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Abstract 

COG is a protein complex (units 1 -8) involved in retrograde transport of the resident Golgi 

proteins in intra-Golgi retrograde transport. Mutation in cog7 gene leads to congenital 

disorder of glycosylation (CDG-COG7) which causes severe mental retardation and, in some 

cases,death. There is significant amount of literature that describes glycosylation disorder in 

COG7 patients, but there is no data describing PGs from CDG-COG7. 

Metabollic labelling with WB and MS was performed. 

COG7 cells secrete high Mw PG with extensive sulfation level. The main  modification of the 

PG in secreted fraction is CS -95% ,and HS comprises of  5 %. Cellular proteolgycans show 

reduced synthesis of HS 65% compared with healthy 85%. 

Secreted proteolgycans from COG7 showed reduced PG variation and the presence of 

serglycin was detected. Intracellular decorin was detected in COG7 cells with possible 

formation of  complexes with collagen type I or type II. Aggrecan PG was detected 

intracellularly as well as in a secreted form. 

Distorted recycling mechanism of uptaken proteins was discovered with long delay in release 

of uptaken protein. 
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Aim 

Congenital disorders of glycosylation (CDGs) are a group of genetic syndromes affecting 

many patients. Most of the syndromes have severe consequences leading to multiple adverse 

conditions (e.g. mental retardation, failure to thrive) and, in some cases, death. CDGs affect 

glycosylation pathways in the cell and have global effects. Recently, the incidence of CDGs 

is low due to high misdiagnosis. It is proposed that there are approximately 1 million people 

diagnosed with CDGs in the world, although the real incidence number is, presumably, much 

higher. 

Conserved oligomeric Golgi (COG) complex is an important eight-subunit protein complex 

that functions in Golgi organelle and it is implicated in retrograde transport within Golgi and 

between Golgi and ER. COG7 is one of the COG’s subunits and patients with mutated cog7 

gene have shown affected glycosylation pattern. Mutation in cog7 gene leads to reduced level 

of COG7 protein and the N-glycosylation and O-glycosylation pattern is, in turn, affected, 

according to current literature. However, there is no data that describes PG O-GAG 

glycosylation in COG7 patients. It is possible that this glycosylation pathway is affected in 

the same manner as N-glycosylation and O-glycosylation. On the other hand, it is entirely 

possible that O-glycosylation is not affected in COG7 patients. 

Proteoglycans (PGs) are glycans where the biological and chemical characteristics are 

determined by the attached sugar nature, rather than protein. The most abundant modification 

carried out on PG is glycosaminoglycan chain(s) (GAG(s)) attachment on serine residue. 

GAGs are long polysaccharide chain (essentially a polymer), up to a hundred residues, that 

are essential for determination of PG characteristics. Different GAG types (chondroitin, 

heparan, keratan) are present on PGs and are instrumental in the glycan’s function (ligand 

binding, water binding). PGs are synthesized in ER and modified in Golgi, where 

biosynthesis of GAG chains occurs. 

If COG7 patients have aberrant N-glycosylation, is it possible that the PG synthesis is also 

aberrant? How does it relate to COG complex function?  There is no data that answers this 

question. 

In this project, we tried to establish the nature of secreted and cellular PGs from fibroblasts of 

COG7 patient. Are they different than healthy fibroblast’s PGs? If it is so, to what extent are 
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they different? Moreover, how does the change of PGs synthesis relates to COG complex 

functionality, especially in the light of the retrograde transport function? 

Overall aim of this project was to establish ground work for future project involving COG-

mutants and PG synthesis. In this way, one can learn more about GAG synthesis and protein 

transport within the Golgi apparatus. 
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1 Introduction 

1.1 The Golgi apparatus 

1.1.1 The Golgi apparatus origins and structure 

The Golgi apparatus is a crucial organelle in the cell responsible for sorting and processing of 

various cargo proteins, both soluble and transmembrane. Its origin goes as far as to the 

common eukaryotic ancestor. Its structure varies between species. In most organisms the  

Golgi apparatus is organized in a stack-like fashion with flattened membrane structures 

(known as cisternae) acting as basic building blocks to form a polarized (cis, medial and 

trans- orientation) moiety. The cis side of the Golgi organelle system faces the nuclear side, 

while medial cisternae are stacked between cis and trans-cisternae that face towards cell 

periphery.  

 

Figure 1. Schematic representation of the Golgi apparatus; adopted form THE CELL(Bruce 

Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts 2002). 

Although the Golgi apparatus shares similarities in general structure, the actual appearance of 

it can change. In mammals, it forms a ribbon like membrane structure via lateral connection, 
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while in plants and invertebrates the Golgi apparatus exist as separate bodies disposed 

throughout the cytosol. Moreover, in yeast, different Golgi cisternae are present as separate 

compartments within the cell(Wilson et al. 2011).  However, there is a group of organisms 

that lack visible Golgi stacks into which we can include parasites (e.g. Giardia intestinalis) 

microsporidia, heterolobosea and numerous apicomplexans (Babesia, Theileria)(Mowbrey & 

Dacks 2009). Although it is well known that the Golgi apparatus functions as a sorting centre 

for transmembrane and soluble proteins, it is also regarded as a glycan factory and it also 

possesses a number of different functions which include proteolytic processing (Stamnes 

2004) and lipid homeostasis(Wilson et al. 2011). 

 

1.1.2 Protein transport to Golgi apparatus 

 

Newly synthesized cargo proteins arriving to the Golgi apparatus are coming from ER exit 

sites via vesicular bodies covered with COP II (coatemer protein II) proteins. This system 

regulates secretory cargo concentration in anterograde transport (from ER to Golgi). Cargo 

that needs to be returned back to the ER is transported in COP I type vesicles via vesicular 

transport mechanism that regulates recycling of cargo back into ER.(Lee et al. 2004) The 

fusion between COP II vesicles and the Golgi apparatus occurs, in mammalian cells, at the 

ERGIC (ER-Golgi intermediate compartment) site. There is evidence suggesting that ERGIC 

is the primal sorting site for the cargo that is destined to be recycled to the ER from cargo 

targeted for the cis -Golgi. This primal sorting is achieved by recognition of amino-acid 

motifs in the recycled proteins that determine their subsequent faith. Even though there is 

evidence showing presence of the ERGIC,  in several cell types the stability and dynamics of 

this “organelle” are still elusive(Wilson et al. 2011). 

1.1.3 Protein transport through the Golgi apparatus 

When cargo molecules reach the cis-Golgi, they must pass through the cisternae within the 

stacks to be completely modified and sorted to their appropriate destination. In today’s 

scientific community, several different models have been proposed to explain how cargo can 

traverse the Golgi’s cisternae. Three independent models are: 
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1. The cisternal maturation model (CMM) 

2. The vesicular transport model (VTM) 

3. The rapid partitioning model (RPM)  

1.1.4 The cisternal maturation model 

This model projects that cisternae are formed on the cis-side of the Golgi apparatus and then 

progress through the Golgi stack while carrying secretory cargo molecules in order to form 

exit vesicles at the trans-side of the Golgi. It is believed that Golgi-resident proteins recycle 

between “old” and “new” cisternae via retrograde vesicular transport using COP I-type 

vesicles that  interact with the COG (conserved oligomeric Golgi) complex (Suvorova et al. 

2002). There is much supporting evidence towards the cisternal maturation model and it is a 

prevailing model accepted by the majority of researchers(Emr et al. 2009). Obtained 

morphological data fit well with the CMM, due to the fact that cisternae constituted at the cis-

side and disintegrate (or “peel off”) at the trans-side. This model also explains how large 

cargo molecules (i.e. bigger than transport vesicle) could be secreted (e.g. procollagen in 

mammalian fibroblasts) and the model also incorporates COP I vesicles and the fusion 

machinery components in its mechanism. In this model, COP I vesicles act as retrograde 

carriers of resident Golgi proteins and therefore one can explain why given Golgi resident 

proteins are present in a number of different Golgi compartments as well as why Golgi 

resident proteins move rapidly within and between different Golgi cisternae (Emr et al. 

2009). Similarly,  the CMM could project clear predictions with respect to: cargo speed 

through Golgi cisternae, composition of resident proteins in maturing Golgi cisternae that 

should vary over time and that cisternal maturation should require COP I vesicles. There is 

clear evidence that procollagen and the VSV-G transmembrane glycoprotein move through 

Golgi stack at the same rate. The cisternal composition of resident proteins is dynamic and 

was visualized by live-cell fluorescence microscopy, and the rate of the cisternal maturation 

was similar to the transit speed of secretory cargo, suggesting that cisternal maturation fits, 

with observation of anterograde transport in the Golgi apparatus. Moreover, COP I deficient 

yeast cells had slower maturation of cisternae compared with the wild type (Emr et al. 2009). 

 



 INTRODUCTION 

 

4 

 

1.1.5 The vesicular transport model 

In this model, also known as the stable compartment model, each Golgi stack is a stable 

structure and cargo molecules are transported into cisternae via specialized transport vesicles. 

It was first suggested by Rothman and Wieland in 1996 (Rothman & Wieland 1996). In this 

model resident Golgi proteins are retained in cisternae while secretory cargo molecules are 

moved, from one cisterna to the next, by anterograde COP I- coated vesicles (Emr et al. 

2009).This model has a number of advantages: it explains the polarity of the Golgi stack and 

gives reason for the abundance of COP I vesicles in proximity to the Golgi. The polarity of 

Golgi is achieved due to the notion that each cisterna has a distinctive set of resident proteins 

therefore it could be viewed as a distinctive organelle. Abundance of COP I vesicles around 

the Golgi membranes could be explained by their formation and fusion at the cisternal rims. 

However, this model has encountered a number of conflicting evidence (Bonfanti et al. 1998) 

which raises doubts about its validity. The most prevalent evidence is that the Golgi can 

transport and secrete cargo molecules that are larger than what a secretory vesicle can 

accommodate (e.g. procollagen in mammalian fibroblasts and scales in algae). This could be 

explained by the existence of mega-vesicles, but no putative mega-vesicles are seen in algae 

and procollagen seems to remain in the Golgi cisterna. (Bonfanti et al. 1998) 

1.1.6 The rapid partitioning system 

In this model, proposed by Patterson et al. in 2008 (Patterson et al. 2008), cargo is predicted 

to exit the Golgi apparatus with exponential kinetics rather than showing a distinctive lag 

phase which would be observed if the cargo would follow the cisternal maturation model. 

Secondly, this model shows that upon entry, transmembrane cargo quickly distributes itself 

throughout Golgi membranes and subsequently divides itself into two diverse membrane 

environments. Patterson et al proposed that there are two distinctive membrane regions: a 

processing domain and a secretory domain. In the processing domain one can find a large 

number of cargo-processing enzymes, while secretory domains are capable of forming 

transport intermediates. The different domains in the Golgi membranes possibly arise due to 

different composition of membrane lipids. In this model, the secretory domain is modelled to 

be enriched in cholesterol and glycosphingolipids, whereas the processing domain is mainly 

composed of glycerol phospholipids (Patterson et al. 2008). 
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1.1.7 The Golgi apparatus - a glycan factory 

The Golgi apparatus can be named a glycan factory, as almost all pathways for glycosylated 

proteins and lipids pass through this organelle. 

After initial processing, glycoconjugates leave the ER and travel towards the Golgi stacks. 

Almost all glycoproteins are exposed to trimming and extension as they pass through a Golgi 

stack. In the case of N-glycosylation (most common glycosylation mechanism for proteins), 

the glycoprotein already possesses an oligosaccharide which is then trimmed and/or extended 

by actions of enzymes that are present in the Golgi lumen (Reynders et al. 2011).  

PGs acquire their GAG chains in the Golgi apparatus ,thus Golgi acts as a glycan synthesis 

centre for PGs as well as for other O-linked glycoproteins (Prydz & Dalen 2000). 

The Golgi apparatus is not only a harbour of glycosyltransferase enzymes but provides 

substrates for glycan biosynthesis. UDP-sugar, GDP-sugar and PAPS (3`-phospho-adenosine-

5`-phospho-sulfate) specific transporters translocate UDP-sugars, GDP-sugars and PAPS 

(substrates) from the cytoplasm into the Golgi lumen; this translocation process is energy-

dependent. Saccharides are supplied via dietary routes and converted into UDP-sugars in 

cytoplasm(Caffaro & Hirschberg 2006).  

 

1.1.8 Proteoglycans (PGs) synthesis 

PGs are protein structures with one or more GAG chains attached via O-glycosylation of 

serine residues with neighboring glycines in the peptide backbone. In contrast to 

glycoproteins, where the scientific focus is mostly on the protein part, it is the glycan nature 

that gives the PG its subsequent characteristics.  

1.1.9 Types of proteoglycans 

Small leucine rich PGs (SLRP) contain a protein core with leucine rich repeats with N-

terminal cysteine cluster, “ear repeats” and at least one GAG chain. Those PGs form a family 

with sub-classes- traditionally defined classes I-III and non-canonical classes IV and V. 

SLRP are important in a number of biological functions: binding to collagen, inhibition of 

cell growth or modulation of bone morphogenic protein (Schaefer & Schaefer 2010). Decorin 
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is a prototype member of SLRP, consisted of 359 amino acids with Mw of 39 kDa. There are 

five isoforms of decorin and canonical isoform possesses one O-glycosylation site (GAG) 

and three N-glycosylation sites. It is mostly secreted from cell and localized in the 

extracellular matrix (Uniprot n.d.).Decorin is able to bind transforming growth factor-β 

(Hildebrand et al. 1994). Biglycan is another member of SLRP family. It is a PG with 368 

amino acids constituting 41 kDa of Mw. Biglycan is mostly secreted from cells and is found 

in the extracellular matrix. It has four possible O-glycosylation sites (GAG) and two N-

glycosylation. There is only one isoform of biglycan and it is capable of binding, as well as 

decorin, to transcription growth factor β (Uniprot n.d.; Hildebrand et al. 1994) 

Serglycin is a PG expressed mostly in hematopoietic and endothelial cells. It plays a vital role 

in formation of mast cells secretory granules and is required for storage of some proteases in 

connective tissue. It has a 158 amino acids protein core and its Mw is 17 kDa. It possesses 

eight O-glycosylation sites (GAG) with two sites experimentally proven and six potential 

sites; no know isoforms are reported. The GAGs attached to serglycin are of CS and HS 

nature (Uniprot n.d.; Kolset & Tveit 2008). 

Aggrecan family of PGs consists of four PGs: aggrecan, versican, brevican and neurocan. All 

of those PG have hyaluronic acid binding domain at N-terminal, central region binding CS 

GAGs and C –terminal contain C-type lectin domain. Out of aggrecan family PGs, the best 

studied is aggrecan(Esko et al. 2014). 

Aggrecan is a 250 kDa PG with 2415 amino acid protein core. There are three isoforms and 

two known O-glycosylation sites (both probable) and nine known N-glycosylation sites (eight 

are potential). (Uniprot n.d.) It is reported that aggrecan have more than100 CS chains and 

20-30 keratan sulfate chains (Kjellen & Lindahl 1991) It is a major component of 

extracellular matrix in cartilage tissue and its function is to resist the compression of the 

cartilage. It is tissue specific and exists solely in a secreted form (Uniprot n.d.). 

1.1.10 The linkage region formation 

The synthesis of PGs begins at the ribosomes, in the ER, where the protein core of the future 

PG is being translated from mRNA.  O-glycosylation on serine residues in the early secretory 

pathway with a single xylose sugar starts the synthesis of GAG chain. The xylose sugar is 

attached to a serine next to a glycine by a xylosyltransferase enzyme- either XYLT1 or 
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XYLT2. Subsequently two galactose sugars are attached, in sequence, by the action of two 

galactosyltransferase enzymes: GalT-1 and GalT-2. The addition of a glucuronic acid (GlcA) 

moiety by GlcAT-1 transferase concludes the formation of the linkage or linker region 

(Kreuger & Kjellén 2012a). 

There are two types of modifications that can affect the linker region: phosphorylation of 

xylose sugar and sulfation of galactose sugars. It has been shown that these modifications can 

affect downstream enzymatic polymerization process. The result of intense modification of 

xylose and/or galactoses can be restriction or even inhibition of enzymes involved in 

synthesis of the linkage region. It is stipulated that 4-O-sulfation of the second galactose 

residue can be driving CS formation (Kreuger & Kjellén 2012a). In this respect, addition of 

the fifth sugar, the first N-acetylhexosamine is critical for selective assembly of CS or HS 

chains (Mikami & Kitagawa 2013). 

1.1.11 Synthesis of heparan sulfate (HS) 

Addition of the fifth moiety, the first sugar subsequent to the linker region is the deciding 

point in selection between heparan (N-acetylglucosamine) and chondroitin (N-

acetylgalactosamine) sulfate synthesis. The exact mechanism that rules this choice is still 

elusive. The “gagosome” model suggests a competition between different enzymes involved 

in GAG polymerization would result in either CS synthesis or HS synthesis (Dick et al. 

2012). 

HS polymerization is initiated by enzymes from the EXTL family of glycosyltransferases. 

Those enzymes attach N-acetylglucosamine (GlcNAc) to a non-reducing end of the 4
th

 

moiety on the linker. Enzymes EXTL -1, -2 and -3 have been shown to possess ability to 

transfer N-acetylglucosamine; therefore each one of them can be involved in HS-chain 

polymerization.  EXTL-3 seems to be the enzyme most involved in initiation of HS 

biosynthesis, but EXTL-2 and -1 are also necessary for proper HS biosynthesis. The 

increased level of EXTL-3 results in increased HS chain length which suggests a complex 

regulation of HS biosynthesis (Kreuger & Kjellén 2012a). EXTL-2 exhibits dual transferase 

activity. It can attach either GlcNAc or GalNAc to the tetrasaccharide linker region. Addition 

of GlcNAc will initiate HS biosynthesis whereas addition of GalNAc (by EXTL-2) is 

suggested to inhibit CS biosynthesis, as GalNAc does not serve as an acceptor for successive 

CS polymerization (Kreuger & Kjellén 2012a). 
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Following EXTL-mediated initiation, the HS chain is polymerized by a functional HS 

polymerase complex which is composed of EXT-1 and EXT-2. This complex transfers GlcA 

and GlcNAc sugars in alternative fashion onto growing chain.  The interaction between EXT-

2 and N-deacetylase/N-sulfotransferase 1 enzymes is implied in regulation of the HS chain 

length (Kreuger & Kjellén 2012a). 

1.1.12 Synthesis of Chondroitin sulfate (CS) 

The linker region synthesis is a common pathway for HS and CS, while the elongation and 

modification of HS and CS GAG chains is carried out by  different sets of enzymes, which 

also generally seem to be localized to different sub-regions of the Golgi apparatus (Prydz & 

Dalen 2000). 

The elongation of CS chains is mediated by an action of two distinct transferases that extend 

the GAG chain with alternating Glucuronic acid (GlcA) ( by GlcA Transferase II) and N-

acetylgalactosamine (GalNAc) ( by GalNAc Transferase II) residues, where the GalNAc is 

the first to be added to the linker region (Mikami & Kitagawa 2013). 

In recent years, six homologous glycosyltransferases that are indicated in CS synthesis have 

been cloned and characterized in vitro. Based on their enzymatic activity they have been 

termed chondroitin synthase -1 (ChSy-1), chondroitin synthase -2 (ChSy-1), chondroitin 

synthase-3 (ChSy-3), chondroitin polymerizing factor (ChPF), chondroitin GalNAc 

transferase-1 (ChGn-1) and chondroitin GalNAc transferase-2 (ChGn-2). ChSy-1, ChSy-2 

and ChSy-3 enzymes have dual glycosyltransferase activity (GlcAT-II and GalNAcT-II), but 

are incapable of synthesizing CS on their own. However, the co-expression of any two out of 

four proteins (ChSy-1, ChSy-2, ChSy-3 and ChPF) results in significant increase of GlcAT-II 

and GalNAcT-II activity. (2)  This leads to CS chain elongation where the chain length is 

dependent on the composition of synthesizing enzymes. In conclusion, CS polymerization 

can be achieved by enzyme complexes (chondroitin polymerases) that consist of multiple 

combinations of the four enzymes: ChSy-1, ChSy-2, ChSy-3 and ChPF (Mikami & Kitagawa 

2013).  
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Figure 2. Schematic representation of CS GAG; names of glycosyltransferases are given in 

white boxes (Mikami & Kitagawa 2013). 

The ChGn-2 and ChGn-2 enzymes have both GalNAcT-I and GalNAcT-II activities and thus 

are believed to be involved in CS chain backbone initiation and elongation steps. They are 

also needed for CS chain length regulation and/or regulation of the GAG numbers (Prydz & 

Dalen 2000). 

 

Figure 3 Overview of CS and HS biosynthesis(Sugahara & Kitagawa 2000). 

1.1.13 HS and CS synthesizing enzymes localize to the Golgi 

apparatus 

Enzymes needed for completion of HS PG synthesis are localized in cis -, and medial- Golgi 

cisternae. On the other hand, enzymes needed in biosynthesis of CS PG are localized to the 

trans-region of the Golgi apparatus(Prydz & Dalen 2000). 
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Figure 4. Localization of PG polymerizing enzymes in the Golgi apparatus; STs- 

sulfotransferases, GlcAT- glucuronic acid transferases, GT- galactosyltransferases, XT-

xylosyltransferase (Prydz & Dalen 2000). 

1.2 N-glycosylation 

N-glycosylation is present in all domains of life: bacteria, archea and eukaryotes.  It involves 

a process in which an oligosaccharide is attached via an N-glycosidic linkage to a side chain 

of an asparagine residue of a protein core. The attachment site is specified by a consensus 

sequence of N-X-S/T (Aebi 2013).  

A lipid-linked oligosaccharide (LLO) is first biosynthesized on dolichol (an isprenoid lipid), 

which acts as a carrier molecule.  The building blocks of LLOs are: mannose (Man), GalNAc 

and glucose (Glc). These are delivered as nucleotide-activated sugars to the site of synthesis.  

The biosynthesis of LLO is carried out by a group of glycosyltransferases that act in a 

sequential manner. The LLO biosynthesis starts at the cytoplasmic side of the ER membrane 

with addition of GlcNAc-P to Dol-P and formation of Dol-PP-GlcNAc. Subsequent reactions 

result in formation of Man5GlcNAc2 before the LLO is “flipped” to the lumenal side of the 

ER. The exact molecular mechanism and protein involved in LLO-flipping are still poorly 

understood (Aebi 2013).  
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1.3 The COG complex 

1.3.1 COG structure 

COG- is an acronym for conserved oligomeric Golgi-complex which was initially described 

by Daniel Ungar and his team in 2002 (Ungar et al. 2002), while working with yeast and 

mammalian cell lines on the low density lipoprotein receptor. This complex is a heteromer 

composed of 8 subunits (labelled 1-8), where units 1 to 4 compose lobe A and units 5 to 8 

compose lobe B (Ungar et al. 2002). It localizes peripherally to Golgi membranes. It was 

shown that COG subunits 2-4, 1/8 and 5-7 form stable entities which indicated that the COG 

complex is composed by two lobes with a bridge in form of COG1-COG8 structure (Ungar et 

al. 2006). 

 

Figure 5. Schematic diagram of the COG complex (Ungar et al. 2006). 

  

1.4 COG complex function.  

The best documented example of COG function is its indirect involvement in glycosylation 

processes where defects in COG lead to severe glycosylation-linked syndromes. According to 

Ungar et al, 2006, the majority of published data suggests that the COG complex is involved 

in retrograde trafficking within the Golgi apparatus and in endosome to Golgi transport.  
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In order to understand a protein’s function, it is vital to establish its interactive partners. The 

COG complex is shown to have a number of those. SNAREs, proteins involved in membrane 

fusion, are shown to interact extensively with COG complex subunits. Secondly, small 

GTPases- Rabs, which localize to the Golgi apparatus and are thought to take part in 

trafficking, are indicated in the COG interaction scheme (Willett et al. 2013). Moreover, COP 

I proteins are shown to strongly interact with the COG complex. With the abovementioned 

three classes of proteins: SNAREs, Rabs and COP I, that are pivotal to protein transport in 

the Golgi apparatus, the COG complex shows strong indication of involvement in protein 

intra-Golgi trafficking (Ungar et al. 2006). Furthermore, interaction with COP I proteins 

suggest that the COG complex is involved in retrograde transport, rather than anterograde. 

Subsequent studies of the COG complex revealed that its involvement in retrograde transport 

is more than a suggestion. A study by Oka, T. et al. (2004) (Oka et al. 2004) indicated the 

presence of type II integral Golgi membrane proteins with reduced steady-state levels in 

CHO cells that lacked the COG 1 and COG 2 subunits. Those proteins were termed GEARs 

and are comprised of the following family members: 

 

Figure 6. List of GEAR-proteins (Ungar et al. 2006). 

The function of mannosidase II (an enzyme involved in glycosylation) as GEAR could 

explain the global glycosylation defects in COG1 and COG2 deficient cell lines. 

Zolov and Lupashin showed in 2005 that cells with silenced COG3 gene, accumulated 

vesicles that carried a number of Golgi proteins: v-SNAREs, GS15, GS28 and cis-Golgi 

glycoprotein GPP130 (Zolov & Lupashin 2005). Those vesicles were labelled COG-complex 

depended vesicles (CCD vesicles) and showed to incorporate at least three GEARs on their 

membranes. CCD vesicles showed retrograde transport activity (Ungar, 2006). Up to date, 
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experimental data shows that the COG complex is most likely involved in retrograde Golgi 

transport. However, the exact mode of action is still not fully understood.  

Other tethering factors, that are present in the Golgi proximity and involved in vesicle 

tethering (i.e. TRAPP, GARP/VFT), share some similarity with the COG complex. All of 

them, including COG, seem to react with Rab and SNARE proteins. It is possible that the 

COG complex could be, in fact, a Rab effector protein (Ungar et al. 2006). 

The COG complex is also implied in a number of activities surrounding vesicle trafficking. 

The COG complex, at least in some cases, is shown to recruit and activate Rab GTPases. 

Moreover, COG is implemented in possible remodeling of actin near the plasma membrane, 

and, in formation of membrane-bridging SNARE complexes (Ungar et al. 2006). 

1.5 Congenital disorders of glycosylation 

(CDGs) 

Glycosylation is a crucial process in a eukaryotic cell, but like all processes, it can 

malfunction. Because of its complicated nature and involvement of many steps there are 

many steps that can become aberrant.  

Congenital disorders of glycosylation are a group of syndromes that affect glycosylation 

process in humans. The moieties that are affected by CDGs are mainly glycosylated proteins, 

but lipids can also be affected, in which case the glycosylation of protein or lipid is defective 

or reduced. 

The two main types of glycosylation: N- and O- linked glycosylation differ in many aspects. 

N-glycosylation is two –step (trimming and extension) that occurs at three different sites ( the 

cytoplasm, the ER lumen, and the Golgi lumen), while O-linked glycosylation has most of its 

assembly in the Golgi lumen.  The spatial arrangement of N-glycosylation in which 

oligosaccharides is transferred from a lipid-linked state in the ER lumen onto a protein gives 

CDG numeral nomenclature that divides this group into two sub-groups: CDG I and CDG II 

type.  

 

CDG I –type syndromes affect the oligosaccharide synthesis on dolichol (Dol) 

oligosaccharide carrier, before it is transported onto a protein, while CDG II-type in modern 
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nomenclature concerns all other glycosylation defects affecting N-glycosylation after proteins 

have been initially decorated with pre-synthesized glycan and all other defects affecting the 

synthesis of O-glycans and glycolipids.  

Until recently, glycosylation diseases were named using the CDG acronym followed by a 

sub-group number and a letter assigned alphabetically following a chronological order of the 

subsequent discovery. Currently, it is recommended to use genomic nomenclature in order to 

specify which gene(s) is the causative effect. Therefore it is recommended to put a mutated 

gene abbreviation along with the CDG acronym. 

However, even though nomenclature of glycosylation disorders has changed, two systems are 

still used.  

Within the CDG’s linked to N-glycosylation pattern, there are 15 identified defects- 12 from 

CDG I and 3 from CDG II sub-groups (Jaeken 2013). 

In the O-glycosylation pathway, defects have been found in the following biosynthesis 

pathways: O-xylosylglycans, O-N-aceltylgalactosaminoglycans, O-N 

acetylglucosaminoglycans, O-fucosylglycans and O-mannsylglycans. The glycosphingolipid 

and GPI glycosylation pathways have two syndromes described up to date: SIAT9-CDG and 

PIGM-CDG. There are numbers of glycosylation syndromes that affect multiple 

glycosylation and other pathways and in this group COG4-CDG, COG8-CDG and COG7-

CDG are described (among others) (Jaeken 2013). 

 

Figure 7 Comparison of different COG-CDGs. Glycosylation defects apply to N-glycosylation. (Reynders et al. 

2009) 
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Patient with COG4-CDG displayed seizures, dysmorphic facial features, mild ataxia and 

psychomotor development delay (Reynders et al. 2009). 

Patient with COG8-CDG showed seizures, failure to thrive, dysmorphism (small feet and 

hands), ataxia and neurological regression (Foulquier et al. 2007). 

 

1.5.1 COG7 mutation and COG7-CDG 

COG7-CDG was firstly described by Wu et al in 2004 (Wu et al. 2004), when two siblings 

(P1 and P2) with Mediterranean background were diagnosed with several severe clinical 

symptoms. Their parents were consanguineous, but otherwise healthy. Siblings displayed 

dysmorphia, mental retardation, general hypotonia and failure to thrive. Their lysosomal 

enzymes were elevated in their circulation and abnormal glycosylation of transferrin was 

observed. Moreover, significant reduction of sialic acid levels in serum led to a final 

diagnosis of a glycosylation defect - a CDG. Further diagnosis revealed that P1 had decreased 

sialylation, while P2 did not deviate from the normal pattern in this regard. Furthermore P1 

has shown defects in O-linked oligosaccharide synthesis that seemed to be a result of 

decreased activity of nucleotide sugar transporters as well as glycosyltransferases; cells from 

P2 did not show the same changes (Wu et al. 2004). 

These particular patterns in glycosylation defects lead the team to a discovery that P1 had 

mutation in its COG complex. The result was a homozygous intronic mutation (for both P1 

and P2) IVS+4 A →C. This allowed cryptic, conserved alternative splicing site near the 1
st
 

intron/exon boundary that resulted in 19-base deletion of COG7 mDNA. The COG7 protein 

level was reduced in both patients, due to reduced splicing efficiency, a premature 

termination codon or both.  P1 and P2 had the COG7 protein levels reduced by 95% and 85 

%, respectively, and COG7 mRNA reduction also followed those values. Introduction of wt-

cog7 DNA via molecular cloning could rescue glycosylation and trafficking properties in 

COG7 cells. Wu et al were the first to show a new class of CDG in which the affected gene is 

not directly involved in synthesis of complex glycans or synthesis or transport of sugar 

donors, but rather coding a protein involved in trafficking of the glycosylation machinery 

(Wu et al. 2004) 

..
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2 Materials and Methods 

2.1 Cell tissue culture 

Cells used in this project were made available by Dr Erik Eklund, Lund University. COG7, 

E42, and E12 were the names of the cell lines. E42and E12 were fibroblasts harvested from 

lower arm skin of healthy individuals and COG7 were fibroblasts harvested form neonatal 

patient that showed COG7-deficiency. 

All culture work was carried out using standard aseptic techniques, unless otherwise 

specified. 

1. Used complete medium and trypsin were always heated to 37°C before being applied 

to cell cultures, unless otherwise specified. 

2. Throughout most of the project E42 cells were used as control, or “healthy” cells. 

Unless otherwise specified, it should be assumed that E42 cells were used as a 

control. 

3. COG7 cells showed satisfactory cell growth initially, but after few months their 

growth rate deteriorated and cells stopped dividing. This resulted in limited amount of 

data obtained in the project. It is worth notifying that the patient form which the cells 

were obtained, deceased at age of 2 months. 

Standard incubation conditions: air-flow incubator; 5 % CO2 and 37°C 

2.1.1 Culturing cells from frozen samples 

The cells were obtained in medium from the University of Lund, multiplied by continuous 

culture and frozen down as ampules for later use. Upon thawing, the cells were grown in the 

cell lab according to the following procedure: 

1. Ampules were thawed in water bath at 37°C.  
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2. Thawed cell suspension was transferred aseptically into 20 ml of DMEM (complete 

medium), supplemented with 10 % fetal bovine serum (FBS) and 1 % 

Penicillin/Streptomycin in 75 cm
2
 cell culture flasks. 

3. Cells were cultured in an air incubator under 5 % CO2 and 37°C for 3 days. 

4. After 3 days, the growth progress was examined under the light microscope and if 

confluence was satisfactory, cells were passaged. If the confluence wasn’t 

satisfactory, the medium was changed and replaced with a new 20 ml and the cells 

were grown for another 3 days with daily checking of confluence. 

2.1.2 Cell passage 

Cell passage was performed in order to increase number of proliferating cells and increase 

their living space. Cell passage was only performed on fully confluent cell culture flasks. The 

procedure was carried out as follows: 

1. Old medium was removed from culture flask and cells were washed briefly with 5 ml 

of trypsin at 37°C, for 1-2 min. 

2. 5 ml trypsin was removed from the culture flasks and replaced with fresh 1.5 ml of 

trypsin. Cells were then incubated, with trypsin, for 30 min in an incubator at 37°C 

and 5 % CO2..  

3. After incubation, cells were checked to ensure full release from the culture flask. 

4. Trypsin was then quenched with 20 ml of complete medium and the total volume was 

spun down at 1500 rpm for 7 min. 

5. The supernatant was discarded and the pellet war re-suspended in 5 ml of complete 

medium. 2.5 ml of the cell suspension was transferred into fresh 20 ml complete 

medium in a new culture flask. This was repeated for the remaining 2.5 ml of the cell 

suspension. 

6. Two new flasks were then incubated in an air-incubator under 5 % CO2 and 37°C for 

3 days and the cell growth was investigated. 
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2.1.3 Cell transfer to well plates (6 x 2 ml) 

In order to carry out metabolic labelling [section 2.2], cells were split and transferred into cell 

culture plates. The procedure was carried out as follows: 

1. Cells were trypsinated as per 2.1.2, points 1 to 3. 

2. Trypsin was quenched with 5 ml of complete medium and the solution was 

centrifuged for 7 min at 1500 rpm. 

3. The supernatant was discarded and the pellet was resuspended in a suitable volume of 

complete medium (2.0 ml per well, i.e. for 4 wells- 8.0 ml of complete medium). 

4. 2.0 ml of the cell suspension was transferred into each new well in a 6-well cell 

culture plate and incubated for 3 days at standard conditions. 

After 3 days, cells were observed under the light microscope to ensure proper adhesion and 

cell density. 

2.1.4 Cell tissue maintenance 

If the cells were not used in experiments, their complete medium was changed every 3 to 4 

days. Old medium was discarded and replaced with an equal amount of fresh complete 

medium. If the cells were completely confluent, the cells were passaged as per section 2.1.2. 

2.1.5 Freezing of cells 

Unused cells were frozen in order to increase their viability and create a working bank for 

later cell culture. 

The cell freezing procedure was carried out as follows: 

1. Cells were removed from cell culture flasks using trypsination [section 2.1.2, points 

1-3]. 

2. 5.0 ml of complete medium was added to the cell suspension in trypsin before 

centrifugation for 7 min at 1500 rpm. 
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3. The supernatant was discarded and the pellet was dissolved in 1.2 ml of freezing 

medium (Complete medium with 10 % dimethyl sulfoxide (DMSO)). 

4. The cells suspended in freezing medium were transferred to a cryoampule and 

labelled accordingly. 

The ampule was placed ASAP in -80 °C freezer for 24 hr. After 24 hr, the ampule was 

transferred to liquid nitrogen for long term storage. 

2.1.6 Harvest of non-radioactively labelled fractions (M and CL) 

Non-radioactively labelled medium (M) and cell lysate (CL) fractions were used for WB 

analysis [section 2.8] and protein concentration [section 2.12] for subsequent analysis. The 

harvesting procedure was carried out only with cell culture flasks that showed full 

confluence. Collected medium was serum-free, in order to exclude any proteins from sources 

other than the analysed cells. 

Harvest of non-radioactively labelled medium  

The harvest of M was carried out as follows: 

1. Old medium was removed from cell culture flask followed by two washings steps, 

each with 20 ml of DMEM without supplements. Used DMEM was discarded. 

2. New 20 ml of DMEM was added to culture flask and the cells were incubated for 30 

min in an incubator at 37°C, 5 % CO2. The medium was discarded and the cells were 

washed briefly once more in DMEM. 

3. The washing medium was replaced with 20 ml of fresh DMEM and incubated for 24 

hr under the same conditions (1
st
 incubation period). 

4. Medium was harvested, and replaced with 20 ml of another fresh DMEM for further 

24 hr (2
nd

 incubation period). The harvested Ms was labelled accordingly and frozen 

at -80 °C. 

After the 2
nd

 incubation period, the medium was collected again, labelled accordingly and 

frozen at -80°C. 
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Harvest of non-radioactively labelled CL 

1. Harvest of CLs was carried out immediately after the final medium harvest to achieve 

paired data sets. 

2. The harvest of CL was carried out as follows: 

3. After harvesting medium [section 2.1.4.1], cells were briefly washed three times with 

10 ml of ice-cold, sterile, 1x PBS (phosphate buffered saline). Washings were 

discarded. 

4. 5 ml of ice cold, sterile 1x PBS was added to the culture flask and the cells were 

scraped off from the bottom of the culture flasks, using a rubber policeman. The 

culture flasks were then inspected under the light microscope to ensure complete 

removal of attached cells. 

5. 5 ml of ice cold, sterile 1x PBS was added and additional cells were poured off and all 

cells removed were centrifuged for 7 min at 1500 rpm. The supernatant was 

discarded. 

6. The cell pellet was labelled accordingly and frozen at – 80 °C. 

When it was necessary to use CL fraction, frozen pellet was removed from freezer, thawed 

and lysed in 1.0 ml of lysing buffer for 20-30 min at room temperature. 

2.2 Metabolic labelling 

2.2.1 Substrate supply 

Metabolic labelling was carried out in order to provide cells with radioactive 
35

S-SO4
2-

. These 

sulfate ions would in turn be incorporated in sulfated GAG chains on PGs. When working 

with live cells, the aseptic procedure was put into place. Procedure for metabolic labelling 

was as follows: 

1. From 2.1.3, old complete medium was removed from each well in a 6-well cell 

culture plate and replaced with 1.5 ml of 
35

S-SO4
2-

 (0.2 mCi/ml) in RPMI-1640 

without sulfate. The medium also contained 2 % FBS. 
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2. Cells were incubated for 24 hr in an incubator at 5 % CO2 and 37°C. 

3. After 24 hr, the media and cell fractions were harvested 

2.2.2 Radioactively labelled CL and M harvest 

1.0 ml of harvested medium from radioactively labelled cells was applied to 4 ml G-50 fine 

Sephadex column and labelled macromolecules were eluted using 1.5 ml of dH2O.  

1. The elutes were collected, labelled accordingly (cell line name plus M) and frozen. 

2. Cell fractions remaining in wells were washed twice using ice cold PBS (2 x 2.0 ml) 

for 20 min, in order to prevent cross contamination from medium macromolecules. 

3. Washed cells were lysed by addition of 1.0 ml of ice cold lysis buffer and incubation 

for 40 min with shaking, on ice. 

4. CLs were collected and added to G-50 fine Sephadex columns and macromolecules 

were eluted following the same procedure as for the Ms. 

5. Elute was labelled accordingly (cell line name plus CL) and frozen at -20°C  

2.3 Scintillation counting  

Scintillation counting is a method used to determine radioactivity in a given sample. 

Radioactivity is measured by applying scintillation liquid to the samples to be measured. The 

scintillation liquid, upon exposure to radioactivity will emit light. This light emission is then 

measured by the scintillation counter and converted into counts per min (CPM). 

Scintillation counting was performed as follows: 

1. Appropriate sample volume was added to in scintillation count vials. 

2. Into each vial, 3.0 ml of scintillation fluid was added and the mixture was thoroughly 

mixed by inverting 5-10 times. 

3. Vials were placed in the scintillation counter racks and the appropriate measuring 

program was set up and executed, using manufacturer’s software. 
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4. Read out was collected in printed form and the data was transferred into an excel file. 

5. Used vials were discarded following the appropriate procedure.  

For analysing crude samples (CL and M), 40 μl of sample volume was used. For Gel size-

exclusion chromatography [section 2.7] 1.0 ml of sample volume was used. 

 

2.4 SDS-PAGE 

SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) is a method used for 

separation of protein molecules based on their molecular mass (Mw). Each molecule 

possesses more or less intrinsic electrostatic charge, which makes it attracted to the opposite 

charge and thus may move through a medium through which an electric current is applied. In 

SDS-PAGE, SDS is a detergent that gives uniform charge for all protein molecules after 

incubation at high temperature so each protein will ideally have the same mass-charge ratio, 

but not the same mass. The mass will determine the speed by which a protein would travel 

through the gel (polyacrylamide). The lighter proteins travel faster through the gel and the 

heavy proteins travel more slowly. Over fixed time period, the proteins will separate 

themselves on the basis of Mw. 

This procedure describes the SDS-PAGE analysis with gel drying, that subsequently lead to 

radiographic imaging. 

Into each gel a molecular marker was loaded (1-3 μl/well).SDS-PAGE analysis used for WB 

and silver stain imaging is described in section [section 2.8] 

The SDS-PAGE analysis was carried out as follows: 

1. Appropriate volume of sample (calculated beforehand) was dried in a freeze dryer in 

order to concentrate it. 

2. Concentrated samples were re-suspended with a calculated volume of a previously 

created master mix. 

3. Samples were heated for 3 min at 97°C, to allow proper denaturation of proteins. 
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4. Samples (maximum total volume of 40 μl) were loaded into the wells of a Criterion 

XT Precast Gel Bis-Tris 4-12 % along with molecular marker (1-3 μl). 

5. Gel was run for 80 min at 180 V, 180 mA. In some cases , increased time was applied 

in order to bring the protein front closer to the gel’s end, thus achieving better 

separation.  

6. The gel was removed from SDS-PAGE running buffer, washed twice with dH2O, and 

put into t fix solution overnight, with rocking (minimal time needed for fixation is 1 

hour, recommended overnight).  

7. After fixation, fix solution was discarded following the standard procedure. Gel was 

washed twice with dH2O and amplified with Amplify solution (GE Healthcare) for 30 

min. 

8. Following amplification, gels were washed twice with dH2O and placed on a slob gel 

dryer at 80°C until dry. Filter paper was placed under the gel to prevent contamination 

and plastic foil was placed on top for protection. 

9. Dry gels were then removed and processed for radiographic imaging 

2.5 Radiographic imaging 

 

Radioactive atoms emit energy as radiation, eitherα-particles or β- or γ- rays. The exact 

energy and nature of radiation is specific for each radioactive element. In this project, the 

radioactive sulfur isotope, 
35

S, was used in the form of sulfate ions 
35

S-SO4
2-

. Radioactively 

labelled PGs [section 2.2] incorporate radioactive sulfate during synthesis and may be 

visualised after separation on SDS-PAGE gels. 

The radiographic imaging was carried out in a PhosphoImager as follows: 

1. Previously dried gels [section 2.4] are placed in an exposure cassette for overnight 

exposure. One must take care to make sure that the gel is properly dried; any traces of 

water would damage the cassette and distort the results. 
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2. Exposure screen was placed on a Typhoon PhosphoImager for gel imaging. The 

Typhoon Reader should be turned on at least 30 min before taking the image for 

better results. 

3. Using software (Typhoon scanner control 3.0), a gel image was taken at 200 

pixels/micron resolution. The file was saved on external memory for further analysis. 

4. Used exposure cassette was erased using image eraser equipment. 

 

2.6 Enzymatic digestion of GAGs  

Enzymes that can digest HS or CS were used to determine the characteristics of PGs present 

in the sample. Hep digests HS, leaving CS and other GAGs, while chondroitinase ABC 

(cABC) digests chondroitin and dermatan sulfate, leaving HS and other GAGs undigested. 

2.6.1 cABC digestion 

cABC, E.C. 4.2.2.4, is an enzyme that catalyses the eliminative cleavage of N-

acetylhexosaminide linkages in CS A, CS B, CS C, chondroitin, dermatan sulfate and 

hyaluronic acid yielding mainly disaccharides (Amsbio n.d.). The yielded disaccharides will 

travel through an SDS-PAGE gel and will not be seen as a band on a radiographic gel image 

of 
35

S-labelled macromolecules. The remaining bands would mostly represent HS PGs and to 

some extent other sulfated molecules. 

The digestion with cABC enzyme was carried out as follows: 

 

1. An appropriate volume of samples (8-40 μl) was transferred into 1.5 ml Eppendorf 

tubes and dried in the freeze dryer. 

2. Fully dried samples were re-suspended in 15 μl of 1x cABC buffer. 
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3. 30 mU of cABC enzyme was added to each re-suspended sample and incubated for 

1hour at 37°C in a heating block. For control samples, 5 μl of 1x cABC buffer was 

added instead of cABC enzyme. 

4. Digestion was stopped after 1 hour with 2 min of heating at 97 °C. The samples were 

then either applied to SDS-PAGE gel analysis [section 2.4] with radiographic imaging 

[section 2.5], or in the size-exclusion gel column chromatography [section 2.7]. 

 

2.6.2 Heparinase I, II, III (Hep) enzymatic digestion   

Heparinase I, II, III, (Hep) E.C. 4.2.2.8, is an enzyme mix that cleaves selectively, via an 

elimination mechanism, sulfated polysaccharide chains containing 1-4 linkages between 

hexosamines and glucuronic acid residues. It cleaves HS solely and does not cleave 

fractioned heparin or low Mw heparin (IBEX Pharmaceuticals 2011). The saccharide that is 

yielded in the reaction would, similarly to cABC digestion, travel through gel and the bands 

remaining will be CS PGs and other sulfated molecules. 

 

The digestion with Hep was carried out as follows: 

1. An appropriate sample volume (8-40 μl) was dried using a freeze dryer. 

2. Dried pellet was re-suspended in 15 μl of 1x Hep buffer. 

3. 0.1 mU of Hep enzyme was added to the re-suspended sample. 

4. The sample was mixed and incubated for 16 hr at 28°C on a heating block. 

Digestion was stopped after 16 hr with 2 min incubation at 97 °C. The samples were either 

subjected to SDS-PAGE gel analysis [section 2.4] with radiographic imaging [section 2.5] or 

to gel filtration chromatography [section 2.7]. 
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2.7 Size exclusion gel chromatography  

Size exclusion gel chromatography separates molecules based on their Mw. In size exclusion 

chromatography, the columns are filled with beads that contain pores of a defined size. 

Molecules larger than the pore will be excluded from entering the beads and travel fast 

through the column and elute in V0 (void volume), while molecules that fit in the pore will 

also travel through the beads and will elute later, at Vt (total volume) if the molecules have 

full access to the internal volume of the bead material. In this project, radioactively labelled 

PGs were analysed by size-exclusion gel chromatography. In theory, PGs with full GAG 

chain modification would elute in V0, and small molecules (i.e. disaccharides) would elute in 

Vt.  

Gel material used was CL6-B Sepharose ™; plastic column was 1x40 cm, gel volume was 40 

ml. Samples for column chromatography were previously metabolically labelled [section 2.2] 

and enzymatically digested [section 2.6].  

 

The size exclusion gel chromatography was carried out with the following steps 

1. Obtained sample was supplemented with 150 μl of blue dextran/potassium dichromate 

solution or more to avoid too much dilution. This solution provided molecular size 

markers for V0  (blue dextran- blue colour) and Vt (potassium dichromate-yellow 

colour). 

2. Columns were purged with running buffer at 0.14 ml/min flow rate for 30 min. 

Columns were then equilibrated with running buffer at a flow rate of 0.14 ml/min. 

3. Sample was applied dropwise onto the column, allowed to sink into the column 

material and overlayered with running buffer. 

4. Fractions were collected at 7 min/fraction. Collection started when the blue marker 

had approached the end of the column. For each run, 40 fractions were collected 

directly into scintillation vials. 

5. After collection was completed, each fraction was supplemented with 3.0 ml of 

scintillation liquid. Fractions with strong blue and yellow colour were marked as V0 



 MATERIALS AND METHODS 

 

27 

 

and Vt. Subsequently, the radioactivity in each fraction was determined in a 

scintillation counter and the data was recorded in an excel file. V0 and Vt fractions 

were marked accordingly. 

2.8 Western blotting (WB) 

In WB, proteins that have been separated on SDS-PAGE gels are transferred to a membrane. 

This allows for subsequent incubation with antibodies that will detect the presence of specific 

proteins. WB is used to detect and quantify proteins of interest, although the quantitation may 

be regarded as semi-quantitative. 

The WB was performed in this project using NuPAGE 4-12 % Bis-Tris gels, in contrast to 

SDS-PAGE gels used in radioactive imaging (Criterion XT). 

Through this project only the wet transfer method was used. 

The WB was carried out as follows: 

1. An appropriate, calculated, volume of each sample (2-16 μl) was mixed with 

NuPAGE master mix, in order to achieve a satisfactory dilution level. 

2. Samples were heated at 70°C for 10 min on a heating block. 

3. Gel was run, following the manufacturer’s suggestion, at 120 V for 120 min. 

4. Transfer of the proteins to a PVDF membrane was carried out using the 

manufacturer’s manual, at 30 V and 180 mA for 1 hour. 

5. The membrane was then blocked with 2 % ECL Blocking agent in 1x TTBS at 

4°C, overnight. 

6. After blocking, the membrane was blotted with the primary antibody (1
st
 Ab) 

solution at 4°C for overnight. The recommended dilution of each antibody was 

obtained from the supplier’s records (between 1:2000 and1:5000).   

7. After primary antibody incubation, the membrane was washed 5 times for 10 min, 

each time with fresh 1x TTBS. 

8. After washing steps, membrane was blotted with a secondary antibody (2
nd

 Ab) 

solution for 1 hour at room temperature.  The dilution used was 1:50 000. 

9. The membrane was then washed 5 times for 10 min, each time with fresh 1 x 

TTBS 
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10. The membrane was then incubated with ECL™ Detection reagent using 

Amersham ECL ™ Select WB Detection reagent manufacturer’s manual. For each 

membrane 1.0 ml to 1.5 ml of the final development solution was used. 

2.8.1 WB imaging 

Imaging of WB membranes was carried out on a Kodak Image Station 400R Pro using 

luminescence settings and the exposure time was 1-5 min. Files were saved on an external 

drive. Methods for taking images followed the manufacturer’s manual. 

 

2.9 Dialysis and concentration of Ms 

Ms from E42 and COG7 were dialysed and concentrated to achieve a high protein 

concentration required for WB analysis. This was carried out due to the fact that PGs are 

expressed at low levels in cells when compared with more abundant proteins. 

Dialysis was only performed on non-radioactively labelled harvested Ms [section 2.1.6] from 

E42 and COG7 cells. 

 

The dialysis of Ms was carried out as follows: 

1. 5.0 ml of harvested medium was placed in a dialysis cassette. 

2. The cassette was placed in 3 litres of dH2O with stirring overnight at 4°C. 

3. Dialysed medium was removed from the cassette and placed in a centrifugal filter 

tube for concentration. 

4. The tube was centrifuged at maximum rpm (in Alexa X-22 centrifuge) for 40 min 

or until the un-filtrated medium reached 1.0 ml in volume  

5. Un-filtrated liquid was transferred into 5 Eppendorf’s tube, 200 μl in each. The 

tubes were labelled and placed in freeze dryer and dried. 

6. The tubes were dried until there was no liquid present and/or a precipitate formed. 

Then the tubes were removed from the freeze dryer and either the precipitate was 

frozen at -20°C for future work or it was re-suspended with 20 μl of appropriate 

solvent (dH2O or buffer).  
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2.10  Ion-exchange chromatography 

Ion-exchange chromatography separates molecules on the basis of their affinity to ligand on 

the column, which is either positively or negatively charged. In theory, all PGs, since they 

have negatively charged GAGs chains, should bind to a positively charged column and would 

not elute until displaced by ions with higher affinity. In this project 2 x 5 cm plastic columns 

were used with a DEAE-sephacel gel volume of 1.0 ml. 

All steps were carried out in the cold room at 4-8°C.  

The ion-exchange chromatography was carried out as follows: 

1. A 2 x 5 cm plastic column was filled with 1.0 ml of DEAE-sephacel column 

material and was equilibrated with 6.0 ml of buffer A. Flow rate was established at 

3-5 seconds/drop. 

2. Sample was applied (5.0 ml of dialysed, but not concentrated medium) at 5-10 

seconds/drop. The flow-through was collected and labelled Elute 1. 

3. The column was washed with buffer A twice with 5.0 ml each time at elution rate of 

3-5 seconds/drop. Elute was collected as “Elute 1.2” and “Elute 1.3”. 

4. 5.0 ml of buffer B was applied to the column and the elute was collected as “Elute 

2” with rate of 5-10 seconds/drop. 

5. 5.0 ml of buffer B was applied to the column and the elute was collected as “Elute 

3” with rate of 5-10 seconds/drop. 

6. The column was washed with 2 x 5.0 ml of buffer A, capped and stored at 4°C. 

Elutes 1.2 and 1.3 were eventually discarded as these low-salt washes do not contain any PGs 

of interest. Elutes 1and 2 were analysed by mass spectrometry to establish the presence of 

PGs. Elutes 1 and 2 were also analysed by SDS-PAGE followed by silver staining to 

visualize proteins. 
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2.11 Mass Spectrometry (MS) 

Mass spectrometry is a powerful tool used to identify proteins and protein modifications 

based on their mass to charge ratio (m/z ratio). In this project, MS was used to identify 

potential PGs and their modifications from COG7 and E42 M samples. 

Procedure: 

The samples submitted for analysis were derived from Elute 1 and 2 obtained during ion –

exchange chromatography. 

All MS analysis was carried out by Anders Moen, the Head Engineer in mass spectroscopy 

facility at Department of Biosciences, University of Oslo. Peptide search and identification 

was carried out by Anders Moen. 

2.12 Protein measurement- BCA™ Assay 

This method is based on reduction of copper ions (from Cu
2+

 to Cu
+
) by protein in an alkaline 

solution. Highly sensitive and selective colorimetric detection is connected to the reduction 

reaction by a unique reagent based on bicinchoninc acid. The detection is carried out at 562 

nm and may be read in the spectrophotometer. 

The procedure was carried out according to manufacturer’s manual (BCA™ Protein Assay 

Kit, 23225, 23227, Pierce, Rockford, IL) with minor deviations, listed below: 

1. BSA standards were prepared using DMEM instead of dH2O for measuring protein 

concentration in the medium. 

2. BSA standards were prepared using lysis buffer instead of dH2O for measuring 

protein concentration in CLs. 

3. The sample working dilution was 1:20 at all times. 

4. Incubation took place in an air incubator. 

5. Before each read in  spectrophotometric plate reader, the plate was shaken for 5 

seconds and left to settle for 10 seconds 

6. Readouts were printed and transferred into an excel file. 
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2.13  Silver staining 

 

Silver staining is a sensitive method to detect proteins in an SDS-PAGE gel. It utilizes silver 

nitrate which binds to selective amino acids in proteins at neutral or weakly alkaline pH. The 

protein bound silver ions are reduced by formaldehyde at alkaline pH to form metallic silver 

in the gel. The proteins are visualized as dark bands in the gel. 

Procedure: 

Silver staining was carried out according to manufacturer’s manual (Sigma, ProteoSilver™ 

Plus Silver Stain Kit, Product code: PROT-SIL2) with a development time of 4.5 min. 

2.14  Radiographic gel quantification 

Bands obtained from radiographic imaging were quantified and analyzed using ImageQuant 

™ software using the software manufacturer’s procedure. Mathematical analysis was carried 

out in Microsoft Excel 2010 using data obtained from ImageQuant™ steps. This data should 

be treated with caution, as only a limited number of samples were analyzed and thus 

statistical analysis could not be performed.  
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3 Results 

3.1 Overview of the work 

 

Figure 8. Overview of the work carried out 

Aim of this project was to characterize PGs synthesized by COG7 deficient (throughout this 

document referred as COG7) cells. As of May 2014, scientific literature did not cover this 

area of research. The initial hypothesis was that PG synthesis is altered in COG7 cells. 

Throughout the project two control cell lines were available, entitled: E42 and E12. These 

cell lines were dermal fibroblasts collected from the lower arm of two healthy human 

individuals and should, in theory, provide representative sample of wild-type PG expression. 

However, some heterogeneity was observed during the initial experimental stage, and from 

that moment on E42 cell line was used as a control, but some data came from E12 cells were 

also generated. Within this document control refers to the E42 cell line, unless otherwise 

stated. 

One can divide proteins into two major fractions according to their localization: cellular and 

secreted. In this project, samples of PGs have been divided accordingly into these two 

fractions: cell lysate (CL) and medium (M). The medium in which the cells have grown and 
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to witch proteins and PGs are secreted is labelled medium, M, and cell lysate is labelled CL. 

Control (CTR) refers to two instances:  

1. A “normal” cell line (E42) and  

2. Non-enzymatically treated sample.  

3.2 Metabolic labelling 

3.2.1 Introduction 

In order to determine if in fact PG synthesis is aberrant in COG7 cells, metabolic labelling 

with radioactive sulfate was initially performed. This means that radioactively labelled 
35

S-

SO4
2-

 sulfate is fed to cells and gets incorporated during sulfation modification in the GAG 

chains of PGs. Since most of the sulfate is used in GAG chain modification (a smaller 

fraction of the sulfate is used in other ways), one can assume that this radioactive sulfate will 

label mainly PGs. However, when it comes to quantitative description of sulfate –labelled 

PGs, one has to take into account that the sulfate-labelling level does not correspond directly 

to the sulfation density on the GAG chain. Increased amounts of sulfate could also relate to 

longer GAGs, increased number of GAGs and, of course, to increased expression of PG 

protein cores. 

 

Figure 9 
35

S-SO4
2-

 incorporation levels for COG4, COG7, COG8 and E42 cell lines. Cells were radioactively 

labelled for 24 hr. M and CL fractions were collected as per section 2.2.2and the unincorporated 
35

S-SO4
2
 ions 
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were removed by G-50 fine columns and the samples were measured via scintillation counting. Each sample 

contains equal volume (30 μl) of M and CLfraction  

It is clear that COG7 cells incorporate significantly more 
35

S-SO4
2 

in the secreted PGs than 

E42, COG4 or COG7 cells. The interesting feature in COG7 cells is increased incorporation 

when compared to other COG-mutants (COG4 and COG8) suggesting that increased 

sulfation of secreted PGs is a COG mutation specific. The difference in sulfation level was 

only observed in secreted COG7 PGs, where the COG7 CL fraction did not differ 

significantly from E42 and other COG mutants (COG4 and COG8) 

3.2.2 Metabolic labelling with 35S-sulfate- overview  

 

Figure 10. Overview of secreted PGs in E42, COG8, COG7 and COG4 cells. Cells were grown in 2 ml plastic 

wells with 
35

S-SO4
2-

 RPMI 1640 medium with dose of 0.2 mCi/ml for 24 hr. Medium was harvested according 

to section 2.2.2 and loaded onto SDS-PAGE gel with sample size of 30μl in each of the wells. Gel image was 

taken using PhosphoImager at 200 pixels per micron.  

Figure 10 shows clearly that there is extensive diversity between control and COG7 cell lines 

with respect to PG synthesis. In addition, also COG8 and COG4 cell lines showed deviation 
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form wild-type.  The control cell line (E42 M) showed heterogeneity in its secreted PGs, 

while, in contrast, COG7 showed comparative homogeneity.  It is clear that the most 

highlighted feature of COG7’s secretion profile is very high Mw PGs. COG4 and COG8 show 

strong bands at approximately 60-70 kDa. Those bands are also present in E42, but to a lesser 

intensity and with slightly modified Mw. 

 

Figure 11. Overview of PGs in CL from E42, COG8, COG7 and COG4. Cells were grown in 2 ml plastic wells 

with 
35

S-SO4
2-

 RPMI 1640 medium with dose of 0.2 mCi/ml for 24 hr. Medium was harvested according to 

section 2.2.2 and loaded onto SDS-PAGE gel with sample size of 30μl in each of the wells. Gel image was 

taken using PhosphoImager at 200 pixels per micron. The symbol “-“indicates an empty well.  

Figure 11 shows that in CLs, changes in PG synthesis are also present in COG7 cells when 

compared to control cell lines. It is clear that a predominant feature of COG7 CL PGs is their 

high Mw.  A high molecular mass band of strong intensity does not appear in COG8, COG4 

or E42 cell lines and thus appears to be specific to COG7 cells. All cell lines show bands at 

approximately 100 kDa, albeit with different signal intensities. E42 cells show the highest 

intensity in this band, whereas COG8 shows the lowest. COG4 and COG7 show similar 

intensity. COG7 CL lanes are the only ones that do not have bands at approximately 60 kDa, 
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with E42, COG8 and COG4 showing weak bands at this position. Similar bands are shown in 

Figure 10.  

3.2.3 Enzymatic degradation of GAG chains 

 

Figure 12. Enzymatic digestion E42, COG4, COG7 and COG8 M with Hep and cABC. Radioactively labelled 

Ms were digested with Hep and cABC as per section 2.6. CTR is control, where 1x cABC buffer was used 

instead of cABC. Total sample size of 30 μl was loaded onto each well in the SDS-PAGE gel and the image was 

taken using PhosphoImager at 200 pixels per micron. 

This figure shows a significant difference between wild type cells and COG-deficient cell 

lines. Although all shown COG-deficient samples showed aberrant digestion, COG7 exhibits 

an unusual pattern, when compared to COG4 and COG8. 

The most prominent feature of this enzymatic digestion is the dominating presence of CS in 

all of the COG-deficient cell lines. This is characterized by the presence of strong bands in 

the Hep lanes (COG4 M Hep, COG7 M Hep and COG8 M Hep) and complete disappearance 

of bands in the cABC lanes (COG4 M cABC, COG7 M cABC and COG8 M cABC). 
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Moreover, there is weak presence of HS in all of the COG-cells. Weak bands in the cABC 

lanes show remaining HS left after cABC digestion. Control cell lines showed greater 

proportion of HS in their secreted PGs. This is visualized by lesser reduction of signals in 

E42 M Hep and E42 M cABC lanes.  

 

Figure 13.  Enzymatic digestion of E12, E42 and COG 7 M & CL with Hep. Radioactively labelled Ms and CLs 

were digested with Hep as per section 2.6.2. CTR is control, where 1x Hep buffer was used instead of Hep. 

Total sample size of 30 μl was loaded onto each well in SDS-PAGE gel and the image was taken using 

PhosphoImager at 200 pixels/micron. The symbol “-“indicates empty well.  

It is clear that a significant fraction of cellular PGs from COG7 cells have HS 

glycosaminoglycan chain modification. Moreover, this HS modified PG has a lower 

molecular mass than the CS-modified PG that remains as a strong band at the top of the gel. 

Figure 13 shows also difference between cellular PGs from control cells (E12 CTR, E42 

CTR) and COG7 cells (COG7 CL). 

PGs from the CL of control cells showed almost complete modifications with HS, as there are 

only weak bands present in the lanes E12 CL Hep and E42 CL Hep. One could speculate that 
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there possibly could be the same band in E12 CL lane as in E42 CL Hep lane (approximately 

70 kDa) , but lower sulfation or lower PG expression could make the signal in E12 CL Hep 

undetectable. 

3.2.4 Enzymatic digestion quantification from gel images 

Gel images were quantified using Image Quant™ software.  

 

Figure 14. HS and CS composition of CL PGs from E42 and COG7 cells. Figure 13was quantified using 

ImageQuant™ software and the results were visualized by the above column chart. The difference between total 

signal value from CTR lane and total signal from Hep digest lane was expressed as a percentage of CS. The 

difference between total signal value from CTR lane and total signal from cABC digest lane was expressed as a 

percentage of HS. 

 

Figure 15. HS and CS composition of M PGs from E42 and COG7 cells. Figure 12  was quantified using 

ImageQuant™ software and the results were visualized by the above column chart. The difference between total 
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signal value from CTR lane and total signal from Hep digest lane was expressed as a percentage of CS. The 

difference between total signal value from CTR lane and total signal from cABC digest lane was expressed as a 

percentage of HS. 

Figure 14 and Figure 15 show the composition of GAGs in the COG7 and E42 M and CL 

fractions. It is clear that the majority of PG modification in COG7 M is of CS nature. 

Moreover, the HS composition in the CL varies between COG7 and the control cell lines. 

From this one may assume that COG7 cells have distorted both cellular and secreted PGs 

with respect to the HS/CS percentage composition. It is difficult to comment on the absolute 

level of HS or CS synthesis in COG7 and E42 cells due to significantly higher sulfate 

incorporation in COG7 cells. It is not clear what the HS synthesis level is in COG7 cells 

when compared to the E42 cells. 

3.3 Size –exclusion gel filtration chromatography 

Gel filtration chromatography is a powerful analytical tool used to describe molecular masses 

of macromolecules in the analyte. In all chromatograms, the x-axis describes the fraction 

coefficient and y-axis shows the percentage of the strongest (most intensive) peak. 

Fraction coefficient is a dimensionless number that is directly related to a fraction number. 

Fraction coefficient of 0 is equal to elution time of blue dextran (void volume, V0) and 

fraction coefficient of 1 is equal to elution time of potassium dichromate (K2Cr2O2) which 

will indicate the terminal volume where all molecules applied have been eluted, Vt. 

In theory moieties that are bigger than 200 kDa would elute at V0, along with blue dextran, 

which is a saccharide (polymer of anhydroglucose) with blue colour and high molecular mass 

(>200kDa). When it comes to PG analysis, the molecules eluted in V0 are high- Mw PGs (e.g. 

aggrecan core protein – 250 kDa) or medium to low Mw PGs with extensive 

glycosaminoglycan chain modification. It is important to notice that GAG chains could 

contribute largely to the overall PG mass, not only by the length of the polymer itself, but 

also by the sheer number of GAG chains attached to the core protein. 

As the harvested samples showed different levels of radioactive sulfate incorporation, the 

direct measurements of radioactivity deviated significantly. To counteract this, a 

normalization of peaks was performed in which the data was shown as percentage of the 

highest observed value. In this case, peaks can be compared with greater ease and conclusive 

remarks could be drawn. In all cases, the highest peak was present either at V0 or at Vt.  
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Figure 16. Gel filtration chromatogram of 
35

S-labelled E42 M with or without digestion with cABC or Hep. 

Radioactively labelled and harvested M was digested with cABC and Hep as per section 2.6. Sample was eluted 

in CL-6B column with blue dextran/potassium dichromate markers for Vo and Vt respectively Sample loaded 

was equal to 30 000 cpm. Elution speed of 0.14 ml/min; collected fraction volume of 1 ml. 

Figure 16 shows the natural expression of sulfated PGs in human skin fibroblasts, compared 

with enzymatically treated samples.  Judging the profile of E42 M cABC (red line), one can 

notice that there is small red peak at V0- this peak corresponds to undigested HS PG.  

Similarly, one should take notice on the blue line- E42 M Hep. The blue peak at V0 represents 

the undigested CS PG. It is clear, that the majority modification on the secreted PGs in the 

E42 cells is CS, but the presence of HS is significant. 

The two peaks that are present in the control sample, at fraction coefficient 0 and 0.45, 

describe two different PGs with different molecular masses. It is clear that both of those 

peaks contain heparan and CS modified PGs. It seems that the larger PGs (peak at fraction 

coefficient of 0) have been mostly modified with CS and to a smaller extent with HS. The 

second peak represents PG(s) that are possibly with a higher share of HS GAGs.  
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Figure 17. Gel filtration chromatogram of 
35

S-labelled COG7 M after digestion with cABC or Hep. 

Radioactively labelled and harvested M was digested with cABC and Hep as per section 2.6. Sample was eluted 

in CL-6B column with blue dextran/potassium dichromate markers for Vo and Vt respectively Sample loaded 

was equal to 30μl. Elution speed of 0.14 ml/min; collected fraction volume of 1 ml. 

Figure 17 shows the expression of secreted PGs from COG7 cells. It is clear that the majority 

of the PGs in the M are of CS nature. The unchanged peak profile at V0 in the COG7 M Hep 

line suggests a large quantity of CS. Additionally, the high peak at Vt from COG7 M cABC 

confirms this finding. A minor peak at Vt from COG7 M Hep suggests that there is some HS 

modification of PGs, but the level is very low.  

Both Figure 16 and Figure 17 support the main findings in the SDS-PAGE gel images and 

their quantification   for the M fractions (Figure 15). It is clear that CS is mostly (95%) 

present on secreted PGs in COG7 cells, while control cells show a more balanced HS/CS 

composition. 
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Figure 18. Gel filtration chromatograph of 
35

S-labelled E42 CL digestion with cABC and Hep Radioactively 

labelled and harvested CL was digested with cABC and Hep as per section 2.6. Sample was eluted in CL-6B 

column with blue dextran/potassium dichromate markers for Vo and Vt respectively Sample loaded was equal to 

30 000 cpm. Elution speed of 0.14 ml/min; collected fraction volume of 1 ml. 

In Figure 18, it is shown that PGs present in E42 CLs possess both types of 

glycosaminoglycan chains: chondroitin and HS. The CS modification is present, but to a 

much lesser degree than HS modification. The peak at fraction coefficient of 0.60 is shifted to 

0.40 after cABC digest. This suggests that this low Mw PG is modified with CS. However, 

almost complete digestion with Hep suggests that in fact, HS is the dominating modification. 

It is clear that the amount of HS is higher than CS. This data corresponds to Figure 13, in 

which Hep would degrade almost the entire HS from the sample and to Figure 14 where HS 

comprises approximately 85% of the GAGs modifications in the E42 CL. 
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Figure 19. Gel filtration chromatograph of 
35

S-labelled COG7 CL digestion with cABC and Hep. Radioactively 

labelled and harvested CL was digested with cABC and Hep as per section 2.6. Sample was eluted in CL-6B 

column with blue dextran/potassium dichromate markers for Vo and Vt respectively Sample loaded was equal to 

30μl. Elution speed of 0.14 ml/min; collected fraction volume of 1 ml 

Figure 19 shows the presence of both CS and HS in COG7 CLs. It is possible that the amount 

of CS is higher than HS, but it is speculative, especially in the light of Figure 14. It is, 

however, clear that both HS and CS are present as significant fractions of the GAGs of 

cellular PGs. 

 

Figure 20. Overview of secreted PGs in COG7 and E42 cell lines. Radioactively labelled and harvested Ms were 

eluted through CL-6B column with blue dextran/potassium dichromate markers for Vt and V0 respectively. 

Samples loaded were equal to 30μl. Elution speed of 0.14 ml/min; collected fraction volume of 1 ml. 
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Figure 20 shows that secreted PGs from COG7 cells show immense, uniform destitution in 

weight, with the molecular mass of them averaging around 200 kDa which is the Mw of blue 

dextran. (Sigma Aldrich n.d.) On the other hand, the expression profile of the E42 cells 

shows three characteristic peaks at fraction coefficient of: 0, 0.4 and 1. The presence of peak 

at fraction coefficient of 1 suggests presence of small sulfated moieties in the M of E42. 

Those sulfated moieties are possibly sulfated disaccharides (GlcNAc/GalNAc-GlcA) either 

excreted from the cells or shed from the glycocalyx. There is no corresponding peak in COG7 

M. 

 

Figure 21. Overview of cellular PGs in COG7 and E42 cell lines. Radioactively labelled and harvested CLs 

were eluted through CL-6B column with blue dextran/potassium dichromate markers for Vt and V0 respectively. 

Samples loaded were equal to 30μl. Elution speed of 0.14 ml/min; collected fraction volume of 1 ml. 

Cellular PGs overview differs significantly from the M spectrum in both COG7 and E42 cell 

lines.  

In the COG7 cell line, the cellular PGs show high heterogeneity in mass which is represented 

by the numerous peaks at different fraction coefficients (Figure 21, blue line). Peaks present 

after fraction coefficient of 1.0 are peculiar and those could either be an experimental 

contamination, background noise or non-incorporated 
35

S-sulfate. Multiple different peaks 

suggest PGs with different Mws. This corresponds to Figure 11 where second band showed 

similar weight distribution to the control cell line.  
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E42 cellular PGs show a pattern more similar to its secreted counterpart, but with some 

differences. 

 

Figure 22. Gel filtration chromatograph of 
35

S-labelled COG7 M and E42 M digestion with cABC. 

Radioactively labelled and harvested Ms were digested with cABC as per section 2.6.1. Sample was eluted in 

CL-6B column with blue dextran/potassium dichromate markers for Vo and Vt respectively Samples loaded 

were equal to 30μl. Elution speed of 0.14 ml/min; collected fraction volume of 1 ml. 

It is clear that secreted PGs from healthy and COG7 cells show different modification 

patterns. Secreted COG7 PGs are almost entirely modified with CS. There are very little, if 

any, HS modifications. On the other hand, E42 produce significant amounts of HS, although 

the majority of modification comes from CS. This data follows Figure 15. 
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Figure 23. Gel filtration chromatograph of 
35

S-labelled COG7 CL and E42 CL digestion with cABC. 

Radioactively labelled and harvested CLs were digested with cABC as per section 2.6.1. Sample was eluted in 

CL-6B column with blue dextran/potassium dichromate markers for Vo and Vt respectively Samples loaded 

were equal to 30μl. Elution speed of 0.14 ml/min; collected fraction volume of 1 ml. 

It is clear that both E42 and COG7 cells have CS modification present on their cellular PGs. 

However, the extent of which CS modifies PGs in E42 CL is lower when compared to COG7 

CL. This follows Figure 14. Cellular PGs show different cABC digestion profile, when 

compared to secreted PGs. However, the magnitude of the difference is greater among E42 

cells. Secondly cellular PGs of healthy cells have significant HS modification on them. 

Compared to their secreted PGs, cellular PGs of COG7 show higher extent of modification 

with HS. 
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Figure 24. Gel filtration chromatograph of 
35

S-labelled COG7 M and E42 M digestion with Hep. Radioactively 

labelled and harvested Ms were digested with Hep as per section 2.6.2. Sample was eluted in CL-6B column 

with blue dextran/potassium dichromate markers for Vo and Vt respectively Samples loaded were equal to 30μl. 

Elution speed of 0.14 ml/min; collected fraction volume of 1 ml. 

Figure 24 corresponds to Figure 22 with respect to characterization of PG modification in 

Ms. It shows that there is very little HS on COG7 PGs and that the majority of secreted 

COG7 PGs are modified with CS. 

 

Figure 25. Gel filtration chromatograph of 35S-labelled COG7 CL and E42 CL digestion with Hep. 

Radioactively labelled and harvested Ms were digested with Hep as per section 2.6.2. Sample was eluted in CL-

6B column with blue dextran/potassium dichromate markers for Vo and Vt respectively Samples loaded were 

equal to 30μl. Elution speed of 0.14 ml/min; collected fraction volume of 1 ml. 
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Figure 25 shows that cellular PGs in COG7 cells are different than those in E42 cells. This is 

consistent with the radioactive gel images (Figure 13) and chromatographic data (Figure 21). 

It also confirms the fact, that CS PGs constitute a minor fraction of the cellular PGs in 

healthy fibroblasts, where HS is the major part. 

It is clear, that HS is present in COG7 cells, as well as CS is. Moreover, the CS is present on 

heavy and medium mass PGs (peaks at fraction coefficient 0 (heavy) and 0.40 (medium 

weight)). 

3.4 Mass spectrometry 

Mass spectrometry (MS) is a powerful tool used in biochemical and molecular biology 

research in many aspects. The most used quality of MS is the ability to identify peptides, and 

in turn proteins based on their molecular mass (Mw). In this project MS was used to identify 

potential differences between the above two cell types. 
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Table 1. Mass spectrometry analysis results for COG7 and E42 M samples against a human database. Table 

shows only PGs hits. Results arranged by score. M samples of 5.0 ml volumes were dialysed [section 2.9] and 

eluted through ion-exchange column [section 2.10] and collected in elute 1. Elute 1 was analysed via MS. 

It seems that the control fibroblasts possess greater heterogeneity among its secreted PGs. E42 

cells secrete at least nine PGs, compared with only five secreted by COG7 cells. Moreover, 

some PGs secreted by COG7, are not present in E42 M: aggrecan and serglycin. On the other 

hand, there are a number of PGs that are absent in COG7 cells: CD44 antigen, Syndecan-1, 

Neuropilin-1 and glypican. 

MS data was an indicator for further research in order to establish more information about 

nature of PGs present in and secreted from COG7 cells. The differences observed so far are 

interesting. 

There is no MS data concerning CL of COG7 due to technical limitation of obtaining 

sufficient amount of a viable sample. 
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3.5 Western Blotting 

3.5.1 Introduction 

Western blotting is an analytical method that uses antibodies to detect proteins of interest. In 

PG analysis there are many of available antibodies that could be used. 

In theory, Western blotting is based on protein separation in SDS-PAGE gels, based on their 

size and a subsequent transfer to and detection in a membrane.. On that membrane, proteins 

are detected by incubation with antibodies that are specific against the target proteins. 

There are essentially two types of Western blots: semi-dry and wet. The nomenclature of the 

types comes from the protein transfer method that is used in the transfer step. Semi-dry blots 

are used for analysis of membrane and hydrophobic proteins, while wet blots are used for 

more globular proteins.  

In PG Western blot analysis, one can divide the used antibodies into two types: anti-protein 

core and anti-STUB. STUB antibodies bind to epitopes that appear after enzymatic digestion 

of GAG chains. Those antibodies can recognize sulfated sugars that have sulfate substitutes at 

different positions at sugar chain. C6S, C4S are sugars that have sulfate groups at 4
th

 and 6
th

 

carbon in a saccharide, respectively. C0S-STUB defines an epitope without any sulfation. 

Antibody recognition of PG protein cores may sometimes require prior enzymatic removal of 

the GAG chains, while others are claimed to work also in the presence of GAG chains. Some 

antibodies have also been directed towards epitopes residing in GAG chains 

 

 

 

 

 

. 
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3.5.2 Overview; anti-STUB & anti- aggrecan   

 

Figure 26.  Western blot analysis of COG7M and COG7 CL with anti-C4S STUB antibodies. Consecutive wells 

have different sample volumes. Membrane developed with 1.0 ml of ECL Detection Reagent for 5 min. 

Membrane exposed for 5 min on CCD camera at luminescence setting; “-“control well.  

This WB shows that there are different PGs present in CL and M fraction of COG7 cells. 

Differential sequence of sample volume was used in order to determine the suitable sample 

size. It is clear that the CL fraction has a lesser amount of PGs, which is shown by weaker 

signals of the bands at COG7 CL 16 μl when compared with COG7 M 16 μl. This difference 

in amount of PGs between CL and M depends on many factors, one of which is the time 

allowed for secretion. Moreover, the high molecular mass PGs are in majority for the secreted 

PGs- this is showed by the strong bands in the upper region of the blot. It is clear that COG 

7CL PGs have C4S STUB epitopes at a Mw of 75 kDa, which is missing for the secreted PGs. 



 RESULTS 

 

52 

 

There are some similarities between the two fractions. At Mw of 50 kDa both fractions show 

bands, although the band is stronger in M. 

Figure 27. Western blot of COG7 M and CL fraction with an anti-aggrecan antibody. Membrane developed with 

1.0 ml of ECL Detection Reagent for 5 min. Membrane exposed for 5 min on CCD camera at luminescence 

setting; “-“empty well. 

It is clear that the M contains a significant amount of aggrecan. This is in contrast to the CL, 

which possesses significantly less aggrecan. It is clear that secreted aggrecan comes in three 

isoforms. It is a possible explanation for the presence of a ladder with different molecular 

masses. Isoforms 2 and 3 have reduced molecular mass with 246 and 239 kDa respectively; 

isoform 1 is reported as having a canonical “sequence” (Uniprot n.d.). 
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Figure 28. Western blot of COG7 CL with C6S-, C4S- and C0S- anti-STUB antibodies, and anti-aggrecan 

antibodies. Sample size 16 μl/well; Membrane developed with 1.0 ml of ECL Detection Reagent for 5 min. 

Membrane exposed for 5 min on CCD camera at luminescence setting; CTR- control 

This blot shows the expression of STUB epitopes in the cellular PGs. It is clear, that the most 

prevalent STUB is C0S, where there is possibly none or little C6S sulfation of the STUB. 

Moreover C4S STUB shows great heterogeneity which is different from what is seen for the 

C0S STUB, which seems to be homogenous. Probably only one PG has this STUB epitope 

and it is most likely aggrecan. The presence of aggrecan is shown in Figure 28  and in Figure 

27, but the prevalence of aggrecan in Figure 27 is low. The reason for this discrepancy could 

be that a strong signal that is coming from the M “consumes” all the substrate and/or all of the 

antibodies and leaves little signal for the CL fraction. In the Figure 28, the anti-aggrecan part 

of the blot was incubated separately and thus the prevalence of anti-aggrecan antibodies and 

the availability of substrate were greatly increased. This, possibly, increased the sensitivity of 

the detection and a low but significant abundance of aggrecan could be detected.  
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Figure 29. Western blot of COG7 M with anti-STUB antibodies and anti-aggrecan antibodies. Membrane 

developed with 1.0 ml of ECL Detection Reagent for 5 min. Membrane exposed for 5 min on CCD camera at 

luminescence setting; CTR- control. 

Figure 29 demonstrates the presence of STUB epitopes on the PGs in the M of COG7 cells 

after cABC treatment and the presence of aggrecan in the same fraction. It is clear that 

secreted PGs possess epitopes for all the STUB antibodies tested. This is less certain for the 

cellular PGs, but still possible, but the C6S-STUB epitope gives at best only a very weak 

signal in the CL. However, the internal heterogeneity of C4S-STUB in the M is lower (two 

distinctive bands), when compared to the CL (possibly five bands, Figure 28). 

The weaker signal in the anti-aggrecan COG7 M CTR lane could in fact be due an 

enhancement of the epitope accessibility after enzymatic removal of the GAG chains from the 

aggrecan protein core. 

One can notice that the bands are shown in white against dark background. This deviation 

from standard was caused by corruption of the original file, which rendered it unreadable and 
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therefore a back-up image was used. Nonetheless, the conclusions from both pictures are 

similar. 

3.5.3 Anti-serglycin & Anti-decorin 

Serglycin and decorin are two PGs that were indicated to be present in COG7 cells by mass 

spectrometry. 

 

Figure 30. Western blot of COG7 M and CL with anti-serglycin and anti-decorin. 16 μl of sample /well. 

Membrane developed with 1.0 ml of ECL Detection Reagent for 5 min. Membrane exposed for 5 min on CCD 

camera at luminescence setting; CTR- control. 

Figure 30 confirms observations by MS with respect to the Ms. However there is more 

information that could be drawn from the above figure: 
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1. Serglycin PG is modified in the COG7 M fraction by a modification other than CS 

chains. I is possible that band at 50 kDa in the anti-serglycin lane for COG7 M is 

either a serglycin bound to other molecule (Malla et al. 2013) or a non-specific band. 

2. This modification is extensive, raising the Mw from 17.5 kDa (protein core) to 

approximately 50 kDa; difference of 32.5 kDa. 

3. Decorin PG is modified with CS chains. This modification contributes approximately 

2 kDa. 

4. There is no serglycin in the CL of COG7 cells. 

5. There are two decorin bands in the CL at 150 kDa and 60 kDa. Such high Mw of 

decorin protein is puzzling and presence of two bands in the cABC lane, compared to 

one of 150 kDa in the control lane indicates that 60 kDa band is modified with CS. 

The 150 kDa band could be an unmodified trimer of decorin, or decorin modified with 

something else than CS. 

 

Figure 31. Western blot of E42 M fraction against anti-C4S-STUB, decorin, serglycin and aggrecan. 16 μl of 

sample/well. Membrane developed with 1.0 ml of ECL Detection Reagent for 5 min. Membrane exposed for 5 

min on CCD camera at luminescence setting; CTR- control. 
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The blot indicates that decorin, serglycin and aggrecan PGs are not present in the M of E42 

cells. Moreover, there is no evidence for C4S-STUB epitopes on the secreted PGs after cABC 

treatment. However, decorin is present in the MS data (Table 1) in the E42 M sample, which 

implies that the procedure could be repeated with more samples.   

 

Figure 32. Western blot of E42 M against anti-C4S-STUB and decorin. 8 μl of sample/well; Membrane stripped 

prior to 1
st
 Ab incubation. Membrane developed with 1.0 ml of ECL Detection Reagent for 5 min. Membrane 

exposed for 5 min on CCD camera at luminescence setting; CTR- control. 

This blot was carried out to confirm presence of decorin in the E42 M fraction. It is clear that 

decorin is present and that some of its modification is CS. The fully glycosylated form has a 

Mw of approximately 70 kDa and is shown as a smear. However, this indicates that there are 

multiple different variants which follow the current literature (3 possible N-glycosylation 

sites; 1 possible O-glycosylation site)(Uniprot n.d.). However, the presence of the C4S-STUB 

epitope on this blot is contradictory to previous observations. This is the only time, where 

C4S-STUB epitope was visualized on E42 M fraction. It could be that since the membrane 

was stripped before re-probing that there is a residual signal from a previous blotting 

procedure or there is in fact C4S-STUB epitope which was only visualized on this membrane. 
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This issue needs to be resolved in the future. However, looking at this blot alone, the 

alignment of the band at 49 kDa between E42 M C4S-STUB and anti-decorin (cABC) suggest 

that decorin has C4S-STUB epitope in E42 M. 

 

Figure 33. Western blot of COG7 M and CL with anti-serglycin and anti-decorin antibodies. 16 μl of 

sample/well. Membrane developed with 1.0 ml of ECL Detection Reagent for 5 min. Membrane exposed for 5 

min on CCD camera at luminescence setting; CTR- control 

This Western blot shows that decorin is not only present in M, but also in the CL of COG7 

cells. However, the nature of decorin present in the CL is somewhat different from the 

secreted variant. It is clear that decorin from CL is not modified by CS and that it forms some 

kind of complexes (or oligomers) of high molecular mass (approx. 250 kDa). This possible 

multimerization is also seen in the M, but to a lesser extent (shown by the band at 250 kDa). 
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Figure 34. Western blot of E42 M against anti-C6S-, C0S-STUB, biglycan and aggrecan; 8 μl of sample/well. 

Membrane developed with 1.0 ml of ECL Detection Reagent for 5 min. Membrane exposed for 5 min on CCD 

camera at luminescence setting; CTR- control 

This Western blot shows that there is no detectable C0S-STUB epitope in E42 M fraction. 

Moreover, it shows that there is also no detectable aggrecan in E42 M, which supports the 

previous findings: MS data (Table 1, Figure 31). The novel information coming from this 

experiment is the presence of biglycan (weak band at 100 kDa), even though it was shown in 

MS data (Table 1), this gives more evidence to its presence. The most prominent mark on this 

blot is the strong signal originating from anti-C6S-STUB antibody. Lack of signals from other 

STUBs (C40S- no signal (Figure 31) and C4S-only one membrane (Figure 32)), proves that 

one of the STUBs epitopes present in secreted glycans from E42 is C6S, whereas C0S is 

absent and C4S is doubtful. 
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Figure 36. Western blot of CL from COG7 and E42; 8 μl of sample/well. Membrane developed with 1.0 ml of 

ECL Detection Reagent for 5 min. Membrane exposed for 5 min on CCD camera at luminescence setting; CTR- 

control 

Figure 35. Western blot of E42 M against anti-biglycan; 8 μl of sample 

per well. Membrane developed with 1.0 ml of ECL Detection Reagent for 

5 min. Membrane exposed for 1 minute on CCD camera at luminescence 

setting; CTR- control. 

This blot is another experiment that supports the MS data. 

There is biglycan present in E42 M with CS modification. 

There are no known biglycan isoforms (Uniprot n.d.). This 

possesses the question about the 30 kDa band and its nature. 

Possibly this band is a result of an unspecific binding of the 

anti-biglycan antibodies.  
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There is an indication of the presence of decorin in CLs of COG7 cells, but no signal from 

E42 CLs. However, the Mw of decorin indicated on the gel does not correspond to the 

theoretical value (39 kDa). It is possible that decorin in COG7 CL is modified with something 

else than CS. 

The presence of four, distinctive bands shows that decorin can form oligomers. The “heavy” 

bands (top of the gel, approximately 250 kDa) could be such oligomers. Similar band patterns 

could be observed in Figure 33. 

 

Figure 37. Western blot of COG7 &E42 M samples against decorin and aggrecan; 8 μl of sample/well. 

Membrane developed with 1.0 ml of ECL Detection Reagent for 5 min. Membrane exposed for 5 min on CCD 

camera at luminescence setting; CTR- control. 

This blot clearly shows the potential abundance difference in decorin levels in between COG7 

M and E42 M, which is supported by the MS data (Table 1). It also shows that there is no 
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aggrecan present in the CL of E42, in contrast to COG7, where aggrecan is abundant. There is 

small difference upon cABC digestion in the cellular aggrecan (reduction of peak intensity at 

250 kDa), but no shift in molecular mass- which corresponds to fact that aggrecan protein 

core is 250 kDa itself. However the mass change of aggrecan is difficult to observe at the 

upper region due to the fact that neither aggrecan with CS nor without CS could have entered 

the SDS-PAGE gel properly. Perhaps the binding of anti-aggrecan antibodies is dependent on 

CS level and the amount of GAGs attached to the core. The increased signal level of the upper 

band area (>150 kDa) in cABC treated decorin could indicate that the presence or absence of 

CS is influential on the formation of heavy weight aggregates. 

3.6 Protein biochemical analysis 

3.6.1 Protein synthesis level- BCA™ Protein Assay 

From the Western blot analysis, it was clear that COG7 and E42 possess different 

characteristics with respect to protein core synthesis. In order to establish whether the COG7 

cells secrete or produce different amounts of proteins when compared to control fibroblasts, a 

protein quantification experiment was carried out using BCA™ Protein Assay. 

 

Figure 38. BSA standard curve with the lysis buffer used as a solvent. Absorbance values taken at 562 nm 

wavelength. 
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Figure 39. BSA standard curve. DMEM without bovine serum used as a solvent. Absorbance values taken at 562 

nm wavelength. 

Standard curves created for known concentration of bovine serum albumin (BSA) were used 

to establish the unknown concentrations in the samples. Figure 38 was used when analysing 

the CLs samples, whereas Figure 39 was used for analysis of M samples. 

 

Figure 40. Protein measurement using BCA™ Protein Assay in COG7 and E42 samples from M and CL. Values 

given in μg/ml of analyte. 

The COG7 samples contained much more protein than the E42 samples, both for the media 

and cell fractions.  

y = 0.0003x - 0.0068 
R² = 0.9967 

-0.100

0.000

0.100

0.200

0.300

0.400

0.500

0 200 400 600 800 1000 1200 1400 1600 1800

A
B

SO
R

B
A

N
C

E 

PROTEIN CONC UG/ML 

BSA STANDARD CURVE IN DMEM WITHOUT 
SERUM 

BSA STANDARD CURVE IN
DMEM WITHOUT SERUM

BEST FIT LINEAR

Medium Cell Lysate

COG7 3237 1108

E 42 325 289

0

500

1000

1500

2000

2500

3000

3500

P
rt

e
in

 c
o

n
ce

n
tr

at
io

n
 μ

g/
m

l 

Protein measurment for COG7 and E42 samples 



 RESULTS 

 

64 

 

This significant difference, especially in M sample, has given some experimental challenges 

when it comes to loading gels with equal amounts of proteins and during detection of high-

levels signals in Western blots.  

3.6.2 The protein patterns of Ms and CLs- silver staining 

Silver staining was performed in order to further characterize the proteins present in the 

COG7 M & CL. 

 

Figure 41. Silver staining of COG7 CL & M, E42 CL & M and COG8 M. Sample size of 8 μl/well. M and CL 

samples were loaded directly onto the gel from harvested Ms, without any dilution or prior ion-exchange step. 

The silver stain was developed as per section 2.13 with development time of 4.5 min. 

Silver staining has shown clearly that there is a large difference in the protein concentration 

between COG7 and E42 cell types in both CL and the Ms. There is a very strong band at 60 

kDa in COG7 M which corresponds to serum albumin (unpublished data, personal 
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correspondence with Anders Moen). Presence of significant amounts of bovine serum 

proteins was confirmed by MS for the COG7 samples, but not for the E42 M samples. The 

source of bovine albumin was traced to serum additive from complete medium. The 

difference between the two cell lines in this respect, that both were subjected to a procedure 

that is designed to remove serum proteins before collection of secreted macromolecules in 

serum-free medium, indicates a prolonged residence time of endocytosed serum proteins in 

COG7 cells. This could be a result of a delayed recycling of endocytosed material, which 

occurs efficiently within 15 min in normal mammalian cells. This finding is interesting and 

requires further investigation. 

3.7 Ion-exchange chromatography 

3.7.1 Introduction 

Ion-exchange chromatography allows for separation of molecules based on their affinity to 

the ion moiety on the column. It is a method used for separation of different molecules, 

including proteins and PGs. 

In analysing PGs, ion-exchange is used to separate these highly negatively charged molecules 

from other proteins. Glycans (PGs also) carry negatively charged groups (sialic acid for 

glycans, and sulfate modifications and glucuronic acid for PGs). PGs, however, are the most 

negatively charged macromolecules, which allows for separation of most PGs from other 

proteins. PGs bind strongly to positively charged DEAE columns and are retained until the 

salt gradient reaches a concentration allowing for displacement of PGs from the column. In 

this experiment, where stepwise elution was performed, most PGs should elute in elute 2. 
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3.7.2 COG7 M ion-exchange profile on Silver stained gel 

 

Figure 42. Silver stained gel after ion-exchange chromatography of COG7 M fraction. “1:9 D” represents 1 in 9 

dilution of the sample in water. Elute 1- proteins eluted in low salt buffer (0.1 M NaCl). Elute 2- protein eluted 

in high salt buffer (1.0 M NaCl). Elute 3 – proteins eluted at high salt buffet (1.0 M NaCl) immediately after 

elute 2. 

It is clear that some PGs from the M fraction have been retained on the column and were 

eluted in the elute 2. Most of the PGs have high Mw (>100 kDa), although there is one strong 

band at approximately 60 kDa. Unusually, this band is persistent in elute 1 as well and it 

shows as very strong peak in Figure 41 (COG7 M lane). This could be due to high levels of 

this protein, that it shows in elute 2. It is simply retained in column due to high abundance or 

it could be simply different PG or a protein. 

1:9 dilutions were performed in order to achieve better band separation and, therefore, 

identification. 

Top bands (>150 kDa) and  the strong bands at approx. 60 kDa from Elute 2 were cut out 

from the gel and analysed by MS in order to detect possible PGs, but no new candidates were 

found. However, strong presence of bovine serum albumin was confirmed. 
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4 Discussion 

The aim of this project was to investigate PG synthesis and modification in COG7 cells. PG 

synthesis in COG8 deficient cells were at the same time investigated by another student. 

Since it is established that cells with dysfunctional COG-complex have distorted N-

glycosylation and O-glycosylation (Freeze & Aebi 2005; Ng et al. 2007), it is logical to 

assume that PGs could be affected as well. Mutations in COG complex were discovered in the 

six of its eight sub-units :COG1,COG2, COG4, COG5, COG6 , COG7 and COG8 (Foulquier 

et al. 2006; Reynders et al. 2009; Paesold-Burda et al. 2009; Lübbehusen et al. 2010; Wu et 

al. 2004; Foulquier et al. 2007; Zeevaert et al. 2008), with COG2 mutation being the most 

recent discovery (Kodera et al. 2014). 

COG1, COG4, COG7 and COG8 showed lack or decrease in sialyation on the N-glycans with 

COG1 having least amount of sialyation and COG4 showing the highest amount of sialyation. 

11% of N-glycans in COG1 have agalactosylated N-glycan structures(Reynders et al. 2009). 

In COG7 cells the level ST-antigen was reduced but T-antigen O-glycan remained 

unchanged. The ratio between T and ST antigens was higher (0.11) than control (0-0.056) 

(Xia et al. 2013).  

N-glycosylation and O-glycosylation defects in COG7 patients are described in details. The 

prevailing defects in N-glycosylation are decrease in sialyation and the high (40%) percentage 

of agalactosylated glycan structures. Membrane bound surface O-glycans have reduced level 

of sialyation and reduction of activity of CMP-sialic acid and UDP-galactose transporters as 

well as reduction in activity of several galactosyltransferases have been reported. (Reynders et 

al. 2009; Ng et al. 2007; Shestakova et al. 2006; Zeevaert et al. 2008). However, as of May 

2014 there is no literature regarding COG7 deficiency and PG synthesis. Judging by the 

presence of N- and O-glycosylation defects in COG7 patients, it is safe to assume that PG 

synthesis would be affected too. To investigate PG synthesis in COG7 cells, radioactive 

metabolic labelling followed by size-exclusion gel chromatography, Western blotting, and 

mass spectrometry techniques were applied. Regretfully, COG7 cells begun to demise in 

viability sometime after procurement and during the remaining course of the project no more 

new samples were available to perform more experiments. 
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It is clear that the PGs synthesized in COG7 cells differ drastically from healthy cells (E42). 

The evidence for that comes from metabolic labelling experiments and analysis of both CLs 

and molecules secreted to the M and their visualization on SDS-PAGE gel. The PGs 

synthesized by COG7 cells show a higher molecular mass than the corresponding for control 

cells (Figure 10, Figure 11) These differences in molecular mass might be a result of extended  

GAG chain length and/or differences in the sulfation level, but could also be a result of 

differences of protein core masses or complex formation of modified protein cores (however, 

secreted decorin by E42 and COG7 cells has similar mass, that follows the predicted value 

(Figure 30, Figure 32) of decorin). The molecular mass of the modified PGs in COG7 cells 

differs also from those produced by COG8 and COG4 mutants, which suggests that COG 

mutations have sub-unit specific consequences in PG biosynthesis (Figure 10, Figure 11).The 

striking is also the difference in expression diversity between healthy cells and COG7 cells. 

COG7 cells display only two bands of PGs in the secreted fraction (M) whereas E42 show a 

greater heterogeneity (Figure 10, Figure 11).  

One of the possible reasons for reduced diversity in the secreted PGs in COG7 cells could be 

unavailability of substrates or enzymes needed for proper modification. This hypothesis 

would fall into the idea of the COG complex functioning as a retrograde transport facilitator 

(Shestakova et al. 2006; Bruinsma et al. 2004; Ungar et al. 2006) in both the vesicular and 

maturation protein transport model of  the Golgi apparatus. Simply COG is unable to take part 

in the retrograde transport of the Golgi resident enzymes that are inevitably moved from cis to 

medial to trans -cisternae along with cargo molecules while the cisternae progress (mature) 

through the Golgi. In the vesicular transport model only some resident Golgi enzymes are 

transported along with cargo molecules, thus a little retrieval is needed for the lost enzymes. 

The resident Golgi enzymes cannot follow the default return route to newly formed cisternae 

at cis site. 

While HSPG synthesis is reported to take place in the medial Golgi region, CSPG synthesis 

has been shown to occur very late in the Golgi apparatus in most cell lines studied. There are 

several examples that enzymes involved in HSPG synthesis return to the ER upon Brefeldin A 

treatment, while enzymes involved in CSPG synthesis do not, indicating a localization in the 

trans Golgi network (reviewed in Prydz & Dalen 2000).  Thus, if HSPG synthesis fails early 

in the medial Golgi region, more sites could become available for CS GAG polymerization. 

This might not, however, explain a 4-fold increase in the secretion of CSPGs. This increase 
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could also be related to the cellular homeostasis of CSPGs, where under normal 

circumstances, a significant fraction of the CSPGs synthesized are routed towards degradation 

in a microtubule-dependent manner (Fagereng et al. unpublished observation). While the 

existence of GAGosomes, an assembly of enzymes involved in GAG synthesis, has been 

proposed for both HS and CS synthesis, the organization and turnover of the enzymes 

involved is not fully known. Thus, why CSPG synthesis is not inhibited, while HSPG 

synthesis is, requires more experiments to find out. 

Secondly the reason for reduced diversity in secreted PG in COG7 cells could be induced by 

an impaired signalling pathway. PGs are involved in cell signalling (Bartus et al. 2012; 

Schaefer & Schaefer 2010; Hildebrand et al. 1994) and therefore altered PG secretion will in 

turn affect PG expression in a type of negative feedback loop. This might be the case in 

COG7 cells where due to improper glycosylation of PGs, those molecules cannot function 

properly and thus would affect signalling (Büttner et al. 2013). 

The striking characteristics of secreted COG7 PGs are that these are almost exclusively 

modified by CS (Figure 12, Figure 17 ). One could understand this modification as over-

polymerization with CS, but it also could be viewed as under-polymerization of HS.  The 

current understanding of HS PGs (HSPG) is that they are involved in modulation of signalling 

(Hufnagel et al. 2006) and mediation of the formation of efficient ligand-receptor complexes 

(Eswarakumar et al. 2005). HSPGs are needed for binding of fibroblast growth factors (FGFs) 

to their cell surface receptors (Yayon et al. 1991; Eswarakumar et al. 2005). The HSPGs do 

not transmit the signal, but act as accessory molecules that potentiate the signal. Thus, under-

HS modification on a PG could lead to reduced FGF binding effectiveness on the COG7 cell 

surface. Even though it is not clear whether the PGs in the M only are secreted molecules, 

PGs that eventually are shedded from the cell membrane would also be present in the M. The 

most frequently shed PGs are members of the syndecan PG family, mostly carrying HS 

chains. The shedding has been reported to be influenced by the extent of GAG modification. 

Compiling the fact that the amount of HS in COG7 CLs is lower than in E42 CLs (Figure 14) 

and that HS modification relatively speaking is marginal on PGs found in the M of COG7 

cells (Figure 15), it is possible to suggest that COG7 cells would have a distorted FGF 

signalling.   
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Since the sulfate incorporation, as a single analysis, is only semi-quantitative, it is difficult to 

draw conclusions regarding the number of GAG chains and the level of sulfation of individual 

chains. 

While considering HS modification, it is clear that PGs synthesized in COG7 cells are less 

modified with HS. This is observed bot for cellular PGs (CL fraction) and in the M (Figure 

14, Figure 15). Control fibroblasts extensively modify secreted PGs with HS, while COG7 

cells do this to a much lesser extent. It is clear that secreted PGs from E42 have substantial 

HS modification (40 % HS). When compared this value to that for PGs secreted from COG7 

cells (5 % HS), it is clear that reduction is significant. 

Shestakova et al in 2006 showed that in COG7 knock-down (KD) cells, GlcNAc T1 enzyme 

is severely mislocalized from evenly distributed across the Golgi stacks (Röttger et al. 1998)to 

dispersed vesicles throughout cytoplasm with glycosylation defects occurring earlier in the 

glycosylation pathway (Shestakova et al. 2006). Even though GlcNAcT1 is not directly 

involved in HS polymerization, it is clear that mislocalization of Golgi resident enzymes in 

COG7 cells could occur. EXT1 and EXT2 were shown to localize in the cis-Golgi in  

(Multhaupt & Couchman 2012) and  EXT1 and EXT 2 are enzymes involved in 

polymerization of HS chains (Kreuger & Kjellén 2012b). Moreover, knock down studies of 

EXT1 showed that EXT1-deficient embryonic bodies showed increased biosynthesis of CS 

(doubled production), while HS synthesis was absent (Le Jan et al. 2012). In theory, 

hypothesized by Kreuger & Kjellén, reduced synthesis of HS leaves “open” linkage regions 

for CS synthesis that otherwise would be occupied by HS. Moreover, lack of HS biosynthesis 

would increase the amount of PAPS and UDP-sugars available for CS synthesis (Kreuger & 

Kjellén 2012b). However, the radioactive sulfate incorporation in the fraction of 

macromolecules secreted from COG7 cells was several times higher than for control 

fibroblasts (Fig 1). This indicates increased CS synthesis, since this sulfate was mostly 

removed by chondroitinase treatment. The possible contribution of an increase in PG protein 

core synthesis or increased GAG chain lengths was not addressed. Regrettably, 
3
H-

glucosamine  and 
35

S Met labelling was not performed in this thesis, so the contributions from 

changes in GAG chains and PG core protein synthesis was not addressed by metabolic 

labelling. 

Non-radioactive M and CL samples were prepared for mass spectrometry. In an ion-exchange 

chromatography step, the PGs were isolated from the bulk of proteins in the samples. From 
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the metabolic labelling studies, secreted PGs showed greater heterogeneity in E42 control 

fibroblasts, than in COG7 cells. In fact, COG7 secreted PGs show only two fractions of 

sulfated PGs and those are of high Mw (Figure 12, Figure 20). The MS data provided insight 

into the M composition and it supports the compositional diversity. In COG7 M the most 

abundant PG was biglycan followed by lumican whereas in E42 M the most abundant PG was 

chondroitin sulfate proteoglycan 4 followed by decorin, although decorin and lumican 

abundance in E42 M was nearly equal The reason for this expressional diversity is not clear. 

It is possible that MS intrinsic limitation lead to skewed results for the analysis of M samples 

from COG7 cells. COG7 M samples showed a high protein concentration. This could 

correspond to a general increase in protein secretion, as observed for PGs, but the samples 

had especially high levels of serum bovine albumin also when compared to control cells. This 

high level of protein could reduce the sensitivity of mass spectrometry where in M samples 

from control cells, the protein level was at an appropriate level for MS analysis (Anders 

Moen, personal correspondence). On the other hand, after ion-exchange chromatography 

followed by silver staining, MS analysed samples from elute 2 did not show any previously 

undetected PGs.  

PGs may also be analysed by Western blotting when the appropriate antibodies are available. 

In many cases, removal of the GAG chains is required for the antibody to recognise the 

protein core in question. The PG decorin was present in M from both control fibroblasts and 

COG deficient cells (i.e. COG7 M and E42 M). The secreted variant does not differ 

extensively between the normal and COG7 cells. The only significant difference is the level 

of CS modification. COG7 M expresses decorin that is modified not only with CS, but does 

also possess another type of modification. This is in contrast to E42 M, where the fraction of 

secreted decorin is fully glycosylated with only chondroitin (showed in Figure 32, where the 

39 kDa band is present). It is possible that the differently glycosylated decorin is needed for 

proper tissue functionality. It is possible that GAG synthesized on COG7 decorin is a hybrid 

chain or that there are more than one chain, but the latter option is less likely since there is 

only one known O-glycosylation site on decorin protein core (Uniprot.).However, there are 3 

N-glycosylation sites present on decorin. It is possible that there is altered use of those sites 

due to mislocalized transferases. 

The CL of COG7 cells showed unusual results with the anti-decorin antibody (Figure 33). 

Where there is, possibly, no decorin present in E42 CL, the COG7 CL demonstrated a ladder-
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like pattern. It seems that the decorin remaining in the CL of COG7 cells is not modified by 

CS. It is possible that decorin, in the cell fraction, has not yet reached the chondroitin 

polymerization enzymes, which are located at the trans-side of the Golgi apparatus. This 

would imply rapid cellular release upon CS modification. Secondly, if we assume that decorin 

is modified with a hybrid chain, it is possible that elongation of the chondroitin chain cannot 

proceed without initial polymerization of HS on the same protein. However, there is no 

evidence indicating a presence of a hybrid HS/CS chain(s) on COG7 CL decorin. It is much 

more probable that N- and O-glycosylation sites are occupied by keratan sulfate since keratan 

sulfate can originate from both N- and O-glycan sites. Yet, there is secretion of CS –modified 

decorin in the COG7 cells (Figure 30). It is entirely possible that there is some HS 

polymerization activity, but its rate of polymerization does not connect with the ongoing 

protein synthesis. This reduction in polymerization of heparan could be due to a slow rate of 

retrograde transport of heparan polymerizing enzymes from trans- and medial- to cis- 

cisternae in the Golgi apparatus. Therefore, since only 20 % of the nominal COG complex 

level is present in the COG7 patient (Wu et al. 2004), this overall retrograde transport rate 

could be significantly slower This transport retardation could, in turn, influence the overall 

polymerization rate of HS. 

The presence of the “decorin ladder” in COG7 CL could be explained twofold. Firstly, the 

small differences in molecular mass between bands (approximately 2-4 kDa) are, most 

probable, due to the number of N-glycosylations. Decorin has three potential N-glycosylation 

sites and using combinations of all three sites or none can lead to significant variation in mass 

(Uniprot). Secondly, the presence of heavy bands at 150 kDa could be explained by either the 

presence of decorin clusters (multiple decorin molecules aggregating together) or that decorin 

is coupled to some other protein complex. It is most probable that band showed at high 

molecular level is decorin bound to collagen type I or type II (Uniprot). Collagen is the 

prevailing protein in the fibroblasts and its binding to decorin is well known. The heavy Mw 

decorin is present as a secreted variant in E42 M (Figure 37) and to some extent in COG7 M. 

It is unclear what characteristics this variant shows, but it is clear that it is CS modified to 

some degree. This modification could influence its aggregation properties.  

When analysing the protein content and composition of media and cell fractions from control 

fibroblasts and COG7 cells, these were first washed and incubated in serum-free M, following 

a procedure designed to avoid such external proteins in the samples. The initial image after 
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silver staining indicated dramatic increase in the protein levels for the samples from the 

COG7 cells, but MS revealed that there was a dramatically higher content of bovine serum 

proteins in these samples, when compared to the control samples. This is most easily 

explained by a prolonged retention of serum proteins in the COG7 cells. The same 

phenomenon was observed also for COG8 cells (Anders Moen, personal communication), 

Since the washing procedure designed to remove serum proteins includes a 30 min incubation 

where internalized proteins would normally be released by recycling, does the fact that these 

proteins appear in the M in a subsequent incubation period for cells deficient in COG7 and 

COG8 indicate that recycling to the cell surface is delayed in these cells. However, further 

experiments are required to establish this possibility. 

4.1 Future studies 

The duration of master studies program is limited. Therefore some of the analysis shows 

incomplete or conflicting data. Thus, with no doubt, there is a strong need for repeat of 

experiments to validate the results obtained. 

Due to failure to thrive of COG7 cells during a period of time, it would be beneficial to 

establish a system that would provide a researcher with new samples swiftly. A knock-down 

protocol could be used. 

It is of paramount importance to carry out 
3
H-glucosamine and 

35
S-Met labelling on COG7 

cells to establish the exact characteristics of the GAGs on the PGs and address the issue of 

increased sulfate labelling. 
35

S-SO4
2-

 labelling is powerful method, but to establish a full 

experimental picture, 
3
H-glucosamine and 

35
S-Met labelling is also needed. More work 

should be carried out in CL fraction studies with respect to MS and Western blotting. 

Regretfully, E42 CL fractions did not produce sufficient amounts of protein, thus a 

functioning protocol should be established in order to achieve the desired protein 

concentration both for the CL and the M. 

Fluorescent labelling and confocal visualization of the Golgi resident enzymes should be 

performed. It would be interesting to carry out localization studies on two HS polymerizing 

enzymes: EXT1 and EXT2 in COG7 cells. It is possible that EXT1 and EXT2 co-localize 

with CS polymerizing enzymes in the trans-Golgi region. Such localization would explain the 

reduced levels of HSPGs produced in COG7 cells. 
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Recycling studies should be carried out on COG7 cells to investigate the recycling 

phenomenon indicated in this thesis. Following the idea that the COG complex is involved in 

intra-Golgi retrograde recycling of protein, it could also be involved in a number of other 

retrograde transport processes. It would be interesting to assess how COG7 cells recycle 

proteins endocytosed from the extracellular environment.  
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6 Appendices 

6.1 G-50 Fine columns creation 

The columns used in metabolic labelling were created in-house, following the procedure: 

1. Old 10 ml plastic pipettes were cut at the 7 ml volume level mark. Bottom part  that 

contained nozzle was kept and rest of the pipette was discarded 

2. Small portion of glass wool was placed and compacted at the inside part of the nozzle. 

The amount of glass wool used should be enough to keep gel material from leaking 

through nozzle 

3. 4.0 ml of G-50 fine gel material was placed. G-50 fine was pre-soaked in dH2O 

following the manufacturers manual 

4. Column  then was let to stand in order to settle the gel material 

 

6.2 List of used equipment throughout the 

project 

 

Name Model Manufacturer 

Air incubator DH Autoflow NuAire 

Balance BP2215 Satorius 

Balance 1212MSCS Precis 

Rubber Policeman Cell lifter 3008 Costar 

Cell culture flasks 75 cm2
 
 Nunc 

Centrifuge GS-15 R Beckman 
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Centrifuge Allegra X-22 Beckman-Coulter 

Dialysis Cassette Slide-A-lyser Pierce 

Eppendorf Centrifuge Mini-spin Eppendorf 

Exposure Cassette Storage phosphor 

cassette 

GE Healthcare 

Freeze-dryer Maxi dry lyo FD1.0 

Gel cell XCell sure lock Novex 

Gel cell Criterion Cell BioRad 

Heating block DRI-Block DB20 Techne 

Hotplate magnetic stirrer 345PR Snijders 

Image Eraser Image Eraser #810-

UMW 

Amersham Biosciences 

Light Microscope DMIL Leica 

Light Microscope Lens 10/0.25 Leitz-Weltzar 

Orbital Shaker Gerhardt Abshake 

pH meter 420A+ Thermo Orion 

Power supply Bromma 2301 LKB 

Scintillation counter 1900TR Packard 

Scintillation vials Mini-vial 6 ml Sarstedt 

Slab gel dryer SGD4050 Savant 

PhosphoImager Typhoon 9400 Amersham Biosciences 

Ultra-deep freezer (-80°C) MDF Panasonic 
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Vertical shaker USR-50 Pro Labplus 

Vortex mixer Whirlimixer Fisons 

Water bath Tempette Junior TE-8J Techne 

 

6.3 List of chemicals and expendables  

Name Catalogue # / Lot/ Name Producer 

20 x  WB Transfer buffer NP0006-1 Novex 

20 x MOPS-SDS Running 

buffer (BioRad) 
XT-MOPS #161-0788 BioRad 

20 x MOPS-SDS Running 

buffer (Novex) 
NP0001 Novex 

20 x Reducing Agent XT Reducing agent 20 x #161-0792 BioRad 

35
S-SO4

2- 
Sulfate Lot# 177911 Perkin-Elmer 

4x Sample buffer XT Sample Buffer #161-0791 BioRad 

6 well plate 6 well culture cluster, # 3516 Costar 

Acetic Acid Lot# 33209 Sigma 

Amplify Solution NAMP100V 
Amersham 

Biosciences 

Anti –Mouse IgG Antibody 

conjugated with horseradish 

peroxidase 

NXA93-1ML1, lot # 9489919 GE Healthcare 
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Anti –Rabbit IgG Antibody 

conjugated with horseradish 

peroxidase 

NA934, lot # 9499122 GE Healthcare 

Blocking Agent ECL Advanced Blocking Agent GE Healthcare 

Blue dextran Lot# 283873 
Amersham 

Biosciences 

Bovine Serum Albumin Lot#038K0704 Sigma Aldrich 

Calcium Chloride (CaCl2) Lot# 100K0216 Sigma Aldrich 

CL-6B Gel material Sepharose CL-6B # 17-0160-01 GE Healthcare 

DEAE gel material DEAE Sephacel™ # 17-0500-01 GE Healthcare 

DMEM Lot# 3MB049 Lonza 

DMSO-Dimethylsulfoxide Lot#007165.02 
Duchefa 

Biochemicals 

EDTA Lot#7640065 Sigma Aldrich 

Ethanol - Arcus 

Foetal Bovine Serum (FBS) Lot#A64304-0133 PAA 

G-50 Fine gel material Sephadex G-50 Fine # 17-0042-02 GE Healthcare 

HEPES CAS# 7365-45-9 Sigma Aldrich 

Hydrochloric Acid 20.252.290 VVR 

L-Glutamine Lot#0MB122 Lonza 

Methanol 3221BN-2.5L Sigma Aldrich 

Molecular Marker Magic Marker ™ # LC5602/23 Novex 

Molecular Marker 
Precision Plus Protein™ Unstained 

Standard #161-0363 
BioRad 

Molecular Marker 
Precision Plus Dual Colour Standards 

# 161-0374 
BioRad 
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Molecular Marker 

Protein Molecular Weight Markers 

[methyl-
14

C] methylated 

#NEC811001UC, lot # 1638419 

Perkin Elmer 

Penicillin /Streptomycin (P/S) Lot#0MB129 Lonza 

pH buffers , 4.01, 7.01 , 10.01 #910110 Thermo Orion 

Proteo Silver Plus™ Lot# 080M6259 Sigma Aldrich 

PVDF membrane LC2005 Novex 

RPMI 1640 Medium Lot# 90988M Lonza 

Scintillation Count Liquid Ultima Gold XR Perkin Elmer 

SDS-PAGE Gel 
Criterion XT 4-12 % Bis-Tris #345-

0123 
BioRad 

SDS-PAGE Gel 
NuPAGE 4-12 % Bis-Tris 

#NP0322BOX 
Novex 

Sodium Acetate Lot # 93170 Riedel-deHaen 

Sodium Chloride Lot # K36719833 BDH 

Sodium deoxycholate Lot#61H0536 Sigma Aldrich 

Sodium hydroxide 1040517 SDS 

Sodium Phosphate (dibasic) Lot# 120K0126 Sigma Aldrich 

Sodium Phosphate (monobasic) Lot# 20K0227 Sigma Aldrich 

TRIS 33621.26 VVR 

Triton X-100 789704 
Boerhinger 

Manheim 

Tween 20 - Sigma Aldrich 
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Ultra-centrifuge device, 10 k UFC901024 Amicon 

WB detection reagent 
Amersham™ ECL Select™ WB 

detection reagent # RPM 2235 
GE Healthcare 

6.4 List of buffers and solutions 

 

Name  Composition 

1 x TTBS (Tris-Tween 

buffer saline) 

20 mM Tris, 137 mM NaCl, 0.1 % Tween 20, Adjust to pH of 

7.6 with HCl 

1 x WB Transfer buffer 50 ml 20x WB transfer buffer, 100 ml Methanol, 850 ml dH2O 

10 x PBS, pH 6.8 

18mM Sodium phosphate (monobasic), 84mM Sodium 

phosphate (dibasic), 150 mM NaCl. 1 x PBS (diluted with 

dH2O) would give pH of 7.4. 

2% ECL Advanced 

Blocking Solution 
2 % of  ECL Advanced Blocking agent in 1 x TTBS 

35
S-SO4

2-
Medium 

RPMI 1640 Medium (without sulfate), 1% P/S, 1 % L-

Glutamine, 0.2 mCi/ml of 
35

S-SO4
2- 

sulfate 

Anti aggrecan antibody 

1:2000 dilution 

2.5 μl of Anti aggrecan antibody in 5 ml of 2% ECL Advanced 

blocking solution 

Anti biglycan antibody 

1:2000 dilution 

2.5 μl of Anti biglycan antibody in 5 ml of 2% ECL Advanced 

blocking solution 

Anti C0S-STUB antibody 

1:2000 dilution 

2.5 μl of Anti C0S-STUB antibody in 5 ml of 2% ECL 

Advanced blocking solution 

Anti C4S-STUB antibody 

1:2000 dilution 

2.5 μl of Anti C4S-STUB antibody in 5 ml of 2% ECL 

Advanced blocking solution 

Anti C6S-STUB antibody 

1:2000 dilution 

2.5 μl of Anti C6S-STUB antibody in 5 ml of 2% ECL 

Advanced blocking solution 

Anti decorin antibody 

1:2000 dilution 

2.5 μl of Anti decorin antibody in 5 ml of 2% ECL Advanced 

blocking solution 

Anti serglycin antibody 

1:2000 dilution 

2.5 μl of Anti serglycin antibody in 5 ml of 2% ECL Advanced 

blocking solution 
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Blue dextran/ potassium 

dichromate mix 
3 mg/ml Blue dextran, 2 mg/ml potassium dichromate 

Buffer A (ion exchange) 

0.1 M NaCl, 20 mM Sodium Phosphate (monobasic /dibasic), 

Adjust pH to 6.8 with changing  sodium phosphate monobasic 

to dibasic ratio in solution  

Buffer B (ion exchange) 

1.0 M NaCl, 20 mM Sodium Phosphate (monobasic/dibasic), 

Adjust pH to 6.8 with changing  sodium phosphate monobasic 

to dibasic ratio in solution 

cABC buffer (10x) 
0.05 M Sodium Acetate, 0.05 M Tris, 0.1 % BSA Adjust pH to 

8.0 with HCl. 

CL-6B Size exclusion 

chromatography running 

buffer 

0.15 M NaCl, 0.05 M Tris, 0.2& Triton X-100 

Incomplete medium 500 ml of DMEM, 1%P/S 

Complete Medium 500 ml of DMEM, 10% FBS, 1% P/S, 1 % L-Glutamine 

Fix solution for SDS-PAGE 

and Silver staining 
5:1:4 solution of: Ethanol, Acetic acid and dH2O 

Freezing solution DMEM, 10 % FBS, 1 % P/S, 1 % L-Glutamine, 10% DMSO 

Hep buffer (10x) 
0.05 M HEPES, 0.5 M NaCl, 10mM Calcium Chloride, 0.1 % 

BSA, Adjust pH to 7.0 with HCl 

Lysing buffer 

50 mM Tris-HCl, 150 mM NaCl, 0.05% Triton X-100, 1 mM 

EDTA, 0.05 % Sodium Deoxcholate, Adjust to 7.4 pH with 

HCl 
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6.5 List of primary antibodies 

Epitope Ig Type Lot# Manufacturer 

Aggrecan Rabbit 2000382 Millipore 

C6S-STUB Mouse IgM A80120 Seikagaku 

C4S-STUB Mouse IgG1 2062302 Millipore 

C0S-STUB Mouse IgG A70120 Seikagaku 

Decorin Mouse IgG1 ECI0212111 R&D Systems 

Biglycan Mouse IgG1 WLL02 R&D Systems 

Serglycin Rabbit - Obtained from Achilleas D. Theocharis 
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6.6 Protein Standards 

 

Magic Mark™ XP Western Protein Standard 

 

Precision Plus Protein™ Dual Colour 

Standard 

 

 

 

 

 

 

Precision Plus Protein™ Unstained Standard 


