Ui0O ¢ Department of Informatics
University of Oslo

Dependency Interconversion

Norveig Anderssen Eskelund
Master’s Thesis Autumn 2014

Dependency Interconversion

Norveig Anderssen Eskelund

31st July 2014

ii

Thanks to Stephan Oepen and Lilja Ovrelid

for their dedication, patience and guidance

iii

iv

The Penn Treebank PoS tagset

7.]]
8. JIR
9.7IS

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
20.
20.
20.

LS
MD
NN
NNS
NNP
NNPS
PDT
POS
PRP
PP$
RB
RBR
RBS
RP
SYM

Coordinating conjunction
Cardinal number
Determiner

Existential there

Foreign word
Preposition/subordinating
conjunction

Adjective

Adjective, comparative
Adjective, superlative
List item marker

Modal

Noun, singular or mass
Noun, plural

Proper noun, singular
Proper noun, plural
Predeterminer

Possessive ending
Personal pronoun
Possessive pronoun
Adverb

Adverb, comparative
Adverb, superlative
Particle

Symbol (mathematical or scientific)

25.
26.
27.
28.
29.

30.
31.
32.
33.
34.
35.
36.
37.
38.

TO
UH
VB
VBD
VBG

VBN
VBP
VBZ
WDT
WP
WP$
WRB

39..

40.

41. :

42.
43.
44,
45.
46.
47.
48.

—~

n

7”7

to

Interjection

Verb, base form

Verb, past tense

Verb, gerund /present
participle

Verb, past participle

Verb, non-3rd ps. sing. present
Verb, 3rd ps. sing. present
wh-determiner
wh-pronoun

Possessive wh-pronoun
wh-adverb

Pound sign

Dollar sign

Sentence-final punctuation
Comma

Colon, semi-colon

Left bracket character
Right bracket character
Straight double quote
Left open single quote
Left open double quote
Right close single quote
Right close double quote

vi

Contents

(I__Introduction|
[L.1 Motivation and research questions|
[[2 Thesisoutline

2 Background|

RI Dependency grammars|.

22 ThePenn Treebank] o v v v i i it

2.3 Constituent-to-dependency conversion|

2.5 The Stanford typed dependencies representation|
2.6 DeepBank and DELPH-IN syntactic dependencies|
2.7 Dependency interconversion: previous and related work| . .

[3 A comparison of three dependency formats|

8.1 Data preparation|
[?.2 Estimating linguistic granularity and variability|

B.3 Similarity between formats|

3.5 Non-projective dependenciesinCD|
B.6 Summary of format comparison|

@4 How can we perform conversion?|
4.1 Conversion of syntactic structures|

4.2 Methodologﬂ
43 Baseline systeﬁ|

B Heursh on T DT o CDl
P.1 Extended labelling procedure|
p.2 Identifying candidates for rewriting]
B3 Coordination

P.3.1 Identifying coordination structures|.
b.3.2 Rewriting coordination structures|

p.4 Conjunctionsasroots|
.5 Possesiveendings|
p.6 Cardinal numbers and currency PoStags|
b.7 Measurenoun phrases|,
rdinal number h fnouns|.

vii

5.11 Unsuccesstul rewritings| 70

b.12 Summaryofresults L 72

6 Labelling by classification and contrastive evaluatio 75
g by

i inelearned 75

6.2 Notation for describing teatures|. 76

6.3 Experiments| 78

6.4 Evaluationl 82

Z__Conclusion| 85

I Resultd 85

[7.2__Reflections and furtherworkl 86

[7.2.1 Estimating variability] 86

[72.2 Rewriting of syntactic structures| 86

[7.2.3 Labelling by classification| 88

viii

List of Figures

2.1 Dependency representation in Stanford format|. 5

22 Dependency relation|., 6

[2.3 Dependency representation of an English sentence with an [

| extra-posed relativeclause| 8

2.4 Constituency representation| 9

2.5 Constituency representation for conversion] 12

2.6 Dependency representation in CoNLL (above) and Stanford |

[(below) format.| L. 16

2.7 Collapsed representation of a prepositional complement| . . 17

28 HPSGanalysistree|. 18

2.9 HPSG tree converted to a dependency representation|. . . . 18

[3.1 Dependency representation in CD (above) and SB (below), |

| having 1 matched and 4 unmatched dependencies. 27

[3.2 Example of a complex coordinated structure in CD, DT and |

[SBI. . . 33

3.3 Example of a coordinated structure with shared modifiers in |

[CD,DTandSB| 34

[3.4 Example of non-projectivity caused by wh-movement | 35

8.5 Example of non-projectivity caused by split clause|. 35

B.6 Example of non-projectivity caused by split noun phrase|. . 35

4.1 Dependency representation in CD (above) and SB (below) |

[format. 40

Dependency representation in CD after reattachment of a |

| smgle node[. 41

4.3 Dependency representation in CD after rewriting of a syn- |

[tacticstructurelo oo 41
.1 = A coordination structure illustrating choice of head, at-
tachment of shared modifiers and attachment of separating

punctuation tokens (DT dependencies above, CD below)| . . 54

6.2 Coordination structure with deviant annotation in DT (DT |

left, CDright)|, 54

b.3 Examples of coordinated structures with multi-word con- |

| junctions (DT left, CDright) 56

b.4 Example of coordination structure lacking coordinating |

| conjunction (DT above, CD below)| 58

ix

.5 Example of a dependency structure with a coordinating |
conjunction as root and no left conjuncts (DT above, CD below)| 60

b.6 Example of dependencies involving possessive endings (DT |

| left, CDright) 61
b.7 Example of dependency structures with cardinal numbers |
and currency PoS tags (DT scheme above, CD scheme below)| 62

b.8 Example of dependencies labelled NUM-N in the DT scheme |

| (DT left, CDright)]. 64
.9 Example of a dependency with a noun dependent and |

| cardinal number head in DT (DT left, CDright)] 65
.10 Examples of dependencies with noun dependents and de- |
terminer head in the DT data (DT left, CDright)] 67

.11 Example of coordination structure where different elements |

[are coordinated in DT and CD (DT above, CD below) 70
[0.12 Example of a structure with measure noun that is not |
correctly rewritten (DT above, CDbelow)| 71

.13 Example of a structure with a cardinal number head of a |

| noun that is not correctly rewritten (DT above, CD below)| . 71

[6.1 Example of a rewritten but still not labelled sentence (source |
[DT above, converted below)| 77

[7.1 Example of structures with NNP tokens attached to another |
[NNP token (DT above, CDbelow) 88

List of Tables

2.1 Functional tags used in PTB I, table reproduced from (M.
Marcus et al. [1994). Note that the comment on the -CLR tag

refers to the original article, not this thesis.| 11

[2.2 Functional tags in CoNLL 2008 reported retained from PTB |

| I, but missing in M. Marcusetal.[1994] 11
3.1 Diverging PoStags 22
8.2 Diverging PoS tags after removal of sentences tagged with |

| the TnT taggerin DT|. 23
3.3 Overview of data sets used inourstudy| 23
[3.4 Counts of possible combinations for each format{ 24
8.5 Counts of different combinations used in each formatl 24
[3.6 Tree-depthof formats|. 25
[3.7 Most common PoS tags of tokens used as roots in each format| 26
[3.8 Percentage of matched dependencies in format pairs|. 27
[3.9 Percentage of matched dependencies (excluding punctu- |

| ation tokens) in formatpairs(. 000 L 27
[3.10 Percentage of identical roots in format pairs|{. 28
[3.11 Percentage of unmatched dependencies attached toroot| . . 28
[3.12 Counts of different combinations used in each format pair{ . 29
[3.13 Counts of different combinations used in matched depend- |

| encies in each formatpair| 30

14 nts of different combination in unmatch -
| pendencies in each formatpair| 30

4.1 Combinations with large amount of unmatched dependen- |

| cies and/or low amount of matched dependencies| 44
.2 Trigger types used for labelling| 45
4.3 Examples of labellingrules| 45
61 Nool il T baseli Row: l

| format, column: target format. | 46
4.5 Evaluation results for baseline converter used on training |

| data. Row: source format, column: target format]. 46
4.6 Evaluation results for baseline converter used on develop- |

| ment data. Row: source format, column: target format.| . . . 47
7 Tabelled] E - T a0] l

| order. Row: source format, column: target format.| 47

xi

.1 Patterns with low unlabelled attachment score (excl. punc-

[tuationmarks)|o oo 51
[>.2 Patterns of unmatched dependencies involving coordinating |
| conunctionS| 52
.3 Words PoS-tagged CC and their frequency in WSJ Section |
................................ 55
[5.4 Multi-word conjunctions in CD with PoS tags and frequency| 56
[0.5 Dependency labels used for conjoined elements in D1|. . . . 57
[0.6 Patterns of unmatched dependencies involving coordinating |
| conjunctions after conversion of coordination structures| . . 59
[p.7 Patterns of unmatched dependencies involving coordinating
conjunctions after conversion of coordinating conjunction
[roots| 60
[5.8 Patterns of unmatched dependencies involving possessive |
| endings| 61
[5.9 Patterns of unmatched dependencies involving possessive |
| endings after conversion| L0000 L 61
[5.10 Patterns of unmatched dependencies involving cardinal |
[numbers| 62
[0.11 Patterns of unmatched dependencies involving cardinal
[numbers after conversion of structures with cardinal num-
| bers and currency PoStags|. L. 63
[0.12 Patterns of unmatched dependencies involving labels for |
I measure NPS|. 63

[5.13 Patterns of unmatched dependencies involving cardinal

[numbers after conversion of structures with measure noun |

| phrases| 65
[0.14 Patterns of unmatched dependencies involving CD heads of |

[NOUNS| .« v v v v v v v 65
[5.15 Patterns of unmatched dependencies involving cardinal

[numbers after conversion of structures with cardinal num-

[berheadsofnouns| 66
[0.16 Patterns of unmatched dependencies involving DT heads of |

[NOUNS| « v v v v v v v v e e e e 66
[0.17 Patterns of unmatched dependencies involving DT heads of |

[nouns after conversion| 68
[0.18 Number of matched and unmatched dependencies with |

| punctuation mark dependents| 68
.19 Heads of punctuation marks in our formats| 69
{0.20 Number of matched and unmatched dependencies with |

| punctuation mark dependents after conversion|. 69
[0.21 Erroneous reattachments per pattern| 70
[5.22 Evaluation results for converter 72
[6.23 Most common PoS tags used as roots in CD and in DT |

[convertedl. 72
[5.24 Matched and unmatched dependencies after conversion| . . 73

Xii

[6.1 Examples of possible feature values described in our nota- |

10on. t refer h, n'and| 78

6.2 Triggers versus featurevalues| 78

6.3 Results from labelling with machine-learned classifiers| . . . 81
Y 'or CD Tabels Tor heurist j Fined] l
[labelling| 0 . 82
6.5 Evaluation results on development and held-out test datal. . 82

0.6 Evaluation results on development and held-out test data |

when punctuation marks are excluded|. 84

xiii

Xiv

Chapter 1

Introduction

Dependency grammars have gained enormous popularity for a wide
range of natural language processing (NLP) tasks in the past decade
and the availability of dependency treebanks is increasing. Many of
these treebanks have been created by converting constituent structures in
existing constituency treebanks to dependency structures.

Linguists disagree on the syntactic analysis of several linguistic phe-
nomena. Both the constituency treebanks that the dependency treebanks
origin from, as well as the conversion procedures applied, may have been
designed on the basis of different linguistic theories. As a result, the dif-
ferent dependency formats have diverging representations of various syn-
tactic structures. These differences can surface in the choice of heads, in-
ventory of labels and formal graph conditions. These differences present a
challenge to several NLP tasks, e.g. for cross-lingual syntactic parsing.

1.1 Motivation and research questions

Despite the increasing interest in dependency grammars, we still have lim-
ited and only high-level knowledge about the similarities and differences
between the various annotation schemes for dependency representations,
even where multiple schemes exist for the same language. Although some
work has been done in this area (see Section , we will aim at doing a
more thorough quantitative and qualitative analysis of some selected de-
pendency formats for English. We will perform an investigation of three
annotation schemes in order to acquire and document knowledge about
commonalities and differences between them. For our project, we have se-
lected two ‘classic” dependency schemes, Stanford Basic Dependencies (SB)
(De Marneffe et al. 2008) and CoNLL Syntactic Dependencies (CD) (Johans-
son et al. 2007), and the more recent DELPH-IN Syntactic Derivation Tree
(DT) (Ivanova et al.2012). In our thesis we seek to determine:

(a) Whether any of the selected formats are more expressive than the others
(b) To what extent the different formats correspond

Ivanova et al. (2012) have conducted a contrastive study of these three
formats, among others. The focus of their project was, however, on

formal and representational aspects, rather than on linguistic content. For
a selected format pair, CD and DT, we will perform a more qualitative
investigation and seek to acquire knowledge of any syntactic phenomena
that have a different analysis in the two formats. We will investigate:

(c) What systematic differences exist between the two formats

(d) What methodology we can use to discover these differences

If we could successfully convert corpora annotated in one dependency
scheme to another, this would provide new opportunities and be useful for
several NLP tasks. Making texts available in more annotation schemes,
quality control of parallel annotations over the same text and cross-
framework parser evaluation are some potential application areas. We will
investigate:

(e) How we can perform rewriting of syntactic structures and labelling

(f) What accuracy we can achieve by heuristic conversion

We choose a heuristic approach for rewriting of syntactic structures.
We also use a heuristic method for labelling in this first version of our
converter. We can consider the assigning of labels to dependency relations
as a classification task, and thus a problem well suited for statistical
classification. We will investigate:

(g) To what extent machine-learned classification improve the accuracy of
the labelling

1.2 Thesis outline

Chapter 2: Background In this chapter we review some necessary
background information for our project. We introduce the notion of
dependency grammars and a short description of The Penn Treebank. We
present a general method for converting constituent representations to
dependency representations and provide a short description of the three
dependency formats that we examine in this thesis. We give a summary on
previous and related work on dependency interconversion.

Chapter 3: A comparison of three dependency formats This chapter
presents the results of our quantitative contrastive study of the three de-
pendency formats. We present the results of various statistical comparisons
with respect to granularity of each format and correspondences between
the format pairs. In addition, we briefly discuss some well-documented
areas where dependency formats differ, with respect to the three formats.
We give a summary of the conclusions and assumptions we draw from our
investigations.

Chapter 4: How can we perform conversion? This chapter investigates
how conversion of dependency structures from one format to another can
be performed. We discuss subtasks involved in conversion and possible
approaches to them. We propose a quantitative methodology for detection
of patterns of different syntactic analyses in format pairs. A baseline
converter with a heuristic labelling procedure is described.

Chapter 5: Heuristic conversion from DT to CD In this chapter we
describe our work on heuristic conversion of data annotated in the DT
format to the CD format. We describe the phenomena that we have found
to have different syntactic analysis in the two formats and the result of our
heuristic conversion.

Chapter 6: Labelling by classification and contrastive evaluation In
this chapter a series of experiments to improve our result with respect to
labelling, by using machine learning-based classification, is described. The
final evaluation of our conversion on held-out test data is presented here,
including comparison of the heuristic and machine-learning approaches.

Chapter 7: Conclusion This chapter sums up the results of our work and
considers possibilities for improvement and further work.

Chapter 2

Background

In this chapter we will provide some necessary background information for
our project. In Section 2.T|we will introduce the basic notion of dependency
grammars. Section [2.2] contains a description of The Penn Treebank, one
of the most known constituent treebanks for English, and how it was
created. The general method for converting constituent representations to
dependency representations is described in Section In Section 2.4)-[2.6]
we give a short description of the three dependency formats that we will
examine in our project. Finally, we give a summary on previous and related
work on dependency interconversion in Section

2.1 Dependency grammars

The fundamental idea behind dependency grammars is that the syntactic
structure of a sentence can be expressed by dependencies between the
words of the sentence. These dependencies are binary asymmetrical
relations (Nivre 2005). One of the two words linked by a dependency
relation is the head and the other is the dependent. The dependent depends
on the head and the head governs the dependent. A dependency structure
can be represented as a labelled directed graph, where every word (node in
the graph) is related to at least one other word.

Figure below shows a dependency representation (using the
Stanford scheme; see Section of the sentence Time flies like an arrow.

roo
pob
f% f% de

Tlme flies hke an arrow
VBZ

Figure 2.1: Dependency representation in Stanford format

Let us take a closer look at one of these dependency relations:

an arrow
DT NN

Figure 2.2: Dependency relation

In this dependency the noun NN is the head; the dependency edge
originates from this word. The determiner DT is the dependent, it is
attached to the head by the arc. The dependency is labelled det. Following
is the description of this dependency label from the Stanford typed
dependencies manual (De Marneffe et al. 2008):

det: determiner
A determiner is the relation between the head of an NP and its
determiner.

How can we identify the dependencies of a sentence and, for each
dependency, how can we know which is to be considered the head and
which is the dependent? Several criteria for identifying relations between
a head H and a dependent D in a construction C have been proposed. Here
are some of them (Zwicky 1985; Hudson 1984; Nivre [2005):

1. H determines the syntactic category of C and can often replace C.

2. H determines the semantic category of C; D gives semantic specifica-
tion.

H is obligatory; D may be optional.
H selects D and determines whether D is obligatory or optional.

The form of D depends on H (agreement or government).

SRS

The linear position of D is specified with reference to H.
These 6 criteria are, as we will see, by no means unambiguous.

Consider for example the following construction: an arrow.

Which part of this phrase is head and which is dependent according
to criterion 1? If we apply the traditional NP analysis, the construction
would be categorized as a noun phrase (NP), where the noun arrow is the
head of the phrase, and the determiner an is the specifier. The dependency
shown in Figure between these two words is in accordance with this
analysis. If we, on the other hand, take the stance that is common in many
branches of generative grammar, and apply what is called a DP analysis,
the result is the complete opposite. According to the DP analysis, the
head of this phrase is the determiner an, identifying the construction as

6

a determiner phrase (DP). The noun arrow is considered to be the argument
of the determiner.

If we decide to go for the DP-analysis and pin down the determiner as
the head, our decision will immediately be contradicted when we apply
criterion 2. When we consider semantics, the noun will undoubtedly be
the natural choice of head.

According to criterion 3, the head is obligatory while the dependent
may be optional. In our example both words in the construction an arrow
are obligatory (*arrow flies, *an flies). But there are also examples of noun
phrases where both the determiner and noun can be optional. The subject
noun phrase in the sentence These arrows fly high is such an example. Here
the determiner these or the noun arrows can be omitted from the sentence
(These fly high, Arrows fly high), without making it ungrammatical. In none
of these cases will criterion 3 help us identify the head.

Criterion 4 states that the head determines whether the dependent
is obligatory or optional. Plural forms of nouns make the determiner
optional, e.g. allowing the determiner the to be omitted from the phrase the
arrows fly. This would, according to criterion 4, identify the noun arrows as
head of the construction the arrows. On the other hand, several determiners
can occur alone without a noun. Examples of such determiners are two,
many, those. This makes it possible to omit the noun from phrases like many
arrows fly, those arrows fly, and thus identify the determiners as the heads of
the constructions many arrows, those arrows.

It is hard to find an example for English where criterion 5 cannot
be used to unambiguously identify the head of a construction. For
noun phrases for instance, the noun will always decide the form of the
determiner. In German, however, some nouns will assume a strong or weak
form depending on the article, for example ein Beamter (a civil servant)
versus der Beamte (the civil servant).

Criterion 6 asserts that the position of the determiner is specified with
reference to the head. This might be true, but will in most cases be useless
for deciding which word is the head of a construction. For English noun
phrases, it is true that the determiner always must be positioned before the
noun, but it is equally correct to say that the noun must be positioned after
the determiner.

In conclusion, even for a seemingly simple construction like the English
nominal group, the head choice can be debated, and syntactic vs semantic
criteria may pull in different directions.

A majority of proposed dependency schemes identify the noun as the
head of a noun phrase. For some constructions, however, there is no
general agreement about how to decide which is the head and which is the
dependent(s). Such problematic constructions are constructions involving
coordination, prepositional phrases or grammatical function words.

Some formal conditions are imposed on dependency structures (Nivre

2005). One of these conditions is that a dependency structure has to be
connected. Every node in the graph has to be connected to at least one other

7

node in order to make the graph complete. Two other constraints that most
dependency grammars adhere to, are the constraint of acyclicity and the
constraint of single-head. Acyclicity implies that the structure is hierarchical,
it does not contain cycles. The constraint of single-head means that one
node should have at most one head.

One of the most important issues in dependency grammar is the notion
of projectivity, and whether this should be a constraint on the linear
realization of dependency structures or not. A dependency A —> B adheres
to the constraint of projectivity, if all nodes that occur in the linear order
between A and B are transitively dependents of A. A dependency graph
that satisfies the constraint of projectivity will not have any crossing edges.
In languages with free or flexible word order, sentences that can not be
represented by a projective dependency graph, occur rather frequently.
Even in English, some constructions, like relative clause extraposition,
create non-projective dependencies. Figure illustrates this. In this
example non-projectivity is caused by designing arrow to be the head of

hit.
rcmod
prep
M (B | - B

shot an arrow yesterday that hit someone by acc1dent
PRP VBD DT NN WDT VBD PRP

Figure 2.3: Dependency representation of an English sentence with an
extra-posed relative clause

2.2 The Penn Treebank

Treebanks are collections of sentences that have been manually annotated
with a correct syntactic analysis and part-of-speech (PoS) tags. Treebanks
are an important resource both for linguistic research and natural language
processing (NLP). In NLP treebanks are used for evaluation and compar-
ison of parsers as well as for machine-learning of statistical models and
estimation of probabilities for context-free grammars.

The Penn Treebank (PTB) is an annotated corpus consisting of over
4.5 million words of American English (M. P. Marcus et al. 1993) and
thus arguably the largest existing treebank for English. In contrast to
dependency grammar, the annotation used for PTB is a constituency
representation. Constituents are single words or phrases; groups of words
acting as units. A constituent can consist of other constituents, thus
forming a hierarchy. An example of a constituency representation is shown
in Figure2.4]

The first version of PTB was collected and annotated during the period

8

N

NP VP

T

NN VBZ pr

PN

time flies IN NP

N

like DT NN

an arrow

Figure 2.4: Constituency representation

1989-1993. The annotation process for PTB consisted mainly of two parts;
PoS tagging and syntactic bracketing. The PoS tagging of the PTB was
performed using a combination of automatic PoS assignment and manual
correction. The tagset used for PoS tagging of PTB is based on the tagset of
the pioneering Brown Corpus (Francis [1964; Francis et al. 1982). However,
where the Brown Corpus uses 87 simple tags and also allows compound
tags, PTB has through simplification of this tagset, ended up with a tagset
of 36 PoS tags and 12 additional tags for punctuation marks and other
symbols. A reason for this simplification was the desire to avoid tagging
inconsistencies, as a reduced tagset is expected to reduce the chances of
such inconsistencies/T]

In order to create the best possible basis for the bracketing task, the
PTB project strived to tag words according to their syntactic functions. For
instance a verb in its gerund/present participle form can be tagged as a
verb, noun or adjective depending on the syntactic context. In the Brown
Corpus, however, words are often tagged without regard to their syntactic
functions.

A third difference between the Brown Corpus and PTB is that multiple
taggings are allowed in PTB. If a word is tagged with more than one tag, it
indicates either real ambiguity or that the annotator was not able to decide
which was the correct tag.

The bracketing task was also performed in two stages, an automatic and
a manual one. In the automatic stage, a skeletal, bracketed representation
was produced by a parser. In the manual stage, annotators corrected and
completed this output by hand. The tagset used for bracketing in PTB,
consists of 14 syntactic constituent tags plus 4 null elements. The choice of
tagset and skeletal representation as output from the parser, was to a large
extent influenced by the need for efficiency in the hand correction process.

10ne of the strategies for simplifying the PoS tagset, was to eliminate redundancy by
removing forms that define distinctions that are lexically or syntactically recoverable. For
instance does the tagset not contain different tags for auxiliaries and main verbs.

The project needed, with limited time and human resources, to create a
large annotated corpus.

A result of this pragmatic approach is that many syntactic details are
left unannotated. Some examples of this are:

¢ a distinction between arguments and adjuncts is not always made

* noun phrases with a complex internal structure are often annotated
as flat structures

¢ the head of a phrase is only rarely explicitly identified

When developing PTB version II (M. Marcus et al.[1994), it was decided
to expand the representation to a richer structure. This was done in order
to allow fori.a.:

¢ the automatic recovery of predicate-argument structure
¢ a distinction between verb arguments and adjuncts

In this improved representation, the tagset was extended with more null
elements and, functional tags/property labels were introduced.

Here is an example of a sentence annotated in PTB I style, without
functional tags (left) and the same sentence annotated in PTB II style, with
functional tags (right):

(S (NP an arrow) (S (NP-SBJ an arrow)
(VP hit (VP hit
(NP somebody) (NP somebody)
(PP on (PP-TMP on
(NP Monday)))) (NP Monday))))

Note that the subject is explicitly tagged as subject, although in this
particular construction this can be recognized from the syntactic structure
(the subject is the NP left of the VP in English) and is in fact redundant.
Table is reproduced from (M. Marcus et al. 1994) and shows the
functional tags introduced in PTB version IL

Another version of PTB was developed in 1999, but no further
extentions to the annotation scheme were made. However, we observe that
Johansson 2008 report to have retained 4 labels (BNF, DTV, EXT and PUT)
that are not found in this table, from PTB annotations. These labels are
listed in Table We must assume that these for some reason have been
omitted from the original table, or have been added to the set of function
tags without explicit communication, possibly between PTB versions 2 and
3.

10

Tag ‘ Marks:
Text Categories

-HLN | headlines and datelines
-LST | list markers
-TTL | titles
Grammatical functions
-CLF | true clefts
-NOM | non NPs that function as NPs
-ADV | clausal and NP adverbials
-LGS | non VP predicates
-SBJ surface subjects
-TPC | topicalized and fronted constituents
-CLR | closely related - see text
Semantic Roles
-VOC | vocatives
-DIR | direction & trajectory
-LOC | location
-MNR | manner
-PRP | purpose and reason
-TMP | temporal phrases

Table 2.1: Functional tags used in PTB I, table reproduced from (M. Marcus
et al. 1994). Note that the comment on the -CLR tag refers to the original
article, not this thesis.

Tag Meaning

BNF | Benefactorer

DTV | Dative

EXT | Extent

PUT | Various locative complements of the verb put

Table 2.2: Functional tags in CoNLL 2008 reported retained from PTB II,
but missing in M. Marcus et al. 1994.

2.3 Constituent-to-dependency conversion

Dependency grammars and dependency parsing have become increasingly
popular during the last decade. Still, no significant treebank for English
has been built using dependency representations. Instead, methods for
converting constituent representations to dependency representations have
been developed and applied for converting (parts of) PTB to a dependency
treebank, by several projects. The first acknowledged conversions were
made by Magerman 1994; Baker et al. 1998; Yamada et al. 2003,

A crucial part of constituent-to-dependency conversion is the identi-

11

fication of the head in each phrase. As is obvious from the discussion in
Section 1 above, identifying heads is necessary to be able to create depend-
encies. This is usually done using a set of head rules. The use of such rules
has a long tradition. Magerman 1994 was the first to produce a set of head
percolation rules. Others have used modifications of this set or produced
their own sets of rules (Collins 1997; Johansson et al.[2007), inter alios. The
basic procedure for conversion from a constituent representation to a de-
pendency representation can be described by this generic algorithm:

1. Select a target constituent
Find its lexical head using head percolation rules

Find sibling constituents along head path

Ll

For each sibling constituent the lexical head becomes a dependent of
the target constituent

5. Invoke step 1-4 recursively with each constituent as target.

We will take a look at these basic conversion rules by using them to
convert the simple constituency representation shown in Figure to a
dependency representation:

S

/\
/\%\

DT NN VBD PP

\\\\A

an arrow hit PRP IN NN

somebody on Monday

Figure 2.5: Constituency representation for conversion

We will use the following (tiny) set of head percolation rules in our
conversion ("*” denotes the head of the phrase, elements inside parenthesis
‘() are optional and *,” is used to separate alternatives):

PP —> IN* NN
NP -> DT NN*, PRP*
VP —> VBD* NP (PP)
S —> NP VP*

12

Starting at S, the rules above guide us through the VP to the VBD as the
lexical head.

an arrow hit somebody on Monday
DT NN VBD PRP IN NN

This VBD has two siblings, the NP where the PRP is the head and the
PP where IN is the head. These are both dependents of the VBD.

(prep)
1
an arrow hit somebody on Monday
DT NN VBD PRP IN NN

The procedure is invoked recursively with the NP as the first target
constituent and the PRP identified as the lexical head. The PRP has no
siblings. The next target constituent is the PP, where IN is the lexical head.
The IN has one sibling, the NN, which is a dependent of the IN.

prep
\V
an arrow hit somebody on Monday
DT NN VBD PRP IN NN

The path beneath the VP constituent is now exhausted, but it has one
sibling, the NP where the NN is identified as the lexical head. This NN is
also a dependent of the VBD.

13

[| X

an arrow hit somebody on Monday
DT VBD PRP IN NN

Recursive invocation of the procedure, with the NP as the target
constituent and the NN as the lexical head, identifies the DT sibling as a
dependent of the NN.

arrow hit somebody on Monday
DT NN VBD PRP IN NN

As we have seen, we need both a constituency representation and a set
of head rules as parameters to a conversion function. A third parameter is
also needed; a dependency annotation scheme. In our example, we have
used the Stanford format. There are some variations in these dependency
labelling functions. In the next sections we will take a closer look at some
of the most used annotation schemes.

2.4 The CoNLL 2008 Shared Task

The annual shared task of the Conference on Computational Natural
Language Learning in 2008, was to process a unified dependency-based
formalism, modelling both syntactic dependencies and semantic roles.

The annotation practice and conversion method that was developed
(Surdeanu et al. 2008; Johansson et al. [2007), build on and aim to improve
existing methods (Magerman (1994; Baker et al. 1998; Yamada et al. 2003}
Nivre et al. 2006) for converting constituent representations from the PTB
to dependency representations.

The new conversion procedure exploits the information in the PTB
better than the previous methods. It makes use of extra information given
in the extended structure of the later PTB versions and uses a larger set of
dependency labels.

The new procedure uses heuristic rules to add internal structure to
complex noun phrases. Different internal structure is apparent in the
following two examples:

DT[[NN NN]JNN]
the linen towel rack

14

DT [NN[NN NN]]
the steel towelrack

Without the distinction in the internal structure, shown by the bracket-
ing, in these two NPs, the dependency representation of them would be the
same. The rules used to identify the internal structure are heuristic in the
sense that they will not capture the structure of all complex NPs.

Another change in the new procedure is that it uses more advanced
head percolation rules. These rules make use of function labels. In these
rules some new categories are introduced, i.e. *-PRD (any phrase with a
PRD function tag) and NP-¢ (NP with no function tag).

The new procedure also uses a richer set of dependency arc labels.
Most of the function tags in Table are used to label dependencies.
Exceptions are HLN, TTL, NOM and TPC. The first three were left out
because they were considered not to reflect any grammatical function. The
latter, the TPC tag, is used in combination with a NULL element, to mark a
topicalized argument:

(S (NP-TPC-1 this feeling)
(NP-SBJ everybody)
(VP has experienced
(NP *T*-1)))

This TPC label was not retained because it was considered not relevant
for a dependency grammar; an object is an object, whether it is topicalized
or not.

In the new procedure the heuristic rules, used to infer labels for edges
that have no labels in the PTB, were extended. One of the results of these
modified rules is that a distinction between direct objects (OBJ) and indirect
objects (IOB]J) is made.

2.5 The Stanford typed dependencies representation

The Stanford typed dependencies representation was released in 2008. It
builds on and has used parts of the GR (Carroll et al. 1999) and PARC (King
et al. 2003) schemes, but is developed to provide a simple and easy-to-
understand description of grammatical relationships. The aim was to make
a representation that could be used and understood also by non-linguists.

All grammatical relationships are represented as binary relations
between pairs of words. The relations are arranged in a hierarchy that
contains 56 dependency labels.

The following 6 design principles were used when developing the
representation (De Marneffe et al.|[2008):

15

1. Everything is represented uniformly as some binary relation between
two sentence words.

2. Relations should be semantically contentful and useful to applica-
tions.

3. Where possible, relations should use notions of traditional grammar
for easier comprehension by users.

4. Underspecified relations should be available to deal with the com-
plexities of real text.

5. Where possible, relations should be between content words, not
indirectly mediated via function words.

6. The representation should be spartan rather than overwhelming with
linguistic details.

Figure 2.6/ below shows a sentence annotated in both the CoNLL and
the Stanford formats.

~SB)~ | —(VC— ,{OPRD}— (1M}~
have promlsed sing

xcomp

Figure 2.6: Dependency representation in CoNLL (above) and Stanford
(below) format.

The differences between these two representations can be said to
illustrate the use of design rule 5. In the Stanford format the content word
promised and not the function word have is chosen to be the dependent of
the root. This is also in accordance with rule 2, that relations should be
semantically contentful.

The Stanford representation makes no distinction between arguments
and adjuncts, but contains many labels representing NP-internal relations.
Some of these labels are: abbrev (abbreviation modifier), appos (appositional
modifier), det (determiner), infmod (infinitival modifier), nn (noun com-
pound modifier). As such relations are assumed to be critical to applica-
tions, this is in accordance with rule 2.

According to rule 5, content words should be chosen as heads of
dependents. This leads to the collapsing of dependencies including
conjuncts. The Stanford scheme also offers an alternative, collapsed

16

-root
prep-of

The flight of an arrow
DT NN IN DT NN

Figure 2.7: Collapsed representation of a prepositional complement

representation for other constructions, i.e. prepositional complements.
Figure|2.7|shows an example of such a collapsed representation.

Here the preposition is used as a relation and does not appear as a node
in the dependency structure any more. As such collapsed representations
reflects the semantics of the sentence better than the basic variant, they can
also be said to adhere to rule 2.

As a result of rule 4, the Stanford scheme contains some more generic
labels, that can be used when a more precise dependency relation can not
be determined. The most generic of these labels is the dep (dependent) label.

2.6 DeepBank and DELPH-IN syntactic dependencies

The English DeepBank (Flickinger et al.|2012) is a treebank that has been
developed over the last 2 years. It contains the text of the first 22 of
the 25 Wall Street Journal sections that are included in the PTB. The
annotation of the DeepBank is grammar-based and grounded in the Head-
driven Phrase Structure Grammar (HPSG) framework (Pollard et al. 1994).
This annotation is expected to be richer and more fine-grained than the
annotation used in PTB.

In the development of the DeepBank, no manual marking up of
syntactic structure was involved. The corpus was first parsed with a parser
using the English Resource Grammar (ERG) (Flickinger 2002), a broad
coverage implementation of HPSG, developed over a period of 20 years.
The result was then manually disambiguated by annotators using the [incr
tsdb()] tool (Oepen|1999). This tool offers a discriminant-based method for
treebanking, where the annotators have to make a set of binary decisions
to include or exclude elements of the suggested analysis. By avoiding
additional manual annotations, the tight connection to the ERG is kept
intact.

Recently Ivanova et al. (2012) have conducted a contrastive study of
different dependency formats. The motivation for this project was to
identify differences and similarities between the different formats and
to facilitate making treebanks, annotated with HPSG analyses, available
to more groups of potential users. To achieve this second goal, an
automated conversion procedure that converts annotations based on the
HPSG framework to bi-lexical dependencies, was developed.

17

As the HPSG framework is founded on a head-based theory, the
HPSG trees contains constructions from which heads can be identified
directly. Because of this, the transformation from HPSG trees to syntactic
dependencies is rather straightforward.

An HPSG tree representation of the sentence Time flies like an arrow will
look like this (Figure[2.8):

sb-hd_mc_c

/\

hdn_bnp_c hd-aj_int-unsl_c
‘ /\

n_ms_ilr hd_optemp_c hd-cmp_u_c

| | T

time_n3 v_3s-fin_olr like_p sp-hd_u_c

time fly_v1 like an_det n_sg ilr
| | |
flies an arrow_nl
arrow

Figure 2.8: HPSG analysis tree

The labels of the nodes are used both for identifying heads and for la-
belling dependencies. The node labels are identifiers of HPSG construc-
tions. Ivanova et al. 2012 have generalized the 150 ERG constructions to 52
major construction types that are used for labelling dependencies, i.e. SB-
HD (subject head), HD-AJ (head adjunct), HD-CMP (head complement),
SP-HD (specifier head). Figure shows the result of converting the tree
above to a dependency representation.

Time flies like an arrow

Figure 2.9: HPSG tree converted to a dependency representation

The conversion procedure was applied to the DeepBank. As a result,
we now have 3 dependency structures over the same text.

18

2.7 Dependency interconversion: previous and re-
lated work

In this section we will present some of the earlier work that can be
related to interconversion of dependency representations. Several projects
have used a limited conversion of syntactic structures in dependency
representations in order to improve parsing results. In these projects
parsers are trained on converted data, but the output from the parsers is
converted back to the original syntactic structures before evaluation. Such
temporary conversion is often referred to as transformation. Other projects
have focused on detecting and describing systematic differences between
dependency formats. Some of these projects propose new annotation
schemes and/or supply conversion tools as well. Only one project has
attempted a full-scale conversion from an existing dependency format to
another.

Nivre et al. (2005) propose pseudo-projective parsing for allowing the
use of a data-driven parser restricted to projective dependency graphs, on
non-projective structures. They projectivize (make projective) dependency
structures by a minimal transformation. This projectivization is done
by lifting operations, making the dependent in a former non-projective
structure a dependent of the head of its former head.

Nilsson et al. (2006) use data from the Prague Dependency Treebank
(Hajic et al. 2001) and transform coordinated structures[3.4/and verb groups
from Prague style to Melcuk style for improved parsing. The parsed
sentences are then transformed back, to the extent that this is possible, to
their original Prague style annotation.

Bengoetxea et al. (2009) explore dependency transformation and in-
verse conversion on the Basque Dependency Treebank (Aduriz et al. 2003).
In their experiments they use language-specific transformation of coordin-
ation structures and subordinated clauses as well as language-independent
projectivization. They find that transformation can improve parsing results
and that the order of transformations can be relevant.

Ivanova et al. (2012) conduct a contrastive study of seven different
dependency formats, among them the three that are also the topic of
our own work: CoNLL Syntactic Dependencies (CD), Stanford Basic
Dependencies (SB) and DELPH-IN Syntactic Derivation Tree (DT). Their
study is based on ten sentences from PEST (Bos et al. 2008) available in
all seven formats. An analysis of these sentences indicates that CD and
DT, as well as CD and SB are among the most similar format pairs, and
that CD and DT is the most similar of the three pairs that we are going to
investigate.

Schwartz et al. (2012) experiment with varying syntactic structures, i.e.
structures that have alternative annotations within the same formalism,
and their effect on parsing performance. The varying syntactic structures
that they explore are: coordination structures, infinitive verbs, noun
phrases, noun sequences, prepositional phrases and verb groups.

Popel et al. (2013) offers a systematizing view of the different coordin-

19

ation models used in dependency grammars. They propose a taxonomy
for describing different representations of coordination structures, found
in existing treebanks or described in literature. They also implement a tool
that converts coordination structures from any taxonomy style to any other
taxonomy style.

Zeman et al. (2012) have studied treebanks for 29 languages and try to
identify all syntactic constructions where annotation systematically differs
in at least one of the treebanks. Among these observed constructions
are coordination structures, prepositional phrases, subordinated clauses,
verb groups, noun phrases and punctuations. They propose a common
normalized annotation format, mainly derived from the annotation style of
the Prague Dependency Treebank, and provide methods and software for
automatic conversion to this format. Their conversion procedure involves
both structural rewriting and relabelling of dependency relations.

In their experiments on framework-independent evaluation of syntactic
parsers, Miyao et al. (2007) attempt not only to convert parser output in
Enju XML format (Miyao [2007) to Grammatical Relations (GR) (Carroll et
al.[1998) and Stanford Typed Dependency scheme (SD) (De Marneffe et al.
2006), but also to convert parser output in the SD format to GR. A problem
for the project is that no manually annotated gold standard corpus for
SD is available at the time. They obtain data in the SD format by using
a conversion program included in the Stanford Parser on shallow PTB-
style phrase structure trees. They use heuristic rules to perform their own
conversions and identify several undocumented disagreements between
the formats. Their conversions result in an accuracy slightly above 80%
and they conclude that undocumented differences make format conversion
a non-trivial and challenging task.

As far as we know, there has been no previous attempt at full conversion
between any pairs of the formats Stanford Basic Dependencies, CoNLL
Syntactic Dependencies and DELPH-IN Syntactic Derivation Tree.

20

Chapter 3

A comparison of three
dependency formats

Our task is to design, implement and evaluate an automated converter for
conversion between some common dependency representation formats:
Stanford Basic Dependencies (SB), CoNLL Syntactic Dependencies (CD)
and DELPH-IN Syntactic Derivation Tree (DT). Before we do this we need
to gain more knowledge about each of these formats and about similarities
and correspondences between the different format pairs. This knowledge
is required to be able to make an assessment of which pairs and in which
directions conversion is most likely to be successful. Because literature on
the area is rather sparse, we will use a quantitative approach in addition to
studies of existing documentation.

In Section we give an overview of which data sets we have
used in our study and the preprocessing we applied to them. Results
of various statistical comparisons with respect to granularity of each
format and correspondences between the pairs are presented in Section 3.2]
and Section The next sections contain brief discussions of two
comparatively well-documented areas where dependency formats differ:
coordination in Section [3.4] and projectivity in Section In Section
we give a summary of the conclusions and assumptions we draw from our
investigations and select the format pair and the direction of conversion
that we will investigate further.

3.1 Data preparation

The data we will use is a subset of the Wall Street Journal data (see
Section [2.6), Sections 00-21, annotated in the three selected dependency
format he tokenization of DeepBank differs a bit from the tokenization
in Penn Treebank. We limit our data to sentences that are identically
tokenized in all three formats. This leaves us with 36423 sentences. We
split out sections 20 and 21, 3089 sentences and 68456 dependencies, to

IThese are the data used by Ivanova et al. (2013). We are grateful to Angelina Ivanova
for preparing these data and sharing them with us.

21

be used as held-out test data. This leaves us with datasets containing
33334 sentences and 733618 tokens and dependencies, for training and
development.

In order to perform comparison of the formats, some normalization
of the data is required. To ensure that all three datasets are equally PoS-
tagged, we perform a comparison of the PoS tag of each word in all formats.
The results are shown in Table[3.1} As we can read from this table, there are
some differences in the PoS-tagging of the datasets for CD, DT and SB.
The most extensive difference, with respect to PoS tags, is between DT
and CD and between DT and SB, the percentage of diverging PoS tags
being 3.71 and 3.91, respectively. The difference between CD and SB is
considerably smaller, diverging PoS tags are found in only 0.19% of the
tokens in this format pair. The explanation for this is probably that while
PTB has been tagged using a combination of automatic PoS-tagging and
manual correction, DeepBank is fully automatically tagged, using the TnT
tagger (Brants 2000).

Percentage of Percentage of sentences
diverging PoS tags || with diverging PoS tags
CD | DT | SB CD | DT SB
CD 371 0.19 52.29 2.08
DT | 3.71 391 || 52.29 53.08
SB | 0.19 | 391 2.08 | 53.08

Table 3.1: Diverging PoS tags

Dealing with different PoS tagging in the different formats, will make
the task of our project considerably harder. We therefore decide to “patch’
the DT data with PoS tags from the corresponding CD data. We do this by
writing a program that leaps through the DT and CD datasets in parallel,
sentence by sentence, token by token. Each time a token with different
PoS tags in each format is encountered, the PoS tag in the DT dataset is
replaced by the PoS tag from the CD file. In DeepBank the TnT tagger
output was used only to determine the lexical categories for unknown
words. Inspecting our ‘patched” DT data, we find that 265 words that
we have re-tagged, were originally unknown to the ERG parser. These
words are distributed among 262 sentences. We suspect that these PoS
tags might have had an effect on the dependency structure, and decide
to remove these 262 sentences. We are now left with 33072 sentences
and 726867 dependencies for training and development. We compare the
now identically tagged DT and CD data with the SB data. SB uses a
different notation style for bracketing tags than DT and CD, -LRB- and
-RRB- versus (and). We can handle these notation variations without
difficulty. The comparison reveals 11 real PoS tag differences. These are
shown in Table

These 11 words with PoS tag differences can represent a problem for
us when we want to compare the different formats. They are found in

22

CD,DT | SB | Total
DT CC 9
PDT CC 2

Table 3.2: Diverging PoS tags after removal of sentences tagged with the
TnT tagger in DT

11 different sentences and we decide to remove these sentences from our
three datasets. We are now left with datasets containing 33061 sentences
and 726556 tokens/dependencies each, for training and development.

We perform the same conversions on the held-out test data; ‘patch” DT
with PoS tags from CD, remove sentences with tokens tagged with the TnT
tagger and remove sentences with PoS tag differences other than left and
right brackets.

The test datasets now contain 3038 sentences and 67111 dependencies.
We decide to split out sections 17 and 18, 3389 sentences and 74576
dependencies, from our training data and use these for development. Our
final training data now contains 29672 sentences and 651980 dependencies
per dataset. An overview of the data sets are given in Table

Sentences | Tokens
Training 29672 | 651980
Development 3389 | 74576
Test 3038 | 67111

Table 3.3: Overview of data sets used in our study

3.2 Estimating linguistic granularity and variability

A linguistically rich annotation scheme will have a high degree of
granularity and variability. By granularity, we mean the level of detail that
the annotation provides for. A fine-grained dependency scheme will have
many possible combinations of PoS tags and relation types, whereas a more
coarse-grained format will have fewer available combinations and thus
provide less detail. Variability denotes the level of detail actually expressed
in the format. A format might have a high degree of granularity and still
obtain a low degree of variability, if not fully utilizing its granularity. We
assume that conversion from a format that is linguistically rich to a format
that is more coarse-grained, will be most likely to succeed, although such
conversion will lead to loss of information. In order to investigate the
granularity and variability of the annotation schemes, we will perform a
quantitative study of them.

We start by calculating the possible combinations of PoS tags and
relation types for each format (granularity). The result is presented in
Table The first row shows the number of PoS tags used in our data.

23

As our data sets are equally tokenized, this number is the same for all three
formats. We see that 45 of the 48 PoS tags available in the PTB tag set are
used. The second row shows the number of available dependency labels
according to documentation on each format; CD (Surdeanu et al. 2008),
SB (De Marneffe et al. 2008), DT (ERG Tags The third row shows the
number of possible combinations of dependency labels and head PoS tags
and the number of possible dependent PoS tag and label combinations. The
last row shows the result of calculating possible combinations of dependent
PoS tags, head PoS tags and dependency labels. We observe from these
numbers that CD has the highest granularity among the three formats, due
to its comparatively large set of labels. DT has a slightly lower granularity
than SB.

CD DT SB
postag 45 45 45
label 69 52 56
hpos-label / dpos-label
(posttag x label) 3105 2340 2520
dpos-hpos-label
(postag x label x postag) | 139725 | 105300 | 113400

Table 3.4: Counts of possible combinations for each format

To investigate the variability of our formats, we perform counts on
labels and PoS tags, and combinations of these, that are actually used
in our data. The results, both in absolute and relative frequencies, are
presented in Table[3.5} The first row shows the total number of dependency
labels used in each format. hpos-label shows the number of combinations of
dependency labels and head PoS tags used. dpos-label shows the number of
dependent PoS tag and label combinations.

CD | DT SB CD | DT | SB

label 62 50 49 | 89.9 | 96.2 | 87.5
hpos-label 546 | 588 | 677 || 17.6 | 25.1 | 26.9
dpos-label 688 | 690 | 577 | 222 (295|229

dpos-hpos-label | 3503 | 3541 | 3479 | 25| 34| 3.1

Table 3.5: Counts of different combinations used in each format

We can see that only some of the possible combinations of PoS tags
and labels are used. Although these proportions differ a bit between
the different formats, the numbers of combinations of dependent PoS
tags, labels and head PoS tags (dpos-hpos-label), shown in the last row, are
surprisingly similar. This could indicate that the difference in variability
between the schemes is trifling. It also indicates that CD, although it has

2According to documentation, 48 ERG labels and 4 additional technical labels (root,
punct, mwe, neg) exist for the DT scheme.

24

a higher granularity (more available combinations of PoS tags and labels),
does not actually exhibit a higher degree of variability by utilizing them.

We acknowledge that the distribution of the different PoS tag and label
combinations might also be considered when estimating the variability of a
format. In one format a large number of the combinations used may occur
rarely, while the used combinations are more evenly distributed in another.
Knowledge of such differences in distribution might provide more certain
information about the actual variability of the formats. However, we will
not do any further investigations of this in our study.

As a complementary basic statistics, Table shows, for each format,
the average number of dependents per head. We see that SB designates
fewer nodes as heads than the other formats, because each head in this
format has more dependents attached to it. This has not had the effect
of diminishing the combinations of labels and head PoS tags used in this
scheme, but rather the opposite. As we can se from Table SB has the
highest number of combinations of label and head PoS tags among the
three formats.

CD | DT | SB
Avg. no dependents
per head 1.86 | 1.69 | 2.27
Avg. tree-depth 775|793 | 6.35
Max. tree-depth 24| 25| 20

Table 3.6: Tree-depth of formats

Table [3.6|also shows the average and maximum tree-depth, the number
of nodes in the longest path from the root to a terminal node in a sentence,
in the three formats. We can see that SB has a lower tree-depth than
the other two formats. This corresponds to the higher concentration of
dependents per head in this annotation scheme. The similarity in tree-
depth between CD and DT might indicate that conversion between these
formats is easier than conversion including SB.

The variety of PoS tags of tokens that are selected as roots might also say
something about the richness of an annotation scheme. Table[3.7|shows the
10 most common PoS tags for tokens used as roots and their percentage for
each format. Table 3.7| confirms some of the facts we already know about
the formats. One of these facts is that in the SB scheme, content words are
preferred as heads (De Marneffe et al. 2008). This explains that non-finite
verbs forms (VB, VBG, VBN) occur as roots far more often in the SB format
than in the other formats, while modal verbs (MD), in contrast to the other
formats, hardly ever are used as roots in SB. It can also explain why, as we
can see from the table, there is a higher variation among PoS tags frequently
used as roots in SB than in the other formats.

Another phenomenon that Table reveals, is that DT treats coordina-
tion different from SB and CD (Ivanova et al.[2012). In DT the coordinating
conjunction (CC) often appears as root, in the other formats it practically

25

CD | DT | SB
VBD | 435 | 383 | 35.8
VBZ | 283 | 242 | 157
VBP | 143 [116 | 74
MD | 82| 71| 01
CC | 00133 00
VBN | 05| 05133
VB | 07| 06| 82
NN | 11| 08| 56
] 01| 01| 50
VBG | 01| 0.0 40
96.8 | 96,5 | 95.1

Table 3.7: Most common PoS tags of tokens used as roots in each format

never does. We will discuss coordination structures more thoroughly in
Section[3.4

3.3 Similarity between formats

We go on to examine pairs of formats, in an attempt to find out something
about similarities and differences between them and, possibly, more about
convertability; what format we can most successfully convert to another.
For this purpose as well, we will use a quantitative methodology. We
will make use of the terms matched and unmatched dependencies. Matched
dependencies are dependencies that have the same head and dependent
in both formats. In an unmatched dependency the dependent is assigned
different heads in the two formats. Figure illustrates a dependency
structure in both CD (above) and SB (below) format that has 1 matched
and 4 unmatched dependencies. ‘I’ is the only word (dependent) that
has the same head, ‘have’, in both formats, thus being part of a matched
dependency for this format pair. Matched and unmatched dependencies
are more commonly referred to as aligned versus unaligned dependencies.
We will start by calculating the unlabelled attachment score and
the unlabelled sentence accuracy for the format pairs. The unlabelled
attachment score is the percentage of matched dependencies, dependencies
that have the same head and dependent in both formats, disregarding the
dependency label. The unlabelled sentence accuracy is the percentage of
sentences consisting only of such matched dependencies. The result of
these calculations is presented in Table The unlabelled attachment
score is quite similar for the DT/CD and the CD/SB pairs and considerably
lower for the DT/SB pair. This confirms that DT/SB is the most dissimilar
of our format pairs. This is in accordance with the observations made by
Ivanova et al. (2012), although the similarity of the unlabelled attachment
score for the DT/CD and CD/SB pair, might be a bit surprising when
compared to their results. The unlabelled sentence accuracy is quite low

26

have prorrused sing

Xcomp

Figure 3.1: Dependency representation in CD (above) and SB (below),
having 1 matched and 4 unmatched dependencies.

for all pairs, but remarkably low for the format pairs where DT is included.

Unlabelled attachment || Unlabelled sentence
score accuracy
CD | DT SB CD | DT SB
CD 73.6 72.7 1.2 13.1
DT | 73.6 55.7 || 1.2 1.2
SB | 72.7 | 55.7 13.1] 1.2

Table 3.8: Percentage of matched dependencies in format pairs

In the DT format the head of a punctuation token is usually the
preceding word (Ivanova et al.[2013). In SB and CD, however, these tokens
used for punctuation usually have heads further up in the dependency
tree. Knowing this, we want to find out if the unlabelled sentence accuracy
for the CD/DT and DT/SB pairs will increase if we leave out the tokens
with punctuation PoS tags from our calculations. The result is shown in

Table 3.9

Unlabelled attachment || Unlabelled sentence
score accuracy
CDh | DT SB CDh | DT SB
CD 80.8 72.9 17.7 13.1
DT | 80.8 60.5 || 17.7 5.3
SB | 729 | 60.5 13.1| 53

Table 3.9: Percentage of matched dependencies (excluding punctuation
tokens) in format pairs

As we can see from Table leaving out punctuation tokens results
in increased values for all of the similarity scores. An exception is the
unlabelled sentence accuracy for the CD/SB pair, which is unchanged.
The unlabelled attachment score for this pair is just slightly increased,

27

from 72.7 to 72.9. This implies that punctuation marks are, in most cases,
identically attached in the CD/SB pair. This explains the comparatively
high unlabelled sentence accuracy that we observed for this pair in
Table The most considerable increase, when punctuation tokens are
excluded, is in the unlabelled sentence accuracy for DT/CD, from 1.2 to
17.7. The unlabelled sentence accuracy for DT/SB is still very low. The
most similar formats, when we disregard punctuation tokens, are DT and
CD, the pair having an unlabelled attachment score of 80.8.

Table shows the percentage of the 29672 sentences included in our
training data, that have the same root in both formats. We can see that
there is a considerably higher correspondence between roots in the DT/CD
pair, than there is in the other pairs. This is in correspondence with the
distribution of PoS tags for tokens used as roots in each format, as shown
in Table These distributions are quite similar for CD and DT, with
the use of tokens PoS-tagged CC (coordinating conjunction) in DT being
an exception. This, as well as the high unlabelled attachment score for the
DT /CB pair when punctuation marks are excluded, indicates that DT and
CD are the most similar among our formats, as has also been suggested in
the much more limited study of Ivanova et al. (2012).

CD | DT | SB
CD 84.4 | 62.5
DT | 84.4 53.7
SB | 62.5 | 53.7

Table 3.10: Percentage of identical roots in format pairs

In Table the percentage of unmatched (unaligned) dependencies
that are linked to the root in one of the formats is shown per format pair.
As we can see, the largest percentage of unmatched dependencies attached
to the root is 36.0, found in the SB format in the CD/SB pair. In other words,
almost one third of the unmatched SB dependencies, when comparing to
DT, are right at the root of the tree. Slightly lower is this share for the
SB format in the DT/SB pair and for the CD format in the DT/CD and
CD/SB pairs. From this we assume that when converting to the CD or SB
formats, identifying the correct root in the target format could be crucial for
successful conversion of syntactic structures. The numbers in Table[3.11]are
in accordance with the ‘heavy” head factor in Table where we see that
SB and CD have a higher average number of dependents per head than the
DT format.

DT/CD | DT/SB | CD/SB
CD 35.4 30.8
DT 8.0 15.1
SB 35.6 36.0

Table 3.11: Percentage of unmatched dependencies attached to root

28

We perform further comparisons of the different format pairs by
counting combinations of PoS tags and dependency labels in both formats
and comparing them. For each token we count the combinations of source
format label and target format label of the relation between the token and
its head. The counts of all such different label pairs are shown as slab-tlab
in Table In the second row of the same table, the result of including
the PoS tag of the dependent when counting the combinations used, is
shown as dpos-slab-tlab. The highest degree of parallelism in labelling of
dependency relations for tokens is between CD and SB. By this we mean
that a relation type for a token in one format in the pair more often has one
or few, as opposed to many or several, relation types in the other format.
The lowest degree of parallelism is found in the DT /SB pair.

DT/CD | DT/SB | CD/SB
slab-tlab 819 918 648
dpos-slab-tlab 3591 3269 2537
hpos-slab-tlab 4057 5365 6437

Table 3.12: Counts of different combinations used in each format pair

The third row hpos-slab-tlab in Table shows the result of attempting
to count combinations of head PoS tags and label pairs (as dpos-slab-
tlab is the count of combinations of dependent PoS tags and label pairs).
For every token, we count the combinations of PoS tag and the label of
the dependency relations between the token and its dependents in both
formats. These dependencies do not necessarily form pairs as was the
case when we counted dpos-slab-tlab, a dependent always has one and only
one head, regardless of the format, but a token can be the head of many
dependents in one format and none in the other.

For all tokens, we count the dependency labels from the token to its
dependents in one format combined with the dependency labels from the
tokens in the other format and the PoS tag of the token. If a sentence
has n tokens and none of these tokens are the head of more than one
dependent, in any of the two formats, the maximum number of hpos-slab-
tlab combinations is n — 1. If, on the other hand, in both formats, the same
token is the head of all the other tokens (except the root) this number is
(n — 1)2. The value of hpos-slab-tlab tells us something about the share
of ‘heavy’ heads (heads that have many dependents), in the two formats
combined. It corresponds to the combined values from the first row of
Table 3.6/ for the two formats, the CD/SB pair having the highest value and
DT/CD the lowest.

There also seems to be an inverse correlation between the values of dpos-
slab-tlab and hpos-slab-tlab. 1f one is low, the other is high. The CD/SB
pair has the highest total of dpos-slab-tlab + hpos-slab-tlab, for the other two
pairs this number is almost identical. This might indicate that conversion
between CD and SB is harder than conversion between the other formats.

We examine the same combinations as in Table this time only

29

for matched (unlabelled) dependencies. Matched dependencies are
dependencies that have the same dependent and head in both formats. In
addition we show the number of different combinations of dependent PoS
tags, dependency label in the source and target format and head PoS tag:
dpos-hpos-slab-tlab. The results are presented in Table

DT/CD | DT/SB | CD/SB

slab-tlab 300 298 270
dpos-slab-tlab 1390 1049 1174
hpos-slab-tlab 1286 1226 1319

dpos-hpos-slab-tlab 3984 3069 3784

Table 3.13: Counts of different combinations used in matched dependencies
in each format pair

As we can see from Table only a small subset of the combinations
represented in Table are used in the matched dependencies. The
degree of parallelism in labelling of the dependency relations of the
matched dependencies is quite similar for all pairs, although best (fewest
combinations of labels) for the CD/SB pair. Not surprisingly, there is a
correspondence between the sum spos-slab-tlab combinations and hpos-slab-
tlab combinations used and the number of hpos-dpos-slab-tlab.

We examine the values for slab-tlab and dpos-slab-tlab for only the
unmatched dependencies as well. The result is shown in Table

DT/CD | DT/SB | CD/SB
slab-tlab 767 880 564
dpos-slab-tlab 3067 2956 1921

Table 3.14: Counts of different combinations used in unmatched depend-
encies in each format pair

We will make use of some of these combinations later, when we design
a baseline labelling procedure in Chapter

3.4 Coordination structures

From this section on, we will leave the quantitative approach and look
at some well-known areas of differences between dependency formats.
One such difference is coordination. In this section we will give a brief
introduction to this problematic issue.

In a coordination structure words, phrases or clauses (conjuncts) are
connected (most often by a coordinating conjunction) in a way that gives
them equal importance. Such structures present a challenge to dependency
grammars, where the fundamental idea is that all dependency relations
are asymmetric. In a coordinated structure none of the conjuncts can

30

be claimed to be the head of another conjunct. The various dependency
schemes use different approaches to this problematic issue.

Popel et al. (2013) offer a systematizing view of the different coordin-
ation models. According to them these three main approaches are most
commonly used:

Melcuk style The first conjunct is the head of the coordination structure.
The coordinating conjunction is a dependent of the second-to-last
conjunct and the last conjunct is a dependent of the coordinating
conjunction. If the structure involves more than two conjuncts,
the second conjunct is a dependent of the first one, the third is a
dependent of the second etc.

CD uses this model for coordination (Johansson 2008). A simple
example is shown below.

) (ROOT)
% @W B
Champagne dessert followed .

Prague Dependency Treebank style The coordinating conjunction is the
head of the coordination structures and all conjuncts are dependents
of it.

DT makes use of this model (Ivanova et al.2012).

(SB-HD}
Champagne and dessert followed .

Stanford parser style The first conjunct is the head of the coordination
structure, and all other conjuncts as well as the coordinating conjunc-
tion, are dependents of it.

This is the model used by the SB scheme (De Marneffe et al.|[2008).

t
nsubj
conj
X

Champagne and dessert followed

31

Popel et al. (2013) point at other issues, besides their symmetric nature,
that may further complicate the presentation of coordination structures in
dependency schemes. Following are some of them, each demonstrated by
an example:

¢ Multiple conjuncts - “words, phrases or clauses are connected”

¢ Shared modifiers - “the head of the coordination structure and all other
conjuncts”

¢ Coordinated modifiers - “the head and the governor of the coordination
structure”

¢ Coordinated, shared modifiers - “the head and the governor of the co-
ordination structure and all other conjuncts”

* Nested coordinations - “We split out sections 17 and 18 and use these for
development and initial testing”

¢ Punctuation marks used instead of coordinating conjunctions - “the
second conjunct is a dependent of the first one, the third is a dependent of the
second”

* Multi-word expressions used as coordinating conjunctions - “all other
conjuncts as well as the coordinating conjunction”

The construction shown in the three formats in Figure contains a
multi-word conjunction, a coordinated modifier and nested coordinations:

CD

NMOD

(DEP) {AMOD), | (COORD
/ / !

They , as well as Latin American and Eastern European countries

DT
MRK-HDN
MWE
[Il’t/JNciTJ UfW? MWER N

They , as well as Latin American and Eastern European countries

32

SB

They , as well as Latin American and Eastern European countries

Figure 3.2: Example of a complex coordinated structure in CD, DT and SB

"They” are coordinated with ‘numerous Latin American and East European
countries” with “as well as’ working as a multi-word conjunction. The
coordination structure ‘Latin American and East European’ is nested inside
it and works as a modifier of ‘countries’.

The Prague style is the only model that distinguishes between a local
modifier of the first conjunct and a modifier that modifies the whole
coordination structure. This is illustrated by the examples in Figure

CD
SBJ NMOD gCOORD CONJ PMOD
Timex is a major US producer and seller of watches
DT
ROOT
\(MRK-NH) (HD-CMP)

ooy dr

Timex is a major US producer and seller of watches

33

SB

Timex is a major US producer and seller of watches

Figure 3.3: Example of a coordinated structure with shared modifiers in
CD, DT and SB

In this case both ‘major’ and ‘US" are meant to modify the whole
coordination structure ‘producer and seller’. This is expressed in the DT
format by attaching them to the conjunction, which is the head of the
coordination structure. The shared modifier is attached in the same way,
to the head of the coordination structure in CD and SB, but because this
head is the first conjunct in this formats, it is impossible to decide whether
it is a local modifier of this conjunct only, or meant to modify the complete
structure. This phenomenon implies that DT, in this respect, is more fine-
grained than the other two formats and that conversion of coordination
structures from DT to the other formats will be lossy in some cases.

3.5 Non-projective dependencies in CD

Projectivity (see Section is another well-documented area where
dependency schemes differ. In CD non-projective dependencies have
been introduced in order to handle discontinuous structures (Johansson
2008). When CD is generated, the conversion makes use of traces in
the original, full PTB annotation, to achieve this. Surdeanu et al. (2008)
observe that about 42% of the non-projective dependencies are caused
by wh-movement, 18% by split clauses, 14% by split noun phrases and
the remaining 26% by other phenomena. DT is, like CD, generated by
conversion from constituents to bi-lexical dependencies, but without the
use of function tags and traces, and will not contain any non-projective
dependencies. For similar reasons, the SB format as well, only contains
projective structures (De Marneffe et al. 2008).

Our CD training data contains 3715 non-projective dependencies in
2010 sentences. This means that 0.57 percent of the dependencies in our
training data are non-projective, and that 6.77 percent of the sentences
contain one or more non-projective dependencies. We extract some
examples of non-projective structures. Figure 3.4{shows an example of wh-
movement. In CD wh-words are attached to their semantic heads which in
this case is the verb be. In DT, in contrast, ‘how’ is attached to the modal
verb ‘could’, which is also the root. In SB the copula verb ‘be” is the root of
the sentence and the punctuation mark is attached to it.

34

How could he be ?

Figure 3.4: Example of non-projectivity caused by wh-movement

Figure illustrates non-projectivity caused by a split clause. In DT
projectivity is ensured by attaching ‘Futures’ to the root ‘says’. In SB “cut’ is
considered the root of the sentence.

SBJ

Futures, he says, merely cut down on trading costs

Figure 3.5: Example of non-projectivity caused by split clause

Figure shows an example of a split noun phrase. In DT both
prepositional phrases are attached to ‘sales” by a dependency relation
labelled HDN-A]. In SB they are attached to rang” by a prepositional modifier
relation.

Younkers rang up sales in 1988 of $ 313 million

Figure 3.6: Example of non-projectivity caused by split noun phrase

3.6 Summary of format comparison
Beneath follows a list of tentative conclusions we have drawn and

assumptions we have made with regard to granularity, similarity and
convertibility based on the comparisons we have made of the three formats.

35

1. CD has more available combinations of PoS tags and dependency
labels, than the other two formats, and thus, a higher degree of
granularity

2. Similar numbers of combinations of dependent PoS tags, dependency
labels and head PoS tags used for all formats suggest similar
variability.

3. SB has a higher variation of PoS tags for tokens used as roots. This
might suggest higher variability in this format.

4. The SB format has a lower tree-depth and uses fewer tokens as
head (each head has more dependents attached to it), than the
other formats. This indicates a lower degree of structural similarity
between SB and the other formats.

5. The DT/CD and CD/SB pairs have the highest unlabelled attachment
score, and thus the highest correspondence of syntactic structures.

6. The DT/CD pair has the highest unlabelled attachment score when
punctuation marks are excluded.

7. The DT/CD pair has the highest share of identical roots.

8. Identification of correct root will be very important when converting
to CD or SB.

9. The CD/SB pair has the highest sum of dependent PoS tag, source
label, target label combinations and source label, target label, head
PoS tag combinations. This might indicate a higher complexity in
conversion between CD and SB.

10. DT uses the most expressive annotation for coordination structures.
This indicates that successful conversion of such structures to the DT
format will be challenging.

11. Non-projectivity in CD might complicate conversion including this
format, but the share of such dependencies is small.

Based on these conclusions, we will make a decision on which format
pair and in which direction we will attempt conversion in the rest of the
study. DT/CD and CD/SB are the most similar of the format pairs. The two
pairs have a similar unlabelled attachment score, but there are indications
of a closer relationship between DT and CD than between CD and SB.
The similarity in tree-depth, the high share of identical roots and the
high unlabelled attachment score when punctuation tokens are excluded
all suggest a higher degree of correspondence between DT and CD. On
this background, we choose to use the DT/CD pair for our conversion
experiment.

When it comes to direction (should we convert from DT to CD or from
CD to DT?), the decision is less obvious. Similar variability suggests that

36

conversion in both directions is equally likely to be successful. A more
expressive annotation for coordination structures in DT, might complicate
conversion to this format. The use of non-projective structures in CD, on
the other hand, could imply that CD is not the easiest target format. We
decide to attempt a conversion to CD, the most well-established format.
Chapters 5 and 6 will be devoted to the experiment of conversion from DT
to CD. In the next chapter, we will take a closer look at how conversion
between dependency formats can be performed.

37

38

Chapter 4

How can we perform
conversion?

In this chapter we will take a closer look at how conversion between
dependency formats can be performed. We will discuss briefly what
considerations have to be made and possible approaches to this task. We
will discuss subtasks involved in conversion and ways of handling these
in Section In Section {4.2| we will describe a heuristic methodology for
detection of candidate patterns for rewriting. A baseline converter with a
heuristic labelling procedure is described in Section 4.3

4.1 Conversion of syntactic structures

In dependency grammars syntactic structures are expressed by depend-
encies, binary asymmetrical relations between the words of the sentence.
A dependency consists of two words linked by a labelled, directed arc.
The direction of the arc expresses the head—dependent relation. It denotes
which of the words is considered the head and which is considered the
dependent in the structure (see Section [2.1). The label of the arc describes
the type of the relationship between the head and the dependent. Every
dependency format has its own set of arc labels. These labels are syntactic
in most dependency schemes, expressing grammatical functions. In some
formats though, they have a more semantic nature, expressing semantic
roles. According to Ivanova et al. (2012) labels are mostly syntactic in the
dependency schemes that we have included in this study:

CD: labels are mostly syntactic, but also express a few semantic distinc-
tions (like different types of adverbial modification)

DT: labels are syntactic, they are identifiers of HPSG constructions (e.g.
subject-head, specifier-head)

SB: labels are largely based on syntactic functions

The labels SBJ (subject) in CD, SB-HD (head + subject) in DT and nsubj
(nominal subject) in SB are examples of labels with a merely syntactic

39

content. These labels denote that the dependent has the syntactic function
of subject, but they say nothing about semantic role of the dependent.
The TMP (temporal adverbial or nominal modifier) label is an example
of a label in the CD format that contains additional semantic information,
as opposed to the HD-AJ (head + following adjunct) and AJ-HD (head +
preceding adjunct) labels and the prep (prepositional modifier) and advmod
(adverbial modifier) labels often used to name these relations in the DT and
SB format, respectively.

When converting dependency structures from one format to another,
we will need both to reattach dependents that are assigned ‘incorrect” heads
according to the target format and to relabel all dependency relations with
the label set used in the target format. This can be performed as a two-step
procedure:

1. For all nodes (words): identify the correct head in the target format
and reattach those that are differently attached in the source format

2. For all dependency relations (arcs): label with the correct label from
the set of labels used by the target format

We will take a closer look at how we can perform the first step. In de-
pendency grammars syntactic structures are represented as labelled direc-
ted graphs, that are connected, acyclic and single-headed (see Section [2.1).
This means that every node (word) is a dependent of one and only one
other word, its head. The choice of head can vary in different formats. This
means that the number of dependents in a sentence will be the same in
all dependency formats (we assume equal tokenization), but the number
of heads can vary. Rewriting a syntactic structure implies reattachment of
a node to a different head. This might lead to a change in the number of
heads in the sentence. In order to assure that the structure still adheres to
the constraints of connectedness, acyclicity, single-headedness and, in cases
where this constraint is present, projectivity, reattachment of other nodes as
well is often necessary. Figures[4.1|-4.3]illustrate rewriting of a dependency
structure from CD to SB annotation.

have prom1sed to sing

xcomp

Figure 4.1: Dependency representation in CD (above) and SB (below)
format.

40

We have discovered that in a construction like ‘have promised” SB will
consider the main verb ‘promised” as head, while CD chooses the auxiliary
‘have” as head, and we want to do a rewriting according to this pattern. Such
patterns will be the starting point for the rewriting rules that we implement
later in this project.

If we only inverse the direction of the arc between ‘have” and ‘promised’,
the graph will end up violating the constraints of connectedness (‘promised”
will not be attached to any other node) and single-headedness (‘have” will
have two heads). See Figure

[\/ YR

I have promised to sing

Figure 4.2: Dependency representation in CD after reattachment of a single
node

We will also have to reattach ‘promised’ to the head of its former head, in
this case the root, in order to make the graph well-formed. See Figure

Y \V/ YRR

I have promised to sing

Figure 4.3: Dependency representation in CD after rewriting of a syntactic
structure

Conversion of a syntactic structure will in most cases involve rewriting
of a sub-tree, not just a single dependency. In this case we might want
to rewrite the sub-tree for the complete verb phrase ‘have promised to sing’.
This will also be the case with conversion of, for instance, coordination
structures (see Section from one annotation style to another.

The starting points or triggers for rewriting of structures are identified
patterns of differences in the two formats. We need to identify the sub-trees
in the source format that are incorrect according to the target format, and
the correct structures for these sub-trees in the target format. Such patterns
often correspond to a linguistic phenomenon. We envisage three different
approaches to identification of such patterns:

¢ Use of linguistic theory and existing documentation on the different
formats

¢ Use of quantitative analysis

41

¢ Use of machine-learning

The use of machine-learning for this purpose, is not a straightforward
issue. We have no knowledge of any existing implementation of a machine-
learning tool for rewriting of dependency trees from one format to another,
and it is not evident how a machine-learner could be trained for this
task. Some of the purpose of our project is to gain better knowledge
of the differences between our selected dependency formats. In this
respect as well, choosing an approach involving machine-learning would
be problematic, as machine-learners rarely output any of their gained
knowledge explicitly.

Some related work has, however, been performed. Graham et al. (2009)
have developed a tool for automatic induction of transfer rules used for
machine translation of natural languages. The rules induction procedure
uses pairs of bilingual corpora, consisting of dependency structures, as
input. The induced transfer rules are stored as data structures in files
and used for transferring dependency structures from source language
structure to target language structure. It is possible that this tool or a similar
approach could have been used for rewriting dependency structures from
one annotation format to another.

We have not explored this option any further, but chosen a heuristic-
analytic approach for detection of patterns for rewriting. As existing
documentation on differences between the selected formats is rather
sparse, we will have to use a quantitative methodology. In the next section
we propose such a methodology.

4.2 Methodology

Are discontinuous structures, coordination structures and punctuation
marks the only phenomena treated differently in CD and DT? Are there
other differences and how can we reveal them? We will make an attempt
to discover systematic differences by use of quantitative analysis. We have
already counted matched dependencies (dependencies that have the same
head and dependent) and unmatched dependencies (dependencies with
different heads in the two formats) per dependent PoS tag, source format
label, target format label, head PoS tag in source format and, for unmatched
dependencies, also PoS tag for head in target format (see Section 3.3).

We will compare these data to see if we can find combinations
of PoS tags and labels where the number of matched and unmatched
dependencies differ in a way that can imply a systematic difference
between the formats. Subsequently, we will extract sample sentences that
are part of these combinations and see if we can discover patterns of
differences between the formats. Finally, we rewrite the sentences in the
source format to the pattern identified in the target format, and evaluate
the result.

The sum of matched and unmatched dependents with a certain PoS
tag will always be constant. If the number of unmatched dependents

42

with this PoS tag is reduced, the number of matched dependents with this
PoS tag will increase correspondingly. This is not the case for the sum
of matched and unmatched dependents per head PoS tag. The number
of matched heads with a certain PoS tag only tells us that this number
of dependents are correctly attached to a node with this PoS tag. The
number of unmatched heads with a certain PoS tag tells us the quantity
of dependents incorrectly attached to nodes with this PoS tag. If the
number of unmatched heads with a PoS tag is decreased, the number
of matched heads with this PoS tag is not necessarily affected. In cases
(and this will probably be most frequent) where the matched amount is
unaffected, the nodes formerly incorrectly attached to nodes with this PoS
tag, have been (correctly or incorrectly) reattached to nodes with other
PoS tags. In cases where the number of matched heads with this PoS
tag is increased, some of the formerly incorrectly attached dependents
have been successfully reattached to other nodes with this PoS tag. If,
on the other hand, the number of matched heads is decreased, some of
the dependents already correctly attached to heads with this PoS tag, have
been erroneously reattached.

Combinations of PoS tags and labels where the number of unmatched
dependencies is large, relative to the total numbers of dependencies,
indicate that there is a potential for discovering essential systematic
differences and successfully converting a large group of dependencies.
Combinations with a small number, the optimum value being zero,
of matched dependencies, imply that the risk of damaging already
corresponding dependency structures in the rewriting process is at a
minimum.

These combinations should be worth looking into when identifying
candidates for conversion:

¢ The number of unmatched dependencies is large and the number of
matched dependencies is small. These combinations are the ones that
suggest the largest potential for successful rewriting.

* The number of unmatched dependencies is large, but the number
of matched dependencies is also of a considerable size, maybe
even larger than the number of unmatched dependencies. There
is a potential for discovering patterns involving a large quantity of
dependencies, but these patterns can be hard to identify and the risk
of rewriting already correct dependencies is high.

¢ The number of matched dependencies is low, approximating zero,
but the number of unmatched dependencies is not very large. This
indicates that the risk of erroneously reattaching already correctly
attached dependents in our rewriting procedure is small, but the
potential gain of rewriting structures involving these dependents is
not necessarily very large.

Table illustrates some examples. DT is the source format and
CD the target format. The first and second row contains combinations

43

involving a considerable amount of unmatched dependencies and a rather
low amount of matched dependencies. The first row shows that nearly all
of the dependents attached by an arc labelled NUM-N in the DT format,
are differently attached in the CD format. If we can reattach these 6682
dependencies correctly, we will increase the unlabelled attachment score
by at least 1.0. The second row shows that more than 93 percent of the
nodes PoS-tagged CC (coordinating conjunction), are incorrectly attached
according to the CD scheme. Rewriting them implies the risk of incorrect
reattachment of the 1029 CC nodes that are already correctly attached. Still,
rewriting these dependencies could lead to an increase of more than 2.0 of
the unlabelled attachment score. The third row shows a combination with
a very large number of unmatched dependencies, but also a considerable
amount of matched dependencies. Although 20617 dependencies are
erroneously attached to a CC head, the considerable amount of 12162
dependencies are correctly attached to a CC head. In this case we need
to do a careful analysis of the dependencies involved, to be able to do a
successful conversion. The last two rows identifiy a very specific pattern.
Not only do they show that all CD (cardinal number) nodes attached by a
SP-HD dependency to another CD node are incorrectly attached according
to the CD scheme, they also show that the PoS tag of the correct head in the
CD format is $ (dollar sign). All we need to do is to identify the correct $
node and reattach the CD node to it. We can estimate the gain of rewriting
these structures to 0.5, undoubtedly worth the effort, especially when we
consider that the risk of creating errors is minimal.

dpos | slabel | shpos | thpos | matched | unmatched
NUM-N 32 6682

CcC 1029 14457
CC 12162 20617

CD |SP-HD |CD 0 3411
CD |SP-HD |CD $ 0 3411

Table 4.1: Combinations with large amount of unmatched dependencies
and/or low amount of matched dependencies

4.3 Baseline system

We will construct a baseline converter for our format pairs. A baseline
system is usually an implementation of the simplest possible algorithm,
and is defining a performance to be improved upon by our heuristic
conversion procedures. When constructing our baseline converter, we
assume identical attachment in the source and target format of all nodes
(although we know from our earlier investigations that this is not true).
Thus, our baseline conversion does not include any rewriting of syntactic
structures.

For labelling, we will derive a simple heuristic procedure, where we

44

label the dependency relations one by one. For this purpose, we will
make use of the data we extracted for the results presented in Table
and Table We will construct a set of labelling rules consisting of a
trigger from the source format as input and a suggested label from the
target format as output. The triggers that we use are comprised of different
combinations of PoS tags and source format labels. We need different types
of trigger patterns to be able to handle combinations of PoS tags and labels
that occur after rewriting, but have not been found in the original DT
dataset. The triggers are explained in Table

Trigger Explanation
dpos-hpos-label | PoS tag of dependent + PoS tag of head + label
from source format

dpos-label PoS tag of dependent + label from source format
hpos-label PoS tag of head + label from source format
label label from source format

Table 4.2: Trigger types used for labelling

The output label produced by use of these triggers, is the label most
frequently used in the target format for matched dependencies (Table [3.13)
where the source format dependency corresponds to the trigger value.
Some examples of labelling rules are shown in Table

Trigger values proposed target
dpos+hpos+label | format label
NN + SP-HD + VB SBJ
+SP-HD + VBZ SBJ

VBP + FLR-HD + OB]J

+ FLR-HD + SBJ

Table 4.3: Examples of labelling rules

For source labels that are not found among the matched dependencies,
we will use the most frequent target label used for unmatched dependen-
cies (Table with this source label. We need these last rules to be able
to label all unmatched dependencies as well as the matched dependencies.
These rules will, however, have no effect on the performance of our con-
verter, as the labelled attachments score obviously measures the accuracy
of labelling only for the matched dependencies. The number of rules for
each format pair is shown in Table

45

CD | DT | SB

CD 3490 | 3430
DT | 2700 2571
SB | 3062 | 2704

Table 4.4: Number of rules used in baseline converter. Row: source format,
column: target format.

We will apply these rules in an order from most to least specific. If the
most specific trigger value for a dependency is not found, we attempt to
use the trigger one step lower in the hierarchy etc. Although the order
of specificity for the dpos-label and the hpos-label is not given, as we will
observe later in this section, we will assume this order:

1. dpos-hpos-label
2. dpos-label

3. hpos-label

4. label

The evaluation results, on our training data, for this converter is
represented in Table We can see that the nnlabelled attachment score
corresponds to the result in Table

Labelled attachment || Unlabelled attacment
score score
CDh | DT SB CDh | DT SB
CD 66.9 70.6 73.6 72.7
DT | 66.6 543 || 73.6 55.7
SB | 66.8 | 49.6 72.7 | 55.7

Table 4.5: Evaluation results for baseline converter used on training data.
Row: source format, column: target format.

We use the converter on the development data. These data have not
been used earlier in this project, neither when we designed our labelling
rules or when we investigated similarities between format pairs. Using
our converter on these earlier unseen data, will give us an indication of its
performance on any other unknown dataset as well. The evaluation results
are represented in Table

Reversing the order of the rules so that the hpos-slabel trigger is used
before the dpos-slabel trigger, or omitting the use of these rules altogether
results in exactly the same performance as shown in Table for our
training data. For development data, reversing the order of these rules
or omitting them, has a minimal effect, up to 0.03 change in labelled
attachment score for some pairs. If we omit the use of the rule using the

46

Labelled attachment || Unlabelled attacment
score score
CD | DT SB CD | DT SB
CD 66.5 70.9 72.9 73.0
DT | 65.8 542 || 72.9 55.6
SB | 66.8 | 49.6 73.0 | 55.6

Table 4.6: Evaluation results for baseline converter used on development
data. Row: source format, column: target format.

dpos-hpos-slabel trigger, however, the order in which we use the dpos-slabel
and the hpos-slabel trigger has an effect. See Table for the result on
development data.

dpos-label first hpos-label first

CD | DT | SB || CD | DT | SB
CD 64.9 | 70.6 54.4 | 52.0
DT | 57.6 50.5 || 58.3 47.2
SB | 629 | 46.2 66.2 | 48.3

Table 4.7: Labelled attachment score for conversion with different rule
order. Row: source format, column: target format.

We can see that when converting from SB to any pair and from DT
to CD, using the hpos-slabel trigger first gives a better result. Using only
the label triggers, gives a poorer performance for all format pairs and
directions, with the highest score being 61.6 for SB to CD and the lowest
being 41.7 for DT to SB.

When converting CD development data to SB or DT, one of the depend-
encies ended up not labelled. This happens because our development data
contains a dependency labelled with a label that does not occur in out train-
ing data.

We believe that this, rather simple, heuristic labelling procedure, could
be improved by making use of more of the information available. One
such approach could be using some kind of thresholding, choosing the
most common target label for a trigger only when this target label is
correct for a minimum of n% of the dependencies with the trigger value
in question. Another approach could be to consider word forms, PoS tags
of children and siblings, direction of arcs or other available information as
trigger values. In Chapter 6 we will explore the use of more information to
improve the task of labelling.

47

48

Chapter 5

Heuristic conversion from DT
to CD

In this chapter we will describe our work on heuristic conversion of
data annotated in the DELPH-IN Syntactic Derivation Tree (DT) format
to CoNLL Syntactic Dependencies (CD). This is the format pair and the
direction of conversion that we decided upon in Section As we have
discussed in Section {4.1, conversion will consist of three main subtasks:
identification of patterns for conversion, rewriting of syntactic structure,
and labelling, i.e. rewriting of dependency types. Adaptation and
extension of our baseline labelling procedure, introduced in Section
for our conversion task, is described in Section In Section [5.2) we will
describe how we will use a methodology, introduced in Section for
identification of candidate patterns for rewriting. Sections contains
descriptions of each of the patterns, how the rewriting is performed and the
results of it. In Section 5.10 reattachment of punctuation token dependents
is described. In Section [5.1T|we discuss unsuccessful rewritings. Finally, in
Section we give a summary of the end-to-end result of our heuristic
conversion.

5.1 Extended labelling procedure

Earlier we have described syntactic rewriting and labelling as tasks
performed separately and consecutively. In our conversion procedure, this
will not be fully the case. Although we most frequently will perform no
changes to source format labels during the rewriting process, there will
be some cases where we want to deviate from this practice. Some times
the correct dependency label will be identified, from the pattern that we
rewrite, at the time of rewriting already. In these cases we might want to
label the dependency during the rewriting procedure. In other cases, we
will just remove the source format label in the rewriting process and leave
the assignment of target format label to the subsequent labelling procedure.
This will be the case when we want a structure to be processed only once,
by procedures rewriting structures with this source label.

When converting the development data set from the CD format with

49

our baseline converter (see Section [4.3), one of the dependencies ended up
unlabelled. Our simple labelling procedure will fail to label dependencies
not caught by any of our labelling triggers, as will be the case if we
encounter source format labels that are not found in our training data. We
need to expand our labelling procedure to handle these instances. We add
new rules containing triggers of dependent PoS tags and head PoS tags,
dpos-hpos, to our labelling rule set. These rules will be used for labelling of
dependencies where we have removed the source format label. The target
format label suggested for dependencies corresponding to such a trigger, is
the most frequent dependency label used in CD for matched dependencies
having this dependent and head PoS tag. We also add a rule that will
assign the NMOD label, the most frequent dependency type found in our
CD training data, to dependencies not caught by any of our triggers. In
addition, we adjust our labelling procedure so that it does not override any
labelling already performed by the rewriting procedure.

We now have a total of 3456 labelling rules (see examples in Table [4.3).
We will apply the new dpos-hpos rule after the most specific rule, dpos-
hpos-label. The other rules will be applied in the order indicated as most
appropriate, for this format pair and this direction, by our investigations in
Section

1. dpos-hpos-slabel
dpos-hpos
hpos-slabel
dpos-slabel

A

slabel

Applying this labelling procedure on DT data converted to CD by our
baseline converter, gives the same labelled attachment score of 66.6 for the
training data and 65.8 for the development data as obtained when using
the baseline labelling procedure described in Section

5.2 Identifying candidates for rewriting

The contrastive study of different dependency formats, conducted by
(Ivanova et al. [2012), indicates a great extent of similarity between the CD
and the DT format. Both formats adhere to the principles of connectedness,
acyclicity and single-headedness. In both formats functional elements
are chosen as heads. Examples of this are that auxiliaries are heads of
the main verb in constructions with auxiliaries and infinitive markers are
heads of the main verb in constructions with infinitive verbs. Another
similarity is found in the treatment of noun phrases: in both formats the
noun is considered the head of the determiner and attributive adjectives.
The study documents the different treatment of coordination structures
in the two formats, earlier discussed in Section Another area where

50

the two formats differ is with respect to projectivity (see Section [3.5).
In CD non-projective dependencies have been introduced in order to
handle discontinuous structures (Johansson 2008). In DT we know that
all dependencies are projective. Because CD and DT come from different
sources, the source of CD is the PTB while DT origins from DeepBank, it
would not be surprising if they prove to differ in the linguistic analysis of
other phenomena than coordination.

We will use the methodology described in Section[4.2]to reveal patterns
of systematic differences between DT and CD, that we consider to be
candidates for rewritingﬂ As recommended in Section we will try to
identify dependent PoS tags, source format head PoS tags, source format
labels, or combinations of these, that have a large amount of unmatched
dependencies and a small number of matched dependencies, a large
amount of unmatched dependencies but also a considerable amount of
matched dependencies, or a very small number of matched dependencies
and a considerable amount of unmatched dependencies. Initially, we will
only consider patterns that do not involve punctuation mark dependents.
Attachment of punctuation tokens will be treated separately in Section[5.10}
In our rewriting we will concentrate on investigations of structures that
constitute the unmatched dependencies with the dependent PoS tags,
source format labels and/or head PoS tags shown Table

dpos | slabel | shpos | matched | unmatched
CcC 1029 14457
CC 12125 20373

POS 43 5868
POS |12 5997

NUM-N 32 6682

CD 11317 12818
CD 2010 15143

DT 707 2398

Table 5.1: Patterns with low unlabelled attachment score (excl. punctuation
marks)

The large number of unmatched dependencies involving CC (coordin-
ating conjunction) heads and/or CC dependents, we believe are caused by
the use of different coordination models in the two schemes. These struc-
tures will be thoroughly examined in Section [5.3| and The groups of
unmatched dependencies involving POS (possessive ending) heads and /or
POS dependents will be discussed in Section In Section |5.6/ we exam-
ine the unmatched dependencies involving CD nodes (cardinal numbers)
and currency PoS tags. In Section 5.7 unmatched dependencies labelled
NUM-N (measure NP from number + noun) are examined. Some other

n the sample extraction part of this procedure, we have had the advantage of access to
a prototype for a search interface for the three dependency formats (Kouylekov et al.[2014).
The interface is available at: http://wesearch.delph-in.net/dt/

51

constructions with CD heads are discussed in Section Dependencies
with DT (determiner) heads are treated in Section

5.3 Coordination

Table shows that we have initially 14457 CC dependents that are
differently attached in DT and CD. It also shows that 20373 tokens that
are assigned CC heads in DT, are attached to other nodes in CD.

dpos | slabel | shpos | matched | unmatched
CcC 1029 14457
CC 12125 20373

Table 5.2: Patterns of unmatched dependencies involving coordinating
conjunctions

We mentioned in Section that coordinated elements, conjuncts,
can be clauses, phrases or words. We showed an example of a very
simple coordination structure, where two nouns are coordinated using the
conjunction and. This type of coordination structure could be described
using the formula:

¢ conjunctl conjunctionl conjunct2

We have also seen that coordination structures with multiple conjuncts
are common, often with the use of commas or semicolons as conjunctions.

¢ conjunctl conjunctionl conjunct2 conjunctionn-1 conjunctn

Example (DT left, CD right):

e
(COORD)(CONJCOORD) {CON]
YRR

oil and gas and chemicals oil and gas and chemicals
NN CC NN CC NNS NN CC NN CC NNS

¢ conjunctl , conjunct2 conjunction]l conjunctn

Example (DT left, CD right):
Sometimes a serial comma (Oxford comma) occurs before the coordin-
ating conjunction.

* conjunctl , conjunct2 , conjunctionl conjunctn
We have no occurrences of this in our training data.

Sometimes a coordinating conjunction is lacking altogether.

52

(NP-NP)

COORD
FONC) (S, (R [E00RD) (20N

Cotton , soybeans and rice cotton , soybeans and rice
, NNS CC NN , NNS CC NN
(ROOT) g
ATTID) ROOT (Roo7]
(E
PUNCT (AJ-HD},| [PUNCT
’ ! l; E / !
Maybe , maybe not . Maybe , maybe not
, RB . RB , RB RB

¢ conjunctl , conjunct2

Example (DT left, CD right):

As described in Section DT and CD use different models for
annotation of coordination structures. DT makes use of the Prague
Dependency Treebank style, while CD applies Mel cuk style.

Popel et al. (2013) have identified some topological variations within
and across these three main models.

e Choice of head

In DT the rightmost conjunction is the head of the coordination
structure. In CD the leftmost conjunct is chosen as head.

o Attachment of shared modifiers

In both formats shared modifiers are attached to the head of
the coordination structure. DT attaches shared modifiers to the
coordinating conjunction, in CD they are attached to the leftmost
conjunct.

¢ Attachment of punctuation tokens separating conjuncts

In CD separating punctuations are attached to the previous conjunct.
In DT they are attached to the preceding word, regardless of its
function.

The example shown in Figure illustrates these phenomena. In
this example the verb phrases ‘gave up .., ‘walked .. and ‘did .. are
coordinated. The rightmost conjunction ‘and” is chosen as head in the
DT format. In CD the leftmost conjunct ‘gave’ is assigned head of the
coordinating construction. In this example ‘He” works as a shared modifier
for ‘gave’, ‘walked” and ‘did’. In both formats it is attached to the head of
the coordinated structure that it modifies. A coordinated, shared modifier

53

will be attached by its head to the modified element. The separating
punctuation token " is attached to the preceding word ‘hits” in DT. In
CD this punctuation token is attached to the head of the previous conjunct

‘qave’.

ROOT

SB-HD
VP-VP

/[SP—HDK (PUNCT)
o /
He gave up seven hits , walked five and did
PRP VBD RP CD NNS , VBD CD CC VBD

P

% A M)
oJ

ROQO

Figure 5.1: A coordination structure illustrating choice of head, attachment
of shared modifiers and attachment of separating punctuation tokens (DT
dependencies above, CD below)

Interestingly, we see from Table that 1029 CC nodes are already
equally attached in DT and CD. Considering the different models used for
annotation of coordination structures in the two formats, it is not obvious
to us what these can be. A closer examination reveals that 830 of these CC
nodes are attached to their head by a dependency relation labelled N-N.
An example is shown in Figure 5.2 (DT left, CD right). This is a divergence
from the Prague Dependency Treebank style. We have brought this to the
notice of the team working with DeepBank and DT, who detected a bug in
the generation of DT. This bug has been corrected and these structures will
adhere to the Prague Dependency Treebank style in the next version of DT.

(NMOD}| (COORD) (CON]
PR (R, (e PO S

over the cars and drivers over the cars and drivers
IN DT NNS CC NNS IN DT NNS CC NNS

Figure 5.2: Coordination structure with deviant annotation in DT (DT left,
CD right)

54

5.3.1 Identifying coordination structures

How can we identify coordination structures? If a one-word coordinating
conjunction is present, it should be PoS-tagged with the CC PoS tag.
Table shows an overview of the CC nodes occurring in our training
data and their frequencies.

Word form | Frequency || Word form | Frequency
and 10587 || so 6
but 2471 || whether 5
or 1649 | v. 3
& 601 || times 3
nor 46 | less 3
either 37 || versus 2
yet 26 || minus 1
both 17 || vs. 1
neither 14 || et 1
plus 13

Table 5.3: Words PoS-tagged CC and their frequency in WSJ Section 00-17

One of the issues that Popel et al. (2013) pointed to in their study of
coordination structures was the phenomena of multi-word conjunctions.
A multi-word conjunction is a multi-word expression, such as ‘as well as’,
used as a coordinating conjunction. An example of coordination structure
where this multi-word conjunction is shown in Figure 3.2). Investigating
our data, we find that ‘as well as” is PoS-tagged as RB RB IN. The last ‘as’,
tagged IN, is the head of the multi-word structure in DT. The other two
words are attached to it, with dependency relations labelled MWE. In CD
the head of this multi-word conjunction is the first ‘as” and the other two
words are dependents of it, dependencies labelled DEP.

We envisage two different approaches to detection of multi-word
conjunctions. One is to run through the DT training data set and extract
all non-CC heads of dependents attached by an arc labelled MRK-NH, and
their other dependents. The other approach is to do the same using the CD
data and check for dependents attached by a CON]J arc to a non-CC head.
We decide to use the latter method. The result is shown in Table

55

Multi-word expression Frequency
as well as
RB RB IN 75
rather | than
RB IN 38
instead | of
RB IN 12
if not
IN RB 6
not to mention
RB TO VB 2
in addition | to
IN NN TO 1
not just
RB RB 1

Table 5.4: Multi-word conjunctions in CD with PoS tags and frequency

The three most frequent multi-word conjunctions occurring in our
training data, seem to have the same pattern; a IN head DT and the (first)
RB functioning as head in CD. Examples are shown in Figure 5.3| (DT left,
CD right). We can easily rewrite the internal structure of these expressions
and reattach their head and dependents. This should be done before we
convert the coordination structures. The multi-word conjunction “if not” are
represented differently in DT, with the RB tagged ‘not’ functioning as head.
This already is in accordance with the CD scheme.

(HD-CMP)

(NP-NP) (CONJ)
@X‘ (COORD]

be part.. rather than part be part.. rather than part

NP
RB RB
NP NP CON
() BN (€D, [Fe

producers 1nstead of utilities producers mstead of utilities

Figure 5.3: Examples of coordinated structures with multi-word conjunc-
tions (DT left, CD right)

DT has 15 dependency labels used for dependency relations for
conjuncts (other than the last conjunct) (ERG Lexical and Syntactic
Rules). These are shown in Table The last conjunct in coordinated
structures in DT is always attached to the conjunction with a dependency

56

relation labelled MRK-NH. This token is already correctly attached to
the conjunction. In DT other right dependents of the conjunction occur
frequently. It makes sense to reattach them to the new head of the
coordination structure. This may be incorrect, in cases where these should
not be dependents of the coordination structure at all in CD, but we will
not address this issue now.

Label Description
Vp-vp conjoined verb phrase
v-v conjoined verb
cl-cl conjoined clause
PP-PP conjoined prepositional phrase
Ir-r conjoined adjective phrase
np-np conjoined noun phrase
n-n conjoined noun
n-j conjoined noun + adjective
jn conjoined adjective + noun
j conjoined adjective
jprjpr
jpr-vpr
VPpI-Vppr
Vpr-vpr
ppr-ppr

Table 5.5: Dependency labels used for conjoined elements in DT

Coordination structures without conjunctions are harder to identify.
These structures are not annotated as coordinations in DT, but some of
them are annotated as so-called run-on clauses. Figure shows an
example (DT dependencies above, CD below). Our DT training data set
contains 3090 run-on clauses, while we identify 431 conjunction-lacking
coordination structures in our CD training data. We will not perform any
rewriting of these structures or a more thorough investigation of them.

57

CL-CL

[{SB-HD}\ }HD—CMP&I—;D-CN&P/UNCJ]

Arbitrage does n’t cause volatility , it responds to it

NN VBZ RB VB NN : PRP VBZ TO PRP
55 J
@
ROOT @

Figure 5.4: Example of coordination structure lacking coordinating con-
junction (DT above, CD below)

5.3.2 Rewriting coordination structures

We rewrite multi-word conjunctions first, so that we later can rewrite co-
ordination structures with these conjunctions and coordination structures
with simple CC conjunctions using the same algorithm. We identify multi-
word conjunctions by finding IN heads having RB dependent(s) labelled
MWE. We rewrite them using this algorithm:

1. Find the leftmost RB dependent that is attached to the IN node by a
dependency relation labelled MWE.

2. Make this RB node the head of the IN node.

3. Attach all other dependents attached to the IN node with an edge
labelled MWE, to this new head. We label these dependencies DEP,
in a notation that will not be overruled by the subsequent labelling
procedure.

4. Attach all other dependents attached to the IN to this new head.

5. Reattach the new RB head to the head of the former IN head. Keep
the MWE label.

We rewrite the coordination structures having conjunction nodes (either
CC heads or RB heads attached by a MWE dependency relation), using this
algorithm:

1. Find the nearest left dependent that is attached to the conjunction
node by a conjoining label (se Table[5.5).

2. Perform iteratively for all left dependents (from right to left) that are
attached to the conjunction node by a conjoining label (see Table :

58

¢ make this node the head of the former node

¢ label the dependency COORD, in a notation that will not be
overruled by the subsequent labelling procedure.

3. When there are no more conjoined left dependents, make the original
head of the CC node the head of the leftmost conjunct. Label this
dependency with an empty label.

4. For all other left dependents of the conjunction node, make the
leftmost conjunct their head (this ensures correct attachment of
shared modifiers).

5. For all right dependents of the conjunction node occurring to the right
of the dependent attached by a MRK-NH or MWE dependency, make
the leftmost conjunct their head.

Conversion with this algorithm reattaches 31220 dependents, and
would increase the unlabelled attachment score by 4.788 points if all these
attachments were to match the CD gold data set. The actual increase is
3.978. The unlabelled attachment score after conversion is 77.6 and the
labelled attachment score is 70.3. The share of identical roots has increased
to 91.3. The number of unmatched and unmatched CC dependents and
heads after this rewriting is presented in Table Comparing with
Table we can see that the number of correctly attached CC dependents
has increased from 1029 to 12026 and the number of incorrectly used CC
heads has decreased from 20373 to 3032.

dpos | slabel | shpos | matched | unmatched
CcC 12026 3460
CcC 12228 3032

Table 5.6: Patterns of unmatched dependencies involving coordinating
conjunctions after conversion of coordination structures

5.4 Conjunctions as roots

Table 5.6/ shows that there are still 3460 incorrectly attached CC nodes in
our data. Further investigation of our data reveals that CC tokens or heads
of multi-word conjunctions sometimes appear as roots in DT without there
being any attached conjuncts to the left. Structures with this kind of CC
roots will not be rewritten by the procedure described in Subsection [5.3.2]
These roots will practically never have any left dependents. Figure
shows an example (DT above, CD below).

We convert structures with these roots using the algorithm described
below:

59

[R R

And my t1me has come
PRP VBZ VBN
W ﬂ L.J
(DEP}
(ROOT)

Figure 5.5: Example of a dependency structure with a coordinating
conjunction as root and no left conjuncts (DT above, CD below)

1. Make the nearest right dependent the new root of the sentence. We
label this dependency ROOT, in a notation that will not be overruled
by the subsequent labelling procedure.

2. Make the new root the head of the former conjunction root. We label
this dependency DEP, in a notation that will not be overruled by the
subsequent labelling procedure.

3. Make the new root the head of all other dependents of the former
conjunction root.

Applying this algorithm gives an unlabelled attachment score of 78.1
and a labelled attachment score of 70.8. The share of identical roots
increases to 97.2. The number of reattached dependencies is 3636,
indicating a maximum increase of 0.557 for the unlabelled attachment
score. The actual increase is 0.522. We see from Table 5.7] that the number
of correctly attached CC nodes has been further increased from 12026 to
13651. The number of incorrectly used CC heads has decreased to 1247.

dpos | slabel | shpos | matched | unmatched
CcC 13651 1835
CC 12224 1247

Table 5.7: Patterns of unmatched dependencies involving coordinating
conjunctions after conversion of coordinating conjunction roots

5.5 Possesive endings

We examine unmatched dependencies involving POS nodes further. We
see from Table 5.8 that most POS tokens are incorrectly attached and that
the greater part of these are attached by a dependency relation labelled SP-
HD. We can also see that of the 6031 POS tokens incorrectly used as heads,

60

5621 of these incorrectly attached dependents, are attached by arcs labelled
SP-HD.

dpos | slabel | shpos | matched | unmatched
POS 43 5868
POS | SP-HD 13 5516
POS 12 6031

SP-HD | POS 12 5621

Table 5.8: Patterns of unmatched dependencies involving possessive
endings

We find that the pattern illustrated in Table[5.6/is common (DT left, CD
right). It seems that while CD attaches the possessive ending to its noun
(the possessor), DT attaches it to the noun possessed.

[{SP-HD]\ f[SP-HD)—\
funds ! investments funds ! investments
NNS POS NNS NNS POS NNS

Figure 5.6: Example of dependencies involving possessive endings (DT left,
CD right)

We rewrite these structures by reattaching PoS nodes attached to their
head by a SP-HD dependency, to its nearest left dependent. dependents of
the PoS node are reattached to the former head of the PoS node.

The result is an unlabelled attachment score of 79.8 and a labelled
attachment score of 72.4. The share of identical roots is not affected.
The number of reattached dependencies is 11063, indicating a maximum
increase of 1.7 for the unlabelled attachment score. The actual increase is
1.65. Table shows that the number of correctly attached PoS nodes has
increased from 43 to 5486, while the number of incorrectly used PoS heads
has decreased from 6031 to 512.

dpos | slabel | shpos | matched | unmatched
POS 5486 425
POS 1 512

Table 5.9: Patterns of unmatched dependencies involving possessive
endings after conversion

61

5.6 Cardinal numbers and currency PoS tags

We investigate the unmatched dependencies involving CD nodes further.
Some counts are presented in Table

dpos | slabel | shpos | thpos | matched | unmatched
CD 2144 15375

CD 11416 12719
CD CD 710 4744
SP-HD | CD 1262 5219

CD | SP-HD | CD 706 3566
CD CD $ 0 3411
CD | SP-HD | CD $ 0 3411

Table 5.10: Patterns of unmatched dependencies involving cardinal num-
bers

Table |5.10| shows us that there are 3411 CD (cardinal number) tokens
that are attached to another CD token in our DT format training data, but
attached to a $ (dollar sign) token in the CD scheme. All these tokens are
attached by an arc labelled SP-HD. We find that the pattern illustrated in
Figure 5.7|is common (DT left, CD right). These structures contain both a
cardinal number and a numeral, both PoS-tagged CD. While DT attaches
the numeral to the dollar sign and the cardinal number to the numeral,
CD assigns the dollar sign as head of both the numeral and the cardinal
number.

N-NUM DEP
[DEP
$ 212 million $ 212 million
$ CD CD $ CD CD

Figure 5.7: Example of dependency structures with cardinal numbers and
currency PoS tags (DT scheme above, CD scheme below)

We rewrite these structures by reattaching CD nodes attached by a SP-
HD dependency to another CD node, to the head of this second CD, in
cases where this head is PoS-tagged $. We label this dependency DEP, in a
notation that will not be overruled by the subsequent labelling procedure.

The result is an unlabelled attachment score of 80.3 and a labelled
attachment score of 72.9. The share of identical roots is not affected. The
number of reattached dependencies is 3417, indicating a maximum increase
of 0.524 for the unlabelled attachment score. The actual increase is 0.516.
Table shows that the number of correctly attached CD nodes has
increased by 3361, from 11416 to 14777. The the number of incorrectly used
CD heads has decreased from 15375 to 11966.

62

dpos | slabel | shpos | thpos | matched | unmatched
CD 14777 9358

CD 2136 11966
CD CD 702 1335
CD CD $ 0 2

Table 5.11: Patterns of unmatched dependencies involving cardinal num-
bers after conversion of structures with cardinal numbers and currency PoS
tags

This algorithm should possibly be extended to include structures with
heads PoS-tagged # (pound sign), as well. Other currency symbols are not
favoured with particular PoS tags and would presumably be PoS-tagged
NN or NNS, like ‘dollar” and “dollars” spelled out.

5.7 Measure noun phrases

We investigate the unmatched dependencies involving NUM-N labels
further. The result is presented in Table

dpos | slabel | shpos | matched | unmatched

NUM-N 32 6682

NUM-N | CD 30 6059
NN | NUM-N 28 3887
NNS | NUM-N 1 2766
NN 82197 9465
NNS 37659 4356

Table 5.12: Patterns of unmatched dependencies involving labels for
measure NPs

We see from Table that most of the dependents attached by an
edge labelled NUM-N in DT, are attached to a different head in CD. We
also see that most of these dependents are attached to a CD node in DT
and that the greater part of them are PoS-tagged NN or NNS. We have a
closer look at some of these sentences and find these common patterns. See
Figure 5.8 (DT left, CD right). DT seems to assign the amount to be head
of the measure unit, while CD takes the opposite stance and chooses the
measure unit as head of the amount.

63

(SP-HD)
NUM N (NMOD) ﬂ

ears old years old
CD NNS CD NNS JI
HD-CMP) (NUM-N]
D), RO =
avoiding one point avoiding one point
VBG CD NN VBG CD NN
(APPO)
(FD-Cvr) f-\ ozl
rates .. 8 nov.16 % rates .. nov.16 %
NNS CD CD NN NNS CD CD NN

Figure 5.8: Example of dependencies labelled NUM-N in the DT scheme
(DT left, CD right)

We rewrite these structures using this algorithm for all dependents
attached by an arc labelled NUM-N:

1. Perform iteratively for all nodes (from dependent to head) that
are attached to the dependent’s head between the head and the
dependent):

¢ make the former node the head of this node, attach the first node
found in this iteration to the dependent

2. Attach all other dependents of the head to the dependent

3. Make the head of the head the new head of the dependent, label this
dependency with an empty label

4. Make the the last node found in the iteration the new head of the
original head, label this dependency with an empty label

The result is an unlabelled attachment score of 82.3 and a labelled
attachment score of 74.5. The share of equal roots is still 97.2. The number
of reattached dependencies is 16152, indicating a maximum increase of
2.477 for the unlabelled attachment score. The actual increase is 2.0.
Table |5.13| shows that the number of correctly attached NN nodes has
increased by 3151 to 85348. The number of correctly attached NNS nodes
has increased by 2491 to 40150. The number of incorrectly used CD heads
has decreased to 3500. When comparing with Table we see that a side
effect has been that a considerable number of CD nodes have been correctly
attached as this number has been increased to 20440 by this rewriting.

64

dpos | slabel | shpos | matched | unmatched
CD 20440 3695

CD 2379 3500
NN 85348 6314
NNS 40150 1865

Table 5.13: Patterns of unmatched dependencies involving cardinal num-
bers after conversion of structures with measure noun phrases

5.8 Cardinal number heads of nouns

We still have some nouns that are incorrectly attached to CD heads. See
Table

dpos | slabel | shpos | matched | unmatched
CD 20440 3695

CD 2379 3500
NN CD 20 238
NNP CD 16 906
NNS CD 4 8
NN 85348 6314
NNP 51957 7312
NNS 40150 1865

Table 5.14: Patterns of unmatched dependencies involving CD heads of
nouns

Figure 5.9/ shows an example of an unmatched dependency with noun
dependent and CD head labelled with other labels than NUM-N in DT (DT
format left, CD format right). In CD the date and month are not directly
connected.

until Dec. 31 until Dec. 31
IN NNP CD IN NNP CD

Figure 5.9: Example of a dependency with a noun dependent and cardinal
number head in DT (DT left, CD right)

We rewrite these structures by making the head of the head of an
NN/NNS/NNP node attached to a CD head, the new head of this
dependent. The dependent is made the head of the old head. We label
all these dependencies with empty labels. Other dependencies of the old
head node are attached to the dependent.

65

The result is an unlabelled attachment score of 82.6 and a labelled
attachment score of 74.8. The share of equal roots is still 97.2. The number
of reattached dependencies is 3372, indicating a maximum increase of 0.517
for the unlabelled attachment score. The actual increase is 0.356.

dpos | slabel | shpos | matched | unmatched
CD 21524 2611

CD 2175 2044
NN CD 0 1
NNP CD 0 0
NNS CD 0 1
NN 85511 6151
NNP 52764 6505
NNS 40153 1862

Table 5.15: Patterns of unmatched dependencies involving cardinal num-
bers after conversion of structures with cardinal number heads of nouns

Table shows that we have (almost) no nouns incorrectly attached
to CD nodes after this conversion. The numbers of NN, NNS and NNP
tokens correctly attached have increased by 163, 807 and 3, respectively.
The number of incorrectly used CD heads has decreased to 2044. A side
effect is that the number of correctly attached CD nodes have been further
increased from 20440 to 21524. Unfortunately, these improvements have
been at a cost of reducing the number of correctly used CD heads from
2273 to 2175.

5.9 Determiner heads of nouns

We will move on to investigate constructions with determiner heads in DT.
As we can see from Table more than half of the dependents incorrectly
attached to DT heads are nouns.

dpos | slabel | shpos | matched | unmatched
DT 748 2030

NN DT 1 1031
NNP DT 2 84
NNS DT 0 49
NNPS DT 0 3
NN 85511 6151
NNP 52764 6505
NNS 40153 1862
NNPS 1467 152

Table 5.16: Patterns of unmatched dependencies involving DT heads of
nouns

66

Figure shows some examples of unmatched dependencies consist-
ing of a noun with a determiner head in the DT format (DT left, CD right).
These examples indicate that in these kind of constructions, DT assigns the
DT node as head of the noun, while CD treats it as an ordinary determiner
and considers it a dependent of the noun.

(SP-HD)
NUM N NMOD) (AMOD
ago

a year a year ago
DT DT NN IN
ADV
barrels a day barrels a day
NNS DT NN NNS DT NN

(HD-CMP) NMOD
m P HD (NMOD]

behmd all the hoopla behmd all the hoopla
DT DT DT DT

Figure 5.10: Examples of dependencies with noun dependents and
determiner head in the DT data (DT left, CD right)

In the first of these examples, ‘a” is actually a cardinal number, meaning
‘one’, not a determiner. In the second graph ‘a” works as a preposition and
should ideally have been PoS-tagged IN. In the last example there are two
determiners. CD allows more than one specifier, DT does not.

When we compare the number of incorrectly used DT heads in
Table to the number of incorrectly used DT heads presented in
Table we observe that the number of incorrectly used DT heads has
decreased. The first example graph shown in Figure contains a
dependency with an arc labelled NUM-N. This dependency, and others
with the same pattern, will already have been rewritten by the procedure
for rewriting structures with measure noun phrases (see Section[5.7).

We rewrite the remaining structures involving nouns with determiner
heads by making the head of the head of an NN/NNS/NNP/NNPS node
attached to a DT head, the new head of this dependent. The dependent
is made the head of the old head. This dependency is labelled with an
empty label. Other dependencies of the old head node are attached to the
dependent.

The number of dependencies being reattached by this procedure is 2447.
This represents a possible gain of 0.375. The actual gain is 0.356, giving
an unlabelled attachment score of 83.0. The labelled attachment score is

67

increased to 75.0 and the share of equal roots remains 97.2.

dpos | slabel | shpos | matched | unmatched
DT 743 759

NN DT 0 0
NNP DT 0 0
NNS DT 0 1
NNPS DT 0 0
NN 86472 5190
NNP 52811 6458
NNS 40230 1785
NNPS 1470 149

Table 5.17: Patterns of unmatched dependencies involving DT heads of
nouns after conversion

Table shows that we have (almost) no nouns incorrectly attached to
DT nodes after this conversion. The number of incorrectly used DT heads
has decreased from 2030 to 759. The amount of correctly attached noun
dependents has increased for all noun PoS tags.

5.10 Punctuation marks

We know that in DT punctuation marks are normally attached to the
neighbouring word from which it is not separated by a space (Ivanova
et al. 2013). For the CD scheme there is little, if any, documentation
on attachment of punctuation marks. Table [5.18 shows the amount
of unmatched and matched dependencies for various punctuation mark
dependents in our training data sets. Table contains some information
on how the punctuation marks are attached in our training data.

PoS tag | frequency | matched | unmatched
. 29222 1569 27653
, 31738 8330 23408
: 2517 690 1827
(628 335 293

634 169 465
" 4687 837 3850
" 4779 730 4049

Table 5.18: Number of matched and unmatched dependencies with
punctuation mark dependents

7

We rewrite the " roots in DT by attaching them to their nearest left
dependent, making this the new root. All other dependents of the " node
are reattached to this new root. The dependencies are labelled with an
empty label. This increases the number of identical roots with 0.42.

68

DT CD

is attached to is attached to
PoS prec. | foll. is prec. | foll. is
tag || root | word | word | root | root | word | word | root
. 1454 | 29098 28660 | 1560 1] 15
, 676 | 31629 1 13515 | 8325 | 1079
: 532 | 1748 58 | 141 | 1329 | 673 79 2
(6 614 112 31| 336

6 522 111 164 24
" 17 | 1101 12 3163 | 744 | 939
! 126 4760 2417 660 724

Table 5.19: Heads of punctuation marks in our formats

We use the rules that give the best results, to reattach punctuation
marks:
e ‘7, and ‘)’ are attached to the root, in cases where this does not
create non-projectivity.

L7 4

e /), " and """ are attached as far up as possible without creating non-
projectivity, following the dependency path

* ‘(" is attached to the following word

The result from this conversion is an unlabelled attachment score of
89.9 and a labelled attachment score of 82.0. The share of identical roots
is now 97.6. The number of reattached dependencies is 57705, indicating a
maximum increase of 8.851 for the unlabelled attachment score. The actual
increase is 6.957.

PoS tag | frequency | matched | unmatched
. 29222 26432 2790
, 31738 21332 10406
: 2517 1346 1171
(628 336 292

634 249 385
" 4687 3782 905
" 4779 3682 1097

Table 5.20: Number of matched and unmatched dependencies with
punctuation mark dependents after conversion

Table shows the amount of matched and unmatched dependencies
with punctuation mark dependents after rewriting. A considerable number
of punctuation nodes are still incorrectly attached. These unmatched
dependencies constitute 2.6% of the dependencies in our training data.

69

If we ignore punctuation nodes altogether, our conversion results in an
unlabelled attachment score of 91.4.

5.11 Unsuccessful rewritings

As we observed during the rewriting process, far from all our reattach-
ments resulted in structures identical to those in the CD data set. Table
presents an overview over proportions of erroneously reattached depend-
ents per step in our rewriting procedure.

no deps | expected | actual | erroneous | error

pattern rewritten | improv. | improv. | reattach. | rate
CcC 31220 4.788 3.978 081 | 169
CC roots 3636 0.557 0.522 0.035 6.3
POS 11063 1.7 1.65 0.05 29
CD curr. 3417 0.524 0.516 0.008 15
NUM-N 16152 2.477 2.0 0477 | 19.3
noun + CD 3372 0.517 0.356 0.161 | 31.1
nount + DT 2447 0.375 0.356 0.019 5.1

Table 5.21: Erroneous reattachments per pattern

Table shows that rewriting of structures involving cardinal num-
bers and currency PoS tags, had the lowest share of unsuccessful reattach-
ments. Only 1.5% of the 3417 dependents that were reattached during this
procedure, were assigned another head than in the CD data. The three
procedures that had the highest share of erroneous reattachments, were re-
writings of coordinated structures, structures with measure noun phrases
and structures with cardinal numbers as heads of nouns, the percentage
of erroneously attachments being 16.9, 19.3 and 31.1, respectively. In the
following, we will look into some examples that our algorithms did not
manage to convert correctly according to the CD gold data.

(MRK-NH]

/ \

on machines , rather than people
\
(NMOD;

Figure 5.11: Example of coordination structure where different elements
are coordinated in DT and CD (DT above, CD below)

When it comes to coordination structures, we find that some times
different elements are coordinated in the two formats. In some other

70

cases an element is treated as a modifier in one format and as a conjunct
in the other. Figure shows an example of different coordination.
In this example DT analyses ‘rather than’ as a coordinating conjunction,
coordinating ‘machines” with ‘people’. CD on the other hand, treats ‘rather
than” as a preposition. During our conversion the multi-word expression is
rewritten and ‘people’ is attached to its new head ‘rather” as a conjunct.

Inspecting measure noun structures that are not rewritten according
to the CD data, we find examples like the one shown in Figure (DT
above, CD below). In this example all dependencies are initially matched,
all dependents are identically attached in both formats. Our conversion
procedure will, however, reattach 15" to "% and "%’ to ‘stakes’.

(HD-CMP)
(N-HDN]
HD-CMP [NUM-N)
amass % stakes

ST]

Figure 5.12: Example of a structure with measure noun that is not correctly
rewritten (DT above, CD below)

Finally, we pick an example of a structure with a cardinal number head
of a noun (in DT), that is not successfully rewritten. The example is shown

in Figure @

w2y
Artlcle I , Section , Clause says
NMOD NMOD mf
(COORD)
(COORD)
SBJ

Figure 5.13: Example of a structure with a cardinal number head of a noun
that is not correctly rewritten (DT above, CD below)

Our conversion procedure will erroneously attach both 7’ and “Clause’

to ‘I’. “Section’, as well, will be attached to ‘I'. This latter attachment is in
accordance with the CD gold data.

71

5.12 Summary of results

Table shows the results from the different steps of converting for our
training data (LAS=labelled attachment score, UAS=unlabelled attachment
score). The rewriting steps that have led to most improvement are
the reattachment of punctuation tokens (6.9), rewriting of coordination
structures (4.0) and rewriting of structures with measure noun phrases
(2.0). Altogether we have achieved an improvement of 16.3 of the
unlabelled attachment score. The labelled attachment score has increased
by 15.4 compared to the result from the baseline conversion (Section [4.3).

Percentage of

UAS | LAS | identical roots

Baseline converter 73.6 | 66.6 84.4
Coordination structures | 77.6 | 70.3 91.3
CC Roots 78.1 | 70.8 97.2
Possessive endings 798 | 72.4 97.2
CD and currency 80.3 | 72.9 97.2
CD and measure nouns | 82.3 | 74.5 97.2
CD heads of nouns 826 | 74.8 97.2
DT heads of nouns 83.0 | 75.0 97.2
Punctuation marks 89.9 | 82.0 97.6

Table 5.22: Evaluation results for converter

Table 5.23|shows the percentage used of the 10 most common PoS tags
used as roots in the converted data set and in the CD data.

CD | Converted
VBD | 43.5 43.3
VBZ | 28.3 28.2
VBP | 14.3 14.2
MD 8.2 8.3
CC 0.0 0.0
VBN | 0.5 0.5
VB 0.7 0.8
NN 1.1 1.1
IN 0.3 0.2
RB 0.1 0.4

97.0 97.0

Table 5.23: Most common PoS tags used as roots in CD and in DT converted

Comparing Table table to Table we find that the most
distinctive difference in distribution of roots for the original DT format and
our converted data, is that the use of CC tokens as roots is now abandoned.
We also see that we have achieved an approximately similar use of finite

72

verbs (VBD, VBZ and VBP) as roots in our converted data as in CD. Another
PoS tag that has turned up among the 10 most frequent for roots, now that
we compare only two formats, is RB (adverb). 0.4 percent of all roots in our
converted data is PoS-tagged RB, whereas only 0.1 percent of roots in CD
has this PoS tag. This PoS tag does not appear in Table but checking
our original DT training data set, we find the same proportion of RB roots
there, 0.4 percent.

Table shows the amount of unmatched and matched dependencies
with the dependent PoS tags, source format labels and/or head PoS tags
that we chose to investigate in this study (see Table [5.1), after rewriting.
Punctuation token dependents are not included.

dpos | hpos | matched | unmatched
CC 13860 1626
CC 12578 909
POS 5497 414
POS |1 512
CD 21527 2608
CD | 2175 2044
DT 743 759

Table 5.24: Matched and unmatched dependencies after conversion

Comparing the two first rows of these tables, we observe that the
number of correctly attached CC nodes has increased from 1029 to 13860.
We also see that the number of correctly attached POS nodes has increased
from 43 to 5497. The number of correctly attached CD nodes has increased
from 11317 to 21527. The table also reveals a reduction of dependents
incorrectly attached to CC, POS and CD heads. These reductions do,
however, not in themselves ensure that more dependents have been
attached in accordance with the CD gold data set (this is explained in
Section |4.2).

Converting our development dataset using this converter gives an
unlabelled attachment score of 90.1 and a labelled attachment score of 81.8.
The share of identical roots after conversion is 98.0.

Earlier in this section we observed that our conversion did not increase
the labelled attachment score at the same rate as the unlabelled attachment
score (15.4 versus 16.3). In the next section we will describe an attempt to
implement a more effective labelling procedure.

73

74

Chapter 6

Labelling by classification and
contrastive evaluation

The heuristic labelling procedure that we have designed (see Sections
and leaves about 9% of the correctly rewritten dependencies labelled
with an incorrect label. In this final part of the project, we will try to
implement a labelling procedure that performs better, by utilizing more
of the available information about these dependencies. For this endeavour,
we will use a method of statistical classification, also known as machine
learning-based classification. We will give a brief introduction to the topic
of machine learning and our choice of tool for this task in Section In
Section we describe the notation we use for describing elements of
information, features, that we choose to make use of. Our experiments
with machine-learned classifiers are described in Section[6.3] In Section [6.4]
we will perform a contrastive evaluation of our converters; we will
compare the accuracy of the purely heuristic and the partly machine-
learned conversion pipelines on previously unseen test data.

6.1 Choice of machine learner

Our task is to assign CoNLL Syntactic Dependencies (CD) dependency
types to dependencies converted to this format from the DELPH-IN Syn-
tactic Derivation Tree (DT) format. This can be viewed as a classification
problem: we have a set of classes (CD labels) and a set of objects (depend-
encies) and our task is to determine which class each object belongs to. In
machine-learned classification, a statistical learning algorithm will use a
training set of objects encoded with the correct class, to learn a classifica-
tion function. In order to train a machine-learned classifier that can assign
CD labels to our converted dependencies, we will need a training set of
dependencies (objects) encoded with the correct CD label (class). A pos-
sible training set could be the CD gold data. However, we decide to use
the converted data for training, as these are the data that eventually will be
the target for our classifier. Thus, our matched (correctly attached) depend-
encies after conversion along with their label from the CD gold data, will
constitute our training set.

75

Several methods of machine learning for classification exist, each with
their particular strengths and weaknesses. Issues that should be considered
when seeking to find the most appropriate method are the amount of
training data available, the scale of the classification problem (how many
classes are there?), available time and processing power (some methods are
high consumers).

In our classification task we have 62 possible classes. These are the
CD labels used in our CD training data set. This implies that our task is
a medium-sized classification problem. Our training data set consists of
586339 objects. This is a considerable amount of training data. On this
background we choose the method of support vector machines (SVM), that
can be expected to have a good performance on classification problems
of this scale, when sufficient training data is available. We will use
SVMlight (SVMlight), which is an implementation of SVMﬂ We use the
SVMmulticlass instantiation of this package.

For this kind of machine learning, we need to subtract a subset of
properties, that we want the learning algorithm to make use of, from the
objects. Such properties are called features. In the next section we will
describe a notation that we will use for describing such features.

6.2 Notation for describing features

Our notation for describing our feature model is an adaptation from Nivre
et al. (2007). We will make use of three feature types; part-of-speech
features, dependency type features and lexical features:

* p(n) - the part-of-speech tag of the node n
* I(n,s) - the dependency type of the node 7 in source

e w(n) - the word form of the node n

In our project we have two different sources for our feature values in
our project, the original DT data and the converted data. The PoS tag and
word form of a node are identical in both formats, we do not need the
source parameter to identify these properties. We will use the following
constants to refer to our source formats:

* D - denotes the original DT data set

e C - denotes our converted data set
We also need functions to address one node relative to another:

¢ h(n,s) - the head of the node 7 in source s

IWe want to thank Erik Velldal for his helpfulness and invaluable advice on the use of
SVM.

2Although we end up using only labels from the original DT data, our notation allows
for the use of labels from other sources as well.

76

Is(n,s) - the leftmost sibling of the node 7 in source s

rs(n,s) - the rightmost sibling of the node 7 in source s

ld(n,s) - the leftmost dependent of the node n in source s

rd(n,s) - the rightmost dependent of the node 7 in source s

Sometimes we will want to address a node relative to another in the
linear order:

* 1+ x - the node that occurs x positions to the right of node n

* 1 -x - the node that occurs x positions to the left of node n

Thus, p(Is(t,C))) denotes the PoS tag of leftmost sibling of the node ¢
in the converted data. I(t + 1, D) denotes the dependency type from the
DT data of the node to the immediate right of node t. If a property is
non-existent for a dependent (all nodes does not have, for instance, a right
dependent) the feature is not used, neither in training or classification. If
two properties have the same value (for instance, if for a node, the PoS
tag of the rightmost dependent in DT has the same value as the PoS tag of
rightmost dependent in the converted format), they are still treated as two
distinct features.

The SVMmulticlass part of SVM-Light does not support non-linear
kernels and does not model the combination of simple features. This
implies that we also need to make use of complex features that combine the
simple ones. We will use & when describing these features. For example,
p(t)&1(t,D)) will denote the feature combining the values of PoS tag of t with
the label of t from DT.

Table shows examples of some feature values for the structure
illustrated in Figure below. In this illustration we have omitted the
labels of the rewritten structure, as we do not use these as features in our
experiments.

(®ooT)
(5E-11D)

[\

Champagne and dessert followed .

NN CcC NN VBD .

\\ I\ J J \ J

Figure 6.1: Example of a rewritten but still not labelled sentence (source DT
above, converted below)

77

Feature Value Description

p(t) CcC PoS tag of ‘and’

1(t,D) SB-HD Label of ‘and’ in DT

wi(t-1) Champagne Wordform of token to the immediate
left of ‘and’

p(h(t,D)) VBD PoS tag of the head of ‘and” in DT

wi(rd(t,C)) dessert Wordform of the rightmost depen-

dent of ‘and’ in the converted data

p(t+1)&l(t+1,D) | NN&MRK-NH | PoS tag & label from DT of the token
immediately right of ‘and’

Table 6.1: Examples of possible feature values described in our notation. ¢
refers to the token ‘and’

6.3 Experiments

In our first experiment we will attempt to replicate our heuristic labelling
procedure by using feature values that correspond to the parameters
(triggers) used in the heuristic procedure. These parameters are dependent
PoS tag, source format label, head PoS tag and combinations of these. We
will refer to this group of features as A.

A: p(t), 1(t,D), p(h(t,D), p()&l(t,D), I(t,D)&p(h(t,D)), p(t)&l(t,D)&p(h(t,D)),
p(t)&p(h(t,D))

Table|6.2|shows how these features correspond to the triggers described
in Table Note that the properties dpos and hpos are not used alone in the
heuristic procedure, only in combination with other properties. The dpos-
hpos trigger was introduced in the extended procedure (see Section|5.1)).

Trigger Feature
dpos-hpos-label | p(t)&I(t,D)&p(h(t,D))
dpos-label p(H&l(t,D)
hpos-label 1(t,D)&p(h(t,D))
dpos-hpos 1(t,D)

label 1(t,D)

dpos p(t)

hpos p(h(t,D)

Table 6.2: Triggers versus feature values

We train a classifier with these features and apply it for labelling
of our converted development dataset. The classifier is used labelling
only dependencies that have not been explicitly labelled in the rewriting
process. The result is a labelled attachment score of 78.77, considerably
lower that the 81.8 that we achieved by using the heuristic procedure (see
Section . This is a bit puzzling, considering that the machine learner

78

apparently has the same information available as our heuristic procedure,
in addition to the simple features dpos and hpos. A difference is that in
our heuristic procedure, we limited the use of the dpos-hpos trigger to the
dependencies not labelled during the rewriting process. This information
about labels assigned by the rewriting procedure, is not made available to
the machine-leaner by the features in Group A.

We will also train classifiers using additional features. Our feature
selection is inspired by Johansson et al. (2008). We start by using the PoS
tags of the leftmost and rightmost siblings of the dependent, as well as the
leftmost and rigthmost dependents of it. We will use these values both
from the original DT data and the converted data. We will call this group
of features B.

B: p(Is(t,D)), p(rs(t,D)), p(Is(t,C)), p(rs(t,C)), p(ld(t,D)), p(rd(t,D)), p(ld(t,C)),
p(d(t,C)), p(s(t,D)&p(rs(t,D)), (Is(t,C))&p(rs(t,C)), p(ld(t,D))&p(rd(t, D)),
p(d(t,C))&p(rd(t,C))

Training a classifier with these features in addition to the features in
Group A and applying it on the converted data, results in a labelled
attachment score of 80.52.

Group C contains features with word forms of the dependent and its
head in the original DT data set. A classifier trained with these feature
values in addition to the Group A features, achieves a labelled attachment
score of 79.74.

C: w(t), w(h(t,D), w(t)&w(h(t,D)

We train a classifier using the features in all three feature groups; A,
B and C. Using this classifier for labelling gives us a labelled attachments
score of 81.32.

We have still not managed to train a classifier that performs to the level
of our heuristic labelling procedure on our development data. We continue
to explore additional features. Our next step is to use properties of the
words linearly next to the dependents. Group D contains PoS tags of the
node immediately to the left of the dependent, the node immediately left
to this and the node to the immediate right of the dependent.

D: p(t-2), p(t-1), p(t+1), p(t-1)&p(t)&p(t+1), p(t-1)&p(t), p(H)&(p(t+1)), p(t-
2)&p(t-1)&p(t)

A classifier trained with this features, as well as the feature values from
Group A gives a labelled attachment score of 80.34. Using the feature
values from Group A, B, C and D increases the labelled attachment score
to 82.03, finally at the same level as our heuristic labelling procedure.

We will also explore the use of PoS tag and word form of the head in
the converted data, Group E.

E: p(h(t,C)), w(h(t,Q)), p(t)&p(h(t,C)), w(t)&w(h(t,C)

79

Training a classifier with the features from Group E in addition to the
features in Group A and applying it on the converted data results in a
labelled attachment score of 80.86. Using the features described in Group
A - E, gives a labelled attachment score of 82.66.

We will end our experiments by investigating properties from further
up in the dependency path, properties of the head of the head (the
grandparent), as features. Feature Group F1 contains features with PoS
tags and labels from from the grandparent in the original DT data. Some
features with combinations of PoS tags and labels from this grandparent
are defined in Group F2.

F1: p(h(h(t,D)))p(t)&p(h(h(tD))), p(h(t,D))&p(h(h(t,D))),
p(t)&p(h(t,D))&p(h(h(t,D)), 1(h(t,D)), 1(h(h(t,D)), 1(t,D)&l(h(t,D)),
1(h(t,D))&l(h(h(t,D))), 1(t,D)&I(h(t,D))&I(h(h(t,D)))

F2: p(t)&I(t,D)&p(h(t,D))&I(h(t,D)),
p(H)&I1(t,D)&p(h(t,D))&l(h(t,D))&p(h(h(t,D)))&l(h(h(t,D)))

A classifier trained with the feature values from Group A and F1
achieves a labelled attachment score of 79.91. If we use features from
Group F2, as well, the score increases to 80.06. Training a classifier with
the features from Group A — E in addition to the features from both Group
F1 and F2 results in a labelled attachment score of 82.89.

Finally, we will explore the use of features from the head of the head in
the converted data. Feature Group G contains features with PoS tags from
this grandparent.

G: p(h(h(t,Q))),p(H)&p(h(h(t,C))), p(h(t,C))&p(h(h(t,C))),
p(t)&p(h(t,C))&p(h(h(t,C)))

Training a classifier with the features from Group G in addition to the
features in Group A and applying it on the converted data results in a
labelled attachment score of 79.65. Using the features described in Group
A - G, gives a labelled attachment score of 82.96.

80

Using all our described features for training, results in a classifier that
achieves a labelled attachment score of 82.96 on our development dataset.
In Table [6.3| we give a summary of the performance of classifiers trained
with different sets of features.

Feature groups used Score
A|B|C|D|E|F1|F2|G | Development
X 78.77
X | X 80.52
X X 79.74
X | XX 81.32
X X 80.34
X | X[XX 82.03
X X 80.86
XX |X[X[X 82.75
X X 79.91
X X [X 80.06
XXX [X[|X[X |X 82.89
X X 79.65
XXX [X[X[X [X |X 82.96

Table 6.3: Results from labelling with machine-learned classifiers

Table shows the F-score per class (CD label) for both the heuristic
and the machine-learned labelling procedure, for the 20 most frequent used
CD labels in the training data, sorted by descending frequency. These 20
labels cover 95.8% of the edges in our training data set. The F-scores are

from development data and the classifier used is trained with all features
described in Table[6.3l

We observe that the machine-learned classifier achieves a higher or
similar F-score than the heuristic procedure for almost all classes. The
APPO (apposition) label is an exception. For this label the heuristic
labelling procedure obtains an F-score of 0.93, while the F-score for the
classifier is only 0.87. We also notice that the labels that are hard to assign
correctly for the heuristic method, also are the ones that present a challenge
to the classifier. The labels with the lowest F-score for both methods
are the LOC (locative adverbial or nominal modifier), TMP (temporal
adverbial or nominal modifier) , PRD (predicative complement), ADV
(general adverbial) and OPRD (predicative complement of raising/control
verb) labels.

We see from Table that using all feature groups gives the best
result on our converted development data. We decide to make use of
this configuration when we do our final evaluation of our machine-learned
labelling procedure.

81

CD label | Frequencies | Heuristic | Classifier
NMOD 179536 0.97 0.97
P 74135 1.00 1.00
PMOD 64569 0.98 0.98
SBJ 52163 0.97 0.98
OBJ 38686 0.87 0.89
ROOT 29672 1.00 1.00
ADV 27228 0.61 0.72
vC 20746 0.96 0.95
COORD 16598 0.98 0.97
DEP 15897 0.86 0.90
NAME 15648 0.81 0.83
TMP 14648 0.41 0.45
CONJ 13465 0.99 0.99
AMOD 10095 0.79 0.81
LOC 10049 0.02 0.31
PRD 9489 0.57 0.63
M 9067 1.00 1.00
APPO 8793 0.93 0.87
SUB 7241 0.96 0.95
OPRD 6645 0.68 0.71

Table 6.4: F-score for CD labels for heuristic and machine-learned labelling

6.4 Evaluation

Finally, it is time to check how well our converters perform on the held-out
test data. Table[6.5|shows the result of our converters on both development
and test data. The first column shows the proportion of identical roots in
our converted data and the CD gold data. The unlabelled attachment score
is presented in the second column. In the third and fourth column, the
labelled attachment scores using the heuristic procedure and the machine-
learned classifier, respectively, are shown.

Identical | Unlabelled | Labelled att. score using

roots att. score | heuristics classifier
Development 98.0 90.1 81.8 83.0
Test 98.0 90.0 81.6 82.9

Table 6.5: Evaluation results on development and held-out test data

Table shows that our converter obtains a high precision on
identification of the correct root, 98% on both the development and test
data. The unlabelled attachments score obtained on development data is
90.1. A similar score is obtained on the test data, 90% of the nodes in the
test data have been assigned the correct head.

82

The heuristic labelling procedure obtains a labelled attachment score of
81.8 and 81.6 on the development and test data, respectively. This means
that it assigns an incorrect label to 9.3% of the dependencies that have
correct attachment (and are included in the LAS metric) in the development
dataset and to 9.3% of these kind of dependencies in the test dataset.

The machine-learned classifier performs better than the heuristic
labelling procedure on both development and test data. It achieves a
labelled attachment score of 83.0 on the development data and leaves
7.9% of the dependencies with correct attachment incorrectly labelled. The
labelled attachment score for the test data is 82.9, implying that in the test
data, as well, 7.9% of the possible dependencies are incorrectly labelled
after conversion.

The heuristic rewriting procedure, the heuristic labelling procedure and
the machine learned-based labelling procedure all perform evenly across
development and test data. These are robust results on unseen data,
implying that we have avoided over-tuning.

In natural language processing (NLP), statistical significance tests are
often used to determine the probability that the difference in performance
between two models is pure coincidence. The null hypothesis is that the
difference is due to mere chance, and we can only reject this hypothesis
if the computed p-value, i.e. the probability of this, is smaller than a
predefined value «.

We want to check whether the difference in performance between
our heuristic and machine-learned labelling procedure is statistically
significant. A common value for a in NLP is 0.05 and this is also the
significance level that we will use. We will use the Wilcoxon signed-
rank test (Wilcoxon [1945), that looks at pairs of scores over the same
samples. First, we split our test data into 10 subsets, with approximately
304 sentences in each subset. We evaluate this subset separately both for the
heuristic and machine-learned procedure, and use the labelled attachment
scores from both procedures as input for the Wilcoxon signed-rank test. We
perform the same statistical significance test using 20 subsets (152 sentences
in each) and 98 subsets (31 sentences in each). The three tests all result in
a p-value smaller than 0.05, thus enabling us to state that the machine-
learned classifier performs significantly better than the heuristic labelling
procedure.

Finally, to further put our work into perspective, we seek to relate
the accuracy levels available from our converters to the state of the art in
data-driven dependency parsing. A parser generates labelled dependency
structures from text that has not been given any previous syntactic analysis.
One could hope that access to a gold standard syntactic analysis, although
from a different linguistic theory, would make the task of dependency
annotation easier. Ivanova et al. (2013) reports parsing results of both
MaltParser (Nivre et al.[2007) and MST (McDonald et al. 2005) on CD. The
best unlabelled attachment score obtained is 92.01 (MST). The best labelled
attachment score reported is 88.74 (MaltParser). Punctuation mark tokens
are excluded from the scoring. Table shows the result of evaluation
of our converters when punctuation marks are excluded. Our unlabelled

83

attachment score 91.7 on the test set is at approximately the same level as
the state-of-the-art parsing result of 92.01 reported by Ivanova et al. (2013).
The labelled attachment score of 83.7 is, however, considerably lower than
the 88.74 reported in this survey.

unlabelled | labelled att. score using
att. score | heuristics | classifier

Development 91.5 82.2 83.5

Test 91.7 82.2 83.7

Table 6.6: Evaluation results on development and held-out test data when
punctuation marks are excluded

84

Chapter 7

Conclusion

In this thesis we started out performing quantitative studies of our
selected dependency schemes, Stanford Basic Dependencies (SB), CoONLL
Syntactic Dependencies (CD) and DELPH-IN Syntactic Derivation Tree
(DT), estimating the expressiveness, with regard to granularity and
variability, of each format. We compared the three formats and reported
the degree of correspondences in syntactic structure, sentence roots and
tree-depth for each format pair.

We investigated how conversion between dependency formats can
be performed and presented a methodology for identifying patterns of
structural differences in format pairs. We designed and implemented
a heuristic baseline converter, taking advantage of the basic statistics
obtained earlier.

Through these first parts of our study, we demonstrated how a
collection of relatively simple descriptive statistics can uncover relevant
structural and linguistic properties, both within a single format and
when comparing parts of formats. Information that we acquired about
expressiveness of formats and similarities between pairs of formats, in
the first part of the study, motivated the choice of DT and CD as the
format pair for which we would attempt conversion. We identified and
documented several systematic differences between these two formats,
using the methodology presented in the second part of the study.

In the final parts of the study, we implemented a converter, heuristic
both with respect to rewriting of syntactic structures and labelling, for
conversion from DT to CD. We also trained machine learned-based
classifiers for the labelling task. Finally, we evaluated our converters on
held-out test data.

7.1 Results

The main outcomes of our work may be summarized as follows:
¢ We have found that among our three selected dependency formats,

CD/DT and SB/CD are the most similar format pairs, having the
highest correspondence with regard to syntactic structure. With

85

respect to roots and tree-depth, CD/DT is the most similar pair.
CD/DT is also the pair with the highest correspondence of syntactic
structure, when punctuation mark dependents are ignored.

¢ Our quantitative study did not result in any findings indicating that
any of the formats are substantially more expressive or linguistically
rich than the others. The three formats use similar numbers of
different dependent PoS tag, label and head PoS tag combinations.

¢ We have proposed a methodology for identification of patterns of
systematic differences in syntactic structure between dependency
formats.

* We have identified and documented several linguistic phenomena
that have a different syntactic analysis in CD and DT.

* We have designed and implemented a heuristic converter for con-
version of data annotated in the DT format to CD. This converter
achieves an unlabelled attachment score of 90.0 (91.7 when punctu-
ation tokens are excluded) and a labelled attachment score of 81.6
(81.6) on held-out test data.

* We trained machine-learned classifiers for improved labelling. This
labelling procedure achieves a labelled attachment score of 82.9
(83.7 when punctuation tokens are excluded). This is a statistically
significant improvement, but still below the level that we had hoped
to obtain.

7.2 Reflections and further work

7.2.1 Estimating variability

When estimating variability for the selected dependency formats, we only
counted the number of combinations of dependent PoS tag, label and
head PoS tags used in each format. We did not consider the distribution
of these combinations; whether in a format only a few combinations
cover a comparatively high number of dependencies and a large number
of combinations occur rarely. Investigating this further would probably
provide more certain knowledge about the actual variability of the formats.

7.2.2 Rewriting of syntactic structures

Our heuristic rewriting procedure obtained an unlabelled attachment score
of approximately 90. Among the remaining 10% of incorrect dependencies,
there is bound to be some amount of irregularities, dependencies that
are annotated incorrectly in one or both formats, and thus impossible to
rewrite according to the gold standard in a systematic manner. Although
the proportion of such irregularities is hard to estimate, we believe that
there still remain some systematic differences that could be successfully
rewritten.

86

We know that 2.6% of the incorrectly attached (according to the CD gold
data) dependents in our converted training data, are punctuation mark
tokens, about 60% of these being ‘,” (commas). These are not the simplest
tokens to attach correctly in the CD format. An approach of statistical
classification would probably be needed to be able to attach a reasonable
amount of these tokens to the correct head.

For the remaining incorrectly attached dependents, the most frequent
dependent PoS tags are IN (10380) , RB (6421), NNP (6421) and NN (5060).
These dependencies comprise 4.34% of the incorrect dependencies.

We know that 1.56% of the incorrectly attached dependents have been
incorrectly reattached by us during the rewriting process. We believe that
the rewriting algorithms applied, or at least some of them, can be refined so
that the error rate is decreased. The potential for improvement is especially
large for the Measure noun phrases procedure, and we believe that a more
thorough examination of samples, will reveal sub-patterns that we have
not identified.

In our rewriting procedure, we have only converted the multi-word
expressions that are occasionally used as coordinating conjunctions. An
amount of 3617 dependencies labelled MWE in the original DT data, are
still incorrect. These dependencies involve some of the incorrectly attached
IN and RB dependents. We believe that these dependencies, or at least a
large part of them, could be successfully rewritten. This would increase the
unlabelled attachment score with about 0.5.

We also believe that the RB tokens incorrectly used as roots, according
to CD, could be identified and correctly reattached.

For some phenomena the structure of one gold standard analysis may
not be very helpful for identifying the correct structure in another format.
PP attachments and other adverbials are notoriously difficult to annotate
correctly, as sentences with these constructions are often structurally
ambiguous. This could explain the large number of incorrectly attached
IN and RB nodes, for which we have not identified any distinct patterns
for rewriting.

We find that 2870 dependents PoS-tagged as NNP are incorrectly
attached to a NNP head with a dependency relation labelled NP-HDN in
the DT data. 16269 NNP dependents are correctly attached to a NNP head
by such a dependency relation. Investigating this further, we find several
examples of structures as those illustrated in Figure (DT above, CD
below). It would seem that CD has a different analysis of the structures like
the one in the example to the left and those like the one shown to the right,
possibly based on some information from the PTB that tokens like “Journal’
(in this use) function somewhere in between a proper and a common noun.
Although this seems to be a regularity, it will be hard for us to separate the
two patterns, by a heuristic method, with the information available to us in
the DT data.

Of the 5060 incorrectly attached NN dependents, 1554 are attached
to another noun. Very recently, Oepen et al. 2014| observe that PTB
and DeepBank differ in their ambitions about the bracketing internal to
compound nouns. As a result, the syntactic analysis will often be different

87

(NP-HDN] J[NP-HDN&

/ \ (NP-HDN] (NP-HDN
Brooke T. Mossman / f{ }\
NNP NNP NNP New England Journal
NNP NNP NNP
NAME \{NAME]/ \{NMOD}J

Figure 7.1: Example of structures with NNP tokens attached to another
NNP token (DT above, CD below)

in DT and CD, in a way where the DT analysis will not be sufficient for
identification of the correct CD structure. This could account for (at least a
part of) these incorrectly attached NN nodes.

These three phenomena, as well as the commas mentioned earlier,
are examples of structures where conversion from DT to CD by use of a
heuristic method might not be feasible. For these structures a different
approach to obtaining data in CD annotation might be more appropriate.

0.57% (3715) of the dependencies in our training data are non-projective
in the CD gold data. These structures could of course overlap with some of
the above mentioned incorrect dependencies. Other syntactic phenomena
lurking among the incorrect attachments have yet to be discovered.

7.2.3 Labelling by classification

We have trained and tested the labelling classifier using default parameters.
There might be potential for improvement in optimizing the classifier by
adjusting its parameters for learning and optimization.

88

Bibliography

Aduriz, Itziar, Maria M. Aranzabe, Jose M Arriola, Atutxa Aitziber, Diaz
de Ilarraza Arantza and Oronoz Maite (2003). Construction of a Basque
dependency treebank.

Baker, Collin F, Charles J Fillmore and John B Lowe (1998). “The berkeley
framenet project’. In: Proceedings of the 36th Annual Meeting of the
Association for Computational Linguistics and 17th International Conference
on Computational Linguistics-Volume 1. Association for Computational
Linguistics, pp. 86-90.

Bengoetxea, Kepa and Koldo Gojenola (2009). “Exploring treebank trans-
formations in dependency parsing’. In: Proceedings of the International
Conference on Recent Advances in Natural Language Processing, RANLP.

Bos, Johan, Edward Briscoe, Aoife Cahill, John Carroll, Stephen Clark,
Ann Copestake, Dan Flickinger, Josef van Genabith, Julia Hockenmaier,
Aravind Joshi, Ronald Kaplan, Tracy Holloway King, Sandra Kuebler,
Dekang Lin, Jan Tore Loenning, Christopher Manning, Yusuke Miyao,
Joakim Nivre, Stephan Oepen, Kenji Sagae, Nianwen Xue and Yi Zhang,
eds. (Aug. 2008). Coling 2008: Proceedings of the workshop on Cross-
Framework and Cross-Domain Parser Evaluation. Manchester, UK: Coling
2008 Organizing Committee. URL: http://www.aclweb.org/anthology /
W08-13.

Brants, Thorsten (2000). TnT - A Statistical Part-of-Speech Tagger.

Carroll, John, Ted Briscoe and Antonio Sanfilippo (1998). ‘Parser evalu-
ation: a survey and a new proposal’. In: Proceedings of the 1st Interna-
tional Conference on Language Resources and Evaluation, pp. 447-454.

Carroll, John, Guido Minnen and Ted Briscoe (1999). ‘Corpus annotation
for parser evaluation’. In: arXiv preprint cs/9907013.

Collins, Michael (1997). ‘Three Generative, Lexicalised Models for Statist-
ical Parsing’. In: Proceedings of the Eighth Conference on European Chapter
of the Association for Computational Linguistics. EACL '97. Madrid, Spain:
Association for Computational Linguistics, pp. 16-23. DOI: 10.3115/
979617.979620. URL: http://dx.doi.org/10.3115/979617.979620.

De Marneffe, Marie-Catherine and Christopher D Manning (2008).
‘Stanford typed dependencies manual’. In: URL http://nlp. stanford.
edu/software/dependencies_manual. pdf.

De Marneffe, Marie-Catherine, Bill MacCartney, Christopher D Manning et
al. (2006). ‘Generating typed dependency parses from phrase structure
parses’. In: Proceedings of LREC. Vol. 6, pp. 449-454.

89

http://www.aclweb.org/anthology/W08-13
http://www.aclweb.org/anthology/W08-13
http://dx.doi.org/10.3115/979617.979620
http://dx.doi.org/10.3115/979617.979620
http://dx.doi.org/10.3115/979617.979620

ERG Lexical and Syntactic Rules. http://moin.delph-in.net/ErgRules. Accessed:
2014-01-13.

ERG Tags. http://svn.delph-in.net /erg/tags/1212 /etc/rules.hds. Accessed:
2014-05-06.

Flickinger, Dan (2002). ‘On Building a More Efficient Grammar by Exploit-
ing Types’. In: Proceedings of the Sixth Linguistic Annotation Workshop.
CSLI Publications, pp. 1-17.

Flickinger, Dan, Yi Zhang and Valia Kordoni (2012). ‘DeepBank: A Dynam-
ically Annotated Treebank of the Wall Street Journal’. In: Proceedings of
the Eleventh International Workshop on Treebanks and Linguistic Theories.
Edig¢des Colibri, pp. 85-96.

Francis, Winthrop Nelson (1964). A STANDARD SAMPLE OF PRESENT-
DAY ENGLISH FOR USE WITH DIGITAL COMPUTERS. ERIC.

Francis, Winthrop Nelson, Henry Kucera and Andrew W. Mackie (1982).
Frequency analysis of English usage. Houghton Mifflin Company.

Graham, Yvette and Josef van Genabith (2009). ‘An open source rule induc-
tion tool for transfer-based smt’. In: The Prague Bulletin of Mathematical
Linguistics 91.1, pp. 37—46.

Hajic, Jan, Barbora Vidova-Hladké and Petr Pajas (2001). “The prague de-
pendency treebank: Annotation structure and support’. In: Proceedings
of the IRCS Workshop on Linguistic Databases, pp. 105-114.

Hudson, Richard A (1984). Word grammar. Blackwell Oxford.

Ivanova, Angelina, Stephan Oepen and Lilja @vrelid (2013). Survey on
parsing three dependency representations for English.

Ivanova, Angelina, Stephan Oepen, Lilja Ovrelid and Dan Flickinger
(2012). “Who did what to whom?: a contrastive study of syntacto-
semantic dependencies’. In: Proceedings of the Sixth Linguistic Annotation
Workshop. Association for Computational Linguistics, pp. 2-11.

Johansson, Richard (2008). ‘Dependency Syntax in the CoNLL Shared Task
2008'.

Johansson, Richard and Pierre Nugues (2007). ‘Extended constituent-
to-dependency conversion for English’. In: Proc. of the 16th Nordic
Conference on Computational Linguistics (NODALIDA), pp. 105-112.

— (2008). ‘Dependency-based syntactic-semantic analysis with PropBank
and NomBank’. In: Proceedings of the Twelfth Conference on Computational
Natural Language Learning. Association for Computational Linguistics,
pp- 183-187.

King, Tracy Holloway, Richard Crouch, Stefan Riezler, Mary Dalrymple
and Ronald Kaplan (2003). “The PARC 700 dependency bank’. In:
Proceedings of the EACL03: 4th international workshop on linguistically
interpreted corpora (LINC-03), pp. 1-8.

Kouylekov, Milen and Stephan Oepen (May 2014). ‘Semantic Technolo-
gies for Querying Linguistic Annotations: An Experiment Focusing on
Graph-Structured Data’. In: Proceedings of the Ninth International Confer-
ence on Language Resources and Evaluation (LREC’14). Ed. by Nicoletta
Calzolari (Conference Chair), Khalid Choukri, Thierry Declerck, Hrafn
Loftsson, Bente Maegaard, Joseph Mariani, Asuncion Moreno, Jan

90

http://moin.delph-in.net/ErgRules
http://svn.delph-in.net/erg/tags/1212/etc/rules.hds

Odijk and Stelios Piperidis. Reykjavik, Iceland: European Language Re-
sources Association (ELRA). ISBN: 978-2-9517408-8-4.

Magerman, David M (1994). ‘Natural language parsing as statistical pattern
recognition’. In: arXiv preprint cmp-1g/9405009.

Marcus, Mitchell P, Mary Ann Marcinkiewicz and Beatrice Santorini (1993).
‘Building a large annotated corpus of English: The Penn Treebank’. In:
Computational linguistics 19.2, pp. 313-330.

Marcus, Mitchell, Grace Kim, Mary Ann Marcinkiewicz, Robert MacIntyre,
Ann Bies, Mark Ferguson, Karen Katz and Britta Schasberger (1994).
‘The Penn Treebank: annotating predicate argument structure’. In:
Proceedings of the workshop on Human Language Technology. Association
for Computational Linguistics, pp. 114-119.

McDonald, Ryan, Fernando Pereira, Kiril Ribarov and Jan Haji¢ (2005).
‘Non-projective dependency parsing using spanning tree algorithms’.
In: Proceedings of the conference on Human Language Technology and Em-
pirical Methods in Natural Language Processing. Association for Compu-
tational Linguistics, pp. 523-530.

Miyao, Yusuke (2007). Enju 2.2 Output Specifications. Tech. rep. Technical
Report TR-NLP-UT-2007-1, Tsujii Laboratory, University of Tokyo.

Miyao, Yusuke, Kenji Sagae and Junichi Tsujii (2007). “Towards framework-
independent evaluation of deep linguistic parsers’. In: Proceedings of
GEAF 2007.

Nilsson, Jens, Joakim Nivre and Johan Hall (2006). ‘Graph transformations
in data-driven dependency parsing’. In: Proceedings of the 21st Interna-
tional Conference on Computational Linguistics and the 44th annual meeting
of the Association for Computational Linguistics. Association for Computa-
tional Linguistics, pp. 257-264.

Nivre, Joakim (2005). Dependency grammar and dependency parsing. Tech.
rep. Technical Report MSI report 05133, Vaxjo University: School of
Mathematics and Systems Engineering.

Nivre, Joakim, Johan Hall and Jens Nilsson (2006). ‘Maltparser: A data-
driven parser-generator for dependency parsing’. In: Proceedings of
LREC. Vol. 6, pp. 2216-2219.

Nivre, Joakim, Johan Hall, Jens Nilsson, Atanas Chanev, Giilsen Eryigit,
Sandra Kiibler, Svetoslav Marinov and Erwin Marsi (2007). “‘MaltParser:
A language-independent system for data-driven dependency parsing’.
In: Natural Language Engineering 13.2, pp. 95-135.

Nivre, Joakim and Jens Nilsson (2005). ‘Pseudo-projective dependency
parsing’. In: Proceedings of the 43rd Annual Meeting on Association for
Computational Linguistics. Association for Computational Linguistics,
pp- 99-106.

Oepen, Stephan (1999). [incr tsdb ()] Competence and Performance Laboratory.
User and Reference Manual. Tech. rep. Computional Linguistics, Saarland
University, Saarbriicken.

Oepen, Stephan, Marco Kuhlmann, Yusuke Miyao, Daniel Zeman, Dan
Flickinger, Jan Haji¢, Angelina Ivanova and Yi Zhang (2014). ‘SemEval
2014 Task 8. Broad-Coverage Semantic Dependency Parsing’. In: Pro-

91

ceedings of the 8th International Workshop on Semantic Evaluation. Dublin,
Ireland.

Pollard, Carl and Ivan A Sag (1994). Head-driven phrase structure grammar.
University of Chicago Press.

Popel, Martin, David Marecek, Jan étepanek, Daniel Zeman et al. (2013).
‘Coordination Structures in Dependency Treebanks’. In: ACL (1),
pp. 517-527.

Schwartz, Roy, Omri Abend and Ari Rappoport (2012). ‘Learnability-Based
Syntactic Annotation Design.” In: COLING, pp. 2405-2422.

Surdeanu, Mihai, Richard Johansson, Adam Meyers, Lluis Marquez and
Joakim Nivre (2008). “The CoNLL-2008 shared task on joint parsing
of syntactic and semantic dependencies’. In: Proceedings of the Twelfth
Conference on Computational Natural Language Learning. Association for
Computational Linguistics, pp. 159-177.

SVMlight. http://svmlight.joachims.org/. Accessed: 2014-03-04.

Wilcoxon, Frank (1945). ‘Individual comparisons by ranking methods’. In:
Biometrics bulletin, pp. 80-83.

Yamada, Hiroyasu and Yuji Matsumoto (2003). ‘Statistical dependency
analysis with support vector machines’. In: Proceedings of INPT. Vol. 3.

Zeman, Daniel, David Marecek, Martin Popel, Loganathan Ramasamy, Jan
gtepanek, Zdenek Zabokrtsky and Jan Hajic (2012). ‘HamleDT: To Parse
or Not to Parse?’ In: LREC, pp. 2735-2741.

Zwicky, Arnold M (1985). ‘Heads’. In: Journal of linguistics 21.1, pp. 1-29.

92

http://svmlight.joachims.org/

	Introduction
	Motivation and research questions
	Thesis outline

	Background
	Dependency grammars
	The Penn Treebank
	Constituent-to-dependency conversion
	The CoNLL 2008 Shared Task
	The Stanford typed dependencies representation
	DeepBank and DELPH-IN syntactic dependencies
	Dependency interconversion: previous and related work

	A comparison of three dependency formats
	Data preparation
	Estimating linguistic granularity and variability
	Similarity between formats
	Coordination structures
	Non-projective dependencies in CD
	Summary of format comparison

	How can we perform conversion?
	Conversion of syntactic structures
	Methodology
	Baseline system

	Heuristic conversion from DT to CD
	Extended labelling procedure
	Identifying candidates for rewriting
	Coordination
	Identifying coordination structures
	Rewriting coordination structures

	Conjunctions as roots
	Possesive endings
	Cardinal numbers and currency PoS tags
	Measure noun phrases
	Cardinal number heads of nouns
	Determiner heads of nouns
	Punctuation marks
	Unsuccessful rewritings
	Summary of results

	Labelling by classification and contrastive evaluation
	Choice of machine learner
	Notation for describing features
	Experiments
	Evaluation

	Conclusion
	Results
	Reflections and further work
	Estimating variability
	Rewriting of syntactic structures
	Labelling by classification

