells among
the sub-domains. However, since the benchmarks in this chapter are not using the GCE
technique, this bug does not affect the results in any way.

57



As mentioned, there are several parameters that can be auto-tuned
based on my heterogeneous implementation in chapter 3. The first is the
GCE technique. However, as discovered in section 3.6.3, this technique
did not improve the performance since increasing the ghost cell overlap
negatively affected the performance. It was therefore best to always use no
additional overlap. As a result, this parameter has not been dynamically
auto-tuned. There are still two other parameters though, more precisely,
Early exit and Domain decomposition. As the results from section 3.6.4
showed, the optimal static domain decomposition between the Intel Core i7
Q 740 and Quadro Q1800M was to run 20% of the computational domain
on the CPU. Based on these results, one can argue that a load balanced
workload for this system in shallow water simulations is to let the CPU
perform computations on 20% of the rows with wet cells while the GPU
performs computations for 80% of the rows with wet cells. To achieve this,
I perform dynamic auto-tuning of Domain decomposition to dynamically
adjust the domain decomposition between the GPU and the CPU as the
water propagates. In addition, the early exit optimization can be used such
that the computations for all the dry cells are skipped. However, since the
early exit optimization adds an extra overhead, one does not want to use
this when most of the domain contains wet cells. Therefore, this can also
be auto-tuned dynamically to select whether early exit should be enabled
or disabled.

When it comes to challenges, efficiency is of great importance for
dynamic auto-tuning between the CPU and the GPU. Even though the
auto-tuning technique only will be executed at given times throughout
a simulation, it is still important that it is as effective as possible.
Furthermore, it also needs to work well for heterogeneous architectures.
For example, a technique that is implemented only with the CPU in mind
does not necessarily translate into working for the GPU as well. There
are several considerations that have to be taken into account. First of all,
data transfers. An auto-tuning technique that requires large data transfers
between the CPU and the GPU can be inefficient. In addition, computations
related to the auto-tuning also has to be considered, since both the CPU and
the GPU has to perform computations related to the dynamic auto-tuning
as efficiently as possible. This can represent a challenge considering their
architectural differences as described in section 2.1.

4.2 Bounding Box technique for the CPU

In section 3.5, I implemented an early exit optimization for both the CPU
and the GPU. However, using early exit on the CPU raised an issue
regarding the performance: For each timestep, an additional iteration over
the domain has to be performed to compute the dry map that is used in
the flux calculations (see section 3.1). It also has to perform the dry map
lookup for each cell in the domain. As a result, if the CPUs domain only
contains a small amount of wet cells, these computations can use more time
than the actual numerical computations for each cell. This represents a
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quite expensive overhead which should be avoided. In addition, the time
integration (see section 3.1) will not gain any speedup from using early exit
since only the flux calculations benefits from this. These overheads also
apply for the GPU, but the GPU is sufficiently fast as a result of its parallel
nature. The overheads are therefore small compared to the execution time
of the numerical calculations. As a result, there is no large negative impact
to the performance compared to the CPU.

Early exit technique

Figure 4.1: A domain with water represented by the blue cells. Left image:
The flux function iterates through all cells in the domain, as indicated by the
arrows. For each cell, a lookup in the dry map is performed to determine
if it should perform early exit. Right image: The flux function only iterates
through cells that are inside the bounding box, as indicated by the arrows.
As a result, the additional overhead related to computing and reading the
dry map is avoided.

To address this performance issue, I implemented a Bounding Box
technique to replace the early exit optimization on the CPU. The wet cells
are simply approximated by a two dimensional bounding box (see figure
4.1) defined by four edges. As a result, both the flux calculation and time
integration can be performed by only iterating over the cells inside the
bounding box, as every cell outside is guaranteed to be dry. The overhead
for iterating over the domain to compute the dry map is also completely
avoided. It still has to perform some additional computations as it has to
compute the bounding box for each timestep, but this is less expensive as
further stated below.

To compute the bounding box, I utilize the strategy in figure 4.2. The
bounding box edges are extended along the water flow. This is achieved
by taking advantage of the time integration to compute the bounding box.
At the end of each timestep, time integration solves forward in time and
makes sure the water propagates through the domain. As a result, it can
guarantee which cells will be wet in the next timestep. Each of these cells
can then store its x and y coordinate. Then, the minimum and maximum
of these coordinates are computed as a reduction operation to compute the
edges of the bounding box. The reduction is performed by utilizing the min
and max reduction operators available through OpenMP [37] to correctly
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perform reductions in a multi-threaded environment. The computation of
the bounding box are less expensive than the dry map computations for
early exit since only cells inside the bounding box has to be considered.

Time t = 0 Time t = 1 Time t = 2

Figure 4.2: The strategy for computing the bounding box is shown at time
t = 0, 1, and 2. The water only flows downwards to the right. The edges of
the bounding box are extended in the direction of the flow.

4.3 Auto-tuning early exit

The results from section 3.6.2 showed that the early exit optimization
provided a good performance increase for both the GPU and the CPU as
long as the majority of the domain is dry. As specified in the previous
section, a bounding box technique was implemented on the CPU since this
was more effective. As a result, auto-tuning of early exit is only used by
the GPU since the CPU utilizes the bounding box technique. When the
majority of the domain contains water however, the flux computations
have to be performed for most or every cell anyway. As a result, the early
exit technique no longer provides a good performance increase since there
are no cells to perform early exit on. Instead, it only provides a decrease
in performance, mainly because of the additional overhead received when
early exit is enabled. This makes the early exit optimization an excellent
candidate for dynamic auto-tuning to ensure that it is enabled and disabled
at the appropriate times depending on which configuration achieves the
best execution time.

The auto-tuning implemented is a simple probe technique that executes
a single step in the simulation and measures the execution time of this. The
probe only executes kernels that perform computations related to early exit,
more precisely the dry and flux kernels (see section 3.5 and 2.4.1). However,
for second-order it has to execute the whole first substep, which includes
the dry, flux, time integration and boundary conditions kernels (see also
section 2.4.1 for these), since the dry and flux kernels in the second substep
relies on these. For each sub-domain, two probes are launched every Nth
timestep, one probe with early exit enabled and another probe with early
exit disabled. The execution time is measured for both of them. When
both probes have finished, the execution time is compared. If the probe
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executing with early exit is faster, then early exit is enabled, otherwise it is
disabled. This ensures that a single timestep always executes at the fastest
possible rate.

It is important to consider how often these probes should be launched,
i.e., the value of N. First off, since the probes execute a single simulation
step, they add a small overhead. However, this overhead is only noticeable
if the probes are launched too frequently. Secondly, if the probes are
launched to infrequently, the auto-tuning technique may fail to disable or
enable early exit at a good rate, decreasing the overall performance.

4.4 Auto-tuning domain decomposition

To explain more closely how the dynamic auto-tuning technique will work,
consider the following example as shown in figure 4.3: A real-world case
with a dam break at the upper part of the domain. If this dam collapses,
the water will propagate downwards. For example, approximately 20% of
the rows with wet cells can be computed on the CPU and the other 80% on
the GPU. This does not mean that the CPU is assigned a sub-domain that is
20% of the global domain, as become evident from figure 4.3. However, it
performs computations on approximately 20% of the total water, but can
still be assigned a larger computational sub-domain. To avoid wasting
resources on computing dry parts of the domain, the auto-tuning of early
exit presented in the previous section is utilized for the GPU, while the
CPU utilizes the bounding box technique presented in section 4.2. As the
simulation progress, water will continue to flow downwards, meaning the
domain decomposition has to be dynamically changed to make sure the
CPU computes on approximately 20% of the rows with wet cells at all
times.

As a result, this requires a way to change the domain decomposition
during runtime. A simple function to perform this is implemented and
explained in greater detail in section 4.4.1. The auto-tuning itself basically
consists of two auto-tuning algorithms: Startup auto-tuning and Dynamic
auto-tuning. The first algorithm decides the computational workload
between the CPU and the GPU. The second algorithm executes only at
given times throughout the simulation to dynamically decompose the
domain between the CPU and the GPU based on the computational
workload that was found by the first algorithm. To perform the dynamic
auto-tuning, I compare two different strategies. The first is a very simple
naive approach that provides the baseline of the dynamic auto-tuning
algorithm. The second strategy is a simple improvement upon the first,
providing a better approach.

4.4.1 Dynamic domain decomposition

However, before discussing implementation details related to the auto-
tuning algorithms, I will discuss how the domain can be decomposed
during runtime. More precisely, this functions main purpose is to change
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Figure 4.3: The dynamic auto-tuning technique for the domain. The red
line shows the domain decomposition between the CPU and the GPU. The
upper sub-domain is assigned to the GPU and the lower sub-domain is
assigned to the CPU. Left: The domain decomposition at time t = 0.
The CPU performs computations for 20% of the rows with wet cells,
while the GPU performs computations for the other 80%. The CPU is
assigned a larger sub-domain than the GPU, but still performs less work,
since only the cells that contain water are computed. Right: The domain
decomposition at time t = 500. The water has propagated further, which
means that the domain decomposition is recomputed. The CPU still
computes on 20% of the rows with wet cells while the GPU computes the
rest.

the size of all the sub-domains. This is then utilized by the dynamic auto-
tuning algorithm to change the computational workload on the fly for
the CPU and the GPU. The following example gives an idea of how this
works: Consider a simulation with two sub-domains, A and B that has
been created by decomposing an initial global domain of dimension 10002.
A has a size of 1000× 600 while B has a size of 1000× 400. In addition, A is
assigned to the GPU while B is assigned to the CPU. During the simulation,
the auto-tuning algorithm may decide that a dynamic change in domain
decomposition is necessary. This technique is then utilized to change the
size of each sub-domain. For example, A can be changed to 1000 × 800
while B can be changed to 1000× 200.

This technique mainly performs three steps: The first step involves
copying all the internal domain cells in each of the original sub-domains
into a global buffer. The data that is copied consists of the water elevation
Q1, and the water momentum along the x and y directions, Q2 and Q3.
Then, step two computes the new size of each sub-domain and then
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reconstructs the sub-domains with the new size. This reconstruction first
deallocates the original sub-domains buffers and allocates new buffers
based on the new size of the sub-domain. Then, all cell data (Q1, Q2,
and Q3) is copied from the global buffer into the newly reconstructed
sub-domains buffers. Finally, the last step is performed to handle the
boundaries. In other words, the ghost cells are initialized to the boundaries
of the opposite sub-domains by performing ghost cell exchange, explained
in section 3.3.3, between the sub-domains. Figure 4.4 gives an illustration
of how these steps are performed.

hhhGlobalhbufferhhhh

Initialhsub-domains Reconstructedhsub-domains

Steph1:hCopyhdatahtohglobalhbuffer

Steph2:hReconstructhsub-domains

}{

}

}

}} }{
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Figure 4.4: Changing the size of sub-domains during runtime. First, step
1 copies the data in internal cells from the sub-domains into a global
buffer. More precisely, the data copied is the water elevation Q1, and the
water momentum along the x and y directions, Q2 and Q3. Then, step 2
reconstructs the sub-domains with new sizes and copies the cell data (Q1,
Q2, and Q3) from the global buffer to the new sub-domains. Finally, step 3
performs ghost cell exchange to initialize the ghost cells.

4.4.2 Startup auto-tuning

At the startup of a simulation, this auto-tuning algorithm calculates the
computational workload between the CPU and the GPU. The computed
workload decides the amount of rows containing wet cells that they should
should compute. For example, if the GPU is twice as fast as the CPU, it
should compute on 66% of the rows with wet cells while the CPU computes
on 33%. This algorithm is able to decide this at the start of a simulation
by executing a single timestep for both the CPU and the GPU, and then
recording the execution time measured in seconds. The computational
workload W in percentage is then computed for both the CPU and the GPU
based on their execution time by using the following formula:
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(4.1)

where ny is the total number of rows in the global domain, processort is
the achieved execution time in seconds of either the GPU or the CPU, and
totalt is the total execution time in seconds of both the GPU and the CPU.

4.4.3 Dynamic auto-tuning

Naive method The naive method provides the baseline for how the
dynamic auto-tuning algorithm can be implemented. It works by finding
the middle point of the wet cells (see figure 4.5). This is simply computed
by adding together the coordinates of all wet cells and dividing this by the
total amount of wet cells. This point therefore represents the middle point
of the water in the domain. As a result, both sub-domains can be given
an equal amount of rows with wet cells. The rows with wet cells above
the middle point can be distributed to the GPU. Similarly, the rows with
wet cells below the middle point can be distributed to the CPU. Since both
receive approximately the same amount of wet cells, it would only work
well in systems that contains a CPU and GPU that are equally powerful.
As this is rarely the case, this method is not ideal for most CPU/GPU
configurations.

Optimized method The optimal method is similar to the naive method,
but instead of computing the middle point, it computes a two dimensional
bounding box around the wet cells similar to how the bounding box
technique for the CPU was implemented in section 4.2. There are multiple
ways to compute this bounding box.

First off, the CPU can perform it by iterating through its own sub-
domain and the GPUs sub-domain. However, this requires the GPU
to transfer information for its sub-domain to the CPU. More precisely
it would have to transfer the water elevation Q1 and the bathymetry B
which is needed to be able to determine wet and dry cells in the domain.
Transferring such amount of information can be expensive, especially
when using larger domain resolutions. This could be made slightly more
effective by letting the GPU determine wet and dry cells and store this
information in a buffer. However, it would still have to transfer this buffer
to the CPU to let it compute the bounding box. As a result, this only
minimizes the transfers and is not an optimal solution if one wants to avoid
large data transfers.

Therefore, another technique was implemented. The CPU and GPU
can compute a local bounding box for its own sub-domains. This is easily
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performed on the CPU by iterating over the domain as explained earlier in
section 4.2 to find the minimum and maximum coordinates in the x and y
direction. For the GPU this is a more complex operation as a GPU thread
would typically work on a single cell. Still, it can easily be performed
on the GPU by utilizing efficient GPU reduction for each block through
shared memory. Each thread is responsible for a single cell by storing its
coordinates in shared memory if the cell is wet. Per block reduction is then
performed to find the minimum and maximum coordinates in the x and y
direction for all blocks. Since this results in a bounding box for each block,
additional reductions has to be performed to further reduce this into only
four coordinates representing a single bounding box.

When both the GPU and the CPU have computed their local bounding
boxes, the CPU computes the global bounding box based on these as seen
in figure 4.5. To perform this the bounding box computed by the GPU
is first transferred to the CPUs memory. This means it does not avoid
data transfers, but transferring a bounding box consisting of only four
coordinates is more efficient and avoids large data transfers unlike the
previous solution.

}
}

G
P
U

C
P
U

Figure 4.5: Two different dynamic auto-tuning methods. The water is
marked in blue. Left image: Computes the middle point (coordinate)
marked with the red cross among all wet cells. Each sub-domain can
then be distributed an equal amount of rows with wet cells. Right image:
The GPU and CPU compute their local bounding boxes marked in red
and yellow. Then, the global bounding box marked in green is computed
around these two. This makes it easier to compute a different distribution
of rows with wet cells to the sub-domains. For example, the CPU can be
assigned 20% of the lower part of the global bounding box.

The optimal method works better than the naive approach because
it makes it possible to divide the wet cells unevenly between the sub-
domains, instead of equally as the naive method. This is simply
implemented by computing and assigning a given percentage of the
bounding box to the GPU and CPU. More precisely, they are assigned the
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workload percentage of W that was computed in section 4.4.2 by using
equation (4.1). At this point, a resize of the sub-domains are performed by
utilizing the function described in section 4.4.1. The dynamic auto-tuning
technique also has to be launched at specific timesteps similar to the early
exit auto-tuning, i.e., each Nth timestep. If it is launched to frequently the
overhead related to the auto-tuning computations and changing the sub-
domains may become too large. If it is instead launched to infrequently
it will fail to auto-tune the domain at a good rate which will decrease the
overall performance.

4.5 Performance results

To start off, I evaluate the performance of the bounding box technique
implemented for the CPU by comparing it with the early exit optimization
on the Intel Core i7-2600K. It shows a solid increase in performance
by around three times over early exit for large resolutions. Then, the
performance of the auto-tuning techniques is evaluated. I first show the
impact of auto-tuning early exit in section 4.5.2 on the Geforce GTX 480
GPU. The main results show that the auto-tuning technique provides the
best performance on all domain resolutions. Finally, this auto-tuning
technique is combined with auto-tuning of domain decomposition. The
effect is shown by executing on two different cases, an idealised circular
dam break (see figure 4.6), and a real world case, the Malpasset dam break
(see figure 4.7) which collapsed in 1959 causing heavy casualties [9]. The
benchmarks are further executed on the two systems used earlier, i.e., the
desktop with an Intel Core i7-2600K CPU and a Geforce GTX 480 GPU, and
a laptop with an Intel Core i7 Q 740 CPU and a Quadro Q1800M GPU.

(a) (b)

Figure 4.6: Idealised circular dam with three bumps. Left: At time t = 0,
the circular dam instantaneously collapses, causing the water to flow in all
directions. Right: The water flow at time t = 25.

4.5.1 Bounding box technique

The bounding box technique was benchmarked on a case with flat bathy-
metry and an idealised circular dam break surrounding a water column
with radius R = 80m in a square computational domain of 1200m× 1200m
with center at xc = 600m, yc = 600m. It was further run with wall boundary
conditions and second-order accurate Runge-Kutta. The initial conditions
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(a) (b)

Figure 4.7: Left: Malpasset dam break at time t = 0. The water can be seen
at the top of the valley before the breach while the sea is at the bottom right.
Right: At time t = 1620 after the breach, the water follows the valley before
reaching the sea.

for the bathymetry B was set to B(x, y, 0) = 0, while the water momentum
in x and y directions, Q2 and Q3 were set to Q2(x, y, 0) = Q3(x, y, 0) = 0
throughout the domain, and the water elevation Q1:

Q1(x, y, 0) =

{
Q1 = 10m if (x− xc)2 + (y− yc)2 ≤ R2

Q1 = 0m if (x− xc)2 + (y− yc)2 > R2.

At time t = 0, the dam is instantaneously removed, resulting in an out-
going circular wave that flows through the domain until time t = 5. A
small time t is selected as the overhead when using early exit is more vis-
ible when a large area of the domain is dry. Therefore, it makes more sense
comparing the early exit and bounding box techniques when the water has
not yet propagated through large parts of the domain.
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Figure 4.8: The execution time of the bounding box technique compared to
early exit on an idealised circular dam break with four domain resolutions
from 5122 to 40962. The bounding box technique performs much better
than early exit independent of the resolution.

Figure 4.8 shows the results by comparing on four domain resolutions
from 5122 to 40962. The simulation times are also provided in table 4.1.
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The bounding box technique shows a solid performance increase over early
exit. This is mainly because this technique avoids the overhead related to
early exit, but also because it iterates over a smaller part of the domain
as it only performs computations for cells that are inside the bounding
box. However, the speedup also seems to be smaller when simulating on
large resolutions. This is likely because the overhead related to early exit
decreases as the resolution gets larger, which means early exit performs
better on large resolutions.

Domain Early exit Bounding box Speed up
5122 1.4E+0 3.9E-1 3.7
10242 1.6E+1 5.0E+0 3.1
20482 1.3E+2 5.1E+1 2.6
40962 1.0E+3 3.5E+2 2.9

Table 4.1: The CPUs execution times in seconds for the bounding box
technique and early exit on four domain resolutions from 5122 to 40962.
The speed up obtained is around three times on large resolutions, and can
be even higher for smaller resolutions.

4.5.2 Auto-tuning early exit

The auto-tuning of early exit have been benchmarked on the GPU to meas-
ure the effect of applying this auto-tuning technique compared to execut-
ing a simulation without auto-tuning. The benchmark was run on a case
with flat bathymetry and an idealised circular dam break surrounding a
water column with radius R = 300m in a square computational domain of
3000m× 3000m with center at xc = 1500m, yc = 1500m. It was further run
with wall boundary conditions and second-order accurate Runge-Kutta.
The initial conditions for the bathymetry B was set to B(x, y, 0) = 0, while
the water momentum, Q2 and Q3 were set to Q2(x, y, 0) = Q3(x, y, 0) = 0
throughout the domain, and the water elevation Q1:

Q1(x, y, 0) =

{
Q1 = 1m if (x− xc)2 + (y− yc)2 ≤ R2

Q1 = 0.1m if (x− xc)2 + (y− yc)2 > R2.

At time t = 0, the dam is instantaneously removed, resulting in an out-
going circular wave that flows through the domain until time t = 1200.
I have executed with three different simulations: Standard, Early exit, and
Probe. The first one have disabled early exit and therefore computes all
cells. The second have enabled early exit. Finally, the last simulation util-
izes the auto-tuning technique, which is performed every 500 timestep. All
the simulations have been run on several domain resolutions ranging from
5122 to 40962.

Plot 4.9 shows the improvement of the Early exit and Probe simulations
over the Standard simulation. The x-axis shows the domain resolution
used while the y-axis shows the percentage of achieved execution time
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Figure 4.9: Shows the percentage of achieved execution time for Early exit
and Probe relative to Standard on an idealised circular dam break (lower
represents better execution time). Notice that Probe performs better than
Standard for each increase in domain resolution as expected.

relative to the Standard simulation. A lower percentage is therefore better.
The Early exit simulation performs better than the Standard simulation on
all domain resolutions except for the lowest resolution. The performance
improvement over the Standard simulation is also larger as the resolution
increases. This is mainly because the overhead related to early exit is
less noticeable when there are more cells in the domain that can take
advantage of using early exit. As expected, the Probe simulation performs
best on all domain resolutions. Again, it is apparent that the performance
improvement over the Standard simulation grows larger as the resolution
increases. This is mainly because the rate of which early exit is enabled and
disabled works better on large resolutions.

Resolution Standard Early exit Probe
5122 1.5E+1 1.8E+1 1.4E+1
10242 1.2E+2 1.4E+2 1.1E+2
20482 1.0E+3 1.1E+3 8.7E+2
40962 8.9E+3 1.0E+4 7.5E+3

Table 4.2: The execution times in seconds between three different simula-
tions, one with early exit enabled (Early exit), one with early exit disabled
(Standard), and one with utilizing the auto-tuning technique (Probe).

4.5.3 Auto-tuning domain decomposition and early exit

Finally, several benchmarks have been performed too measure the effect of
utilizing the full auto-tuning, i.e., on both domain decomposition and early
exit. Two different cases have been used. First, a real-world case known
as the Malpasset dam break. This dam break consist of 439 × 1099 cells,
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spaced equally by 15 meters, i.e., ∆x = ∆y = 15m. Furthermore, I simulate
the first 4000 seconds after the breach using Euler time integration. The
second case is an idealised circular dam break with three bumps in the ter-
rain. This dam break surrounds a water column with radius R = 66m in a
square computational domain of 1000m× 1000m located at the upper part
of the domain with center at xc = 500m, yc = 125m. The case was further
executed with wall boundary conditions using Euler time integration and
with a resolution of rx = 1000, ry = 1000. The bathymetry B consist of
three bumps, each with a radius of RB = 100m and center at xc1 = 250m,
yc1 = 250m, xc2 = 750m, yc2 = 250m, and xc3 = 250m, yc3 = 750m respect-
ively, and is set to:

B(x, y, 0) =



B = 5 ∗ (RB
2 − ((x− xc1)

2 − (y− yc1)
2))m

if (x− xc1)
2 + (y− yc1)

2 < RB
2

B = 5 ∗ (RB
2 − ((x− xc2)2 − (y− yc2)2))m

if (x− xc2)2 + (y− yc2)2 < RB
2

B = 5 ∗ (RB
2 − ((x− xc3)2 − (y− yc3)2))m

if (x− xc3)2 + (y− yc3)2 < RB
2

B = 0m
otherwise

.

Furthermore, the water momentum, Q2 and Q3 were set to Q2(x, y, 0) =
Q3(x, y, 0) = 0 throughout the domain, and the water elevation Q1:

Q1(x, y, 0) =

{
Q1 = 10m if (x− xc)2 + (y− yc)2 ≤ R2

Q1 = 0m if (x− xc)2 + (y− yc)2 > R2.

At time t = 0, the dam is instantaneously removed, resulting in an out-
going circular wave that flows through the domain until time t = 180.

For each of these cases, I execute six simulations (described below) on
a desktop and laptop. The desktop consist of an Intel Core i7-2600K CPU
and a Geforce GTX 480 GPU while the laptop consist of an Intel Core i7 Q
740 CPU and a Quadro Q1800M GPU. I refer to these as the desktop and
laptop from now on. The performance is shown in megacells computed
per second throughout the simulation.

I first execute and compare three simulations where the early exit
optimization is disabled, namely Single GPU, Static, and Dynamic 2.

2The Dynamic simulation utilizes the dynamic auto-tuning technique. This technique
computes the bounding boxes for the GPU and the CPU and from these, the global
bounding box, which auto-tunes the domain decomposition. For this to function correctly
in the Malpasset case, it is important that the global bounding box only surrounds the water
that flows down the valley, and does not include the sea at the bottom right (see figure
4.7). Since my implementation does not handle multiple global bounding boxes, I simply
removed the sea from the Malpasset case for the benchmarking in this section. As a result,
the simulation is mathematically incorrect, but this does not affect the results received in
this section since the resulting water wave from the breach still propagates correctly.
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The first simulation computes all cells using a single GPU. The second
simulation uses a static decomposition of the domain. For the desktop, the
CPU is assigned 10% of the domain, and for the laptop, the CPU is assigned
20% of the domain. These were chosen because the results from section
3.6.4 showed that this was the optimal decomposition between the CPU
and the GPU on the desktop and laptop respectively. The third simulation
utilizes the dynamic auto-tuning of domain decomposition to balance the
workload between the CPU and the GPU throughout the simulation. The
workload is split in the same percentage as for the static decomposition.
The CPU on the desktop is therefore assigned 10% of the rows with wet
cells, while the CPU on the laptop is assigned 20% of the rows with wet
cells.

I also execute the same simulations, but with the early exit optimization
enabled, more precisely Single GPU (EE), Static (EE), and Dynamic (EE).
The first simulation utilizes a single GPU as last time, but with early exit
enabled. The second simulation uses the same static decomposition of
the domain, also with early exit enabled for both the GPU and the CPU.
The last simulation utilizes the full auto-tuning, i.e., auto-tuning of domain
decomposition and early exit. However, the CPU now uses the bounding box
technique instead of early exit.

The dynamic auto-tuning algorithms are executed every 2000th
timestep for the Malpasset case and every 500th timestep for the synthetic
case. These values were chosen by experimenting with both cases to find an
ideal value. Since the ideal value can be different from case to case, mainly
depending on the ∆t at any given time, it would be more ideal to perform
an analysis of this value to decide what it should be set to for specific cases.
However, this is outside the scope of this thesis.

Desktop: For the desktop, the performance of the Malpasset and ideal-
ised circular dam break can be seen in figure 4.10 and 4.11. For the three
simulations with early exit disabled, the Static simulation at its peak per-
forms approximately 5% better than the Single GPU for the Malpasset case
and 9% better for the idealised circular dam break case. For both cases how-
ever, the Dynamic simulation gives very poor performance. As it utilizes
auto-tuning of domain decomposition, the CPU will receive a large computa-
tional domain in the beginning of the simulation where the water lies in the
upper region of the domain, on both Malpasset and the idealised circular
dam break. This is the main reason for its poor performance, but also be-
cause both the GPU and the CPU computes on all cells, without utilizing its
ideal optimization technique like early exit or bounding box. However, as
the water flows down the valley in the Malpasset case, the CPU will receive
a smaller computational domain, resulting in increased performance as the
simulation progress. This also applies for the idealised circular dam break
where the water flows in all directions, quickly filling the domain with wa-
ter. However, I conclude that a static domain decomposition where 10% of
the domain is executed on the CPU gives the best performance when early
exit is disabled.
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For the three simulations with early exit enabled, the Single GPU (EE)
and Static (EE) is mostly very equivalent in performance. As the simulation
progress however, it declines more in performance than the Single GPU
(EE) simulation. The main reason for this is because of the overhead for
early exit on the CPU. As more water flows into the CPUs computational
domain, this overhead is slightly increased. The best performance is
obtained by the Dynamic (EE) simulation as it utilizes the full auto-tuning,
i.e., on both domain decomposition and early exit. For this simulation, the
CPU uses its bounding box technique. The peak performance is almost
70% better than the Single GPU (EE) and Static (EE) for the Malpasset,
and around 19% better for the idealised circular dam break. This clearly
shows the strength of the two auto-tuning techniques when combined, and
I conclude that Dynamic (EE) performs best when early exit is enabled.
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(a) Malpasset: Percentage of domain assigned
to the CPU.
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(b) Malpasset: Desktop performance with
early exit disabled.
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(c) Malpasset: Desktop performance with
early exit enabled.

Figure 4.10: The performance shown in megacells per second for the
Malpasset dam break on the desktop. Three simulations have been
executed: Single GPU, Static, and Dynamic. Left: All simulations have
been executed with early exit disabled. Right: The same simulations with
early exit enabled and bounding box technique for the CPU used by the
Dynamic simulation. Top: The percentage of assigned domain to the CPU
throughout the simulation.
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(a) Idealised circular dam: Percentage of
domain assigned to the CPU.
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(b) Idealised circular dam: Desktop perform-
ance with early exit disabled.
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(c) Idealised circular dam: Desktop perform-
ance with early exit enabled.

Figure 4.11: The performance shown in megacells per second for the
idealised circular dam break on the desktop. Three simulations have been
executed: Single GPU, Static, and Dynamic. Left: All simulations have
been executed with early exit disabled. Right: The same simulations with
early exit enabled and bounding box technique for the CPU used by the
Dynamic simulation. Top: The percentage of assigned domain to the CPU
throughout the simulation.

I also show the overhead for auto-tuning in table 4.3. The execution
time for the whole simulation is compared with the total auto-tuning time.
To easily show the bottleneck of the dynamic auto-tuning if any, I split
the total auto-tuning execution time in three parts: Auto-tuning (BB) which
measures the execution time of the bounding box computation, Auto-tuning
(DD) which measures the execution time when performing a dynamic
change of the domain decomposition, and finally Auto-tuning (Probe) to
measure the execution time of the probe technique that auto-tunes early
exit on the GPU.

The execution time for the total auto-tuning is very small compared to
the whole simulation, i.e., 1.1% of the Malpasset execution time and 3.0%
of the idealised circular dam break execution time. Therefore, the overhead
related to auto-tuning is very small, and should not give any noticeable
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Execution times Malpasset Idealised circular
dam

Simulation 7.5E+1 4.6E+1
Auto-tuning (total) 8.3E-1 1.4E+0
Auto-tuning (BB) 3.4E-2 6.8E-2
Auto-tuning (DD) 7.5E-1 1.2E+0
Auto-tuning (Probe) 4.8E-2 1.1E-1

Table 4.3: The auto-tuning overhead on the desktop for Malpasset and
the idealised circular dam break. I show the execution time in seconds
for the simulation and the auto-tuning algorithms. The dynamic domain
decomposition is clearly the bottleneck. Also, notice that the execution time
for the total auto-tuning only represents 1.1% of the Malpasset execution
time and 3.0% of idealised circular dam break execution time.

decrease in performance. The bottleneck for the auto-tuning however, is
clearly the dynamic change for domain decomposition. Therefore, this
could be optimized further, but I dont expect any noticeable improvement
for the simulations execution time by performing such optimizations since
the auto-tuning overhead is as shown very small.

Laptop: For the laptop, the performance of Malpasset and the idealised
circular dam break can be seen in figure 4.12 and 4.13. I expect similar
results for the laptop, but with even larger performance improvements
since the performance gap between the CPU and the GPU is not as large
as for the desktop. For the simulations with early exit disabled, the
Static simulation performs better than the Single GPU simulation, with a
peak performance of 18% better for the Malpasset case, and 23% better
for the idealised circular dam break. This improvement is larger than
the improvement gained for the desktop, as expected from the results in
section 3.6.4. When it comes to the Dynamic simulation, it also gives poor
performance for both cases similar to what it did on the desktop. However,
at its peak, it is closer to the performance of the Single GPU than the desktop
was, due to the CPU in the laptop being closer to its GPU performance wise
compared to the desktop. To conclude however, the Static simulation also
performs best on the laptop when early exit is disabled.

For the three simulations with early exit enabled, the Single GPU
(EE) and Static (EE) simulations gives close to equivalent performance
throughout the simulation, but the Static (EE) still performs slightly better
than the Single GPU (EE) on both cases. However, unlike the desktop, it
does not decline more in performance than the Single GPU (EE) towards
the end. Again, I expect this is because the performance gap between
the laptops GPU and CPU is smaller than for the desktop, making the
CPU overhead related to early exit less dramatic in comparison. Similarly
as before, the Dynamic (EE) gives the best performance, reaching a peak
performance of 141% and 109% over the Single GPU (EE) on Malpasset and
the idealised circular dam break respectively. This is even better than the
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desktop where the same simulations had a performance increase of 70%
and 19%. As a result, it is clear that the auto-tuning techniques give even
better performance for systems where the GPU and the CPU is more closer
to each other in raw performance. This often applies for laptops as they are
more often configured with a weaker GPU using less power than desktops.
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(a) Malpasset: Percentage of domain assigned
to the CPU.
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(b) Malpasset: Laptop performance with
early exit disabled.
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(c) Malpasset: Laptop performance with early
exit enabled.

Figure 4.12: The performance shown in megacells per second for the
Malpasset dam break on the laptop. Three simulations have been executed:
Single GPU, Static, and Dynamic. Left: All simulations have been
executed with early exit disabled. Right: The same simulations with
early exit enabled and bounding box technique for the CPU used by the
Dynamic simulation. Top: The percentage of assigned domain to the CPU
throughout the simulation.

I also show the auto-tuning overhead for the laptop in table 4.4. Again,
the execution time for the whole simulation is compared with the total
auto-tuning execution time. I also split the dynamic auto-tuning in the
same parts as above.

For the laptop, the execution time for the total auto-tuning is also
very small compared to the whole simulation, i.e., 0.1% of the Malpasset
execution time and 1.5% of the idealised circular dam break execution time.
Therefore, this should not give any noticeable decrease in performance.
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(a) Idealised circular dam: Percentage of
domain assigned to the CPU.
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(b) Idealised circular dam: Laptop perform-
ance with early exit disabled.
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(c) Idealised circular dam: Laptop perform-
ance with early exit enabled.

Figure 4.13: The performance shown in megacells per second for the
idealised circular dam break on the laptop. Three simulations have been
executed: Single GPU, Static, and Dynamic. Left: All simulations have
been executed with early exit disabled. Right: The same simulations with
early exit enabled and bounding box technique for the CPU used by the
Dynamic simulation. Top: The percentage of assigned domain to the CPU
throughout the simulation.

Notice that the probe technique is the bottleneck for the Malpasset case
while the dynamic change for domain decomposition is the bottleneck for
the Idealised circular dam break, although the probe technique also uses a
large amount of time for this case. Again, I reason that optimizing these
will have a minimal effect on the simulations execution time and not make
a noticeable difference in performance.

Malpasset and idealised circular dam break comparison: There is one
interesting difference between these two cases as seen in figure 4.10c and
4.11c for the desktop, and figure 4.12c and 4.13c for the laptop. The
performance decreases in an almost exponential fashion for the idealised
circular dam break whereas its decreases more linearly for the Malpasset
case. The exponential decrease is because the water flows in all directions,
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Execution times Malpasset Idealised circular
dam

Simulation 5.6E+2 3.5E+2
Auto-tuning (total) 7.3E-1 5.3E+0
Auto-tuning (BB) 3.7E-2 1.0E-1
Auto-tuning (DD) 7.8E-2 4.0E+0
Auto-tuning (Probe) 6.1E-1 1.2E+0

Table 4.4: The auto-tuning overhead on the laptop for Malpasset and the
idealised circular dam break. I show the execution time in seconds for
the simulation and the auto-tuning algorithms. Again, notice that the
execution time for the total auto-tuning is only 0.1% of the Malpasset
execution time and 1.5% of the idealised circular dam break execution time.

quickly filling the whole domain with water when the circular dam in
the idealised circular dam break collapses. For the Malpasset case, the
water follows the valley, meaning large parts of the domain will always
be dry. Towards the end in the idealised circular dam break case on the
desktop, the Dynamic (EE) simulation performs noticeable worse than the
other simulations, especially compared to the Single GPU (EE) simulation.
This is mainly because there are relatively few dry cells in the domain
at that point, meaning the auto-tuning and computation of the bounding
box on the CPU only adds unnecessary overhead. For the Malpasset case,
this does not happen as there are always many dry cells in the domain.
As a result, this should not be a major problem in most real-world flood
simulations. However, this is not noticeable for the laptop, mainly because
the performance gap between the GPU and the CPU is not as large.
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Chapter 5

Conclusion

This thesis has proposed a shallow-water simulator for heterogeneous
architectures by implementing a multi-core CPU implementation based
on a single GPU simulator [9] for the shallow-water equations. Load
balancing the workload between the computational domains have also
been performed by implementing two different auto-tuning methods. By
utilizing these methods and running the CPU in parallel with the GPU, I
have shown performance gains of up to 70% and 141% from the single GPU
simulator on a real-world case.

The computational domain was decomposed between the CPU and
the GPU by implementing a row domain decomposition technique. This
minimized the amount of communication as well as providing effective
communication. I applied two different auto-tuning techniques to load
balance the workload between the CPU and the GPU. The first technique
auto-tuned the early exit optimization by dynamically deciding if early exit
should be enabled or disabled. The second auto-tuning technique provided
an algorithm that dynamically decomposes the domain based on the water
flow. Both of these were combined to provide good load balancing.

In this thesis, the heterogeneous implementation and auto-tuning
techniques have been applied to the shallow-water equations to simulate
natural phenomena such as flood. However, my implementation is general
in purpose and can be applied to any systems of conservation laws, for
example the Euler equations [12] and the MHD equation [28]. The results
from this thesis should therefore apply well for other conservation laws
as well. For example, consider the Euler equations, which describe the
dynamics of an ideal gas. I can use the same row domain decomposition
technique to statically decompose the domain between the CPU and the
GPU. Furthermore, both auto-tuning methods can also be applied similarly
as for the shallow-water equations. For example, an early exit optimization
and bounding box technique can be implemented to skip computations
for cells that do not contain any kind of fluid. The dynamic auto-tuning
for early exit can then be applied. In addition, auto-tuning of domain
decomposition can also be applied to load balance the workload between
the CPU and the GPU based on the fluid instead of the water flow.

79



80



Bibliography

[1] M. A. Acuña and T. Aoki. Real-Time Tsunami Simulation on Multi-
node GPU Cluster. In ACM/IEEE Conference on Supercomputing. 2009.

[2] Boost C++ libraries. http://www.boost.org/, (visited on 2014-08-01).

[3] T. Brandvik and G. Pullan. Acceleration of a 3D Euler Solver using
Commodity Graphics Hardware. In 46th AIAA Aerospace Sciences
Meeting and Exhibit. 2008.

[4] A. R. Brodtkorb. Hyperbolic Conservation Laws on GPUs.
http://babrodtk.at.ifi.uio.no/files/publications/brodtkorb_granada_
2014_conslaws.pdf, (visited on 2014-08-01).

[5] A. R. Brodtkorb. Reproducible Science and Modern Scientific
Software Development. http://www.sintef.no/project/eVITAmeeting/
2013/Advanced_topics_in_reproducible_science.pdf, (visited on 2014-
08-01).

[6] A. R. Brodtkorb. A MATLAB Interface to the GPU. Master’s thesis,
Department of Informatics, Faculty of Mathematics and Natural
Sciences, University of Oslo, 2007.

[7] A. R. Brodtkorb, C. Dyken, T. R. Hagen, J. M. Hjelmervik, and O. O.
Storaasli. State-of-the-art in heterogeneous computing. In Scientific
Programming, 2010.

[8] A. R. Brodtkorb, T. R. Hagen, K.-A. Lie, and J. R. Natvig. Simulation
and Visualization of the Saint-Venant System using GPUs. In
Computing and Visualization in Science, 2010.

[9] A. R. Brodtkorb, M. L. Sætra, and M. Altinakar. Efficient Shallow Wa-
ter Simulations on GPUs: Implementation, Visualization, Verification,
and Validation. In Computers & Fluids, 2012.

[10] M. de la Asunción, J. M. Mantas, and M. J. Castro. Simulation of one-
layer shallow water systems on multicore and CUDA architectures. In
The Journal of Supercomputing, 2010.

[11] C. Ding and Y. He. A Ghost Cell Expansion Method for Reducing
Communications in Solving PDE Problems. In Proceedings of the 2001
ACM/IEEE Conference on Supercomputing. 2001.

81



[12] Wikipedia. Euler equations (fluid dynamics). http://en.wikipedia.org/
wiki/Euler_equations_(fluid_dynamics), (visited on 2014-08-01).

[13] R. Gerber. Getting Started with OpenMP*. https://software.intel.com/
en-us/articles/getting-started-with-openmp, (visited on 2014-08-01).

[14] C. Gregg and K. Hazelwood. Where is the Data? Why You Cannot
Debate CPU vs. GPU Performance Without the Answer. In Proceedings
of the IEEE International Symposium on Performance Analysis of Systems
and Software. 2011.

[15] T. R. Hagen, M. O. Henriksen, J. M. Hjelmervik, and K. Lie. How to
Solve Systems of Conservation Laws Numerically Using the Graphics
Processor as a High-Performance Computational Engine. In Geometric
Modelling, Numerical Simulation, and Optimization. Springer Berlin
Heidelberg, 2007.

[16] T. R. Hagen, K. Lie, and J. R. Natvig. Solving the Euler Equations
on Graphics Processing Units. In Computational Science–ICCS 2006.
Springer Berlin Heidelberg, 2006.

[17] Intel. Intel® Xeon® Processor E7 v2 Family. http://ark.intel.
com/products/family/78584/Intel-Xeon-Processor-E7-v2-Family, (visited
on 2014-08-01).

[18] Khronos Group. OpenGL – The Industry’s Foundation for High
Performance Graphics. http://www.opengl.org/, (visited on 2014-08-
01).

[19] F. B. Kjolstad and M. Snir. Ghost Cell Pattern. In Proceedings of the 2010
Workshop on Parallel Programming Patterns. 2010.

[20] B. Kuhn, P. Petersen, and E. O’Toole. OpenMP versus Threading in
C/C++. In Concurrency: Pract. Exper, 2000.

[21] A. Kurganov, S. Noelle, and G. Petrova. Semidiscrete Central-Upwind
Schemes for Hyperbolic Conservation Laws and Hamilton–Jacobi
Equations. In SIAM Journal on Scientific Computing, 2001.

[22] A. Kurganov and G. Petrova. A Second-Order Well-Balanced
Positivity Preserving Central-Upwind Scheme for the Saint-Venant
System. In Communications in Mathematical Sciences, 2007.

[23] Wikipedia. Lax-Friedrichs method. http://en.wikipedia.org/wiki/
Lax-Friedrichs_method, (visited on 2014-08-01).

[24] Wikipedia. Lax-Wendroff method. http://en.wikipedia.org/wiki/
Lax-Wendroff_method, (visited on 2014-08-01).

[25] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen,
N. Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal,
and P. Dubey. Debunking the 100X GPU vs. CPU Myth: An Evaluation

82



of Throughput Computing on CPU and GPU. In SIGARCH Computer
Architecture News, 2010.

[26] R. J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cam-
bridge University Press, 2002.

[27] T. Lutz, C. Fensch, and M. Cole. PARTANS: An Autotuning
Framework for Stencil Computation on Multi-GPU Systems. In ACM
Transactions on Architecture and Code Optimization, 2013.

[28] Wikipedia. Magnetohydrodynamics. http://en.wikipedia.org/wiki/
Magnetohydrodynamics, (visited on 2014-08-01).

[29] NVIDIA. CUDA C Best Practices Guide. http://docs.nvidia.com/cuda/
cuda-c-best-practices-guide, (visited on 2014-08-01).

[30] NVIDIA. CUDA C Programming Guide. http://docs.nvidia.com/cuda/
cuda-c-programming-guide, (visited on 2014-08-01).

[31] M. Papadrakakis, G. Stavroulakis, and A. Karatarakis. A new era
in scientific computing: Domain decomposition methods in hybrid
CPU–GPU architectures. In Computer Methods in Applied Mechanics and
Engineering, 2011.

[32] K. A. Seitz, Jr., A. Kennedy, O. Ransom, B. A. Younis, and J. D.
Owens. A GPU Implementation for Two-Dimensional Shallow Water
Modeling. In ArXiv e-prints, 2013.

[33] F. Song, S. Tomov, and J. Dongarra. Enabling and Scaling Matrix Com-
putations on Heterogeneous Multi-Core and Multi-GPU Systems. In
Proceedings of the 26th ACM international conference on Supercomputing.
2012.

[34] H. K. Stensland. INF5063 – GPU & CUDA. http://www.uio.no/studier/
emner/matnat/ifi/INF5063/h13/Resources/inf5063-nvidia_gpu.pdf, (vis-
ited on 2014-08-01).

[35] M. L. Sætra and A. R. Brodtkorb. Shallow Water Simulations on
Multiple GPUs. In Applied Parallel and Scientific Computing. Springer
Berlin Heidelberg, 2012.

[36] The OpenMP ARB. OpenMP Application Program Interface. http:
//www.openmp.org/mp-documents/OpenMP4.0.0.pdf, (visited on 2014-
08-01).

[37] The OpenMP ARB. The OpenMP® API specification for parallel
programming. http://openmp.org/wp/, (visited on 2014-08-01).

[38] E. F. Toro. Shock-Capturing Methods for Free-Surface Shallow Flows. John
Wiley & Sons, LTD, 2001.

[39] S. Venkatasubramanian and R. W. Vuduc. Tuned and Wildly
Asynchronous Stencil Kernels for Hybrid CPU/GPU Systems. In
Proceedings of the 23rd international conference on Supercomputing. 2009.

83



[40] M. Viñas, J. Lobeiras, B. B. Fraguela, M. Arenaz, M. Amor, J. A. García,
M. J. Castro, and R. Doallo. A Multi-GPU Shallow Water Simulation
with Transport of Contaminants. In Concurrency and Computation:
Practice and Experience, 2013.

[41] P. Wang, T. Abel, and R. Kaehler. Adaptive Mesh Fluid Simulations on
GPU. In New Astronomy, 2010.

[42] Y. Zhang and F. Mueller. Auto-Generation and Auto-Tuning of 3D
Stencil Codes on GPU Clusters. In Proceedings of the Tenth International
Symposium on Code Generation and Optimization. 2012.

84


