
Use of Syntax in Question
Answering Tasks

Marte Svalastoga
Master’s Thesis Autumn 2014

Acknowledgements

First, I would like to express my deepest gratitude to my two supervisors
Rebecca Dridan and Lilja Øvrelid for their patience, support, and brilliant
feedback. I am greatly honoured to have been allowed to worked with them,
their guidance has been invaluable.

I am also immensely grateful to my parents, who have offered support and
motivation, especially when I was not able to see an end to this thesis.

Thanks to my boyfriend Marius, I have stayed mostly sane during the course
of writing this thesis. He made sure I remembered to eat and sleep at ap-
propriate intervals, and helped me keep a positive attitude throughout the
process.

Finally, I would like to thank my fellow students and the staff of the Lan-
guage Technology Group at the University of Oslo for creating an excep-
tionally good environment for me to work in, and also frequently sharing
foodstuffs containing sugar.

Thank you.

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Results . 2
1.3 Thesis outline . 2

2 Background 5
2.1 Question Answering . 5

2.1.1 The basic QA pipeline 6
2.2 Related sub-fields . 10

2.2.1 Textual Entailment . 10
2.2.2 Information Retrieval 10

2.3 Shared tasks . 11
2.3.1 CLEF . 11
2.3.2 Previous CLEF QA tasks 12
2.3.3 QA4MRE . 14

2.4 Previous work . 16
2.4.1 The hybrid system . 16
2.4.2 A retrieval-based system 17
2.4.3 A dependency-based system 18

2.5 Syntactic analysis . 19
2.5.1 Dependency grammar 19
2.5.2 Stanford Dependency scheme 19
2.5.3 Dependency parsers 20

2.6 Summary . 20

3 Baseline system description 21
3.1 Motivation . 21
3.2 Data preparation . 21
3.3 Document retrieval . 22
3.4 Heuristics for answer ranking 23

3.4.1 Scoring . 24
3.4.2 Overlap-based heuristics 24
3.4.3 Bigram overlap . 26
3.4.4 Heuristics for question words 26

3.5 Normalisation . 26
3.6 Baseline results . 27
3.7 Summary . 28

i

4 Experiments with syntax 29
4.1 Error analysis on baseline system 29

4.1.1 What didn’t work . 29
4.1.2 What worked . 31
4.1.3 Tied scores . 31
4.1.4 Summary . 31

4.2 Adding dependency heuristics 31
4.2.1 Dependency parser . 32
4.2.2 Converting the data 32
4.2.3 Dependency heuristics 33
4.2.4 Results . 35

5 Data analysis 39
5.1 Introduction to the data . 39
5.2 Classifying the questions . 40

5.2.1 Background knowledge 41
5.2.2 Inference . 41
5.2.3 Anaphora . 41
5.2.4 Lexical semantics . 42
5.2.5 “Impossible” questions 43
5.2.6 Comments on the classes 44

5.3 Applying the classification . 44
5.3.1 Results of classification 44
5.3.2 Using the results . 46

6 Experiments with anaphora resolution 47
6.1 The Hobbs algorithm . 47
6.2 Alternative approaches . 49
6.3 Our strategy . 49

6.3.1 First person pronouns 49
6.3.2 Using the Hobbs algorithm with dependency structures 50
6.3.3 Results . 51

6.4 Running the system after anaphora resolution 54
6.5 Testing on held out data . 54
6.6 Summary . 55

7 Conclusion 57
7.1 What we learned . 57
7.2 Reflections . 57

7.2.1 Using dependencies . 57
7.2.2 Scoring . 58
7.2.3 Using the background collection 58

7.3 Conclusion . 58
7.4 Future work . 59

ii

List of Figures

2.1 Basic QA system architecture 7
2.2 Question and assigned question type 7
2.3 Examples of assignments of labels to question words 8
2.4 Example of generated queries based on patterns 9
2.5 Example of adding an answer-slot 9
2.6 Example of questions and answers 15
2.7 Definition of the c@1 measure 15
2.8 Example of anaphora resolution 17
2.9 Example of extracted facts . 18
2.10 Visual representation of a dependency graph 20

3.1 The first lines of the raw XML file 22
3.2 Edited version of the first two sentences of the first text . . . 22
3.3 Input and output from word_tokenize 23
3.4 Final result of word tokenization 23
3.5 Overlap between question and answer 25
3.6 Overlap between answer and sentence 25
3.7 Overlap between question, answer and sentence 25
3.8 Creating queries based on answer-slots 26

4.1 Example of what-question with answer candidates. 30
4.2 Example of CoNLL-file, input to MaltParser 34
4.3 Output from MaltParser . 34
4.4 Dependency structure visualized as a graph 34
4.5 Dependency heuristic sabotaging results 37

5.1 Example of text, question and answer 40
5.2 Question requiring background knowledge 41
5.3 Question requiring textual entailment 41
5.4 Questions requiring resolving anaphora 42
5.5 First person pronoun anaphora 42
5.6 Synonyms in answer candidate and supporting text 43
5.7 Co-reference in the dataset. 43
5.8 Example of “impossible” question 1 45
5.9 Example of “impossible” question 2 45

6.1 Example of resolved anaphora 54

iii

List of Tables

3.1 Scores for heuristics . 24
3.2 Accuracy of baseline system 27

4.1 Performance on question types 30
4.2 Results after adding dependency-based heuristics 36

5.1 Numbers of topics, questions and answers in the test data . . 39
5.2 Classification of the questions from QA4MRE at CLEF 2011 46

6.1 Results of running an anaphora resolver 52
6.2 Pronouns and their frequency in development set 53
6.3 Number of resolved pronouns 53
6.4 Results after running anaphora resolution on text 55
6.5 Results of running system on held-out data 56

v

Chapter 1

Introduction

Humans are born curious, and we learn by asking questions and exploring.
With the explosive growth of the Internet and the availability of information
online, learning how to ask questions the right way has become an art, first
with boolean queries, and later special keywords to optimize use of a search
engine. Often these queries do not reflect the way we would ordinarily
use language. For example, if you want to know what the largest city in
France is, not counting Paris, a likely search query would be “largest
city france -paris”. While the form of this query makes sense from a
technical perspective, as it includes the most relevant words and even shows
what words to exclude from the search, it is not a natural utterance. A
second inconvenience is that most search engines will then return a list of
results where the user is required to manually examine the results in search
of the answer.

If you were to ask another person the same question, the phrasing might
be more like “What is the largest city in France, other than Paris?”, and
the human (if she knows the answer) will reply “Lyon”. This format of
interaction is the ultimate goal of Question Answering, allowing human
users to interact with computers using natural language, and getting natural
language answers.

Question answering is not about the technicalities of the input and
output of the conversation, but going from a natural language question to a
natural language answer. While the goal is to achieve this seamless form of
communication, there is still a long way to go.

In this thesis, we will create a question answering system that is
especially designed to answer multiple choice questions. The questions and
the text accompanying it are supplied as part of a shared task, a joint effort
within an academic community to further progress within specific parts of
a field.

What we wish to investigate with this system is the effect of using
syntax for a shared task, where our initial hypothesis is that using syntactic
information will be beneficial. Syntax is “the study of the principles
and processes by which sentences are constructed in particular languages”,
according to Noam Chomsky (Chomsky 1957). When we discuss use of
syntax in this thesis, we refer to the information that can be gained about

1

the role a word has in a sentence. There are several forms of syntactic
analysis, such as lexical analysis, which is used to determine whether a word
is a noun, verb, etc., or grammatical analysis, where the word is assigned
a grammatical function, such as subject or predicate of a sentence. In
this thesis, words are analysed both lexically to get part-of-speech tags and
grammatically to get dependency relations. More detail on this is given in
the background chapter.

Without any syntactic analysis or external knowledge sources, methods
of text processing are limited to counting words, either alone or in sets
of multiple words in the order of appearance. With syntax, our goal is
to abstract away from surface variations and thus creating a more robust
system.

1.1 Motivation
The goal of this thesis is to investigate how syntactic information can be used
to increase the performance of a question answering system, measured by its
accuracy. Accuracy is defined as the number of correct answers divided by
the total number of answers. While several systems in the given task did use
syntax, there were other aspects in play that could affect the performance
of the systems. For example, a system using syntax could score better than
a system relying on shallow heuristics based on better document retrieval
or a more refined ranking algorithm. We want to assess the usefulness of
adding syntactic information seen in isolation, and to do this we create a
system of our own to perform experiments on.

1.2 Results
After comparing results from the two configurations of our system, one
baseline version using shallow heuristics and one using syntactic analysis
on top of the baseline, we could not see any benefits from using syntax
directly. When analysing the data, it became clear that the design of the
task made this approach difficult. We came up with an alternative strategy
using syntax to resolve some references in the text, and saw positive results.

1.3 Thesis outline
Chaper 2 — Background
In this chapter, the necessary fields, concepts and methods used in this
thesis are introduced. First, an outline of Question Answering (QA)
is given, including an example of a basic pipeline of a QA system.
Two related fields within natural language processing are then briefly
described, before we introduce the concept of shared tasks. Leading
up to the presentation of the task this thesis will attempt to solve,
we give a short history of the tasks preceding it. After presenting the
task, a brief outline of a few selected systems that participated in the
task is given, before we give an introduction to syntactic analysis.

2

Chapter 3 — Baseline system description
A baseline system is built and described, serving as a reference
point for performance before syntactic features are added. After
describing the process of preparing the background data, each of the
modules in the system are introduced. The concept and application of
normalisation is then described, before results of running the system
are presented.

Chapter 4 — Experiments with syntax
This chapter details an error analysis performed on the results gained
from the baseline system, before describing which syntactic features
were added. A dependency parser is introduced, as well as the process
of converting the data to a format readable by the parser. The results
of this addition are briefly discussed at the end of the chapter.

Chapter 5 — Data analysis
With the results from adding syntactic features in mind, the data is
examined more closely. In this chapter, the process of classifying the
dataset is described, as are the different classes and their criteria. The
results are then listed and discussed.

Chapter 6 — Experiments with anaphora resolution
In this chapter, syntactic information is being used in a different
manner, namely to resolve anaphora. First, a naive algorithm for
resolving anaphora using basic syntactic trees is described, before
presenting a reinterpretation of this algorithm for use on dependency
structures, created for this thesis. The results of running the algorithm
on the text, and the impact this had on the complete system are then
described.

Chapter 7 — Conclusion
We discuss our findings, and present ideas for potential improvements
of the system, as well as some suggestions for future work.

3

Chapter 2

Background

In this chapter, we present the fields and concepts necessary to understand
the main content of this thesis. The intended audience are fellow master’s
students in informatics, meaning that while no previous knowledge of
language technology is required, we assume that the reader has a good
understanding of computer programs and how they work.

We begin by introducing the task of Question Answering (QA) by
presenting its purpose and describing a basic pipeline for a QA system.
After the function of the different components are explained, we move
on to introduce two of the sub-fields that are closely related to question
answering. The concept of shared tasks is then presented, and the shared
task this thesis focuses on is introduced. Details of the previous tasks are
briefly summarised, before introducing the task from 2011. Three systems
participating in the 2011 task are briefly outlined to give an idea of how these
systems work. Finally, we introduce the basic concepts of syntactic analysis,
describe the annotation scheme we use, and explain how this analysis can
be used.

2.1 Question Answering

The task of Question Answering (QA) is a subtask of Natural Language
Processing (NLP) which is concerned with answering questions posed in a
natural language. NLP is also known as human language technology and
computational linguistics, often depending on the focus of the person or
group describing the field. The general focus of the field is on the use
of natural languages in combination with computers. These uses include
both permitting for the use of natural language in communication between
humans and computers, and using computers to process spoken or written
language. (Jurafsky and Martin 2009) The term natural language is simply
a way to specify that the languages in question are ones that are or have
been used by humans for communication, such as Norwegian or English, in
contrast to formal languages. Formal languages are constructed languages,
such as programming languages, that are clearly defined and unambiguous.

When presenting a QA system with a questions such as “When was the
UN founded?”, the system should provide a concise answer, for example

5

“24 October 1945” or “1945”. The ability of a system to return only
the answer itself is considered an improvement on traditional information
retrieval systems that return a document or phrase likely containing the
answer, but not necessarily phrased in a way to exactly answer the question.

QA is a useful task not only for its direct applications, but because in
order to answer a question, the system must understand what is being asked
for, know where to find the answer, and present the answer in a format that
reflects the questions. All of these steps are helpful in bringing systems closer
to a complete understanding of natural languages, which is an overarching
goal of NLP.

Technology using question answering is already available on a multitude
of platforms, such as the online search engine WolframAlpha1 and Apple
Software’s personal assistant Siri, which is available on Apple’s mobile
devices. Both of these can take questions and return answers, Siri in spoken
form and WolframAlpha in written form.

While there are many practical uses for question answering systems, this
thesis concerns the academic interest in the field. Progress in the field is
largely a result of shared tasks that aim to improve the general state of QA
systems by focusing on different aspects of systems, working towards certain
long-term goals. These tasks and goals will be introduced in section 2.3

In the next section, we will describe the layout of a basic QA system,
the purpose of each component, and how they interact.

2.1.1 The basic QA pipeline

A QA system typically consists of a series of components, each performing an
operation on some part of the given data, before sending results to the next
components. We describe the pipeline of a system created to solve a generic
QA task consisting of receiving a question, searching a given repository for
texts containing the answer, and returning the answer. The focus on the
components in the following sections is on the applicability for our system.

The components can vary, this layout is based on one described by Webb
and Webber (Webber and Webb 2010). An illustration of the components
from the same book is shown in figure 2.1. In this illustration, the arrows
represent the data flow of the system.

Question typing

Question typing takes the question as input, and returns one or more labels
describing what sort of entity the answer is likely to be. These labels
describe the type of information the question asks for, for example person
or definition. This step is not a necessity for a system, but can be a useful
tool to filter retrieved passages and rank answer candidates.

The list of labels is finite, and each label is given a set of defining features.
These features can be syntactic, semantic and lexical. An example of a
question and its label can be seen in figure 2.2.

1. https://www.wolframalpha.com/

6

Figure 2.1: Basic QA system architecture

Q: Who was the founder of the Salvation Army
Label: person

Figure 2.2: Question and assigned question type

In 2006, Li and Roth (Li and Roth 2006) described a classifier that
achieved 92.6% accuracy when using 6 coarse-grained question types. These
types were abbreviation, description, entity, human, location, and
numeric. These were divided into 50 fine-grained types, and the classifier
reached 89.3% accuracy on these. This classification was done by using a
hierarchical classifier that extracted syntactic and semantic features, as well
as utilised external knowledge.

A common alternative is to build a simpler classifier that works on hand-
written rules for coarse classification. These rules can work by for example
matching question words to labels. An few examples are shown in figure 2.3.
These labels are then used in both query construction and answer candidate
extraction, described in the next subsections.

Query construction and document retrieval

The aim of this part of the pipeline is to find the document(s) containing
the answer to the question. In order to get the document, a query is
constructed, which is then used as a basis to search through the document

7

Question word Label(s)
Who person, organization, country
Where location
When date

Figure 2.3: Examples of assignments of labels to question words

collection. Query construction and document retrieval are closely linked, as
the type of retrieval used determines what sort of query should be created.
In general, query construction is the component of the system concerned
with constructing a query — a search string — to send to a search engine,
in the hopes of retrieving a document containing the answer. A document
is loosely defined as some body of text. It can be a large text consisting
of multiple pages, or a sentence. This depends on both the dataset and
how the system is designed, as some systems perform segmentation of the
available document collection as part of the preprocessing.

We focus on two types of document retrieval. Both of these methods
make use of a text search engine, but the strategy differs. The first of the
two types of retrieval is relevance-based retrieval. Systems using these
techniques aim to create queries that can retrieve texts relevant to a topic,
by a chosen metric. To do this, the system must also include some measure
to assess relevance. A common method to increase the chance of finding
a relevant passage of text consists of breaking down the text to smaller
segments and performing the search on these, assuming that segments that
match the query are more relevant than those that do not match.

This method can be further refined by indexing types of named entities
in addition to word positions, using predictive annotation (Prager et al.
2006). The named entities become useful only if question typing has been
performed, as the system can then search for named entities with a label
describing the form that the answer is likely to take. With these indexes,
the system can perform more efficient searches for relevant documents. The
entity types can be applied to the query construction as well, where the
general idea is that the query should reflect the types of entities the answer
might be.

The other form of document retrieval is pattern-based retrieval.
Methods used in this type of retrieval are based on rewriting the question
to different surface variations of the same question, increasing the chances
that the phrasing of the question better matches the phrasing used in the
answer. One way of doing this consist of removing the question word, and
creating permutations of the remaining words. Some possible permutations
are shown in figure 2.4. In these examples, the determiner and the word
following it was considered an entity, in order to preserve some meaning.
However, as can be seen in the example, this alone is not enough to
preserve noun phrases, “Salvation” and “Army” are separated. With the
use of shallow heuristics, the suggestions can be kept somewhat grammatical
without needing knowledge of syntax.

8

Who was the founder of the Salvation Army
was the founder of the Salvation Army
the founder of the Salvation Army was
the founder of was Army the Salvation
the Salvation Army was the founder of

Figure 2.4: Example of generated queries based on patterns

Q: Who was the founder of the Salvation Army?
A:<answer> was the founder of the Salvation Army

Figure 2.5: Example of adding an answer-slot

A second way of using patterns is by inserting an answer slot in the place
of the question word. The assumption is that if the pattern is found, the
answer is in the place of the answer slot. See figure 2.5 for an example. This
method can be combined with the previous method, offering permutations
of the question with the answer-slot in place.

Answer candidate extraction

The purpose of answer candidate extraction is to go from the documents
containing the answer, to the answer itself. This means that the system must
isolate the answer candidate from the surrounding text. Several candidates
can be extracted, to be evaluated in the answer candidate evaluation step.
If pattern-matching using answer slots was used in the previous step, the
answer candidate is given directly, and can be sent to answer candidate
evaluation. Likewise, if named entities were used with relevance-based
retrieval, the matching entity can be evaluated directly. There are other
methods for extracting answer candidates, but as this thesis is concerned
with a task where there is a predefined set of answer candidates, we will not
go into more detail on these.

Answer candidate evaluation

In this final component, the system chooses what answer to return. The
system might make use of a ranked list of candidates, and return either the
top candidate or the top n candidates, depending on the task it attempts
to solve. Ranking answer candidates is the main task of this component,
if the previous components have returned more than one candidate. The
ranking should reflect the likelihood of the answer candidate being correct,
with the strongest candidate appearing first. This part of the QA pipeline
has a high amount of overlap with textual entailment (see section 2.2.1),
as the task can be formulated as determining whether the text entails the
answer candidate.

There are several options for how to rank the candidates, we will describe
two of them here. First, the candidates can be ranked by their frequency in

9

the text, under the assumption that there is a relation between frequency
and relevance. The dependency-based system (Babych et al. 2011) described
in a later section uses this technique. The frequency count can be further
refined by focusing on named entities in the candidate, which requires a
named entity recognition step to be performed on the data. The usefulness
of looking at counts depends on the data, as the correct candidate is more
likely to only only a few times — or even just once — in a smaller dataset.

A second possibility described by Webb and Webber makes use of online
resources, and uses these to estimate the probability of the correctness of an
answer.

Some systems, like the retrieval-based system (Verberne 2011) we will
introduce later in this chapters, will only give an answer if the confidence in
the highest ranked answer candidate exceeds a set threshold. This confidence
can be determined by looking at how close the top rated candidates are by
whatever measure was used to rank them.

Once this component has chosen one or more answers to return, the
system has completed its task, and can then be evaluated by some external
measure on how many correct answers it achieved.

2.2 Related sub-fields

In this section, we briefly introduce some related fields that are especially
relevant for this thesis. Question answering is one task under the larger
field of NLP. Tasks in NLP focus on solving parts of a common goal, and
have a lot in common. Some of the tasks that are closest related to QA
are information retrieval, which can be used to find information in a
collection of documents, and textual entailment to attempt to prove
whether or not an answer is true given a source, or to choose the best
answer given a list of candidates. In the next paragraphs, we describe the
two tasks, and how they can contribute to question answering.

2.2.1 Textual Entailment

The focus in Textual Entailment (TE) is proving whether or not an
hypothesis H is entailed by a text T. To be more exact, entailment is
described in the first PASCAL Recognising Textual Entailment Challenge
as “[. . .]T entails H if, typically, a human reading T would infer that H is
most likely true.” (Dagan, Glickman, and Magnini 2006) The most basic way
of attempting to prove inference is through word overlap, simply assuming
that high overlap equals entailment. A less common way is to translate
sentences to logical statements, and use a logical prover to see if T entails
H. The answer validation module of a QA system can be described as a TE
problem in itself, where H is the answer candidate, and T is the text.

2.2.2 Information Retrieval

Information retrieval (IR) is the act of retrieving information from sources
of data, either structured or unstructured. In this thesis, we choose to focus

10

on retrieval from unstructured data sources, i.e. texts written in human
language, containing facts. The task of IR originated in the need to search in
scientific publications and library records, but has expanded since (Manning,
Raghavan, and Schütze 2008). In recent years, the World Wide Web has
been a driving force in innovations within information retrieval, as users
world wide use search engines to find relevant content on the web. For QA,
IR methods are used for retrieving documents relevant to the question, and
selecting documents likely containing the answer. Most QA systems use
existing search engines, such as Lucene.2

2.3 Shared tasks

Shared tasks are tasks given within a specific field, in relation to a conference
or lab, with training and test data offered by the organisers of the task. The
goal of these tasks is to focus the community on further development of
certain aspects of the field, and to be able to compare the performance
of the submitted systems. The systems must be accompanied by a paper
describing the approach used, sharing whatever new insights were gained
while solving the task.

Before we introduce the task that is the main focus of this thesis, we
briefly describe some of the shared tasks in related fields and what their
focus is. Computational Natural Language Learning (CoNLL) is an annual
conference that accepts contributions on a number of language learning
topics, and hosts a shared task for every conference.3 The topics of these
tasks are varied, from the task in 2000 concerned with chunking, the process
of splitting text into segments that are syntactically related, to the task from
2013 on grammatical error correction.

The Text REtrieval Conference (TREC) is co-sponsored by the National
Institute of Standards and Technology (NIST) and U.S. Department of
Defence.4 As the name implies, the yearly conferences are focused on text
retrieval, also known as information retrieval. From 1999 until 2007, TREC
had a QA track with a strong focus on information retrieval. However, the
data and tasks were only focused on English, leaving other languages behind.
In order to bridge this gap, the CLEF initiative started its own multilingual
QA track.

A shared task called Recognizing Textual Entailment (RTE) (Dagan,
Glickman, and Magnini 2006) has been held anually since 2006, and has
been the main task for textual entailment.

2.3.1 CLEF

The CLEF Initiative (Conference and Labs of the Evaluation Forum,
formerly known as Cross-Language Evaluation Forum) describes themselves
as a “self-organized body whose main mission is to promote research,

2. http://lucene.apache.org/
3. http://ifarm.nl/signll/conll/
4. http://trec.nist.gov/overview.html

11

innovation, and development of information access systems with an
emphasis on multilingual and multi-modal information with various levels
of structure.” 5

The initiative has hosted a series of tasks divided into different areas or
tracks. These tracks cover a given area of computational natural language
understanding, with a focus on multilinguality. One of these tracks is
QA@CLEF: Multilingual Question Answering Track at CLEF,
which has run from 2003 and is still ongoing at the time of writing. In
the next section, we describe some of the tasks held previously in this track,
leading up to an introduction of the task from 2011, which is the task we
will focus on in this thesis.

2.3.2 Previous CLEF QA tasks

In this section, we briefly introduce the previous tasks for the QA-track at
CLEF, and how each differed from the one the year before. Each year, there
is a main task which consists of systems answering a series of question. This
task can either be performed on only one of the languages supplied, or with
a different source and target language.

2003 A monolingual main task was given where the systems could choose
one of three languages. They were given 200 questions, and asked
to return an answer alongside the ID of the document containing the
answer. The answer could either be the exact answer, or a 50 byte long
string. In addition to this, a cross-language task was given, asking the
systems to find responses in an English corpus to queries posed in a
different language. The best system had the correct answer ranked
amongst its top three candidates in 99 of 200 questions. See Magnini
et al. 2004.

2004 Nine source languages and seven target languages were part of the
main task this year. For these, 200 questions were provided, and only
exact answers were accepted. Systems needed to go from questions in
a source language, to answers in a target language. With English as
target language, all the systems combined managed to answer 65% of
the questions, while individual systems ranged from 10.88% to 23.5%.
There was no monolingual task for English this year. See Magnini
et al. 2005.

2005 The task was mainly unchanged from 2004, except for the addition of
a few languages on both the target and source side, giving participants
a chance to improve their systems within the current restrictions. This
year, the best monolingual systems (i.e. systems using the same source
and target language) saw a drastic improvement, with the best system
answering 64.5% of the questions correctly. See Vallin et al. 2006.

2006 Two tasks were given in addition to the main task from the previous

5. http://www.clef-initiative.eu/web/clef-initiative/home

12

years, WiQA (Jijkoun and De Rijke 2007) and Answer Validation
Exercise (AVE) (Peñas et al. 2007). WiQA - short for Question
Answering using Wikipedia was a task focused on finding new
information given a topic. Both a monolingual and bilingual version
was offered. In AVE, systems had to answer YES or NO to a question
given a text-snippet, making it a textual entailment problem (see
section 2.2.1). In the main task, the best monolingual system reached
an all-time high with an accuracy of 68.95%. See Magnini et al. 2007.

2007 The same main and subtasks were given again, with the addition of a
pilot task, Question Answering on Speech Transcripts (QAST) In this
task, the systems had to look for answers to questions in transcripts
of spontaneous speech.
In the main task, a new challenge was added by grouping the questions
into topics, where coreferences — expressions referring to the same
entity — could be kept between questions. A second change was made
by adding data from Wikipedia as source material. For this task,
results were somewhat lower than last year, with the best score at
54% accuracy, and the average down from 49% in 2006 to 42% in
2007. See Giampiccolo et al. 2008.

2008 The subtasks from the previous year were given again, in addition
to the main task. The main task remained unchanged, allowing
participants to get more experience with the changes from last year
concerning coreferences in questions. Because of this, the monolingual
scores increased, with the best system achieving 64% accuracy, and
the average accuracy was 24%. See Forner et al. 2009.

2009 In a change from previous years, three separate tasks were held this
year, none of them being the “main” task. QAST was continued,
as well as GikiCLEF — a task on questions requiring geographic
reasoning amongst other things — and ResPubliQA was added. The
focus of ResPubliQA was retrieving the passage containing the answer
to the given questions, using the European legislation as document
collection. Combined, all the systems managed to retrieve the correct
passages for 90% of the questions. The highest individual system
managed it for 61% of the questions. See Peñas, Forner, Sutcliffe,
et al. 2010.

2010 The broad strokes of the main task from 2008 remained the same, with
two changes: systems were given the option to return either the para-
graph containing the answer, or the answer itself. A second change
was the addition of parts of the EUROPARL collection. There were
separate evaluations for Paragraph Selection and Answer Selection.
Due to a different scoring systems, scores could not directly be com-
pared to those from previous tasks. See Peñas, Forner, Rodrigo, et al.
2010.

13

Throughout all of these tasks, the broad strokes of the main task have
persevered, but some aspects have changed. In the first task, systems
could submit a 50 byte string as an answer, and in 2009 they were to
return the paragraph from the document collection containing the answer.
The document collection itself has also changed, where it in 2003 had no
particular theme, texts from Wikipedia were added in 2006, and different
topics were introduced in 2007.

Several pilot tasks have been introduced, some of them focusing on
specific parts of the QA pipeline. As the organizers saw an upper bound in
the accuracy measured in percentage, systems struggled to push out of the
60s without succeeding (Peñas et al. 2011). The pilot tasks were added in
the hopes of improving that number. However, even after including some of
the changes from the pilot tasks into the main task, such as allowing answers
to remain unanswered without affecting the accuracy by introducing the c@1
measure, performance did not improve much.

With this in mind, the task for 2011 was created, called QA4MRE.

2.3.3 QA4MRE

Question Answering for Machine Reading Evaluation (QA4MRE) is a task
that was introduced for the multilingual QA track of CLEF in 2011. The goal
of this task is to make systems focus on reading comprehension, hoping it
could change the way systems were designed, and ideally help them improve
accuracy scores that had plateaued over the last few years. Up until this
task, the questions had been simple, and rarely required any understanding
of the text. When looking at the systems submitted for previous tasks,
the organisers found two main areas that needed improvement: answer
extraction and answer validation. For this task, answer candidates were
given, meaning that answer extraction was not needed, answer validation
became an even more significant step.

For this task, 3 topics with 4 tests each were given, with 10 questions and
5 answer candidates per test. Each reading test consisted of a transcribed
TED talk on the given topic. These talks were chosen for the high
quality crowdsourced translations available. The topics wereAids,Climate
Change and Music and Society.

In addition to this, a background collection was supplied for each topic,
with data obtained by webcrawling. The number of documents retrieved
varied from around 25000 to 130000. While the texts that belong to each
test were the same for all the languages, the background collection varied.
The intention of the background collection was to supply data in the domain,
which systems could use in whatever way they wanted.

This task is considered the first step towards QA systems that can
both create an hypothesis based on the background collection and show
supporting documents alongside the hypothesis.

As a big point in the CLEF tasks has always been multilinguality, this
was no exception. The task was available in five languages, English, German,
Italian, Romanian, and Spanish.

The questions were created by the organisers, and posed in such a way

14

Q: What is Annie Lennox’s profession?
1. mother
2. nurse in a hospital
3. farmer
4. musician
5. dancer

Where the sentence containing the answer is as follows:

And so, subsequently, I participated in every
single 46664 event that I could take part in and
gave news conferences, interviews, talking and
using my platform as a musician, with my
commitment to Mandela, out of respect for the
tremendous, unbelievable work that he had done.

Figure 2.6: Example of questions and answers, the correct
answer and the corresponding sentence in the text is shown
in bold.

c@1= 1
n(nR + nU

nR
n)

Where
nR: number of questions correctly answered.
nU : number of questions unanswered
n: total number of questions

Figure 2.7: Definition of the c@1 measure

that mere pattern matching would not suffice. An example is shown in
figure 2.6.

Evaluation measure

The evaluation measure used in this task and several of the previous ones
is c@1, as defined by Peñas and Rodrigo (Peñas, Rodrigo, and Rosal 2011),
and is shown in figure 2.7.

The measure was created with the intention of rewarding systems for
refraining from answering questions, rather than giving incorrect answers.
This means that systems have something to gain from assessing the certainty
with which it answers a question, a valuable trait in tasks where reading
comprehension is measured.

15

2.4 Previous work

While the task description creates some constraints on the systems, a
number of different solutions are chosen for the actual implementation.
In the following sections, we describe a small selection of systems that
participated in the QA4MRE task at CLEF 2011. The systems are chosen
either for their results or chosen approach to the task. For each system, we
describe some of their features, and list the suggested improvements from
each accompanying paper.

2.4.1 The hybrid system

The first system had the highest score in the task, with its two best runs
getting a c@1 of 0.57 and 0.47, while the second best system had its best
run at 0.37. The paper accompanying this system was called “A Hybrid
Question Answering System Based on Information Retrieval and Answer
Validation” (Pakray et al. 2011).

The philosophy of the system can be described as a “more is more”
approach, using a high number of modules combined. This approach proved
to be very effective. In the next paragraphs, we highlight a few of the
modules and describe their function.

Textual entailment

This module attempts to prove that a text fragment T proves the answer
candidate H. The proving is done by checking for overlaps of unigrams,
bigrams and skipgrams between T and H, including their synonyms from
WordNet (University 2010).

Dependency parsing

Using the Stanford dependency parser for a dependency analysis, the system
uses a set of comparisons between the relations in the retrieved sentence and
in the hypothesis. WordNet was used in some of these comparisons, allowing
for a match if the WordNet distance between a pair of verbs was below a
given threshold, meaning the verbs could be considered of similar meaning.

Anaphora resolution

Anaphora are back-references to an entity that has already been introduced,
and take the form of pairs of the antecedent — the entity itself — and
the anaphor, the reference. In this instance, anaphora are pronouns. An
example is shown in figure 2.8, where “Anne” is the antecedent to the
anaphor, “she”. When resolving the anaphora, the anaphor is replaced with
its antecedent.

A few simple heuristics were applied to resolve anaphora, after a named
entity tagger was run on the text to identify and mark Named Entities
(NE). First person personal pronouns were replaced with the name of the
author, with the exception of occurrences of these pronouns in direct speech,

16

Original text:
Anne bought a car. She did not regret it.

After anaphora resolution:
Anne bought a car. Anne did not regret it.

Figure 2.8: Example of anaphora resolution

in which the first NE of that sentence was used instead. Second person
personal pronouns were resolved to the last NE of the previous sentence.

Suggested improvements

The authors did not make any suggestions for improvements in the paper
detailing their system, but they participated in 2012 (Bhaskar et al. 2012)
with some improvements to their system. The biggest change from 2011 and
2012 was the addition of a knowledge base, which contained a named entity
list, abbreviation list and multi-word list for three of the four topics. The
system had the lowest performance for the topic lacking a knowledge base,
something the authors used to testify to its usefulness.

2.4.2 A retrieval-based system

A second system that performed well in the 2011 task was a retrieval-based
system participating for the first time (Verberne 2011). Their approach was
to rely on the strength of the text retrieval part of the pipeline.

Text expansion

About half the systems used the background collection in some way. This
system used it to expand on the test document, making the assumption
that any required facts that were not present in the test document were
still related to information present in the test document. In this expansion
process, text fragments of 3 sentences from the test document were used to
search for similar sentences in the background collection, using a ranking
function. The text fragments were then expanded with the ten highest-
scoring sentences that were 4 words or longer.

Question expansion

Using “An English Hybrid Dependency Parser” (AEGIR) (Oostdijk,
Verberne, and Koster 2010), the background collection was parsed, and facts
were extracted. The form these facts take is shown in figure 2.9

The facts were then indexed both by subject and object, and if any sub-
string of the questions was found as either subject or object in this fact
collection, the fact was added to the question. These facts were used in
the answer selection process, where answer candidates are scored on their
similarity to facts and extracted target-fragments from the test document.

17

needle program | reduce | the spread |

Queen II Elizabeth | honor | Annie Lennox |

the future prime minister | write | romance novel | possibly

Figure 2.9: Example of extracted facts

Suggested improvements

In the fact expansion, facts containing pronouns were discarded. The
authors mention that resolving the anaphora would be a better solution,
but it was not a part of their system.

2.4.3 A dependency-based system

The final system we will consider from the QA4MRE at CLEF 2011 task is
a system that attempts to solve the task for German (Babych et al. 2011),
rather than English as the two previous systems did. The system uses
the output of a dependency parser as a base, and attempts to transform
this output to a semantic representation, abstracting away from surface
variability.

Knowledge extraction

The system extracted hypernym-hyponym pairs and detected synonyms by
using a combination of regular expressions and vector space models. These
relations needed to score above a given threshold for similarity before being
added to a database.

Inference

The main focus of the system was using the dependency relations as a step to
translate the questions, answers and texts into propositional logic formulae
that could then be used to prove the correctness of an answer candidate.
This process takes advantage of the fact that answer candidates are given,
and one is guaranteed to be correct, by changing parameters until only one
candidate can be proved.

Suggested improvements

The authors were pleased with the performance of the system, but
observed an inverse relation between coverage and accuracy. A suggested
improvement was to move deeper into understanding rather than matching
linguistic material, by mapping the text to a knowledge representation
structure.

18

2.5 Syntactic analysis

We introduce the concept of dependency grammar and dependency analysis
as we believe this form of syntactic analysis can be useful to a QA system.
Syntactic analysis is “[. . .] the task of recognizing a sentence and assigning
a syntactic structure to it.” (Jurafsky and Martin 2009, 461). One form
of syntactic analysis is dependency analysis, which will be the focus of this
section.

2.5.1 Dependency grammar

Dependency grammar is a set of theories and formalisms centred around
a core idea, described by Joakim Nivre (Nivre 2005) in the following
way: “syntactic structure consists of lexical elements linked by binary
asymmetrical relations called dependencies”. The assymetrical relations
mentioned are representations of the relationship between two words, where
one is dominated by the other. While many names exist for the constituents
of this relation, in this thesis the dominating word is called the head and the
dominated word the dependant. The relations can be expressed in plain
text as abbreviated_relation_name(head, dependant). The terms governor
or regent and modifier are sometimes used in the literature. Every word
in a sentence is dominated by another word except for one, and that word
is called the root node.

2.5.2 Stanford Dependency scheme

The Stanford Dependency scheme (SD) is one way of representing
dependencies. It was first described in a paper called “The Stanford typed
dependencies representation” (De Marneffe and Manning 2008). A strong
focus in the development of the scheme has been usability and readability
for people without a background in computational linguistics. Design-wise,
the scheme was built upon a series of principles that in summary focus
on making it simple, semantically contentful, and making sure relations are
between content words rather than indirectly through function words. As we
consider all of these features useful for this thesis, we decided to use the SD
for our analysis. Figure 2.10 shows a visual representation of a dependency
structure, from the Stanford typed dependencies manual (Marneffe and
Manning 2008). Several representations are available in the SD, in this
example and the rest of the thesis, the basic style is used. With this scheme,
the root node is marked as having a root-relation, with no head. From the
example, we can see that the subject (nsubj) and object (dobj) are given
from the root. The relation nsubj(makes, Bell) shows that Bell is the
subject, and dobj(makes, products) that products is the object, the thing
that is made. These two relations give a decent summary of the sentence,
but some information is lost. The first part is less relevant to the meaning
of the sentence, the part giving the location of the company. However, the
apposition-relation appos(Bell, company) tells us that Bell is a company,
a useful fact. In addition to this, the nn(products, computer) relation

19

Bell , a company which is based in LA , makes and distributes computer products .

nsubj

det

appos

nsubjpass

auxpass

rcmod

prep pobj

root

cc

conj

nn

dobj

Figure 2.10: Visual representation of the dependency graph of a sentence

shows that computer products is a compound noun.

Formal Properties of Stanford Dependency Graphs

Three main conditions must be fulfilled for a dependency graph to be
correctly formed in the basic version of the SD. The first, and most
important, is that the graph is a tree with a single root-node forming the
entry-point to the graph. Following from this, the graph must be acyclic,
meaning that there must not be any cycles. A third condition follows, stating
that the graph must be connected. All nodes must be connected to another
node, except for the root node.

2.5.3 Dependency parsers

A parser is an implementation of an analysis scheme, automating the process
of analysis. Parsers can be trained on annotated data, or work on manually
created rules. Using a parser is a quick way of getting a dependency analysis,
but the result is not necessarily correct. One of these parsers, MaltParser
(Nivre, Hall, and Nilsson 2006), can get accuracies of 80-90% without any
language-specific enhancements, according to the creators.

2.6 Summary
In this chapter, we have described what QA is, and shown an example of a
basic pipeline. As QA is closely linked to other fields within natural language
processing, we described two of these fields briefly, textual entailment and
information retrieval. These two were chosen as they are especially close
to the form of QA in the task. We then introduced the concept of shared
tasks, before detailing the task that is the focus of this thesis. To get more
insight in how the task can be solved, we have given a brief introduction to
three systems that participated, focusing both on what features made them
unique, and what improvements the authors of the papers accompanying the
systems suggested. Finally, we introduced the concept of syntactic analysis
and an annotation scheme for this that we will use in our system. We think
that syntactic analysis can be a good way for a QA system to get a deeper
understanding of text, and thus become more accurate.

20

Chapter 3

Baseline system description

In this chapter, we introduce the baseline QA system we built to solve
the QA4MRE task at CLEF 2011. The goal of the system and this thesis
is not to participate in a shared task, but investigate how syntax can be
used in solving a QA task. Because of this, we will not focus on achieving
accuracies that beat those achieved by others systems, but rather on creating
a consistent system that can be used as a baseline for comparison after
adding more advanced heuristics.

We describe the data preparation process that takes place before feeding
data to the system, then present the different components of the system.
The scores used to rank answer candidates are explained, before we present
the results of running parts of the data through our system, and discuss the
performance.

3.1 Motivation

In order to see changes in performance when utilizing syntax, we need a
baseline system for comparison, which we describe in this chapter. Once
we have a working baseline system, we can add heuristics using syntax, and
examine changes in performance. We chose to use the task of QA4MRE at
CLEF 2011 as a basis because its premise is relatively simple, and no answer
candidate generation is involved. This means that getting a basic system up
and running could be done quickly, and the focus would be on the answer
candidate evaluation, limiting the potential sources of errors. A second
reason for using a shared task is that the papers from the participating
systems are all available, which gives some insight into what has been tried,
and what the results were. With this in mind, we move on to describing the
components of our system.

3.2 Data preparation

The English test data from QA4MRE at CLEF 2011 is given as a single
structured XML file containing texts, questions and answers. The texts
originally contained linebreaks and paragraphs, but these were removed as
a part of the preformating done by the organizers of the task. This has led

21

1 <?xml version=" 1 .0 " encoding="UTF−8" ?>
2 <tes t −s e t>
3 <t o p i c t_id=" 1 " t_name="AIDS">
4 <reading−t e s t r_id=" 1 ">
5 <doc d_id=" 1 ">
6 Annie Lennox Why I am an HIVAIDS
7 a c t i v i s t I ’m going to share with
8 you the s to ry as to how I have
9 become an HIV/AIDS campaigner . And

10 t h i s i s the name o f my campaign ,
11 SING Campaign .

Figure 3.1: The first lines of the raw XML file

1 Annie Lennox: Why I am a HIVAIDS a c t i v i s t .
2 I ’m going to share with you the s to ry as to
3 how I have become an HIV/AIDS campaigner .

Figure 3.2: Edited version of the first two sentences of the first text

to two problems: first of all, since he title of the talk, including the author,
is separated from the text with linebreaks, not with punctuation, the title of
the talk has been merged into the first sentence, as seen on line 6 in figure 3.1.
We solve this problem by manually editing the first sentence of each text
before processing it further. As the formatting on title and speaker were not
consistent, we decided on standardizing the format as shown in figure 3.2.

A second problem is that linebreaks are simply removed, not replaced
with spaces. This means that some sentences are not separated by spaces,
which can lead to issues with further parsing. We solve this by using a
regular expression to split up the sentences.

Rebecca Dridan, one of the supervisors of this thesis, created a basic
system for this task that reads the data, ranks the answer candidates based
by their word-overlap with the question, and displays the results. These
results are then compared with the gold standard answers, showing the
ratio of correct answers for each reading test. We used this system as a
skeleton for our system, allowing the focus to remain on building the answer
validation component.

The answer ranking function in the original system used the length of
the overlap between words in question and answer as score. We sought
to improve upon this using other shallow heuristics, investigating what the
system could and could not do with only these heuristics in place.

3.3 Document retrieval

Most QA systems use some form of document retrieval to collect the
documents deemed most relevant by some measure to the question.

22

Input: “This is a sentence. It is followed by a second sentence.”
Output: [‘This’, ‘is’, ‘a’, ‘sentence.’, ‘It’, ‘is’, ‘followed’, ‘by’, ‘a’,
‘second’, ‘sentence’, ‘.’]

Figure 3.3: Input and output from word_tokenize

Input: “This is a sentence. It is followed by a second sentence.”
Output: [‘this’, ‘is’, ‘a’, ‘sentence’, ‘it’, ‘is’, ‘followed’, ‘by’, ‘a’,
‘second’, ‘sentence’]

Figure 3.4: Final result of word tokenization

However, as the length of the texts in these task range from only 1234 to
3581 words, we decided to use the entire text, rather than extract segments.

With a large dataset, this approach would lead to very long run times,
making development tedious. As this is not an issue, we decide to eliminate
the potential risk of lack of accuracy introduced by the chosen methods for
document retrieval, and examine the entire text instead.

We use the text in two ways: first as a single unit, one list of all the words
in their original order, punctuation removed. A second representation is by
sentences, using a sentence-tokeniser from NLTK (Bird, Klein, and Loper
2009). We will describe what unit of text is used for each of the heuristics
described in the next sections.

The process of tokenisation means splitting something into smaller units.
For our system, this means splitting a complete text into individual words,
and a complete text into sentences.

The complete text is tokenised into words by using word_tokenizer
from NLTK. As can be seen in figure 3.3, after performing the tokenisation,
punctuation placed between words remains attached to the word before it.
Punctuation at the end of the string is separate. Both types of occurrence
of punctuation were removed, and all the words lower-cased. The result of
this process can be seen in figure 3.4. While tokenising on words is good
for treating the text as one unit, we also want to be able to use individual
sentences as contained units.

Sentences are tokenized using the Punkt sentence tokeniser from NLTK,
applying the supplied model for English. When sentences are used to rank
answer candidates, the entity in question is compared to all the sentences
in the text, and the highest score achieved for one single sentence is kept.
Sentences are only seen in isolation.

3.4 Heuristics for answer ranking

When examining the system design of “The Hybrid system” (Pakray et al.
2011) mentioned in the previous chapter, one of the main features of the
system was the sheer number of different heuristics that were combined to
create a high accuracy system. We decided to use several simple heuristics

23

Heuristic Text Basis of score Range

Overlap-based
Q and A none overlap 0, 1, 2, . . .
Q, A and sent. Sentence overlap×10 0, 10, 20, . . .
A and text Full overlap 0, 1, 2, . . .
Bigrams Full overlap×10 0, 10, 20, . . .

Question words Full fixed 0, 50, 100, . . .

Table 3.1: Scores for heuristics

in our system, but in contrast to “the Hybrid system” decided to limit our
system to heuristics that only relied on the surface structure of the text,
with no external sources, for simplicity.

3.4.1 Scoring

The score for each answer candidate is calculated by summing up the scores
from each of the heuristics presented below. The candidate with the highest
score is chosen as the system’s suggested answer. If two or more answer
candidates have the same score, the candidate appearing highest in the list,
i.e. the candidate with the lowest index is chosen. The weight of the scores
were initially based on intuition, then adjusted after manually analysing the
results, giving the heuristics that seemed to best predict correct answers
more weight than less reliable heuristics.

3.4.2 Overlap-based heuristics

The overlap-based heuristics measure the overlap between sets of words by
taking the length of the intersection of the sets. With the use of sets, the
ordering of words are disregarded, making this a bag-of-words model.

During development, a normalisation step was added where the overlap
was divided by the length of the answer candidate, to make sure that longer
candidates were not given an unfair advantage. However, this normalisation
consistently lowered performance, and is not part of the final baseline
system.

The idea behind these heuristics is that sentences sharing the same words
should have largely the same meaning. In practice, this is not always true for
a number of reasons. For example, negation words can completely change
the meaning of a sentence, but occurrence of a word as “not” is not seen
as any more significant than any other word. Another potential problem is
that the use of synonyms between text and question/answer is not detected,
only identical words are counted. As these types of heuristics are both fast
and simple to implement and run, we decided to use them in our system
despite their deficiencies.

24

Q: What is Nelson Mandela’s country of origin?
A: South Africa
Overlap between question and answer: 0

Figure 3.5: Overlap between question and answer

Q: What is Nelson Mandela’s country of origin?
A: South Africa
But do they all know about what has been taking place in South
Africa, his country, the country that had one of the highest incidents
of transmission of the virus?
Overlap: 1 × 2 = 2

Figure 3.6: Overlap between answer and sentence

Overlap between question and answer

This heuristic measures overlap between the question and the answer
candidate. The text is not taken into consideration, giving this heuristic
limited credibility. An example is shown in figure 3.5. The concise nature
of the answer candidates means that there will be a lot of cases with no
overlap between question candidate and answer.

Overlap between answer and text

This heuristic measures the overlap between the answer candidate and
sentences in the text. As seen in figure 3.6, this heuristic has clear potential
to be helpful. An issue with this heuristic is that the question is not taken
into account, the sentence containing the answer could might as well have
been describing another person.

Combining overlap between question, answer and sentence

A score is given in this heuristic by multiplying the overlap between the
question and the sentence, and the answer candidate and the sentence. The
idea is that if a sentence overlaps with both question and answer, it is likely
that the sentence entails the answer.

Q: What is Nelson Mandela’s country of origin?
A: South Africa
But do they all know about what has been taking place in South
Africa, his country, the country that had one of the highest
incidents of transmission of the virus?
Overlap: 2

Figure 3.7: Overlap between question, answer and sentence

25

Q: What is Nelson Mandela’s country of origin?
A: South Africa
query_pre: south africa is nelson mandela’s country of origin
query_post: nelson mandela’s country of origin is south africa

Q: Who is the founder of the SING campaign?
A: Annie Lennox
query_pre: Annie Lennox is the founder of the SING campaign
query_post: the founder of the SING campaign is Annie Lennox

Figure 3.8: Creating queries based on answer-slots

An example of the outcome of this heuristic is shown in 3.7. With
this heuristic, the sentence must have something in common with both the
question and the answer candidate. We assume this heuristic will be a solid
indicator for correct answers, and its scores are given more weight than the
previous heuristics.

3.4.3 Bigram overlap

Bigrams are pairs of adjacent words. We created a generic bigram extractor,
which takes a sentence, and returns a set of bigrams. Using this strategy,
word order becomes highly relevant. This heuristic measures the overlap
between the set of bigrams from the answer candidate and the bigrams from
the text. The question is not considered in this heuristic.

3.4.4 Heuristics for question words

This heuristic constructs a phrase combining the question and answer in two
different ways, query_pre and query_post. Both use a set of keywords as an
indicator of where to split the query. The keywords are inflected forms of is
and do. The first combination places the answer candidate first, followed by
the keyword, then the rest of the question sentence. The second combination
places the question sentence excluding the keyword first, followed by the
keyword, then the answer candidate.

If either one of these sentences are found in the text, it is considered
strong evidence of a correct answer candidate, and they are given more
weight than the other heuristics in the total score. Some examples are
shown in 3.8.

3.5 Normalisation

We added an option to the system which performs normalisation of all text.
The normalisation works by removing stopwords from a predefined list, and
performing lemmatizing of the remaining words. Stopwords are function

26

words such as “the”, “is” etc., that are not meaningful in themselves. The
lemmatizing is performed by using NLTK’s WordNetLemmatizer, which
seeks to restore words to their dictionary form by removing inflectional
endings.1 In the results listed in the next section, we show the accuracy
achieved with and without normalisation.

3.6 Baseline results

Reading test Accuracy w/norm.

AIDS
1 0.3 0.4
2 0.2 0.2
3 0.2 0.2
Average 0.233 0.267

Climate Change
5 0.2 0.3
6 0.2 0.3
7 0.4 0.2
Average 0.267 0.267

Music and Society
9 0.4 0.5
10 0.5 0.3
11 0.3 0.4
Average 0.4 0.4

Total average 0.3 3.111

Table 3.2: Accuracy of the baseline system, first without and then with
normalisation

The system is tested a development set consisting of nine reading tests,
three from each of the three topics, leaving one reading test from each topic
for unseen testing. As there are ten questions in each reading test, an
accuracy of 0.2 means that two answers were answered correctly. The results
are listed in table 3.2. As can be seen, the accuracy on each topic varies,
with Music and Society having the highest average accuracy at 0.4. Between
all the tests, individual accuracies range from 0.2 to 0.5. The accuracies
when using normalisation are slightly higher than without, but as the net
difference is a change of 1 question in 90, it’s not necessarily significant.

As there are five answer candidates where one is always correct, the
random baseline accuracy is 0.2. 19 of 43 runs submitted to QA4MRE at
CLEF 2011 for English were below this random baseline, so the fact that
our system consistently gets accuracies of 0.2 and above for all reading tests
is promising.

1. https://wordnet.princeton.edu/wordnet/man/morphy.7WN.html

27

3.7 Summary
In this chapter, we described how the baseline system was built, including
preparations made to the data, and the heuristics used in ranking the
answer candidates. With the implementation of this baseline system, we can
measure changes in performance when adding more linguistically motivated
heuristics. The performance of the baseline system is not especially strong on
the development data, but it consistently performs at or above the random
baseline. In the next chapter, the strengths and weaknesses of this system
are described, and new heuristics implemented, with the hopes that our
system can answer more questions than it does in its current configuration.

28

Chapter 4

Experiments with syntax

In this chapter, we carry out an error analysis on the results from running
the baseline system, in an attempt to find out what the weaknesses of the
system are, and where adding information about syntax might help increase
the accuracy. We then introduce the heuristics that use syntax, and present
the new version of our system. Finally, we run the system, and describe how
the accuracy changes.

4.1 Error analysis on baseline system

While the number of questions our system could and could not answer tells
us something, it is far from the full story. To get more insight into what
worked, we ran the system in a configuration that detailed the score each
heuristic gives to each answer candidate, allowing us to see which heuristics
were the most and least useful. This analysis was done manually, and we
tried to detect patterns in either the questions or answers to understand the
underlying problem.

4.1.1 What didn’t work

One of the most surprising discoveries is that the heuristic that constructed
queries based on answer-slots did not get any matches. The queries
generated by the system seemed well-formed, but did not match any part
of the text. The organizers of the task stated that they were moving away
from simple questions and answers, which is a likely explanation why this
heuristic didn’t trigger.

A second surprising finding is that the heuristic that measured the
overlap between each sentence and the answer candidate on several occasions
sabotaged the results, and did not help once.

Table 4.1 contains the accuracy of the different question types. Question
types are classified manually by looking at the question words used in the
sentence. Further changes could be made to this classification scheme,
e.g. placing questions beginning with “In what year” in when rather than
what. As the goal of the categorisation was to gain a quick overview of
the question types present, these rough categories were sufficient. As can

29

Category Q in category # correct % correct

What 45 20 44.44
Why 14 4 28.57
How 10 4 40.00
Which 6 1 16.67
Name 5 1 20.00
Where 4 0 0.00
Who 3 2 66.67
When 2 1 50.00
Do 1 0 0.00

Table 4.1: Performance on question types

Q: What kind of energy would help to reduce CO2 emissions?
1: nuclear
2: geothermal
3: hydraulic
4: electric
5: kinetic

Q: What planet in the solar system has a size similar to our planet?
1: Earth
2: Venus
3: Mercury
4: Saturn
5: Mars

Figure 4.1: Example of what-question with answer candidates.

be seen in the table, there are 45 questions in the what category, but the
pattern-based heuristic did not trigger once. These questions are mostly
very straight-forward, and should intuitively not be too difficult to answer.
Further analysis is needed to understand why our system did not handle
these questions as well as we expected. Examples of two different what-
questions are shown in figure 4.1, the correct answers are emphasized with
bold.

The first question is one the system clearly solved, with three heuristics
agreeing on the first candidate, giving it a total score of 12, and all other
candidates 0. The second example was less successful. The first three answer
candidates were found in the text, giving each of them a score of 1, and no
other heuristics were triggered. As the scores were tied, the first of the tied
candidates were chosen, candidate 1, which is not the correct answer.

30

4.1.2 What worked

Some heuristics proved to be especially useful, and were good indicators of
correct answers.The heuristic that measured combined overlap of question,
answer and sentence proved to be the most useful heuristic, confirming our
initial intuition of giving it a significant weight. What detracts from the
performance of this heuristic is its tendency to give the same score to several
alternatives, leaving our system to choose the answer candidate appearing
first in the list.

Close behind combined overlap was word-bigram-overlap, which seemed
to offer some help in those cases where the combined overlap gave the
same scores. The word-bigram-overlap heuristic tended to agree with the
combined overlap, but there were some instances of it sabotaging what would
otherwise have been a correct answer.

4.1.3 Tied scores

As mentioned earlier, if two or more answers share the same highest score,
the one appearing first in the list is chosen. Of the 90 questions in the test
set, the highest score was shared in 13 of them. Of these 13, we saw the
following numbers:

• The correct answer was amongst the candidates with the highest
scores, but was not chosen: 4 questions.

• The correct answer was chosen: 4 questions.
• The correct answer was NOT amongst the candidates with the highest

scores: 5 questions.
These numbers indicate that our system performs poorly when it comes

to discriminating between candidates. Half the time the system assigns the
highest score to multiple candidates including the correct answer, the correct
answer is chosen.

4.1.4 Summary

We feel this is a reasonable system to use as a baseline, where only simple
shallow heuristics are used. Our error analysis has highlighted a few
problems, but these seem to be because of the data rather than the system
itself. It seems that the data is not well suited to these shallow heuristics, as
questions are possibly phrased in different ways on purpose, to discourage
this type of system. Based on this error analysis, using heuristics motivated
by deeper linguistics seems like a natural next step. As several of the systems
mentioned in the background section used heuristics based on output from
a dependency parser, we will try this approach next.

4.2 Adding dependency heuristics

What we hope to achieve by adding dependency heuristics is to make our
system more robust and able to handle more variation in surface form of
questions and answers. Previously, all the information we had about the

31

content of a sentence pertained to information about the words themselves,
and their position in the sentence. What we lacked was information about
how the words relate to each other, how the sentence is structured.

Several of the systems participating in the task used dependency parsers
in different ways, using the information about relations between words to
improve their systems. While the retrieval-based system (Verberne 2011)
used the relations to create fact-expansions, the hybrid system (Pakray et
al. 2011) used the relations more directly, comparing the words with similar
relations between question, answer and text. These relations will give us
some insight into the structure of the sentence, and allow the system to see
connections between words beyond their order.

4.2.1 Dependency parser

We need to use a dependency parser to get the dependency relations.
There are several parsers available online, of these we choose to use
MaltParser (Nivre, Hall, and Nilsson 2006), a language-independent data-
driven dependency parser, for multiple reasons. One strong reason is that it
has a pretrained model for English supplied. This model has been trained on
4000 questions from QuestionBank (Judge, Cahill, and Van Genabith 2006)
and sections of the Penn Treebank (Marcus, Santorini, and Marcinkiewicz
1993). Having a parser trained on questions is an advantage, as parsers
perform best on text resembling that on which they have been trained. A
second reason for using MaltParser is that it is freely available for research
purposes

The pretrained model we use is called engmalt.poly-1.7.mco,1 and the
output when using this model is in the form of Stanford typed dependencies,
the dependency scheme introduced in chapter 2. Before the data can be sent
to MaltParser it must be converted to a given format, the process of which
will be described in the next section.

4.2.2 Converting the data

MaltParser supports multiple data formats out of the box, of these we chose
to use the CoNLL-format,2 as it is simple to both create and parse, and
contains sufficient information for our system. In this format, words are on
separate lines, and sentences are separated by empty newlines. Each line
consists of 10 columns separated by a single tab character, an underscore is
used where no information is available.

We created a converter program that takes the XML-file as input, and
returns two CoNLL-files for each reading test - one with the text, and one
with the questions and answers. To adhere to the CoNLL-format, multiple
processes are applied to the text. First, to get the data from the XML file,
the Python library xml.etree.ElementTree was used. The text then had
to be split in to sentences, which was done using NLTK’s sent_tokenize
in the same way as described in the previous chapter. The sentence must

1. http://www.maltparser.org/mco/english_parser/engmalt.html
2. http://nextens.uvt.nl/depparse-wiki/DataFormat

32

then be split into words, and part-of-speech-tags must be added. We used
word_tokenize and pos_tag, both from NLTK, for this part of the process.
Finally, lemmas were added, again using WordNetLemmatizer from NLTK.
With all the information in place, the data was written to files, adhering to
the CoNLL-format.

The columns in the CoNLL-format contain the following information:

1 Contains the position of the word within the sentence. The numbering
starts at 1, as 0 is reserved as the id of the root node, used to identify
the head of the sentence.

2 Holds the word form after tokenisation of the sentence.

3 Contains the lemma.

4 Holds the coarse-grained part-of-speech tag.

5 Holds the fine-grained part-of-speech tag. In our dataset, it is the
same as the coarse-grained tag.

6 Holds features, not relevant for our purposes.

7 The first column where the parser makes changes. This column holds
the ID of the head of the current token, or 0 if the token has no head.

8 Contains the dependency relation to the head, or null if the token is
the root of the sentence.

There are two more columns, but these are not used by MaltParser and thus
not relevant for this thesis.

These generated files are then sent to MaltParser, which adds depen-
dency relations. An example output of the converter program, and the input
to MaltParser is shown in 4.2. MaltParser’s output for the same sentence is
shown in 4.3.

A visual representation of the graph is shown in figure 4.4. The part-of-
speech tags are shown beneath the words, in capital letters.

4.2.3 Dependency heuristics

In the following sections, we list the different heuristics and how they impact
the scoring. The types of comparisons were inspired by the previously
mentioned Hybrid system (Pakray et al. 2011). These heuristics can be used
as an addition to the heuristics in the baseline, or by themselves, depending
on the chosen configuration.

For ease of access of the information gained from the dependency parse,
we use the package DependencyGraph from NLTK (Bird, Klein, and Loper
2009). This package takes a parsed sentence in CoNLL-format as input, and
returns an object representation of the graph. We expanded the package to
support lemmas as well as words. Lemmas are the dictionary form of a

33

1 Bell Bell NNP NNP _
2 , , , , _
3 a a DT DT _
4 company company NN NN _
5 which which WDT WDT _
6 is is VBZ VBZ _
7 based based VBN VBN _
8 in in IN IN _
9 LA LA NNP NNP _
10 , , , , _
11 makes make VBZ VBZ _
12 and and CC CC _
13 distributes distributes VBZ VBZ _
14 computer computer NN NN _
15 products product NNS NNS _
16 _

Figure 4.2: Example of CoNLL-file, input to MaltParser

1 Bell Bell NNP NNP _ 11 nsubj _ _
2 , , , , _ 1 punct _ _
3 a a DT DT _ 4 det _ _
4 company company NN NN _ 1 appos _ _
5 which which WDT WDT _ 7 nsubjpass _ _
6 is is VBZ VBZ _ 7 auxpass _ _
7 based based VBN VBN _ 4 rcmod _ _
8 in in IN IN _ 7 prep _ _
9 LA LA NNP NNP _ 8 pobj _ _
10 , , , , _ 1 punct _ _
11 makes make VBZ VBZ _ 0 root _ _
12 and and CC CC _ 11 cc _ _
13 distributes distributes VBZ VBZ _ 11 conj _ _
14 computer computer NN NN _ 15 nn _ _
15 products product NNS NNS _ 11 dobj _ _
16 _ 11 punct _ _

Figure 4.3: Output from MaltParser

Bell , a company which is based in LA , makes and distributes computer products.
NNP, DT NN WDT VBZ VBN IN NNP, VBZ CC VBZ NN NNS .

nsubj

det

appos

nsubjpass

auxpass

rcmod

prep pobj

root

cc

conj

nn

dobj

Figure 4.4: Dependency structure visualized as a graph

34

word, stripped of any inflections.
All the heuristics are focused on comparing the answer candidate with

sentences from the text. Each answer candidate is compared to each sentence
in the text in turn, and the comparison with the highest score is kept for
the answer candidate.

Subject-verb comparison

This heuristic is the one we think will be most useful — it compares the
lemmas of the subject-verb pairs, identified by the nsubj (nominal subject)
and relations for subjects and part-of-speech tags beginning with VB for the
verbs. Because of the focus on using content words in the Stanford typed
dependencies representation, we assume this heuristic will be especially
useful. Looking at the example graph in figure 4.4, this heuristic would
highlight two words, Bell and makes. If an answer contains these same
words, with the same relation, it is likely that the content is similar, and
the answer candidate will be given a score of 40 points.

Object-verb comparison

Similarly to the previous heuristic, this compares the object-verb pairs.
Objects are identified by relations containing obj, eg. dobj (direct object),
iobj (indirect object). This relation corresponds to that between makes
and products in figure 4.4. This heuristic is assumed to be slightly less
informative than the subject-verb comparison, and matches give a lower
score, 20 points.

Subject-object-verb comparison

While we do not expect this heuristic to trigger, it awards a high score in
case it does. It compares the subject, object and verb of each sentence with
the same triplet in the answer candidate. Looking at the example sentence
again, Bell makes products would be the words that were compared to
those of the answer candidate. In the case of a match, this heuristic awards
60 points.

4.2.4 Results

As seen in table 4.2, the overall accuracy drops with the addition of the
new heuristics. In total, the system is able to answer two less questions than
without the dependency heuristics.

Looking more closely at the results, we see that the heuristic comparing
subject-verb pairs in the text and answer candidates gave a score in 3 cases,
while the object-verb comparison scored 8 answer candidates. The last
heuristic did not trigger once. Of the two heuristics that did work, both gave
points to the right candidate once, and gave points to the wrong candidate
the rest of the time. Both dependency heuristics helped on the same answer
candidate, but this candidate was already chosen as the highest ranked using
the baseline heuristics. Twice the heuristics turned a correct answer from

35

Reading test Baseline Accuracy Accuracy

AIDS
1 0.4 0.3
2 0.2 0.2
3 0.2 0.2
Average 0.267 0.233

Climate Change
5 0.3 0.3
6 0.3 0.3
7 0.2 0.2
Average 0.267 0.267

Music and Society
9 0.5 0.5
10 0.3 0.2
11 0.4 0.4
Average 0.4 0.367

Total average 0.311 0.289

Table 4.2: Results after adding dependency-based heuristics

the baseline scores to an incorrect one, by giving points to the wrong answer
candidate, changing the outcome. In figure 4.5, an example is shown of a
question where the points from a dependency heuristic changed an answer
from correct to incorrect. Answer candidate 3 is correct, but candidate 1 was
chosen because of the 40 points gathered from having a matching subject-
verb-pair with a sentence in the text. While the subject-verb pair occurs
both in a sentence in the text, the sentence does not contain the answer,
and the combination of subject and verb is not very meaningful or unique.
As can be seen from the other subject-verb-pairs that were extracted from
the sentence, they are overall less informative than expected.

While we did not expect the heuristics to support the correct answer
candidate every time, we had hopes that their effect would be overall
positive, and make a bigger impact than they did. Allowing the heuristic to
award as many as 40 points seems excessive, and fine-tuning of the scores
might have given different results. However, a total of 450 answer candidates
were evaluated (90 questions with 5 candidates each, and ff these, only 11
had matches in one of the dependency heuristic, totalling 2.44%. As the
heuristics affected such a low number of answer candidates, we decided to
spend our time examining the data rather than adjusting the scores.

It seems like using syntax directly is not useful on this dataset, leading
us to wonder what our system must be able to do in order to see bigger
improvements in accuracy. To answer this question, we look more closely at
the supplied data in the next chapter.

36

Q: Why is it dangerous to use a dirty needle?
Excerpt from text: “And if you put your public health nerd glass
on, you’ll see that if we give people the information that they need
about what’s good for them and what’s bad for them, if you give
them the service that they can use to act on that information, and
a little bit of motivation, people will make rational decision and live
long and healthy life.”
Subject-verb-pairs: (you, put), (we, give), (they, use), (you,
give), (you, see), (they, need)

Answer candidate 1: because you can be put in jail
Subject-verb-pairs: (you, put)
Points from baseline: 20.25
Points from dependency heuristics 40
Total points: 60.25

Answer candidate 3: because you can get infected by hiv
Points from baseline: 20.43
Total points: 20.43

Figure 4.5: Dependency heuristic sabotaging results

37

Chapter 5

Data analysis

In this chapter, we take a closer look at the dataset supplied for the task
our system attempts to solve. The goal is to gain an understanding of
what the challenges of the dataset are, in the hopes of discovering why our
attempts at adding heuristics based on syntax were not successful. We begin
by describing the basic numbers of the data, before introducing a manual
classification scheme, detailing the criteria for each of the classes. The result
of this classification is then presented, alongside a discussion of the results
and a plan for improving the system.

5.1 Introduction to the data

We use the English dataset supplied for QA4MRE at CLEF 2011. A
breakdown of the numbers of texts, questions and answers can be seen in
table 5.1. This means we have a total of 12 texts to work with. Of these, a
test set consisting of one text from each of the topics is set aside (reading
tests 4, 8 and 12), and the remaining texts from each category are used
for development. This is done to ensure that we are not overfitting for
the data, but still expose our system to phenomena that might be specific
for each topic. The texts are transcripts of TED-talks, which can add a
layer of complexity, as spoken language often has a less strict sense of
grammar and structure than written language. The questions can stand
alone, not requiring any information from previous questions. The answer
candidates are all succinct, containing only the words required to answer the
question, and seldom form complete sentences. An example of one of the

Topics 3
Texts per topic 4
Questions per text 10
Answer candidates per question 5
Average text length in words 2292

Table 5.1: Numbers of topics, questions and answers in the test data

39

Excerpt from reading test 9: “Now, for those of you who don’t
know, a Rube Goldberg machine is a complicated contraption, an
incredibly over-engineered piece of machinery that accomplishes a
relatively simple task.”
Question 5: What is a Rube Goldberg machine?
Answer candidates:
1: a simple system for performing a complicated operation
2: a song which picks up complex emotion
3: a complicated device for performing a simple operation
4: any machine containing gold
5: something watched on YouTube

Figure 5.1: Example of text, question and answer

more straightforward questions is shown in figure 5.1, the correct answer
candidate is marked with bold. While the connection between the given
excerpt from the text, the question and the answer candidate is very clear
to a human reader, an automated system faces a number of challenges.
First, there is the use of synonyms. Note for example that the text uses
both the words contraption and machinery to describe the Rube Goldberg
machine, while the answer candidate uses the word device. Second, the first
answer candidate contains almost the same words as the third and correct
candidate, only with a slight change in order. The order in which the words
appear is important to be able to distinguish between the answer candidates.
A third problem is actually finding this relevant sentence in the text. Earlier
in the text, the topic of the second answer candidate is discussed, meaning
heuristics that disregard the question will likely give this candidate a high
score.

This way of analysing questions can be of help to refine our heuristics,
and in the next section we will apply a classification scheme to formalise the
analysis of all the questions.

5.2 Classifying the questions

The questions are classified by the type of information needed to select the
correct answer candidate based on the supplied text. Questions can belong
to multiple classes. The focus while classifying has been to uncover what is
needed for complete understanding of both questions and answers. As five
answer candidates are given, and one is guaranteed to be correct, complete
understanding is not actually needed to solve this task. However, it serves
as a useful baseline to ensure consistency for the classification. The analysis
is performed on the 9 texts in the development set, totalling a number of 90
questions.

In the following sections, we describe the different classes and the
requirements for each class.

40

Q: What African country did Bono Vox visit?
A: Abyssinia
“We lived in Ethiopia for a month, working at an orphanage”

Figure 5.2: Question requiring background knowledge

Q: Why is Avelile suffering from AIDS?
A: because her mother transmitted the virus to her
“Avelile’s mother had HIV virus. She died from HIV related illness.
Avelile had the virus. She was born with the virus.”

Figure 5.3: Question requiring textual entailment

5.2.1 Background knowledge

A question is defined as belonging to this class if it requires knowledge
that is more extensive than syntactic alternations, and that information is
not present in the text. An example can be seen in figure 5.2, where the
fact that Ethiopia was historically known as Abyssinia is not given in the
text, but is a fact that can be extracted from a knowledge source like an
encyclopaedia. In some cases, the distinction between whether a question
background knowledge or synonymy/hyponymy was unclear. A general
rule was established that questions relating to named entities that required
further information were classified as needing background knowledge.

5.2.2 Inference

If a question requires a combination of facts from multiple sentences, it is
classified as requiring inference. These facts build upon each other and must
be registered together for the answer to become clear. In the example in
figure 5.3, the combination of facts from three of the four sentences in the
excerpt is required to correctly answer the question. The second sentence is
not necessary to get to the answer, but is kept in to keep the context of the
excerpt. Sentences containing the needed facts are usually consecutive, but
as the example shows there are exceptions.

5.2.3 Anaphora

Anaphora are expressions referring to previously introduced entities, often
by using personal pronouns. Questions belonging to this category requires
the system to make the connection between the anaphora and the antecedent
it refers to. We have limited this category to anaphora that are personal
pronouns.

This category contains the subcategory first person, as there are
relatively simple algorithms to resolve these for our data. In figure 5.4, two
cases of the third-person plural personal pronoun they can be seen (emphasis
added), which must be resolved to OK Go for the system to answer the
question.

41

Q: What did OK Go do previously in a video?
A: they danced on treadmills
“Now, when we first started talking to OK Go – the name of the
song is ’This Too Shall Pass’ – we were really excited because they
expressed interest in building a machine that they could dance with.
And we were very excited about this because, of course, they have a
history of dancing with machines.”

Figure 5.4: Questions requiring resolving anaphora

Q: What is Paul David Hewson’s occupation?
A: rock star
“And though I’m a rock star, I just want to assure you that none of
my wishes will include a hot tub.”

Figure 5.5: First person pronoun anaphora

First person

This subcategory of anaphora consists of questions requiring first person
personal pronouns to be resolved. For most of the tests in the dataset, first
person personal pronouns can be replaced with the name of the author of
the speech / text. A typical example can be seen in figure 5.5, where Paul
David Hewson – under the alias of Bono Vox – is the person giving the
speech.

5.2.4 Lexical semantics

Lexical semantics is an area of linguistics concerned with the mapping
between the meaning and the form of a word (Miller 1986). Question are
placed in this class if recognizing how the meaning of two words relate to
each other is required to answer the question. We have focused on two
categories within lexical semantics, namely synonymy and hyponymy, which
we describe in the next subsections.

Synonyms

Synonyms are defined as different words with the same or very similar
meanings. For a question to fit in this category, one or more of the words
in the combination of question, answer and supporting sentence in the text
required to understand the content must be synonyms. A system can use
this knowledge to match synonyms as it would match identical words. An
example of a synonym is shown in figure 5.6, where “contraption” and
“device” mean the same thing.

42

Q: What is a Rube Goldberg machine?
A: a complicated device for performing a simple operation
“Now, for those of you who don’t know, a Rube Goldberg machine
is a complicated contraption, an incredibly over-engineered piece of
machinery that accomplishes a relatively simple task. ”

Figure 5.6: Synonyms in answer candidate and supporting text

Q: What did Nelson Mandela say at the press conference?
A: thousands of people were being wiped out by AIDS
“In that moment in time, Mandela told the world’s press that
there was a virtual genocide taking place in his country, that
post-apartheid Rainbow Nation, a thousand were dying on a daily
basis, and that the front line victims, the most vulnerable of all,
were women and children.”

Figure 5.7: Co-reference in the dataset.

Hyponyms

Hyponyms describe an “is-a” relation between pairs of words. Questions in
this category have at least one such pair present between question, answer
candidate or text. A simple example of this can be shown by looking at
types of trees — a birch is a tree. This information can be gained from
lexical resources, such as WordNet.

Co-reference

The term co-reference describes a situation where two or more different
expressions are used to refer to the same entity. Questions are classified
as belonging to this class if they require resolving of co-reference in order
to be answered. For the purposes of this classification, anaphora are in a
separate class, rather than grouped with co-reference, as there are simpler
algorithms available to resolve anaphora. In figure 5.7, a typical example
is shown, where both Nelson Mandela and Mandela refer to the same
person.

5.2.5 “Impossible” questions

Questions are classified as impossible if the type of knowledge needed to
answer them is near impossible to gain from the text or simple knowledge
sources. An example of this is shown in figure 5.8, where the problem is
that to answer the question, the system must be aware of the presence of an
audience, and understand their act of standing up based on the utterance by
the speaker. As human readers, we can understand this sort of inference, but
it still feels like a stretch to interpret “people” in the sentence as referring to
only the audience, as well as understanding the act that causes the response,

43

and what it means. In figure 5.9 there is one issue that can be solved through
background knowledge, namely the problem of the different representations
of the name of Sir Bob Geldof. The main problem is linking him as a
founder of “Band Aid”, as this is mainly referenced by the phrase “issued
a challenge to ‘feed the world”’, an excerpt from the lyrics of one of the
songs mentioned in the text. As human reader without previous knowledge
of these initiatives would struggle with making the connection, and it seems
improbable that our system would be able to correctly answer this question
based on its understanding.

5.2.6 Comments on the classes

For inspiration on what classes to use, we looked at a paper classifying
the Text-Hypothesis pairs for the PASCAL Recognizing Textual Entailment
Challenge (Vanderwende and Dolan 2006). The paper focuses on classifying
which pairs can be solved using a syntactic parser, and which phenomena
that parser must handle. The authors describe the classifying as performed
by two skilled linguists, and list a large number of classes. As our dataset is
smaller, and the classification is performed by one person, we chose to use
only one of the classes suggested, and added some of our own, motivated
by the issues we saw in the data. The criteria for classification were not
listed in the paper, only the names of the phenomena, but seeing what
phenomena they focused on did help us narrow down what to look for when
examining the data. Of the classes listed in the paper anaphora were added
to our scheme. This was chosen because we had seen several examples of
the phenomena in our data, and we had a good idea of how to classify
them. Named Entity Recognition was considered as well, but a combination
of problems with consistency in classifying as well as the early decision not
to use external resources lead to the exclusion of the class.

5.3 Applying the classification

The classification was done manually, looking at each question and the
corresponding passage in the text. Only the correct answer candidates were
considered, to limit the amount of time spent on classification. This means
that any benefits from eliminating of incorrect answer candidates has not
been considered in this classification.

5.3.1 Results of classification

The result of the classification is shown in table 5.2. A total of 43 questions
are probably out of scope for our system to fully understand, although it
still be able to answer them correctly. This number is surprisingly high, but
is likely a direct consequence of the concious effort of the organizers to make
questions more difficult to answer by pattern-matching.

The class with the most questions is inference, with 29 questions.
Questions requiring anaphora resolution come in second, with 26 questions.
It is worth noting that most questions belong to more than one class, so

44

Q: Do people agree that governments should be committed
to fighting AIDS?
1: definitely yes
2: definitely no
3: unknown
4: sometimes
5: only one person agrees
“So, I would like to say to you, each one in the audience, if
you feel that every mother and every child in the world has the
right to have access to good nutrition and good medical care,
and you believe that the Millennium Development Goals,
specifically five and six, should be absolutely committed to by
all governments around the world – especially in sub-Saharan
Africa – could you please stand up. I think that’s fair to say,
it’s almost everyone in the hall.Thank you very much.”

Figure 5.8: A question marked as “impossible” due to
required world knowledge

Q: Name a founder of Band Aid.
A: Robert Frederick Zenon Geldof
“You may remember that song, ‘We Are the World,’ or, ‘Do They
Know It’s Christmas?’ Band Aid, Live Aid. Another very tall,
grizzled rock star, my friend Sir Bob Geldof, issued a challenge to
‘feed the world.”’

Figure 5.9: A question marked as “impossible” due to required intricate
inference

45

Total number of questions analysed 90
Deemed impossible 43
Questions in class
Inference 29
Anaphora resolution 26
Background knowledge 15
Hyponyms 14
Co-reference resolution 10
1st person anaphora resolution 9
Synonyms 9

Questions belonging to multiple classes
Only one class 7
Two classes 14
Three classes 15
Four classes 8
Five classes 2
Six classes 1

Table 5.2: Classification of the questions from QA4MRE at CLEF 2011

resolving any one of these problems might not be enough. Two classes
were deemed especially hard to solve, namely background knowledge and
inference. Only 11 questions did not belong to either of these classes.

5.3.2 Using the results

With these results, we have an idea of what phenomena our system should
handle in order to answer more questions correctly. Inference makes up the
class with the most questions, but solving inference is a challenging task
that is outside the scope of this thesis. Instead, we settle for the second
largest class, questions requiring anaphora resolution.

46

Chapter 6

Experiments with anaphora
resolution

The problem of ambiguity is present in many aspects of natural language
processing, from the ambiguity of words, to the ambiguity of references. The
word anaphora denotes the combination of the antecedent and the anaphor.
The problem of anaphora resolution is finding the antecedent to the anaphor.
As highlighted by Hobbs, humour and confusion can arise when there is
ambiguity of antecedents: “There’s a pile of inflammable trash next to your
car. You’ll have to get rid of it.”, where it can refer both to the car and pile
of inflammable trash. While this distinction is simple to make for a human
being, it’s not quite as simple to create rules to automatically choose the
right interpretation.

In this chapter, we will describe an approach for resolving anaphora, as
the phenomenon is very common in the dataset used in this thesis. Of 90
questions, 29 can benefit from anaphora resolution. We begin by introducing
one fairly simple algorithm for resolving anaphora using phrase structure
trees, before briefly presenting some alternative strategies. The approach
used in this thesis is then described, including detailing a modification of the
first algorithm described, for use with dependency strategies. The results of
running the system on the data after anaphora resolution are then discussed,
before testing on the held-out data is performed, and finally these results
are commented on.

6.1 The Hobbs algorithm

In his famous paper from 1978, Hobbs presents two approaches to the
problem of resolving pronoun references (Hobbs 1978). The first is a naive
algorithm using phrase structure trees, while the second is geared towards
systems for semantic analysis. As we focus on syntax in our system, we will
make use of the first algorithm. See algorithm 1 for the full algorithm.

To summarise, it looks for antecedents starting with the children of the
nearest np- or s-node, to the left of the path leading from the pronoun to
the node. If no antecedent is found, it looks for the next np- or s-node,
and repeats the process. Thus it searches in sub-trees right-to-left from the

47

1. Begin at the np-node immediately dominating the pronoun.
2. Go up the tree to the first np- or s-node encountered. Call

this node X, and call the path used to reach it p.
3. Traverse all branches below node X to the left of path p in a

left-to-right, breadth-first fashion. Propose as the antecedent
any np-node that is encountered which has an np- or s-node
between it and X.

4. If node X is the highest s-node in the sentence, traverse the
phrase structure trees of previous sentences in the text in order
of recency, the most recent first; each tree is traversed in a
left-to-right, breadth-first manner, and when an np-node is
encountered, it is proposed as an antecedent. If X is not the
highest s-node in the sentence, continue to step 5.

5. From node X go up the tree to the first np- or s-node
encountered. Call this new node X, and call the path traversed
to reach it p.

6. If X is an np-node and if the path p to X did not pass through
the n̄ node that X immediately dominates, propose X as the
antecedent.

7. Traverse all branches below node X to the left of path p in
a left-to-right, breadth-first manner. Propose any np-node
encountered as the antecedent.

8. If X is an s-node, traverse all branches of node X to the right
of path p in a left-to-right, breadth-first manner, but do not go
below any np- or s-node encountered. Propose any np-node
encountered as antecedent.

9. Go to step 4.

Algorithm 1: Hobbs’ naive algorithm

48

pronoun, but searches the trees themselves left-to-right.
If no antecedent is found in the same sentence, it moves on to the

previous sentence, left-to-right, breadth first, proposing the first np-node
encountered as antecedent. Again, if no alternative is found, it moves to the
previous sentence, repeating until an antecedent is found.

Note that further restrictions can be put on the candidate antecedents,
deeming them eligible or not.

6.2 Alternative approaches

There are multiple alternatives to Hobbs algorithm exist, and several of
them rely on finding possible anaphora, before filtering based on certain
requirements. One of these is an algorithm by Lappin and Leass (Lappin
and Leass 1994) for third person pronouns, known as RAP (Resolution of
Anaphora Procedure). It handles the problem of pleonastic (semantically
empty) pronouns, such as the it in it is likely and it is thought etc. It also
considers agreement between anaphor and antecedent, and scores nps on
several salience parameters, forming a ranking of candidates.

A similar approach was used by a team from Stanford for the CoNLL-
2011 shared task (Lee et al. 2011). The system uses a series of sieves,
building upon each other, mainly placing high-recall components near the
top, followed by high-precision recall components. First, the system gathers
potential mentions, using a set of handwritten rules to exclude certain
mentions, such as numeric entities, pleonastic it pronouns, and certain stop
words. 12 additional sieves follow, resulting in a recall of 87.9% (with
predicted annotations), leading the team to victory in the task. Precision
is lower, but the team argues that it is expected, and compensated for in
post-processing, when many of those mentions are discarded.

While these approaches to anaphora resolution are strong candidates,
they require more information than the Hobbs algorithm in order to consider
agreement and in the case of the latter requires handwritten rules. Based
on this, we choose to focus on using the Hobbs algorithm.

6.3 Our strategy

For our system, we limit ourselves to resolving pronouns that refer to proper
nouns. The anaphora resolution in our system is based on Hobbs algorithm,
and is performed as a pre-processing step before sending the text to the QA
system, replacing the anaphors with their antecedents.

6.3.1 First person pronouns

In a special case for this task, first person personal pronuns are all resolved
to the author of the text. The name of author is assumed to be the first set
proper nouns consecutively together in the first sentence. This change was
made as texts all have a certain format, where the speaker does not change
throughout the text.

49

6.3.2 Using the Hobbs algorithm with dependency struc-
tures

In this section, we will detail how we implemented the algorithm. For our
purposes, the anaphora resolution consists of replacing the anaphor with the
antecedent. If no suitable antecedent is found, the anaphor is kept as is. To
keep the selection process simple, we focus on resolving he, she, him, her
and his first, and only resolve if we find a proper noun candidate.

While the Hobbs algorithm originally requires the use of phrase structure
trees, we found that with certain changes, an implementation using
dependency structures instead is possible. Little work seems to have been
done on using dependency structures for anaphora resolution at the time of
writing this thesis.

A phrase structure tree consists of a set of internal nodes and terminal
nodes. The internal nodes are grammatical categories or roles, and the
terminal nodes are words. Phrase structure trees are generated from a
Phrase Structure Grammar (PSG), which is hierarchical. A PSG contains
rules for how each grammatical category can expand to other categories or
words.1

When describing the changes made to the algorithm, we will briefly
introduce the phrasal categories used, to explain how we found the equivalent
in the dependency relations.

In the altered algorithm, we use part-of-speech tags to identify the
various constituents, and the directional relations between the words to
navigate through the tree. Moving up in the tree is done by moving from
dependant to head, and moving down by moving from head to dependant.

The first step of the algorithm requires finding the np-node immediately
dominating the pronoun to have a starting point. np stands for Noun
Phrase, and in this context means a phrase headed by a noun. Dependency
structures have no concept of phrases, our version of the algorithm skips
this step, and begins at the pronoun itself.

The next step consists of moving up the tree until an np- or s-node is
encountered, denoting the path used p and the node X. An s-node is the
category used for a complete sentence, and would thus form the starting
point of a tree. We equate this with finite verbs in our interpretation,
identified by VB (verb, base form), VBD (verb, past tense) and VBZ (verb,
3rd person singular present) part-of-speech tags. While the portion of a
tree below a finite verb is not necessarily a full sentence, it will form the
root of a clause. This step of the algorithm also asks that we keep track of
the path used to get there. Rather than store the path, our version stores
the word-id of the previously visited node, i.e. the position of that word
in the sentence. The path will be used as a constraint on what nodes to
investigate, this constraint can be kept by comparing word-id of possible
node and p.

The rest of the steps mirror that of the original algorithm. The full
algorithm is shown in algorithm 2.

1. For more information, see Jurafsky and Martin 2009

50

Filtering antecedents

While the algorithm has steps that include proposing antecedents as
candidates, it does not describe how to determine which antecedents are
good candidates and not. When resolving the listed pronouns, we determine
that phrases headed proper nouns, tagged by NNP, should be chosen. We do
not keep the entire tree below that word, only the word in question and any
words with an nn-relation to that word, indicating a compound noun. The
algorithm stops as soon as a valid antecedent is found.

Definitions:
Nominal - nouns, denoted by a part-of-speech tag containing NN.
Finite verb - finite verb tokens, denoted by VB, VBD, and VBZ
part-of-speech tags.
p - position of previously visited node.

1. From the pronoun, go up the tree to the first nominal or
finite verb encountered. Call this node X.

2. Traverse all branches below node X with a position to the
left of p in a left-to-right, breadth first fashion. Propose as
antecedent any nominal node that is encountered which has
a nominal or finite verb node between it and X.

3. If node X is the root of the sentence, traverse the dependency
structures of the previous sentences in the text in order of
recency, the most recent first; each structure is traversed in a
left-to-right, breadth-first manner, and when a nominal node
is encountered, it is proposed as an antecedent. If X is not the
root of the sentence, continue to step 4.

4. The new node p is node X. From node X go up the tree to
the first nominal or finite verb node encountered. Call this
new node X.

5. If X is nominal and the path did not pass through a nominal
node that X immediately dominates, propose X as a candidate.

6. Traverse all branches below node X with words to the left of p
in a left-to-right breadth-first manner. Propose any nominal
node encountered as the antecedent.

7. Go to step 3.

Algorithm 2: The Hobbs algorithm for use on dependency structures

6.3.3 Results

When running the program resolving anaphora on the development set, 104
instances of the pronouns he, she, his, him, and her, were found, of which
a total of 64 were resolved. Looking at the output, the program seems to
do a reasonably good job of resolving pronouns, but the total count of these
pronouns is lower than we expected.

51

RT he/she it % resolved
Count Resolved Count Resolved combined

1 31 17 13 12 65.91
2 8 7 67 57 85.33
3 33 20 47 42 77.50
5 4 4 15 13 89.47
6 11 2 29 26 70.00
7 6 4 95 92 95.05
9 2 2 34 32 94.29
10 5 5 4 4 100.00
11 11 3 50 41 82.00

Sum 111 64 354 319 Avg: 82.37

Table 6.1: Results on running the anaphora resolver per reading test

Using the heuristic for first-person personal pronouns resolving to the
author name, all 399 instances of I, me, my and mine were resolved.

We examine the data to determine what other pronouns to attempt
to resolve next. In table 6.2, the number of occurrences of pronouns
throughout all 9 documents are listed.

As can be seen in the table, we is very commonly used, but upon
inspection it is mostly used in the context of “we as people” or “we as
Americans”, rather than referring to a previously explicitly introduced
group. Similarly, you mostly refers to “the listener” or “the audience”,
and can be left as it is.

Based on the ranking, the next anaphora to be included should be it.
This brings an added challenge in restricting potential antecedents, as the
system has so far been able to rely on proper nouns. For this pronoun, we
decide to change the restriction to nouns, and include the part of the tree
below the noun as part of the answer.

When adding adding it to the list pronouns we are already looking at, it
brings us to a total of 868 occurrences that can potentially be changed, out
of the 2303 pronouns in total. The result of adding it is shown in table 6.1.
The column header RT is short for Reading Test, and the headers he/she
also include numbers for his, her and him.

After looking at these numbers and implementing support for it, we got
the counts shown in table 6.3. In total, 91% of the pronouns we looked for
were resolved. When not counting the first person personal pronouns, all of
which were resolved because of the approach used, the number of resolved
pronouns drops to 83%. A few examples are shown in fig 6.1 of sentences
before and after anaphora resolution. As can be seen, the replacements work
in some cases, but not all. The results are not good sentences in English, but
easier to understand for computers. In the third example, we see a problem
with the algorithm. The issue likely stems from the fact that while pronouns

52

Pronoun Count Pronoun Count

we 393 she 29
it 354 their 25
i 304 her 17
you 299 his 16
they 144 its 8
our 63 him 7
my 53 itself 4
us 50 themselves 4
he 42 myself 4
me 42 yourself 1
your 42 himself 1
them 31

Sum 2303

Table 6.2: Pronouns and their frequency in development set

Pronoun(s) Count Resolved % Resolved

i/me/my/mine 399 399 100.00
it 354 319 90.11
he 42 26 61.90
she 29 11 37.93
her 17 6 35.29
his 16 15 93.75
him 7 6 85.71
Sum 864 782 90.51

Table 6.3: Number of resolved pronouns

53

Before: I ’m going to share with you the story as to how I have
become an HIV/AIDS campaigner.
After: Annie Lennox ’m going to share with you the story as to
how Annie Lennox have become an HIV/AIDS campaigner.

Before: And 46664 is the number that Mandela had when he was
imprisoned in Robben Island.
After: And 46664 is the number that Mandela had when Mandela
was imprisoned in Robben Island.

Before: It all works perfect.
After: the there, I would say, the instruments, the intricate rhythms,
the way it’s played, the setting, the context, it’s all perfect all works
perfect.

Figure 6.1: Example of resolved anaphora

are limited to being resolved to proper nouns, it is currently resolved to be
the entire part of the graph below the nominal the algorithm chooses. The
intention was to be able to capture phrases like “the piano Mozart used”,
but we have not yet figured out a way to narrow down these results properly.

6.4 Running the system after anaphora resolution

Having verified that the anaphora resolution worked, we rerun our system
to see if the changes in the text make a difference in performance. The
results are shown in table 6.4, showing results from running the original
baseline system, the baseline system with dependency-based heuristics
added (denoted as “Syntax”) and the baseline system on the data after
anaphora resolution.

The results are positive, increasing the overall average of both
configurations of the system. The number of correct answers did not change
for the reading tests on the topic of climate change, likely due to the style
of the texts. The texts on AIDS and music and society are more about
personal experiences and people, making anaphora highly relevant, whereas
the texts on climate change is less personal. While the size of the dataset
makes it difficult to make claims with much certainty, it seems that using
syntax to resolve anaphora can be of use to a question answering system.

6.5 Testing on held out data

Three reading tests have been held out from development, for the purposes
of testing the finalised system. We ran the system in the same four
configurations as in the previous section, to observe the overall performance,
as well as the effect of adding dependency heuristics and anaphora resolution.
As can be seen in figure 6.5, the results seem to reflect our experiences from
the development data, where the addition of dependency heuristics does not

54

Reading test Baseline Syntax Anaphora

AIDS
1 0.4 0.3 0.4
2 0.2 0.2 0.3
3 0.2 0.2 0.3
Average 0.267 0.233 0.367

Climate Change
5 0.3 0.3 0.3
6 0.3 0.3 0.3
7 0.2 0.2 0.2
Average 0.267 0.267 0.267

Music and Society
9 0.5 0.5 0.5
10 0.3 0.2 0.5
11 0.4 0.4 0.5
Average 0.4 0.367 0.5

Total average 0.311 0.289 0.367

Table 6.4: Results after running anaphora resolution on text

make an impact, but there are slight improvements when adding anaphora
resolution on the text.

One interesting observation was that these results did not follow the
same patterns as the other reading tests, where the climate change category
was the weakest, it is the strongest in this sample. A second observation
is that the system performed worse on reading test 4, under the topic of
AIDS, than it had previously done on any other reading tests. Out of
curiosity, we ran the system in the other available configurations to see
what accuracies were achieved on this reading test, and found a significant
improvement when skipping the normalising step. Without normalising,
the system had an accuracy for 0.5, as opposed to 0.1 with normalising.
After closely examining the scores from the different heuristics, it seems that
the normalising sabotages the otherwise good performance of the baseline
heuristics for this reading tests. Three of the four correct answers it could
only solve without normalising were clear-cut when it came to score, while
the fourth was a lucky tie. This confirms our suspicion that there is large
variability in the dataset, making fine-tuning more difficult.

6.6 Summary

After performing anaphora resolution on our dataset, we saw a slight increase
in accuracy. This tendency was confirmed when running the system on the
held out data. However, the held out data showed some trends that were
at odds with what was seen on the development data. Performance on the

55

Reading test Baseline Syntax Anaphora

AIDS
4 0.1 0.1 0.1

Climate Change
8 0.5 0.5 0.6

Music and Society
12 0.4 0.4 0.4

Average 0.333 0.333 0.367

Table 6.5: Results of running system on held-out data

different topics was one of these observations, where climate change was
the weakest topic overall with the development set, but is the one with the
highest accuracy of the held out data. In general, it seems that the dataset
is too small and variable to base any firm conclusions on, even though some
tendencies could be observed.

56

Chapter 7

Conclusion

In this thesis, we set out to study the effects of using syntactic information to
solve a given question answering task. This idea came from reading papers
describing systems participating in the aforementioned task, where several
authors listed lack of more linguistically motivated heuristics as a potential
cause for their low performance. We were curious to investigate in what
ways syntax could be used, and what the effects would be.

7.1 What we learned

When adding the dependency-based heuristics to the baseline system we
created, we saw negative results. Scores of accuracy either went down or
remained unchanged. Surprised by this finding, we analysed the data by
performing a manual classification and found that it did not lend itself
well to using dependency structures directly. The data analysis showed
that there were some large classes of problems that — if resolved — were
likely to boost the performance. One of these was anaphora resolution,
so we modified a well-known algorithm for anaphora resolution to work on
dependency structures, and saw positive results.

In the next section, we go into more detail on what we could have done
differently in this thesis, in the light of hindsight.

7.2 Reflections

While we eventually saw some increase in performance when adding
anaphora resolution, there are some points that should be addressed
regarding the design of the system.

7.2.1 Using dependencies

We performed a dependency analysis of answer candidates in the hopes
of matching the structures with those found in the text. However, the
assumption this would be useful is likely to be flawed. Because of the format
of the candidates, many answer candidates will simply be names, locations,
or snippets of text that do not form complete sentences, and the likelihood

57

of erroneous parses is high. It is still possible that using the structures
from the questions and sentences could be useful, perhaps by looking for a
matches of a verb between the question and a sentence, and subject between
the answer and the same sentence.

When looking at the generated dependency structures, they are in some
cases very generic. While we did get useful information like dobj(emission,
reduce), we also got instances of nsubj(it, is) and nsubj(you, put),
which are less salient. To filter out these generic matches, some form of
word weighting could be applied, to either one or both of the words in the
relation, giving words which occur very frequently less weight.

7.2.2 Scoring

The size of the scores the different heuristics could give answer candidates
was determined by the author’s intuition, with slight adjustments made
after looking at some of the results. This process could have been made
more accurate, but the size of the dataset was a limitation. In the fear of
overfitting for the data, we decided to not linger too long on the scores. The
scores for the dependency heuristics were clearly too high, but due to the
low number of questions affected, tuning these scores were not a priority.
A second problem with the scores is related to how they are calculated.
Most of the heuristics go through each sentence in the text for each answer
candidate, and calculate a score for the current combination of sentence,
question and answer candidate. The highest score is kept, and whether
only one sentence got any matches or ten makes no difference. We think
that some form of weighting of redundancy could be beneficial in this case,
perhaps using inverse document frequency.

7.2.3 Using the background collection

In the original task, a background collection was supplied, containing a large
set of material related to each of the topics. We did not have access to this
data, but it is possible that by parsing this data, we could have identified the
terms that were especially relevant for each topic, and perform some domain
adaptation for the heuristics by giving higher scores to matches containing
these terms, for example.

Finally, sentences are considered individually, with no other context.
Some simple chunking heuristics, like looking at sentences in sets of threes,
could be an improvement.

7.3 Conclusion

One of the main problems when attempting to use syntax to solve this
task has been the dataset, in our opinion. This task was designed to move
away from pattern matching, and has in some ways moved very close to
requiring full understanding. While full understanding is a future goal for
question answering systems, it is not a level of complexity that is achievable
to approach within the scope of a master’s thesis. The amount of data has

58

also caused some problems, especially the lack of training data. We worked
around this by dividing the already small dataset into a development set
consisting of 75% of the data and a test set with the remaining 25%. When
running the system on the test set, we saw that while the results adhered to
the same pattern we had seen previously, the results were different from those
we got on the development set. The data is very variable, with each reading
test having a different tone, and the difficulty of the questions varying from
very simple to difficult for some humans.

7.4 Future work
There are many opportunities for future work based on the work done in this
thesis. While there were problems with the dataset supplied, we are curious
to see how our system would perform on another dataset, and perhaps
do some work on what types of data it takes for the use of syntax to be
beneficial.

A second possibility is to investigate whether or not the proposed
solution for anaphora resolution is applicable to other system. The solution
could be expanded, to work on more anaphors, and have more refined
filtering methods for possible antecedents.

Based on the analysis done on the data, it seems likely that the use of
external resources will be beneficial, both for background knowledge and
lexical semantics. In the future, we would like to determine what changes
we would have to make to our system in order to make use of these.

59

Bibliography

Babych, Svitlana, Alexander Henn, Jan Pawellek, and Sebastian Padó. 2011.
“Dependency-Based Answer Validation for German.” In CLEF 2011
Labs and Workshop, Notebook Papers. Amsterdam, The Netherlands.

Bhaskar, Pinaki, Partha Pakray, Somnath Banerjee, Samadrita Banerjee,
Sivaji Bandyopadhyay, and Alexander F Gelbukh. 2012. “Question
Answering System for QA4MRE@ CLEF 2012.” In CLEF 2011 Labs
and Workshop, Notebook Papers. Amsterdam, The Netherlands.

Bird, Steven, Ewan Klein, and Edward Loper. 2009. Natural language
processing with Python. O’Reilly.

Chomsky, Noam. 1957. Syntactic structures. Mouton & co.

Dagan, Ido, Oren Glickman, and Bernardo Magnini. 2006. “The pascal
Recognising Textual Entailment Challenge.” In Machine Learning Chal-
lenges. Evaluating Predictive Uncertainty, Visual Object Classification,
and Recognising Tectual Entailment, 177–190. Springer.

De Marneffe, Marie-Catherine, and Christopher D Manning. 2008. “The
Stanford typed dependencies representation.” In COLING Workshop
on Cross-framework and Cross-domain Parser Evaluation.

Forner, Pamela, Anselmo Peñas, Eneko Agirre, Iñaki Alegria, Corina
Forăscu, Nicolas Moreau, Petya Osenova, Prokopis Prokopidis, Paulo
Rocha, Bogdan Sacaleanu, et al. 2009. “Overview of the CLEF 2008
multilingual question answering track.” In Evaluating Systems for
Multilingual and Multimodal Information Access, 262–295. Springer.

Giampiccolo, Danilo, Pamela Forner, Jesús Herrera, Anselmo Peñas,
Christelle Ayache, Corina Forascu, Valentin Jijkoun, Petya Osenova,
Paulo Rocha, Bogdan Sacaleanu, et al. 2008. “Overview of the
CLEF 2007 multilingual question answering track.” In Advances in
Multilingual and Multimodal Information Retrieval, 200–236. Springer.

Hobbs, Jerry R. 1978. “Resolving pronoun references.” Lingua 44 (4): 311–
338.

Jijkoun, Valentin, and Maarten De Rijke. 2007. “Overview of the WiQA
task at CLEF 2006.” In Evaluation of Multilingual and Multi-modal
Information Retrieval, 265–274. Springer.

61

Judge, John, Aoife Cahill, and Josef Van Genabith. 2006. “Questionbank:
Creating a corpus of parse-annotated questions.” In Proceedings of the
21st International Conference on Computational Linguistics and the
44th annual meeting of the Association for Computational Linguistics,
497–504. Association for Computational Linguistics.

Jurafsky, Daniel, and James H Martin. 2009. Speech and language processing.
Pearson.

Lappin, Shalom, and Herbert J Leass. 1994. “An algorithm for pronominal
anaphora resolution.” Computational linguistics 20 (4): 535–561.

Lee, Heeyoung, Yves Peirsman, Angel Chang, Nathanael Chambers, Mihai
Surdeanu, and Dan Jurafsky. 2011. “Stanford’s multi-pass sieve
coreference resolution system at the CoNLL-2011 shared task.” In
Proceedings of the Fifteenth Conference on Computational Natural
Language Learning: Shared Task, 28–34. Portland, OR.

Li, Xin, and Dan Roth. 2006. “Learning question classifiers: the role of
semantic information.” Natural Language Engineering 12 (03): 229–249.

Magnini, Bernardo, Danilo Giampiccolo, Pamela Forner, Christelle Ayache,
Valentin Jijkoun, Petya Osenova, Anselmo Peñas, Paulo Rocha, Bogdan
Sacaleanu, and Richard Sutcliffe. 2007. “Overview of the CLEF 2006
multilingual question answering track.” In Evaluation of Multilingual
and Multi-modal Information Retrieval, 223–256. Springer.

Magnini, Bernardo, Simone Romagnoli, Alessandro Vallin, Jesús Herrera,
Anselmo Penas, Víctor Peinado, Felisa Verdejo, and Maarten de Rijke.
2004. “The multiple language question answering track at CLEF 2003.”
In Comparative Evaluation of Multilingual Information Access Systems,
471–486. Springer.

Magnini, Bernardo, Alessandro Vallin, Christelle Ayache, Gregor Erbach,
Anselmo Peñas, Maarten De Rijke, Paulo Rocha, Kiril Simov, and
Richard Sutcliffe. 2005. “Overview of the CLEF 2004 multilingual
question answering track.” In Multilingual Information Access for Text,
Speech and Images, 371–391. Springer.

Manning, Christopher D, Prabhakar Raghavan, and Hinrich Schütze. 2008.
Introduction to information retrieval. Vol. 1. Cambridge university press
Cambridge.

Marcus, Mitchell P., Beatrice Santorini, and Mary Ann Marcinkiewicz. 1993.
“Building a Large Annotated Corpus of English: The Penn Treebank.”
Computational Linguistics 19 (2): 313–330.

Marneffe, Marie-catherine De, and Christopher D. Manning. 2008. Stanford
typed dependencies manual.

Miller, George A. 1986. “Dictionaries in the Mind.” Language and Cognitive
Processes 1 (3): 171–185.

62

Nivre, Joakim. 2005. “Dependency grammar and dependency parsing.” MSI
report 5133 (1959): 1–32.

Nivre, Joakim, Johan Hall, and Jens Nilsson. 2006. “MaltParser: A data-
driven parser-generator for dependency parsing.” In Proceedings of
LREC, 2216–2219. Vol. 6.

Oostdijk, Nelleke, Suzan Verberne, and Cornelis HA Koster. 2010. “Con-
structing a Broad-coverage Lexicon for Text Mining in the Patent Do-
main.” In LREC.

Pakray, Partha, Pinaki Bhaskar, Somnath Banerjee, Bidhan Chandra
Pal, Sivaji Bandyopadhyay, and Alexander Gelbukh. 2011. “A hybrid
question answering system based on information retrieval and answer
validation.” In CLEF 2011 Labs and Workshop, Notebook Papers.
Amsterdam, The Netherlands.

Peñas, Anselmo, Pamela Forner, Álvaro Rodrigo, Richard F. E. Sutcliffe,
Corina Forăscu, and Cristina Mota. 2010. “Overview of ResPubliQA
2010: Question Answering Evaluation over European Legislation.” In
Multilingual Information Access I. Text Retrieval Experiments.

Peñas, Anselmo, Pamela Forner, Richard Sutcliffe, Álvaro Rodrigo, Corina
Forăscu, Iñaki Alegria, Danilo Giampiccolo, Nicolas Moreau, and Petya
Osenova. 2010. “Overview of ResPubliQA 2009: question answering
evaluation over European legislation.” In Multilingual Information
Access Evaluation I. Text Retrieval Experiments, 174–196. Springer.

Peñas, Anselmo, Eduard Hovy, Pamela Forner, Álvaro Rodrigo, Richard
Sutcliffe, Corina Forascu, and Caroline Sporleder. 2011. “Overview of
QA4MRE at CLEF 2011: Question answering for machine reading
evaluation.” CLEF 2011 Labs and Workshops, Notebook Papers (Trento,
Italy).

Peñas, Anselmo, Alvaro Rodrigo, and Juan del Rosal. 2011. “A simple
measure to assess non-response.” In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human
Language Technologies, 1415–1424. Vol. 1.

Peñas, Anselmo, Álvaro Rodrigo, Valentín Sama, and Felisa Verdejo. 2007.
“Overview of the Answer Validation Exercise 2006.” In Evaluation of
Multilingual and Multi-modal Information Retrieval, 257–264. Springer.

Prager, John, Jennifer Chu-Carroll, Eric W Brown, and Krzysztof Czuba.
2006. “Question answering by predictive annotation.” In Advances in
Open Domain Question Answering, 307–347. Springer.

University, Princeton. 2010. “About WordNet.” Princeton University. http:
//wordnet.princeton.edu.

63

Vallin, Alessandro, Bernardo Magnini, Danilo Giampiccolo, Lili Aunimo,
Christelle Ayache, Petya Osenova, Anselmo Peñas, Maarten De Rijke,
Bogdan Sacaleanu, Diana Santos, et al. 2006. “Overview of the CLEF
2005 multilingual question answering track.” In Accessing multilingual
information repositories, 307–331. Springer.

Vanderwende, Lucy, and William B Dolan. 2006. “What syntax can
contribute in the entailment task.” In Machine Learning Challenges.
Evaluating Predictive Uncertainty, Visual Object Classification, and
Recognising Tectual Entailment, 205–216. Springer.

Verberne, Suzan. 2011. “Retrieval-based Question Answering for Machine
Reading Evaluation.” In CLEF 2011 Labs and Workshop, Notebook
Papers.

Webber, Bonnie, and Nick Webb. 2010. “Question answering.” In The
handbook of computational linguistics and natural language processing,
630–654. Vol. 57. John Wiley & Sons.

64

