Geometry decomposition algorithms for the
Nitsche method on unfitted geometries

by

TOM ANDREAS NARLAND

THESIS
for the degree of

MASTER OF SCIENCE

(Master i Anvendt matematikk og mekanikk)

Faculty of Mathematics and Natural Sciences
University of Oslo

June 2014

Det matematisk- naturvitenskapelige fakultet
Universitetet i Oslo

I Acknowledgement

I want to thank my supervisor André Massing at Simula Research Laboratory for his
patience and large amount of insight he has lent me in his field. A big thanks also
goes to my fellow master students Jarle, Ingeborg and Nina for the company and good
discussions. Thanks also to my friends Bjgrnar, Live, Hallvar and Kaja and my brother
Martin and mom for the steadfast support they have been these last semesters.

Contents

I Acknowledgement
1 Introduction

2 The finite element method on fitted meshes
2.1 Model problem
2.1.1 Continuous variational formulation
2.1.2 Discrete variational formulation
2.1.3 Meshes
2.1.4 Piecewise polynomial spaces
2.1.5 Assembly and numerical integration
2.2 Errors
2.2.1 Cell shape and numerical errors
2.2.2 Cell shape and matrix conditioning
2.2.3 Meshing domains of viable quality

3 The finite element method on unfitted geometries
3.1 Solving partial differential equations on unfitted geometries
3.2 The Nitsche method
3.2.1 Weakly enforcing boundary conditions by the Nitsche method . . .
3.3 Weakly enforcing interface conditions by the Nitsche method
3.4 Overlapping meshes
3.5 Challenges e
3.5.1 Cutelements
3.5.2 Imtegration and assembly L.

4 Collision detection and mesh decomposition
4.1 Detecting intersections Lo
4.1.1 Partitioning techniques
4.1.2 Advancing front methods
4.2 The bounding volume hierarchy
4.2.1 Bounding volume hierarchy construction algorithms
4.2.2 Traversing the bounding volume hierarchy
4.2.3 Bounding volumes Lo Lo o

iii

4.2.4 Detecting the intersection of primitives
4.3 An advancing front algorithm 0.
4.4 Implementation of algorithms
4.4.1 Implementation of a bounding volume hierarchy
4.4.2 Implementation of an advancing front algorithm
4.5 Benchmarking implementations o000
4.5.1 Benchmarking different bounding volumes in 3D
4.5.2 Benchmark on aneurysm example.
4.5.3 Benchmark on structured mesh, regular split cubes
4.5.4 Benchmark on structured mesh, irregular split cubes
4.5.5 Benchmarking with 26DOP at leafnodes
4.5.6 Comparing a BVH to an advancing front algorithm in 2D
4.6 Mesh decomposition oL oo
4.6.1 Triangulation of cells intersected by an interface
4.6.2 A greedy triangulation routine
4.6.3 Implementation of the triangulation algorithm
4.6.4 Datastructures Lo L

Integration and assembly of cut elements

5.1 A summary of integration techniques for cut elements
5.2 Assembly of the linear system 0.
5.3 Implementation in FEniCS and LibCutFEM

Numerical results

6.1 Poisson on overlapping meshes oL,
6.1.1 Formulation
6.1.2 TImplementation Lo
6.1.3 Result
6.1.4 Convergence test oo
6.1.5 Patchtest
6.1.6 Timings L

Conclusions and further work

7.1 Computational geometry oo
7.1.1 Bounding volume hierarchy,
7.1.2 Implementational considerations when detecting intersections . . .
7.1.3 Mesh decomposition 0oL

7.2 The Nitsche method

7.3 Further work L

Source code

A.1 Poisson’s equation with weakly enforced boundary conditions
A.2 Triangulation algorithm verification
A.3 Poisson’s equation on overlapping meshes

69
70
71
72

73
73
73
74
74
74
76
77

79
79
79
80
80
81
81

A.4 Generation code for mesh with large angles, 93

A.5 Source code for drawing trees 96
A.6 Source code for drawing bounding volumes on mesh 96
A.7 Generation code for structured mesh 96

vi

Chapter 1

Introduction

Recent developments in the fields of medical imaging and computational science makes
it increasingly more feasible to do numerical simulation on geometries derived from med-
ical scans. The view this opens into medical data can be a valuable tool in reaching new
understandings of the physical processes governing life and health. As these methods
hopefully mature, numerical simulation on patient-specific geometries has the potential
to usher in a new age of individualized clinical treatments based on medical diagnostic
methodology both more informative and accurate than that of the present day.

The development of multidisciplinary applications such as mentioned above naturally
requires a combination of computational frameworks, each of which are mature and ro-
bust. A common framework for numerical simulation of physical systems, in this regard,
is finite element analysis of partial differential equations. Finite element analysis has
proven to be a framework of great utility in fields such as engineering, medicine and
economics and is actively developed towards an increasing number of both current and
future applications.

One of the major problems in finite element analysis is automating the process of turning
a complex mathematical formulation into a problem that can be posed and solved on a
computer. In recent years, much research has been carried out on automating both the
generation of efficient numerical schemes for many problems and efficiently solving the
resulting numerics. The computational models coupling with the geometrical descrip-
tion of its domain, however, has arguably not been given the same extensive treatment.
Although finite element analysis originates in structural engineering, it is estimated that
for complex engineering designs, around 80% [1] of the total time in the design and
simulation process is spent on translating geometrical descriptions such as CAD (Com-
puter Aided Design) models into computational domains that can be passed on to finite
element analysis codes. For biomedical applications, this process, known as meshing a
domain, is equivalently difficult and time consuming; here with the added challenge of
having to represent tissues of far greater complexity than that of steel and polymer as
associated with structural engineering.

At the present moment, many flexible geometrical approaches to finite element anal-
ysis are being explored. Notable lately is the development of isogeometric analysis [2]
which enables finite element analysis directly on CAD geometry. Parallel to this, re-
search on other methods for flexible geometrical descriptions is also gaining ground,
particularly with the development of finite element methods for what is here referred
to as unfitted geometries. These methods allow much of the existing catalogue of well
known finite element theory to be applied on domains where some of the traditional
geometrical restrictions are removed. These approaches are based on coupling methods
like Lagrange multiplier methods [3, 4], discontinuous Galerkin methods [5, 6, 7, 8] and
immersed boundary methods [9, 10], to name just a few. The finite element methodol-
ogy presented in this thesis uses the Nitsche method [11] to weakly impose boundary
and interface conditions to in turn ease some typical geometrical restrictions, with rela-
tively few extensions to the standard FEM. The finite element analysis with the Nitsche
method is here in large parts based on work by Massing et al. [12, 13, 14], Hansbo and
Burman [15, 16, 3] and Stenberg and Jutunen [17]. This method, along with specific
applications wherein it can be of good use, is further introduced in Chapter 3.

Apart from presenting some of the mentioned finite element theory, the primary concern
of this thesis is deriving geometrical entities suitable for finite element analysis. Many
algorithms from the field of computational geometry are reviewed and implemented to
enable the solution of partial differential equations on unfitted geometries. A core ex-
ample of an unfitted geometry, forming the practical foundation of much of this thesis,
is that of two meshes arbitrarily allowed to overlap and together constitute a full com-
putational domain. This setting is illustrated in Figure 1.1b. The codes described and
developed in this thesis are primarily intended for this overlapping meshes case, but is
in overall concept and implementation attempted to be both general and extensible to
many other types of computational domains. To this end, departures are made into con-
ceptual descriptions and implementations of several algorithms fit for this application
and used prior in similar settings.

As it happens, many of the researchers in this field use entirely different techniques from
the field of computational geometry to achieve many of the same geometrical goals. Tech-
niques ranging from simple check-all-against-all brute force methods to external libraries
designed for either exceptional numerical robustness [18] or exceptional computational
speed [19, 20, 21], are all used to derive geometrical information needed by different
finite element methods. Many of these approaches are here presented, along with imple-
mentations and investigations into the specifics of some of them. Particularly this thesis
launches an investigation into which bounding volume is best to use in a bounding volume
hierarchy [20, 22] for detecting intersections in meshes typical for finite element analysis.
This hierarchy is further compared against another efficient intersection algorithm, an
advancing front algorithm [21]. At the end of Chapter 4: Collision detection and mesh
decomposition, an algorithm based on the widely used marching cubes algorithm [23] is

presented and implemented for mesh decomposition.

This thesis is organized as follows. In Chapter 2: The finite element method on fit-
ted meshes, preliminaries are presented for a standard finite element method. Here a
finite element method is derived for the Poisson problem on a standard mesh geometry.
In Chapter 3: The finite element method on unfitted geometries, selected applications
benefiting from a flexible geometrical approach are presented and the Nitsche method
is formulated for the application at hand. Chapter 4: Collision detection and mesh
decomposition is devoted to deriving the geometric intersection information and geo-
metrical entities needed for the Nitsche method in the overlapping meshes case, which
is a major subject of study in this thesis. Chapter 5: Integration and assembly of cut
elements presents ways to integrate on cut geometries and presents the assembly routine
performed by the library LibCutFEM [14] as it is used here. Chapter 6: Numerical
results presents a solution of the Poisson problem on overlapping meshes and a selection
of associated convergence tests and timings. Chapter 7: Conclusions and further work
summarizes challenges in implementation, results and further work.

(a) (b)

Figure 1.1: Examples of what is here denoted fitted (a) and unfitted geometry.
Efficiently decomposing the geometry of overlapping meshes (b) into geometrical entities
suitable for finite element analysis is a main objective of this thesis.

Chapter 2

The finite element method on fit-
ted meshes

Natural phenomena such as waves, heat, fluid flow, elasticity, electrodynamics or
quantum mechanics can all be described by partial differential equations. Formalized
in similar terms in a PDE, many aspects of these physical systems can be studied with
great efficiency. The equations constituting these descriptions are however often difficult
to solve. Analytical solutions to PDEs are often hard to find, and in many cases, exact
solutions do not exist. Approximating solutions to PDEs by numerical methods is thus
often the only practical approach; one such method is derived in the following.

2.1 Model problem

The Poisson’s equation is a simple model of many physical processes in its own right and
an essential building block for a large number of more complex models. Here it is an apt
point of departure for studying numerical approximation of partial differential equations.
Let © be a bounded domain in R?, and 9 denote its boundary. The Poisson’s equation
reads: find u such that
—Au=f in{,
u=gp ondp, (2.1)
Vu-n=gy ondQy

where n denotes the outward pointing normal of €. and 9Qp C 9N and INy C IN
denotes the Dirichlet and Neumann boundaries, respectively. The Dirichlet boundary
condition, u = gp, assigns a prescribed value of the unknown function u at 9Qp, while
the Neumann boundary condition Vu - n = gy assigns a value for the normal deriva-
tive of u on 0. The Laplacian operator A is the sum of all unmixed second partial
derivatives of u, Au = 31" | 6%u/0z?.

In what follows a finite element method is developed for this problem, initiated by de-
riving a continuous variational formulation for (2.1).

2.1.1 Continuous variational formulation

A variational formulation for the model problem is derived by requiring that for a suitable
test space V; and test function v € Vy,

/ (Au+ f)v dx = 0. (2.2)
Q

This equation holds provided that the integrals are well defined, and it is readily seen that
a solution u of (2.1) also satisfies (2.2). Now, by assuming v is sufficiently smooth, the
smoothness required for u can be reduced by the property of the derivative in integration
by parts and the divergence theorem, yielding

/ VuVu dx = / fvdx —|—/ (Vu -n)v dS.
Q Q o0

where dS is used to distinguish the surface integral over 02 from the volume integral
over (). By replacing the Neumann-boundary term with its prescribed value, this is

/VUVU dx:/fv dx+/ gnv dsS, (2.3)
Q Q [2/9]

which is a continuous variational formulation of (2.1).

If u solves (2.3), it is a weak solution of the original problem. This solution is not
necessarily smooth enough to solve (2.1) itself, but it can still retain alot of valuable
information about the original problem. So, in what sense can the the weak solution
and the test function v be meaningful? This is mainly a question of where to look for
the solution u. Looking at the space of all functions that are square-integrable

LQ(Q):{U:QHR’ /uzdx<oo},
Q

with the norm)

fulla = ([0 ax)”
Q

it is clear that the integral on the left-hand side (2.3) will be well defined if all first
derivatives are in Ly(€2). This follows from using the Cauchy-Schwarz inequality and
finding that

[vuvvae=3 [(2 (2)ux < 3
o - = Ja\ox;) \ O B

=1

ou
8$Z‘

ou
81‘Z‘

Lo Ly

The integrals on the right-hand side of (2.3) is similarly well defined if f,g € Lo(£2). The
space wherein the solution to (2.6) and the test function v naturally exists, is called the
Sobolev space H'(Q), which for Q € R? is defined as

o

HY(Q) := {u:Q—>R oz,

for i =1,2...,d € L2(Q)} .

u,

where the H! semi-norm is defined as

1
ey = ([V@ ax)”,

and the H! norm as

1
lull ey = (Il 0y + lulin) (24)

To find solutions where u = g on 9€p, solutions are here sought in a subspace of H*()
into which these boundary values have been submitted. This space is defined as

V,={ve H(Q):v=gon dQ}. (2.5)

Notation

An often used notation for (2.3) is

a(u,v) = (Vu,Vov)g — (Vu-n,v)sq,
L(U) = (fv U)Qa

where for a set W, (-,) denotes the Lo(W) scalar product. Using this notation, the
abstract problem

a(u,v) = L(v) veV,. (2.6)

is formulated. Here, a(u,v) is referred to as the bilinear form, which contains all terms
with both the trial function u and the test function v. L(v) is the linear form, containing
all terms without the trial function.

2.1.2 Discrete variational formulation

For a numerical approach, an infinite dimensional space such as Vj is not feasible. Con-
sidering instead a finite dimensional subspace of V;, a numerical approximation to the
solution can be found by searching for an approximate solution to a discretized varia-
tional formulation.

The continuous variational formulation (2.3) is converted into a discrete problem using

a finite dimensional subspace of our infinite dimensional space V;. A discrete problem
is thus finding uy, € ngh C Vj such that for all v, € Vgh:

ap(un,vp) = Ly (vn) (2.7)

The above equation, known as the Galerkin equation, allows for the computation of uy
numerically as a finite linear combination of the basis vectors of Vgh. A solution is thus

7

sought in a function space where by an ansatz the trial function u, can be expressed
with basis functions {p;(z)}Y¥, C Vgh as

N
up () = ch%'(m) (2.8)

where the coefficients {Cj}é-vzo are unknowns to be computed. Each unknown ¢; is
sometimes called a degree of freedom (DOF), referencing the role it can be thought
to play in configuring a physical system. The ansatz (2.8) leads to the linear system

Z Ai,jCj =b, 1€ IV
JELy

where, for the Poisson’s equation (2.1),

A Z/QW?N% dx = a(ps, ;). bi z/ﬂfisoi dx+/mgm%ds=L(soi)- (2.9)

To successfully assemble this linear system, what remains is to construct the space
Vgh C V, wherein a solution is sought. The construction of this function space is done
in two parts: first the domain € is decomposed into a discrete computational domain,
then, upon this domain, the function space Vgh is built.

2.1.3 Meshes

A common discretization T of the domain) is to partition it into a set of disjoint cells
T:

known as a mesh. The treatment of meshes is here limited to the real plane R?. A
formal definition of a triangulation in this regard is:

Definition 1 (Triangulation). Let Q C R? be a bounded two-dimensional domain with
a polygonal boundary 0S). A triangulation T of Q is a set {T'} of triangles T, such
that 2 = Upc where no triangles intersect, except at edges or vertices. No vertices are
allowed to be hanging, that is, lie on the edge of another triangle.

An example triangulation of a square is given in in Figure 2.1. A quantity belonging to a
triangulation is the local mesh size, hp, which is a size measure of a triangle in the mesh,
denoting the length of the longest edge or the circumradius of a triangle. The mesh size,
here denoted h, is the maximum local mesh size in the global triangulation. Further
terminology associated with a triangulation is that of degeneracy; a triangulation is said
to be degenerate if two vertices in a triangle in the domain share the same coordinate,
or if the vertices all lie on a line.

Figure 2.1: Unstructured mesh of a unit
square.

2.1.4 Piecewise polynomial spaces

With a triangulation 7 it is possible to construct a function space where problems such
as (2.7) can be solved. One such space is the space of all continuous piecewise linear
polynomials over 7, which is here derived by first making a function space on each in-
dividual triangle in 7 and then putting these together to form a function space for the
whole domain.

Let T be a triangle and let P;(T) be the space of linear functions on 7', defined by
P(T) ={v:v=co+c1m1 + cam2, (71,22) €T, co,c1,c2 € R}

and let N, for r = 1, 2,3 denote three local nodes in the triangle T, typically coinciding

with the vertices of T. Any function v in the space P;(T') is now shown to be uniquely

defined by what is called the nodal values o, = v(N,). This follows by computing the
determinant of the linear system

1 9551) xél) €o Qg
x§2’ $g2) cil = |y (2.10)
$g3) $g3) 2 Qo

and finding that its absolute value equals 2|T|, where |T| is the area of T'. If this area
is positive then the linear system has a non-zero determinant, implying that the linear
system has a unique solution as long as the triangle 7" is not degenerate. Thus any
function in the space Pi(T) is uniquely described by the nodes N; = (z%,z%) and a
nodal value associated with each of these. To use the nodal values o, = v(NV,) as the
degrees of freedom in (2.8), a nodal basis {\1, A2, A3} is introduced, replacing the natural

basis {1, 21,22} for P;(T). The nodal basis is defined by

As(N,) = {(1) : ; z Cors=1,23 (2.11)

Using this new basis, any function v in P;(7T") can be expressed as
V= a1 A1 + Qoo + a3)3

where a, = v(N;).

Now, to construct the finite dimensional subspace Vgh on the chosen discretization of
the domain 7 = {T'}, a first requirement is that for each triangle 7', any function v in
this space belongs to P;(T"). A second requirement is continuity between neighboring
triangles. By looking at the shared edge E = T7 ()13 of two neighbouring triangles in the
discretization 7, it’s evident that v; = vy on E, since the linear polynomials v; € P;(71)
and vy € P;(T5) coincide at the endpoints. Lastly, interpolating the Dirichlet condition
g along the nodes N; belonging to the boundary 02 with a suitable interpolant Ij 57
and submitting these values into the space, the space of all continuous piecewise linear
polynomials conforming to g on the boundary is obtained:

Vgh ={v, € C%Q) : vy|7 € P(T),YT € T and vy, = I}, y7g on 9Q} (2.12)

where C?(€2) is the space of all continuous functions on €.

Analogous to the nodal basis (2.11), a global basis {y; ?p 1 C Vgh is defined

1, i=j . .
0 (N;) = { J i,7=1,2,..,n (2.13)

Figure 2.2: The global basis
{e; }?il over T shown at node N;.

Using this basis any function vy, € Vgh can be expressed as

where a; = v(IV;),i = 1,2, ..., .

When submitting the boundary values g into the function space Vgh like above, the
boundary condition is said to be strongly enforced. A suitable the linear interpolant
Ij, o1 of a continuous function g on the boundary 97 is formed by using the global basis
above as

Iorg= Y, 9(Ni)pi

1€Th,0T

where Zy7 is an index-set running along the boundary 97 . A similar interpolant can be
defined for a function f over a triangle T is

3
Inrf =Y F(N)er (2.14)
r=1

This interpolant defines a plane running through the three nodes N,, and is used below
in error estimates.

The finite element

The function space Vgh based on the linear polynomials P; over a triangle 7" is only one of
many function spaces suitable for the discrete variational formulation (2.7). Let the set
of nodal values over T'be N' = {1, ag, ag}. The triple (T, N, P;(T)) is commonly called
a finite element, and the specific element shown above is the The Lagrange element of
order 1, here simply referred to as P; elements.

2.1.5 Assembly and numerical integration

To construct the linear system (2.9), the integrals in (2.9) have to be evaluated. In
the P; is done by integrating over the local function spaces P;(T) and adding these
contributions to the global linear system.

Assembly

For simplicity it is here assumed that the location of vertices coincide with the location
of the degrees of freedom in the computational domain, as is typically the case with P;
triangular elements. Let r and s be local node numbers in a triangle 7', and let the cor-
responding global node numbers i and j be obtained through the mappings i = ¢(7',r)
and j = q(T,s). Algorithm 1 shows how the global matrix A is assembled using these
mappings. The vector b; for i = 1,2, ..., N in (2.9) is assembled in a similar manner.

11

Algorithm 1 Assembly of global matrix
A=0
for each T € T :
Z(T) =A{1,....dim(P1(T))} x {1,...,dim(P(T))}
for each (r,s) € Z(T) :
AR = aet” o)
for each (r,s) € Z(T) :
T
Ayrs)atnt = ALY

Numerical integration

Numerical integration, or quadrature, is calculating the definite integrals as they appear
in for instance (2.9), be it exactly or approximatively, by a numerical rule. A general
quadrature rule on a triangle T takes the form

/ fdz =) wif(g)
T j

where the set {¢;} are quadrature points distributed within 7" and {w;} the correspond-
ing quadrature weights.

Choosing a quadrature rule that can integrate polynomials exactly on the chosen func-
tion space is usually advantageous. For continuous piecewise linear functions such a rule
is the two dimensional analogue to the Trapezoidal rule, the corner-formula:

~5 e
/de%; T FN).

where N; denotes the corners of triangle 7. For Lagrange elements of order 2, P», the
Simpson’s rule can be used to integrate the cubic polynomials exactly.

2.2 Errors

A typical error estimate in the Ls-norm between an analytical solution v and a numerical
solution wuy, of the Poisson’s equation when using P elements is

lu — up||z2(q) < CR?||D?ull12(q), (2.15)

where h is a mesh size and where D? denotes the total first and second derivatives of
u, that is D?u = \/[0%u/022]? + [02u/(0220y?) | + [0%u/0xy?[2. This error shows that
the numerical solution is converging to the analytical solution in Ls norm quadratically
as you decrease the mesh size h. For a rigorous analytical treatment of various errors
associated with numerical approximations of PDEs like the one above, consult Scott

12

and Brenner [24] or Larson and Bengzon [25], where proofs of the above a priori error
estimate can be found. The treatment of errors is in what follows limited to cell shape,
expressed by edge lengths in a triangle.

Approximating the solution to the model problem (2.1) can in principle be performed on
any mesh conforming to Definition 1 above, but to limit potential sources of error in the
approximation, a proper domain discretization has to meet several requirements. The
shape and size of the cells in a mesh, be it triangles or tetrahedrons, affects both the
properties of the numerical solution of our problem; i.e. how accurate the approximation
is, and how the solution is obtained; i.e. how difficult a linear system is to solve. To this
end various metrics exist to measure the quality of a triangulation. A commonly used
metric is the chunkiness parameter kp: Let dp be the diameter of the inscribed circle in
triangle T, then
hr

A
T 7

Definition 2 (Shape regularity). A triangulation T is said to be shape regular if there
is a constant kg > 0 such that

kr > ko, VT €T (2.16)

This parameter is a general indicator of how well a mesh performs with respect to
numerical errors and matrix conditioning for different problems.

2.2.1 Cell shape and numerical errors

For a brief exposition of how mesh size and shape can affect a numerical approximation,
assume Iprf (2.14) is a linear approximation of a smooth function f over a single
element T'. Schewchuk [26] derives error bounds for the interpolation error: f — I rf,
and for the error in the gradient of the approximation: Vf — VI, rf, a property that
in many applications is just as important as the interpolation error itself. Specific weak
and simple upper bounds for these errors as presented in [26] are

2

gmax
1 = IS lloo < cr =22
3£max€me gmin

IVf = VInrflleo < cr .

2A

where the sup-norm ||f||cc = sup{|f(z)|: x € T is used and where lpax, lmed and lmin
denotes the length of longest, median and minimum edge in the triangle and ¢y denotes
a upper bound on the curvature of f bounded to the particular triangle T'. See [26] for
tighter, more complex bounds and a precise definition of the curvature ¢ of f.

The bound on the interpolation error shows that this error is largely independent of

shape; it is simply bounded by the size of the triangulation (the longest edge in the
triangle) and how much the function f locally varies over the domain. The error in the

13

approximation of the gradient, on the other hand, is heavily influenced by large angles in
the triangulation, and explodes as the product of edge lengths/area-ratio becomes large,

as illustrated in Figure 2.3.
A /"/?7‘\ > D
WJ i f /

I "’{ e
Ziey %‘VM ‘W,
7 W J W/’//W M’/

| il i

N 1
Figure 2.3: Large angles in a mesh i /l
resulting in poor estimation of ||Vu—
Vg||loo for the model problem (2.1).
Generation and problem code can be
found in Appendix A.4.

2.2.2 Cell shape and matrix conditioning

The shape and difference in size of elements in a mesh also affect the conditioning of
the linear system resulting from a discretization of a problem. Problems involving the
Laplace term Au gives rise to the matrix A;; in (2.9), known as a stiffness matriz,
here denoted K. A common way to assess the solubility of a matrix is by defining the
condition number:

_ WK
’%_)‘max

/K (2.17)

min
where AX_and MK, is the largest and smallest eigenvalue of K. A linear system with
a large condition number is known to be sensitive to numerical errors.

In the finite element method the assembled global linear system is composed of con-
tributions from single element matrices, like shown in Algorithm 1. In this light, Fried
[27] shows that ALK, is proportional to the area of the smallest element, and also that
the largest eigenvalue X of the global stiffness matrix satisfies

max M<K < m max A (2.18)
where AL denotes the largest eigenvalue of the element stiffness matrices and m is

the maximum numbers of elements meeting at a single vertex. Further it can be shown
[26] that the eigenvalues of the element stiffness matrix for a P1 element using exact
integration is

. E?nax + £I2ned + g?nin + \/(Elgnax + éimd + Erznin)2 — 4842
B 8A

AT (2.19)

14

Looking at (2.19) in conjunction with (2.18) and (2.17) it is evident that a single badly
shaped element in a mesh can ruin the conditioning of the whole global linear system. A
properly meshed domain thus prescribes elements where the sum of edge lengths/area-
ratio is satisfying for all elements, i.e. prescribing elements where no angles are too
narrow or too wide.

2.2.3 Meshing domains of viable quality

To produce meshes that satisfy the above requirements various construction and
refinement techniques are used. Structured meshes, consisting of cells more or less
homogeneously shaped, aligned and distributed around a domain, are often used in
theoretical applications and in structural engineering where the object analyzed can be
represented by a simple geometrical shape like a rectangle or triangle can be put into
lattice arrangements. Unstructured meshes, like shown in Figure 2.1, are common when
solving problems on geometric data obtained from medical scans or complex geometrical
models constructed using CAD software. To this end algorithms producing Delanuay
triangulations based on these geometrical descriptions are often employed. A Delanuay
triangulation for a set of points P is a triangulation 7p such that no point p € P is
inside the circumcircle of a triangle T' € Tp. If the points P are spread more or less
evenly within the convex hull containing P, this triangulation tends to avoid triangles
with small or large angles. To produce a triangulation conforming to a domain € with
triangles as ideal as possible, various algorithms with various point-placement strategies
can be used [28, 29]. Delanuay triangulations are by far the most popular approach
to construct unstructured meshes, but no algorithm has been found to automatically
mesh domains, given any input, in an universally satisfying manner. Because of this,
human interference in the meshing process is common, and a wide range of meshing
tools for specific applications exist. General open source triangulation tools often used
are TetGen [30], Gmsh [31], Netgen [32] and Triangle [33]. For biomedical applications
tools such as VMTK [34] and Pyformex [35] are commonly used.

15

16

Chapter 3

The finite element method on un-
fitted geometries

As mentioned in the introduction, many existing applications of the finite element
method can benefit from a more flexible geometrical approach than the one permit-
ted by a standard mesh discretization as presented in Section 2.1.3. Meshing complex
domains to comply to the requirements of the standard FEM is a time consuming af-
fair, often limiting the geometric configurations explored in a given application and
also prohibiting many ways to automatically set up and reconfigure the domain. Many
applications of FEM is further limited by the standard mesh discretization when the
computational domain undergoes deformations or when geometrical features of interest
are hard to represent.

In fluid-structure interaction (FSI) problems, where the computational domain poten-
tially undergoes large deformations, describing the surface by an independent mesh or
a function defining a surface alleviates many concerns [36]. Similar geometrical descrip-
tions would be beneficial in two-phase flow problems [37, 5], where the interface between
the two fluids are traditionally described by a tessellated surface corresponding to ver-
tices within a single mesh.

When domains are constructed from data returned from medical scans, like that of
an magnetic resonance imagery (MRI) or X-ray computed tomography (CT), meshing
domains to acceptable quality is often a complex and error prone task [38]. In addition,
some features, like blood vessels (Figure 3.1a) or neurons are not easily represented at
all. For many medical applications, a flexible geometrical approach allowing representa-
tions of these physical features as networks of intervals, illustrated below in Figure 3.2a,
can be beneficial. An application of this is shown in Cattaneo and Zunino [9], where
coupling a network of intervals with a 3D surrounding is used to model tissue perfusion
and microcirculation.

Data returned from scans such as above and other 3D imaging techniques are typically

17

vozels describing some property of the scanned material, like its density, or a mapping
of the diffusion of particular molecules (diffusion tensor MRI). A geometrical approach
capable of setting up a computational domain directly from such voxel data, like that
associated with fictitious domain methods [12, 3, 39], one of which is illustrated in Figure
3.2c, is naturally practical.

3

P A

>
-t

(a) Time-of-flight MRA at (b) Rotating propeller form- (¢) Non-Newtonian fluid

the level of the Circle of Willis ing vapor cavities in water. (corn starch and water)

in the human brain. dancing on a loudspeaker.
Photo by Rory MacLeod, CC
BY 2.0.

Figure 3.1: Physical phenomena benefiting from flexible geometrical approaches to
numerical simulation. (a) Blood vessels like veins or capillaries are hard to represent
in standard mesh discretizations. (b) Physical configurations like that of a propeller
connected to a motor are often meshed as static in many discretizations. (c) Surfaces of
fluids undergoing large deformations over time are hard to represent in a typical mesh.

18

(a) Network of intervals su- (b) Overlapping meshes, one (c) Fictitious domain,

perimposed on a unstruc- mesh superimposed on an- boundary of domain defined

tured background mesh in other, together forming full by a function and submerged

2D. domain. in a structured background
mesh.

Figure 3.2: Flexible geometrical configurations applicable to physical phenomena
shown in Figure 3.1.

3.1 Solving partial differential equations on unfitted ge-
ometries

In Section 2.1.2 solutions u were sought in the function space Vgh (2.12) where the bound-
ary conditions u = g on 02 where incorporated into this function space itself. To achieve
this, g is typically interpolated along the boundary and submitted as pointwise values
into Vgh. As Hansbo [16] elegantly states, this goes against the grain of the main idea
of the finite element method as a weak method that only fulfills equations in the mean.
This principle does not cause any major trouble for boundary value problems on typical
triangulations, but when moving on to more general interface problems, the same ideas
are often hard to employ.

In the case of unfitted geometries like shown in Figure 3.2, it is not possible to submit
pointwise values of boundary conditions into the function space or prescribing interface
conditions at some DOFs as it is typically done in the case where the geometry is fitted.
The DOFs are no longer located at the boundary or interface describing a surface in the
mesh and hence a different mechanism is needed to impose these boundary and interface
conditions.

Nitsche’s method and the other techniques mentioned in the introduction all rely on
suitable domain decompositions. A large part of this thesis is devoted to surveying and
implementing algorithms to compute such domains decompositions and the presentation
of the Nitsche method is here thus primarily concerned with exposing the various geo-

19

metrical entities it requires to be applied successfully. Thorough mathematical analysis
of this method for different problems can be found in Massing [12], Hansbo [16], Sogn
[40]. The presentation of the Nitsche method is in notation and structure closely related
to that of Massing [12, 13] and Hansbo [16].

As an application of the Nitsche method on overlapping meshes, domain bridging is
at the end of this chapter formulated between two domains. This geometrically flexible
approach allow a problem to be solved on two or more meshes, and is a useful technique
to avoid many of the challenges related to meshing as described in Section 2.1.3. Fur-
thermore, the computational domain decomposition tools needed for doing this task also
covers most of the machinery needed for the other cases shown in Figure 3.2.

3.2 The Nitsche method

The Nitsche method [11] is a way of weakly imposing boundary conditions and interface
conditions. It is here presented by means of example. In the first example Dirichlet
boundary conditions are transformed into weak terms in the variational formulation,
in a way similar to the formulation of a Neumann boundary condition. The numerical
solution wuy, is then sought in a function space that does not have any apriori knowledge
of the boundary data. In the second example the Nitsche method is formulated to
weakly enforce interface conditions on fitted geometries, and in the last example, this
formulation is carried over to the case of unfitted geometries.

3.2.1 Weakly enforcing boundary conditions by the Nitsche method

Starting with the continuous variational formulation of the Poisson’s equation (2.3) in
operator notation

(Vu, Vo)g — (Vu - n,v)a0 = (f,v)q

the idea of Nitsche’s method is to weakly enforce the boundary condition by penalizing
the jump u — g between the unknown solution v and the boundary condition g in the
discretized variational formulation:

(Vaup, Vo) — (Vup, - 1n,0) 00 + (R (un — 9),v8)a0 = (f,vn)a

where v > 0 a penalty parameter and h is the piecewise constant mesh size function
defined by h|p = hp with hp being the diameter of an element T' € Tp,. For v > 7,
Nitsche [11] proves that this gives an optimally convergent method. With the added
term, this system lacks symmetry. Symmetry is important for many linear system
solution algorithms, and is recovered by adding an additional term (Vv - n, (u — g))sq
to the problem [12, 16]. All in all the Nitsche method for this problem is: find uj, € V"
such that Yo, € V7

(Vaup, Vop)a — (Vup - n,v3)00 — (Vopn, up)aq + (b un,)
= (f,on)a — (Von -1, 9)aq +v(h g, v) 00

20

where V" is similar to the function space Vgh (2.12) without the submitted boundary
values. More on this method for boundary values can be found in [16, 17]. Figure 3.3
shows the Poisson’s equation solved with the Nitsche method for two v values.

(a) Oscillations at border, v = 1. (b) v = 10.

Figure 3.3: Two solutions of the Nitsche method applied to the Poisson problem
with varying v parameters and f(x,y) = 272(sin(rz)sin(my)). For 7 of insufficient
magnitude, v = 1, remnants of the source function f is seen at the boundary. The
source code for this can be found in the appendix, A.1.

3.3 Weakly enforcing interface conditions by the Nitsche
method

Now a finite element method for solving the Poisson equation on a domain {2 consisting
of two subdomains 1 and 2y separated by the interface I' = 91 N IS5 is derived. The
test function v : © — R can then be thought of as a composition v = (v1,v2) where
v; = v|q,, = 1,2 is the restriction of v to each domain. For simplicity it is assumed that
Q9 C Q1 as shown in Figure 3.4. A Poisson’s equation formulated for the two domains
is then: find u; and uy such that
—A’U,l = f1 in Ql,
—Aug = fo in O,
[Vu-n]=0 onTl,
[uf=0 onT,
u=0 on dQp,
Vu-n=0 on 0Qyn

(3.1)

where n is the outward pointing unit normal of € and [u] = u; — ug denotes a jump
over the interface I'. This is referred to as the interface condition.

Discretizing the domain €7 and 29 so that the computational domains are fitted can

be done as shown in Figure 3.4, where the cells in meshes 7; and 75 correspond at ver-
tices along the interface I'.

21

\ /
Figure 3.4: Interface I' between do-
mains, consisting of triangulations of do- .
mains ; and €y that at the interface I' 3

coincide at vertices.

The decomposition of €2 in this way means introducing the finite dimensional function
space
h h h
Vi =W eV, (3.2)

the direct sum of VJ', belonging to the domain Q; UT, and V{*, belonging to the domain
Q2. The finite element functions are then on the form v, = (v}, v}). Defined on (3.2) is
the norm

1011 o) = 1001 00y + 1101 11, 0
With 77, 72 and the function space (3.2), the strong continuity conditions [Vu - n] =
0 on I and [u] = 0 on I' are replaced by terms in the discrete variational formulation.
The problem can then be stated:

a(up,vn) = l(vn)

where
Consistency Symmetry Penalty
a(up, vp) = (Vaup, Vop)o — ((Vuy, -), [op))r — ([un], (Vo - n))e + (vh ™ us], [o))r,
(3.3)
l(vn) = (fnvn)a- (3.4)
Here the notation (-,)o = (-, -)a, + (*,), is used, and
(Vup -n) = a1Vuy -n+ aaVus - n (3.5)

where all convex combinations a; + az = 1 lead to a consistent method [16]. Typically
ap =g = % A strong enforcement of boundary conditions is assumed.

22

AN
2 7 Z NN
’7’//'7%“\‘\“ \

A O
o

P i
P

Figure 3.5: Solution of Poisson’s
equation on fitted composite geometry,
thin triangles denote 7; and thick trian-
gles Ts.

3.4 Overlapping meshes

Superimposing a mesh on another mesh is here referred to as overlapping meshes.

91

Figure 3.6: The physical domains €y
and o

Adopting the notation as in Massing [12]; the background mesh 7y is given for Q =
(€1 U Q9)° and another mesh 7z is given for the overlapping domain Q9. The mesh 7y
is decomposed into three disjoint subsets

To="Toa1UTo2UTor

where
Toa={T€To:TC N} is the set of mnot overlapped elements
relative to (o,
Too={T€To:T C Qa} is the set of completely overlapped

elements relative to (o,

Tor={T €To:TN|(21UQ)| >0} is the set of partially overlapped ele-
ments relative to .

23

Figure 3.7: Notation for domains. 7 is referred to as background mesh, T2 as the
overlapping mesh. Ti|J 7Tz is the combined computational domain. 7o 1, Tor and 7o 2
are decompositions of the background mesh with respect to the interface I' between Ty
and 7s.

The reduced and physical part of background mesh 7y corresponding to §2; is defined by

T =Toa UTor,
Ti={TNnM :TeT},
respectively. Shape-regularity (2.16) is required on both meshes 7y and 73. Further it

is assumed that the mesh sizes are compatible over the interface I', that is, there exist a
mesh-independent constant C' > 0 such that for all Ty € Ty and all T, € 75 the condition

C~ hy, < by, < Chyy (3.6)

is satisfied whenever ToNTo NT #), which essentially means that the cells in each mesh
does not differ wildly from each other in size over the interface I'. This is a reasonable
assumption for now, since is does not make very much sense to have a very large number
of degrees of freedom in one mesh being configured by only few in the other.

24

The relevant function spaces for this problem is defined on 7;* as
Vi = {unla, 1o € (T} (3.7)

and on 75 a standard function space. In the P; case, V{* and VJ are equivalent to (2.12)
over 71" and 73, respectively with and without submitted boundary values (if choosing
to strongly enforce these.) The function space used for the unfitted geometry thus is

Vi=vlew, (3.8)
similar to the function space for the fitted case above.
Now, (3.8) is not the function space on the actual physical domain 7;. In the case

of P; elements, the basis functions in the this function space, call it Pj"(77), are illus-
trated in Figure 3.8.

Of]
Figure 3.8: Broken basis func-
[. e tions in the space P;(71).
r N,
j

In the following a solution of the Poisson’s equation over two domains (3.1) will be
sought in P;(71), and this is here done by integrating just over the part of the cut
elements of Ty, contained within 77.

3.5 Challenges

3.5.1 Cut elements

The algorithms needed to decompose multiple meshes into domains containing cut
elements suitable for integration requires the use of several techniques from the field of
computational geometry. As a prerequisite for any method of integration, information
about where the meshes 7y and 72 overlap has to be derived. Then, depending on
what method is chosen to integrate on these geometries, specific information about the
intersection of cells needs to be obtained and an applicable domain decomposition like
a triangulation or set of polytopes needs to be constructed and passed on to further
numerical machinery. Obtaining this information and then decomposing the domain is a

25

computationally intensive task scaled by the size of the meshes involved. Several methods
for efficiently detecting and computing intersections are reviewed, implemented and
benchmarked in Chapter 4, Collision detection and computational domain decomposition.

3.5.2 Integration and assembly

The standard approach of applying Gaussian quadrature rules (Section 2.1.5) on the cells
in a domain is not directly applicable when solving problems on overlapping meshes. The
discontinuous nature of the function space (3.2) allows a function to be discontinuous
within a single cell, and this is not readily handled by the standard quadrature rules
and assembly algorithms. Depending on what kind of decomposition of the domain is
available, specific quadrature rules have to be applied and evaluated. Furthermore, the
standard assembly process has to be adapted to properly associate the interface with
the cut geometry. A selection of ways of integrating on cut elements is reviewed and an
assembly algorithm is presented in Chapter 5, Integration and assembly of cut elements.

26

Chapter 4

Collision detection and mesh de-
composition

Collision detection is the problem of detecting and describing a collision between two or
more objects. As a computational problem this is here split into if, and if so, where the
objects are colliding. Detecting if, say, two primitives intersect, typically just requires
one condition in an algorithm to terminate, whereas where requires a more complete
parse of the input geometry.

The first sections in this chapter is devoted to the first condition, detecting intersections.
In Section 4.1 different techniques are surveyed and considered. Subsequent sections are
devoted to two distinct techniques, namely a bounding volume hierarchy (Section 4.2)
and an advancing front algorithm for detecting intersections (Section 4.3), each solving
this problem efficiently.

The second problem, precisely determining where objects are intersecting is crucial to
properly decompose a domain to be used for numerical simulation. Computing local
intersections and triangulating the resulting geometry, in ways compatible with integra-
tion on cut elements, is covered in Section 4.6: Computational domain decomposition.

Alongside descriptions of different techniques, several implementations of associated al-
gorithms are presented and benchmarked on selected geometries typical to the finite
element method. Lastly, a data structure for passing the obtained information on to
other numerical software is presented in Section 4.6.4.

4.1 Detecting intersections
Collision queries such as where is the first collision between set A and set B?, what point

in A is closest to point x? and how many times does a line b intersect A?, can all be
answered by detecting some kind of intersection between derived or involved data. The

27

task of determining which triangles intersect each other in two meshes 7; and 73, can
be solved by the naive approach of testing all triangles in 77 against all triangles in 75
— an approach of order O(n?) if both meshes contain n triangles. When n is large, this
computational cost severely affects practical aspects of setting up domains such as those
given in Chapter 3. The computational cost of this task can be heavily reduced by using
appropriate algorithms.

Many of the techniques investigated here originates from applications such as computer
games and design tools. Traditionally, many of these applications rely on a preprocessing
step to make collision detection feasible within a real-time context. Examples of such
real-time contexts are 3D computer games, like iD Software’s Quake [41], or 3D modeling
suites like Blender [42]. When it comes to overlapping meshes, where meshes potentially
contain millions or billions of cells, true real-time capabilities are probably not possible,
and arguably not necessary. An implementation should nonetheless respect the fact that
it might be a part of a large and complex design or implementation process, warranting
both simplicity, modularity and speed.

In the scope of treating overlapping meshes within a numerical framework for solving
partial differential equations, an implementation of collision detection should be mainly
concerned with

o collision queries between simple objects(polygons) and objects of differing
dimensionality,

e reconfiguring meshes, either by rotating and translating or by manipulating the
mesh vertices,

o swapping data sets completely, refining meshes and changing parts of the geometry,
o performing tests on geometries with large differences in overall shape and structure,
« and having associated storage of predictable size.

An implementation meeting the above key points can be fulfilled using different
techniques, each using various properties associated with the input. Figure 4.1 below
gives graphical overview of the ideas behind three more or less distinct techniques.

28

Figure 4.1: Conceptual illustration of different techniques for detecting intersections
between triangular meshes. (a) and (b) are presented in Section 4.1.1, (c¢) in Section

4.1.2.

(a) Object partitioning schemes
Objects consecutively wrapped in sim-
ple volumes, acting as both a cheap
initial intersection predicate between
primitives and together forming a natu-
ral tree structure that can be traversed
for collision queries between of these hi-
erarchies.

(b) Spatial partitioning methods
Dividing space hierarchically into par-
titions and finding intersection candi-
dates by location in overall space. Col-
ors denote hierarchical traits similar to
those in (a), and the collision query
traversal of these hierarchies are very
similar.

(c) Advancing front methods

White translucent triangle is overlapping
gray domain. Detecting all intersections
is done by progressively checking if neigh-
bors of a gray triangle already detected
to intersect the white triangle, themselves
intersect the white triangle, and then
moving on to the neighbors of the white
triangle in a similar manner. This is done
using mesh connectivity information.

29

4.1.1 Partitioning techniques

In most cases speeding up collision detection relies on exploiting the spatial arrangement
of objects. A collection of objects is split into partitions in such a way that it enables
a quick determination of which of these partitions participate in a collision or not.
Traversing these partitions eventually identify single objects colliding with each other.
The most common ways of structuring these partitions can be divided into three
categories:

e Object partitioning schemes — Construct partitions based on object geometry at all
levels. A single object fits in a single partition usually called a bounding volume.
This method is heavily reliant on the type of bounding volume used, the most
common being, axis-align bounding box (AABB) shown in in Figure 4.1a, oriented
bounding boxes, sphere and k£ discrete oriented polytopes (kDOP). The most
common name for this technique is a bounding volume hierarchy. [22, 20, 43, 44]

o Spatial partitioning schemes — Perform a rough pass on geometry, divide overall
space into partitions and place objects within these partitions. Objects are allowed
to be in several partitions. Common techniques: binary space partitioning (BSP),
quadtree shown in Figure 4.1b, kd-trees, octree. [45, 46]

e Hybrid methods — Combining the aforementioned methods. Typically using a BVH
for partitions containing many objects and switching to i.e. a BSP-tree when a
subgroup of five objects or fewer is reached. [22]

All these partitioning methods produce collision queries of one object against a set of n
objects of order O(logn) when chosen carefully with regard to the underlying geometries
and optimized against specific query types - yielding a total complexity of O(nlogn)
when colliding n against n objects [22].

Partitioning schemes are very general concepts, and developing a partitioning scheme for
finite element meshes involves carefully selecting needed functionality from several con-
ceptual descriptions and implementations, all intended for a wide range of applications.
Many of the aforementioned partitioning algorithms have their origin in game design,
which typically deals with a large number of independent objects spread throughout a
space. Meshes used for the finite element method usually contain cells that are more
or less uniform in shape compared to those in many computer games and distributed
throughout a domain in a more homogeneous fashion than is typical here. Additionally,
all these cells are usually connected to other cells.

Comparing a object partitioning scheme with spatial partitioning schemes, the main
differences are that two or more bounding volumes in a bounding volume hierarchy can
cover the same space, and objects are generally only inserted in a single partition, here
called a bounding volume. In a spatial partitioning scheme the partitions are disjoint
and objects contained in the spatial partitioning are typically allowed to be represented

30

in two ore more partitions. The advantage of knowing that the last leaf node (the red
volumes in Figure 4.1a) in a BVH is an interval, triangle or tetrahedron, makes for easy
implementation. Since we are not in interested in the major advantages of spatial par-
titioning methods, in particularly some kind of wiewport specificity, that is, easily being
able to structure an hierarchy seen from a particular viewport in a three dimensional
scene, and since both bounding volume hierarchies and spatial partitioning schemes share
more or less the same hierarchical traits, spatial partitioning methods are not further
investigated in this thesis.

4.1.2 Advancing front methods

A distinction between the techniques shown in Figure 4.1 is whether or not mesh con-
nectivity information is used. Mesh connectivity is information derived from a mesh
relating a cell with its neighboring cells. Most computational domains used for FEM
supply some kind of connectivity information and advancing front methods exploits this
kind of information to perform collision detection, domain decomposition, or both.

Figure 4.1c illustrates the concept of an advancing front algorithm. Starting from a
gray triangle known to intersect the overlapping white triangle, the neighbors of the
gray triangle is queued, traversed and tested for intersection with the white triangle.
When all the triangles intersecting this particular white triangle are found, the neigh-
bors of this white triangle are again queued and traversed in a similar manner.

Advancing front methods have the advantage of being optimal for some tasks, that
is, scaling linearly with an input of n objects, O(n). Such tasks are finding the inter-
section between two meshes and finding a triangulation of the union between the two
[21, 5]. Although optimal for some purposes, on some geometries, they are not easily
re-purposed for others, since the geometry of the input and information supplied along
with it is tightly connected to the inner workings of the algorithms. Making them work
on domains consisting of different primitives, say triangles and tetrahedrons, typically
warrants standalone implementations. In Section 4.3 a specific advancing front algo-
rithm is presented and in Section 4.5.6 this and implementation of this is benchmarked
and compared to the performance of a BVH.

31

4.2 The bounding volume hierarchy

Before testing the actual geometry of a complex object wrapping it up in simpler
geometry and then testing this geometry first, often yields significant performance gains
when detecting intersections on large sets. A bounding volume hierarchy (BVH) extends
this idea to subgroups of such objects. In an hierarchical fashion, bounding volumes are
wrapped on top of other bounding volumes forming a natural tree structure. A collision
query can then be performed using a traversal of the tree; initially checking if bounding
volumes containing the object are overlapping, and if they are, performing a test on the
objects themselves. The words hierarchy and tree are in the following sections analogous.

Figure 4.2: Bounding volume hierarchy with kDOP bounding volumes (Section 4.2.3),
shown as gray dashed volumes around triangular primitives.

There are many ways to construct and traverse a bounding volume hierarchy. A good
overview of desired BVH characteristics is given in Ericson [22], where a commonly used
cost function, first introduced in Weghorst [47], is presented:

T =N, -C,+ Ny, -Cp+Cg, (4.1)

where

T is the total cost function for detecting intersections between
two sets represented by bounding volume hierarchies,

N, is the number of overlap tests on bounding volumes that are
performed,

C, is the cost of performing such an overlap test

N, is the number of primitives tested,

Cp 1is the cost of performing such a primitive test,

C. is the cost of constructing a tree.

Both products in this governing cost function depends on the shape of the bounding
volume. A loosely fitting bounding volume with a cheap overlap test might be faster

32

than a tightly fitting bounding volume with an expensive overlap test, and vice versa.
Additionally, the first product N, - C, depends on the balance of the tree, since a subop-
timal division of the objects in the tree causes more subgroups to be traversed. However,
reducing the cost of traversing the tree often means increasing the cost of constructing
the tree, C,.

A tree is here entirely described by the concept of nodes. A node denotes any loca-
tion in a tree containing information. Nodes in the middle of a tree has references to
both a parent node and one or more children nodes. A root node is a node without any
parent, here a tree contains only one root node. A reference to a root node is thus a
reference to a tree in its entirety. A leaf node, on the other hand, is a node without any
children, making it the end of a branch in the tree. Since this tree contains no loops,
this is formally known as a rooted binary tree. Here, to keep things simple, a leaf node
always contains a single primitive belonging to an input mesh. It’s worth noting that
nodes can be paired irrespective of whether or not one of the nodes is a leaf node. A
typically rooted binary tree structure is illustrated in Figure 4.3.

The bounding volume hierarchy is here presented in the order construction, traversal
and bounding volume. A tree is initially built with assumptions on given input and
intended usage. The assumptions made with the intent of doing collision detection on
overlapping meshes is here attempted thoroughly exposed.

4.2.1 Bounding volume hierarchy construction algorithms

The different ways of constructing a bounding volume hierarchy can be divided into
three categories:

o Top-down construction is the most popular. Put simply, the set of objects is
first enclosed in an all-encompassing bounding volume. Then the objects inside
this bounding volume are divided into groups according to a partitioning strategy
successively until reaching the leaf nodes.

e Bottom-up construction starts with constructing bounding volumes for the leaf
nodes containing the individual objects in the dataset. Then these bounding
volumes are paired with each other successively depending on some pairing criteria,
until the whole dataset is bounded.

e Insertion construction is a dynamic technique where according to some cost
function associated with a branch or a tree, nodes are inserted into the existing
tree structure.

In light of detecting intersections on overlapping meshes, a top-down approach like the
one eventually shown in Algorithm 3 should suffice in comparison to the other construc-
tion strategies. There is no real need to pair individual cells or bounding volumes in
the tree optimally as can be done with a bottom-up construction approach since it suf-
fices that primitives are in a relative close proximity to each other. Likewise, inserting

33

additional triangles into the tree efficiently is not something that is initially deemed
necessary for the application at hand, making an insertion based technique superfluous.

Constructing a tree top-down can be done by first computing the bounding volumes
(BVs) for each leaf node then merging these bounding volumes into a big volume con-
taining all and then again split this volume into fitting partitions. Algorithm 3 constructs
a tree with the input array initial _nodes as returned from Algorithm 2.

Top-down construction is possible using relatively few operations on the input data;
especially when using bounding volumes that can be merged as described above. Merg-
ing bounding volumes like AABBs (Section 4.2.3) and kDOPs (Section 4.2.3) by finding
the maximum bounding volume spanned by the coordinates of the input bounding vol-
umes, produces what is theoretically the tightest AABBs and kDOPs encompassing the
objects bounded by the original bounding volumes. This is not the case for volumes
like the bounding spheres (Section 4.2.3) and various other bounding volumes, where
for the tightest fit, the geometry of the objects have to be re-parsed for every node
they appear in. However, if not settling for a tightest fit, a fairly good bounding vol-
ume can be obtained for spheres by just combining the radii and centers of the member
nodes/bounding volumes.

As important as the bounding volumes themselves is the partitioning strategy used when
the tree is constructed. The bounding volumes and primitives are in some way compared
to each other before given a place in the tree structure. In a top-down approach when
merging bounding volumes this is done by sorting the bounding volumes by some prop-
erty like their midpoint or volume and splitting them into two sets of equal or different
size, depending on some criteria. The partition strategy is determined by the functions
partition__nodes(...) and midpoint() in Algorithm 3.

Since none of the cells in each mesh individually overlap and shape regularity (2.16)
is assumed, sorting the primitives here on midpoints seems to be justified. In his pi-
oneering work on kDOP bounding volumes, Klosowski [20] employs a similar strategy
and shows that this gives best performance on the dataset tested. Also, assuming that
the cells in the meshes are more or less uniformly spread throughout the domain, sorting
the sets of cells with respect to the coordinate axis around which they are maximally
spread initially, an azis of mazimum spread, seems justified. Since this just involves
comparing already available x,y, z-coordinates in the bounding volumes with a coordi-
nate axis, the cost of this is relatively cheap. Cheap at least with respect to doing a
more comprehensive comparison, like sorting around a calculated free axis of maximum
spread in the data, which would involve calculating a dot product for every bounding
volume when comparing and sorting these at all levels. With great variance in cell size,
however, like for instance if a mesh is heterogeneously refined with respect to different
features in a domain, this and more exotic partitioning strategies, like employing surface
area heuristics (SAH) [48], should probably be considered.

34

Although not necessarily yielding the fastest tree to traverse, the tree given is fast to
construct; thus hopefully striking a balance between traversal and construction time.
Additionally, this strategy guarantees a balanced structure of the tree, eliminating some
potential worst case behavior like that associated with an imbalanced tree structure,
where a node can be at a depth n in a tree constructed for n objects. Figure 4.3 shows
an actual tree constructed using the assumptions given above.

Algorithm 2 Computing bounding volumes for leaf nodes

for each T € T : > 7 is the input mesh.
atype < Leaf > a denotes a leaf node object.
apy - computeBoundingVolume(T')
Amidpoint < midpoint(7")
an + 1 > n is number of primitives contained within a.
apopy < T > The primitive T is made the object contained in a.
leaf nodes += a

return leaf nodes

Algorithm 3 Tree construction algorithm

Require: a, leaf nodes,n > a is an input node; at first call the root node. n is the
size of leaf nodes.

ifn<1: > If the BV contains one object it’s a leaf node.
a < leaf nodes[0]

else
an <N > For the first call n is the size of leaf nodes.

atype < Node

apy < mergeBoundingVolumes(leaf nodes, n)

Amidpoint <— midpoint(leaf nodes, n)

seperation__axis < mostSeparated AxisOfMidpoints(leaf nodes, n)
split__index <— partitionNodes(leaf nodes, n, separation_ axis)
constructTree(ajes;, leaf _nodes[0, ..., split_index], split_ index)
constructTree(arigns, leaf nodes[split_index, ... ,n], n - split_ index)

mergeNodes(...) constructs a BV by merging the nodes in the input array.
mostSeparated AxisOfMidpoints(...) returns an axis where the BVs are most spread.
partitionNodes(...) sorts the input array leaf nodes around the found axis.
constructTree(...) calls Algorithm 3 again, with a child Qright O alef; Of the initial node,
and a partition of leaf modes consisting of elements up to the split _index, or from the
split index to the end of the array as input. The size n of leaf nodes becomes the size
of this partition for each consecutive call.

35

A

Figure 4.3: Actual constructed tree for the sample background mesh 77 found in
Chapter 3. Colors indicate around which azis of maximum spread the bounding boxes
have been sorted, here coordinate axes: red denotes the z-axis and blue the y-axis.
Generation code for this three is found in A.5.

36

4.2.2 Traversing the bounding volume hierarchy

Once having constructed a tree for each mesh, the trees are queried for information.
Depending on the specific query — be it finding a closest point to a mesh, checking for
a first intersection by another mesh, or detecting all collisions — a fitting traversal rou-
tine of the tree structure has to be made. Being mainly interested in detecting all the
intersected cells in the background mesh 7Ty and also obtaining information about which
cells in 7Ty intersects which cells in Ts, a simultaneous traversal of the trees belonging to
each mesh is made. Starting with the root node in each tree (denoted by a and b, in
the code below), the trees are descended into in a simultaneous fashion, meaning that
only regions with overlapping bounding volumes are evaluated for collisions. A stack
data structure is in Algorithm 4 used to make the traversal non-recursive. The descen-
dRule(...) function is used to determine which child node to descend into from a parent
node. Here a descent is made into the bounding volume with the biggest volume.

Algorithm 4 Tree traversal algorithm

Require: a,b
stack a =0
stack b=0

while True :
if agy Nbgy # 0 :
if is leaf(a) and is leaf(b) :
if aopy Nbopy # 0 :
collsion__set < pair(aopy, bony)

else

if descendRule(a,b) = a :
stack_a < aright
stack_ b« b
a < Qleft

else
stack_a <+ a
stack__b < brignt

b < biefs
if stack _a =0 and stack b=0:
break
else

a < top(stack_a)
b + top(stack_b)

return collision_ set

> The root nodes in each tree.

> Bounding volumes intersect.

> Primitives intersect.

collision__set is here a data structure keeping track of collisions between pairs of objects,

like for instance a map or vector of pairs.

37

Note that in Algorithm 4, very little geometrical information about the bounding vol-
umes and primitives is required. These traits effectively illustrate the degree of “ge-
ometric obliviousness” a BVH admits; only when constructing the bounding volumes
and testing the primitives themselves is specific information about an objects topology
needed.

More advanced methods to traverse a bounding volume hierarchy exist: one can for
instance traverse a hierarchy by front tracking [22], that is, starting at a node in the
middle of the hierarchy instead of at the root node based on some statistical or his-
torical heuristic. Since detecting all intersections is the main goal here, a simultaneous
traversal as performed above, however, seems sufficient. Doing a simultaneous traversal
ensures some locality during the query to the hierarchy, meaning that if two bounding
volumes containing many primitives are colliding, the traversal is made so that all the
intersections contained within these bounding volumes are found before returning to a
node higher up in the hierarchy, like the root node.

4.2.3 Bounding volumes

Of the many bounding volumes available, three classes of bounding volumes are
investigated here: bounding spheres, axis aligned bounding boxes (AABB) and k oriented
polytopes (kDOP). These bounding volumes can all be merged in a satisfactory manner
and can therefore be incorporated into a fast construction algorithm as the one shown
in Algorithm 3. Other possible bounding volumes are, to name a just a few, are oriented
bounding boxes [44], swept spheres [49], cones and cylinders. Each bounding volume
has associated geometrical information and two essential functions; a constructor and
an overlap test, all with varying storage requirements and computational costs.

(a) Bounding Volume Sphere (b) Axis Aligned Bounding (c) 8th Discrete Oriented
(BVSphere Box (AABB) Polytope (KDOP)

Figure 4.4: The bounding volumes considered. Stipled lines in the background denote
coordinate axis and y.

38

Bounding spheres

A bounding sphere is the simplest geometrical bounding volume. To store a bounding
sphere, only a radius and a point denoting a center is needed, making it one of the
cheapest volumes to store in memory. If two bounding spheres overlap the distance
between their centers are less then the sum of their radii combined. Although simple, the
overlap test given in Algorithm 5 is not necessarily cheaper than the others considered,
it does however require fetching the least data. As for the construction of such a sphere,

Algorithm 5 Overlap test for bounding spheres

Require: a,b > Bounding sphere volumes.
d < center(a) — center(b)
rs + radius(a) 4 radius(b)
return d - d < r? > Squared distance less than squared sum of radii.

the Ritter sphere [50] algorithm provides a cheap construction of a sphere encompassing
an arbitrary number of points. Because of computational efficiency, this algorithm does
not produce the tightest bounding sphere possible on the data; however, Ritter [50]
shows that the computed radius is only about 5% bigger than the ideal radius of the
circumsphere containing the given points.

Axis aligned bounding boxes

The most popular choice of bounding volume, the azis-aligned bounding box, has several
sought features. A straight forward overlap test and simple construction makes for easy
implementation, and its performance for many applications is sufficient. Constructing an
AABB is done by gathering the minimum and maximum of the objects vertices on each
coordinate axis; in 3D the Cartesian product of the intervals [min;, max;] for i = z,y, 2.
If two volumes do not overlap, then either the minimum in one volume is less than the
maximum, or the maximum in one is less than the minimum in the other.

Algorithm 6 Overlap test for AABB bounding volumes

Require: a,b > AABB bounding volumes.
for each axis € {(1,0,0),(0,1,0),(0,0,1)} :
if Qazis,max < ba:m's,min Or Gqgzis,min > baa:is,max :
return False
return True

k discrete-oriented polytopes

With bounding spheres as an exception, most bounding volumes are convex polyhedrons.
Polyhedral bounding volumes can be represented as intersections of sets of half-spaces
- AABBs are the intersection of six half-spaces. If the bounded object is polyhedral,

39

the tightest possible convex bounding volume is the convex hull of the object. The data
needed to store such a structure is a normal and a distance (from the origin) for each
half-space in the set, which for a complex object tend to be many.

To borrow some of the properties of the convex hull and to retain some of the properties
that are computationally easier to deal with, the discrete-oriented polytope introduced
in Klosowski [20], limits the normal components needed store and compute a convex hull
to a predefined set, typically {—1,0,1}. A set of k£ axes made from these components is
then shared among all the kDOP bounding volumes.

To compute the kDOP of a given object, a pass over every vertex in the object is made
and for every vertex the dot product of a the vertex with the kth unit axis is computed.
Storing the maximum and minimum value of the this dot product for every axis effec-
tively defines the kth plane in the bounding volume. This is illustrated in Algorithm 7.

Algorithm 7 Construction algorithm for a kDOP bounding volume

Require: polytope

k=0 > kDOP volume.
for each v; € polytope :
for each axis € K yxes : > Kaxes 1S the set of axes.

Nyal < V; * ATLS
kaxis,max — maX(nvala kaxis,min)
kaxis,min — min(nvala kaxis,min)

return k

Here v; are vertices in the input polytope.

The overlap test of kDOP examines whether the minimal distance with regards to its
axis of the kth plane in the first volume is larger than the maximum distance of the kth
plane in the second volume. Just as in the case of the AABB, if this is true for any of
the kth planes, then bounding volumes are overlapping. Testing the overlap of kDOP
bounding volumes is thus done as in Algorithm 6, only with different axes.

An example of this bounding volume is the 6-DOP, with normals in both directions
along the axes, (£1,0,0), (0,£1,0), and (0,0,41). The 6-DOP is an ordinary AABB.
The 8-DOP, shown in Figure 4.4c in two dimensions, has the axes (+1,+1,+1). Note
that kDOPs are named after the number of defining axes in the 3D case. Also note
that some kDOP can also embed other kDOPs, since for instance the axes of a 6DOP,
(£1,0,0), (0,£1,0), can also be among the 26 axes defining a 26DOP.

The data defining the planes in Algorithm 7 does not coincide with the geometrical

interpretation of them. This is because it is more computationally efficient to work with
normals where the axes are of unit length than a normal of, say, unit length. The point

40

8azis geometrically defining the plane for azis = (N, Ny, IV,) is obtained by the formula

1
=k
ga:ms aIlS’Nm’+’Ny’+’NZ|

(N, Ny, N),

which is useful for instance when drawing these bounding volumes. When testing bound-
ing volumes for overlap using the coefficient k,.;s this is of no consequence, since the
planes tested against each other are equally scaled.

When using kDOP bounding volumes to enclose polytopes like triangles and tetra-
hedrons, the bounding volume has the ability to fit these primitives perfectly. The
bounding volume coincides with the primitive if the sides of a triangle or a tetrahedron
are aligned to the same axes as that of the kDOP and k is large enough. This is the case
for green bounding volume in Figure 4.5d.

41

(a) Bounding volumes con- (b) Bounding volumes con- (c) Bounding volumes con-
taining more than 100 cells. taining around 40 cells. taining around 15 cells.
=
74
/
N
\
N\ Y

(d) Bounding volumes containing around 2 cells. The green
BV contains one and fits its primitive perfectly.

Figure 4.5: Different levels of hierarchy with 26DOP 2D bounding volumes on 7;. Some
blue volumes have been made translucent around red volumes. Code for generating this
illustration is given in A.6. Note that the planes shown here does not actually coincide
with the planes that are stored in Algorithm 7.

42

4.2.4 Detecting the intersection of primitives

Traversing a bounding volume hierarchy usually ends in testing if two objects locally
collide. In the traversal Algorithm 4 above this is denoted as the intersection agy () by .
The computational cost of this procedure, C) in the cost function (4.1), depends on
many factors, namely the type of geometry tested, the quality of the algorithm and its
geometrical accuracy. For a tetrahedron-tetrahedron collision test, a popular algorithm
is Ganovelli [19]. This algorithm makes use of Separating Axis Theorem, stating that two
separated closed convex sets are always separated by a hyperplane. For triangle-triangle
intersection, a popular algorithm is given in Moller [51].

Properties of the geometrical machinery should not be a source of error in the numerical
simulation, and can be made so that it never will be given proper input. A bounding
volume hierarchy can be constructed so that it never fails to give sufficient collision can-
didates based on the input data. With for instance kDOP bounding volumes, this can be
done by just adding an appropriate quantity to the coefficients k.5 scaling the normals
defining the bounding volume. These candiates are only one of many concerns in the big
picture though, and many It is not uncommon that a code of a particular algorithm for
primitive-primitive test is ambiguous, that is, having a tendency to produce collide(a,b)
collide(b,a), for two primitives a and b. Sometimes this is surely because of errors in an
implementation, but it is also because of the fact that many widely used algorithms use
different data associated with each primitive to pose geometric predicates. Depending
on the order they are put into a routine, these algorithms react to numerical inaccuracies
and geometrical degeneracies differently and this makes many of these hard to debug
and explain. Many algorithms, perhaps especially those described as fast, are intended
for use in real-time contexts, where these tests are performed more as an indication of
collision than as an exact geometric description, and are typically performed so many
times consecutively that the behavior of the game or design tool is consistent.

The Computational Geometry Algorithms Library, CGAL [18] is an extensive library
of algorithms exemplifying these inherent inaccuracy concerns when making geometrical
predicates. Exemplifying this particularly through offering different geometry kernels
with different geometric accuracy as back-ends to many of their algorithms. Cutting
the investigation of numerical robustness short, many of the primitive-primitive tests
relevant for detecting intersections on overlapping meshes are in the implementation
made available with a selection of tests (4.4.1) - some of them from CGAL and some of
them fast. Going into more specific numerical robustness issues is considered out of the
scope of this thesis. Lutz Kettner et al. Classroom examples of robustness problems in
geometric computations [52] shows several illuminating examples of robustness problems
in geometric computations.

43

4.3 An advancing front algorithm

Advancing front algorithms are commonly used when constructing meshes. Meshing a
domain is then done by progressively adding cells starting for example at the bound-
aries. The front is in this regard the border between the meshed and unmeshed region,
and this front is iteratively advanced to cover the whole mesh. A Delanuay triangula-
tion, mentioned in Section 2.2.3, is for instance often constructed by an advancing front
point-placement strategy [28]. The concept of an advancing front is here employed to
detecting the intersection between two meshes, and the algorithm presented is that of
Martin J. Gander [21]. Quantities derived when using Gander’s algorithm can further
be used to generate a triangulation of the intersection of the involved meshes, as is done
by a similar algorithm in Farrell [5]. Computing this union is not initially relevant for
the application at hand and is therefore not presented.

Section 4.1.2 explained the basic idea of a front advancing algorithm for detecting in-
tersections; mesh connectivity information is used to move from an intersection of two
triangles, here called Ry and Brp, to intersections of neighboring triangles. Let these
triangles belong to the respective triangulations Ry and By. In Gander’s [21] algorithm,
data denoting on which facet a triangle is intersected is used to efficiently move on to suc-
cessive candidates. If a triangle By is intersected by R7 on facet F'g;, then the neighbor
of Br corresponding to Fp;, N7, is also checked for intersections with Rr. Continuing
this way also for the neighbors of R - that is, checking them for intersections with B
and its neighboring Np’s - eventually gives us complete information about the overlap
between the two meshes By and Ry.

Since only information about neighboring triangles is used to traverse the domain, an
initial input of two triangles already known to intersect is required for the algorithm to
successfully run. Finding these triangles is typically done by a brute force pass on the
data, i.e. picking an arbitrary triangle in one mesh and checking it for a first intersection
by going through the elements of the other. In a typical scenario this pass on the data is
of negligible computational cost, but it is however easy to envision cases where a brute
force approach would become costly or fail to supply sufficient amounts of data. This can
happen for instance if the meshes aren’t completely overlapping. Then a large number
of cells in each mesh might have to be checked for intersections; leaving in a potential
constructible worst case of order O(n?) in the algorithm. This can be ameliorated by
using some heuristic to find an appropriate seed cell or by using a partitioning method
like that of a BVH to be guaranteed a candidate at a fair cost. Similar complications
will naturally arise if one or both of the domains is not simply connected.

Algorithm 8 is made for intersections on meshes containing triangular cells. Farrell
[5] presents a similar algorithm for meshes containing tetrahedral cells. Generalizing
this algorithm for efficiently detecting intersections between meshes of different topolog-
ical dimension, like a tetrahedral and a triangular domain, seems to be a non-trivial task.

44

Similar numerical concerns as those expressed in Section 4.2.4 also apply here. How-
ever, here such inaccuracies might be detrimental to the whole process. When quantities
derived about the intersection of cells are used to queue triangles like described above,
triangles needed for the algorithm to advance might be left out completely, and halt the
process before it has parsed the whole domain. This property can arguably be positive;
since when numerical inaccuracies produce results far from expected outcome this ne-
cessitates resolving the numerical inaccuracies first-hand. Doing so limits their potential
propagation into subsequent operations.

The process of successively checking neighbors of intersecting cells is here realized with
the use of both global and local queues and sets of indexes denoting which cells have al-
ready been processed. These queues and sets (flags) are denoted Upjue queue; DRed queues
<>Loca1 red queue) OBlue flags ORed flags, 4Blue facet flags in Algorithm 87 and Some of the ge-
ometric quantities involved are shown in Figure 4.6.

Figure 4.6: Entities involved when checking Ba for intersections. Since the facet of
B, corresponding to neighbor Ny, is intersected by R at 71 and io both Ba is added
to the blue queue and Ra is again added to the red queue. Likewise for the other
neighbor Ny o of BA. The triangles Ny A, Na o are checked for intersection with Ba
and, if intersecting, added to the set of intersections. Depending on where these triangles
intersect the facets of Ba, these are added to the red queue.

45

Algorithm 8 Advancing front algorithm

Require: B, Ry, Beced, Rseed
Ba ¢ Bseed
RA <~ Rseed
if —Intersect(Ba, RA) :
Ba, R = Brute-force first intersection

pUSh(BA, DBlue queue)
<>B1ue flags — {}
puSh(RA7 DRed queue)
while Opjye queue # 0:
<>Red flags — {}
éBlue facet flags < {}
Ba «+ p0p<DB1ue queue)
Rp pop(DRed queue)
pUSh(RA7 <>Loca1 red queue)
while {1 ocal red queue # 0:
Ly <+ pop(DLocal red queue)
if Intersect(Ba, L) :
Z += pair(Ba, L)
for each Nx € neighbors(L,) :
if Na gé CRed flags *
pUSh(NA, <>Local red queue)
ORed flags += Na
if IntersectsFacet(Ba, Na) :
éBlue facet flags (NA) += LA
for each Na € neighbors(Ba) :
if NA ¢ <>Blue flags and ElRA S éBlue facet ﬁags(NA) :
pUSh(NA, UBlue queue)
pUSh(RAa DRed queue)
< Blue flags += Na

return 7

46

Explanation of symbols by order of appearance:

Br, Rt

Ba, Ra

Bseed, Rseed
Intersect(A, A)
push(A,queue)

UBlue queue) URed queue
OBlue flags» <>Red flags
pop(queue)

<>Loca1 red queue
La

T += pair(Ba, L)

neighbors(A)

ZBlue facet flags

IntersectsFacet(Ba, Na)

4Blue facet ﬂags(NA) += LA

are triangulations of a domains €2y, “blue mesh”, and
Qo, “red mesh”,

is a triangle in By and Ry,

are seeds for these,

returns true if two triangles intersect,

is an operator enqueuing a triangle in a queue,

is a first-in first-out queue of triangles from By and
R,

is sets of flags denoting whether or not a triangle in
B7, Ry, has been parsed,

is an operator taking an element at the front out of
the queue,

is a first-in first-out queue of triangles from R,

is a triangle local to the while loop the attains both
initial RA and Na.

adds a pair of triangles intersecting to the set of
intersections

returns ordered neighbors of the input triangle,
clockwise or anti-clockwise. This order is used when
associating neighbor triangles with facet-intersections
from previous iterations,

is a set of flags denoting whether or not a facet in a
triangle B is affected by collision with a triangle L,

returns true if the facet in Ba corresponding to
neighbor Na of a triangle LA is intersected by L,

flags the facet corresponding to L, in Ba with
information about LA, these are treated as flags since
they are denoted by the ordering of the neighbors of
the triangle in the original implementation. By this
flagging procedure; in Figure 4.6 the triangle Nj A
would be associated with Ny .

47

Figure 4.7: Snapshot at every 10th detected intersection on sample meshes by the
advancing front algorithm, Algorithm 8.

48

4.4 Implementation of algorithms

All the major implementations in this thesis are written in C+4. Minor code for gen-
erating example meshes and some tests have been written in Python. The codes have
all been written towards the FEniCS project PSE (Problem Solving Environment) [53],
and more specifically towards the module Dolfin [54] and library LibCutFEM [14], both
operating within this environment. The computational geometry algorithms are here
presented without an easily installable stable package. Due to the active development
of several of the frameworks wherein these algorithms are supposed to work, compiling
such a stable package would be impossible within the time frame of this development.
The C++ source and header files of core algorithms, along with rudimentary comments
in the code, are available at https://github.com/tomana/compgeom_olm/.

Apart from using the FEniCS framework, the C++4 open source toolkit openFrame-
works [55] has been used at top level of applications during the development of these
algorithms. This toolkit has enabled the integration of all the relevant functionality
of Dolfin [54] and LibCutFEM [14] within a consistent execution and rendering context
based on OpenGL [56], and has been useful for both visual debugging and the generation
of figures directly from numerical results.

4.4.1 Implementation of a bounding volume hierarchy

C++ code implementing algorithms mentioned in the following is available at https:
//github.com/tomana/compgeom_olm/tree/master/bvh

The implementation of a bounding volume hierarchy is here built around the concept
of easily being able to swap out the type of bounding volumes used. To this end, many
STDI[57] templates are employed throughout the code. These template classify both dif-
ferent geometrical entities, triangles or tetrahedrons, and bounding volumes. The use
of templates together with function overloading allows for fair comparison between the
bounding volumes. Additionally, employing templates like this avoids testing bounding
volume or primitive types at run time, since the code is unrolled in the compiler. No
major optimization of data structures or parallelization techniques have been attempted.

Implementing efficient tree construction

To swap types of bounding volume efficiently, a template class BVolume is used
throughout the implementation and the function for tree construction accepts an ar-
ray of bounding volumes already constructed for each primitive.

The inner workings of the partition_nodes(...) function appearing in Algorithm 3, relies
on the Standard Library [57] nth_element_sort algorithm. This algorithm minimally
sorts the input array with a given coordinate axis as pivot. Elements are arranged in
two equally sized sets about the pivot axis; all elements in one set having larger values

49

https://github.com/tomana/compgeom_olm/
https://github.com/tomana/compgeom_olm/tree/master/bvh
https://github.com/tomana/compgeom_olm/tree/master/bvh

with respect to the given axis than the elements in the other. The order of the elements
within the two separate sets is, however, arbitrary.

Implementing a dynamic traversal routine

In the implementation of the traversal routine Algorithm 4, the template for the bound-
ing volume class BVolume appears just as in the construction algorithm. This imple-
mentation also makes use of the template class Container, which denote what kind
of data structure is used for the geometric data; be it a mesh, array of cells or a point
cloud. Functionality for the last two containers is not yet implemented.

Once an intersection of two primitives has been detected between the two meshes, it
is stored in an std: :unordered_map containing key-value pairs, where unique keys cor-
respond to an index denoting a cell in the background mesh and the values one or several
indexes of intersecting cells in the overlapping mesh.

Availability of bounding volumes and intersection tests in the implementation

In the implementation a selection of bounding volumes and primitive intersection tests
are available in the constructor call:

tree = new BoundingVolumeTree(*mesh, "PrimitiveTest", "BoundingVolume", true);

Calling this constructor with third argument "BSphere" constructs a bound-
ing sphere based on Ritter’s [50] algorithm. Arguments "AABB", "DOPx" for
X =6, 8, 12, 14, 18, 26, calls implementations of bounding volumes as described
above in Algorithm 6 and Algorithm 7 in Section 4.2.3.

The second argument denotes what kind of technique for primitive intersection test to
use. For tetrahedron-tetrahedron and triangle-triangle intersection tests, the available
are

e "Dolfin", an implementation of the algorithm given in Ganovelli [19], described in
part in Section 4.2.4. This algorithm does not work if the tetrahedron is degenerate.

o "SimpleCartesian" is an implementation based on two CGAL[18] functions
checking if a point is inside a tetrahedron and whether or not a face of one triangle
intersects the other. This method is slightly slower than the above, but works on
degenerate tetrahedra.

e "ExactPredicates" is the same CGAL implementation using the
ExactPredicatesInexactConstructions geometry kernel of CGAL. When it
comes to geometric accuracy, this algorithm is exact on the given input [18]. This
is slower than the "SimpleCartesian" test by orders of magnitude.

e "Nome" is not using a primitive test at all, returning a positive intersection for all
primitives with overlapping bounding volumes.

50

The last boolean argument in the constructor turns on the enclosing of leaf nodes in a
an additional 26DOP bounding volume.

4.4.2 Implementation of an advancing front algorithm

A modified implementation of Gander’s algorithm [21] can be found here:
https://github.com/tomana/compgeom_olm/tree/master/frontadvancing

This code is based on a port of the original implementation by Martin J. Gander in
Matlab to C++ by the MeshKit[58] and Mesh Oriented dAtaBase (MOAB)[59] teams.

The code has here been further modified to natively support Dolfin[54] data structures,
and it is also modified to run in linear time (O(n)). Descriptions of these specific changes
and other small modifications are available as comments in the files.

For clarity, intersect(...), neighbors(...) and neighbor_intersecting_facet(...) are as they
appear in Algorithm 8 split into three separate functions. In the implementation these
are derived from data returned from one function.

As with the bounding volume hierarchy, no major optimization of data structures in
this algorithm has been attempted, and some redundant functionality is left within the
implementation, which might limit the performance of the code.

4.5 Benchmarking implementations

All these tests have been performed on an system with an Intel Core i7 processor Q 820
1.73GHz and 6 GB 1333MHz DDR3 RAM running in a single thread.

4.5.1 Benchmarking different bounding volumes in 3D

Opting for clarity, the benchmarks presented here is limited to three geometrical cases.
The first being a “real world” case: a spiral submitted into a domain of a sphere merged
with a cylinder, mimicking an aneurysm geometry with an inserted stent. The second
and third being simple structured meshes with varying degrees of shape regularity.

51

https://github.com/tomana/compgeom_olm/tree/master/frontadvancing

4.5.2 Benchmark on aneurysm example

The domain (Figure 4.8) was constructed in two parts; the spirals (blue) were made by
sweeping circles along spiral splines in Pyformez[35] and the cylinder combined with a
sphere (gray) was made using Constructive Solid Geometry (CSG) [60], both meshed in

Netgen [32].

Figure 4.8: Intersections computed in unstructured meshes. Cells in background mesh
(light gray): 80602, colliding mesh (black): 125033, intersection (mid-tone gray): 3397

’ Volume ‘ Trav’s ‘ P qg’s ‘ true ‘ false \ Constr. \ Trav. \ Total ‘
BSphere | 1.52-107 | 2.27-10° | 2.45-10° | 2.02-10° 420ms 1970ms 2390ms
AABB 3.89-10% | 1.08-10° | 2.45-10° | 8.36-10° 420ms 883ms 1303ms
6DOP 4.29-10% | 1.08-10° | 2.45-10° | 8.36-10° 391ms 866ms 1257ms
SDOP 6.89-10° | 8.54-10° | 2.45-10° | 6.09 - 10° 431ms 782ms 1213ms
12DOP 3.02-10° | 6.49-10° | 2.45-10° | 4.04-10° 459ms 584ms 1043ms
14DOP 2.91-10° | 6.13-10° | 2.45-10° | 3.68-10° 479ms 569ms 1048ms
18DOP 2.87-10% | 6.18-10° | 2.45-10° | 3.74-10° 521ms 561ms 1082ms
26DOP 2.42-10°% | 4.92-10° | 2.45-10° | 2.48-10° 606ms 494ms 1100ms

Table 4.1: Benchmark of different bounding volumes on aneurysm example

As seen in Table 4.1, there is not a big difference in performance between AABBs
and kDOP bounding volumes in terms of total time on this dataset. The relationship
construction versus traversal time is as expected, where higher construction time
(Constr.) generally means lower traversal time (Trav.), except when it comes to the
less tight bounding spheres. The traversal time is consistent with the lower number of
primitive queries (P q’s). The number of primitive queries, however, is not in a direct
relationship with the number of traversals (Trav’s.), where for instance the number of
traversals are higher in the case of a 14DOP than in the case of a 18DOP, yet the number
of primitive queries for a 18DOP is greater than the former.

52

4.5.3 Benchmark on structured mesh, regular split cubes

A structured mesh consisting of tetrahedrons that in pairs make up a cube (Figure 4.9),
is a geometry often used in numerical simulation.

(a) Overview (b) Detail

Figure 4.9: Intersections computed on regular meshes. Cells in background mesh
(black): 82944, colliding mesh (light gray): 82944, intersection (mid-tone gray): 52632

| Volume | Trav’s| Pqg’s | true | false | Constr. | Trav. | Total |
BSphere | 5.56-107 | 8.17-10% | 9.39-10° | 7.23-10° 329ms 8500ms 8829ms
AABB 1.48 -107 | 3.76-10% | 9.39-10° | 2.83 - 106 333ms 3782ms 4115ms
6DOP 1.61-107 | 3.76-10% | 9.39-10° | 2.83- 106 337ms 4175ms 4512ms
SDOP 2.11-107 | 2.47-10° | 9.39-10° | 1.53-10° 381ms 3351ms 3732ms
12DOP 9.8-10% | 1.65-10°% | 9.39-10° | 7.14-10° 445ms 2057ms 2502ms

14DOP 1.06-107 | 1.78-10°% | 9.39-10° | 8.41-10° 419ms 2216ms 2635ms
18DOP 1.13-107 | 2.14-10°% | 9.39-10° | 1.21- 106 423ms 2595ms 3018ms
26DOP 8.41-10% | 1.41-10% | 9.39-10° | 4.75-10° 568ms 2093ms 2661ms

Table 4.2: Benchmark of regular cubes, 12DOP fits the structured mesh nicely.

Compared to the aneurysm example above, the total number of cells is here lower and
the number of intersections is higher: 63% of cells in the background mesh are here
overlapped, compared to 4% in the aneurysm case. Considering the total time between
these cases, it is observed that it is roughly proportional to the number of primitive tests
performed. Reducing the number of primitive tests seems in most cases to be the winning
strategy; except when comparing 12DOP to 26DOP. Here the number of primitive tests
are slightly higher for 12DOP, but the overall time is lower by a small amount. This
underlines the dynamic relationship between the tightness of the bounding volume and
the cost of its overlap test, as seen in the cost function (4.1).

53

4.5.4 Benchmark on structured mesh, irregular split cubes

The meshes tested below consists of long and narrow tetrahedrons, constructed to have
the same number of cells as the regular cubes example. Long and narrow tetrahedrons
are typical in fluid flow simulations where the mesh should resolve the boundary layer.

(a) Overview

(b) Detail

Figure 4.10: Intersections computed on irregular meshes. Cells in background mesh
(black): 82944, colliding mesh (light gray): 82944, intersection (mid-tone gray): 55608

‘ Volume ‘ Trav’s ‘ P qg’s ‘ true ‘ false ‘ Constr. ‘ Trav. ‘ Total ‘
BSphere | 2.89-10% | 1.06-10% | 7.64-10% | 9.79 - 107 345ms | 103642ms | 103987ms
AABB 7.84-107 | 3.41-107 | 7.64-10° | 2.65-107 397ms | 38693ms | 39090ms
6DOP 8.61-107 | 3.41-107 | 7.64-10° | 2.65-107 378ms | 38876ms | 39254ms
8DOP 1.04-10% | 3.22-107 | 7.64-10% | 2.46-107 416ms | 37586ms | 38002ms
12DOP 454-10" | 1.6-107 | 7.64-10° | 8.4-10° 489ms | 21023ms | 21512ms
14DOP 4.91-107 | 1.66-107 | 7.64-10° | 8.94-10° 445ms | 21536ms | 21981ms
18DOP 4.41-107 | 1.51-107 | 7.64-10% | 7.49-10° 506ms | 18345ms | 18851ms
26DOP 3.85-107 | 1.3-107 | 7.64-10° | 5.36 - 10° 466ms | 14776ms | 15242ms
Table 4.3: Benchmark of irregular cubes, the tightest bounding volume 26DOP

performs well.

Although having almost the same number of actual intersections as the regular cubes
case, the irregular cells are here queried for collision with a much larger number of
candidates. As Table 4.3 shows, the bounding volume hierarchys ability to reduce the
number of primitive queries is here paramount for good performance.

54

4.5.5 Benchmarking with 26DOP at leaf nodes

Motivated by the above benchmarks, tests are here performed with an inserted 26DOP
bounding volume at the leaf nodes in the hierarchy. Looking back at Figure 4.5
illustrating the 26DOP bounding volumes in 2D at different levels in the hierarchy, this
extra predicate seems to make sense since the actual computed geometry of the 26DOP
bounding volumes at intermediate levels, Figures 4.5a, 4.5b, 4.5¢, is not in shape far
from simpler bounding volumes, like AABBs or 8DOPs. Tables 4.4, 4.5, 4.6 below, in
conjunction with Tables 4.1, 4.2, 4.3 above, show that inserting this predicate in most
cases reduces the total time spent in the BVH to that of a BVH using a 26DOP.

\ Volume ‘ Trav’s ‘ P qg’s ‘ true ‘ false] Constr. \ Trav. \ Total
BSphere | 1.52-107 | 4.92-10° | 2.45-10° | 2.48-10° 535ms 795ms 1330ms
AABB 3.89-10° | 4.92-10° | 2.45-10° | 2.48-10° 511ms 512ms 1023ms
6DOP 4.29-10° | 4.92.10% | 2.45-10° | 2.48-10° 503ms 504ms 1007ms
8DOP 6.89-10° | 4.75-10° | 2.45-10° 2.3-10° 533ms 536ms 1069ms
12DOP | 3.02-105 | 4.92-10° | 2.45-10° | 2.48-10° 564ms 483ms | 1047ms
14DOP 2.91-10% | 4.75-10° | 2.45-105 | 2.3-10° 582ms 463ms 1045ms
18DOP 2.87-10% | 4.92-10° | 2.45-10° | 2.48 - 10° 617ms 485ms 1102ms
26DOP 2.42-105 | 4.92-10° | 2.45-10° | 2.48-10° 679ms 501ms 1180ms

Table 4.4: Aneurysm test case with 26DOP bounding volume at leaf nodes.

’ Volume ‘ Trav’s ‘ P qg’s true ‘ false] Constr. \ Trav. \ Total
BSphere | 5.56-107 | 1.41-10° | 9.39-10° | 4.75 - 10° 440ms | 3610ms | 4050ms
AABB 1.48-107 | 1.41-10% | 9.39-10° | 4.75-10° 433ms 2015ms 2448ms
6DOP 1.61-107 | 1.41-10% | 9.39-10° | 4.75-10° 379ms 1940ms 2319ms
8DOP 2.11-107 | 1.36-10° | 9.39-10° | 4.19-10° 394ms 1934ms 2328ms
12DOP 9.8-10% | 1.41-10° | 9.39-10° | 4.75-10° 438ms 1805ms 2243ms
14DOP 1.06-107 | 1.36-10% | 9.39-10° | 4.19-10° 438ms 1856ms 2294ms
18DOP 1.13-107 | 1.41-10% | 9.39-10° | 4.75-10° 462ms 1931ms 2393ms
26DOP 8.41-10° | 1.41-10% | 9.39-10% | 4.75-10° 531ms 1821ms 2352ms

Table 4.5: Regular cubes test case with 26DOP bounding volume at leaf nodes.

’ Volume ‘ Trav’s ‘ P qg’s ‘ true ‘ false] Constr. \ Trav. \ Total
BSphere | 2.89-10% | 1.3-107 | 7.64-10° | 5.36-10° 454ms | 21708ms | 22162ms
AABB 7.84-107 | 1.3-107 | 7.64-10° | 5.36-10° 407ms | 15397ms | 15804ms
6DOP 8.61-107 | 1.3-107 | 7.64-10° | 5.36 - 10° 381ms | 15848ms | 16229ms
SDOP 1.04-10% | 1.3-107 | 7.64-10% | 5.35- 109 437ms | 16810ms | 17247ms
12DOP 454-107 | 1.3-107 | 7.64-10°% | 5.36 - 10° 447ms | 15174ms | 15621ms
14DOP 491-10" | 1.3-107 | 7.64-10° | 5.35-10° 449ms | 15335ms | 15784ms
18DOP 4.41-107 | 1.3-107 | 7.64-10° | 5.36 - 10° 478ms | 15509ms | 15987ms
26DOP 3.85-107 | 1.3-107 | 7.64-10% | 5.36 - 10° 553ms | 15459ms | 16012ms

Table 4.6: Irregular cubes test case with 26DOP bounding volume at leaf nodes.

55

4.5.6 Comparing a BVH to an advancing front algorithm in 2D

The following benchmark compares the implementation of the bounding volume
hierarchy with the implementation of the advancing front algorithm. This benchmark
serves by no means as an efficiency comparison between these two concepts as a whole.
The implementation of bounding volume hierarchy is here employed on 2D triangles
lying in the plane, with 3D bounding volumes, primitive tests, construction and traversal
strategies. Similarly, the advancing front algorithm is subject to several limitations as
described in Section 4.4.2. This benchmark is included as a rudimentary precursor to
future development, and is further discussed in Chapter 7.

NNNNN
o vt the rom advanein s | USRS
RRRKY

rithm against the bounding volume N

NARK

hierarchy.
-10*
T
3r —o— 3D 6DOP .
—— Front adv.
o 2 [N
g
[¢]
g
SIS N
0 | |

0 1 2 3 4) 6 7 8
Size(triangles) 106

Figure 4.12: Performance of an advancing front algorithm and a bounding volume
hiearchy on the domain shown in Figure 4.11. Size is the number of triangles in both
meshes combined.

56

4.6 Mesh decomposition

When an intersection between two meshes has been detected and described, decomposing
the domain with respect to this intersection is possible. For the particular application
of overlapping meshes, it is necessary to decompose the domain so that integration can
be performed on the physical domain 77 |J 72, where 71 = {T'NQy : T € T;*}, as seen
in Figure 3.7 in Section 3.4. In Chapter 5 integration will be performed by integrating
over a sub-triangulation of the cut cells, limited to the case of 2D triangles lying in the
plane. Deriving this two dimensional sub-triangulation is described in the following.

Figure 4.13: Cut triangles within 7y,
gray area denote physical part of these,
Ti \ To,1. This set is found by isolating
the triangles overlapped by a triangle in
T2 containing an exterior facet.

4.6.1 Triangulation of cells intersected by an interface
To associated the two domains 77 and T3 as described in Section 3.4, the penalty term

Penalty

a(up, vn) = (Vun, Vor)a — (Vup - n), [va])r = ([un], (Von - 0))r + (v~ [ug), [vn])r

in (3.3) used to weakly enforce the interface condition u; — us = 0 over the interface
I'. In the case of fitted meshes, this is not a problem, since the triangles all reflect the
actual physical domain. To properly impose this interface condition when the interface
runs through the domain without necessarily matching the mesh 7y at its degrees for
freedom (here for simplicity assumed to lie on the vertices in 7o r) shown in Figure 4.13.
The function u; over cells intersected by I' needs to reflect the fact that it is not en-
tirely contained in the physical domain. This can done by performing integration just
on the parts of the cells contained within €1, motivating the notation of 77 in Chapter 3.

For overlapping meshes an appropriate triangulation of the cut cells suitable for in-
tegration can be found in many ways. One simple strategy is to exploit the fact that

57

when two triangles intersect, their intersection is always a convex polygon. This strategy
is tempting because convex polygons are trivial to triangulate; by picking an arbitrary
vertex in the polygon and placing edges going from this vertex to all other vertices in
the polygon, the polygon is effectively triangulated. The relevant physical integral over
this cells can then be calculated by first integrating over the whole cut cell and then
subtract the contribution from the triangulation of the intersection.

Another strategy to successfully integrate u; over the physical part of 77 € Tor is
to look at the actual concave or convex polygon resulting from 7; being intersected by
the interface I'. A triangulation of this polygon can be derived by algorithms producing,
for an illustrative example, a Delaunay triangulation of the polygon. A triangulation as
complex as a Delaunay triangulation would, however, be excessive for the problem at
hand. The only purpose of the triangulation of the cut element is to aid the integration
of the cut cell. The triangles contained within this triangulation is not in any other way
connected with the conditioning or approximative properties of the linear system (2.9).
Thus none of the numerical concerns expressed when meshing a domain in Section 2.2
apply for this triangulation.

The first strategy of subtracting contributions from the convex intersection of two tri-
angles is as mentioned tempting because of its simplicity. This strategy is, however,
not easily generalized to properly triangulate the domain if other types of interfaces are
running through the domain. An example of this is the fictitious domain case presented
in Chapter 3. Here the interface has no belonging triangles needed for this routine, since
the interface is only described by a function. Employing the aforementioned strategy
would in this case warrant some kind of triangulation of the domain described by the
expression defining the interface (or surface) in the fictitious domain case. To retain
some flexibility with regards to different descriptions of the interface I', a triangulation
routine should preferably only rely on a suitable description of the interface itself, and
some inside-outside information denoting on which side of I' a function such as wuy is
evaluated.

4.6.2 A greedy triangulation routine

The algorithm presented is that of Bourke [61]. This is a a triangulation routine orig-
inally made for polygonising a scalar field and is based on the widely used marching
cubes algorithm [23]. A similar algorithm is used in LibCutFEM [14] to triangulate
surfaces based on level set descriptions. The algorithm is here extended to triangulate
a polygon intersected by many facet segments. It is in complexity some place in be-
tween that of subtracting contributions from a triangulation of the convex intersection
between triangles, and that of making a Delanuay triangulation. This algorithm can
with little effort be generalized to work on tetrahedrons in 3D. A possible pitfall with
this algorithm is that it returns triangulations with a high number of triangles if the
initial triangle is intersected by many facets defining the interface. If a triangle in the
mesh 7y is intersected by k facets from 75, the number of triangles returned is somewhere

58

around (3% — k). However, since the cells in the different meshes are assumed compatible
(3.6) over the interface I', limiting the number of intersecting facets, this property is not
considered a problem.

The algorithm takes a triangle from the triangulation 7g and a set of border facets
from the overlapping domain 75 . A short rundown of the algorithm is as follows:

1. Triangulate initial triangle with respect to the first intersecting facet on the border.
2. Triangulate initial triangulation with respect to the second intersecting facet,

3. triangulate the second triangulation with respect to the third intersecting facet
and so on...

4. ...until there is no more facets to traverse.
5. Collect inside-outside information and return triangulation outside of 75 .

Algorithm 9 first computes a full triangulation of a triangle T" with triangles aligned
to the intersecting facets F;. Then a second pass over the triangulation is done to
collect inside-outside information i7 used to remove triangles overlapped by 75 from
the returned triangulation, Tyr. Obtaining this inside-outside information without
doing a more expensive pass on the data prescribes the use of certain functions and
overall structure; the use of hyperplanes and level set functions within the routine
SingleFacetTriangulation(...) accomplishes this task.

Algorithm 9 Triangulation routine for a triangle intersected by one or more facets

Require: A(vg,vq,v2),0F
for each F; € OF :
T,Zr = SingleFacetTriangulation(vg, v, ve, F;, T, ZT) > Algorithm 10
for each ir € Z7 :
if i7 contains “1” : Top +=T
return 7Tyr

Input is the vertices in A(vg, v1, v2), an intersecting facets OF. Here Z7 is a set containing
aggregated inside-outside information ip for each triangle T' € T.

Triangulation routine with respect to a single facet

The inner workings of the routine SingleFacetTriangulation(...) in Algorithm 9 is now
explained. An illustration of the entities and derived data needed for this algorithm can
be seen in Figure 4.14 below.

A normal is at first extracted from the border facets of the overlapping triangles, which

59

Figure 4.14: Facets, corresponding
hyperplanes and normals needed for
Algorithm 10. Triangle(blue) is in
To . Triangles(red) are in 73 , the
overlapping mesh. Vo V1

together with a point on the facet, defines a hyperplane. This hyperplane is used to de-
termine which part of the overlapped triangle is inside or outside the overlapping mesh.
To this end we use a level set function defined as

¢Fi(x) = (X - VFi) ‘NE;,

where v, is a point on a hyperplane aligned with the facet F;, and ng, is the facet nor-
mal. This function is negative on one side of the hyperplane and positive on the other,
depending on the orientation of the normal ng,. If the normal has direction outward
from the boundary, then this function will be negative outside of 75 with respect to the
particular facet segment Fj.

With the use of ¢p (x), the aim is to divide a triangle intersected by a hyperplane
into three new triangles sharing amongst them five vertices: three vertices from the
original triangle, and two from the intersection of the hyperplane with the edges of our
triangle. The location of these two intersections are given by interpolating the edges of
the triangle with respect to the level set function ¢ (x). This point is found using the
interpolating function

¢Fi (XO)
¢ (x1) — ¢F;(X0)

I(xg,x1, F;) = x0 + (%0 — X1)

which returns the point of intersection of the facet F; on the line segment (xg,x1).

To triangulate three vertices, each on either side of the hyperplane derived from a facet
F;, there is a total of four cases to consider. To supply each triangle with inside-outside
information, this is doubled and a total of eight cases must be considered. Illustrated in
Figure 4.15 is the initial triangulation of the example triangle, in Algorithm 10 known
as Case 4. Here two vertices vy and v; are outside of the facet Fi, yielding two interpo-
lation points, v4 on Tovz and v3 on 10z, the triangles A(vgvivy), A(vivsvg), A(v4v3v2)
with labels 1, 1, 0, respectively. Together they constitute the initial labeled triangulation.

60

Algorithm 10 considers all cases and returns their corresponding triangulation. This
algorithm is used on the original triangle and then again for each subsequent facet
intersecting the original triangle. For each subsequent call to Algorithm 10, the last
triangulation is passed on as input. Proceeding in this fashion gives the subsequent tri-
angulations shown in Figure 4.16. By combining these and removing triangles without
the numeral “1” in their label, the triangulation of the area outside 75 is obtained, as
shown in Figure 4.17. At the end of this chapter, a full triangulation of domain 77 with
respect to the exterior of 73 is given in Figure 4.18.

angulation of A(vg,v1,v2) wrt. to the
1 hyperplane aligned with F (dashed
red line). The points v3, v4 are found

(O
\|‘ Figure 4.15: Case 4. The initial tri-
U3

v v1 by I(vg,ve, F) and I(v1,vs, F).

Case 4 Case 4 Case 6

Figure 4.16: Subsequent triangulations of the triangulation shown in Figure 4.15. Note
the accumulating inside-outside information i7: new information corresponding to cases
4, 4, and 6 is appended to information inherited from previous triangulations.

61

Figure 4.17: All triangles not containing the numeral “1” in i7 are pruned from the
combined triangulations, yielding the final triangulation of triangle A(vg,v1,v2) with
respect to intersecting facets F; and Fb.

62

Algorithm 10 Triangulation routine for single facet intersecting a triangle
Require: A(vg,vi,v9), F,T,Ir

if ¢p(vi) <0 fori=1,2,3: case + 0

if ¢p(vi) >0fori=1,2,3: case < 7

if ¢r(vg) <0 and ¢p(vy) >0 and ¢p(ve) > 0 : case < 1

if =(¢r(vo) <0 and ¢r(v1) > 0 and ¢r(ve) > 0) : case < 6
if ¢p(vg) >0 and ¢p(v1) <0 and ¢p(vz) > 0 : case 2

if =(¢r(vo) >0 and ¢p(v1) <0 and ¢p(v2) > 0) : case < 5
if ¢r(vo) <0 and ¢p(vi) <0 and ¢p(ve) >0 : case < 3

if =(¢r(vo) <0 and ¢r(v1) <0 and ¢r(v2) > 0) : case <4

if case =0 or case =7
T += A(Uo,vl,vz)
if case =0 : Z7 += “1”
if case =7 : I += “0”
if case =1 or case =6 :
V3 < I(Uo, U1, F)
V4 < I(U[), V2, F)
T += A(vo, v3,v4) += A(vs,v2,v4) += A(v3,v1,v2)
ifcase=1:Zy+=“011"
if case =6: Zyr +=“100"
if case =2 or case =5:
V3 I(’UQ, V1, F)
V4 I(’Ul,vg,F)
T += A(vg, v3,v2) += A(vs,v4,v2) += A(v3, v1,04)
ifcase=2:Zr +=“110"
if case =5:Zr +=“00 1"
if case =3 or case =4:
v3 < I(vy,v9, F)
vg < I(vg,ve, F)
T += A(vg,v1,v4) += A(v1,v3,04) += A(vg, v3,02)
ifcase=1:Zy +=“001"
ifcase=6:Z7 +=“110"
return 7,71

Input is the vertices in A(vg,v1,v2), an intersecting facet F' and a set of inside-outside
information Z7. Here Z7 += “1 1 0” is an assignment of last added triangle T in T
with inside-outside information. “0” for the last, “1” for the second last and “1” for the
third last.

63

4.6.3 Implementation of the triangulation algorithm

The code for the implementation that follows can be found at:
https://github.com/tomana/compgeom_olm/tree/master/tesselation

Verifying the implementation

An application specific verification of this algorithm is straight forward: if the algorithm
does its prescribed job, the area of the computed 77 (shown in Figure 3.7, Section 3)
simply equals the area of 21 — 25. This can shown to be the case for all the meshes
considered in this thesis. Code for doing this test can be found in A.2. This verification,
although by no means completely watertight, can serves as a rudimentary verification of
all the above steps related to collision detection before using the domains in numerical
simulations.

4.6.4 Data structures

A set of handy data structures is needed to successfully assemble a system of equations
on overlapping meshes. The assembly algorithm presented in the coming Chapter 5
needs access to the different entities returned from the computational domain decom-
position described above. To this end a typical mesh data structure is used to store
triangulations of cut cells, and this container is further enriched with maps denoting
the relevant connectivity information between the derived cut entities and original input
meshes 7o and 7s.

For integration on the physical part of Ty, 71, a container for the local triangulated
area outside I' and a map associating each triangle in 7o with its this triangulation
is used. The set containing the local triangulations for all the triangles in 7y is here
denoted

’Tl,cut-

The triangulations contained within this set is illustrated in the upper part of Figure
4.19 located at the end of this chapter. Here a triangulation (marked A) of a triangle
with index 3 in the background mesh is shown. The parent-entity map

Pl,cut : {ip :T; € ,Tl,cut}a

associates each triangle in the set 71 o, with its parent-entity, which for the local trian-
gulation marked A in Figure 4.19 is 4, = 3, the triangle with index 3 in 7p.

To associate the interface with the relevant cells in the different domains, a prelimi-
nary step is to partition each facet on I' into a set of polygons {I'y;} such that each
polygon I'y; intersects exactly one cell 15 of the overlapping mesh 73 and one cell T
of the background mesh 7y. This process is naturally also subject to all the numerical
concerns expressed so far. The code for this can be found in the implementation [62],
where it should be noted that this particular code has proven to be error prone in some

64

https://github.com/tomana/compgeom_olm/tree/master/tesselation

limited cases. Simple as it seems, cases resulting in an ambiguity between an algorithm
computing the intersection of a point on a line and an algorithm detecting the intersec-
tion of a point with a triangle, sometimes arises here.

For the segmented interface facets {I'y;} there are two maps: one denoting a parent
element in 7y and the other a parent element in 73. The collection {I'y;} is denoted

’TF,cut»

where the triangulation notation “77” is used to reflect the fact that in a similar three
dimensional case, the interface would be triangulation of the surface of 75. In Figure
4.19 the segments contained within this set is marked Z. The parent-entity map

PF,cut : {(ipajp) NS ’TF,cut}

associates each facet segments in the set Tr ¢y with a two parent entities in the meshes
To,r and 72, respectively.

In the implementation [62] the parent entity maps are put in a specific container of
type std::unordered_map, also seen in the code for the bounding volume hierarchy.
The key-value pairs are here so that the keys correspond to a triangle or facet segment
in the sets 7icut and Trcus. For Picue the values correspond to a triangle in 7y. For
Pr cut the values are two triangles, the first belonging to the background mesh and the
second belonging to the overlapping mesh. The collections of triangulations and seg-
mentations are stored in two separate dolfin::Mesh’es in the Dolfin [54] framework,
one for Ti cyt and one for Tr cyt. One mesh and the belonging parent entity map(s) are
put into a class cutfem: : CutMesh contained within LibCutFEM [14]. The LibCutFEM
library is introduced and extensively used in the coming Chapters 5 and 6.

65

\ s) \ 1
s \
’ 1 / \
\ ’ |,
\ Vi AY
\ L —- -——
\ AN A
-—— N //l Sso
T \
1 1] N 1 .
~
1 \] N ,' ‘
~ 1 N 1 M= ’
~ \ - N I~ 1
1 -] h p
- F— - !)
AT\ 7N 1 1 P ek
N - _
- 1 1 1 -
- N , , Sl 1
N, o
\\ "'—""\ :
] \ = ~
-
\\ ! Sy <
N -0 ~ \ 3
= - - - oS f S~ D
/|\\ 1 1 -
S N
N 1 N . - =
’ R 7 \\
4 N -
’ 1 - / So , N
, 1 -\ I} N
=~ 1 7 <
~ 1 N — -
X ! \\I,’
N K
N -
~ NI -7 1
< ~
P 1
i\ -7 1
A L

Figure 4.18: Complete triangulation of domain 7; (blue outer triangles plus black
triangles with gray interior) with respect to the exterior of 73 (red triangles). Green
segments denote the segmented interface I'. Dashed lines denote elements of Ty that are
completely overlapped by Tz (red triangles).

66

Figure 4.19: Zoom-in on lower part of Figure 4.18. Here entity indexes and subscripts
illustrate data structures. Gray area is 7jcy. A particular triangulation contained in
Ticut (triangles marked A) has subscripts denoting its parent entity in 7p. A part of the
cut interface Tr cut (facet segments marked £) is shown with subscripts denoting parent
entities in Ty and 7s.

67

68

Chapter 5

Integration and assembly of cut
elements

As mentioned in Section 3.5.2, the standard approach of applying Gaussian quadrature
rules over the cells in a domain is not directly applicable on a domain consisting of cut
elements like those arising from from superimposing 75 on 7.

In Section 3.4 the triangulation 7y of the background domain € is decomposed into
three disjoint subsets:

To="To1UTo2UTor

To assemble the linear system needed to solve a problem on overlapping meshes, each
subset in this domain is treated individually. The first two subsets are readily handled;
a standard assembly algorithm can be used to assemble the integrals over the cells in
70,1 and integrals over the cells of 752 need not be assembled at all since these are
completely overlapped by the domain 7. Integrating on cells over the domain 7y r,
the partially overlapped cells of 7y, however, requires additional machinery since only
parts of the cells in 7y is contained in the physical domain. Furthermore, the inter-
face I' contained in this domain requires special treatment to properly couple 2; and 2.

When using the Nitsche method on interface problems, different terms in the weak for-
mulation are used to enforce compliance along the interface I'. For the model problem
(3.3) these terms are

Consistency Symmetry Penalty
a(un,vn) = (Vup, Vop)o — ((Vup -), [vp])r — ([un], (Von - 0)p 4+ v~ ([up), [va))r,

where the integrands involve products of trial and test functions defined on different
meshes. When 73 is completely contained within 77, then interface I' consists of the
boundary facets 9,75 of 7. Initially these facets may intersect several cells of Ty, and
a preliminary step is to decompose the facets into segments contained within only one
cell from 7y, as mentioned in Section 4.6.4.

69

In addition to coupling the domains over the interface I', integrating on the partially
overlapped cells of 7y has to be performed. Before an assembly algorithm is presented
at the end of this chapter, some ways to integrate on cut elements are review. A good
review of many other integration techniques for convex and concave volumes is given in

Sudhakar [63].

5.1 A summary of integration techniques for cut elements

5

X

: I
(a) Tesselation approach; (b) Adaptive approach; suc- (c) Quadrature points (dots)
original cell is tesselated cessive refinement of integra- placed and weighted accord-

along the interface cutting
the cell, quadrature points
(dots) from standard quadra-

tion cells (squares) along in-
terface cutting element.

ing to moment fitting equa-
tions in polygon resulting
from intersection by interface.

ture rules placed in the
resulting triangles.

Figure 5.1: Different approaches to integration on cut elements.

Triangulating the polygon resulting from Tl0 being cut by I' and doing integration over
the triangles contained within this triangulation [64, 65, 66, 67] is perhaps the most
intuitive and practical approach to integration on cut elements. A framework developed
for the finite element method already contain much of the needed machinery for this
approach, like quadrature rules for triangles and tetrahedrons. The idea as illustrated
in Figure 5.1a is to perform integration on the cut element by collecting the quadra-
ture points available on a subtriangulation of the cut cell, where this subtriangulation
is aligned with the interface cutting the cell. Some possible disadvantages of this an
approach lies in the triangulation algorithms. The triangulation algorithm presented in
Section 4.6 is for instance limited if it is intersected by many facets of the interface I

Decomposing the domain into cells that conform to the interface I' is also possible in a
more homogeneous fashion, via an adaptive quadrature approach [68, 69], illustrated in
Figure 5.1b. The polygon resulting from the intersection with I' is here split into inte-
gration cells that are recursively refined until the error in integration between successive

70

refinements is below a certain threshold. In this approach the integration cells are not
necessarily perfectly aligned with the interface, introducing another source of error in
the approximation. Figure 5.1b illustrates this approach with square cells. The number
of integration cells needed for this approach is high, but arguably more predictable than
with the triangulation approach outlined above.

Yet another approach is to use moment fitting equations [70, 13] to derive quadrature
points and weights, which gives rise to a multitude of quadrature rules suitable for many
purposes. Where a moment denotes some kind of a quantitative measure of a set of
points. A simple example of such a moment is using the center of gravity of a polygon
given by

1
X, = — [xdV(x),
Bl J,x Ve

as a quadrature point and letting the corresponding quadrature weight be the volume
or area |P| of the intersected cell P = T'N ;. More complex rules based on moment
fitting equations can be seen in Sudhakar [63, 71], where techniques such as ray-shooting,
commonly associated with rendering and computer graphics, are used to find candidates
for quadrature points within polygons of arbitrary shape.

5.2 Assembly of the linear system

Algorithm 11 constructs a global matrix for the overlapping mesh case. This algorithm
is here using, but is not limited to, the triangulations of the physical part of cut entities
Ti,cut as the domain of integration when assembling cells over 7pr. The local basis
functions needed for integration over an interface segment F' € Trcut cutting a triangle
Ty € Tor and itself belonging to a triangle 75 € T are
_ (T1) < i< dim(Vi(T
50 @T 0 <4 < dim(Vi(11)) (5.1)
i z('+2d)im(V1 (ryy dim(Vi(T1)) <i < dim(Vi(Th)) + dim(V2(T3)),

where qﬁz(Tl) belongs to the local function space over 17 and qﬁgz)im(vl (1) belonging to
T, with its indexes shifted by the number of local basis functions in V(7). Further,
the notation Z(-) in Algorithm 11 denotes an index-set: denoting either the index of
a local basis function over a triangle, or in the cases Z(F) and Z(T), the index of a
facet segment contained in Pr ., or triangle in Pi .., as described in Section 4.6.4.
The assignment (ip,jp) = Preut(Z(F)) here specifically means extracting the index
ip of a triangle T; in 7p, and index j, of a triangle 7} in 7. The local indices r
and s are mapped to their corresponding global indices by a local-to-global mapping
q(T,r) = (q(T1,7),q2(T, 7)), where q; is the local to global mapping corresponding
to V7 and ¢o the shifted local to global mapping belonging to V5. The function
QuadratureRule(...) either extracts the quadrature rule @ defined on a single triangle,
or a rule defined on two triangles associated with a facet segment on the interface I'.

71

The notation a®(-,-) means performing numerical integrating of a bilinear form using

the quadrature rule @ as extracted prior.

Algorithm 11 Assembly of global matrix

A=0
for each T € Ty 1 U Tz :

I(T) = {1, .., dim(Vi(T))} x {1, ...,

for each (r,) e Z(T) :
AL = (et o)
for each (r,s) € Z(T) :
Aq(T,s),q(T,r)+ = Ag",s)
for each T € 7’17th :
ip = P1eut(Z(T))
T=T,€Tor

I(T) = {1, ..., dim(Vi(T))} x {1, ...,

Q= QuadratureRulq(T)
for each (r,s) € I(T)
AZ;s = aQ((bT s)
for each (r,s) € Z(T)
A —AD
q(T,s),q(T, r) 7,8
for each F' € Tr eyt)
(ip7jp) = PF,cut(I(F))
Th=T,, €Tor
=TT

I(T) = {1, ..., dim(Vi(T1))} x {1,...,

@ = QuadratureRule((T},T3))
for each (r,s) € I(~)

AZ:s = (d)?" S)
for each (r,s) € Z(T) :

(M
Ag(r,s),q(mr) T = Ars

dim(V1(T))}

dim(V1(T))}

> Integrate using the quadrature rule Q.

dim(Va(T»))} > 1
> Quadrature rule over the interface.

> This uses the local basis functions (5.1).

5.3 Implementation in FEniCS and LibCutFEM

Algorithm 11 is implemented in LibCutFEM [14], a framework for automated assembly
of general cut finite element based variational forms over fictitious domains and other
unfitted geometries within Dolfin [54] and is developed by Massing [12, 13, 36], Claus

[72, 73] and others.

72

Chapter 6

Numerical results

6.1 Poisson on overlapping meshes

6.1.1 Formulation
For easy reference, the problem given in Chapter 3 is here given
—Aul = f1 in Ql,
—Auy = fo in o,
[Vu-n]=0 onT,
[ul=0 onT,
u=g on dQp,
Vu-n=0 on 0Qn

where n is the unit normal directed from 5 into Q9, and [u] = u; — ug denotes a jump
over the interface I'.

The discretized weak formulation for this problem using the Nitsche method is

a(u, va) =(Vup, Vor)o,u0, — (Vup 1), [oa])r — ([un], (Vo -0)r + vh ™ ([us], [ve])p
— (Vu-n,vp)90 — (Vop - 0, up)an + vh ™ (un, vn)on
(vh) = (frsvn)e — (Vou -0, 9)aq +vh ™" (g, vh) a0

where both a weak enforcement boundary and interface conditions have been employed,
as explained in Sections 3.2.1 and Section 3.3. And a3 = 0 and o = 1 for the normal
fluxes across the interface (3.5). The source functions are chosen to be

fi(z,y) = folz,y) = 2r%(sin(mz) sin(ry)). (6.2)

and g = 0.

73

6.1.2 Implementation

The solution algorithm is made using implementations of algorithms described in
Chapter 4 and LibCutFEM [14]. Code for solving this in the FEniCS framework with
LibCutFEM and the geometrical tools available can be found in A.3. In the first case,
illustrated in Figure 6.1, P;-elements have been used and the parameter v is set to 10.
The quadrature rule used on the domains 7y 1 and 7z is of order 1 and on the elements
contained in 7o r it is of order 2.. To verify the solution algorithms, a convergence test
and patch test is performed in the coming sections.

6.1.3 Result

U2

U1

Tz
%,Cut
7-1,cut
Toa

Figure 6.1: Solution of the Poisson’s equation on overlapping meshes 7y and 72, shown
with derived geometrical entities. The solution ug has been interpolated over the cut
triangles in 7o to reflect the solution on the physical part of this domain, 77 cut. The
boundary condition is weakly enforced as described in Section 3.2.1 with v = 10.

6.1.4 Convergence test

With the source functions f; and f3 as given in (6.2), the problem (6.1) has the analytical
solutions

ui(x,y) = uz(x,y) = sin(rz) sin(ry).

74

This solution is interpolated over the domains and compared to the approximated
solution. The error measure is Uerror = ||Uexact — Un||[H,, using the H' norm (2.4),
and the estimated order of convergence (EOC) of uy, is here defined as

- log ulgrror —logu

~ loghk,. —loghkal

max

k—1
error

EOC(k)

In Tables 6.1 6.2 the estimated order of convergence and error in H' as they appear when
using the parameterized mesh shown in Figure 6.2 with generation code in appendix,
AT,

(1) (2)
S Fe < i
(3) (4)

Figure 6.2: Plot of parameterized meshes. Number of elements in background of
mesh is (3(29))? for i = 0,1,...,7 and number of elements in of overlapping mesh is
(292 for i = 0,1, ..., 7, respectively. Note how the triangles in the triangulation of T cut>
denoted by black thick lines, are different in each refinement.

75

T T 1 171 \\ T T T 171 \\ T T 1 \:\ +,7671 —"_ ,7671—‘
N ’T2
| |—e— combined
10° |
- i
% 8 homaz ‘ HuerrorHHl ‘ EOC ‘
= 1 5.09902 | 30.3786
. 2.54951 25.7026 0.241141
107}] 1.27475 | 13.4585 | 0.933398
i | 0.637377 | 6.80976 0.982843
g Pz | 0.318689 | 3.40822 0.998585
o L N 0.159344 | 1.70368 1.00037
1071 100 0.0796722 | 0.851815 | 1.00004

Figure 6.3: Plot of the error ||uerror||11; for Table 6.1: Estimated order of convergence
of Poisson’s equation using P; elements.

and error for P; elements.

—— Toa
10! IR
—eo— combined
=
10-1 % | ’ hmaa ‘ ||) ||H1 ‘ EOC ‘
= 5.09902 | 23.5048
2.54951 4.88905 2.26533
1.27475 1.02667 2.25158
0.637377 | 0.230324 | 2.15624
Rz 0.318689 | 0.0540704 | 2.09075
e o s 0.159344 | 0.0131114 | 2.04402
1071 100 0.0796722 | 0.0032264 | 2.02282

Figure 6.4: Plot of the error ||uerror| |1, for Table 6.2: Estimated order of convergence
of Poisson’s equation using P, elements. and error for P, elements.

6.1.5 Patch test

For P; elements, setting u = 1 4+ = 4+ y gives us —A(u) = 0. Setting f; = fo = 0 and
g=1+2x+yin (6.1). Since these polynomials are of first order, it is expected that
the finite element method will return the exact solution. This is shown to be the case,
up to error 8.97552e¢ — 14 in the H; norm for P; elements. Setting f; = fo = —4 and

76

g=2>+y>+ay+x+y~+1 the expected solution is 2> + y?> + 2y + z +y + 1, and
the error is 6.36258¢ — 12 for P, elements in the mesh shown in Figure 6.1. The less
accurate result for P» elements shown here is probably attributed to the fact that the
elements over the interface I' was integrated using a quadrature rule of order 3 due to
the availability of quadrature rules in the finite element framework when these tests were
performed. A quadrature rule of order 4 should be employed to properly integrate the
basis functions in the broken function space Pj(71) as illustrated in Figure 3.8 when the
original elements are P, elements.

6.1.6 Timings

The time spent computing the different parts involved in this simulation — collision
detection, mesh decomposition and assembly and solving — are shown in Figures 6.5 and
6.6. In the first plot these timings are separate, and in the second plot, the timings are
stacked on top of each other to reflect the timing of the whole process. These simulations
have been performed on the parameterized meshes illustrated in Figure 6.2. For good
measure a solution of the Poisson’s equation, with strongly enforced boundary conditions
and the same source function on the mesh 7p, is included in both plots.

150 F7 ‘ ‘ ‘ T T =
- o- Solving and assembly 0
- »- Triangulation e
- 4- Collision detection L
~— 100t |-=- Standard Poisson on 7 e |
ot -
g
= /,o
Z 50
L . . |
% -
,/’//// k,,_——::j::é::::: R
ol g;;;;;;gzagtzzii:iiii _____ AocmmmmmmmmmmTT T T |
\ \ \ \ | | | ‘ ‘

| | |
0 02 04 06 038 1 1.2 14 16 1.8 2 2.2
Number of triangles To + T2 106

Figure 6.5: Linear plot of CPU time(s) showing computing time for different algorithms
given two meshes Ty and 7s.

77

200 | |mmm Solving and assembly -
mm Triangulation
Collision detection
— 150 - Standard Poisson on 7y |
T
=
= 100 i
)
S,
50 | -
0 i
| | | | | | | | | | | |
0 02 04 06 0.8 1 1.2 14 16 1.8 2 2.2
Number of triangles To + 72 108
106
I T
,| 07 |
a7,
% |]7-1,cut
:'E 1.5} D%,cut B
+~
=i
o
[
o
= 1 -
O
s
g
=
Z 05 i |
0L \ i \ \ \ \ \ \ \ ||

| | |
0 02 04 06 0.8 1 1.2 14 16 18 2 2.2
Number of triangles T + T2 106

Figure 6.6: (Top) Linear plot of CPU time(s) vs. mesh size, showing a stacked plot
yielding total time given two meshes 7y and 75. Included is a plot of the solution of a
standard Poisson problem formulation on 7p. (Bottom) Number of entities in different
meshes, triangles or line segments.

78

Chapter 7

Conclusions and further work

7.1 Computational geometry

This thesis has followed the development of several algorithms made with the intent of
geometrically decomposing a meshed domain into suitable entities for finite element
analysis via the Nitsche method on overlapping meshes. As a precursor to further
development of such a geometrical toolbox this thesis provides the insights given in
the following sections.

7.1.1 Bounding volume hierarchy

In Section 4.5.1 it is shown that when using a bounding volume hierarchy to perform
intersection detection on meshes typical to finite element analysis in three dimensions, a
tight bounding volume enclosing single primitives (at leaf nodes) is important for com-
putational efficiency. A tight bounding volume both reduces overall traversal time and
limits worst case behavior associated with irregular meshes shown in Section 4.5.4. Fur-
thermore, it is shown that this tightness is not as important at intermediate nodes in the
hierarchy when using what is believed to be a fast construction strategy (Section 4.2.1).

The efficiency of this bounding volume hierarchy as indicated by Figures 6.6 and 6.5,
looks close to the O(nlogn) when decomposing meshes with a relatively large amount of
cells, between which an interface I' is a simple rectangular polygon divided into segments.

All usage and tests on two dimensional meshes in this thesis have been done using a
bounding volume hierarchy designed for three dimensional entities. This limits the rel-
evance of the efficiency tests, but emphasizes the modularity and practicality of this
approach. Furthermore, only a few meshes typical to the finite element method has
been tested, and particularly only meshes typical to the overlapping meshes case. Func-
tionality for the interesting case of 1D networks of intervals submerged in a background
mesh (Chapter 3), although probably easy to implement in a bounding volume hierarchy,
has not been developed, thoroughly presented or benchmarked.

79

7.1.2 Implementational considerations when detecting intersections

From a practical perspective, this thesis argues to use the implementation of the bound-
ing volume hierarchy for intersection detection on meshes typical to the finite element
method — this at least compared to the implementation of the advancing front algorithm
also presented and benchmarked. The advancing front algorithms are here deemed to
be cumbersome and lacking modularity, both conceptually and in code, for detecting
intersections as it is presented here.

An implementation of an advancing front algorithms for meshes of different dimension-
ality seems far from trivial to implement, and warrant standalone closed-loop implemen-
tation for most such combinations. A bounding volume hierarchy easily covers many of
these cases once you have just one implementation. The author cannot envision algo-
rithms of complexity O(n) with the same implementational practicality and modularity
as a bounding volume hierarchy or other partitioning scheme in this regard, since any
O(n) algorithm will most likely rely on exploiting locality information encoded in mesh
connectivity and thus be bound to the particular representation of a mesh.

The implemented algorithms are here not presented with benchmarks comparing them
to implementations by other programmers. This is as intended as not to make this
thesis a speed competition. Having said that, comparisons have been made throughout
the development — and this bounding volume hierarchy performs well in comparisons
to others — some are faster, some are slower, naturally also depending on the geometric
input. No attempt has been made to properly optimize the data structures employed in
these algorithms to be cache friendly [22, 74], and this impedes in particularly the speed
of the construction algorithm, Algorithm 3.

No thorough investigation of numerical robustness has been performed in this thesis,
although some robustness concerns have been expressed in Section 4.2.4: Detecting the
intersection of primitives. Some functionality increasing numerical robustness have been
proposed, but it has not been tested nor has it been implemented to any considerable
extent.

7.1.3 Mesh decomposition

This thesis has shown that a greedy triangulation algorithm such as Algorithm 9 (Section
4.6.2) is able to return a triangulation of cut entities in a satisfactory manner for the
overlapping meshes case, with the assumption that the mesh sizes are compatible over
the interface (Section 3.4). Whether or not the amount of entities returned from such
an algorithm is problematic if it is generalized to 3D is still an unanswered question.

80

7.2 The Nitsche method

Despite the fact that a fairly general geometrical framework capable of handling many
unfitted geometries has been developed here, the framework has only been applied to
the Nitsche method on overlapping meshes. Furthermore, this thesis has been brief in its
treatment of the formulation of the Nitsche method as this theory is here primarily used
as a backdrop for developing geometry algorithms. It is thus skipping a presentation of
often used stabilization methods and important techniques to improve the convergence
of this method [40, 12, 39].

The code presented here is part of a much larger framework for doing numerical analy-
sis, and much of the functionality developed within the FEniCS project needed for these
flexible geometrical approaches have been implemented with brand new codes over the
course of writing this thesis. The library LibCutFEM recently developed by Massing and
others [14] have been given a good run in conjunction with the fairly rudimentary im-
plementational quality of the geometry decomposition algorithms developed here. These
development processes have for the most part been successful, an indication of which is
the convergence and patch tests in Sections 6.1.4 and 6.1.5.

More attached to finite element analysis than to computational geometry, this thesis
has shown that integrating over a messy triangulation returned from a greedy triangula-
tion algorithm such as Algorithm 9 is a viable strategy for cut entities. The algorithms
already mentioned potential pitfall of returning a triangulation with an excessive amount
of triangles, is not seen to be problematic in the cases of integration presented here, nor
is the shape of the triangles it returns.

7.3 Further work

Based on the measured performance of different bounding volumes — at different loca-
tion in the bounding volume hierarchy — further work is proposed on a hybrid bounding
volume hierarchy. A hybrid bounding volume hierarchy using the embedded 6DOP in
a 26DOP as bounding volumes at intermediate nodes in the hierarchy and the whole
26DOP at leaf nodes is seen as a plausible best of both worlds approach to further devel-
opment. A single entity, such as a hybrid volume containing a simple bounding volume
like a 6DOP that will be accessed the most, is seen to be a practical entity to optimize
and perhaps attempt to parallelize code for. A selection of bounding volumes, as is avail-
able in the implementation of the bounding volume hierarchy presented here, is thus not
something deemed necessary in a robust and easily generalized future implementation.
A rudimentary precursor to this further development has been performed by augmenting
the AABB hierarchy currently presented in [54] by 26DOP predicates at the leaf node
level. This has been shown to produce the same kind of averaging as observed in Section
4.5.5, increasing both efficiency and reducing worst-case behavior as described above.
This is interesting since the this current FEniCS version of this hierarchy is already quite

81

optimized.

A rewrite would furthermore elicit a more comprehensive templated implementational
approach, where bounding volume constructors, collision tests and instructions on how
to build bounding volumes around arbitrary geometrical entities can be injected in to a
small and general hierarchy. Containing this in a class almost without any dependencies
is possible. A small bounding volume hierarchy like this, itself completely oblivious of
the primitives it contains, but optimized towards the typical role of meshes in finite ele-
ment analysis, is seen as the natural way forward for extended usability and modularity.
This can be said to already be the general idea of this technique, but is something that
is often overlooked in actual implementations, and certainly overlooked in the imple-
mentation made during the course of development in this thesis. A small and portable
implementation like this, would immediately be beneficial to interesting research such
as that of Cattaneo and Zunino [9], both in terms of reducing time spent developing
algorithms and reducing time spent computing stuff.

More work is further proposed on the triangulation algorithm, Algorithm 9, irrespective
of the fact that it seems sufficient for integration in the cases presented here. By visually
inspecting Figure 4.17 of the returned triangulation it can be seen that many triangles
in this triangulation together form larger triangles. Reducing the number of triangles
that is returned by this routine should therefore be possible via some kind intermediate
pruning routine, either at the very end of the routine, or at each step after a triangula-
tion conforming to a single facet segment has been made.

Hopefully these codes and descriptions will make solving partial differential equations
on unfitted geometries a little more accessible to everyone — like the Nitsche method
already does.

82

Appendix A

Source code

A.1 Poisson’s equation with weakly enforced boundary
conditions

main.cpp - Main program.

#include <dolfin.h>
#include "PoissonNitsche.h"

using namespace dolfin;

// Source term (right-hand side)
class Source : public Expression

{

void eval (Array<double>& values, const Array<double>& x) const

{

float k_ 0 = 1;
float k 1 = 1;
values[0] = DOLFIN_PI*DOLFIN_PI*(k_Oxk_O*sin((DOLFIN_PI)*x[0])

*sin (DOLFIN_PI*x[1])
+ k_1xk_1%sin(DOLFIN PI*x[0])*sin(DOLFIN PI*x[1]));
}
I8

int main()

{
// Create mesh and function space
UnitSquareMesh mesh(10, 10);
Poisson: :FunctionSpace V(mesh) ;

// Define boundary condition
Constant u0(0.0);

// Define variational forms

83

Poisson: :BilinearForm a(V, V);
Poisson: :LinearForm L(V);

Source f;

L.f = £;

Constant gamma(1.0);
Constant g(0);
L.g=g;

L.gamma = gamma,
a.gamma = gamma;

// Compute solution
Function u(V);
solve(a == L, u);

// Plot solution
plot(w);

interactive();

return O;

PoissonNitsche.ufl - Unified Form Language file that generates PoissonNitsche.h

Compile this form with FFC: ffc -1 dolfin PoissonNitsche.ufl.
element = FiniteElement("Lagrange", triangle, 1)

TrialFunction(element)
TestFunction(element)

< e
o

= Coefficient(element)
Coefficient (element)
Coefficient (element)
element.cell().n
2.0*Circumradius(triangle)

5B B0Mm H
]

gamma = Coefficient(element)

a = (inner(grad(u), grad(v))x*dx
- inner(dot(grad(u),n), v)*ds
- inner(dot(grad(v),n), u)*ds
+ gamma/h * inner(u,v)*ds)

L = (inner(f,v)x*dx
- inner(dot(grad(v),n), g)*ds
+ gamma/h * inner(g,v)*ds)

84

A.2 Triangulation algorithm verification

Verification code for volume (area) of meshed domain.

#include <dolfin.h>
#include <cutfem.h>
void testVolume()
{
// Original meshes
double volume_meshil;
for (dolfin::Celllterator cellit(*overlapping_meshes->mesh(0));
lcellit.end(); ++cellit)

{
dolfin::Cell cell(*overlapping_meshes->mesh(0),
cellit->global_index());
volume_meshl += cell.volume();
}

double volume_mesh?2;
for (dolfin::Celllterator cellit(*overlapping meshes->mesh(1));
lcellit.end(); ++cellit)

{
dolfin::Cell cell(*overlapping_meshes->mesh(1),
cellit->global_index()) ;
volume_mesh2 += cell.volume();
b
// T_0

double volume_t_O;
for (dolfin::Celllterator cellit(*overlapping_meshes->mesh(0));
lcellit.end(); ++cellit)

{
// If cell_marker = 0, it 4s in T_O.
if (overlapping_meshes->
cell_marker(0).get () [0] [cellit->global_index()] == 0)
{
dolfin::Cell cell(*overlapping_meshes->mesh(0),
cellit->global_index());
volume_t_0 += cell.volume();
}
}
// T_1_CUT

double volume_local_triangulation;
if (overlapping_meshes->cut_mesh_and_parent_mesh_ids(0) .first->size(2) > 1)
{
for (dolfin::Celllterator cellit(*overlapping_meshes-—>
cut_mesh_and_parent_mesh_ids(0) .first); !cellit.end(); ++cellit)

85

dolfin::Cell cell(*overlapping meshes->
cut_mesh_and_parent_mesh_ids(0) .first,
cellit->global_index());
dolfin::VertexIterator v(cell);
volume_local_triangulation += cell.volume();

double sum_untriangulated = volume_meshl - volume_mesh2;
cout << "Sum: mesh - collidingMesh" << endl;
std::cout << std::setprecision (30) << sum_untriangulated << std::endl;

cout << "Sum: submesh T_O + local triangulation" << endl;
double sum_triangulated = volume_t_O + volume_local_triangulation;
std::cout << std::setprecision (30) << sum_triangulated << std::endl;

double sum_difference = sum_untriangulated - sum_triangulated;
cout << "Sum: difference" << endl;
cout << std::setprecision (30)<< std::fixed << sum_difference << endl;

double precision = 5.96e-14;
cout << "Float precision" << endl;
cout << std::setprecision (30)<< std::fixed << precision << endl;

square__ellipse.py - Generation code for ellipse and square mesh.

from dolfin import *

from numpy import linspace

a=20.25

b =0.35

edge_points = []

center = Point(0.5,0.5)

angle = pi/2.0 + pi/4.0

for theta in linspace(0,2*pi - 0.1,36):
x = axcos(theta)*cos(angle) - bxsin(theta)*sin(angle)
y = axcos(theta)*sin(angle) + bxsin(theta)*cos(angle)
edge_points.append(Point(x,y) + center)

square = Rectangle(0., 0., 1., 1.)
ellipse = Polygon(edge_points)

mesh_square = Mesh(square, 10)
mesh_ellipse = Mesh(ellipse, 3)

86

A.3 Poisson’s equation on overlapping meshes

main.cpp - Main program.

int main()

{

#include <dolfin.h>
#include <cutfem.h>

// Header files generated by ffc
#include "PoissonOLMO.h"
#include "PoissonOLM1.h"
#include "PoissonOLMInterface.h"

// Loading meshes
mesh = new dolfin::Mesh("mesh.xdmf");
collidingMesh = new dolfin::Mesh("mesh2.xdmf");

mesh->init () ;
collidingMesh->init();

// Creating cutfem::CompositeMesh mesh, of type TriangulatedOverlappingMeshes
// supplying triangulation routine for contained CutMesh entities.
std: :shared_ptr<cutfem::CompositeMesh>

overlapping meshes(new cutfem::TriangulatedOverlappingMeshes) ;

std: :shared_ptr<dolfin: :Mesh>

ptr_mesh(new dolfin::Mesh(*mesh));
std::shared_ptr<dolfin: :Mesh>

ptr_collidingMesh(new dolfin::Mesh(*collidingMesh));

overlapping_meshes->add(ptr_mesh);
overlapping_meshes->add(ptr_collidingMesh) ;

// Computing collistions and calculating triangulation.
overlapping meshes->compute_intersections();

dolfin::Matrix A_2;

// Create function spaces on each mesh and composite function space
PoissonOLMO: :FunctionSpace VO(overlapping meshes->mesh(0));
PoissonOLM1: :FunctionSpace V1(overlapping meshes->mesh(1));

cutfem: :CompositeFunctionSpace V_c(overlapping_meshes);
V_c.add(V0);

V_c.add(V1);

V_c.buildQ;

V_c.view(0);

87

// Create empty CompostiteForm
cutfem: : CompositeForm a_c(V_c, V_c);

// Create standard bilinear forms on mesh O
PoissonOLMO: :BilinearForm a0(VO, VO);
dolfin::Constant gamma(gamma_u) ;

a0.gamma = gamma;

// Get domain marker for mesh 0;
auto cell_marker_O = overlapping_meshes->cell_marker (0) ;

// Attach data to standard forms
a0.set_cell_domains(cell_marker_0);

// Compute constrained dofs for VO
auto & constrained_dofs = V_c.constrained_dofs();

// (Candidates are those omes which lives in elements marked with 2).
cutfem: : CutFEMTools: : compute_constrained_dofs(constrained_dofs,
*V_c.view(0),
cell_marker_0.get(),
2);

std::size_t dof_counter = O;
for (std::size_t i = 0; i < constrained_dofs.size(); ++i)
if (constrained_dofs[i])
{
++dof _counter;

}

cutfem: :CompositeFunction vis_constr_dofs(V_c);
cutfem: : CutFEMTools: :visualise_constrained_dofs(vis_constr_dofs,
constrained_dofs) ;

// Add them as CutForm to CompositeForm
a_c.add(std: :shared_ptr<cutfem: :CutForm>(new cutfem::CutForm(a0)));

// Get the cut mesh describing cut elements in mesh 0

auto cut_mesh_and_parent_ids =
overlapping_meshes->cut_mesh_and_parent_mesh_ids(0) ;

auto cut_mesh_O = cut_mesh_and_parent_ids.first;

auto parent_mesh_ids_O = cut_mesh_and_parent_ids.second;

dolfin::info("parent_mesh_ids_O = %d", parent_mesh_ids_0.size());
// Create quadrature rule for mesh O

std::size_t order = 1;

std: :shared_ptr<cutfem: :Quadrature> quadrature_a0O_domain_1(

88

new cutfem::Quadrature(cut_mesh_0->type().cell_type(),
cut_mesh_O->geometry () .dim(), order));

// Remember that dxq in PoissonOLMO has domain_id 1!
a_c.cut_form(0)->set_quadrature(l, quadrature_a0_domain_1);
a_c.cut_form(0)->set_cut_mesh(1, cut_mesh_0);
a_c.cut_form(0)->set_parent_mesh_ids(1l, parent_mesh_ids_0);

// Create standard bilinear forms on mesh 1
PoissonOLM1: :BilinearForm al(V1, V1);

// Add them as CutForm to CompositeForm
a_c.add(std: :shared_ptr<cutfem::CutForm>(new cutfem::CutForm(al)));

//Add interface form
PoissonOLMInterface: :BilinearForm ai(V0O, VO);
ai.gamma = gamma;

a_c.add(std: :shared_ptr<cutfem::CutForm>(new cutfem::CutForm(ai)));

// Get interface cut mesh and related information, stored as the second

// cut_mesh_and_parent_ids component in TomOverlappingMeshes

auto interface_mesh_and_parent_mesh_ids =
overlapping_meshes->cut_mesh_and_parent_mesh_ids(1);

auto interface_mesh = interface_mesh_and_parent_mesh_ids.first;

auto interface_parent_mesh_ids = interface_mesh_and_parent_mesh_ids.second;

order = 2;
std: :shared_ptr<cutfem: :Quadrature> quadrature_interface(
new cutfem::Quadrature(interface_mesh->type().cell_type(),
interface_mesh->geometry() .dim(), order));

// Butld normal field for quadrature points
std: :shared_ptr<cutfem: :FacetNormals> interface_facet_normals(
new cutfem::FacetNormals(interface_mesh->facet_normals(),
interface_mesh->geometry().dim(),
quadrature_interface->size()));

a_c.cut_form(2)->set_quadrature(0, quadrature_interface);
a_c.cut_form(2)->set_cut_mesh(0, interface_mesh);
c.cut_form(2)->set_parent_mesh_ids(0, interface_parent_mesh_ids);
a_c.cut_form(2)->set_facet_normals(0, interface_facet_normals);

// Assemble composite form and compare.
cutfem: :CompositeFormAssembler assembler;
assembler.assemble(A_2, a_c);

// Temporary assemble of rhs and solution.

89

cutfem: : CompositeForm L_c(V_c);
//dolfin: :Constant f(1);

// Source term (right-hand stide)
class Source : public dolfin::Expression

{
void eval(dolfin::Array<double>& values,
const dolfin::Array<double>& x) const
{
float k 0 = 1;
float k_1 = 1;
values[0] = DOLFIN_PI*DOLFIN_PI
* (k_O*k_O*sin ((DOLFIN_PI)*x[0])*sin(DOLFIN_PIx*x[1])
+ k_1%k_1*sin(DOLFIN_PI*x[0])*sin(DOLFIN_PI*x[1]));
}
};
class DirichletBC : public dolfin::Expression
{
void eval(dolfin::Array<double>& values,
const dolfin::Array<double>& x) const
{
values[0] = 0;
X
s

PoissonOLMO: :LinearForm LO(VO);
// Attach data to standard forms
Source f;

LO.f = £;

DirichletBC g;
L0.g = g;

LO.gamma = gamma;

LO.set_cell_domains(cell_marker_O);

//LO.f = f;

// Add them as CutForm to CompositeForm
L_c.add(std: :shared_ptr<cutfem: :CutForm>(new cutfem::CutForm(L0)));

// Get the cut mesh describing cut elements in mesh 0
// Create quadrature rule for mesh O

order = 2;
std: :shared_ptr<cutfem: :Quadrature> quadrature_LO_domain_1(

90

new cutfem::Quadrature(cut_mesh_0->type().cell_type(),
cut_mesh_O->geometry () .dim(), order));

// Remember that dxq in PoissonOLMO has domain_id 1!
L_c.cut_form(0)->set_quadrature(l, quadrature_LO_domain_1);
L_c.cut_form(0)->set_cut_mesh(1, cut_mesh_0);
L_c.cut_form(0)->set_parent_mesh_ids(1l, parent_mesh_ids_0);

// Create standard bilinear forms on mesh 1
PoissonOLM1: :LinearForm L1(V1);

// Reusing source function on overlapping mesh
L1.f = £;

// Add them as CutForm to CompositeForm
L_c.add(std: :shared_ptr<cutfem: :CutForm>(new cutfem::CutForm(L1)));

dolfin::Vector b_2;
assembler.assemble(b_2, L_c);

cutfem: : CompositeFunction u(V_c);

dolfin::solve(A_2, *u.vector(), b_2);
}

PoissonOLMO.ufl - UFL program that generates PoissonOLMO.h.

compile with ffc -1 dolfin PoissonOLMO.ufl

cell = triangle

V = FiniteElement ("CG", cell, 1)
u = TrialFunction(V)

v = TestFunction(V)

f = Coefficient (V)

n = FacetNormal (cell)

h = 2.0*Circumradius(cell)

dxq = dc(1, metadata={"num_cells": 1})

gamma = Coefficient (V)
g = Coefficient (V)

Standard assembly over uncut cells

a = inner(grad(u), grad(v))=*dx(0)

Nitsche term to enforce weak boundary conditions
on the (matching) boundary.

a += -inner(dot(grad(u),n), v)*ds

91

a += -inner(dot(grad(v),n), u)*ds
a += gamma/h*inner(u,v)*ds

Integrate same form over cut cells (marked with 1)
a += inner(grad(u), grad(v))*dxq

L = fxv*dx(0) + fxv*dxq - inner(dot(grad(v),n), g)*ds + gamma/h * inner(g,v)*ds

PoissonOLMInterface.ufl - UFL program that generates PoissonOLMInterface.h.

compile with ffc -1 dolfin PoissonOLMInterface.ufl

cell = triangle

n = FacetNormal (cell)

h = 2.0*Circumradius(cell)

V = FiniteElement("CG", cell, 1)
u = TrialFunction(V)

v = TestFunction(V)

dSq = dc(0, metadata={"num_cells": 2})
gamma = Coefficient (V)

Averaged version
a = -inner(avg(grad(u)), jump(v, n))*dSq
a += -inner(avg(grad(v)), jump(u, n))*dSq

One-side fluzx (better for convergence)

a = —inner(grad(u) ("-"), jump(v, n))*dSq

a —-inner(grad(v) ("-"), jump(u, n))*dSq

a += gamma/h("-")*inner (jump(u), jump(v))*dSq

+
[]

PoissonOLM1.ufl - UFL program that generates PoissonOLM1.h.

compile with ffc -1 dolfin PoissonOLMI1.ufl

cell = triangle

V = FiniteElement ("CG", cell, 1)
u = TrialFunction(V)
v = TestFunction(V)

Standard assembly over uncut cells
a = inner(grad(u), grad(v))*dx

92

A.4 Generation code for mesh with large angles

The code for the implementation that follows can be found at:
https://github.com/tomana/compgeom_olm/tree/master/utils/large_angles

large__angles.py - Python program generating mesh with large angles.

from dolfin import *
import numpy

mesh = Mesh()

Using dolfins dynamic mesh editor
editor = DynamicMeshEditor ()
editor.open(mesh, 2, 2, 2)
num_cells x = 8;

num_cells_y = 40;

Switches used to form lattice in T y space.
switchx = False;
switchy = False;

vert_list = []

Adding vertices, not mecassarily distinct,
made distinct and put into cells further below.
for j in range(O,num_cells_y):
switchy = not switchy;
for i in range(O,num_cells_x):
Add vertices
switchx = not switchx;
if (switchy):
switchx = not switchx
spacer_x = 1.0/float(num_cells_x)
spacer_y = 1.0/float(num_cells_y)
if (switchx):
if(i == 0):
vert_list.append(((i+1)*spacer_x, j*spacer_y))
vert_list.append(((i+1)*spacer_x, (j+1)*spacer_y))
vert_list.append(((i+2)*spacer_x, j*spacer_y))
elif (i == num_cells_x - 1):
vert_list.append((i*spacer_x, j*spacer_y))
vert_list.append(((i+1)*spacer_x, (j+1)*spacer_y))
vert_list.append(((i+1)*spacer_x, j*spacer_y))
else:
vert_list.append((i*spacer_x, j*spacer_y))
vert_list.append(((i+1)*spacer_x, (j+1)*spacer_y))
vert_list.append(((i+2)*spacer_x, j*spacer_y))
else:
if(i == 0):
vert_list.append(((i+1)*spacer_x, (j+1)*spacer_y))

93

https://github.com/tomana/compgeom_olm/tree/master/utils/large_angles

vert_list.append(((i+1)*spacer_x, (j)*spacer_y))
vert_list.append(((i+2)*spacer_x, (j+1)*spacer_y))
elif(i == num_cells_x - 1):
vert_list.append(((i)*spacer_x, (j+1)*spacer_y))
vert_list.append(((i+1)*spacer_x, (j)*spacer_y))
vert_list.append(((i+1)*spacer_x, (j+1)*spacer_y))
else:
vert_list.append(((i)*spacer_x, (j+1)*spacer_y))
vert_list.append(((i+1)*spacer_x, (j)*spacer_y))
vert_list.append(((i+2)*spacer_x, (j+1)*spacer_y))

if (switchy):
switchx = not switchx

Sorting so that wertices are unique
set (vert_list)
new_list = list(set(vert_list))

print new_list
cell = 0;

for points in new_list:
editor.add_vertex(cell, points[0], points[1])

cell += 1
switchx = False;
switchy = False;

Now making cells
for j in range(O,num_cells_y):
switchy = not switchy;
for i in range(O,num_cells_x):
vert_list = []
switchx = not switchx;
if (switchy):
switchx = not switchx
spacer_x = 1.0/float(num_cells_x)
spacer_y = 1.0/float(num_cells_y)
if (switchx):
if(i == 0):
vert_list.append(((i+1)*spacer_x, j*spacer_y))
vert_list.append(((i+1)*spacer_x, (j+1)*spacer_y))
vert_list.append(((i+2)*spacer_x, j*spacer_y))
elif (i == num_cells_x - 1):
vert_list.append((i*spacer_x, j*spacer_y))
vert_list.append(((i+1)*spacer_x, (j+1)*spacer_y))
vert_list.append(((i+1)*spacer_x, j*spacer_y))
else:
vert_list.append((i*spacer_x, j*spacer_y))

94

vert_list.append(((i+1)*spacer_x, (j+1)*spacer_y))
vert_list.append(((i+2)*spacer_x, j*spacer_y))
else:
if(i == 0):
vert_list.append(((i+1)*spacer_x, (j+1)*spacer_y))
vert_list.append(((i+1)*spacer_x, (j)*spacer_y))
vert_list.append(((i+2)*spacer_x, (j+1)*spacer_y))
elif (i == num_cells_x - 1):
vert_list.append(((i)*spacer_x, (j+1)*spacer_y))
vert_list.append(((i+1)*spacer_x, (j)*spacer_y))
vert_list.append(((i+1)*spacer_x, (j+1)*spacer_y))
else:
vert_list.append(((i)*spacer_x, (j+1)*spacer_y))
vert_list.append(((i+1)*spacer_x, (j)*spacer_y))
vert_list.append(((i+2)*spacer_x, (j+1)*spacer_y))

if (switchy):
switchx = not switchx
Add cell
editor.add_cell(j*num_cells_x + i, \
new_list.index(vert_1list[0]) \
, new_list.index(vert_list[1]) \
, new_list.index(vert_list[2]))

Close editor
editor.close()

mesh.order ()
mesh.init ()

file = File("mesh.xml")
file << mesh

plot (mesh)

Solving a Poisson’s equation on this.
V = FunctionSpace(mesh, "Lagrange", 1)

spacer_x = 1.0/float(num_cells_x)
spacer_y = 1.0/float(num_cells_y)

Define Dirichlet boundary (z = 0 or = = 1)
def boundary(x):
return x[0] < DOLFIN_EPS + spacer_x \
or x[0] > 1.0 - DOLFIN_EPS \
or x[1] < DOLFIN_EPS \
or x[1] > 1.0 - DOLFIN_EPS

Define boundary condition

95

u0 = Constant(0.0)

bc = DirichletBC(V, u0, boundary)

Define wvartational problem

u = TrialFunction(V)

v = TestFunction(V)

f = Expression("10*exp(-(pow(x[0] - 0.5, 2)

+ pow(x[1] - 0.5, 2)) / 0.02)")

g = Expression("sin(5*x[0])")
a = inner(grad(u), grad(v))x*dx
L = fxv*dx + g*vxds

Compute solution
u = Function(V)
solve(a == L, u, bc)

Plot solution
plot(u)

interactive()

A.5 Source code for drawing trees

Source uses openFrameworks [55] toolkit. Put together using strings returned from
prints while traversing trees captured in a big string. Using GL2PS [75] to turn OpenGL
graphics into PostScript and SVG.:
https://github.com/tomana/compgeom_olm/tree/master/utils/draw_tree

A.6 Source code for drawing bounding volumes on mesh

Source uses openFrameworks [55] tookit. Put together using prints returned from a tree
captured in a big string. Using GL2PS [75] to turn OpenGL graphics into PostScript
and SVG.:
https://github.com/tomana/compgeom_olm/tree/master/utils/draw_volumes_on_
mesh

A.7 Generation code for structured mesh

Function for generating structured meshes of square with rotated mesh in the middle.

void new_structuredmeshes(size_t n)
{

size_t N = n;

// Butild background mesh

96

https://github.com/tomana/compgeom_olm/tree/master/utils/draw_tree
https://github.com/tomana/compgeom_olm/tree/master/utils/draw_volumes_on_mesh
https://github.com/tomana/compgeom_olm/tree/master/utils/draw_volumes_on_mesh

double a 3.0;
double b -3.0;
mesh->clear();
collidingMesh->clear();
std: :shared_ptr<dolfin::Mesh> meshO(
new dolfin::RectangleMesh(a, a, b, b, 3 * N, 3 * N));
meshO->init (meshO->topology () .dim() - 1, meshO->topology().dim());

// Create sub mesh
std: :shared_ptr<dolfin::CellFunction<std::size_t> > domain_marker_O
(new dolfin::CellFunction<std::size_t>(*mesh0, 0));

InnerDomain() .mark (*domain_marker_ 0, 2);
std: :shared_ptr<dolfin::SubMesh> meshi(
new dolfin::SubMesh(*meshO, *domain_marker_ 0, 2));

// Scale overlapping mesh

double scalefactor = 1.5;

dolfin: :MeshGeometry& geometry = meshl->geometry();
for (std::size_t i = 0; i < geometry.size(); i++)

{
// Get coordinate
double* x = geometry.x(i);
// Scale
const double x0 = x[0]*scalefactor;
const double x1 = x[1]*scalefactor;
// Store coordinate
x[0] = xO0;
x[1] = x1;
+

// Copy meshes

mesh = new dolfin: :Mesh(*meshO);
collidingMesh = new dolfin::Mesh(*meshl);
// Rotate overlapping mesh
collidingMesh->rotate(40,2);
mesh->init () ;

collidingMesh->init();

97

98

Bibliography

1]

[10]

Paul T Boggs, Alan Althsuler, Alex R Larzelere, Edward J Walsh, Ruuobert L Clay,
and Michael F Hardwick. DART system analysis. 2005.

J Austin Cottrell, Thomas JR Hughes, and Yuri Bazilevs. Isogeometric analysis:
toward integration of CAD and FEA. John Wiley & Sons, 2009.

Erik Burman and Peter Hansbo. Fictitious domain finite element methods using
cut elements: 1. A stabilized Lagrange multiplier method. Computer Methods in
Applied Mechanics and Engineering, 199(41):2680-2686, 2010.

M Tur, J Albelda, E Nadal, and JJ Roédenas. Imposing Dirichlet boundary
conditions in hierarchical Cartesian meshes by means of stabilized Lagrange
multipliers. International Journal for Numerical Methods in Engineering, 2014.

Patrick E Farrell. Galerkin projection of discrete fields via supermesh construction.
PhD thesis, Imperial College London, 2009.

Ramsharan Rangarajan, Adridn Lew, and Gustavo C Buscaglia. A discontinuous-
Galerkin-based immersed boundary method with non-homogeneous boundary
conditions and its application to elasticity. Computer Methods in Applied Mechanics
and Engineering, 198(17):1513-1534, 2009.

August Johansson and Mats G Larson. A high order discontinuous Galerkin Nitsche
method for elliptic problems with fictitious boundary. Numerische Mathematik,
123(4):607-628, 2013.

Adrian J Lew and Gustavo C Buscaglia. A discontinuous-Galerkin-based immersed

boundary method. International Journal for Numerical Methods in Engineering,
76(4):427-454, 2008.

Laura Cattaneo and Paolo Zunino. Computational models for fluid exchange
between microcirculation and tissue interstitium. Networks and Heterogeneous

Media, 2013.

Charles S Peskin. The immersed boundary method. Acta numerica, 11, 2002.

99

[11]

[12]

[13]

J Nitsche. Uber ein Variationsprinzip zur Losung von Dirichlet-Problemen bei
Verwendung von Teilrdumen, die keinen Randbedingungen unterworfen sind.
In Abhandlungen aus dem Mathematischen Seminar der Universitdt Hamburyg,
volume 36, pages 9-15. Springer, 1971.

A. Massing, M.G. Larson, A. Logg, and M.E. Rognes. A stabilized Nitsche
overlapping mesh method for the Stokes problem. Num. Math., page 1-29, 2014.

A. Massing, M.G. Larson, and A. Logg. Efficient implementation of finite element
methods on non-matching and overlapping meshes in 3D. SIAM J. Sci. Comput.,
35(1):C23-C47, 2013.

E. Burman, S. Claus, P. Hansbo, M.G. Larson, and A. Massing. CutFEM:
discretizing geometry and partial differential equations. Submitted to Int. J. Numer.
Meth. Engng, 2014.

Anita Hansbo, Peter Hansbo, and Mats G Larson. A finite element method on
composite grids based on Nitsche’s method. ESAIM: Mathematical Modelling and
Numerical Analysis, 37(03):495-514, 2003.

Peter Hansbo. Nitsche’s method for interface problems in computational mechanics.
GAMM-Mitteilungen, 28(2):183-206, 2005.

Mika Juntunen and Rolf Stenberg. Nitsche’s method for general boundary
conditions. Mathematics of computation, 78(267):1353-1374, 20009.

CGAL: Computational Geometry Algorithms Library. http://wwuw.cgal.org.

Fabio Ganovelli, Federico Ponchio, and Claudio Rocchini. Fast tetrahedron-
tetrahedron overlap algorithm. Journal of Graphics Tools, 7(2):17-25, 2002.

James T Klosowski, Martin Held, Joseph SB Mitchell, Henry Sowizral, and Karel
Zikan. Efficient collision detection using bounding volume hierarchies of k-DOPs.
Visualization and Computer Graphics, IEEE Transactions on, 4(1):21-36, 1998.

Martin J Gander and Caroline Japhet. An algorithm for non-matching grid
projections with linear complexity. In Domain Decomposition Methods in Science
and Engineering X VIII, pages 185-192. Springer, 2009.

Christer Ericson. Real-time collision detection. Taylor & Francis US, 2005.

William E Lorensen and Harvey E Cline. Marching cubes: A high resolution 3D
surface construction algorithm. In ACM Siggraph Computer Graphics, volume 21,
pages 163-169. ACM, 1987.

Susanne C Brenner and Larkin Ridgway Scott. The mathematical theory of finite
element methods, volume 15. Springer, 2008.

100

[25]

[32]

[33]

M.G. Larson and F. Bengzon. The Finite Element Method: Theory, Implementa-
tion, and Applications. Texts in Computational Science and Engineering. Springer,
2013.

J Shewchuk. What is a good linear finite element? interpolation, conditioning,
anisotropy, and quality measures (preprint). University of California at Berkeley,
73, 2002.

Isaac Fried. Condition of finite element matrices generated from nonuniform meshes.
Aiaa Journal, 10(2):219-221, 1972.

Pascal J Frey, Houman Borouchaki, and Paul Louis George. Delaunay tetra-
hedralization using an advancing-front approach. In 5th International Meshing
Roundtable, pages 31-48. Citeseer, 1996.

Michael Murphy, David M Mount, and Carl W Gable. A point-placement
strategy for conforming Delaunay tetrahedralization. International Journal of
Computational Geometry €& Applications, 11(06):669-682, 2001.

Hang Si. TetGen - A quality tetrahedral mesh generator and three-dimensional
delaunay triangulator. 2006.

Christophe Geuzaine and Jean-Francois Remacle. Gmsh: A 3-D finite element mesh
generator with built-in pre-and post-processing facilities. International Journal for
Numerical Methods in Engineering, 79(11):1309-1331, 2009.

Joachim Schéberl. NETGEN: An advancing front 2D/3D-mesh generator based on
abstract rules. Computing and visualization in science, 1(1):41-52, 1997.

Jonathan Richard Shewchuk. Triangle: Engineering a 2D quality mesh generator
and Delaunay triangulator. In Applied computational geometry towards geometric
engineering, pages 203-222. Springer, 1996.

L Antign and DA Steinman. VMTK: Vascular Modeling Toolkit.
http: / /www.vmtk.org.

pyFormex - program for generating, transforming and manipulating large ge-
ometrical models of 3D structures by sequences of mathematical operations.
http://www.nongnu.org/pyformer. Accessed: 2014-06-14.

A. Massing, M.G. Larson, A. Logg, and M.E. Rognes. An overlapping mesh finite
element method for a fluid-structure interaction problem. Submitted to CAMCoS,
available as arXiv preprint arXiv:1511.2431, 2013.

Sven Grofl and Arnold Reusken. An extended pressure finite element space for two-
phase incompressible flows with surface tension. Journal of Computational Physics,
224(1):40-58, 2007.

101

[38]

Luca Antiga, Joaquim Peir6, and David A Steinman. From image data to
computational domains. In Cardiovascular Mathematics, pages 123-175. Springer,
2009.

Erik Burman and Peter Hansbo. Fictitious domain finite element methods using
cut elements: II. A stabilized Nitsche method. Applied Numerical Mathematics,
62(4):328-341, 2012.

Jarle Sogn. Stabilized finite element methods for the brinkman equation on fitted
and ficititious domains. 2014.

Chris Lomont. Fast inverse square root (found in the Quake 3 engine.). Tech-315
nical Report, 2003.

Blender free and open source 3D animation suite. http://www.blender.org/.

Thomas Larsson and Tomas Akenine-Moller. A dynamic bounding volume hierarchy
for generalized collision detection. Computers € Graphics, 30(3):450-459, 2006.

Stefan Gottschalk. Collision queries using oriented bounding bores. PhD thesis,
The University of North Carolina, 2000.

Michael S Paterson and F Frances Yao. Efficient binary space partitions for hidden-
surface removal and solid modeling. Discrete & Computational Geometry, 5(1):485—
503, 1990.

Jon Louis Bentley. Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18(9):509-517, 1975.

Hank Weghorst, Gary Hooper, and Donald P Greenberg. Improved computational
methods for ray tracing. ACM Transactions on Graphics (TOG), 3(1):52-69, 1984.

Martin Stich, Heiko Friedrich, and Andreas Dietrich. Spatial splits in bounding
volume hierarchies. In Proceedings of the Conference on High Performance Graphics
2009, pages 7-13. ACM, 2009.

Eric Larsen, Stefan Gottschalk, Ming C Lin, and Dinesh Manocha. Fast distance
queries with rectangular swept sphere volumes. In Robotics and Automation, 2000.
Proceedings. ICRA’00., volume 4, pages 3719-3726. IEEE, 2000.

Jack Ritter. An efficient bounding sphere. In Graphics gems, pages 301-303.
Academic Press Professional, Inc., 1990.

Tomas Moller. A fast triangle-triangle intersection test. Journal of graphics tools,
2(2):25-30, 1997.

Lutz Kettner, Kurt Mehlhorn, Sylvain Pion, Stefan Schirra, and Chee Yap.
Classroom examples of robustness problems in geometric computations. In
Algorithms—ESA 2004, pages 702—713. Springer, 2004.

102

[53]

[54]

[55]

[56]
[57]

[58]

[59]

[65]

[66]

[67]

Anders Logg, Kent-Andre Mardal, Garth N. Wells, et al. Automated Solution of
Differential Equations by the Finite Element Method. Springer, 2012.

Anders Logg, Garth N. Wells, and Johan Hake. DOLFIN: a C++/Python Finite
Element Library, chapter 10. Springer, 2012.

openFrameworks open source C+4 toolkit for creative coding.
http://www.openframeworks. cc.

OpenGL (Open Graphics Library). http://www.opengl.org/.
GNU Standard C++ Library v3. http://gcc.gnu.org/libstdc++/.

MeshKit 1.0 - Open-source library of mesh generation functionality.
https://trac.mcs.anl.gov/projects/fathom /wiki/MeshKit.

Timothy James Tautges, Corey Ernst, Clint Stimpson, Ray J Meyers, and Karl
Merkley. MOAB: a mesh-oriented database. Technical report, Sandia National
Laboratories, 2004.

Aristides AG Requicha and Herbert B Voelcker. Constructive solid geometry. 1977.

Paul Bourke. Polygonising a scalar field. http://paulbourke.net/geometry/polygonise/,
1994.

C++ implementations of computational geometry algorithms re-
lated to mesh decomposition for FEM on overlapping meshes.
https://github.com/tomana/compgeom__olm/.

Y Sudhakar and Wolfgang A Wall. Quadrature schemes for arbitrary convex/con-
cave volumes and integration of weak form in enriched partition of unity methods.
Computer Methods in Applied Mechanics and Engineering, 2013.

Ted Belytschko, Nicolas Moés, Shuji Usui, and Chandu Parimi. Arbitrary
discontinuities in finite elements. International Journal for Numerical Methods in
Engineering, 50(4):993-1013, 2001.

Natarajan Sukumar and Ted Belytschko. Arbitrary branched and intersecting cracks
with the extended finite element method. Int. J. Numer. Meth. Engng, 48:1741—
1760, 2000.

John Dolbow and T Belytschko. A finite element method for crack growth without
remeshing. Int. J. Numer. Meth. Engng, 46(1):131-150, 1999.

N Sukumar, N Moés, B Moran, and T Belytschko. Extended finite element method
for three-dimensional crack modelling. International Journal for Numerical Methods
in Engineering, 48(11):1549-1570, 2000.

103

[68]

[69]

[70]

[71]

[75]

QZ Xiao and BL Karihaloo. Improving the accuracy of XFEM crack tip fields using
higher order quadrature and statically admissible stress recovery. International
Journal for Numerical Methods in Engineering, 66(9):1378-1410, 2006.

Sergio Zlotnik and Pedro Diez. Hierarchical X-FEM for n-phase flow (n > 2).
Computer Methods in Applied Mechanics and Engineering, 198(30):2329-2338,
2009.

B Miiller, F Kummer, and M Oberlack. Highly accurate surface and volume
integration on implicit domains by means of moment-fitting. International Journal
for Numerical Methods in Engineering, 96(8):512-528, 2013.

Y Sudhakar, JP Moitinho de Almeida, and Wolfgang A Wall. An accurate,
robust, and easy-to-implement method for integration over arbitrary polyhedra:

Application to embedded interface methods. Journal of Computational Physics,
2014.

Susanne Claus. Numerical simulation of complex viscoelastic flows using discontin-
uous galerkin spectral/hp element methods. PhD thesis, Cardiff University, 2013.

Vinh Phu Nguyen, Pierre Kerfriden, Susanne Claus, Stephane Pierre-Alain Bordas,
et al. Nitsche’s method method for mixed dimensional analysis: conforming and
non-conforming continuum-beam and continuum-plate coupling. 2013.

Joon-Sang Park, Michael Penner, and Viktor K Prasanna. Optimizing graph
algorithms for improved cache performance. Parallel and Distributed Systems, IEEE
Transactions on, 15(9):769-782, 2004.

GL2PS: an OpenGL to PostScript printing library. http://www.geuz.org/gl2ps/.

104

	Acknowledgement
	Introduction
	The finite element method on fitted meshes
	Model problem
	Continuous variational formulation
	Discrete variational formulation
	Meshes
	Piecewise polynomial spaces
	Assembly and numerical integration

	Errors
	Cell shape and numerical errors
	Cell shape and matrix conditioning
	Meshing domains of viable quality

	The finite element method on unfitted geometries
	Solving partial differential equations on unfitted geometries
	The Nitsche method
	Weakly enforcing boundary conditions by the Nitsche method

	Weakly enforcing interface conditions by the Nitsche method
	Overlapping meshes
	Challenges
	Cut elements
	Integration and assembly

	Collision detection and mesh decomposition
	Detecting intersections
	Partitioning techniques
	Advancing front methods

	The bounding volume hierarchy
	Bounding volume hierarchy construction algorithms
	Traversing the bounding volume hierarchy
	Bounding volumes
	Detecting the intersection of primitives

	An advancing front algorithm
	Implementation of algorithms
	Implementation of a bounding volume hierarchy
	Implementation of an advancing front algorithm

	Benchmarking implementations
	Benchmarking different bounding volumes in 3D
	Benchmark on aneurysm example
	Benchmark on structured mesh, regular split cubes
	Benchmark on structured mesh, irregular split cubes
	Benchmarking with 26DOP at leaf nodes
	Comparing a BVH to an advancing front algorithm in 2D

	Mesh decomposition
	Triangulation of cells intersected by an interface
	A greedy triangulation routine
	Implementation of the triangulation algorithm
	Data structures

	Integration and assembly of cut elements
	A summary of integration techniques for cut elements
	Assembly of the linear system
	Implementation in FEniCS and LibCutFEM

	Numerical results
	Poisson on overlapping meshes
	Formulation
	Implementation
	Result
	Convergence test
	Patch test
	Timings

	Conclusions and further work
	Computational geometry
	Bounding volume hierarchy
	Implementational considerations when detecting intersections
	Mesh decomposition

	The Nitsche method
	Further work

	Source code
	Poisson's equation with weakly enforced boundary conditions
	Triangulation algorithm verification
	Poisson's equation on overlapping meshes
	Generation code for mesh with large angles
	Source code for drawing trees
	Source code for drawing bounding volumes on mesh
	Generation code for structured mesh

