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Abstract

Historically, the use of graphics cards for scientific computing has yielded
great performance. Order-of-magnitude performance gains has been
obtained over the CPU (Owens et al. 2008) . This is mainly due to their
massively parallel nature, delivering a possible performance gain over
the traditional CPU. In this thesis, I extend a current single node/GPU
shallow water simulator (Brodtkorb et al. 2012) to utilize a parallel
environment composed of multiple nodes and multiple graphics cards,
enabling larger and faster simulations. For this purpose, a row domain
decomposition technique is implemented, dividing a global domain into
several subdomains to be distributed between the different processing
units. In an attempt to minimize communication latency between the units,
a technique called Ghost Cell Expansion is also implemented. The main work
of the thesis looks into load-balancing the workload between the units, in
an attempt to achieve more efficient multi-GPU/node simulations. To load-
balance the workload appropriately, several challenges arise. For example,
one need to take into account the computational power of the graphics
cards to correctly determine the amount of workload for each card. Also,
one should take into account the underlying water placement, i.e., wet and
dry cells of the domain throughout the simulation run. For this purpose,
dynamic auto-tuning techniques are demonstrated and discussed. The
implementation has been applied to the shallow water equations, but is
general in use, and will work equally well for any systems of conservation
laws. Finally, the implementation is thoroughly benchmarked on both
multi-node and multi-GPU parallel environments.
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Chapter 1

Introduction

This thesis explores load-balancing between multiple GPUs and multiple
nodes by investigating dynamic auto-tuning techniques. These techniques
are applied for the shallow water equations, but are general in use, and
can be used for other systems of conservation laws as well. Examples
of such systems are the Euler equations [9] and MHD equations [22].
My implementation is based on a single-GPU shallow water simulator
[7], which uses a second-order explicit finite volume scheme to compute
the shallow water equations, usable to simulate dam breaks and flood
scenarios. The primary motivation for simulating such scenarios are in
preparation of events and in response to ongoing events [4], for example
to create inundation maps and perform real-time visualizations to gain an
overview of the water flow. I extend this simulator to run on single-node
and cluster systems of multiple GPUs, increasing the ability to perform
faster and more accurate large-scale simulations.

I first motivates the use of dynamic auto-tuning techniques on multi-
GPU and multi-node systems in section 1.1. Then, I present two research
questions in section 1.2 which are thoroughly addressed throughout the
thesis. Finally, I give an overview of the thesis in section 1.3.

1.1 Motivation

The use of the GPU to speed up computations for systems of conservation
laws have been widely discussed in many publications [15, 11, 3, 39, 7].
The current trend moves towards using multiple GPUs [2], motivating
the use of this tremendous computing power provided to solve systems
of conservation laws. As reported in [7], the current single-GPU shallow
water simulator run an accurate simulation of the first 4000 seconds of the
Malpasset dam break case in 27 seconds. By utilizing multiple graphics
cards in a single node or across multiple nodes, it could compute the
same simulation much faster or enable the use of larger or more accurate
simulations. Several publications regarding the use of multiple graphics
cards and multiple nodes have also been published [39, 38, 1, 35].
However, these publications do not look at auto-tuning to load-
balance the workload between GPUs appropriately, leaving the workload



distribution static. This motivates the use of auto-tuning techniques to
distribute the workload appropriately between the nodes and graphics
cards. If applied correctly, this has the potential of giving a speed up
over a static distribution. I show benchmarks showing a speed up over
a static distribution for domains with large amount of wet cells. For load-
balancing, it would be of great benefit to take the computational power into
account. This way, it would be possible to distribute different amounts of
workload to each graphics card depending on their processing power. This
should work adequately on all GPUs, from low-end to high-end, as well as
different generations.

For example, systems of conservation laws involve a computational
domain that often contains areas where computations are not necessary.
In shallow water simulations, this means that dry areas does not need to be
computed, which implies that the wet areas should be distributed between
the graphics cards. Dynamic auto-tuning techniques can be applied to
change this distribution according to the GPUs computational power as
the simulation progresses.

1.2 Research questions

From the above description and motivation, I will address the following
questions in my thesis:

1. How can multiple graphics cards and multiple nodes efficiently
be used to simulate systems of conservation laws?

2. What type of auto-tuning techniques can be used to achieve
ideal load-balancing between the graphics cards?

The first question asks how the single-GPU simulator should be
extended to efficiently support multiple graphics cards across multiple
nodes. There are several challenges related to this. First of all, I need
to look into domain decomposition techniques to divide a global domain
into several subdomains. This way, it would be possible for each GPU to
compute on a subdomain, decomposed from the original domain. The
technique needs to minimize the amount of communication between the
GPUs. It is also important that the solution scales well to N number
of GPUs. Also, it is necessary to implement communication techniques
to propagate the solution correctly between the subdomains. For this,
one should look into techniques to minimize the communication overhead
between the GPUs. This is especially relevant when the graphics cards are
located on different nodes, as the data is transferred over the network for
this case.

The second question asks how the multi-GPU cluster simulator can be
implemented so that the domain is load-balanced between the graphics
cards. Consider a typical flood simulation represented by a domain. Here,
the domain consists of several wet and dry areas. For this, it is important to
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implement a technique so that the GPUs only calculate on the wet areas of
the domain. This is because computing on dry areas is not necessary and
can be skipped to avoid wasting compute cycles. Also, to load-balance,
all GPUs should compute on a specified amount of wet areas according to
their computational power.

1.3 Organization of thesis

The thesis is organized around these main research questions. In the
next chapter, I give a background to the most important concepts used
throughout the thesis. 1 first give an introduction to the GPU as a
computing platform, followed by a mathematical introduction to the
Single-GPU shallow water simulator [7] which the implementation of
this thesis is based on. The Single-GPU shallow water simulator is also
introduced.

Chapter 3 gives a thoroughly explanation of my multi-GPU and
multi-node shallow water simulator. I propose techniques for extending
the single-GPU simulator to run on multiple GPUs. 1 first discuss
techniques for dividing a domain into several subdomains. Two additional
techniques, Ghost Cell Expansion and Early exit are also explained. Then,
I explain how this was extended to run on a cluster of nodes. Finally,
performance benchmarks for the multi-GPU and multi-node simulator are
also presented.

Then, the dynamic auto-tuning techniques are presented in chapter 4.
First, challenges related to the implementation of auto-tuning are briefly
discussed. Then, I propose and discuss auto-tuning techniques for load-
balancing between the graphics cards. The implemented technique is
divided into two algorithms that works together to determine the final
load-balance between the GPUs. Extensive performance benchmarks of
the complete auto-tuning technique are also presented.

Finally, I give my concluding remarks in chapter 5. Here, I review the
most important results.






Chapter 2

Background

Graphics cards were traditionally developed for graphics computations
in computer games, more specifically rendering two dimensional images
from geometric objects [5]. As a result, their architecture has traditionally
been fully geared towards this task. However, their massively parallel
architecture have made them suitable for high-performance computing,
which led to the field of GPGPU, or General-Purpose computing on
Graphics Processing Units [20]. GPGPU is the use of the GPU to perform
computations that is normally run on the CPU. However, earlier graphics
cards could only be programmed using a graphics API like OpenGL [12]
and eventually shader (programming) languages like OpenGL Shading
Language (GLSL) [13]. This made it hard to utilize their power for general-
purpose computations, as this required that the algorithms were mapped
to graphic primitives provided by these APIs and shader languages. To
solve this, several graphics card vendors have developed frameworks for
general-purpose computations on GPUs. For example, NVIDIA released
the CUDA toolkit in 2006 [26]. This has simplified the implementation of
scientific computations, for example for the use of systems of conservation
laws. The shallow water equations used in this thesis are an example of
such systems [10].

I will first give an overview of GPGPU programming on NVIDIA
graphics processing units in section 2.1. The summary emphasizes the
NVIDIA graphics card architecture and the CUDA framework to program
on them. Here, a brief programming example is also given. Then, in section
2.2, I explain the mathematical background of the single-GPU shallow
water simulator [7]. Here, the shallow water equations and numerical
schemes for solving them are introduced. Finally, in section 2.3, a brief
introduction of the single-GPU shallow water simulator used in this thesis
is given. [ summarize the most important parts of its structure and
implementation.

2.1 An introduction to GPGPU programming

For GPGPU programming on NVIDIA graphics cards, NVIDIA provides
the CUDA toolkit [26]. CUDA can be programmed in C, C++ and Fortran.
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In contrast to CPUs, GPUs are specialized for high data throughput and
parallel computing. Even with significantly lower clock frequencies they
can process data much faster than the CPU. Various GPUs also have
different compute capabilities following with a new core architecture. It is
therefore important to take this into account when developing applications
in CUDA, since newer graphics cards with newer compute capabilities
might enable more or better functionality.

2.1.1 Data parallel computations

GPUs are designed to utilize a parallel programming model [28]. They
excel when computations can be performed as data parallel computations.
Their architecture, compared to a CPU, have much more of their transistors
devoted to arithmetic processing and less to caching and control logic like
branch prediction.

Control ALU ALY

AL Al

lk

II]II][

CPU GPU

Figure 2.1: An overview of the CPU and the GPU architecture. As seen, the
CPU devotes more of its transistors to cache and control logic, while the
GPU dedicates most of its transistors to arithmetic units. Original figure
from CUDA C Programming Guide [28].

GPUs are also designed to utilize the Single Instruction, Multiple Data
(SIMD) parallel programming model [33]. SIMD expresses the idea that a
single instruction is used on multiple data elements, and therefore all these
elements can be processed in parallel. For CUDA, this means that each
parallel thread can be mapped to a separate data element while performing
the same instruction for all the threads. In CUDA, this is called Single
Instruction, Multiple Threads (SIMT) [28].

2.1.2 The CUDA framework

The CUDA framework is programmed using functions called kernels [28].
Kernels are a CUDA extension to standard programming functions and
are declared using the _ global__ keyword. They run on the GPU and is
called from the CPU. It is also possible to declare GPU functions that are
only called from the GPU. Such functions are declared using the keyword
__device__. The kernels are run using a large number of threads that all
execute the same kernel in parallel. These threads are again divided into
blocks, called thread blocks. All the threads inside a block can communicate
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with one another by using shared memory. It is also possible for threads
in different blocks to communicate together. However, this must be
performed with the global device memory on the GPU.

When a kernel is executed, the blocks are split into warps, where each
warp contains 32 threads. Each of these warps are processed in a SIMD
fashion which means that all the 32 threads runs the same instruction
in parallel. In addition, all the blocks are processed by a streaming
multiprocessor (SM), which a GPU has many of. Thread blocks can be
executed independently. This means they can be executed in parallel,
as well as serially. This makes it easy to write code that scales with
the number of cores on the GPU. When a kernel is executed the blocks
are distributed between the available multiprocessors. The threads in
a block execute concurrently and the SMs also have the possibility to
execute blocks concurrently. If a given program uses a high number of
multiprocessors it will run faster on a GPU with more of these than on a
GPU with fewer multiprocessors.

A detailed guide of CUDA is given in the CUDA C Programming Guide
[28].

The CUDA programming model

The CUDA model assumes a system consisting of a CPU, also called host
and a graphical processing unit, referred to as the device [28]. This means
that when programming in CUDA, the kernels with their related blocks
and threads run on the device while the rest of the program runs on the
host. The CPU and GPU is directly related to each other in that the host
allocates all the data, then invokes and transfers this data to the device.
The GPU acts as a co-processor which devotes all its power to processing
this data. When it is done processing, the data is often copied back to the
system memory again. For optimal performance, the serial parts of the
code should therefore be processed on the CPU, while the parallel parts
should be offloaded to the GPU [27].

Thread hierarchy

There are two main attributes to work with in CUDA [28]. These are
threadldx and blockldx. These are used when parallelizing the code. Also,
they are both three dimensional vectors. This makes it easy to implement
parallel CUDA code for one-, two- and three-dimensional data structures
and algorithms. These attributes can be used to identify the current thread
and block running. They can therefore replace data elements in an existing
serial code algorithm. This makes the code parallel so that each thread
computes on a separate data element.

Figure 2.2 gives an overview of the thread and block relation in CUDA.
As shown, each thread is grouped into a block or thread block as introduced
earlier. Each of these blocks can in turn be grouped into a grid. A kernel can
be executed by several blocks at the same time and each block can contain
up to 1024 threads on modern GPUs [28]. This produces the possibility
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of running several thousand threads for one kernel. The figure shows an
example of a two dimensional grid and block structure.

Gnd

Block (@ 0) ' Blodk(1,0)  Block (2 0)

Block (@ 1) Blodk (1, 1) ﬁ(zn

Figure 2.2: An overview of a block configuration in CUDA. Here, the
threads are grouped into two dimensional blocks, while the blocks are
grouped into two dimensional grids. Original figure from CUDA C
Programming Guide [28].

CUDA memory types

There are different memory spaces available on graphics cards [28]. First
of all, a graphics card has its own device memory which is a type of DRAM
memory. This memory can be accessed in several ways; as a global, constant
and texture memory, and is shared between all threads. Also, CPU threads
can initiate data transfers to and from this memory.

The global memory is the main memory that all threads can read and
write to. Constant and texture memory is optimized for constant variables
and textures, in addition to being read only. Constant memory is cached in
the constant cache while the texture memory is cached in the texture cache.
In addition, each thread has its own local memory space, also a part of the
device memory. This memory space is used for automatic variables per
thread, when there are not enough free registers.

The second type of memory is shared memory. This memory is shared
and accessible by all the threads in the same thread block, meaning that
each block holds a separate part of the shared memory. This type of
memory is also on-chip, which makes it a low latency memory useful for
communication between threads in the same block. This will give a good
speed up compared to using global memory instead.
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Figure 2.3: An overview of the memory spaces in CUDA. As seen, each
thread has a per-thread local memory. Furthermore, each block can access
an on-chip per-block shared memory, shared between all threads in the
given block. Also, all blocks share access to the global memory, or DRAM
memory. Original figure from CUDA C Programming Guide [28].

2.1.3 Programming in CUDA

To demonstrate the parallel capabilities of CUDA, I will here show and
explain some modified example code from [28]. This will also serve as a
brief practical introduction to CUDA.

As already stated, CUDA is programmed by making a kernel which
contains the code to be executed on the graphical processing unit. Kernels
are executed as standard function calls with the addition of the < <<, >>>
brackets that specifies the kernel configuration. This configuration specifies
the number of blocks and threads that will be used for the kernel execution.
CPU code written in a supported programming language can easily be run
on the GPU by only putting the code inside the kernel. Listing 2.1 shows
some basic CPU code that loops through and adds elements of vectors
of N size. The kernel is executed only one time, as a one dimensional
configuration of 1 block and 1 thread.

Listing 2.1: Basic kernel example

// Kernel definition
__global__ void VecAdd(float+ A, floatx B, float+ C)



for(int i = 0; i <N; i++)
Cl[i] = A[i] + B[i];
}

int main ()

{

// Kernel invocation with 1 thread
VecAdd<<<1, 1>>>(A, B, C);

However, to utilize the GPU architecture effectively, the parallel
possibilities in the code have to be identified. For example, loops can
easily be unrolled and replaced with CUDA attributes that specifies which
thread should compute on which data element in the code. Listing 2.2 is
a modified version of the above code with the loop unrolled and replaced
with parallel threads executing the same kernel and each computing on its
own part of the vector. For this case, the code uses the attribute threadldx.x
which gives the ID of a given thread numbered from 0 to N-1.

Listing 2.2: Kernel executed in parallel

// Kernel definition

__global__ void VecAdd(float* A, float* B, float: C)

{
int i = threadldx.x;
Cl[i] = A[i] + B[i];

}

int main ()

{

// Kernel invocation with N threads
VecAdd<<<1, N>>>(A, B, C);

Before a kernel call is made, it is also necessary to copy the CPU data
the kernel will compute on, to the GPU. This is done using a CUDA
memcpy function call. When the kernel is finished, the results from the
computations can be copied back to the CPU. This is demonstrated in
listing 2.3.

Listing 2.3: CPU-GPU transfers

int main ()
{
// Copy data to the GPU
cudaMemcpy (A, srcA, A.size » sizeof(float),
CudaMemcpyHostToDevice ) ;
cudaMemcpy (B, srcB, B.size * sizeof(float),
CudaMemcpyHostToDevice ) ;
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// Kernel invocation with N threads
VecAdd<<<1, N>>>(A, B, C);

// Copy results back to the CPU
cudaMemcpy (dstC, C, C.size * sizeof(float),
CudaMemcpyDeviceToHost ) ;

2.2 Mathematical background

Shallow water equations are a system of equations of hyperbolic conserva-
tion laws. A hyperbolic conservation law is used in a physical system to
describe a set of conserved quantities [21]. These equations can be used to
model physical phenomena such as dam breaks, tsunamis, tidal waves and
other forms of fluid motion. The shallow water equations can be written in
conservative form:

h hu ho 0
hu| + [hu®+igh?| + huv = (0]. 2.1
ho], huv ; hv? + 3 gh? y 0

Here, I denotes water depth, hu and hv is the momentum along the x-axis
and y-axis on a Cartesian coordinate system while g is the acceleration due
to gravity. An interesting note is that these equations are only applicable
in cases where the vertical velocity is small compared to the horizontal
velocity [7]. This however, applies in many cases for different types of fluid
motion. In vector form, the equations (2.1) are given as

Qi+ F(Q)x+ G(Q)y =0. (2.2)

Here Q is the vector of conserved variables while F and G is the fluxes
along the x-axis and y-axis on a Cartesian coordinate system, respectively.

For hyperbolic equations such as these, the standard way to solve is
to introduce a domain divided into cells and calculate the fluxes using an
explicit scheme. Two classical schemes for numerical solutions to such
hyperbolic equations are the Lax-Friedrichs and Lax-Wendroff schemes
[18, 19]. A brief summary of the Lax-Friedrichs scheme is given to serve
as a basic numerical scheme to solve the shallow water equations (2.1). A
more detailed introduction can be found in [10, 21]. The scheme can be
written in 1 dimension as

A 1 A
flae = 5 (it + £i) = oar (= uly). 3)

Here, f is the flux on a cell interface and u is either the water depth or
the momentum. The notation u} represents the quantity u at grid cell i
at timestep n. This could also be written u(x;, t,). This quantity is here
represented as the average of the cell.
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The purpose of this scheme is to compute the Lax Friedrichs flux. The
fluxes on the left and right cell interface are computed and the average
of these is used to approximate the flux for a cell boundary. These
types of operations, where a cell is updated according to the values of its
neighbors are also called stencil computations [40]. As can be seen, the At is
also needed. This is computed according to the Courant-Friedrichs-Lewy
(CFL) condition [21]. This is necessary for the solution to converge. This
condition is as follows:

At
— <1. .
A max|A(u)] <1 (2.4)

Here, (Ax) is the cell size and max|A(u)| is the maximum absolute
eigenvalue of the domain. The average cell quantity must also be updated
according to

W =l (e @5)
As can be seen, this equation updates the cell average with the computed
Lax-Friedrichs flux at the next timestep 1 + 1. One problem with the Lax-
Friedrichs scheme is that it smears the solution [10]. To approximate it bet-
ter, high-resolution schemes or REA with piecewise linear reconstruction
can be used [21].

The shallow water equations (2.1) defined only works for domains with
flat bathymetry. To correctly simulate dam breaks, tsunamis, tidal waves
and other forms of fluid motion over realistic terrain, bed slope and bed
shear stress friction terms needs to be added. The equations in conservative
form is now defined as

h hu ho 0 0
hu| + |hu®+ igh?| + huv = | —ghBy| + | —guvu?+v2/C?
hol, huwo | 0?4 Sgh? , L—8hBy —gu\Vu? + 02 /C?

(2.6)
Here, B is the bottom topography and C; is the Chézy friction coefficient.
In vector form, the equations (2.6) are given as

Qi+ F(Q)x + G(Q)y = Hp(Q, VB) + Hf(Q). 2.7)

Here, the additional terms Hp and Hy represents the bed slope and bed
shear stress source terms, respectively. Figure 2.4 defines both the water
depth I and the water elevation w. It is important to distinguish between
these two. I therefore define Q = [w, hu, hv]T as the vector of conserved
variables, and use this throughout the rest of the thesis. This means
that Q; is the water elevation, while Q> and Qs is defined as the water
momentum along the x- and y-axis of a Cartesian coordinate system,
respectively. To numerically solve the equations (2.6) Brodtkorb et al. [7]
required a numerical scheme that was well-balanced, conservative, second-
order accurate in space and supported dry zones. The Kurganov-Petrova
scheme [17] fits well with these properties and was therefore chosen as the
numerical scheme. According to [6], the scheme also has a good utilization
of the GPU architecture, in addition to being sufficiently accurate for
single-precision arithmetic. This provides twice as fast data transfers and
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Figure 2.4: (a) Shallow water flow on a bathymetry in 1D and definition of
variables. (b) Discretization of the conserved variables Q as cell averages.
Here, B is defined at the cell intersections. (c) Reconstruction of slopes for
each cell using the generalized minmod flux limiter. (d) Modification of
slopes to avoid negative values for h. (e) Reconstruct intersection values
from the left and right slopes. (f) Computing fluxes at each cell interface
using the central-upwind flux function [16]. Original figure from Brodtkorb
etal. [7].

arithmetic operations over double precision, in addition to that all memory
storage only uses half the space [7]. The Kurganov-Petrova scheme can be
written:

dQjj
dt

= H¢(Qyj) + Hp(Qij, VB)
— [F(Qit1/2j) — F(Qi—1/2))] = [G(Qijs1/2) — G(Qij-1/2)]

Here, B is the bathymetry defined at the cell corners and Q is given as cell
averages. Hy and Hp represents the bed shear stress and bed slope source
terms, respectively. F and G represents the fluxes across the cell interfaces
along the x-axis and y-axis on a Cartesian coordinate system.

(2.8)

2.3 The single-GPU shallow water simulator

The implementation of my work is based on the single-GPU shallow water
simulator by Brodtkorb et al. [7]. Interested readers are referred to this
article for a more detailed description. The original code is implemented
and runs on a single NVIDIA GPU. As stated in [7], the GPU was chosen as
the computational processor due to two main reasons. First, GPUs have
evolved to more general computational units and are therefore widely
used in scientific computing. Secondly, they are optimized for high data
throughput and parallelism and can therefore process much more data than
the CPU. Furthermore, the application is implemented in C++ and relies on
CUDA [26] for solving the numerical scheme, while OpenGL [12] is used
to visualize the results.

As mentioned, the numerical scheme chosen is the Kurganov-Petrova
scheme. The main work for the scheme is to solve the shallow water
equations (2.6) in 2 dimensions. This scheme maps well to the GPU and
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Figure 2.5: Figure shows a domain and how it is decomposed into
CUDA blocks on the GPU. A block is composed of several cells, each cell
corresponding to a CUDA thread, computing in parallel. Notice that the
blocks also have local ghost cells. The data variables Q, Hp and Hy are
given at cell centers (A) and B is defined at cell corners (B). Original figure
from Brodtkorb et al. [7].

its parallel architecture because it is an explicit scheme defined over a grid.
This makes it particularly effective to implement it on a GPU over the
traditional CPU, as each cell in the domain can be computed independently
and in parallel by a CUDA thread. Figure 2.5 outlines the domain block
decomposition of the simulator. Here, a domain is decomposed into blocks
and cells on the GPU, each cell corresponding to a thread. Each of the
blocks and threads runs in parallel on the GPU. Brodtkorb et al. [6] also
made use of single precision over double precision as this was proven to be
accurate enough for the selected scheme. This provides twice as fast data
transfers and arithmetic operations. Also, the application supports both
the first-order accurate Euler time integrator and the second-order accurate
Runge-Kutta time integrator.

The calculations for the numerical scheme are performed by four
CUDA kernels, outlined in figure 2.6 in a single step function. These four
kernels are, in order: calculating the fluxes, finding the maximum timestep At,
evolving the solution in time, and finally applying boundary conditions. A full
timestep with the second-order accurate Runge-Kutta time integrator need
to run through this step two times.

Substep 1 ( 1 Flux calculalion]

>( > Max timestep]7>( 3 Time inlegralion]

>[ + Boundary conditions] )

C) Substep 2 1 Flux calculation [ s Time inlegralion]

> ( + Boundary condiiionsJ

Figure 2.6: The single-GPU simulator step function. The first substep
calculates the fluxes, finds the maximum timestep, evolves the solution
in time, and applies boundary conditions, The second substep calculates
the fluxes, evolves the solution in time, and finally, applies boundary
conditions. Note that the first-order time integrator only runs through the
first substep, while second-order runs through both. Original figure from
Brodtkorb et al. [7].
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Flux calculation: This kernel is responsible for computing the net flux
from (2.8). As can be seen in (2.8), this involves first computing the flux at
all cell interfaces, and then computing the bed slope source term, Hp for
all cells. This is then summed to find the net flux. First, it reconstructs the
value of B at each interface midpoint to make it aligned with Q. Then, it
performs a reconstruction of the slopes for each cell using the generalized
minmod flux limiter (see figure 2.4c). This reconstruction does not guar-
antee positive values at the wet/dry integration points for the water depth
h. Therefore, modification of this variable is necessary to avoid negative
values, as seen in figure 2.4d. If this was not done, the numerical scheme
would not handle dry zones because the eigenvalues are u & /gh. Then,
the kernel reconstructs the intersection values Q" and Q~ from the slopes
(figure 2.4e). These values are then used to compute the fluxes F and G in
(2.8) at each cell interface using the central-upwind flux function [16], seen
in figure 2.4f. Finally, it computes the bed slope source term Hp in (2.8), and
calculates the net flux by summing this with the computed fluxes. Also, the
flux kernel is responsible for computing the maximum timestep per CUDA
block, used in the timestep kernel to compute the final maximum timestep.
This is done by computing the minimum eigenvalue per block.

Maximum timestep: This kernel inputs the per block timesteps calculated
in the flux kernel and computes the maximum timestep At from these. The
timestep is computed according to the CFL condition (3.1). The maximum
timestep is the maximum possible timestep to use and therefore the lowest
timestep.

Time integration: This kernel first computes the bed shear stress source
term, Hy from (2.8). Then, the kernel evolves the solution in time.

Boundary conditions: This kernel applies the boundary conditions for Q
used in the simulation. Boundary conditions are implemented using global
ghost cells, with two cells in each direction because the scheme is second-
order accurate. The application implements several types of boundary con-
ditions. The one used in my implementation is the wall boundary condition.
This condition is applied by inverting the momentum on the boundary cells
so that the water reflects back on the domain.

The application also provides both visualizing with a photo-realistic view
and a non photo-realistic view. The last method visualize the physical vari-
ables, like for example water depth &, using a color mapping function. Fi-
nally, the implementation of [7] was validated against several test cases,
including a real world dam break, The Malpasset dam break.
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Chapter 3

A multi-GPU and multi-node
shallow water simulator

Extending the single-GPU simulator to perform as a multi-GPU cluster
simulator can be performed in two main steps. First, the original domain
should be decomposed into several subdomains, so that several graphics
cards can compute on the domain in parallel. For this purpose, a domain
decomposition technique has to be implemented. Also, to propagate the
solution correctly between the subdomains, techniques for transferring
data between the subdomains needs to be investigated. A common
method is to exchange the ghost cells between the subdomains, forming
an overlapping area. Secondly, this multi-GPU implementation has to be
extended to execute on multiple nodes. This can be thought of as running
a multi-GPU simulation per process, each process running on a separate
node and communicating with the other processes over the network.

First, I explain and discuss several different domain decomposition
techniques, emphasising their advantages and disadvantages. This is done
in section 3.1. Next, in section 3.2, I propose my implementation of the
multi-GPU simulator. Here, I explain the implementation of multiple
subdomains on multiple graphics cards, as well as the ghost cell exchange
to propagate the solution between subdomains. Then, in section 3.3, I move
on to the multi-node implementation, explaining the extensions needed
for the multi-GPU simulator to run on a cluster of nodes. In addition,
several optimization techniques are demonstrated. First, a latency hiding
technique for the ghost cell exchanges, called Ghost Cell Expansion is
demonstrated and discussed. This is done in section 3.4. Secondly, an
implemented optimization technique called Early Exit is shown in section
3.5. Finally, I present extensive performance benchmarks of the complete
multi-GPU cluster simulator in section 3.6.

3.1 Domain decomposition techniques
Domain decomposition is the task of decomposing a single domain into

N number of subdomains. These subdomains can in turn be distributed
to different graphics cards, giving the ability to perform computations
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in parallel. However, there are several challenges related to solutions
consisting of multiple subdomains. First, one needs to determine how
a domain should be decomposed. This affects the solution in numerous
ways. For example, the number of neighboring subdomains is determined
by the decomposition technique. This affects the number of ghost cell
exchanges a subdomain needs to perform, and therefore the amount
of communication between the GPUs. There exist several methods
to decompose a domain, each with its advantages and disadvantages.
There have been multiple publications where such techniques have been
implemented [31, 34, 37, 1, 35]. Here, I discuss the techniques, with
emphasis on how they solve the above challenges. Figure 3.1 shows an
illustration of the techniques.

3.1.1 Row decomposition

I will first discuss the row decomposition technique, implemented by Seetra
and Brodtkorb in their multi-GPU implementation [35]. The technique
decomposes the global domain into N subdomains on whole rows so that
each new subdomain consists of a set of rows from the original domain.
Using this technique to decompose a domain with a resolution of 1000 x
1000 into two subdomains, each subdomain receives a resolution of 1000 x
500. It is also straightforward to decompose into subdomains of varying
resolutions with this technique. For example, in the above example, the
subdomains can also be initialized as 1000 x 700 and 1000 x 300 resolution
respectively. This is advantageous when using several different GPUs,
because each GPU can be set up with a subdomain suitably sized for their
computational power.

Seetra and Brodtkorb also [35] emphasizes two other advantages with
this technique. First of all, the technique enables the transfer of continuous
parts of memory between the subdomains when performing a ghost cell
exchange. This is because the domains are allocated linearly in memory,
row by row, meaning that several rows can be packed into a single transfer.
The second advantage is that each subdomain has at most two neighbors,
therefore decreasing the amount of data transfers necessary when doing a
ghost cell exchange.

3.1.2 Column decomposition

Instead of decomposing the domain row by row, it is also possible to
decompose it along the columns. This technique is identical to the above,
only that each new subdomain would consist of whole columns instead
of whole rows. Decomposing a domain of resolution 1000 x 1000 into
two subdomains would yield a resolution 500 x 1000 for each subdomain.
This technique has similar advantages as row decomposition. First of all,
it is simple to initialize subdomains of varying resolutions. Secondly, it
only gives a maximum of two neighbors to perform ghost cell exchanges
with, therefore minimizing the amount of subdomains to communicate
with. However, a disadvantage is that it is not able to transfer whole
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columns continuously in memory since the data is allocated row by row in
memory. This is important, since the ghost cells have to be exchanged by
transferring columns to the neighboring subdomains on the left and right
side. To transfer a column, one would need to transfer one cell at a time.
This would result in many small data transfers, compared to a single large
data transfer. This is not optimal because of the overhead related to each
transfer. Therefore it is better to pack these transfers into a single large
transfer [28].

3.1.3 Tile decomposition

The third and final technique is to decompose the domain into several tiles.
A similar technique is implemented by Song et al. in [34]. For example,
a square domain can be divided into four evenly sized subdomains. I
demonstrate it by decomposing a domain of resolution 1000 x 1000 into
four subdomains. In this case, all subdomains would get a resolution
of 500 x 500. It is also possible to set up these as varying resolutions.
There exist several disadvantages with this technique. First of all, one
would get several more neighbors to perform ghost cell exchanges with,
increasing the amount of data transfers. Secondly, when performing ghost
cell exchanges with the left or right subdomains, it still has to perform
several smaller transfers for the columns. Communicating with the top
and bottom subdomains however enables the transfer of rows as a single
transfer.

Global domain

Figure 3.1: A global domain decomposed using three different domain
decomposition techniques. The global domain is decomposed into four
subdomains. Left: Row decomposition. Middle: Column decomposition.
Right: Tile decomposition.
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3.2 Multi-GPU implementation

A multi-GPU implementation involves decomposing an initial domain
into several subdomains, distributing them to different GPUs. This
should function equally as a single global domain, which means that
communication between the graphics cards has to be performed. There are
several challenges related to implementing a multi-GPU solution. First of
all, the solution has to propagate correctly between the subdomains. This
means that the water needs to flow between the subdomain boundaries
as necessary. Secondly, the timestep At also has to be computed correctly
between the subdomains. To correctly evolve the solution, all subdomains
need to integrate using the same timestep At. These challenges, including
solutions to them, will be thoroughly explored and discussed in this
section.

3.2.1 Setting up two subdomains

To simplity, I first extended the code to only make use of two subdomains.
For this, I made a new class that extends the single-GPU domain class. This
class represents a subdomain in the multi-domain implementation.

In addition, a new class to manage the multi-GPU logic itself was made.
It takes the number of subdomains to initialize, amongst other variables as
input. The class has two primary functions, swap and step. The first func-
tion performs the ghost cell exchange, while step is the extended version
of the original single-GPU step function. This function will handle all the
new logic required for a multi-GPU simulation. This function is repeatedly
called to evolve the solution in time until the simulation is finished. All the
necessary functions and their implementation will be extensively described
in this section.

Initializing the subdomains: To initialize the subdomains, a domain de-
composition technique has to be utilized. Because of its advantages as
described above, I implement the row decomposition technique. This tech-
nique decomposes a global domain into several subdomains, each con-
sisting of a set of rows from the original domain. This is seen in the left
illustration in figure 3.1. All subdomains are initialized as equally large
parts of the global domain. For example, a domain could have a size of
1000 x 1000 cells. Utilizing the implemented decomposition technique, the
total size for all subdomains will be equal to the original domain. This
means that, for two subdomains, each subdomain would have a size of
1000 x 500 cells. Together, both of these would correspond to the original
1000 x 1000 domain. Each subdomain is also assigned to a different graph-
ics card. This was fairly straightforward, as the only additional code was to
call the CUDA function cudaSetDevice at the appropriate places. The func-
tion takes the GPU ID as the input. The ID is numerated in the range of
0 to cudaGet DeviceCount() — 1. The function cudaGetDeviceCount() returns
the number of GPUs in the system. The function is called when initializing
the subdomains, as well as for each step call and memory allocation of the
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subdomains. The GPU ID is stored for each subdomain and used where
necessary to change the GPU device.

Ghost cell exchange: Each of the subdomains will now be a separate sim-
ulator which computes its domain independent of the other. To evolve the
solution correctly, the values of each boundary cell needs to be propagated
properly between the domains. This is solved by copying boundary cells
from both neighboring subdomains into the other subdomain. More spe-
cifically, I copy the two bottom rows of the upper subdomain to the ghost
cells of the bottom subdomain. Then, I copy the two upper rows of the
bottom subdomain to the ghost cells of the upper subdomain. This can be
seen in figure 3.2. This is performed for the water elevation and water mo-
mentum data, the Q1, Qz, Q3 buffers. The ghost cells of both subdomains
are part of an overlapping area, functioning as a boundary condition which
connects both subdomains.

Figure 3.2: A ghost cell exchange for two subdomains, each with a 6 x 5
resolution. The internal cells are shaded in dark and ghost cells in light.
The light shaded parts in the red and green rectangles are the overlapping
region that connects each domain in the ghost cell exchange. The rows
marked red in the bottom subdomain are copied to the ghost cells of the
upper subdomain, while the rows marked green in the upper subdomain
are copied to the ghost cells of the bottom subdomain.

The ghost cell exchange between the subdomains is done before each
simulation timestep. This means that it is called at the start of each call to
step. I copy between both subdomains, for each of the three data buffers, the
water elevation Qj, and the water momentum in the x and y directions Q>
and Q3. When performing a ghost cell exchange between the subdomains,
the data will be transferred over the PCI Express bus. The swapping
is performed with the function cudaMemcpy3DPeerAsync. This function
does a peer-to-peer-transfer, meaning a transfer between two graphics
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cards. There are also other alternatives to using this function. Another
efficient alternative for older compute capabilities would be to download
the necessary data from the source GPU to pinned CPU memory and upload
this to the destination GPU. I use peer-to-peer memory transfers because
this gives the fastest implementation for graphics cards supporting this
[29].

As seen, the 3D version of the function was also used. The reason for
this is that the data is allocated in a two dimensional fashion. The 3D
method therefore provided the most elegant solution to access and transfer
the data in a two dimensional fashion. Also, a 2D version of the function
was not available in CUDA.

Finally, it is worth noting that I use the asynchronous version of the
peer-to-peer function. This is done to give more efficient code, letting the
CPU proceed to the next instruction, while the issued CUDA peer memory
copy runs in parallel. In addition, it also gives the possibility of overlap-
ping data transfers. The alternative would be that the CPU blocked, wait-
ing for the peer-to-peer memory transfer to finish. This would waste com-
puting cycles on the CPU and the CUDA invocations would not be able to
overlap. To enable asynchronously use, a variable called a CUDA stream
is used. This variable is sent in with each transfer. All calls made with
the same stream is processed in-order as explained in [28]. When doing a
peer memory copy between two given subdomains I issue it with the same
stream used for kernel execution on the destination domain. Because of the
in-order property this guarantees that the GPU will not start kernel invoca-
tions for the subdomain before the memory copy is finished.

Timestep synchronization: Each of the subdomains maintains its own
timestep, At. To evolve the solution correctly, they need to agree on the
same timestep. Seetra and Brodtkorb [35] discusses two methods for hand-
ling this. The first is to use a globally fixed timestep for both subdomains.
For the solution to propagate correctly, this timestep has to be equal to or
below the smallest timestep allowed by the CFL condition for the whole
simulation. The second method is to synchronize the timesteps from both
subdomains and choose the smallest. The reason for choosing the smallest
timestep is because it is guaranteed to be an allowed timestep for both sim-
ulations. I chose to implement the second method. This method allows the
solution to propagate as fast as possible. Using a globally fixed timestep
could have given a slower simulation because the timestep could likely
have been higher. It is also hard to estimate a large enough fixed timestep
that evolves the solution correctly.

Seetra and Brodtkorb [35] also performed tests using both a fixed
global timestep and synchronizing the timestep between multiple graphics
cards. They found that the difference in performance was negligible for
reasonable sized domains. As such, they concluded that synchronizing the
timesteps was a viable method to use.

To synchronize the timestep, the current single-GPU step function
(see figure 2.6) need to be divided in two. I extend this to my own
implementation of step, shown in listing 3.1. The reason for this is that
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the current function calls all the necessary kernel functions in order. It
first computes the fluxes, then finds the maximum timestep, and solves
the equations forward in time by executing time integration. Finally, it
applies boundary conditions. I now need to divide this in half so that both
domains can synchronize after finding their respective timestep. They can
then continue to execute the second half using the same timestep. For
this purpose, two new functions were made, stepl and step2. Function
stepl will compute the fluxes and find the maximum timestep, while step2
performs the time integration and applies boundary conditions. First, both
subdomains will now run the stepl. Then, they continue to synchronize
their timesteps. This is performed by transfering the timestep from the
GPU of each domain to the CPU. The CPU code iterates through and finds
the smallest timestep. Then, it copies this timestep back to the respective
GPU of both domains by iterating through them and calling the function
cudaMemcpyAsync. Finally, the subdomains execute the step2? function with
the same timestep.

3.2.2 Extending to N number of subdomains

Having two subdomains set up and functioning correctly on two graphics
cards, I would need to implement N number of subdomains so that
an arbitrary number of subdomains could be initialized on an arbitrary
number of graphics cards. For this, an extension was made for the ghost
cell exchange. Because there is now more than two subdomains, the middle
subdomains have two neighbors to exchange ghost cells with. This is
shown in figure 3.3. The middle subdomains therefore need to perform
a ghost cell exchange in both the north and south direction. The outer
subdomains perform the ghost cell exchange as before.

In addition, the subdomains has to be distributed to N number of
graphics cards automatically. The number of GPUs to use is inputted as an
application argument. This is however restricted to the number of graphics
cards available in the computer. I distribute each subdomain to the next
available card. For example, if a simulation sets up three subdomains and
two GPUs, the first and second subdomain is allocated for the first and
second GPU respectively, while the last subdomain is allocated for the first
GPU again.

3.2.3 Asynchronous execution

It is also necessary to make all subdomains run the stepl, step2 and
related functions asynchronously. In the current code there was some
synchronization that made the CPU code block at each subdomain. Since
it performs calls to subdomains serially, it would therefore not go on
to start execution for the next subdomain. This was fixed so that the
CPU code would proceed correctly and all subdomains were able to run
asynchronously. This is especially important when utilizing multiple
GPUs, when each subdomain resides on a different graphics card. Here,
it is important that the CPU code continue kernel execution for all
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Figure 3.3: A ghost cell exchange for N number of subdomains, each with
a 6 x 5 resolution. Again, the inner cells are shaded in dark and ghost
cells in light. The light shaded parts in the red and green rectangles are
the overlapping region that connects each subdomain in the ghost cell
exchange. Notice that the inner subdomains need to swap two ways, while
the outer subdomains only exchange in one direction.

subdomains, while the already executed subdomains run in parallel. As
a result, all GPUs are able to run in parallel, providing a speed up over a
single-GPU solution.

3.24 Extending to subdomains of different sizes

I have also implemented the ability to decompose the subdomains into
different sizes. I explain and demonstrate this further with a case consisting
of two subdomains A and B, each residing on a separate graphics card.
When initializing these domains from the global domain, both could be
set to half the size, letting each card compute on half the domain. For
many hardware setups, this would be appropriate. However, in several
cases it could be more advantageous to initialize the subdomains with
different sizes. For example, if both graphics cards had different amount
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of computational power, letting both subdomains have the same resolution
would not yield optimal performance. This is because the high end card
would always finish before the other, stalling the simulation. It would
therefore be a better strategy to initialize the subdomains with different
resolutions. For example, subdomain A residing on the high end card
could get 70% of the original domain, while B residing on the other card
could get 30%. This solution would yield better performance because both
GPUs would compute on domains more ideal for their performance.

Another advantage with subdomains of different sizes is that they can
be divided in different sizes depending on runtime parameters. This opens
up for dynamically decomposing the domain into subdomains of different
sizes at runtime. This has good potential of improving the performance of
the implemented multi-GPU/node simulator.

Implementation: I extend the original domain decomposition by input-
ting a workload argument, describing the percentage of workload each sub-
domain should be given. I first translate the workload argument to an ar-
ray where each index represents the workload in percent for a given sub-
domain. Next, the workload in amount of rows for each subdomain is
computed. This is accomplished by looping through the workload array,
applying the following formula on each subdomain:

_ nywp
wr = 100 (3.1)

Here, wr is the resulting workload in amount of rows for each subdomain,
ny represents the amount of rows in the original global domain, while wp
represents the workload in percent to be given to each subdomain. Rest
cases are handled by giving the first subdomain the extra work. The offset,
to correctly read from the global buffer is also calculated. Finally, each
subdomain is initialized on the correct graphics card as before.

Finally, I show a pseudocode listing for the multi-GPU code, showing
the basic structure and function calls of the step function.

Listing 3.1: Overview of the step function for multi-GPU

void step ()
{
if (one simulator)
step() // Run the original single—-GPU simulator
else // For multi—-GPU
/*
* Perform ghost cell exchange
* between all subdomains
*/
swap ();

/*

* Call stepl for all subdomains,
* running the flux and timestep kernels
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*/

for each subdomain

stepl ();
/*
* Perform dt synchronization
*/
/*

* Get timestep from all subdomains
* and find the smallest

*/
for each subdomain
getDt ()
/*
* Set the smallest timestep for all subdomains
*/
for each subdomain
setDt ()
/*

* Call step2 for all subdomains,
* running the time integration and BC kernels.
*/
for each subdomain
step2 ();

3.3 A multi-node simulator

I have implemented a multi-node simulator running my multi-GPU
shallow water simulator on several parallel processes. This is implemented
using the Message Passing Interface (MPI) [24], a high performance API
for communication. I use version 3.1 of the MPICH [25] implementation
of MPL It is then possible to initialize the shallow water simulator with
several processes running a copy of the same executable. This enables
it to take advantage of several computers, referred to as nodes, so that
each process runs on a different node. Each process can also consist of
a set of subdomains running on multiple graphics cards residing on the
node. As such, I have a fully working shallow water simulator that utilizes
multiple levels of parallelism; multiple nodes, multiple graphics cards in each
node, and the parallelism on the GPU itself (see section 2.3 and figure 2.5).
Enabling the use of multiple nodes also gives the possibility to use external
computing power such as the cloud to compute simulations.
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3.3.1 Design

The multi-node simulator is implemented as modularly as possible. 1
wanted the new code to run on top of the existing multi-GPU code so
that the new code did not interfere too much with the existing code.
This enabled me to write the code as new functions that runs in addition
to the existing functions. This means that, when running a multi-node
simulation, the application would proceed as before, calling the necessary
swap and step multi-GPU functions. However, it would also call additional
functions that handle multi-node specific logic, for example ghost cell
exchange between subdomains at different processes. These functions runs
completely separated from the current code.

Also, a multi-node version of the current code is, in reality, only several
executables of the same code running in parallel on different computers.
This means that each of the executables are a separate multi-GPU shallow
water simulator running and computing on its subdomains completely
separated from the others. The only exception being some synchronization
and communication that needs to be done between the processes at specific
locations in the code. Figure 3.4 outlines the multi-GPU cluster simulator.

This design has several advantages. By separating the code as much as
possible I know that the existing multi-GPU code runs just as before and as
such it is not possible to introduce new errors here. In addition, it made it
much easier to implement the new code, as well as implementing new code
for both the multi-GPU and multi-node version. If I make any changes to
any of them it should not interfere with the other. Figure 3.4 outlines the
multi-node simulator more closely.

3.3.2 Implementation

For the implementation, several extensions are made to the code. First,
a new runtime argument multi_node is made. This can be set to true to
run a multi-node simulator. This variable is used to check if the multi-
node version is currently executing and then do the additional function
calls to handle the multi-node logic. I also store the process rank (process
ID) as given from MPI functions for each process. This is used so that
processes can execute different code where they need to. Finally, MPI_Init
and MPI_Finalize are called to handle allocation and deallocation of MPI.
To simplify, I made an assumption regarding how the subdomains were
divided between the processes, and divide them serially. For example, if
four subdomains and two processes are initialized, the processes will re-
ceive the first two and last two subdomains respectively. In contrast, it is
not possible to give the first process the first and last subdomain while the
second process gets the two middle subdomains. This would however give
more flexibility. For example it would be easier to distribute the subdo-
mains that contained more wet cells to the nodes that had more powerful
hardware. However, this gave unnecessary complexity that is not neces-
sary to deal with to compute simulations efficiently. I also figured out that
I could get more or less the same results by simply changing the domain
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Figure 3.4: Shows the two implemented levels of parallelism of the shallow
water simulator. Here, each blue box represents a node and each red box
represents a GPU on that node. The figure shows a global domain that is
distributed between two nodes so that each node in parallel compute on
a separate subdomain. These subdomains are also computed in parallel
between two GPUs on both nodes. As seen in the figure, each node and
GPU have a different amount of workload of the global domain. The
implementation supports N number of nodes and N number of graphics
cards per node.

size dynamically during runtime. This functionality is also implemented
as a part of the simulator. By doing this, it would be possible to compute
larger domains on the nodes with more computational power.

Initializing the subdomains: For the code, I first of all modify the code
to initialize the simulation correctly for a multi-node setup. The initializa-
tion sets up each subdomain as before and is therefore decomposed from a
single domain. The only additional change is to check if multi-node is en-
abled, and distribute them appropriately between the processes. To make
the implementation more flexible, I also made new runtime arguments to
determine the number of subdomains and GPUs to run per process.

Ghost cell exchange: Additional changes were also made for the ghost
cell exchange. The standard single-process exchange is performed exactly
as before. The swap function is executed to exchange ghost cells between
subdomains located in a given process. However, for the multi-node sim-
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ulation, one also need to do additional ghost cell exchanges between sub-
domains located at the interfaces of each process. This means that I need
to perform ghost cell exchanges between the processes. This is handled by
a new function called swap_mpi. The main difference between these two
functions is that the first function only do data transfers between graph-
ics cards located in the same computer, while the last perform data trans-
fers between different computers connected over a network. The function
swap_mpi therefore takes longer time to perform. The function is imple-
mented in a similar manner as swap with the exception that it uses MPI
function calls to transfer the ghost cells across the network.

I implement the ghost cell communication asynchronously so that each
MPI call is asynchronous. This is done so that the CPU can proceed and
issue the next MPI calls, overlapping with the other MPI transfers. For
each process, I handle communication at each interface of the subdomain.
The subdomain data to send is first downloaded into three separate buf-
fers called send_cpuBufferl, send_cpuBuffer2 and send_cpuBuffer3 for each of
the Q1, Q», Qs buffers of the simulator. Next, a call the function MPI_Irecv
is performed, receiving the three buffers from the other process into three
buffers called recv_cpuBufferl, recv_cpuBuffer2 and recv_cpuBuffer3. Then,
the first three buffers are sent with the MPI function call MPI_Isend to the
other process. Finally, the received data in the final three buffers can be
uploaded to GPU memory. Before this however, it is necessary to block
on receive to make sure the process have received the ghost cells from the
other process. If this was not done I would risk uploading buffers pointing
to invalid data causing large errors in the implementation. This is done by
calling the function MPI_Wiaitall for all receive requests.

Timestep synchronization: Finally, for the timestep synchronization, I also
add additional code. The existing code finds the smallest timestep between
all the subdomains of a single process. This code is first run per pro-
cess, similar to the non multi-node implementation. This means that each
process computes the smallest timestep for all its subdomains as before.
The timesteps for all processes are then synchronized to find the smallest
timestep between the processes. This is the only code that is added in ad-
dition to the existing synchronization. I implement this using MPI function
calls.

There are several ways to implement this. One possibility would be
to designate a master process which has the responsibility of receiving all
timesteps from the other processes, compute the smallest and broadcast the
value back to the other processes. The function calls MPI_Isend, MPI_Irecv
and MPI_Ibcast could be used to handle this. Instead, I chose to use the
function MPI_Iallreduce which encapsulates this functionality in one single
function call. This method does a reduction of the values from all processes
and sends the result back to all processes. The function can perform
several types of reductions. I send in the argument MPI_MIN to do a
minimum reduction. This allows me to find the smallest timestep between
all processes in a single function call. Finally, each process can now upload
this timestep to the GPU as before.

29



Finally, listing 3.2 shows the simulator function calls for multi-node. It
shows the basic multi-GPU code run by each process, as well as the multi-
node specific extensions.

Listing 3.2: Overview of the step function for multi-node

void step ()
{
if (one simulator AND no multi—node)
step() // Run the original single—GPU simulator
else
/*
* Perform ghost cell exchange
* between all subdomains and all processes

*/
swap ();
if (multi_node) swap_mpi
/*
* Call stepl for all subdomains
*/
for each subdomain
stepl ();
/*
* Perform dt synchronization ,
*/
/*

* Get timestep from all subdomains
* and find the smallest

*/
for each subdomain
getDt ()
/*
* Find smallest timestep between processes
*/
if (multi_node) MPI_Ilallreduce ()
/*
* Set the smallest timestep for all subdomains
*/
for each subdomain
setDt ()
/*
* Call step2 for all subdomains
*/
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for each subdomain
step2();

3.4 Ghost Cell Expansion

To further improve the performance of the multi-GPU cluster simulator
I have implemented a latency hiding technique called Ghost Cell Expansion
(GCE). The technique is an extension to the ghost cell exchange performed
by the swap and swap_mpi functions. The technique has been thoroughly
investigated by others [35, 8, 14] and have shown a good performance in-
crease. The technique allows the implementation to handle less communic-
ation of data between the subdomains. The currently implemented solu-
tion does one ghost cell exchange per timestep. By increasing the ghost
cell overlap between the subdomains, it would be possible to run more
timesteps before doing a ghost cell exchange. The increase in overlap res-
ults in larger subdomains. This gives larger but fever data transfers, there-
fore decreasing the overhead related to transferring many small data pack-
ages. However, as stated in [8], disadvantages is the use of more memory
and the extra computation costs for the slightly larger subdomains. Figure
3.5 shows a ghost cell exchange with no additional overlap.

Various authors have investigated this technique, reporting both a good
increase in performance and no additional increase in performance. Seetra
and Brodtkorb implemented the technique on a multi-GPU shallow water
simulator [35]. They benchmarked the technique using three domain
resolutions on three different systems. The first system was a Tesla S1070
system with four Tesla C1060 GPUs, the second system is a SuperMicro
SuperServer consisting of four Tesla C2050 GPUs and the third system is
a desktop computer consisting of two GeForce GTX 480 graphics cards.
The first system, the Tesla C1060 system, gave no additional performance
increase for large domains. They concluded that an overlap of 4, resulting
in a ghost cell exchange each timestep, was most appropriate. The smallest
domain gave a good performance increase when increasing the overlap.
They argued that this was because the transferred data volume was so
small, that the overheads became noticeable. The C2050 system showed
a performance increase for all domain resolutions when increasing the
overlap. They argued that this was because these GPUs were much faster,
resulting in a significantly increase in communication overheads. A global
overlap of 32 provided the best performance. The GeForce GTX 480 system
showed equivalent behavior to that of the C2050 system, also having 32 as
the most optimal global overlap.

Ding and He [8] also implemented the GCE technique to reduce
communications in solving PDE problems on cluster systems. They
benchmarked it on two systems, the Cray T3E and IBM SP. They reported
a good speed up in communication, up to 170%, increasing the overlap.

To mathematically describe the technique, I introduce two formulas
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described in [35]. The time taken for a single timestep running a ghost
cell exchange every timestep can be written with the following formula.

wy; = T(m)+cr+C(m,n)+c. (3.2)

Here, m and n are the domain dimensions, T(m) is the ghost cell transfer
time, cr represents transfer overheads, C(m,n) is the time it takes to
compute on the subdomain, and c represents other overheads. Expanding
this to using GCE to exchange ghost cells only every kth timestep, the time
taken for a timestep is represented by

wy = T(m)+cr/k+C(m,n+ O(k)) +c. (3.3)

Here, the transfer overheads are divided by k and O(k) represents the
additional time it takes to compute on the larger domain. I have
implemented the technique for both the first-order accurate Euler time
integrator and the second-order accurate Runge-Kutta time integrator. The
overlap is decided by the stencil of the scheme. For the first-order accurate
Euler time integrator, the overlap can be increased as a multiple of 4.
The second-order accurate Runge-Kutta time integrator requires twice the
overlap of first order.

[ [ FEE

Figure 3.5: A ghost cell exchange with no additional GCE overlap.
Here, showing two 8 x 10 subdomains. The light shaded parts are
the overlapping region that connects each subdomain in the ghost cell
exchange. No additional row of cells need to be defined and the ghost
cell exchange is performed each timestep.
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3.4.1 Implementation

To easily vary the level of overlap, I implemented a runtime argument to
input the overlap. This is inputted as a global overlap. An overlap of 4
would give each subdomain an overlap of 2 ghost cell rows, representing
no additional overlap. This is illustrated in figure 3.5. An overlap of
8 gives twice the overlap for each subdomain, illustrated in figure 3.6,
and results in two timesteps per ghost cell exchange. Each additional
overlap allows one more timestep before doing a ghost cell exchange.
Also, for each new overlap, extra rows are required for all subdomains.
The extra rows of cells is added when initializing the subdomains, and is
determined by overlapPerDomain — 2. For example, using a global overlap
of 8 would yield an overlap of 4 per subdomain interface. This gives two
additional rows to add for each subdomain interface. This means that,
the bottom subdomain add the extra rows at the upper part, while the
upper subdomain add the rows at the bottom of its domain. All middle
subdomains need to add the extra rows at both ends.
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Figure 3.6: A ghost cell exchange with a global GCE overlap of 8.
Here showing two 8 x 10 subdomains. The light shaded parts are
the overlapping region that connects each subdomain in the ghost cell
exchange. As seen, two additional row of cells needs to be defined for
this overlap at each subdomain interface. The ghost cell exchange is here
performed only each second timestep.
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3.5 Early exit optimization

I have also implemented an optimization technique called early exit. The
technique scans the domain by computing a dry map and use this to skip
flux computations for parts of the domain that does not contain water.
This has the potential of giving much better performance, especially when
simulating real events such as flood events which contains a lot of dry
areas throughout the simulation. The downside is the increased overhead
related to computing the dry map. I first explain how I implemented this
for a single domain, and then the extensions needed for the multi-GPU
implementation.

3.5.1 Implementation

The technique is implemented on a per block basis. This means that
the algorithm is applied on each CUDA block in the domain, computing
whether it contains any wet cells, i.e., cells with water. One also needs to
check the neighboring blocks, because of the local ghost cell overlap used
between the blocks (see figure 2.5). A block is marked wet if the block
contains at least one wet cell. If there are no wet cells it is marked dry. If
the current block and all its neighboring blocks are marked dry, the flux
computations can be safely skipped for this block.

Wet block
N

- —

I
Dry block

Figure 3.7: Illustrates the early exit technique on a 32 x 32 domain with
8 x 8 blocks, each with a resolution of 4 x 4 cells. Wet cells are marked
in blue. The red dotted stencil shows the early exit check for the current
block (middle) and its neighboring blocks. Here, early exit is not performed
because some of the blocks are marked as wet.

I first implement this for a single domain simulation. For this, there
are two parts of the code that need to be modified: the flux kernel and the
time integration kernel, described in section 2.3. Both of these kernels are
divided into blocks that run independently. The time integration kernel
computes a dry map, used in the flux kernel to check whether to perform
early exit. Since each thread represents a cell in the simulator domain,
this can be done by performing a reduction on all threads. Each thread
compute if its cell contains water or not, i.e., it contains a 0 (dry) or 1 (wet).
A reduction to compute the maximum value is then performed. This value
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is then inputted to the dry map by all blocks. This value will be 0 if all cells
were dry and 1 if at least one cell was wet. To optimize the computations,
the reduction makes use of shared memory on the GPU.

The dry map is inputted to the flux kernel where it is used to check if
early exit should be performed. I implement this functionality in a new
device function. The function scans the dry map, extracting the marked
value of current block and its neighboring blocks. If all the values are 0,
the function can return true to immediately return from the flux kernel,
performing early exit. If at least one of the values are 1, the flux kernel
need to continue its computations, since this means that at least one cell in
at least one of the blocks was marked as wet.

To enable and disable use of the early exit optimization, I have
implemented a runtime argument. It is implemented in such a way that
when set to false, the early exit dry map is not computed and the flux kernel
will not check whether to run early exit or not.

I demonstrate the technique in listing 3.3 by showing the early exit test
in the flux kernel.

Listing 3.3: Overview of early exit in flux kernel

/*

* Function checks if early exit should be performed

* based on the dry map

* bx,by = block ID

*/

template <bool early_exit>

__device__ bool early_exit_test(int bx, int by)

{
// Check if early exit is disabled
if (!early_exit) return false;

// Get the value of the current block
current = getValue(D, bx, by);

/*

* Get the value of all neighboring blocks
* that exists from the dry map (D)

*/

if (bx+1) right = getValue(D, bx+1, by);
if (bx—1) left = getValue(D, bx—1, by);

if (by+1) bottom = getValue(D, bx, by+1);
if (by—1) top = getValue(D, bx, by—1);

// Check each block wvalue of the dry map
if (current == 0 && right == 0 && left == 0
&& top == 0 && bottom == 0)
return true; // Do early exit if dry
else
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return false; // No early exit

}
/*

* Flux kernel running early exit

* and computing the fluxes

*/

__global__ void FGHKernel ()

{
// Get current block id
int bx = blockldx.x;
int by = blockldx.y;

// Perform early exit
if (early_exit_test<early_exit >(bx, by)) return;

// Continue kernel here

3.5.2 Multi-domain extension

The current implementation of early exit works well when simulating only
one domain. For my multi-GPU implementation, it will however not work.
The reason for this is that the ghost cell exchange function executing at
the beginning of each timestep modifies the domain buffers that the dry
map was computed from. Specifically, the ghost cell exchanges propagate
the water between the subdomains. This means that the computed dry
map is based on data that no longer exist. For example, if a given cell
was dry in the time integration kernel, it might now be defined as wet
since the water might have propagated over from the other subdomains.
The dry map can therefore not be safely used in the flux kernel. There
are several strategies to solve this problem. A simple method is to always
compute on the boundary cells. This might give a slighter less efficient
implementation since the border blocks never perform early exit. Another
strategy is therefore to make a dedicated early exit kernel. Here, I put the
reduction algorithm from the time integration kernel. The computation of
the dry map is therefore done in a separate kernel call. I run the early exit
kernel before the flux kernel and after the ghost cell exchange call. This
will ensure that the dry map for each subdomain is based on the newest
updated domain buffers and can be safely used in the flux kernel.

3.6 Results

To validate the performance of the multi-GPU cluster simulator, several
benchmarks have been performed. The plots for all benchmarks are
produced using scripts made in the Python programming language [32].
The scripts run the necessary simulations which output the result data to
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Figure 3.8: An idealised circular dam break in a square computational
domain. This case describes a circular water column surrounded by a wall
on a flat bathymetry. At time t = 0 (left), the dam instantly collapses,
creating an outgoing circular wave, seen at t = 10 (right).

a file. The data is then read from the file and plotted using the library
matplotlib [23].

Most benchmarks have been run on a system composed of a 2.67 GHz
Intel Core i7 920 CPU, 6 GB system memory and two GeForce GTX 480
graphics cards with 1.5 GB memory each. When other systems are used, it
is specified closer for each benchmark. To benchmark my implementation,
a synthetic idealised circular dam break case have been used [36] as shown
in figure 3.8. This case describes a circular water column placed in the
middle on a flat bathymetry. I use this case for all benchmarks.

I first demonstrate the performance of the implemented multi-GPU
and multi-node code in section 3.6.1. These benchmarks run multiple
domains of varying resolutions (number of cells) on multi-GPU and multi-
node systems. This is compared using one graphics card to verify the
speed up. The benchmarks showed great scaling increasing the domain
resolution on multi-GPU and cluster systems. Secondly, a benchmark of
the Ghost Cell Expansion technique is shown in section 3.6.2. It is first
demonstrated on a single-node system using two graphics cards. Then, it
is shown on a cluster of two nodes. As the benchmarks showed, GCE had a
negative performance impact, and in most cases produced linear decrease
in performance increasing the overlap.

3.6.1 Performance of the multi-GPU and node implementations

Here, I demonstrate the performance of the implemented multi-domain
code for both systems composed of multiple graphics cards and multiple
nodes. The benchmarks are run on a domain initialized as a flat circu-
lar dam surrounded by a wall with radius R = 200m in a square com-
putational domain of size 2000m x 2000m with center at x. = 1000m,
Y. = 1000m. The following is set as initial conditions: The bathymetry
Bisset to B(x,y,0) = 0. The water momentum along the x-axis and y-axis,
Q2 and Qs is set to Q2(x,y,0) = Q3(x,y,0) = 0. The water elevation Q; is
set to:
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Qr=1m if(x—x)*+(y—y.)? <R?
Q1 =0.1m if (x —x)*+ (y —y.)? > R
The initial conditions were also set up to use wall boundary conditions
with early exit disabled. At t = 0, the dam instantly collapses, creating an

outgoing circular wave that propagates until ¢t = 60. More detailed initial-
ization parameters are described specifically for each benchmark.

Qi(x,y,0) = {

Performance of the multi-GPU implementation

The first benchmark I run demonstrate the performance of my multi-GPU
implementation versus the single-GPU implementation of the simulator.

The benchmark run simulations with a square domain with resolutions
of (2" x 2"), where n = 8 — 12. The first simulation uses resolution
256 x 256 while the last simulation uses 4096 x 4096. For each simulation,
the execution time is measured. These simulations are first run on a single
GPU. Then, they are run using 2 GPUs. For the last case, each domain is
first decomposed into two subdomains, one for each GPU. Then, the multi-
GPU simulations are rerun, decomposing the domain into four subdomains
so that each graphics card computes on two subdomains. For both cases,
the domains are decomposed equally so that both cards receive an equal
amount of workload.

The benchmark measures how long it takes to run a given domain
on a single GPU versus using 2 GPUs. This is useful to see if the code
is implemented correctly and also to verify that the simulation scales
well and are able to take full advantage of all the graphics cards. Also,
decomposing into four subdomains shows how well the multi-GPU setup
performs when each graphics card computes on more than one domain.
The benchmark is also executed two times, first with the first-order accurate
Euler time integrator, then with the second-order accurate Runge-Kutta
time integrator. I do this to validate that the multi-GPU implementation
is implemented and behaves correctly for both time integrators. Both
benchmarks are seen in figure 3.9.

First of all, the plots clearly show that the simulations on 2 GPUs
runs faster than when using only 1 GPU. Simulations with large domain
resolutions run close to twice as fast when using two graphics cards.
This confirms that the solution behaves asynchronously, which means that
the CPU do not block at specific places in the code. This is important,
so that each GPU runs in parallel with the others. Also, both plots
demonstrate equivalent behavior. This shows that both time integrators
are implemented correctly with no synchronous code

Also, the performance gap between single- and multi-GPU increases
as the domain resolution grows larger, i.e., larger resolutions gives better
performance than smaller domains when running on two graphics cards.
This behavior is expected, because when the domains are small, the first
GPU may finish before the second starts to compute on its subdomain.
This is because the CPU invokes kernel execution for the subdomains on
the graphics cards serially. This means that it first invokes the first GPU,
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Figure 3.9: Performance benchmark running domain resolutions from
256 x 256 to 4096 x 4096 on an idealised circular dam break. These are
run using 1 and 2 GeForce GTX 480 graphics cards. For the last case,
each domain is decomposed into both two and four subdomains. (Left):
Using the first-order accurate Euler time integrator. (Right): Using the
second-order accurate Runge-Kutta time integrator. As seen, it shows good
scaling when increasing the domain resolution on multi-GPU, doubling the
performance for the largest resolutions.

and then proceed to the next GPU. As a result, there will be a small time
gap between the invocations of GPUs. This can easily be seen in the plots,
where the simulations on the smallest domain resolution do not run much
faster using multiple graphics cards. For the lowest resolutions, it performs
worse. However, this is not important since small domain resolutions are
not candidates for multi-GPU simulations.

Finally, running four subdomains also showed the same improvement
behavior as running two subdomains, doubling the performance on 2
graphics cards compared to single-GPU for largest domain resolutions.
This demonstrates that running several subdomains per GPU scales
equally well using large domain resolutions.

I also show the simulation times for both plots. The times for the
Euler time integrator is outlined in table 3.1, while the Runge-Kutta time
integrator is shown in table 3.2.

Domain resolutions | 2562 | 5122 | 10242 | 20482 | 40967

1GPU 44E-2 | 24E-1 | 1.6E+0 | 1.3E+1 | 9.9E+1
2 domains on 2 GPUs | 5.5E-2 | 1.9E-1 | 9.7E-1 | 6.7E+0 | 5.1E+1
Speed up over 1 GPU | 0.8 1.3 1.6 1.9 1.9

4 domains on 2 GPUs | 9.8E-2 | 2.7E-1 | 1.2E+0 | 7.1E+0 | 5.2E+1
Speed up over 1 GPU | 0.4 0.9 1.3 1.8 1.9

Table 3.1: The execution times (seconds) simulating different domain
resolutions on one GPU and decomposed into two and four subdomains
on two GPUs. Here, using the first-order Euler time integrator.

39



Domain resolutions | 2562 | 5122 | 1024% | 2048 | 40962
1 GPU 82E-2 | 4.7E-1 | 3.3E+0 | 2.5E+1 | 2.0E+2
2 domains on 2 GPUs | 8.6E-2 | 3.3E-1 | 1.9E+0 | 1.3E+1 | 1.0E+2
Speed up over 1 GPU | 1 1.4 1.7 1.9 2
4 domains on 2 GPUs | 1.4E-1 | 45E-1 | 2.1E+0 | 1.4E+1 | 1.0E+2
Speed up over 1 GPU | 0.6 1 1.6 1.8 2

Table 3.2: The execution times (seconds) simulating different domain
resolutions on one GPU and decomposed into two and four subdomains
on two GPUs. Here, using the second-order Runge-Kutta time integrator.

Performance of the multi-node implementation

I also validate the implementation of the multi-node simulator. The
benchmark run is similar to the above seen in figure 3.9. It is run on a
small cluster setup with two computers connected over the same network.
Both computers represent commodity-level desktop computers with two
GeForce GTX 480 graphics cards.

Furthermore, the benchmark executes five simulations with domain
resolutions of (2" x 2"), where n = 8 — 12. The first simulation uses
resolution 256 x 256, while the last simulation uses 4096 x 4096. I here
perform the benchmark using only the second-order accurate Runge-Kutta
time integrator. First, the multi-node implementation is benchmarked. This
is first done running the simulations using one graphics card on each node.
Then, the simulations are run using all four GPUs across the two nodes. For
this, the global domains are decomposed into one subdomain per graphics
card. To compare with the non-MPI implementation, I also perform the
same benchmark using only a single node. This is similar to figure 3.9b.
This means that I first compute all five domains on a single GPU, then on
two GPUs, decomposing the domains into two subdomains. This allows
seeing how well the solution scales when using two nodes, compared to
utilizing two graphics cards on a single node. In addition, the multi-node
benchmark is compared with using only a single GPU. For all cases, each
domain is decomposed equally so that all graphics cards receive an equal
amount of workload.

As seen in figure 3.9, it was reported that a multi-GPU simulation was
twice as fast as a single-GPU simulation for domains of sufficient resol-
utions. Ideally, for large enough resolutions, the multi-node simulation
should also give twice the performance of a single-GPU simulation. Using
all four GPUs, it should give four times the performance of the single-GPU
benchmark. Utilizing four graphics cards across two nodes should also
give twice the performance of utilizing only one card per node. The multi-
node results is shown in figure 3.10.

First of all, I compare the multi-node plots with the plot using a single
graphics card. As seen, the multi-node implementation runs slower for
small domain resolutions. Increasing the domain resolution, it performs
significantly faster. This behavior is expected, because of the overheads
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Figure 3.10: Performance benchmark running domain resolutions from
256 x 256 to 4096 x 4096 on an idealised circular dam break. These are
first run on 2 nodes, utilizing up to four GeForce GTX 480 graphics cards
in total, and secondly on a single node utilizing one and two GeForce
GTX 480 graphics cards. It is run using the second-order accurate Runge-
Kutta time integrator. The cluster benchmark of two GPUs performs worse
for small domains. Increasing the resolution, it performs significantly
better, showing a performance close to that of two GPUs on a single node.
The cluster simulations with four GPUs also scale well, giving the best
performance for the largest domain.

related to communication and synchronization of the subdomains when
using MPI network transfers on the multi-node simulator. Because of this,
computations on domains with low resolution using a single GPU finish
before the multi-node simulation. Secondly, the cluster simulations with a
total of 2 GPUs executes significantly slower on small domains, comparing
against using 2 cards in a single node. However, as the domain resolution
increase, the gap between them closes significantly. This shows that using
two nodes scales equally well as using 2 GPUs in one node for large domain
resolutions. I conclude that this behavior is also because of the overheads
related to multi-node synchronization. Increasing the resolution will hide
this overhead, causing the performance difference to decrease.

The cluster benchmark with four GPUs shows similar behavior to the
one with 2 GPUs. For the largest domain, it runs 1.6 times as fast as using
one card per node. This shows that the implementation scales well when
increasing the number of GPUs per node. It also runs over twice as fast as
the single-node/GPU benchmark for the largest domain. This shows that,
for even larger resolutions it should give even better performance over a
single-GPU simulation.

When using multiple computers, large domain resolutions are most
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applicable to run as they require the high amount of memory found
in cluster systems. As shown in my results, multi-node simulations
perform sufficiently well on large domain resolutions. Also, to demonstrate
the performance of multi-node simulations, I would have liked to run
simulations with even larger domain resolutions. However, this was not
possible as the graphics cards I had available did not have enough memory
to handle these resolutions.

The simulation times for the plot are shown in table 3.3.

Domain resolutions 2562 | 5122 [ 1024% | 20482 | 40962
1 node/1 GPU 82E-2 | 4.7E-1 | 3.3E+0 | 2.5E+1 | 2.0E+2
2 nodes/1 GPU each 2.6E-1 | 9.5E-1 | 4.2E+0 | 2.2E+1 | 1.4E+2
Speed up over 1 node/1 GPU | 0.3 0.5 0.8 1.1 1.4

2 nodes/2 GPUs each 2.7E-1 | 94E-1 | 3.6E+0 | 1.6E+1 | 8.9E+1
Speed up over 2 nodes/1 GPU | 1 1 1.2 14 1.6

Table 3.3: The execution times (seconds) simulating different domain
resolutions on one and two nodes utilizing varying number of GeForce
GTX 480 graphics cards. Here, using the second-order Runge-Kutta time
integrator.

3.6.2 Performance of Ghost Cell Expansion

Here, benchmarks for the ghost cell expansion technique are shown. The
benchmarks do performance measurements for both single- and multi-
node systems. They measure the simulations execution time when increas-
ing the overlap transferred in the ghost cell exchange function. All GCE
benchmarks are run on a domain initialized as a flat circular dam surroun-
ded by a wall with radius R = 200m in a square computational domain of
size 2000m x 2000m with center at x, = 1000m, y. = 1000m. The follow-
ing is set as initial conditions: The bathymetry B is set to B(x,y,0) = 0.
The water momentum along the x-axis and y-axis, Q, and Q3 is set to
Qa(x,y,0) = Q3(x,y,0) = 0. The water elevation Q) is set to:

Qi=1m if(x—x)*+@Wy—y)> <R
Q1 =01m if (x —x.)*>+ (y —y.)* > R%

The benchmarks are also set up with wall boundary conditions and early
exit disabled. At t = 0, the dam instantly collapses, creating an outgo-
ing circular wave that propagates until t = 30. Furthermore, all bench-
marks were performed using a varying number of domain resolutions,
both 1024 x 1024 and 4096 x 4096 resolutions. This is specified closer for
each benchmark. These domains are decomposed into two equal subdo-
mains set up on two different graphics cards. I also use the second-order
accurate Runge-Kutta time integrator. The benchmarks are executed with
50 different global overlaps, from 8 — 400 respectively.

Ql(xrylo) = {

42



Execution time with GCE using 2 graphic cards 56 Execution time with GCE using 2 graphic cards

1.25

55

54

53

52

Execution time (seconds)
Execution time (seconds)

51

i i i i i i i
0'900 50 100 150 200 250 300 350 400 500 50 100 150 200 250 300 350 400

GCE overlap GCE overlap

Figure 3.11: Performance benchmark of the ghost cell expansion technique
on a single-node system with two graphics cards. Here, it is demonstrated
using a domain resolution of 1024 x 1024 (left) and a domain resolution of
4096 x 4096 (right) on an idealised circular dam break. As seen, increasing
the overlap gives a linear increase in the execution time. Also, notice the
performance decreases each fourth overlap.

Single-node (multi-GPU) GCE benchmark

I first demonstrate the ghost cell expansion benchmark on a single-node
system composed of two GeForce GTX 480 graphics cards. Increasing the
GCE overlap should lower the overhead related to the data transfers, and
therefore give a performance improvement. [35]. As mentioned earlier
in section 3.4, Seetra and Brodtkorb demonstrated a performance increase
when increasing the overlap.

My results can be seen in figure 3.11. Here, the left plot shows a domain
resolution of 1024 x 1024, while the right plot shows a domain resolution of
4096 x 4096. The benchmark gives a linear decrease in performance when
increasing the overlap. Both resolutions show the same behavior. This
might be because the ghost cell exchange function is sufficiently fast that
increasing the overlap does not matter at all. As a result, when increasing
the overlap, and thus the size of the data transferred, it will run slower
even though it runs larger and fewer data transfers between the graphics
cards. I expect the reason that it is much faster than before, to be because
of new CUDA driver updates, enabling new features of existing compute
capabilities. For example, NVIDIA has introduced GPUDirect [29] for cards
with a compute capability of 2.0 or above. This technology enables peer-to-
peer transfers between graphics cards on the same system, in addition to
optimizing memory accesses between graphics cards. This results in much
faster memory copies. Also, as seen in the plots, each fourth overlap gives
an extra increase in the execution time. This is likely related to the ghost
cell exchange transfers or the kernel computations, and might be possible
to optimize away.

Thus, as the results demonstrate, I conclude that using no GCE overlap
at all (1 timestep per ghost cell exchange) is the most effective solution.
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GCE benchmark with usleep

To validate the results above concerning the performance of the ghost cell
exchange function, another benchmark was run. It was run with the same
parameters as the above benchmark on the same system. However, in the
ghost cell exchange function, a call to the function usleep was performed.
This function delays the calling thread for a specified amount of time. This
was done to make sure a ghost cell transfer used at least the time specified
by the parameter to usleep to complete. By doing this, a constant delay was
added to each exchange to simulate slower data transfers. Since a ghost cell
exchange now runs significantly slower, this should give a performance
increase when increasing the overlap. On this benchmark, only a domain
resolution of 1024 x 1024 cells is run. This domain is decomposed equally
between the two graphics cards.

The result can be seen in figure 3.12. The benchmark is executed
with three different parameters for the usleep function: 1 (figure 3.12a), 10
(figure 3.12b) and 100 (figure 3.12c) milliseconds respectively. As seen, the
performance improves when increasing the number of overlaps, similar to
that reported by Brodtkorb and Seetra in [35]. The improvement is most
noticeable for the 100 ms delay. Here, for the smallest overlap possible,
the simulator has a runtime of about 27 seconds. Increasing the overlap, it
constantly improves until it eventually flattens out. A visible effect is also
noted when running with a delay of 10 ms. However, the performance
given by the smallest and largest overlaps are only separated by a few
seconds. Finally, performing data transfers with the smallest delay, one
also gains a small performance improvement at the start. However, this is
negligible compared to the others. Increasing the overlap above 50 gives a
linear decrease in performance, similar to figure 3.11.

First of all, the results indicate that the ghost cell exchange needs to use
at least 1 millisecond for the application to get any noticeable performance
improvement at all. These results validates that my implementation of
the ghost cell exchange function is sufficiently fast and that utilizing the
ghost cell expansion technique does not give any additional performance
improvement.

Multi-node GCE benchmark

Finally, I also run a ghost cell expansion benchmark on a small cluster
composed of two nodes connected over the same network. Both nodes
represent commodity-level desktop computers, both with a GeForce GTX
480 graphics card. This benchmark is similar to the benchmark seen in
figure 3.11, except that it performs data transfers between graphics cards
located at different nodes. I benchmark both the total execution time and
the total execution time for all ghost cell exchanges for each simulation.
This makes it easy to compare the performance change in different parts of
the implementation when increasing the overlap.

The benchmark is run with the multi-node simulator implementation
which uses MPI [24] to exchange ghost cells. I reason that the larger
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Execution time with GCE usleep
using 2 graphic cards
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Figure 3.12: Performance benchmark of the ghost cell expansion technique
on a single-node system with two graphics cards. It is run using a domain
resolution of 1024 x 1024 on an idealised circular dam break. Here, a
constant delay is added by using usleep (1 ms (top), 10 ms (left), and 100
ms (right)) to simulate slower ghost cell exchanges. As seen, for the largest
delays, increasing the overlap gives a good performance improvement.
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Figure 3.13: Performance benchmark of the ghost cell expansion technique
on a cluster of two nodes. Here, it is demonstrated using a domain
resolution of 1024 x 1024 (left) and a domain resolution of 4096 x 4096
(right) on an idealised circular dam break. Also, the top graph in both
plots shows the total execution time of each simulation, while the bottom
graph shows the total execution time for all ghost cell exchanges for each
simulation. As seen, increasing the overlap gives an increase in both the
total simulation execution time and the execution time for the ghost cell
exchange.

overheads related to communicating over a network should give a
performance increase with the ghost cell expansion technique. This view
is also supported by Brodtkorb and Setra in [35], as they expect GCE to
have a greater effect when performing ghost cell exchange across multiple
nodes.

I show my results in figure 3.13. The left plot shows a domain
resolution of 1024 x 1024, while the right plot shows a domain resolution
of 4096 x 4096. In both plots, the top graph shows the total simulation
execution time and the bottom graph shows the total time execution of all
ghost cell exchanges for each simulation. As seen, increasing the overlap
does not give a performance improvement for cluster transfers either. Both
domains show equivalent behavior, giving a linear decrease of simulation
performance. The domain with the lowest resolution shows a negligible
performance improvement at the start, before the performance decrease
linearly. The benchmark for the largest domain also gives a small jump at
the beginning when increasing the overlap from 8 to 16.

Also, the graph showing the total execution time of all ghost cell
exchanges gives a similar result as the total execution time for both
domains, showing a decrease in performance. From these results, I
conclude that for each increase in overlap, an increase of execution time is
added for the ghost cell transfer. The results also show a smaller increase of
the execution time for ghost cell transfers compared to the total execution
time of the simulation. This indicates that there also are other overheads
related too increasing the overlap. I expect this to be related to the increase
of the computational time caused by increasing the overlap, and thus the
domain resolution. Also, for the plot of the 4096 x 4096 domain, the
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ghost cell transfers show a constant behavior with minimal performance
decrease. This means that, for large resolutions, other overheads have the
largest impact of the performance decrease when increasing the overlap.
This might be related to the increase in computational time.

As a final note, it would also be interesting to run both benchmarks
using nodes connected across different networks to see if this would have
any significant effect on the performance.
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Chapter 4

Auto-tuning

In the previous chapter, I implemented a multi-GPU and multi-node
shallow water simulator with a static load-balance of the workload.
However, to perform load-balancing of the workload between the graphics
cards, dynamic auto-tuning techniques can be utilized. Implementing
these techniques can be performed in two main steps. First of all, the auto-
tuning techniques themselves need to be implemented. For this, one needs
to identify parameters for auto-tuning such that load-balancing is obtained.
Secondly, to change the workload, and thus the size of each subdomain, a
dynamic domain decomposition technique has to be implemented.

First, in section 4.1, I give an introduction to dynamic auto-tuning.
Here, I discuss potential parameters to auto-tune on, i.e., early exit, domain
decomposition, and GCE. I also discuss several challenges related to the
auto-tuning algorithms. Then, I proceed to explaining the auto-tuning
of early exit (see section 3.5) in section 4.2. Since auto-tuning relies
on dynamic decomposition, I first give a description of this in section
4.3. I explain how I implemented both the multi-GPU and multi-node
version of dynamic domain decomposition. I also provide a benchmark
of the dynamic domain decomposition on multi-node. Then, I outline
the implemented auto-tuning techniques in section 4.4. Finally, I present
extensive performance benchmarks of the auto-tuned multi-GPU cluster
simulator in section 4.5.

4.1 Dynamic auto-tuning

I first discuss the two parameters I auto-tune on in this thesis. Dynamic
auto-tuning techniques are executed at runtime to change properties of the
simulation. For example, the computational domain could be decomposed
as the simulation progresses so that the workload is load-balanced between
the devices. This could be accomplished by auto-tuning on domain
decomposition. Such auto-tuning will distribute suitable sized parts of the
domain to all GPUs according to their computational power. Another
parameter to auto-tune is early exit. Running early exit for the whole
simulation would give extra overhead when most of the domain is covered
with water. As a result, one wants to enable early exit when most of the
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domain is dry and disable early exit when most of the domain is wet.
Here, it would not be necessary to perform an early exit check. This
should therefore be auto-tuned so that the simulator automatically chooses
to enable or disable early exit.

A third parameter to auto-tune on would be the GCE! overlap (see
section 3.4). However, as my results in section 3.6.2 showed, the best
performance was always obtained when running with the smallest possible
overlap. Therefore, auto-tuning on this variable is not necessary.

Finally, there are several challenges related to the implementation
of auto-tuning dynamic domain decomposition techniques. First of all,
because the auto-tuning executes at runtime, it needs to be sufficiently
fast. This especially applies to the synchronization and communication
when decomposing the domain. It is necessary to design algorithms
that can efficiently decompose the domain without too large costs related
to data transfers, for example between nodes in a cluster system. It is
also important to consider the interval the auto-tuning should be run on,
meaning how often it should be run. The water should have propagated
far enough from the last auto-tune run to get an appropriate change in
workload, justifying the overhead of auto-tuning. This again depends
on the At. If run too often, it might cause large overheads, resulting in
negligible performance improvements for auto-tuning. Also, the change in
workload would be less noticeable. A better solution would be to let the
water propagate further before auto-tuning. The auto-tune interval will
need to be experimented with to find a proper value. Also, the variable
could potentially be auto-tuned. However, this is outside the scope of this
thesis.

4.2 Auto-tuning of early exit

I auto-tune the early exit algorithm, so that the application executes the
fastest possible kernel at runtime. This means that I decide whether
the application should run the early exit kernel (see section 3.5) and the
flux kernel (see section 2.3) with or without the early exit optimization
at runtime. The motivation for this is that it is not necessary to run
the early exit optimization at each timestep, especially because it gives
extra overhead related to running the early exit kernel. A domain where
most cells contain water will likely cause the flux kernel to perform
computations for most of the cells while still running the early exit kernel.
This is strictly not necessary.

I explain two methods to solve this. First of all, I could measure the
time taken to run the early exit and flux kernel at each timestep. Then, I
could run the fastest of these at the next timestep. This method would be
able to always run the fastest possible kernel at each timestep without extra

IThe benchmarks in this chapter uses domains with bathymetry values defining a
realistic terrain. However, a bug related to GCE sometimes caused an incorrect timestep
At. It was likely related to the decomposition of the bathymetry between the subdomains.
However, since I do not use GCE for these benchmarks, the bug does not affect my results.
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overhead. This method works well when running a single subdomain.
However, for multiple subdomains, it is not appropriate. The reason
for this is that the multi-domain implementation runs asynchronously.
Therefore, it is hard to measure the time correctly for each subdomain. I
therefore employ another method. I implement a probe that I run at given
intervals, for example each hundredth timestep. This probe executes a full
step (see figure 2.6) with the necessary kernels at the end of each timestep,
first with the early exit optimization disabled, then enabled. I measure
the time taken for each run and choose the fastest. Choosing to disable
early exit, the early exit kernel will not be run. Enabling it will make the
simulator call the early exit kernel computing the dry map, in addition to
performing the early exit test in the flux kernel. It is also worth noting
that this probe requires the simulator to perform two extra steps at the
given interval, therefore producing extra overhead. However, the method
allows me to create synthetic steps that I can synchronize on and therefore
correctly measure the time taken for the kernel calls.

I use an application argument to enable auto-tuning of early exit and
the interval it should be run on. More precisely, it contains the number
of timesteps to perform before running the probe. This gives complete
flexibility to decide how often the probe should be run. To get the
best possible performance it is important to consider the value for this
argument. Running the probe too often might cause large overheads
related to the extra kernel calls. If run at too few intervals however, it
might cause the simulator to run with a non-optimal kernel. For example,
it might run with early exit even when the water has propagated through
the majority of the domain.

4.3 Dynamic domain decomposition

I have implemented the ability to dynamically decompose the domain.
This performs domain decomposition (see section 3.1) dynamically so that the
size of each subdomain can be changed while the simulator is running.
The technique adjusts the subdomain sizes dynamically according to a
new workload computed at runtime. The new workload could for example
depend on the current amount of wet and dry cells, i.e., the placement
of water in the global domain. There are several advantages with this
technique. First of all, consider a case with a global domain decomposed
into two subdomains A and B, each residing on a different graphics cards
and early exit enabled. It would be an advantage that both cards computed
about the same amount of wet cells. If there is much water residing on
the top half of the global domain and none on the other half (see figure
4.5), it should not be decomposed at the center. This is because it would
result in an inadequate workload distribution, causing the graphics card
of subdomain A to do all the processing, while the other GPU would not
have anything to calculate on. This would in turn lead to an ineffective
multi-GPU solution. The ideal solution to this would be to decompose
the domain so that both subdomains contain an equally amount of wet
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cells. Secondly, one should also perform dynamic decomposition to
accommodate for graphics cards with different computational power, for
example high-end and low-end graphics cards. This could be done in a
fashion so that high-end graphics cards always compute on the domain
with the largest amount of wet cells.

4.3.1 Dynamic domain decomposition on multi-GPU

First, I have implemented this for a single node utilizing multiple graphics
cards. The dynamic domain decomposition changes the size of each
subdomain according to a new workload. It performs three main steps:
1: It downloads the water elevation Q7 and water momentum Q, and
Qs of all subdomains to a global buffer on the CPU. 2: It composes and
initializes the new subdomains according to the new workload, and 3: It
re-initializes the ghost cells by performing a ghost cell exchange. Figure 4.1
defines two equally sized subdomains and gives an illustration of the steps
decomposing to new subdomain sizes.

Old subdomains New subdomains
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Figure 4.1: A dynamic domain decomposition performed between two
GPUs on a single node, here shown with a subdomain per GPU. Step 1:
First, the GPU subdomains are copied to a global buffer residing on the
CPU. This means that the water elevation Q; and the water momentum
Q2 and Q3 bulffers are transferred into three global buffers. Step 2: Then,
the new subdomains are initialized with the new workload. This is done
by transferring the data in the global buffers back to the graphics card
memory. Step 3: Finally, the ghost cells are re-initialized by doing a ghost
cell exchange.

Step 1: The first step is to download the water elevation Q; and water
momentum Q; and Q3 of all subdomains to a single global buffer residing
on the CPU. Only the interior cells are downloaded, as the ghost cells can
be reconstructed later using the values of the inner cells.
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Step 2: Next, I compose the new subdomain sizes according to the
new workload. This is done as a standard domain decomposition (see
section 3.2). More precisely, I calculate the correct size and offset of each
subdomain. I also deallocate the old subdomains, freeing up data on
the graphics card memory. Finally, the new subdomains are initialized
according to the new size. The ghost cells are also reconstructed by using
the inner values of the domain.

Step 3: At this point, the additional GCE ghost cells are re-initialized.
This is done by performing a ghost cell exchange (see section 3.2), which
ensures that the ghost cells are correctly reconstructed at the end of each
dynamic decompose.

4.3.2 Dynamic domain decomposition on multi-node

Furthermore, I implement dynamic domain decomposition on the multi-
node simulator. This is similar to the above method in that it performs
a dynamic decomposition according to a new workload. It is important to
take into consideration that there are several processes operating in parallel
on multiple nodes. This required several changes from the multi-GPU
version.

Naive version

First of all, I tried to implement it in a similar manner as the original
version. This proved to be easy, as I for most parts followed the original
design with some small modifications. The domain decomposition is
performed and run per process and the processes synchronize as necessary
during execution. Because there are now several processes, the allocation
of the global buffer must be done by sending the subdomain data between
the processes. The task of initializing the global buffer is allocated to
a master process which receives the necessary subdomain data from the
other processes.

Step 1: All processes first transfers the water elevation Q; and water
momentum Q> and Q3 of all subdomains to a per process buffer on the
CPU. Next, the processes synchronize this. This is done sending the buffers
to process 0, designated as the master process. Process 0 receives this
and inserts it to the global buffer. It also transfers its own subdomains
to this buffer. Then, process 0 broadcasts the global buffer back to the other
processes. The network transfers utilize MPI function calls.

Step 2: Next, each process initializes its new subdomain sizes according
to the new workload, by calculating the correct offset and size. The
old subdomain objects are also deallocated. Then, each process initialize
its new subdomains on the correct graphics card. The ghost cells are
reconstructed based on the inner cells.

Step 3: Finally, the additional ghost cell overlap is re-initialized by
performing a ghost cell exchange using swap_mpi (see section 3.3).

This method was straightforward to implement. The main problem
was its long execution time, especially for large domains. I identified
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the bottleneck to be the network transfers between the nodes. Because
each process needs a copy of the global buffers, they had to synchronize
domain data between them as described in step 1. This communication
gave very large data transfers over the network and proved to be very slow.
As a result, each dynamic decompose of multi-node gives a large halt of
the execution. Therefore, I reason that the execution time of performing
a dynamic decomposition on multi-node might be too large. I therefore
designed and implemented a better solution, described next.

Optimized version

To solve the long execution times for the naive version I re-implemented
the function using another technique. The main focus should be to
minimize the amount and size of the data transfers between the processes.
Conceptually, a dynamic decompose can be thought of as an extended
version of the ghost cell exchange between the subdomains. Consider
a case where a global domain is decomposed into two equal sized
subdomains A and B. Then, a workload change occurs such that A gets
70%, while B gets 30%. This implies that a swap is performed so that A
receives 20% of the global domain from B, and therefore extends itself to
handle this. B does not received anything and therefore only deallocates
the data it sent to A. By following this design, each process can handle all
its subdomains as one single domain. Then, each of these process domains
can handle its decomposition individually, sending and receiving only the
data necessary with the other processes. This dramatically reduces the
amount of data sent. I follow with an in depth explanation of the method.

Step 1: First, each process downloads the water elevation Q; and water
momentum Q; and Q3 of all its subdomains to a buffer. They also compute
the workload for their domain.

Step 2: Next, the processes can perform the domain swapping,
illustrated in figure 4.2. They first compute the amounts of rows to swap.
This is done according to the new computed workload and the old size.
The swapping itself is identical to the implemented ghost cell exchange
function swap_mpi (see section 3.3), with the exception that it also needs to
manipulate the length of the domains. First of all, when a process sends
a part of its domain, it needs to deallocate this part from its own domain.
Also, when a process receives data, it also needs to allocate new space for
this in its domain.

Step 3: Then, each process handles the decomposition of its subdo-
mains, decomposed from the new process domain. This is run completely
per process without any synchronization between the processes. It com-
putes the workload for each subdomain and initializes the new subdo-
mains for each GPU.

Step 4: Finally, the ghost cells are also re-initialized. This is done by
performing ghost cell exchanges with swap and swap_mpi.
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Figure 4.2: A dynamic domain decomposition performed between two
nodes. Both domains initially have a resolution of 8 x 7, then a swap is
performed so that the bottom domain get a part of the upper domain. Step
1 (not shown): This step is similar to step 1 in figure 4.1. This means that
each process copy its subdomains to a global buffer. Step 2: Then, a swap
according to the new workload is performed between the global buffers
(seen in this figure). As seen, this swap changes the domain size for both
nodes. Step 3 (not shown): Then, these buffers are copied to the GPU
subdomains, done per process. This is similar to step 2 in figure 4.1. Step 4
(not shown): Finally, the ghost cells are re-initialized by doing a ghost cell
exchange, also similar to step 3 in figure 4.1.

Benchmarking multi-node dynamic decomposition

Also, I run a performance benchmark of the MPI transfers to validate
the performance of the dynamic domain decomposition on multi-node.
This is necessary to check that my MPI implementation for dynamic
decomposition is sufficiently fast, especially for large domain resolutions.
The benchmark is implemented by sending data with different sizes using
MPI [24] and the SCP command, and then measuring the time of the
transfers. The data sizes used are 2, 4, 10, 100, 200 and 500 MB of data. The
SCP transfers are performed by sending a file of the specified size. For this
purpose, the file first needs to be created. This is done with the command
dd if=/dev/zero of=<file> bs=1024 count=<kB>. To make a file size of 10 MB,
1024 x 10 is sent in to the argument count. The file is then sent using the
command scp <file> <user@host:path>.

The MPI transfers are measured by doing a standard MPI ghost cell
exchange. For this purpose, a dedicated function was made. Instead of
performing the swap both ways as usual, it is only performed one way
identical to the SCP transfers. This means that only one node sends data
and only one node receives the data. The function allocates the necessary
buffers to send on the CPU with the same size as the SCP transfers. Also,
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I do not measure the MPI function calls in the dynamic decomposition.
However, since the MPI function calls are identical in the decomposition
and ghost cell exchange functions, one can assume the performance to be
the same for both of them. For both type of transfers, I measure the time
and compute the speed of each transfer. The benchmark is seen in figure
4.3.

102 Performance of SCP and MPI data transfers
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e—e SCP transfers
» =< MPI transfers
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Figure 4.3: Performance of SCP and MPI data transfers using a varying
number of data sizes. Both type of transfers are performed in a
send/receive transfer from a given node to another node. The MPI
transfers shows good performance compared to the SCP transfers.

First, for SCP, data transfer speed is increased when increasing the size
of the data sent, reaching peak performance when sending about 100 MB
of data. This shows that there is a small overhead related to these data
transfers. The MPI transfers show a constant speed for all data sizes. Also,
the plot shows MPI gives equal or better performance for all data sizes.
This shows that my MPI implementation is sufficiently fast.

4.4 Auto-tuning dynamic domain decomposition

I now proceed to describe the implementation of the auto-tuning of
dynamic domain decomposition. This considers underlying parameters
of the application to determine the size of each subdomain. Consider a
standard dam break simulation run by two subdomains on two graphics
cards. Initially, when the dam breaches, the water flows downwards
before it eventually covers most of the domain. To efficiently compute
the simulation, both graphics cards should compute on the amount
of wet cells according to their computational power throughout the
simulation. This mean that the workload should be load-balanced between
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the GPUs. To perform this, dynamic auto-tuning techniques are utilized.
These techniques auto-tunes on underlying parameters of the application
at runtime to determine the size of each subdomain. The auto-tune
techniques are divided in two different algorithms: The initial auto-tuning
and the runtime auto-tuning. Both algorithms are utilized together, each
corresponding to a different part of the auto-tuning technique.

First, I describe the initial auto-tuning which is executed a single time
at the beginning of the simulation. Here, auto-tuning is performed on the
graphics card hardware. More precisely, the computational power of each
graphics card. The auto-tuning algorithm decides the amount of workload
according to the computational ability of the graphics cards. This means
that each GPU will compute on a domain size that suits its computational
ability. Second, I describe the runtime auto-tuning. This auto-tuning
algorithm executes at specified intervals during runtime and computes the
workload according to the water placement in the domain. As the water
propagates through the domain, the algorithm resizes the subdomains as
necessary such that all graphics cards compute on an appropriate amount
of wet cells. The algorithms uses the workload computed by the initial
auto-tuning to determine the correct amount of wet cells for each card. As
a result, all GPUs compute on the amount of wet cells according to their
computational power.

It is also important to mention that auto-tuning is run together with
the early exit technique. This is very important to achieve the correct load
balancing. If early exit was turned off, the graphics cards would calculate
on dry cells too, therefore not achieving the desirable load balancing.

4.4.1 Initial auto-tuning

The initial auto-tuning auto-tunes on the computational power of each
graphics card to correctly load-balance the workload. This is especially
advantageous when utilizing multiple different graphics cards. Consider
a case using two GPUs, a low-end and a high-end. The high-end card
should compute on a larger amount of wet cells than the low-end card.
For example, it can compute on a workload of 70%, while the low-end card
can compute 30%. The workload calculated by this form of auto-tuning
decides the percent of wet rows each graphics card should compute on for
the rest of the simulation.

There are several strategies to perform this type of auto-tuning. An
obvious strategy to perform such auto-tuning is to run synthetic cases at the
start. These could be run with several different combinations of workload
between the subdomains. Since all timesteps runs in approximately the
same execution time, it is only necessary to run a single timestep. One
could then measure the execution time of each run. The workload of the
fastest run would be the workload to use for the main simulation. This
method works well when running two subdomains. However, there are
several disadvantages with this method. First, the amount of workload
combinations to run becomes too large when increasing the number of
subdomains. This might consume too much time, making the technique
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too costly for practical use. Second, the technique does not necessarily give
the most optimal workload-balancing. This is because the cases are run
with a predefined amount of workload and because of this one does not
test the workloads in-between.

A second strategy to perform such auto-tuning is to only run a single
simulation case for each graphics card. This means that a single case is run
with equal workload for all graphics cards, as opposed to running several
cases with different combinations. One could measure the execution time
for each run. Since the execution times represents how fast each GPU is,
using this to compute a workload for each GPU is straightforward. This
method proves superior to the first method as it gives you the most optimal
workload possible. In addition, it only requires running the step function
(see figure 2.6) a single time for each graphics card, minimizing the time
used to perform the auto-tuning. Because of these advantages, I chose to
implement this technique.

Implementation

The implementation of this for multi-GPU and multi-node is similar. The
synthetic cases are run at the start of the simulation. I run a single synthetic
case on each graphics card used. The cases are set up as a single-domain
case and are performed by running one single timestep of the step function.
The execution time used by each run is measured. Then, the workload is
calculated for each GPU by using the execution time for that GPU. This is
done according to the formula:

=t S
T (4.1)
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Here, W is the resulting workload in percent, the percent of wet rows
the given GPU should compute on. GPUr is the execution time, sumr is
the sum of all execution times, ny is the global domain size along the y-
axis, and w; is the workload in rows as calculated by the first part. The
formula gives the workload for each graphics card. When performing this
for the multi-node version, each process runs the synthetic cases on its own
node. Then, the execution times are synchronized with a master process
that performs the work of calculating the workload. The workload is then
broadcasted back to all other processes.

4.4.2 Runtime auto-tuning

The runtime auto-tuning computes the workload according to the water
placement in the domain. Figure 4.5 shows a simulation with three GPUs
that auto-tune and load-balances the workload at runtime. To auto-tune
correctly, the algorithm needs to know where the water is at any given
timestep. A possible solution would be to compute the middle point of the
cell coordinates with water. Given a domain divided up into cells, each

58



cell has a state of dry or wet, it would be straightforward to compute the
middle point. This could be done by finding the average of all wet cell
coordinates. The left illustration in figure 4.4 outlines this method. This
method is not very flexible. For example, it is hard to utilize it for more than
two subdomains without extending the technique. Also, each graphics card
is given equal workload with this technique, since they receive the wet cells
above and below the middle point.

Another method, is to compute the two dimensional bounding box of
the water surface in the domain, seen in the right illustration in figure
4.4. This method is more flexible because it is easier to distribute the
water between multiple subdomains. Also, it makes it possible to assign
a different amount of wet cells to each subdomain. This can be done by for
example assigning 30% of the bounding box to one subdomain, and 70%
to another. Most water surfaces can easily be approximated by a bounding
box which makes this an acceptable method to compute the workload of
wet cells. Because of these advantages, I chose to implement the bounding
box technique.

T |
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Figure 4.4: Two dynamic auto-tuning techniques. Wet cells are marked in
blue. Left: Calculating the middle point. The X marks the middle point
m, used to distribute the water equally between the subdomains. Right:
Calculating the bounding box. Here, two subdomains first calculates
their local bounding boxes, the green and yellow rectangles respectively.
Finally, these are used to calculate the global bounding box (the red dashed
rectangle) for the global domain. The global bounding box is then used to
distribute the water between the subdomains. The last technique makes
it easy to distribute a given percent of the bounding box so that each
subdomain might get different amount of wet cells.

Bounding box computation: There are several methods to implement the
computation of the bounding box of a domain for. A two dimensional
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bounding box consist of four edges and is defined as a structure of four
values representing the edges; the maximum and minimum x and y
coordinates of the wet cells in the domain. To compute the bounding box,
one need to be able to calculate the water depth for all cells, which defines
if the cell is wet or dry. This can be done by using the water elevation
Q1 and bathymetry B. A straightforward method would be to transfer
this data to a single buffer, and then compute the bounding box for this
buffer. To compute the bounding box, the code would find the maximum
and minimum coordinate (i, ) (cell index) of each wet cell. The problem
with this method, especially for the multi-node version, is that it might be
considerably slow. This is because the water elevation Q; and bathymetry
B of all the subdomains for all nodes would need to be transfered to a
single node, therefore doing several large network transfers. However, it
is strictly not necessary to transfer the data of all subdomains to a single
node. A better method would be that each node downloaded its own
Q1 and bathymetry B data, completely separated from the others. Each
node can then computing the bounding boxes for its subdomains. Second,
the processes could proceed to synchronize their bounding boxes, ending
up with the final global bounding box for the global domain. This way,
the nodes would only need to send and receive the four values defining a
bounding box, providing a much faster method since it avoids large data
transfers.

A third technique would be to calculate the bounding boxes using
a reduction kernel on the GPU instead of downloading and doing the
computations on the CPU. This technique would be faster for both single-
and multi-node simulators because transferring the water elevation Q
and bathymetry B to the system memory is not necessary at all. Each
GPU runs a kernel for its subdomains, doing a reduction to compute the
maximum and minimum values defining the local bounding box of the
subdomain. Finally, the bounding boxes are synchronized to compute the
global bounding box for the global domain. This means that only the
variables defining the bounding box is downloaded to system memory.
The technique is illustrated in the right illustration in figure 4.4. Here,
the bounding boxes for two subdomains are calculated, and then merged
into a global bounding box for the global domain. Because of the obvious
advantages, I chose to implement this method.

Implementation: The implementation of runtime auto-tuning is similar
for both the multi-GPU and multi-node simulators. The auto-tuning
is performed at a given interval, which means that it is performed at
specified timesteps throughout the simulation. The interval is specified by
setting the value of a runtime argument. The multi-GPU and multi-node
simulators are implemented similarly.

Step 1: The first step is to compute the bounding box of each
subdomain. This is done using a reduction kernel. The kernels primary
purpose is to compute the bounding box for the subdomain it performs on.
The kernel employs a reduction algorithm, computing the maximum and
minimum coordinate values for each wet cell in the subdomain. To speed
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Figure 4.5: An example of auto-tuning dynamic domain decomposition
on a dam break simulation running on 3 GPUs. The workload is load-
balanced throughout the simulation run. Wet cells are marked in blue and
the green lines shows the domain decomposition between the GPUs. The
two first GPUs have a workload of 40% of the water, while the last GPU
has a workload of 20%, determined by their computational power. At time
t = 0, the dam collapses, creating a flood that flows downwards in the
domain. Here, GPU 3 has the largest subdomain. However, it calculates
on fewer wet cells than the others. At time t = 1000, the simulator re-
autotunes, performing a new decomposition between the GPUs. Notice
that all GPUs still calculate on the correct amount of cells according to
the workload. For better performance, the auto-tuning algorithm should
execute more frequently than shown in this figure.

up the computations, the algorithm utilizes shared memory (described in
section 2.1). First, each thread computes the state of its cell. The threads
with wet cells continue and store the coordinates of its cell. The reduction
algorithm is then performed between all threads with wet cells, performing
a reduction to find the maximum and minimum cell coordinates. The final
values will be the four values defining the four edges of bounding box for
this subdomain.

Then, the bounding box for the global domain is calculated. This is
performed with a similar reduction as the kernels, only on the CPU instead.
It checks each subdomains local bounding box to find the maximum and
minimum coordinates.

Step 2: Next, the new workload for each subdomain is calculated. This
is done by computing the workload as the amount of wet rows of the global
bounding box according to the initial auto-tuning workload. More precisely,
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each GPU is assigned a number of rows from the global bounding box. The
number of rows is defined as W percent of rows as calculated in equation
(4.1). By doing this, each GPU will compute on an amount of wet cells that
is suitable for its computational power.

Step 3: Finally, a dynamic decomposition (see section 4.3) is performed
according to the new auto-tuned workload.

The multi-node implementation employs a similar auto-tuning al-
gorithm. This means that each process computes its local bounding boxes.
Then, these are synchronized so that the computation of the global bound-
ing box is designated to a master process. The master process also com-
putes the workload and broadcasts this back to the other processes.

4.5 Results

To validate the performance of the implemented auto-tuning techniques
on the multi-GPU cluster simulator, several benchmarks have been
performed. I have run benchmarks for both the multi-GPU and the multi-
node simulator. The benchmarks have been run on standard desktop
computers, which I specify more closely when explaining the benchmarks.
They were further performed using two different simulation cases. The
first case used is a synthetic idealised circular dam break case as shown in
figure 4.6. The second case is a real world dam break, The Malpasset dam
break, which collapsed in 1959 [7]. It can be seen in figure 4.7. The case
used is specified for each benchmark.

First, I performed a benchmark of the early exit optimization, shown in
section 4.5.1. It is demonstrated both with and without the auto-tuning
probe. Enabling early exit showed a slight performance improvement
over disabling early exit, while auto-tuning of early exit showed a
good performance increase over both disabling and enabling early exit.
Secondly, benchmarks demonstrating the performance of the auto-tuning
domain decomposition are run. These are shown in section 4.5.2. The
benchmarks showed that load-balancing the multi-GPU and multi-node
simulator was an appropriate strategy for domains with a large amount of
wet cells. However, for domains with many dry cells, a static load-balance
with early exit proved best.

4.5.1 Performance of Early Exit

I have performed a benchmark of the early exit optimization technique.
The benchmark demonstrates the performance of the implemented early
exit technique, including the auto-tuning of it. It was run on a system com-
posed of two GeForce GTX 480 graphics cards. The benchmarks are run on
a domain initialized as a flat circular dam surrounded by a wall with radius
R = 200m in a square computational domain of size 2000m x 2000m with
center at x, = 1000m, y. = 1000m. The following is set as initial conditions:
The bathymetry B is set to B(x,y,0) = 0. The water momentum along the
x-axis and y-axis, Q> and Qs is set to Qz(x,y,0) = Qs(x,y,0) = 0. The
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Figure 4.6: An idealised circular dam break in a square computational
domain. It describes a circular water column surrounded by a wall on a
bathymetry with three bumps. Here, the water column is placed at the
upper part of the domain. At time t = 0 (left), the dam instantly collapses,
creating an outgoing circular wave, seen at t = 15 (right). The water
propagates until it covers the whole domain.

Figure 4.7: The Malpaset dam break. At time ¢ = 0 (left), the water can be
seen in the upper part pf the domain, while the sea is at the bottom right.
Then, a breach occur, creating a flood that flows through the valley towards
the bottom of the domain, seen at ¢ = 1200 (right).
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water elevation Q1 is set to:

Qi=1m if(x—x)2+@Wy—y)> <R
Q1 =0.1m if (x —x)*+ (y —y.)? > R

It was also set up with wall boundary conditions. At t = 0, the dam in-
stantly collapses, creating an outgoing circular wave that propagates until
t = 1200.

Furthermore, the benchmark run five multi-GPU simulations with two
subdomains set up on two GPUs. Each subdomain has a resolution of
(27%2"), where n = 8 — 12. It is run with the second-order accurate Runge-
Kutta time integrator. The benchmark is run three times: Standard, Early
exit and EE auto-tune. Standard runs all simulations with early exit disabled,
computing on all cells in the domain. Early exit performs early exit of dry
cells, while the last, EE auto-tune, runs the auto-tuning probe of the early
exit algorithm. Here, the interval is set to 500. The simulation time was set
to 20 minutes to achieve a more realistic simulation length. The results can
be seen in figure 4.8.

Qi(x,y,0) = {

Execution time of early exit and auto-tuning of
early exit using 2 GPUs

120
BN Standard EEE Early exit I EE auto-tune

100
) I I
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1024 2048 4096
Domaln resolution per GPU (x, y)

Percent of standard
[} [ee]
o o
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Figure 4.8: Early exit performance benchmark showing the percentage of
achieved execution time for early exit and EE auto-tune relative to standard
on an idealised circular dam break. Lower percent is better. It is run on a
multi-GPU setup of two GPUs, each GPU running subdomain resolutions
of 256 x 256 to 4096 x 4096. As seen, auto-tuning the early exit technique
gives a performance improvement for each increase in resolution.

I first compare the Standard simulation against the simulation with Early
exit. The first performs better for smaller domain resolutions, while Early
exit improves and performs better for domains with larger resolution. This
is likely because of the increased number of cells to skip flux calculations
for, decreasing the impact of the overhead related to Early exit. However,
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Early exit only runs slightly better for larger resolutions. This is likely
because the water has covered the domain for most of the simulation. In
effect, using Early exit only gives extra overhead related to running the early
exit kernel. Running larger resolutions should give better performance
results for Early exit since it would skip flux calculations for the majority
of the simulation.

Finally, the EE auto-tune is shown. Ideally, this should give the best
results since it is an attempt to enable and disable use of early exit at
the appropriate times. For the smallest domain resolutions, it performs
slightly better than the two other methods, with the exception of the lowest
resolution. Compared to Early exit, it has a good speed up improvement
increasing the domain resolution.

Comparing against Standard, EE auto-tune does not perform signific-
antly better for small resolutions. Because of the low resolutions, EE auto-
tune will mostly produce extra overhead. Because of this, the performance
difference is negligible compared to Standard. Simulating on larger resolu-
tions however will give a significant speed up. This is because it now man-
ages to use both techniques appropriately without too large costs related
to the overhead of early exit and the auto-tuning probe. For the largest
domain resolutions, it gives a solid speed up of 10 minutes over Standard.
Finally, tuning the auto-tune interval for specific simulations could produce
even better results for EE auto-tune. For example, if the domain resolution
is large and the water covers the domain for most of the simulation, in-
creasing the interval could give better performance.

The simulation times are shown in table 4.1.

Domain resolution | Standard | Early exit | EE auto-tune
256 x 256 3.0E+0 3.4E+0 3.2E+0
512 x 512 1.6E+1 1.6E+1 1.5E+1
1024 x 1024 1.1E+2 1.1E+2 9.8E+1
2048 x 2048 8.2E+2 8.1E+2 74E+2
4096 x 4096 6.4E+3 6.3E+3 5.7E+3

Table 4.1: The execution times (seconds) with early exit disabled (standard),
enabled (early exit) and early exit auto-tuned (EE auto-tune). Here, using a
varying number of domain resolutions on two GPUs and use of the second-
order Runge-Kutta time integrator.

4.5.2 Performance of auto-tuning domain decomposition

I have performed extensive performance benchmarks of the auto-tuning
dynamic domain decomposition technique for both the multi-GPU and
multi-node simulators. I run the benchmarks with two different cases, the
Malpasset dam break (see figure 4.7) and an idealised circular dam break
(see figure 4.6). The Malpasset dam break has been run by simulating the
first 4000 seconds after the breach. It was run using the first-order accur-
ate Euler time integrator. The circular dam break is run as an idealised
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circular dam surrounded by a wall with radius R = 133m in a square
computational domain of size 2000m x 2000m with center at x. = 1000m,
Yc = 250m. The following is set as initial conditions: The bathymetry B con-
sists of three bumps, each bump has a radius of Rg = 200m. The first bump
has a center at bx,; = 500m, by.; = 500m, the second bump has a center
at bx, = 1500m, by, = 500m, while the last bump has a bx. = 500m,
bycz = 1500m. The bathymetry B is set to:

B = 5% (Rg? — ((x — bxaa)? — (y — byet)?))m
if (x — bxc1)? + (y — bya)? < Rp?

B =5%(Rg® — ((x — bx2)? — (y — bye2)?))m
if (x — bx2)? + (y — by)? < Rp?

B =5x%(Rp* — ((x — bxe3)* — (v — bye3)?))m
if (x — bxcg)z + (]/ — bycg,)z < R32

B =0m
otherwise

B(x,y,0) =

The water momentum along the x-axis and y-axis, Q, and Q3 is set to
Q2(x,y,0) = Q3(x,y,0) = 0, while the water elevation Q; is set to:

Q1 =40m if (x — x.)?>+ (y — yc)? < R?
Q1 =0m if (x —x)>+ (y —yc)* > R2
The initial conditions were also set up to use wall boundary conditions and
the first-order Euler time integrator. At t = 0, the dam instantly collapses,

creating an outgoing circular wave that propagates until = 80. More ini-
tialization parameters are described specifically for each benchmark.

Qi(x,y,0) = {

Both cases are benchmarked on different type of systems. First of all,
I benchmark on two different multi-GPU systems: setup 1 and setup 2.
The first system setup 1 consists of a 2.67 GHz Intel Core i7 920 CPU, 6
GB system memory and two equal graphics cards, the GeForce GTX 480,
each with 1.5 GB memory. The second system setup 2 consist of 3.4 GHz
Intel Core i7 2600K CPU, 8 GB system memory and two graphics cards,
the GeForce GTX 580 with 1.5 GB memory and the GeForce GTX 285 with
1 GB memory. I use two different multi-GPU setups to test the impact of
auto-tuning when utilizing equal graphics cards, as well as when using
two different graphics cards. Finally, I also perform the benchmarks on a
cluster system. The cluster consists of the two nodes, setup 1 and setup 2, as
described above. This means that it uses two GeForce GTX 480s on the first
node and a GeForce GTX 580 and GeForce GTX 285 on the second node.

For each benchmark, I run three different simulations: Static, Static EE,
and Dynamic. Static defines a simulation where the whole computational
domain is distributed equally between the GPUs. Also, early exit is
disabled, which means it computes on all cells. Static EE executes a similar
simulation, but with early exit enabled, which means it calculates fluxes
only for wet cells. The last type Dynamic defines a simulation running with
full auto-tuning of both dynamic domain decomposition and early exit.
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This means that it auto-tunes and load-balances the workload as necessary.
The auto-tuning interval is specified closer for each benchmark.

Multi-GPU

I first show the benchmarks using two multi-GPU setups setup 1 and setup
2, as described above.

Setup 1: The first benchmark uses the idealised circular dam break case,
as seen in figure 4.9. It was run with two different domain resolutions,
2000 x 2000 (left) and 4000 x 4000 (right). The primary purpose of this
is too see how Dynamic performs when the resolution is increased. The
benchmarks are run decomposing a domain into two subdomains, each
initialized on a different graphics card. The auto-tune interval was set to
1000.

As expected, Static has the worst performance. First, both resolutions
show the same behavior. The main difference is that the highest resolution
gives much better performance. This is because the increased amount
of cells to compute on occupies the graphics cards better. At peak
performance, Static EE has about 60% better performance than Dynamic.
However, as the water propagates, early exit decreases exponentially. As
seen at t = 30, Dynamic outperforms Static EE. I expect this to be related to
the amount of wet cells. When the majority of the domain is dry, Static EE
has a significantly better performance than Dynamic. Static EE has equal
workload, which means that at the start one GPU will compute on the
majority or all of the wet cells and the other GPU will only have dry cells.
Dynamic however, performs worse because here both GPUs compute on
equal amount of wet cells. However, the numbers of wet cells are low
and do therefore not occupy the graphics cards, which implies that using
a single GPU is better. The large amount of dry cells therefore gives a
large overhead which negatively impacts Dynamic. However, when the
water has propagated far enough, Dynamic performs better. This is related
to that the amount of wet cells have significantly increased, allowing for
better occupation of both graphics cards. However, Static EE does not
sufficiently balance the load between the GPUs. This is because one of the
cards performs all the work, while the other computes on far less wet cells.

Then, I show the Malpasset dam break benchmark, as seen in figure
4.10. It was run with two different domain resolutions, 879 x 2199 cells
(left), equally spaced by 7.5mi.e., Ax = Ay = 7.5m and 1759 x 4399 cells
(right), equally spaced by 3.756m ie., Ax = Ay = 3.75m. The primary
purpose of this is too see how Dynamic performs when the resolution
is increased. The benchmarks are run decomposing a domain into two
subdomains, each initialized on a different graphics card. The auto-tune
interval was set to 5000 for the lowest resolution and 4000 for the highest
resolution.

Here, Static EE outperforms Dynamic for the whole simulation. I reason
that, as concluded from figure 4.9, that this is mainly due to large amount
of dry cells. This especially applies to the Malpasset dam break, because
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Figure 4.9: Auto-tuning benchmark on an idealised circular dam break,
showing the performance in megacells per second throughout the simula-
tion. It is performed with two domain resolutions, 2000 x 2000 (left) and
4000 x 4000 (right). The benchmarks are run using two GeForce GTX 480
graphics cards. The results shows that Dynamic gives better load-balancing
on both graphics cards when there are large amount of wet cells. Also,
notice that the highest resolution gives much better performance than the
lowest resolution.

for this case there are large amount of dry cells throughout the whole
simulation. This can easily be seen in figure 4.7. Here, the water follows
the valley after the breach and does therefore not cover the whole domain.
As such, Static EE gives best performance because it applies the early exit
algorithm and has a better utilization of the GPUs. Dynamic computes on
small amount of wet cells for both GPUs, which is an ineffective solution.
Finally, the highest resolution gives much better performance than the
lowest resolution, which is due to better occupation of the graphics cards.

Execution times | Circular dam break | Malpasset dam break
Simulation 1.1E+3 1.3E+3
Auto-tune (total) | 5.6E+1 2.6E+1
Auto-tune EE 3.6E+0 1.3E+0
Auto-tune BB 4.4E+1 2.1E+1
Auto-tune DD 9.3E+0 4.3E+0

Table 4.2: The execution times (seconds) for the idealised circular dam
break (4000 x 4000) and the Malpasset dam break (1759 x 4399) using two
GeForce GTX 480 graphics cards. The table shows the execution time for
the simulation and different parts of the auto-tuning technique. As seen,
there is no significant overhead related to the auto-tuning.

Also, I show the execution times related to auto-tuning both bench-
marks for the highest resolution in table 4.2. I split the different auto-tuning
algorithms into different parts to easily identify the bottleneck of the auto-
tuning. Here Auto-tune (EE) is the total execution time for auto-tuning early
exit, while Auto-tune (BB) is the total execution time for runtime auto-tuning,
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Figure 4.10: Auto-tuning benchmark on the Malpasset dam break, showing
the performance in megacells per second throughout the simulation. It is
performed with two domain resolutions, 879 x 2199 (left) and 1759 x 4399
(right). The benchmarks are run using two GeForce GTX 480 graphics
cards. The results shows that Static EE gives better performance than
Dynamic through the whole simulation. Also, notice that the highest
resolution gives much better performance than the lowest resolution.

more precisely the calculation of the bounding box and related auto-tuning.
Auto-tune (DD) measures the total execution time for dynamic domain de-
composition. There are summed into the total execution time for the auto-
tuning Auto-tune (total). Lastly, the simulation execution time Simulation
is shown. The table shows that the total auto-tuning execution time is 5%
of the circular dam break execution time. For the Malpasset dam break,
the total auto-tuning execution time is 2% of the simulation execution time.
This means that there is a low overhead of running the auto-tuning. The
execution times related to auto-tuning does therefore not impact the simu-
lation significantly. Of the different parts, the bounding box auto-tuning is
the bottleneck.

Setup 2: Then, I run benchmarks for both the idealised circular dam
break and Malpasset dam break setup 2. The benchmarks are completely
identical to the ones performed for the first setup setup 1. They are shown
in figure 4.11, the idealised circular dam break (top) and the Malpasset
dam break (bottom). Here, the auto-tune interval is set to 1000. For the
first case, the resolutions are 2000 x 2000 (left) and 4000 x 4000 (right),
and for the last case, 879 x 2199 cells (left), equally spaced by 7.5m i.e.,
Ax = Ay = 7.5m and 1759 x 4399 cells (right), equally spaced by 3.75m
i.e., Ax = Ay = 3.75m. Here, the auto-tune interval was set to 5000 for the
lowest resolution and 4000 for the highest resolution.

First of all, the benchmark for the idealised circular dam break shows
a similar behavior to that of setupl in figure 4.9. However, here Static
EE shows even better performance than Dynamic. At t = 50, Dynamic
performs better than Static EE. This is due to the increased amount of
wet cells, giving better load-balancing for the Dynamic simulation. Then,
I compare the Malpasset dam break benchmark with the one for setup 1,
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Figure 4.11: Auto-tuning benchmark on an idealised circular dam break
(top) and the Malpasset dam break (bottom), showing the performance
in megacells per second throughout the simulation. It is performed with
two domain resolutions, 2000 x 2000 (left) and 4000 x 4000 (right) for the
idealised circular dam break and 879 x 2199 (left) and 1759 x 4399 (right)
for the Malpasset dam break. The benchmarks are run using two graphics
cards, the GeForce GTX 580 and the GeForce GTX 285. The results show
that Static EE has the best performance for the majority of the simulation.
Also, notice that the highest resolutions give slightly better performance
than the lowest resolutions. Increasing the resolution also increases the
performance of Dynamic slightly compared to Static EE.

as shown in figure 4.10. First of all, for the benchmark in figure 4.11 the
overall performance is much lower compared to 4.10. This is probably
related to the GeForce GTX 285 card which is less powerful than the other
cards, therefore being a bottleneck. Also, Dynamic shows a slightly better
performance than Static EE at the end of the simulation. This did not
happen for the benchmark performed on setup 1. I reason that this is
because the GeForce GTX 580 gets a larger workload than the GeForce GTX
285 as the water reaches the bottom of the domain. Therefore, this gives
better performance than Static EE, because the GeForce GTX 580 is more
powerful than the GeForce GTX 285.

Finally, I show the execution times related to auto-tuning both bench-
marks for the highest resolution in table 4.3. The table shows that the
total auto-tuning execution time is 3.6% of the circular dam break execu-
tion time. For the Malpasset dam break, the total auto-tuning execution
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time is 0.7% of the simulation execution time. This means that there is a
low overhead of running the auto-tuning. The execution times related to
auto-tuning does therefore not impact the simulation significantly. Of the
different parts, the bounding box auto-tuning is the bottleneck.

Execution times | Circular dam break | Malpasset dam break
Simulation 1.4E+3 3.3E+3
Auto-tune (total) | 5.0E+1 2.4E+1
Auto-tune EE 5.0E+0 2.5E+0
Auto-tune BB 3.6E+1 1.7E+1
Auto-tune DD 8.5E+0 4.7E+0

Table 4.3: The execution times (seconds) for the idealised circular dam
break (4000 x 4000) and the Malpasset dam break (1759 x 4399) using two
graphics cards, the GeForce GTX 580 and the GeForce GTX 285. The table
shows the execution time for the simulation and different parts of the auto-
tuning technique. As seen, there is no significant overhead related to the
auto-tuning.

Multi-node

Finally, I show the benchmarks for the multi-node system, using both setup
1 and setup 2 as the two nodes. I first run the the idealised circular dam
break case, as seen in figure 4.12 (left). It was run with a domain resolution
of 4000 x 4000. The benchmark is run decomposing a domain into four
subdomains, each initialized on a different graphics card. The auto-tune
interval was set to 2000. The benchmark shows a similar behavior to the
multi-GPU cases in figure 4.9 and 4.11. However, here Static EE has a
much better performance than Dynamic for the majority of the simulation.
This might be related to that the domain resolution is too low for multi-
node setup with four GPUs. I reason that increasing the resolution should
give much better occupation of the GPUs, especially for the Dynamic case,
therefore giving a performance improvement over Static EE. Running a
higher resolution was difficult because of the memory limitations on the
graphics cards used.

Also, I show a benchmark for the Malpasset dam break, as seen in
figure 4.12 (right). It was run with a domain resolution of 1759 x 4399
cells, equally spaced by 3.756m i.e.,, Ax = Ay = 3.75m. The benchmark
is run decomposing a domain into four subdomains, each initialized on
a different graphics card. The auto-tune interval was set to 6000. This
benchmark also shows a similar behavior to the multi-GPU cases in figure
4.10 and 4.11. Here, Static EE also gives the best performance. I reason
that this is also related to the occupation of the graphics cards caused by
the large amount of wet cells and the resolution. Running simulations
on domains with most of the domain covered with water would likely
give better results for Dynamic. Also, increasing the resolution should give
better utilization of the GPUs, giving a positive performance impact for
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Figure 4.12: Auto-tuning benchmark on an idealised circular dam break
(left) with a resolution of 4000 x 4000 and the Malpasset dam break (right)
using a resolution of 1759 x 4399. The performance is shown in megacells
per second throughout the simulation. The benchmarks are run using two
nodes, the first with two GeForce GTX 480 graphics cards and the second
with a GeForce GTX 580 and a GeForce GTX 285. The results shows that
Static EE gives the best performance for both cases.

Dynamic.

Finally, I show the execution times related to auto-tuning both bench-
marks in table 4.4. The table shows that the total auto-tuning execution
time is 2.4% of the circular dam break execution time. For the Malpas-
set dam break, the total auto-tuning execution time is 0.6% of the simu-
lation execution time. This means that for multi-node there is also a low
overhead of running the auto-tuning. The execution times related to auto-
tuning does therefore not impact the simulation significantly. Of the differ-
ent parts, the dynamic decomposition uses the most time.

Execution times | Circular dam break | Malpasset dam break
Simulation 1.3E+3 3.2E+3

Auto-tune (total) | 3.1E+1 1.8E+1

Auto-tune EE 9.0E-1 3.5E-1

Auto-tune BB 1.3E+1 8.1E+0

Auto-tune DD 1.8E+1 9.1E+0

Table 4.4: The execution times (seconds) for the idealised circular dam
break (4000 x 4000) and the Malpasset dam break (1759 x 4399) using two
nodes, the first with two GeForce GTX 480 graphics cards and the second
with a GeForce GTX 580 and a GeForce GTX 285. The table shows the
execution time for the simulation and different parts of the auto-tuning
technique. As seen, there is no significant overhead related to the auto-
tuning.

72



Auto-tune interval tests

I also performed several tests using a different auto-tune interval for all
benchmarks. Because the overhead for the auto-tuning was very low, as
shown, I reason that the interval could be increased. This would increase
the frequency it changes the workload on, and could potentially increase
the performance because the GPUs would compute on more adequate
workload. However, experimenting on it showed no added performance
improvements. At some benchmarks, it showed a decrease in performance,
which probably is because of the increased overhead. I therefore conclude
that altering this variable had a negative performance impact.
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Chapter 5

Conclusion

In this thesis, I explored load-balancing between multiple GPUs and
multiple nodes by investigating dynamic auto-tuning techniques. My
results showed that load-balancing had a good effect on domains with
a large amount of wet cells for the multi-GPU systems benchmarked.
However, for cases with many dry cells, a static workload distribution
using early exit showed superior performance.

I extended a single-GPU simulator [7] to an environment of multiple
graphics cards and multiple nodes. To decompose the domain across mul-
tiple GPUs, the row domain decomposition technique was implemented. Also,
to enable faster computations, a technique called Early exit was implemen-
ted. The multi-GPU and multi-node implementation showed good scaling
across multiple GPUs and multiple nodes. I also implemented dynamic
auto-tuning techniques to load-balance the computational domain between
the graphics cards. The technique worked together with the Early exit tech-
nique to load-balance the computational part of the domain between the
cards. The technique was divided into two algorithms. The first algorithm
auto-tuned on the computational power of each GPU to determine the op-
timal workload for that GPU. The second algorithm auto-tuned on the un-
derlying computational domain by computing the bounding box around
the wet cells. The bounding box was then distributed between the graphics
cards according to the workload determined by the first algorithm.

In this thesis, the dynamic auto-tuned multi-GPU simulator was
applied to the shallow water equations. However, the implementation
is general in use and should work equally well for any systems of
conservation laws, for example for the Euler equations [9], which describes
the dynamics of an ideal gas. These equations could also be solved in a
computational domain with wet and dry cells, equal to the shallow water
equations. First of all, decomposing a domain into multiple subdomains
across multiple GPUs should work equally well as the shallow water
equations for any computational domain consisting of other types of fluids
or gases. Furthermore, the implemented auto-tuning technique should also
work well. For example, computing the bounding box for other types of
fluids or gases should work just as well as performing it on water flow for
the shallow water equations.
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