
WATER CONFINED IN
NANOPOROUS SILICA

by

Filip Sund

Thesis

for the degree of

Master of Science

Faculty of Mathematics and Natural Sciences
University of Oslo

June 2014

Abstract
In this thesis we have studied the structure and transport properties of water
trapped in nanoporous fractures in silica. The studies are performed using a
numerical method called molecular dynamics, using an advanced, accurate, and
verified model of silica and water, based on quantum mechanical and experimen-
tal studies of these systems.

We have developed a method for generating random fractures which are statisti-
cally similar to naturally occurring fractures, which is used to create nanoporous
silica. This method is validated using a fractal-based characterization method.
We have also developed a method for filling the fractures and pores with wa-
ter

We have studied systems of silica with nanoscale fractures of sizes ranging from
14 to 80 Ångström, with a Hurst (or roughness) exponent of approximately 0.75.
We have found that approach we used for filling the fractures worked well in
large fractures, but that the method breaks down in rough fractures smaller than
around 20 Ångströmin one or more dimensions.

We have also found that the structure and transport properties of water is bulk-
like down to around 8 Å from a the silica surface. We found that in a region
around 7 Å and closer to the silica surface, the water density was noticeably
reduced, and the self-diffusion of water was also reduced. Upon studies of the
intermolecular structure of water we conclude that the interactions between silica
and water causes changes in the water structure, which again leads to changes in
the density and diffusive properties of water near the silica surface.

We also found that the actual geometry and structure of the pore or fracture
had little to no effect on the properties of water in the systems we studied, with
the only real deviation from this was found in a 14.4 Å wide fracture, which had
some differences in diffusion and structure near the silica matrix compared to the
other systems.

Acknowledgements
This master thesis was written at the University of Oslo, with supervision from
Professors Anders Malthe-Sørenssen and Morten Hjort-Jensen, finishing in June
2014.

I initially started my master studies with the goal of doing experimental studies
of semiconductors and solar cells, but after attending Morten’s course in compu-
tational physics, and with some careful nudging from Anders Hafreager, I realized
that computational physics was a field that I found much more interesting. After
this discovery I quickly changed the direction of my master studies, and ended
up at the Computational Physics branch of the Physics department.

I want to thank Anders Malthe-Sørenssen for excellent guidance during my work,
and Morten Hjort-Jensen for his supervision. I also want to thank Mathilde
Kamperud, Anders Hafreager, Jørgen Trømborg, Camilla Kirkemo, Jørgen Høg-
berget, Kjetil Thøgersen, and all others at Computational Physics for many good
discussions and talks.

I would also like to thank the developers of Ovito[39], Inkscape[41] and Matplotlib
for creating such excellent software, for freely distributing the programs, and for
making the source code freely available using an open source software license.
These programs have been used for creating nearly all graphics and illustrations
presented in this thesis.

Lastly, I thank my wonderful wife Silje for keeping me motivated and energized
throughout my master studies, and for feeding me with cake.

Contents

Introduction to the thesis 1
Background and motivation . 1
Structure of the thesis . 2

I Molecular dynamics 3

Introduction 5

1 A simple molecular dynamics model 7
1.1 The main program . 7
1.2 Calculation of forces . 9

1.2.1 Newton’s third law . 10
1.3 Integration scheme . 11

1.3.1 Regular Verlet integration 12
1.3.2 Velocity Verlet . 13

1.4 Boundary conditions . 14
1.4.1 Minimum image convention 15

1.5 Optimization via force truncation 16
1.5.1 Cell lists . 17

1.6 Observables . 20
1.6.1 Temperature . 20
1.6.2 Pressure . 21

2 Ensembles 23
2.1 Berendsen thermostat . 23
2.2 Andersen thermostat . 24
2.3 Nosé-Hoover thermostat and Nosé-Hoover chains 25

2.3.1 Nosé-Hoover thermostat 25
2.3.2 Nosé-Hoover chains . 27

3 Molecular dynamics program used for simulations 29
3.1 Potential . 30

vii

viii Contents

3.2 Integrator . 32

II Fractures 33

Introduction 37

4 Fractals and fractures 39
4.1 Hurst exponent . 40

4.1.1 Rescaled range analysis . 40
4.2 Detrending moving average . 41

4.2.1 Detrending moving average in 2 dimensions 42
4.2.2 Validation . 44

5 Generating surfaces and fractures 47
5.1 Midpoint displacement methods 47
5.2 Successive random additions . 48

5.2.1 Infinite grids . 49
5.2.2 Finite size effects . 50
5.2.3 Implementation . 52
5.2.4 Validation . 53

5.3 Generating fractures from surfaces 54
5.3.1 Finding a point inside a tetrahedron 56

III Simulations 59

Introduction 61

6 Simulation procedure 63
6.1 Initialization . 63
6.2 Passivation . 65

6.2.1 Water chemistry . 65
6.2.2 Passivating using hydrogen and hydroxide 67
6.2.3 Counting number of bonds 68
6.2.4 Only passivating surface atoms 69
6.2.5 Passivation examples . 69

6.3 Injecting water . 71
6.3.1 Finding correct voxel size 71
6.3.2 Identifying the voxels that make up the void 72

7 Measurements 75
7.1 Distance to silica matrix . 75

7.1.1 Note on this method . 76

Contents ix

7.2 Voxelation . 77
7.2.1 Neighbor lists . 78
7.2.2 Finding distance to surface 79

7.3 Density . 83
7.4 Diffusion . 83
7.5 Tetrahedral order parameter . 85
7.6 Distance to nearest atom . 87
7.7 Manhattan distance to nearest atom 87

8 Studied systems 89
8.1 Visualizations . 91

9 Results 97
9.1 Density of water . 97
9.2 Diffusion . 102
9.3 Tetrahedral order parameter . 105
9.4 Distance to nearest atom . 111
9.5 Manhattan distance to nearest atom 111

10 Discussion, conclusions and future 115
10.1 Discussion . 115
10.2 Conclusions . 117
10.3 Future . 118

IV Appendices 121

A Verlet integrators 123
A.1 Deriving the Verlet algorithm using Taylor expansions 124

A.1.1 Velocity Verlet . 125
A.2 Deriving velocity Verlet using Liouville operator 126

A.2.1 Liouville operator . 126
A.2.2 Velocity Verlet . 127
A.2.3 Error in velocity Verlet . 128

B Nosé-Hoover thermostats 131

Introduction to the thesis

Background and motivation

The behaviour of water in nanoporous silica is important for many geological,
biological, physical and biomedical processes. We are able to produce nanoporous
silica with tuneable pore sizes, and the pore surfaces can be functionalized, which
can lead to a wide range of industrial applications, many of which we have yet
to discover, or the process behind is not fully understood. Examples of such
applications are filtration, catalysis, phase separation, medical delivery systems,
desalination of sea water, and CO2 capture and storage.

Experiments have shown that the behaviour of fluids confined in nanoscale pores
is different to that of bulk fluids. This is caused not only by the confinement
to a small volume, but also by the high ratio of surface area to pore volume.
There is evidence that water near surfaces can reach super-cooled states without
forming ice, and that the density and dynamics of water near surfaces is different
than that of bulk water. The detailed mechanisms for such behaviours are still
uncertain.

While there has been performed significant number of high-quality experimental
studies of the properties of water in nanoscale pores in the recent years, simu-
lational studies are still limited, and many of the simulational studies that have
been performed have been for small systems with limited dynamics. This makes
this a good area for application of large-scale modelling and simulation.

We choose to model the nanoporous system at an atomic scale, both because we
think that such a scale is appropriate for predicting the effects at nano-scales,
and because similar studies have been performed with good results. We choose to
use molecular dynamics to to the modelling, but an alternative method is direct
simulation Monte Carlo, which have shown equally promising results applied on
similar problems.

The goal of this master thesis is to do a numerical study of water trapped in
nanoscale pores in solid silica, using a well-constrained interatomic potential

1

2 Contents Chapter 0

that accurately predict the behaviour of both silica, water, and the interactions
between the two. The potential we use has been developed by researchers at
the University of Southern California, and the models have been well tested and
calibrated to experimental and other numerical studies.

To study water trapped in nanoporous silica we need to develop reproducable
methods for intializing realistic nanoporous silica, and methods for filling the
nanoscale pores with water. We want to study the structure, behaviour and
transport properties of water in silica, so we also need to find some appropriate
way of quantifying and analyzing the dynamic and structural properties of water
near the surface.

Structure of the thesis

We start with a description of the numerical methods we will use to study silica
and water. We then describe the methods we use for creating and initializing
the systems we want to simulate and do measurements on. We then prepare,
simulate, and do measurements on the systems. Finally we analyze the results,
compare the measurements against each other, and draw some conclusions.

Part I

Molecular dynamics

3

Introduction

In this chapter we will give an overview of how simulations of atomic systems
are done using molecular dynamics. We will show the theory that makes molec-
ular dynamics so efficient and powerful, and we will show how to build up and
implement a molecular dynamics program.

The program used for producing the results presented later in this thesis uses
a much more sophisticated program and model for the interactions between the
atoms than the one presented in chapters 1 and 2. We will nevertheless gain a
lot of insight into this program by starting with a a simpler case.

To do an exact study of a many-body atomic system like water and silica, we
have to take into account the quantum mechanical nature of the atoms and
molecules in the system. An oxygen molecule consists of 8 electrons, 8 protons
and 8 neutrons, all interacting with each other, and each with 3 translational
degrees of freedom. This makes doing calculations on something that might
appear simple, pretty complex if we want to do it properly. If we want to study
a system consisting of more than a couple of oxygen atoms we see that the
number of particles and degrees of freedom quickly makes the problem grow to
intractable proportions. Since we are mainly interested in the equilibrium and
transport properties of the system, we can reduce the problem to something we
can handle by using results from underlying quantum mechanical calculations,
and experimental studies, to develop approximate models of the system. We do
this by assuming that the many-body system behaves clasically, and model all
atoms as point particles. We further create potentials from quantum mechanical
results that approximate the exact forces between the atoms, and adjust the
parameters of these potentials to fit experimental and computational results.
These potentials only depend on the positions of the atoms we want to simulate,
which is orders of magnitude faster to evaluate than calculating the exact forces
between the atoms from quantum mechanical principles. We then solve Newton’s
equations of motion to evolve the system in time.

After presenting a simple molecular dynamics model we briefly mention some
methods for optimizing such a program, before we look at what we are able to

5

6 Chapter 0

study using a molecular dynamics simulation. We first look at how to measure
the temperature and pressure in a system, before we look at how to study dif-
ferent ensembles using so-called thermostats, which can control the temperature,
pressure, or other physical proterties of a system. We conclude part I with an
overview of the program used for producing the results presented later in this
thesis, which we use to model water, silica, and the interactions between the
two.

Chapter 1

A simple molecular dynamics
model

In molecular dynamics we study systems of many interacting atoms and molecules
by assuming that they behave classically, and solve Newton’s equations of motion
using an appropriate integration scheme to evolve the system in time. By assum-
ing that the atoms behave classically we mean that we model the atoms as point
particles, and characterize them using their position, r, velocity, v and the force
acting on them, F . The interactions between the atoms are described using po-
tentials. It is into these potentials we bake the physical insight of the systems we
want to simulate, which we often do by finding potentials using studies and simu-
lations of the underlying quantum mechanical nature of the interactions between
the atoms in the system, and also by comparing with results from experimental
studies.

1.1 The main program

Using a molecular dynamic simulations we can start from any initial state S0
and evolve this state in time. We can stop the simulations at any time, and
continue the simulations from any saved state. This is a powerful tool that can
for example be used to study different variations of a system, using the same
initial conditions.

Most molecular dynamics programs will follow a flow similar to the following
procedure:

• Initialize the system by setting up the initial positions and velocities for all
atoms. This is usually in one of two ways

7

8 A simple molecular dynamics model Chapter 1

• Load a saved state from a previous simulation
• Generate positions and velocities randomly, or following some rules

to control the physical properties of the system. When generating
random velocities we usually remove any net velocity, to avoid drift.

• For each timestep
• Calculate the forces between the atoms.
• Integrate Newton’s equations of motion, using an appropriate integra-

tion scheme.
• Sample the values of the quantities we want to study, and add to the

averages.
• After all timesteps have been finished we print out the measured quantities,

and we could also save the state of the system so we can continue from this
state later.

An example of a program that implements the above procedure can be seen in
listing 1.1.

System system = initializeSystem(parameters);
double time = 0.0; // initial time
double dt = 0.01; // timestep
for (double time = 0; time < tMax; time += dt) {

calculateForces(system);
integrateEquationsOfMotion(system, dt);
sample(system);

}

Listing 1.1: An example of a typical implementation of a molecular dynam-
ics program using object-oriented programming. See listings 1.2, 1.4 and 1.9
for examples of implementations of the functions calculateForces, integra-
teEquationsOfMotion, and sample.

When starting a new simulation we usually initialize the positions of the atoms by
putting them on a regular grid, like a face-centered cubic (fcc), a body-centered
cubic (bcc), or a simple cubic grid. The purpose of this is to not have any atoms
too close to each other, since we usually have a strong repulsive force when atoms
get close together, which would give very big forces. We also want to start with
the atoms in a state from which we are able to quickly get to the state we want
to study. If we for example want to study a liquid argon system, it is wise to
start in an unstable crystal state, by for example using a low density or high
temperature, so that the system would melt spontaneously when we start the
simulation.

Section 2 Calculation of forces 9

1.2 Calculation of forces

The forces are calculated from the derivatives of interatomic potentials, that
usually only depend on the positions of the atoms. The potentials are generally
of the form

U(r) =
∑
i<j

Uij(rij) +
∑
i<j<k

Uijk(ri, ri, rk) + . . . ,

where ri is the position of atom i, rij is the distance between atom i and j, Uij is
a two-particle potential depending only on the distance between two atoms, and
Uijk is a three-particle potential that usually also depends on the angle between
three atoms. Higher-order contributions to the forces are also sometimes used,
but these are very demanding to evaluate.

The potentials are often developed from quantum mechanical calculations, and
when doing this one has to weigh the benefits of having a complex potential
that models the interactions accurately, against having a less complex potential
that will be easier to implement, and faster to evaluate. The limiting factor
in any molecular dynamics calculation is the cost of doing simulations on high-
performance computing clusters (like Abel at UiO), but luckily it seems like the
progress in computational processing power still seems to almost follow Moore’s
Law[23], which states that the number of transistors on integrated circuits dou-
ble approximately every two years[29], effectively halving the cost of doing a
computation every two years.

In this example we will be using a potential first seen as early as 1924[20] called
the Lennard-Jones potential after its creator, who used to to study the noble gas
Argon. The potential is a two-particle potential with the following form

U(rij) = 4ε
[(

σ

r

)12

−
(
σ

r

)6
]

= ε

[(
rm
r

)12

− 2
(
rm
r

)6
]
, (1.1)

where σ is the distance between where the potential is zero (the equilibrium dis-
tance between the atoms), ε is related to the strength of the potential (the min-
imum value of the potential), and rm = 21/6σ is the interatomic distance where
the potential is at its minimum. The r−12-term is a repulsive term that describes
overlap of electron orbitals (Pauli repulsion) and the r6-term is an attractive term
that describes dipole-dipole interactions (van der Waals forces).

Even though the potential is simple, it describes many properties of noble gases
like Argon well, and its simplicity also means that the cost of calculating the
forces between atoms is low. For these reasons it has been used in a lot of
studies.

10 A simple molecular dynamics model Chapter 1

See fig. 1.1 for a plot of the potential using the parameters usually used for
simulating Argon[13], σ = 3.405 Å and ε = 0.010318 eV.

3.0 3.5 4.0 4.5 5.0 5.5
r [A]

-0.010

-0.005

0.000

0.005

0.010

0.015
U
(r
)
[eV

]

Plot of Lennard-Jones potential

rm

ε

Figure 1.1: Plot of the Lennard-Jones potential, as stated in eq. (1.1). Using
the parameters usually used for simulating Argon, σ = 3.405 Å and ε =
0.010318 eV[13].

1.2.1 Newton’s third law

When evaluating two-particle forces like the Lennard-Jones potential there is a
simple optimization that lets us halve the number of computations, by utilizing
Newton’s third law. We see that when evaluating U(rij), the force will have the
same magnitude if we switch particle i and j. This means that when we have
calculated the force Fij, from particle j on particle i, we know that the force on
atom j from particle i will have the same magnitude, and we can simply add
the opposite force to atom j, Fji = −Fij. This way we can skip half the force
calculations, and only have to calculate the forces between particle i and particles
j > i in the main force loop.

See listings 1.2 and 1.3 for an example of how to implement force calculation
using the Lennard-Jones potential, using this optimization.

If we are using higher-order potentials we can use the same optimization for
the two-particle terms of the potential, but it is a bit more complicated for
the terms depending on the positions of three or more particles, and the angles
between them, but there are still similar optimizations that can be done if we are
smart.

Section 3 Integration scheme 11

void calculateForces(System &system) {
const vector<Atom*> &atoms = system.atoms();
for (auto atom1 = atoms.begin(); atom1 != atoms.end(); ++atom1) {

// Use Newton’s third law to skip half the force calculations
for (auto atom2 = atom1.next(); atom2 != atoms.end(); ++atom2) {

vec3 force = calculateTwoParticleForce(*atom1, *atom2);

(*atom1)->force() += force;
(*atom2)->force() -= force; // Newton’s third law

}
}

}

Listing 1.2: Implementation of calculateForces from listing 1.1. See list-
ing 1.3 for example implementation of calculateTwoParticleForce.

vec3 calculateTwoParticleForce(Atom *atom1, Atom *atom2) {
vec3 drVec = atom1->position() - atom2->position();

double dr2 = drVec.lengthSquared();
double dr6 = dr2*dr2*dr2;

double LJforce = 24.0*(2.0 - dr6)/(dr6*dr6*dr2);
vec3 force = drVec*LJforce;

return force;
}

Listing 1.3: Implementation of calculateTwoParticleForce from listing 1.2,
using the Lennard-Jones potential.

1.3 Integration scheme

To integrate Newton’s equations of motion (time derivative denoted by a dot)

ṙ = v

F = −∇U(r(t)) = −∇U(t)

for the intermolecular potential U(r) there are a lot of different methods to
choose between, ranging from the simple forward Euler method first described
by Leonard Euler in 1768, to higher order “predictor-corrector” methods. The
integrator we use need to fullfil certain demands. Since the equations of motion
are reversible, so should our integration method be. We also want to be able
to use as large timesteps as possible, to save computation time. Lastly, and
perhaps most importantly, we want the energy of our system to be conserved, so
the long-term drift in energy should be small. We only need to be able to make

12 A simple molecular dynamics model Chapter 1

statistically correct predictions about the trajectories of the atoms, so predicting
the true trajectories of the atoms is not a priority as long as they are statistically
correct.

It turns out that a deceptively simple method first described by Loup Verlet in
1967[44] often satisfies our needs in an integrator, being both very accurate over
long simulation times, having a accumulated error in energy of the order O(∆t2)
(as shown in appendix A.2.3), and is time-reversible. This method also has the
advantage that it is numerically cheap, compared to higher-order methods. The
integration method is called Verlet integration.

1.3.1 Regular Verlet integration

The Verlet method has many variations, but the simplest form (the one used by
Verlet in [44]) has the form

r(t+ ∆t) ≈ 2r(t)− r(t−∆t) + a(t)∆t2, (1.2)

where ∆t is the timestep, and a(t) is the velocity at time t. This form of the
scheme has a truncation error in the position for one timestep of the order O(∆t4)
(see appendix A.1).

We see that the velocity is not explicitly calculated or used in this form of the
sceme, but if we need it for our experiments we can estimate the velocity using
a Taylor expansion around r(t±∆t), which gives

v(t) = r(t+ ∆t)− r(t−∆t)
2∆t ,

which has a truncation error for one timestep of the order O(∆t2) (see ap-
pendix A.1).

The implementation of the Verlet scheme is mostly straightforward, the only
thing we have to take care of is what happens in the first timestep. When
calculating the positions in the first step, r(0+∆t), we see from eq. (1.2) that we
need the positions from the previous step, r(0−∆t). These positions are usually
approximated using the initial velocity, as follows

r(0−∆t) = r(0)− v(0)∆t.

See listing 1.4 for an example of how to implement the Verlet integration scheme.

Section 3 Integration scheme 13

void integrateEquationsOfMotion(System &system, double dt) {
for (Atom *atom : system.atoms()) {

vec3 newPosition = 2.0*atom->position() - atom->oldPosition()
+ atom->force()*dt*dt;

atom->oldPosition() = atom->position();
atom->position() = newPosition;
atom->velocity() = (atom->position() - atom->oldPosition())

/(2.0*dt);
}

}

Listing 1.4: Implentation of integrateEquationsOfMotion from listing 1.1,
using regular Verlet integration.

1.3.2 Velocity Verlet

The most used form of the Velocity integration scheme is called the velocity
Verlet method[40], and it has the form

r(t+ ∆t) = r(t) + v(t)∆t+ a(t)∆t2
2 , (1.3)

v(t+ ∆t) = v(t) +
[
a(t) + a(t+ ∆t)

]∆t
2 , (1.4)

with the truncation error for one timestep ∆t being of the order O(∆t3) for both
the position and the velocity, and the accumulated error in energy being of the
order O(∆t2) (see appendices A.1 and A.2 for more information). It can be
shown that this form is equivalent to the regular Verlet method.

One advantage of this form compared to the regular Verlet method, is that it
is self-starting. In the regular Verlet algorithm we need r(t − ∆t) to compute
r(t + ∆t), which we do not have at t = 0. This means that we have to approxi-
mate r(−∆t) somehow. In the velocity form of the algorithm we only need the
positions, velocities and forces at time t to calculate r(t+ ∆).

The velocity Verlet algorithm is usually rewritten in the following way to optimize
implementation on a computer. The new velocities v(t + ∆t) can be written
as

v(t+ ∆t) = ṽ(t+ 1
2∆t) + a(t+ ∆t)∆t

2 , (1.5)

where

ṽ(t+ 1
2∆t) = v(t) + a(t)∆t

2 . (1.6)

14 A simple molecular dynamics model Chapter 1

We see that eq. (1.6) can be used in updating the positions, so we rewrite eq. (1.3)
to

r(t+ ∆t) = r(t) + ṽ(t+ 1
2∆t)∆t. (1.7)

Which leads us to the usual way of implementing the algorithm[3]:

• Calculate the velocities at t+ 1
2∆t using eq. (1.6) (repeated here)

ṽ(t+ 1
2∆t) = v(t) + F (t)

m

∆t
2 .

• Calculate the new positions at t+ ∆t using eq. (1.7) (repeated here)

r(t+ ∆t) = r(t) + ṽ(t+ 1
2∆t)∆t.

• Calculate the new forces F (t+ ∆t).

• Calculate the new velocities at t+ ∆t using eq. (1.5) (repeated here)

v(t+ ∆t) = v(t+ 1
2∆t) + F (t+ ∆t)

m

∆t
2 .

This implementation minimizes the memory needs, as we only need to store one
copy of r, v and F at all times, compared to implementing eqs. (1.3) and (1.4)
which needs to store the values of both F (t) and F (t+ ∆) to calculate the new
velocities. Memory is usually abundant these days though, so this is not really
an issue. It can also be shown that this implementation leads to less floating
point truncations[13].

1.4 Boundary conditions

In theory we now have a working molecular dynamics program by combining
listings 1.1 to 1.4. But if we start our simulations we will quicly see that the
particles will start spreading out into space, since we have not implemented any
kind of boundary conditions. The particles that are on the surface of our initial
system will feel very different forces than the ones in the center, and will most
likely not behave as intended. To remedy this we usually apply periodic boundary
conditions. This means that we repeat the simulation box at the boundaries of
the system, so that the atoms near the boundaries feel forces from atoms on
the opposite side of the system, and in an uniform system all atoms will have a
bulk-like environment.

Section 4 Boundary conditions 15

Atom n has what we call an image in all other neighboring simulation boxes,
created by the periodic boundaries. The position of the images of atom n can be
calculated using

rijkn = rl + (iLx, jLy, kLz), (1.8)

where (Lx, Ly, Lz) is the dimensions of the simulation box, and (i, j, k) is the
index of the neighbor box. We usually choose box (0, 0, 0) as our “origin” box,
with the corner of the box in the point (0, 0, 0). In reality we still have the same
number of atoms, but the atoms on near the boundaries of the simulation box
will now feel forces from the atoms on the opposite side of the box, from the
images of the atoms on the opposite side of the box.

The first thing we have to do to implement periodic boundary conditions is to
check if any atoms have moved outside the boundaries of the system after each
timestep, after updating the positions of the atoms. If they have moved outside
the boundaries of the system we see from eq. (1.8) that we can translate them
back into the system by adding or subtracting an appropriate number of system
sizes Li from the coordinates that are outside the box. If the boundaries of our
system are xi ∈ [0, Li], with r = (x1, x2, x3), we can translate atomic positions
outside the boundaries to the correct positions inside the boundaries by using
the modulo operator. By finding the remainder of dividing the coordinates of an
atom with the system size, we get back the position of the atom translated back
inside the boundaries, as follows

x000
i = xijki mod Li.

When implementing this we have to be wary of what happens if we have negative
coordinates, as the modulo with negative number has different implementations
in different programming languages. To avoid this problem we usually just add
one system size to each coordinate before using the modulo operator, to ensure
that the coordinates are positive. In doing this we assume that no atoms have
moved more than one system size in negative direction, but if the timestep in the
simulations is set correctly, atoms should never move as far as one system size in
any direction in just one timestep.

1.4.1 Minimum image convention

A consequence of using periodic boundary conditions is that each atom now feels
the force from an infinite number of atoms. To avoid having to do an infinite
number of evaluations of the potential we implement something called the min-
imum image convention. This implies that we only calculate the force between
atom n and the nearest image of each atom m, effectively limiting the potential

16 A simple molecular dynamics model Chapter 1

to half the size of the system in each direction. When doing this truncation and
simulating “bulk” or “infinte” systems, we do an approximation that might have
some consequences in some cases, but this is rarely a problem. See [3, Section
1.5] for a discussion on this matter.

To find the distance between atom n and the closest image of atom m we can
calculate the distance between n and any image of m, rnm, and then check if
any of the components of this vector is larger than half the system size in that
direction. If a component is larger than half the system size, we subtract (a
whole) system size to get the correct distance. See listing 1.5 for an example of
a function that finds the distance between a point u and the closest image of a
point v using the minimum image convention.

double calculateDistanceSquaredUsingMinimumImageConvention(
const vec3 &u, const vec3 &v,
const vec3 &systemSize, const vec3 &halfSystemSize) {

vec3 dr = u - v;
for (int dim = 0; dim < 3; dim++) {

if (dr[dim] >= halfSystemSize[dim]) dr -= systemSize[dim];
else if (dr[dim] < -halfSystemSize[dim]) dr += systemSize[dim];

}
return dr.lengthSquared(); // Avoid calculating

√
dr2, return dr2 instead

}

Listing 1.5: An example of how to find the distance between two points u and
v in a periodic system of size systemSize using the minimum image convention.
We calculate the distance squared to avoid taking the square root, since this
is a slow operation.

1.5 Optimization via force truncation

If we try to simulate systems with a lot of atoms using the program we now have
developed, we see that the number of evaluations of the potential quickly grow
with the number of atoms, scaling as O(N2). To optimize the program we can
limit the number of evaluations by realizing that the Lennard-Jones potential
decays as r−12, meaning that the force between most atoms will be neglible (see
fig. 1.1 for a plot of the potential).

Using the parameters for Argon, we find from eq. (1.1) that the equilibrium
distance of the potential is req = 21/6σ ≈ 3.8 Å. We also find that the value of
the potential has decreased to 21% of the equilibrium value at a distance rij = 5.5
Å, and to 0.5% of the equilibrium value at a distance rij = 3σ ≈ 10.2 Å. From
this we decide to truncate the potential at a cutoff distance rcutoff = 3σ.

Section 5 Optimization via force truncation 17

The naive implementation of this cutoff length is to do a test inside the force
calculation (for example in calculateForces in listing 1.2) and see if the distance
between atom i and j is greater than the cutoff distance, rij > rcutoff. This
approach this still requires the calculation of a lot of interatomic distances, so
what we do instead is to implement so-called cell-lists.

1.5.1 Cell lists

To truncate the force using cell-lists we divide the system into (3d) cells (or
boxes) of size

l = L/n,

where n is the number of cells in a direction. We can calculate the number of
cells from the cutoff length rcutoff using the floor function bxc as follows

n = bL/rcutoffc.

Using the floor function guarantees that l ≥ rcutoff.

The truncation is now done by only calculating the force between atom i and all
atoms in the cell it belongs to, and between it all atoms in the 26 neighboring
cells. Since l ≥ rcutoff, this means that we include all atoms within a distance of
at least rcutoff in the force calculations. See fig. 1.2 for a 2-dimensional illustration
of this.

r ≥ rcutoff

Atom i

Cell (i, j)

Figure 1.2: An illustration of cell lists in 2 dimensions. We truncate the
potential at rcutoff by only calculating the force between atom i and all atoms
in the cell of that atom, and between that atom and all atoms in the 8 neighbor
cells (26 neighbor cells in 3 dimensions).

One issue that arises when using the cell lists is how to utilize Newton’s third law.
We see that after calculating the force between all atoms in cell (i, j, k) and all

18 A simple molecular dynamics model Chapter 1

atoms in the 26 neighboring cells, while adding the calculated forces to the other
atoms using Newton’s third law, we must not include that cell (cell (i, j, k)) in
any other force calculations this timestep, or else we will get double contributions
from atoms in that cell. One simple way of solving this is to keep a list of all
cells we have calculated the forces on (and from) so far, and then check against
that list every time we are calculating the force from a neighbor cell. But if we
loop through the cells in the same order every time, we see that it would perhaps
be more efficent to make a list over neighbor cells for each cell, so that we can
just loop through a list of neighbors. The time spent on this in the simulations
is nevertheless neglible compared to the evaluations of the potential.

An implementation of the calculation of forces using cell lists can be seen in
listings 1.6 to 1.8. In these examples we do not use Newton’s third law for
optimization, to shorten the code and make the example simpler.

void calculateForces(System &system) {
ivec3 nCells;
vector<Atom*> cells =

sortAtomsIntoCells(system, cutoffLength, nCells);

// Loop over all cells
for (int i = 0; i < nCells[0]; i ++)
for (int j = 0; j < nCells[1]; j ++)
for (int k = 0; k < nCells[2]; k ++)
{{{

for (Atom *atom : cells[i][j][k]) {
atom->force() +=

calculateForceFromNeighborCells(
cells, nCells, atom, i, j, k

);
}

}}}
}

Listing 1.6: An example of an implementation of the force calculation cal-
culateForces from listing 1.1, using the Lennard-Jones potential with a cutoff
length for the force, and cell lists. Notice that we do not use Newton’s third
law, to simplify the example.

When implementing cell-lists we see that we need to have accurate lists of the
atoms in each cell. But if we realize that the atoms rarely move very far in one
timestep, we see that we can get away with only updating the cell-lists every
other timestep. How often we need update the lists depends on the temperature
(the average velocity of the atoms) and the timestep.

Section 6 Optimization via force truncation 19

vector<Atom*> sortAtomsIntoCells(
System &system, double cutoffLength, ivec3 &nCells) {

nCells = floor(system.size() / cutoffLength);
ivec3 boxSize = system.size() / vec3(nCells);

vector<Atom*> cells;
for (Atom *atom : system.atoms()) {

ivec3 index = floor(atom->position() / boxSize);
cells[index[0]][index[1]][index[2]].push_back(atom);

}
return cells;

}

Listing 1.7: An example of an implementation of sortAtomsIntoCells from
listing 1.6. This listing shows how to sort atoms into cells for the cell list
optimization described in section 1.5.

vec3 calculateForceFromNeighborCells(
vector<Atom*> &cells, ivec3 &nCells, Atom *atom1,
int i1, int j1, int k1) {

vec3 force = zeros<vec3>();
// Loop over 27 neighbor cells (including self)
for (int di = -1; di <= 1; di++)
for (int dj = -1; dj <= 1; dj++)
for (int dk = -1; dk <= 1; dk++)
{{{

// Periodic boundary conditions
int i2 = (i1 + di + nCells[0]) % nCells[0];
int j2 = (j1 + dj + nCells[1]) % nCells[1];
int k2 = (k1 + dk + nCells[2]) % nCells[2];

// Loop over atoms in neighbor cell
for (Atom *atom2 : cells[i2][j2][k2]) {

if (atom1 == atom2) continue; // Skip i == j
force() += calculateForceBetweenTwoAtoms(atom1, atom2);

}
}}}
return force;

}

Listing 1.8: An example of an implementation of calculateForceFromNeigh-
borCells from listing 1.6. This listing shows how to calculate the force on an
atom (atom1), from the atoms in the cell it belongs to (cells[i1][j1][k1]),
and from the atoms in all 26 neighbor cells.

20 A simple molecular dynamics model Chapter 1

1.6 Observables

We are now ready to start doing some simple simulations, and observe some
properties of the system. One of the most basic statistics we can observe we is
the temperature and pressure in a system, and we use results from statistical me-
chanics to justify that we can simply take the average over all atoms to calculate
these observables.

An example of a function that samples statistics for the observables can be seen in
listing 1.9 (note that diffusionSample will be defined later, in listing 7.5).

void sample(System &system) {
double temperature = temperatureSample(system);
double pressure = pressureSample(system, temperature);
double rSquared = diffusionSample(system);

}

Listing 1.9: Implementation of the function sample from listing 1.1. See
listing 1.10, listing 1.11, and listing 7.5 for example implementation of the
functions used.

1.6.1 Temperature

According to the equipartition principle the average total kinetic energy, for a
system consisting ofN particles with three degrees of freedom each, can be related
to the temperature of the system via

〈Ek〉 = 3
2NkBT,

where T is the temperature of the system, and kB is the Boltzmann constant.
We calculate the average kinetic energy of a system using

〈Ek〉 = 1
N

N∑
i=1

1
2miv

2
i ,

where mi and vi = |vi| is respectively the mass and speed of atom i. From this
we find the temperature of the system as

T = 2
3
〈Ek〉
NkB

= 1
3N2kB

N∑
i=1

miv
2
i .

See listing 1.10 for an example of how to calculate the temperature in a molecular
dynamics simulation.

Section 6 Observables 21

double temperatureSample(System &system) {
double kineticEnergy = 0.0;
for (Atom *atom : system.atoms()) {

kineticEnergy += atom->velocity().lenghtSquared();
}

kineticEnergy *= 0.5;
double temperature = 2.0*kineticEnergy/(3.0*system.nAtoms()

*boltzmannConstant); // SI units
return temperature;

}

Listing 1.10: An example of how to calculate the temperature in a molecular
dynamics simulation. Example implementation of temperatureSample from
listing 1.9.

1.6.2 Pressure

To measure the pressure when using potentials with pairwise additive interac-
tions, like the case is for our example program with the Lennard-Jones potential,
we can use a method derived from the virial equation for the pressure[13, Sec-
tion 4.4]. In a volume V with particle density ρ = N/V , the average pressure
is

P = pkBT + 1
dV

〈∑
i<j

F (rij) · rij

〉
, (1.9)

where F (rij) is the force between particle i and j, and rij is the distance between
the particles. Note that this expression for the pressure has been derived for a
system at constant N , V and T , whereas our simulations are performed at a
constant N , V , and energy E.

We see that we need the force from each atom j on atom i, F (rij) to calculate the
pressure, so for efficiency we should calculate the contribution to the pressure,
F (rij) · rij, while doing the force calculations. The contribution to the pressure
should then be stored so we can calculate the average in eq. (1.9) later.

An example of how to calculate the pressure in a molecular dynamics similation
can be seen in listing 1.11.

22 A simple molecular dynamics model Chapter 1

double pressureSample(System &system, double temperature) {
double pressure;
for (Atom *atom : system.atoms()) {

pressure += atom->pressure();
}
pressure /= (3.0*system.volume());
double density = system.nAtoms()/system.volume(); // Assume homogeneous
pressure += density*boltzmannConstant*temperature; // SI units
return pressure;

}

Listing 1.11: An example of how to calculate the pressure in a molecular
dynamics simulation. Example implementation of pressureSample from list-
ing 1.9. Note that this function needs the temperature of the system as input,
and assumes that the system is homogeneous, so we can estimate the density
using ρ = N/V . We assume that the contribution to the pressure from each
atom

∑
i<j F (rij) · rij (stored as atom->pressure()) has been calculated pre-

viously. This is usually calculated while calculating the forces between the
atoms, since we need F (rij). See section 1.6.2 for more information.

Chapter 2

Ensembles

We have now developed a molecular dynamics program that simulates simple
systems like Argon, with constant number of particles N , constant volume V
and constant energy E, which means that the system can not exchange particles
or energy with the environment. This forms a statistical ensemble called the
microcanonical ensemble or the NV E-ensemble, which has some implications for
what we can simulate and measure. Other ensembles that might be of interest
is the canonical ensemble (constant N , V and temperature T) and the grand
canonical ensemble (constant N , pressure P , and temperature T).

The most often studied ensemble other than the microcanonical is the canonical,
with constant temperature instead of energy. To study this we need a way of
controlling the temperature of the system, which is usually done by using a
thermostat. A thermostat simulates the system being in contact with a heat
bath with temperature Tbath. The temperature is defined via the kinetic energy
of the system, so we know we have to somehow control and modify the velocities
of the atoms in the system to control the temperature.

2.1 Berendsen thermostat

Perhaps the simplest example of a thermostat is the Berendsen thermostat[4],
which rescales all velocities by multiplying them with a factor γ

γ =

√
1 + ∆t

τ

(
Tbath
T
− 1
)
,

where ∆t is the timestep used in the simulations, τ controls the strength of the
thermostat, T is the temperature of the system and Tbath is the temperature

23

24 Ensembles Chapter 2

of the simulated heat bath. Setting τ = ∆t makes the thermostat change the
temperature of the system so it is exactly equal to Tbath. The velocities can either
be multiplied by this factor every timestep, or every n-th timestep. An example
of how to apply the Berendsen thermostat can be seen in listing 2.1.

void applyBerendsenThermostat(System &system, double T, double Tbath,
double dt, double tau) {

double gamma = sqrt(1 + dt/tau(Tbath/T - 1));
for (Atom *atom : system.atoms())

atom->velocity() *= gamma;
}

}

Listing 2.1: Example of how to implement the Berendsen thermostat.

The Berendsen thermostat is very good at controlling and changing the temper-
ature of a system, but it does not sample the canonical ensemble very well. This
is because we change the velocity of all atoms at every n-th timestep, which is
not physically realistic. This means that we should not use this thermostat when
trying to sample the canonical ensemble, but we often use it to heat up or cool
down a system, to reach a wanted temperature.

Many thermostats similar to the Berendsen thermostat exist but they all suf-
fer from the fact that they scale the velocity of all particles, giving unphysical
behaviour.

2.2 Andersen thermostat

The Andersen thermostat is a more physically realistic thermostat, which sim-
ulates hard collisions between atoms in the system and atoms in the heat bath.
We do not actually simulate any extra particles, but we we assign new random
velocities to a random fraction of the atoms, the fraction and magnitude of the
velocity determined by the strength of the thermostat and the temperature of
the thermostat.

This thermostat uses the following procedure

• For each atom generate a uniform random number u in the interval [0, 1].

• If this random number is less than ∆t/τ ,

u <
∆t
τ
,

Section 3 Nosé-Hoover thermostat and Nosé-Hoover chains 25

we assign the atom a new, normally distributed velocity with standard
deviation

σv =
√
kBTbath
m

.

In this thermostat τ can be seen as a collision time, and τ should have about the
same value as in the Berendsen thermostat.

The Andersen thermostat samples the canonical ensemble well, but disturbs the
dynamics of for example lattice vibrations. We should avoid using this thermostat
when measuring properties directly connected to the movement of each particle,
for example diffusion, since we so abruptly change the velocity and trajectory of
the particles.

2.3 Nosé-Hoover thermostat and Nosé-Hoover
chains

The Nosé-Hoover thermostat is an advanced thermostat that generates a correct
canonical ensemble and give very accurate dynamics[13, section 6.1]. The effect
of applying Nosé-Hoover type thermostats it that we get an additional friction-
term to the forces on the atoms, instead of directly changing the velocities as
with the Andersen and Berendsen thermostats.

2.3.1 Nosé-Hoover thermostat

The simplest form of the Nosé-Hoover type thermostats is the Nosé-Hoover ther-
mostat. This introduces a thermodynamic friction coefficient ξ in the equations
of motion, and we get the following equations of motion (the time derivative
noted by a dot)

ṙ = v (2.1)
F = −∇U(r)− ξmv, (2.2)

where the friction coefficient generally depends on time, ξ = ξ(t), and the choice
of ξ(t) determines the characteristics of the thermostat. See appendix B for a
derivation of this.

If we try to integrate these equations of motion using our integrator of choice,
the velocity Verlet algorithm, a problem with using this thermostat will become

26 Ensembles Chapter 2

apparent. The velocity Verlet integrator has the followin form (from eqs. (1.3)
and (1.4))

r(t+ ∆t) = r(t) + v(t)∆t+ a(t)∆t2
2

v(t+ ∆t) = v(t) +
[
a(t) + a(t+ ∆t)

]∆t
2 .

If we insert eq. (2.2) into these equations (using F = ma) we get

r(t+ ∆t) = r(t) + v(t)∆t+
[
−∇U(t)

m
− ξ(t)v(t)

]
∆t2
2

v(t+ ∆t) = v(t) +
[
− ∇U(t)

m
− ξ(t)v(t)

− ∇U(t+ ∆t)
m

− ξ(t+ ∆t)v(t+ ∆t)
]

∆t
2 ,

where U(r(t)) = U(t). The problem is now apparent: to calcuate v(t + ∆t)
we need to already know v(t + ∆), which turns the integrator into a implicit
integrator. For this reason the Nosé-Hoover thermostat can be implemented
using a predictor-corrector scheme, or solved iteratively[13, Appendix E.2]. This
has the disadvantage that the solution is no longer time reversible. A solution
to this has been proposed by Martyna et al. in [28], where they develop a set
of explicit reversible integrators using the Louiville approach for this type of
extended systems, similar to the way we derive the velocity Verlet algorithm in
appendix A.2.

Choice of ξ

In the so-called Nosé-Hoover thermostat the choice of ξ is

ξ = sps
Q
, (2.3)

and the time-evolution of ξ is described by

ξ̇ =

 N∑
i=1

p2
i

mi

− 3NkBT

 /Q. (2.4)

Here s is a degree of freedom introduced to the Lagrangian and Hamiltonian of
the system, ps is the momentum associated with s, and Q the “mass” associated
with s. Q controls the coupling to the heat bath, and has to be chosen with care.
A large value for Q leads to a weak coupling.

An important result derived by Hoover in [16] is that this choice of ξ (eqs. (2.3)
and (2.4)) is the only choice that can lead to a canonical distribution.

Section 3 Nosé-Hoover thermostat and Nosé-Hoover chains 27

2.3.2 Nosé-Hoover chains

It can be shown that the Nosé-Hoover thermostat (eqs. (2.3) and (2.4)) only
generates a correct canonical distribution for molecular systems in which there are
no external forces, and the center of mass remains fixed [13, Appendix B.2.1][15].
The last condition can be obeyed if we initialize the system with a net zero
center-of-mass velocity, which we usually do in our simulations to avoid drift. If
we want to simulate systems with an external force, for example to introduce
flow, or a system where the center off mass is not fixed, we can use what is called
Nosé-Hoover chains, as proposed by Martyna et al.[27].

Nosé-Hoover chains is a scheme where we use a Nosé-Hoover thermostat which
is coupled to another thermostat, or a whole chain of thermostats. In the Nosé-
Hoover chains thermostat[27] we get the following equations of motion

ṙ = v

F = −∇U(r)− pξ,1
Q1

mv,

which we see have a similar form to the equations we get when using a regular
Nosé-Hoover thermostat (eqs. (2.1) and (2.2)), with a friction term vpξ,1/Q1
added to the force on the atoms. The equations of motion for the thermostats,
with M coupled thermostats, are

ξ̇k = pξ,k
Qk

for k = 1, . . . ,M

˙pξ,1 =

∑
i

p2
i

mi

− 3NkBT

− pξ,2
Q2

pξ,1

˙pξ,k =
[
p2
ξk−1

Qk−1
− kBT

]
− pξ,k+1

Qk+1
pξ,k

˙pξ,M =
[
p2
ξM−1

QM−1
− kBT

]
.

As with the Nosé-Hoover thermostat, the regular velocity Verlet integrator can
not be used with this thermostat, but a derivation of an integrator for these
equations of motion can be seen in [13, Appendix E.2.1] and [28], where they
again use the Liouville approach similar to the one we used to derive the velocity
Verlet integrator in appendix A.2.

The Nosé-Hoover chains thermostat will generate a canonical distribution even in
a system with external forces, and center of mass that is not fixed[13, Appendix
B.2.2], and will for example work well in a simulation where we introduce flow
by some external force.

Chapter 3

Molecular dynamics program
used for simulations

To study an advanced system like silica and water we need a more advanced
potential than the Lennard-Jones potential. We know water likes to have a cer-
tain H-O-H angle, and that water molecules have strong hydrogen bonds between
them that make water have some unique properties. Similarly we know that silica
usually appears in tetrahedral structures, with certain Si-O-Si angles more stable
than others. To simulate the forces that make structures like that appear we need
to use something more advanced than a diatomic potential Lennard-Jones, so we
use a higher order potential. We would also like to be able to simulate chemical
reactions like transfer of oxygen atoms from silica to water, which requires further
modifications of the simulations.

The potential implemented in the program we use in this thesis has been devel-
oped at the University of Southern California (USC) by P. Vashishta, Rajiv K.
Kalia, José P. Rino and Ingvar Ebbsjö[43] (see also[37, 38]). The potential con-
tains two-body and three-body terms, and allows oxygen atoms to be transferred
between silica and water. See section 3.1 for more details on the potential.

The potential is implemented in a FORTRAN 77 program, which has been parallel-
lized and highly optimized for running on high-performance computing clusters
like Abel. The program is unfortunately closed-source, and we are not allowed
to distribute this openly.

The program implements both the fast and simple Berendsen thermostat and
the more sophisticated Nosé-Hoover chains thermostat to simulate the NPT -
ensemble, and a thermostat for the NPT ensemble. It also implements so-called
variable time-step integrators, which saves CPU-time when we have silica and
water in the same system. See section 3.2 for more information about this.

29

30 Molecular dynamics program used for simulations Chapter 3

An article where the program has been used to study silica and water can be
seen in[37], where they do simulations of systems with 1 billion atoms. See also
the supplements to the article[38].

3.1 Potential

The interatomic potential[43] we use for for both silica and water consists of a
two-body and a three-body part, and has the form

Etot =
∑
i<j

V
(2)
ij (rij) +

∑
i<j<k

V
(3)
ijk (rij, rij),

for

1 ≤ {i, j, k} ≤ N.

V
(2)
ij is the two-body term, which consists of four terms that take into account

steric repulsion, charge-charge (Coulomb), charge-dipole, and dipole-dipole (van
der Waals) interactions. The two-body term only depends on the interatomic
distance between atom i and j, |rij| = rij = r, and it has the form

V
(2)
ij (r) = Hij

rηij︸︷︷︸
steric repulsion

+ ZiZj
r

e−r/r1s︸ ︷︷ ︸
Coulomb

− Dij

2r4 e
−r/r4s︸ ︷︷ ︸

charge-dipole

− wij
r6︸︷︷︸

van der Waals

,

where the parameters are

Steric repulsion

• Hij controls the strength of the steric repulsion

• ηij is the strength/exponent of the steric repulsion

Charge-charge (Coulomb) interaction

• Zi is the charge associated with atom i

• r1s is the screening length for the interaction

Charge-dipole interaction

• Dij controls the strength of the interaction

• r4s is the screening length for the interaction

Dipole-dipole (van der Waals) interaction

Section 2 Potential 31

• wij controls the strength of the interaction

• r4s is the screening length for the interaction

V
(3)
ijk is the three-body term, which take into account bending and stretching of

covalent bonds. This term depends on the distances between atom i, j and k,
and also the angle θijk between the atoms. The term has the form

V
(3)
jik (rij, rik) = Bijk exp

(
ξ

rij − r0
+ ξ

rij − r0

)
︸ ︷︷ ︸

bond-stretching

(
cos θijk − cos θ0

)2

1 + Cijk
(
cos θijk − cos θ0

)2︸ ︷︷ ︸
bond-bending

,

for

{rij, rik} ≤ r0.

The parameters of the three-body term are as follows

• Bijk controls the strength of the three-body interaction

Bond-stretching

• ξ controls the strength of the bond-stretching

• r0 is the cutoff distance for the three-body interaction

Bond-bending

• Cijk controls the strength of the bond-bending

• θijk is the angle between rij and rik

• θ0 is the angle at which the three-body term vanishes

The parameters used in our simulations were chosen by first determing good pa-
rameters for pure water and silica independently, and then interpolating between
these parameters to allow transfer of oxygen atoms between silica and water. See
for example [43] for more details on this. The actual details of how oxygen is
transferred between silica and water is based on the number of silicon and hy-
drogen neighbors an oxygen atom has, but the details of this method is outside
the scope of this thesis.

The potential is further optimized by linearizing it, meaning that the potential is
calculated for example for different distances rij and angles θijk when the program
starts, and then the forces can be looked up directly in a table without having
to evaluate the potential, when we run the simulations.

32 Molecular dynamics program used for simulations Chapter 3

3.2 Integrator

The program implements the Nosé-Hoover thermostat described in section 2.3.2
to sample the microcanonical ensemble, using a reversible multiple time-scale in-
tegrator derived using the Trotter factorization of the Liouville propagator[42], in
a similar way to the way we derive the velocity Verlet algorithm in appendix A.2.
The program also has a reversible integrator for NVT (canonical) and NPT
(isothermal–isobaric) ensembles[28] derived in a similar way.

See fig. 3.1 for a plot of the energy over 100 000 timesteps. We see that the
energy is very well conserved, with a relative increase in energy of just 2e-6 over
100 000 timesteps.

500 520 540 560 580

Timesteps [1000]

-3

-2

-1

0

1

2

3

R
el
at
iv
e
en

er
gy

di
ffe

re
nc

e

1e-6

Figure 3.1: Plot of the relative energy change in a molecular dynamics sim-
ulation of water in nanoporous silica, with a total of approximately 400 000
atoms, 111k SiO2 units and 19k H2O-units. Simulations were done in the
NV E-ensemble, and we have plotted 100 000 timesteps of 0.050 picoseconds.

The multiple time-scale integrator utilizes the fact that the vibrational frequen-
cies in water is much higher than the frequencies of silica, which means that we
can use larger timesteps to integrate the motions of the silica molecules than
the water molecules. When using the program we use timesteps that are cal-
culated from these vibrational frequencies, to make sure we have small enough
timesteps. We used a main timestep of approximately 0.050 picoseconds in all
simulations.

Part II

Fractures

33

Figure 3.2: A randomly generated fracture.

Introduction

We want to study the behaviour of water trapped in nanoscale pores and fractures
in silica, so need a way to generate and characterize such structures. We choose
to model a fracture as two surfaces, with the volume between the surfaces as the
void fraction. This makes it easier to make fractures, since we only need to create
two surfaces to get a fracture.

To generate realistic surfaces we could have used scans of the structures we want
to simulate, but the problem with this approach is that the resulting fracture will
depend a lot on how we interpret the image, and that we can not easily generate
a lot of samples of surfaces. To avoid this we use fractals to describe surfaces, and
use this to randomly generate surfaces and fractures that are statistically similar
to real fractures. Like a lot of phenomena in nature, fractures and surfaces can
be very well described by the theory of fractals[24], so we think that this method
should give good results.

What makes a fractal fractal, or what characterizes a fractal, does not have a
rigorous definition, but in general a fractal is something that looks similar to
itself at different length scales. A fractal might be identical to itself at different
length-scales (self-similar), or be statistically similar to itself (statistically self-
similar).

37

Chapter 4

Fractals and fractures

To generate a fractal surface we use fractional Brownian motion (fBm), intro-
duced by Mandelbrot and van Ness in 1968[26]. Fractional Brownian motion is a
generalization of Brownian motion, which is the random motion of particles sus-
pended in a fluid, which comes from their collisions with the atoms and molecules
in the fluid.

Fractional Brownian motion is a process that generates data that is fractal, in the
sense that it is self-similar. The data generated by this process can be character-
ized by a parameter denoted H, often called the Hurst exponent. H is related to
the autocorrelation of a data set, and is a number between 0 and 1. It has been
shown that fractures and other phenomena in nature have a Hurst exponent of
around 0.75, for over eleven decades of length scales[32], so we will try to generate
fractures with this Hurst exponent for our simulations.

Samples of fBm with different Hurst parameters will differ in what can quantita-
tively be called the “roughness” or the “randomness” of the data, as can be seen
in fig. 4.1, where we have plotted some samples of fBm with different Hurst ex-
ponents. We see that a low Hurst exponent leads leads to very rough or random
data, and a high exponent to smoother data.

The Hurst exponent and the use of it as a means of characterizing a dataset
was developed in the field of hydrology, as seen in [17, 18], where it was used
to determine the optimal dam sizing for the Nile river’s, by studying the large
fluctuations in the flow rate of the river, which there are extensive records of.
The exponent is denoted H in honor of both Harold Hurst, who was the lead
researcher in these studies, and in honor of Otto Hölder.

39

40 Fractals and fractures Chapter 4

25 50 75

-6

-3

0

3

6

H ≈ 0.50

25 50 75
-40

-20

0

20

H ≈ 1.00

-4

0

4

8

H ≈ 0.00 -6

-3

0

3

6

H ≈ 0.25

fBm, Hurst exponent

n

fB
m

Figure 4.1: Samples of fractional Brownian motion (fBm) with different
Hurst exponents, generated using the built-in Matlab function wfbm, which
uses uses a wavelet-based synthesis method[1] for generating fBm.

4.1 Hurst exponent

One of the earliest methods for measuring the Hurst exponent is a statistical
method developed by Hurst in his studies of the Nile river[18][17]. This method
is called rescaled range analysis and was designed for use on 1-dimensional time
series. The method has been generalized to higher dimensions[9], but the original
1-dimensional form is shown here.

4.1.1 Rescaled range analysis

We have a 1-dimensional time series f(t). The time series is first divided into
intervals of length τ . The average over each interval of length τ is

〈f〉τ = 1
τ

τ∑
t=1

f(t).

Section 2 Detrending moving average 41

We let F be the accumulated deviation from the mean

F (t, τ) =
t∑

t′=1

(
f(t′)− 〈f〉τ

)
.

The difference between the maximum and minimum of the accumulated deviation
from the mean is the range R

R(τ) = max
1≤t≤τ

(
F (t, τ)

)
− min

1≤t≤τ

(
F (t, τ)

)
.

The standard deviation S of the time series is estimated using

S2 = 1
τ

τ∑
t=1

(
f(t)− 〈f〉τ

)2
.

Hurst found that the observed rescaled range, R/S, for many time series is de-
scribed by the empirical relation[10]

R

S
=
(
τ

2

)H
∼ τH .

We now see that we can estimate the Hurst exponent by a linear fit of the
form

log
(
R

S

)
∼ H log τ,

where we find H as the slope of the linear fit.

4.2 Detrending moving average

Estimating the Hurst exponent of a surface is not trivial, so to measure this
we use a method called detrending moving average (DMA), developed for 1-
dimensional data by E. Alessio, A. Carbone et al.[2], and later generalized to
higher dimensions by A. Carbone [6].

After trying out some different methods for estimating the Hurst exponent, we
ended up choosing this method both because it is easy to understand and imple-
ment, and because it has been shown to give good results, as we will also confirm
later. A more detailed comparison of different methods for estimating the Hurst
exponent can be seen in [36], where they find that DMA and DFA (detrended
fluctuation analysis) overall perform better than FA (fluctuation analysis), also
being less sensitive to the choice of scaling range.

42 Fractals and fractures Chapter 4

4.2.1 Detrending moving average in 2 dimensions

We define a self-affine surface f(i, j) of size N,N , with i, j ∈ [1, N]. For each
point i, j ∈ [1, N − n + 1] in this surface we define a subsurface of size n × n,
where each subsurface consists if the points

(k, l) ∈
{

(i, j) +
(
[1 . . . , n], [1, . . . , n]

)}
in the main surface. This means that the point (i, j) is located in the “lower left”
corner of the subsurface, that the subsurfaces overlap, and that they together
span the whole main surface. The limits i, j ∈ [1, N − n + 1] are set so that all
subsurfaces are inside the main surface.

For each subsurface located at (i, j) we find a point (km, lm) in the subsurface,
which can be written as

(km, lm) = (i, j) + (n−m,n−m), (4.1)

where m is defined as

m = bnθc for θ ∈ [0, 1).

The parameter θ controls the position of this point inside the subsurface, and we
have three extreme cases, listed below, and illustrated in fig. 4.2.

θ = 0: the point (km, lm) is in the upper right corner of the subsurface,
at (km, lm) = (i+ n, i+ n)

θ = 1/2: the point (km, lm) is in the center of the subsurface,
at (km, lm) = (i+ n/2, i+ n/2)

θ→ 1→ (n− 1)/n: the point (km, lm) is in the lower left corner of the
subsurface, at (km, lm) = (i, j)

We find the average f̄n of each subsurface using

f̄n(i, j) = 1
n2

i+n∑
k=i

j+n∑
l=j

f(k, l), (4.2)

and we define the generalized variance, σ2
DMA, as the sum of the squared differ-

ences between the value in the point f(km, lm) minus the average f̄n(i, j), for
each subsurface. This can be written as

σ2
DMA = 1

(N − n)2

N−n+1∑
i=1

N−n+1∑
j=1

(
f(km, jm)− f̄n(i, j)

)2

= 1
(N − n)2

N−n+1∑
i=1

N−n+1∑
j=1

(
f(i+ n−m, j + n−m)− f̄n(i, j)

)2
. (4.3)

Section 2 Detrending moving average 43

(a) θ = 0 (b) θ = 1/2 (c) θ = (n− 1)/n

Figure 4.2: Illustration of three extreme cases for the parameter θ in DMA,
on a surface. The dots are points where the main surface is defined, the red
star is the point (km, jm), and the black square marks the subsurface, and the
points averaged over to calculate f̄n(i, j) in eq. (4.2). The illustrations use
n = 3.

It can be shown that this generalized variance has a power-law dependence on n
[2, 6], which goes as

σ2
DMA ∼

(
2n2)H .

We can use this dependence to estimate the Hurst exponent H, by calculating
σ2
DMA for different sizes of the subsurfaces, n. We estimate H by a linear fit of

log (σDMA)2 against log
(
2n2), where H is the slope of this fit.

In the paper by Anna Carbone that generalizes DMA to higher dimensions[6]
they use different parameters for each spatial dimension d, θ = θ1, . . . , θd and
n = n1, . . . , nd, but for simplicity and to avoid spurious results, we use θ1 = θ2 =
θ and n1 = n2 = n.

A modification of the method mentioned is replacing f̄n(i, j) in eq. (4.3) with

f̄n
∗(i, j) = (1− α)fn(i, j) + αf̄n(i− 1, j − 1),

where
α = n2/(n+ 1)2,

and f̃n(i, j) has the same form as before (see eq. (4.2)). To use this modification
we also have to change the limits in eq. (4.3) from i, j ∈ [1, N − n+ 1] to i, j ∈
[2, N − n+ 1]. This modification has been shown to give better results for small
systems[6], and since we are usually generating surfaces with a resolution of 100-
200 points in each direction, we use this modified method in our implementation
of the method.

44 Fractals and fractures Chapter 4

4.2.2 Validation

To verify that the method we used for estimating the Hurst exponent worked
as intended, and gave good results, we ran a series of tests using synthetic 1-
dimensional timeseries and 2-dimensional surfaces of fractional Brownian motion,
with a known Hurst exponent. When doing these tests we soon realized that a big
problem with synthesizing time series and surfaces with a given Hurst exponent
is that it is both hard to accurately measure the exponent, and it is hard to
synthesize data with a given exponent.

To test the DMA method we synthesized data with a given Hurst exponent using
4 different programs, and measured the exponent using the detrending moving
average method for each of these methods.

For synthesizing 1D data we used the built-in Matlab-function wfbm which uses a
wavelet-based synthesis method described by Abry and Sellan [1], and two meth-
ods from the Matlab-toolbox FracLab[12], fbmwoodchan which uses a method pro-
posed byWood and Chan in [48], and fbmlevinson which uses Cholesky/Levinson
factorization from [21].

There are many methods and algorithms for generating surfaces data with a
given Hurst exponent, but we had problems finding working implementations of
any of them. We will later implement a midpoint displacement method for this
(see chapter 5 and section 5.2.3), but having external reference is very useful,
so we used a function from FracLab called synth2, which is not very well docu-
mented, but at least seems to generate accurate samples of fractional Brownian
surfaces.

See fig. 4.3 for a plot of Hurst exponent measured using DMA as a function of the
exponent used as input for the four different methods for generating synthetic
data above, for three different values of the parameter θ. From the plots we
conclude that θ = 0.0 seems to give the best and most consistent results, as also
noted by Gao-Feng Gu and Wei-Xing Zhou in [14], where they further develop
the DMA method to analyse multifractals.

Section 2 Detrending moving average 45

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

M
ea
su
re
d
H

θ = 0.0

Hin = Hout wfbm fbmwoodchan fbmlevinson synth2

0.2 0.4 0.6 0.8
Input H

θ = 0.5

0.2 0.4 0.6 0.8

θ = 1.0

HDDMA

Figure 4.3: Plot of the Hurst exponent against the exponent used as input
when generating the signals, as estimated by the detrending moving average
method, used on data from four different synthetic signals, and for three dif-
ferent values of the parameter θ used in DMA. For the 1d methods we have
averaged over 1000 samples for each point, and for synth2 we have averaged
over 100 samples, for input Hurst exponents between 0.05 and 0.95 in steps of
0.1. All methods except synth2 generate 1-dimensional signals, while synth2
generates a 2-dimensional signal.

Chapter 5

Generating surfaces and
fractures

To generate random surfaces we use an iterative midpoint displacement method
usually called successive random additions (SRA). The method is based on a
method proposed by Fourner in 1982[11], but with some modifications suggested
by Voss[45, 46]. The method has further been discussed by Saupe[35], amongst
others. We choose this method mainly because it is possible to generate pe-
riodic surfaces with it, because it generates very good approximations to fBm
surfaces[49], and because the Hurst exponent of the generated surfaces is easy to
control. The method is also easy to understand, easy to implement, and generates
surfaces with high resolution very fast. The method is widely used in scientific
applications because of these properties, and is also used for generating surfaces
in computer graphics, since the surfaces look very realistic.

5.1 Midpoint displacement methods

The method we use to generate random surfaces is very similar to the standard
midpoint displacement method (MDM), so we start with showing that method.
In 1 dimension this method goes as follows

1. Give the values at the endpoints of the interval, y0 and yn, random values
from a Gaussian random variable with mean µ = 0 and variance σ2

0. This
initial standard deviation σ0 can be chosen freely.

2. Generate the value in the center of the interval, yn/2, by averaging over the
two endpoints and adding a Gaussian random number with mean µ = 0

47

48 Generating surfaces and fractures Chapter 5

and a reduced variance

σ2
1 =

(
1/2
)2H

σ2
0, (5.1)

where H is the wanted Hurst exponent.

3. Continue generating the values in the center of each sub-interval until you
reach the desired number of points, while reducing the variance of the
random number by a factor 1

2 each iteration. For iteration i we have

σ2
i =

(
1/2
)i2H

σ2
0. (5.2)

y0

i = 0

i = 1

i = 2

yn

yn/2

yn/4

y3n/4

yn/8

y3n/8

y5n/8

y7n/8

Figure 5.1: Illustration of the midpoint displacement method in 1 dimension.
We increase the number of points from 2 to 9 using 3 iterations.

See fig. 5.1 for a visual illustration of the method.

This method generates a 1-dimensional line, with a Hurst exponent to the input
H. But since we only add random numbers to the new values we generate each
iteration, the result is non-stationary for H 6= 0.5[45], and it is neither truly self-
similar or isotropic, as noted by Mandelbrot[25]. To mitigate this we implement
the addition suggested by Voss[45], which consists of adding a random number
to all points in each iteration, both the new and old. Voss called this modified
method successive random additions.

5.2 Successive random additions

The method called successive random additions (SRA) is a modification of the
regular midpoint displacement method first described by Richard F. Voss in [45],
where we add random numbers to all points in each iteration, compared to just

Section 2 Successive random additions 49

adding random numbers to the new points in the regular midpoint displace-
ment method. This modification means that we can replace the factor (1/2) in
eqs. (5.1) and (5.2) with a general parameter r,and we get the following variance
for iteration i

σ2
i = r2Hσ2

i−1.

This new parameter r controls the lacunarity of the surface, without affecting
the Hurst exponent.

5.2.1 Infinite grids

Voss has geneneralized the the method of successive random additions to higher
dimensions[45], and this generalized form is the algorithm we use when generating
fractures. We use the method to generate surfaces in the form of heightmaps,
meaning a 2-dimensional grid of points (i, j), with a value for the height in each
point, z(i, j) = zi,j, which is generated by the algorithm.

The central part of the algorithm consists of two steps often called the diamond-
step and the square-step. We start with a simple case of an infinite grid of evenly
spaced points, all with known z-values. The two steps are as follows:

The square-step: The grid can be divided into small squares consisting of four
points in each square, as in the leftmost square in fig. 5.2a. We generate
the z-value in the center of each of these squares by averaging the z-values
of the four corners of each square, as indicated by the red dots and arrows
in fig. 5.2a. Then add a random Gaussian number with mean µ = 0 and
variance σ2

n = σ2
n−1r

2H to all new and old points, where σ2
n−1 is the variance

used in the previous step of the algorithm.

The diamond-step: After the square-step the grid can be divided into smaller
squares that are tilted by 45 degrees, as in the leftmost square in fig. 5.2b.
We generate the z-values in the center of each square by averaging the z-
values of the four corners of each square, as indicated by the red dots and
arrows in fig. 5.2b. We then add a random Gaussian number with mean
µ = 0 and variance σ2

n+1 = σ2
nr

2H , to all new and old points.

See fig. 5.3 for an illustration of the square-step and diamond-step applied once
on a larger grid.

We see that by first applying the square-step and then applying the diamond-
step, we add one point in between each point in each direction, almost doubling
the resolution of the grid. In general we go from N to N +(N −1) points in each

50 Generating surfaces and fractures Chapter 5

(a) Square-step

(b) Diamond-step

Figure 5.2: Illustration of the two steps used in the diamond square algorithm
for generating random surfaces. The grey points are old points, the black
points are new points, and the red points are the points used in the calcuation
of the averages when generating the new points.

direction. By applying the algorithm several times we get

N1 = N0 + (N0 − 1) = 2N − 1
N2 = 2N1 − 1 = 4N0 − 3
N3 = 2N2 − 1 = 9N0 − 7

...
Nn = 2n(N0 − 1) + 1, (5.3)

where n is the number of times we have applied the algorithm, and N is the
number of points in each direction. This means that using the diamond-square
algorithm we can go from any resolution N0 to all resolutions satisfying Nn =
2n(N0−1)+1, although if starting with points generated using a different method
we do not have the same control over the Hurst exponent of the surface after
generating new points.

5.2.2 Finite size effects

Since we are using computers to generate our surfaces, which have limited mem-
ory, we can not use infinite grids. This means we get some special cases that needs
to be taken care of when generating points near the edges of the grid.

By applying the square step we generate one new point in the center of each
square formed by the grid from the previous iteration, and in general we generate

Section 2 Successive random additions 51

Figure 5.3: The diamond-square algorithm applied once on a grid of 3 × 3
points, increasing the number of points from 9 to 25. The orange square points
are generated by the square-step (see fig. 5.2a), and the blue star-shaped points
by the diamond-step (see fig. 5.2b).

the z-values in the points

z(i+ 1/2, j + 1/2) i, j ∈ [0, Nn−1), (5.4)

where (i, j) are the indices of the points in the grid after the previous iteration,
and Nn−1 is the number of points in each direction in this grid. In general the
averages we calculate for the new points can be written as

z(i+ 1/2, j + 1/2) = 1
4

[
z(i, j) + z(i+ 1, j)

+ z(i, j + 1) + z(i+ 1, j + 1)
]
, (5.5)

using the limits in eq. (5.4). We see that the square-step only uses points inside
the grid when calculating the averages, which means that we do not have to
modify this step when going to a finite grid.

By applying the diamond-step we generate the values in the points

z(i+ 1/2, j) for i ∈ [0, Nn−1) and j ∈ [0, Nn−1] (5.6)
z(i, j + 1/2) for i ∈ [0, Nn−1] and j ∈ [0, Nn−1), (5.7)

and in general the averages we calculate for the new points can be written as

z(i+ 1/2, j) = 1
4

[
z(i, j) + z(i+ 1, j)

+ z(i+ 1/2, j − 1/2) + z(i+ 1/2, j + 1/2)
]

(5.8)

z(i, j + 1/2) = 1
4

[
z(i, j) + z(i, j + 1)

+ z(i− 1/2, j + 1/2) + z(i+ 1/2, j + 1/2)
]
, (5.9)

52 Generating surfaces and fractures Chapter 5

using the limits in eqs. (5.6) and (5.7). We find that when generating points near
the edges of the surface using the diamond-step, specifically when generating the
points along the top and bottom edge

z(1/2, j) and z(n− 1/2, j) for j ∈ [0, Nn−1],

and the points along the left and right edge

z(i, 1/2) and z(i, n− 1/2) for i ∈ [0, Nn−1],

we need the values of points that lie outside the grid to calculate the averages.
There are two possible solutions to this, that will generate different surfaces. If
we want to generate a periodic surface, the solution is to wrap around the edges
using periodic boundary conditions, and find the point we need on the opposite
side of the grid. For example (using i = j = 0)

z(1/2,−1/2)→ z(1/2, n− 1/2).
z(1/2,−1/2)→ z(1/2, n− 1/2)

If generating a non-periodic surface we simply ignore the points that lie outside
the grid when calculating the averages, and just calculate the average of the three
other points.

5.2.3 Implementation

In our implementation we generate a surface on a finite grid of size N × N ,
starting with only the z-values in the four corners defined, giving a resolution
N0 = 2. As shown in eq. (5.3) the algorithm can go from any resolution N0 to
any resolution Np = 2p(n0 − 1) + 1 by applying the algorithm p times, which
means that our implementation can generate surfaces with resolutions

N = 2p(2− 1) + 1 = 2p + 1,

where p is any positive integer.

We implement generation of both periodic and non-periodic surfaces using using
eqs. (5.4) to (5.9), while skipping points outside the grid for non-periodic sur-
faces, and wrapping around the edges using periodic boundary conditions when
generating periodic surfaces.

To ensure that the periodic surfaces actually turn out periodic we start with all
four corners having the same value. We also let the right and bottom edge be
equivalent to the left and top edge, respectively, which effectively means that all
four corners should always have the same z-value. To ensure that the opposite

Section 2 Successive random additions 53

edges stay equal to each other we never generate any points on the right and
bottom edge, but just copy the z-values from the opposite edge after the diamond-
step.

This leaves us with the following algorithm for generating a surface which approx-
imates a 2-dimensional fractional Brownian motion with Hurst exponent H

1. Allocate a grid of size N × N , where N = 2p + 1, and p is any positive
integer. This grid will store the z-values, or the height of the surface, in
each grid point z(x, y).

2. Initialize the z-values of the corners of the grid by drawing random numbers
from a Gaussian distribution with mean µ = 0 and variance σ0. The initial
variance can be chosen freely. The initial resolution is now 2× 2.

• If generating a periodic surface, give all four corners the same z-value.

3. Apply the square-step using eqs. (5.4) and (5.5). Add a random Gaussian
number with mean µ = 0 and variance σn = σ2

n−1r
2H to all new and old

points.

4. Apply the diamond-step using eqs. (5.8) to (5.9). Add a random Gaussian
number with mean µ = 0 and variance σn+1 = σ2

nr
2H to all new and old

points.

• If generating a periodic surface, skip generating z-values for points on
the right and bottom edge using the diamond-step, and instead copy
the values from the opposite edges after the diamond-step.

5. Repeat step 3 and 4 p times until you reach the desired resolution of N×N ,
where N = 2p+1. For step n the variance of the random Gaussian numbers
is

σ2
n = σ2

0(rn)2H .

We implement the method in C++, and make a Matlab interface to the C++-
program, for fast visualization and testing. We implement both generation of
periodic and non-periodic surfaces, and the midpoint displacement method, and
successive random additions.

See fig. 5.4 for a surface with resolution 33×33 generated by the algorithm.

5.2.4 Validation

To test the method for generating random surfaces, and to check that the Hurst
exponent of the surfaces correspond to the wanted exponent, we generate surfaces

54 Generating surfaces and fractures Chapter 5

Figure 5.4: A surface with resolution 33 × 33 created using the midpoint
displacement method called successive random additions.

and measure the Hurst exponent using the detrending moving average method
from section 4.2. We have implemented both the midpoint displacement method
and successive random additions for generating random surfaces, both for peri-
odic and non-periodic surfaces. A plot of the measured Hurst exponent (using
DMA) as function of the input Hurst exponent can be seen in fig. 5.5.

From the plot in fig. 5.5 we see that surfaces with periodic boundaries generally
get a lower measured H than non-periodic surfaces, for surfaces with H > 0.5.
We also see that the surfaces generated using the midpoint displacement method
(MDM) have very similar Hurst exponents as the ones generated using succes-
sive random additions (SRA). We see that the Hurst exponent of all surfaces is
generally lower than the input exponent for input H > 0.5, and lower than the
input exponent for input H < 0.5. We should take note of this when generating
surfaces for our experiments, and make sure to measure the actual exponent of
the surfaces, since we see that the standard deviation is relatively high.

5.3 Generating fractures from surfaces

To generate a realistic fracture we use the method of successive random additions
described in chapter 5 and section 5.2.3 to generate random surfaces with a known
Hurst exponent. We then displace the surfaces in the z-direction, so one is above

1In reality we can not have Hurst exponents greater than 1, but as we see, the midpoint
displacement methods generally creates surfaces with a measured exponent (Hout) lower than
the input exponent (Hin) for Hin > 0.5, so to we use some samples of Hin > 1.

Section 3 Generating fractures from surfaces 55

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Input H

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
M
ea
su
re
d
H

Successive random additions

Hin = Hout

MDM
MDM, PBC
SRA
SRA, PBC

Figure 5.5: Plot of the Hurst exponent measured using detrending moving
average (DMA), as function of the input Hurst exponent to the synthesizing
method. The dashed grey line indicates a measured Hurst exponent of 0.75,
the solid grey line a measured exponent exactly equal to the input exponent
(Hin = Hout). The green lines are for surfaces created using periodic bound-
ary conditions (PBC), the red lines using non-periodic boundaries, the dashed
lines using successive random additions (SRA), and the solid lines using the
regular midpoint displacement method (MDM). We used 100 samples for each
point, and input Hurst exponents between 0 and 1.21 in steps of 0.1. We have
plotted the standard deviation in each point for SRA with periodic bound-
ary conditions, and the standard deviation is about the same for the other
combinations of methods and boundary conditions.

the other, and let the space between the surfaces be the void2.

In practice we make a fractured silica structure using the following procedure

• Prepare a slab of amorphous SiO2.

• Generate two surfaces.

• Rescale the (x, y)-positions of surfaces so they span the molecular system.

• Rescale the z-values of the surfaces so all points are inside the system.

2Since we are using periodic systems, we could also have let the space outside the surfaces
be the fracture and get the same result. But for easier visualization and understanding we use
the volume between the surfaces.

56 Generating surfaces and fractures Chapter 5

• Remove all atoms between the upper and lower surface.

The biggest problem with this procedure is removing the atoms between two
surfaces. But since all points in both surfaces lie on a regular grid in the x-
y-plane, there is a simple way of dividing the volume between the surfaces into
tetrahedra. And checking if a point is inside a tetrahedra is a geometrical exercize
that can be solved programmatically. If the two surfaces are not intersecting, we
can divide the volume between them into convex hexahedra spanned out by the
points

z(i, j), z(i+ 1, j), z(i, j + 1), and z(i+ 1, j + 1) for i, j ∈ [0, N)

in the two surfaces (four points in each surface). We then divide each convex
hexahedra into five tetraheda, as illustrated in fig. 5.6a, giving a total of 5(N−1)2

tetrahedra spanning the total volume between the two surfaces.

(a) Illustration of how to divide a
convex hexahedron into five tetra-
heda.

(b) A random fracture made from
two periodic surfaces.

5.3.1 Finding a point inside a tetrahedron

A tetrahedron consists of four points a, b, c, and d, and four faces spanned by
the four possible combinations of the four points. For a face spanned by the
points a, b, and c we can find if a point P is on the same side of the face as the
point d (the point not used to construct the face) by doing some geometry. We
first find the normal vector to the surface n by the cross product

n = (a− c)(b− c).

We know that the sign of the dot product between this normal vector and another
vector going from the plane to a point will give us information about which side of

Section 3 Generating fractures from surfaces 57

the plane the point is. This means that if two points p1 and p2 are on the side of
the plane, the dot product between the normal vector and the two vectors

(pi − k),

where k is any point in the plane, should have the same sign. So we find the sign
of dot products

sgn
(
n · (P − k)

)
,

sgn
(
n · (d− k)

)
,

and if the sign of these dot products is the same, we know that the point P is
on the same side of the face as the point d. We now see that if we do this for all
four faces of the tetrahedra, we know that the point P is inside the tetrahedra if
the signs of all pairs of dot products are equal.

To implement this for checking which atoms are between two surfaces (with the
volume between the surfaces divided into tetrahedra), we express it as a matrix
equation. This reduces the calculation of wether a point is inside a tetrahedron
to comparing the signs of five matrix determinants.

Part III

Simulations

59

Introduction

In this chapter we will present the procedure we have used when doing simula-
tions, the systems we have studied, and the the results we have found.

We start with a description of what steps we have used to generate a realistic
nanoporous silica, with water in the pores. We describe how we create a random
fracture in a slab of silica, and the method we have developed for passivating
the dangling ends after we cut out the fracture. We also describe a method for
injecting water into the fracture.

After this we present the different measurements we have done during the simu-
lations, how the measurements are done, and why we do them. We then describe
the different systems we have generated, the characteristics of these systems, both
in form of tables, and using renderings of visualizations of the systems.

Finally the results from all our simulations and measurements are presented and
discussed.

61

Chapter 6

Simulation procedure

When doing simulations using molecular dynamics we use a procedure akin that
used by actual experiments. Since the duration of the simulations we are realis-
tically able to simulate on are of the order of tens of nanoseconds, we have to be
smart when initializing the system, to avoid having to simulate for a long time to
get to the state we want to study. This means that we should start out with the
system in a state as close to the one we want to study as possible. The problem
with this when simulating silica is that the silica structure formed when rapidly
cooling molten silica does not have any long-range ordering. Silica in the glass
form has an amorph structure, which does not have any long-range ordering, but
has short-range ordering well beyond the Si-O bond length. This structure is
hard to set up with an algorithm.

6.1 Initialization

To generate silica in the glass form we first create a perfect silica crystal in the
crystalline form β-cristobalite, the unit cell of which can be seen in figure fig. 6.1,
and a larger crystal in fig. 6.3a. This crystalline form consists of corner-bonded
SiO4-tetrahedra, and in the perfect crystallic form all silicon atoms are bound to
four oxygen atoms, and all oxygen atoms to two silicon atoms.

We give the atoms a random uniformly distributed velocities with mean µ = 0
and standard deviation σ ∝

√
T , where T is the wanted temperature.

We then heat the system to 4500 K in steps of 700 K to melt the silica crys-
tal. Since we are mainly interested in controlling the temperature at this stage,
the Berendsen thermostat is used for these temperature changes. We alternate
between using a thermostat to adjust the temperature, and simulating with the

63

64 Simulation procedure Chapter 6

Figure 6.1: β-cristobalite unit cell, with 8 silicon atoms and 16 oxygen atoms.

thermostat off, to let the system thermalize and react to the temperature change
after applying the thermostat. The number of timesteps we used for the ther-
mostat period is around 2 500, and for the thermalization period around 10 000.
We then cool the system by doing the previous procedure in reverse. See fig. 6.2
for a plot of the temperature as function of time while we melt and cool down
the system, and fig. 6.3a for a visualization of a perfect crystal of β-cristobalite,
and fig. 6.3c for amorphous, solid silica.

The initialization procedure is visualized in fig. 6.3, and can be summed up as
follows

• Generate a perfect crystal of β-cristobalite of the wanted size (fig. 6.3a).

• Heat the system to well above the melting point of silica (we usually use 4
500 Kelvin, using a thermostat (Berendsen) (fig. 6.3b).

• Cool down the system to well below the glass-transition temperature (we
use 300 Kelvin), using a thermostat (Berendsen) (fig. 6.3c).

• Cut out the fracture (fig. 6.3d).

• Passivate the dangling ends and apply steepest descent to let the passivation
atoms find their optimal positions (fig. 6.3e).

• Fill the pore with water, and thermalize the system at 300 K (fig. 6.3f).

We now have a thermalized and (hopefully) realistic silica crystal at near room
temperature. From this crystal we cut out the fracture, passivate using one
of the passivation methods, fill the fracture with water molecules, and apply a
simple steepest descent procedure to let the inserted atoms find their equilibrium
positions. After filling the fracture with water we need to thermalize the system
again, since the energy (and thereby the temperature) changes when we remove

Section 2 Passivation 65

0 20 40 60 80 10
0

12
0

14
0

16
0

Timesteps [1000]

0

1

2

3

4

5

Te
m
pe

ra
tu
re

[k
K
]

Figure 6.2: Plot of the temperature (in kilo-Kelvin) as function of timesteps
when melting and cooling down a silica system, using the Berendsen thermo-
stat. We use timesteps of 0.050 picoseconds, and use 2 500 timesteps with the
thermostat turned on, and then 10 000 timesteps to let the system thermalize
(with the thermostat off), for each step in temperature.

and insert atoms.

6.2 Passivation

In most silicates the silicon atoms have tetrahedral coordination, with four oxygen
atoms surronding each silicon atom. When we remove silica- and oxygen-atoms
to create a fracture, we do not take this into consideration. This means that we
get dangling unsaturated bonds in the system, located near the surface of the
pore. To rectify this we use a method called passivation, where we saturate and
passivate the dangling bonds by inserting new atoms.

6.2.1 Water chemistry

Since we are going to inject water into the pore later on, we want to use the con-
stituents of water to passivate the system. We know that water autodissociates
into H+ and OH− via the following reaction

H2O⇀↽ H+ + OH−,

66 Simulation procedure Chapter 6

(a) Perfect β-cristobalite crystal. (b) Silica heated to 4500 K.

(c) Silica cooled to 300 K. (d) Fracture cut out.

(e) Dangling ends passivated. (f) Pore filled with water.

Figure 6.3: Visualizations of the different stages of initialization of a fracture in silica
filled with water. We show a 75 × 75 × 25 Å slice of a much larger system (172 Å)3.
The silicon atoms are yellow, the silica-oxygen blue, and hydrogen and water-oxygen
red.

Section 2 Passivation 67

meaning that hydrogen (H) and hydroxide (OH) will be freely available in the
system after filling the pore with water. On this background we choose to pas-
sivate the system using hydrogen and hydroxide. To avoid getting an acidic or
alkaline system after the passivation procedure we should make sure to use equal
parts hydrogen and hydroxide when passivating.

6.2.2 Passivating using hydrogen and hydroxide

After thermalizing our silica system we end up with a system consisting almost
exclusively of SiO2 tetrahedra. These tetrahedra are each formed by four oxygen
atoms, one in each corner, and a silicon atom in the center. Each of these
tetrahedra are then bonded to four other tetrahedra, by sharing the oxygen atoms
in the corners. This way each oxygen atom is bonded to two silicon atoms, and
each silicon atom to four oxygen atoms, giving an average chemical formula of
SiO2.

Since we do not take chemical bonds into consideration when removing atoms to
create a fracture, we end up with some incomplete tetrahedra, with some silicon
atoms bonded to less than four oxygen atoms, and some oxygen atoms bonded
to less than two silicon atoms. See fig. 6.4 for an illustration of three different
incomplete tetrahedra. This creates what we call dangling ends or unsaturated
bonds, which we want to passivate.

To passivate the silicon atoms that are bonded to less than four oxygen atoms,
we see that we need to complete the incomplete SiO4 tetrahedra that have been
created in the system. But if we only insert oxygen atoms in the positions of
the missing oxygen atoms, we end up with new dangling ends, since the inserted
oxygen atoms will only be bonded to one silicon atom. But, as we just saw, we will
have hydroxide (OH) groups available in the system after filling the fracture with
water. So instead of inserting oxygen atoms and creating new unsaturated bonds,
we insert hydroxide groups and create saturated Si-O-H bonds. We put the
hydrogen atom so that the Si-O-H angle is close to the angle in water molecules,
107.5 degrees.

To passivate the oxygen atoms that are bonded to only one silicon atom, we
can use the hydrogen atoms that are avilable after filling the fracture with water,
turning unsaturated SiO-groups into the same saturated Si-O-H-groups as before.
We here too insert the hydrogen atoms with the Si-O-H angle close to 107.5
degrees.

In total we use the following procedure to passivate a system after creating a
fracture:

68 Simulation procedure Chapter 6

• Remove all silicon and oxygen atoms that are not bonded to any atoms,
since they are essentially not part of the silica matrix.

• Add one hydrogen atom to all oxygen atoms bonded to only one silicon
atom. The hydrogen atoms are inserted approximately 0.95 Å from the
oxygen atoms, with the hydrogen atom pointing away from the silicon atom,
and with the Si-O-H angle close to 107.5 degrees.

• Add (4 − n) hydroxide groups to silicon atoms bonded to (1 ≤ n < 4)
oxygen atoms. We assume that the most stable position for the oxygen in
the hydroxide groups are close to the tetrahedral positions of the missing
oxygen atoms, and insert the hydroxide groups in these positions. The
hydroxide groups are inserted approximately 1.65 Å from the silicon atoms,
measured from the position of the silicon atom to the oxygen atom in the
hydroxide groups, with the hydrogen atom pointing away from the silicon
atom, and with the Si-O-H angle close to 107.5 degrees.

The lengths used are approximate experimental lengths found in naturally oc-
curing silanols and water (see [22] for the Si-O length in silanol, and [7] for the
O-H length in water). This procedure turns all dangling ends into stable, passive
silanol groups.

(a) (b) (c)
(d)

Figure 6.4: Illustration of four different incomplete silica tetrahedra, with
respectively one, two, three and no missing oxygen atoms ((d) is a complete
silica tetrahedra).

6.2.3 Counting number of bonds

Since we do not have actual bonds in molecular dynamics simulations, we do not
know which atoms are bonded to which. So to find the number of bonded atoms
for each silicon and oxygen atom, we create what we call neighbor lists. These
neighbor lists are a list of atoms within a chosen radius for each atom. To create
these lists we use the procedure detailed in section 7.2.1. Since we only have
silicon and oxygen atoms in our system, we only need to specify a maximum
the Si-O-distance to find which atoms are bonded. If we choose this distance

Section 2 Passivation 69

properly, we should be able find a good approximation to how many atoms each
atom is bonded to.

6.2.4 Only passivating surface atoms

When implementing the passivation method detailed above, we soon ran into
problems with silica and oxygen atoms that were bonded to too few atoms ac-
cording to our rules above, while counting the number of bonds using a fixed
radius. Some improvements were made by fine-tuning the radius used for each
atom type, but we still often ended up passivating atoms that were inside the
silica matrix, where we should not have any dangling bonds. To avoid this we
came up with a method to only passivate the atoms at or near the surface of the
fracture.

To do this we yet again use the voxelation method from 7.2, but this time we
use a voxel size of around 6 Å. We then mark all voxels with atoms in them
as occupied. We now see that if we find all occupied voxels with at least one
unoccupied neighbor voxel (using 26-neighbor connectivity), we should have a
list of the voxels that make up the surface of the fracture, and these voxels then
contain all atoms at or near the surface of the fracture. We then use this list of
atoms as input to the passivation program, and only passivate atoms in that list.
See fig. 6.5 for an illustration of the method that finds the voxels and atoms at
the surface of the fracture.

6.2.5 Passivation examples

An example of a system after passivation can be seen in fig. 6.6, where we have
colored the passivating oxygen and hydrogen atoms red.

A good measure of the performance of the passivation method is the surface
density of silanol after passivation. This number is often called the silanol num-
ber, and us considered to be a physico-chemical constant, with a numerical value
αOH = 4.6 (least-squares method) and αOH nm−2 (arithmical mean) [50], and is
known in literature as the Kiselev-Zhuravlev constant. As we will see, measuring
the surface area of porous system is not trivial, so estimating this density is not
trivial. But by creating a completely flat pore and passivating it, we found that
we got a silanol surface density between 4 and 7 nm−2, depending on how we
measure the surface area of the pore, and how we cound the number of silanol
groups.

70 Simulation procedure Chapter 6

Figure 6.5: Illustration of a method for finding atoms and voxels at the
surface of a fracture. All gray voxels are occupied voxels (with at least one
atom in them), and the dark gray voxels are the voxels with at least one
unoccupied neighbor voxel.

Figure 6.6: Example of the result of the passivation procedure. Here the
oxygen and hydrogen molecules are red, silicon atoms are yellow, and silicon-
oxygen atoms are light yellow.

Section 3 Injecting water 71

6.3 Injecting water

After removing atoms to create a fracture, and passivating the system, we are
now ready to inject water into the fracture. To do this we use the technique
of voxelation (see section 7.2). We first divide the system into voxels, find the
voxels that make up the void, and then put water molecules in these voxels. The
water density can then be controlled by the size of the voxels we use, and how
many of the voxels we fill.

6.3.1 Finding correct voxel size

If we want to inject water with density ρ, we can find the voxel size we need from
the molar mass of water, MH2O = M = 0.0180158 kg/mol. We use the molar
mass and wanted density to find the “volume” each water atom should occupy,
as follows

V =
M [kg/mol]× 1

NA [mol−1]
ρ [kg/m3] = M

ρNA

[m3]

where NA is the Avogadro constant. From here we find the size of the voxels by
taking the cube root

l =
(
M

ρNA

)1/3

m. (6.1)

To get a water density approximately equal to ρ we can then use a voxel size l,
and put one water atom in each voxel. If we for example want to insert water
with ρ = 1000 kg/m3, approximately the density of water in room temperature,
we get a voxel size of

l =
(

0.0180158 kg/mol
1000 kg/m3 × 6.0221× 1023 mol−1

)1/3

= 3.1 Å.

Voxel size in finite systems

Since we have a finite system we usually can not use the exact voxel size we want,
but we have to divide the system into an integer number of voxels. This means
that we will not get the exact density we want if we fill all voxels. To remedy
this we only fill the fraction of voxels to get the wanted density.

In practice we use the following procedure

72 Simulation procedure Chapter 6

• Find the number of voxels to divide the system into (in each direction) via

ni =
⌈
Li
li

⌉
,

where Li is the system size in dimension i and li is the voxel size calculated
using eq. (6.1). We use the ceiling-function to ensure that the actual voxel
size we use is smaller than (or equal to) the voxel size we calculated. We
find the actual voxel size via

l̃i = Li
ni
.

• Divide the system into voxels of size (l̃x, l̃y, l̃z), and find the voxels that
make up the void (see section 6.3.2 for more on this).

• To find the ratio of voxels to put water molecules in we first calculate the
density we would get if we filled all empty voxels using

ρ̃ = M

l̃xl̃y l̃zNA

,

and then find the number of voxels to fill as

Ñ = N
ρ̃

ρ
= N

l̃xl̃y l̃z
lxlylz

,

where N is the total number of empty voxels.

This can for example be done by looping over all voxels, drawing a random
uniform number between 0 and 1 for each voxel, and putting a molecule in
the voxel if the random number is smaller than Ñ/N .

The water molecules are inserted with the oxygen atom in the center of the voxel,
and the two hydrogen atoms pointing in a random direction, but with an angle
of ∼ 104.45◦.

6.3.2 Identifying the voxels that make up the void

The naive way of finding the voxels to fill with water is to just find which voxel
each silicon and oxygen atom is in, and mark those as occupied. Using this
method we found that we often got some empty voxels inside the silica matrix,
which meant we got single water atoms trapped inside what was supposed to
be the silica matrix. This is most likely cause by the amorphous structure of
silica in the glass state, in which there are small pores spread throughout the
structure.

Section 3 Injecting water 73

To solve this we assign a radius to each atom type, and mark all voxels with
the center of the voxel within this radius from an atom as occupied. The rest of
the voxels should now be a good approximation to the void. See fig. 6.7 for an
illustration of this procedure.

(a) Marking only one voxel per atom
as occupied.

(b) Marking all voxels within radius
from atom as occupied.

Figure 6.7: To find voxels that make up the void/pore in we can either a)
mark the voxel each existing atom belongs in as occupied, or b) mark all voxels
within a radius from each atom as occupied. We can assign a different radius
to each atom. We have illustrated using part of a silica tetrahedra, with one
silicon atom () and two oxygen atoms (). The center of each voxel is marked
by a dot.

A different solution to the problem of tiny pores inside the silica matrix is to
remove all small clusters of voxels (where a “small cluster of voxels” would need
to be defined), or perhaps to use different voxel sizes for finding the void and
filling the void with water.

Chapter 7

Measurements

We have now developed a molecular dynamics program that can do realistic sim-
ulations of water, silica, and model the interactions between water and silica. We
have developed methods for initializing nanoporous silica systems, with randomly
generated rough fractures in them, and methods for injecting water into these
pores.

We know that the hydrophilic nature of silica creates some interactions between
water and silica, and it is the effect of these interactions we want to study. We
expect these interactions to have short-range effects on the water, so calculating
averages for all water atoms seems like a bad approach, since the fine details of
what happens with water near the silica surface will be lost. To be able to study
the water-silica interface we thus need to find ways to find and do measurements
on the water molecules near the silica surface.

7.1 Distance to silica matrix

To study the water-silica interface we want to do measures as function of the
distance to the surface of the pore, in our case meaning the distance from a
water molecule to the interface between water and silica. The first problem with
this is to find out how to measure the distance from a point, for example a water
molecule, to the surface. Most of our measures are done on water molecules
in fractures and pores, so we first define the position of the water molecule as
equal to the position of the oxygen atom in the water molecule. We then use
the distance from these water-oxygen atoms to the nearest silica atom to define
a distance from the water molecule to the surface of the silica matrix. Finding
the nearest silica atom is not trivial though, so a separate procedure for doing
this is shown in section 7.2.2.

75

76 Measurements Chapter 7

When measuring quantities that only depend on data from one timestep we do not
have to worry about that the atoms move, so we just sort the atoms by distance
to the surface using the procedure in section 7.2.2 and do our measurements,
individually on each timestep. But if we want to study for example diffusion, or
the tetrahedral order parameter, which depend on data from several timesteps,
we have to find a good way to define which atoms are in a certain range of the
surface. We tried different methods, but ended up using the average distance to
the surface for this.

7.1.1 Note on this method

When we define the distance to the silica matrix as the distance to the nearest
silicon atom, we get some effects we should take note of for atoms very close
to the matrix. With our definition of the distance to the silica matrix we are
effectively making our bins out of spherical shells centered on each silicon atom.
Compared to for example using the z-distance to the surface in a completely flat
fracture, where we know the z-height of the surface, we see that this can give
different results. The problem is of course that in a random fracture in a silica
system we can not easily define a normal vector to the surface of the fracture, so
finding an equivalent to the z-distance in such a fracture is hard.

When we do our measurements as a function of distance to the silica matrix
we usually sort the atoms into bins according to their (average) distance to the
nearest silicon atom. At distances much larger than the average distance between
the silicon atoms at the surface of the fracture this is not a problem, since the
curature of the spherical shells is low, and the volume enclosed by the shells
is pretty close to the one we would have gotten if we had created bins used z-
positions in flat fracture. But at distances close to the average distances between
the silicon atoms we begin to see that the volumes our bins consist of start curving
around the silicon atoms, instead of staying flat as they would have if we were
using the z-distance. See fig. 7.2 for an illustration of this. In this illustration
we have illustrated bins created using the same bin width and distance from the
matrix, using the two different methods. The dark gray areas are the ones that
are included using both methods (ASi ∩ Az), the light grey areas (ASi) are the
ones unique to the spherical shell bins, and the yellow areas are the ones unique
to the the z-distance bins (Az).

This difference in binning is something we should be wary about when comparing
our results to measurements done using the z-distance as the distance to the
matrix. One result of this can be seen in fig. 7.1, where we have plotted the
number of atoms in each bin of width 0.25 Å against the distance from the silica
matrix (meaning the radius of the spherical shells). We see that we get no atoms

Section 2 Voxelation 77

0 2 4 6 8 10
Distance from silica matrix [Å]

0.0

0.2

0.4

0.6

0.8

1.0

N
um

be
r
of

m
ol
ec
ul
es

[k
] Number of molecules in each bin

Rough fracture
Flat fracture

Figure 7.1: Plot of the number of atoms in
each bin, when using the distance to the nearest
atom for binning.

Az

ASi
ASi ∩ Az

Figure 7.2: Illustration of
binning when using distance to
nearest silicon atom as defini-
tion of distance to silica matrix
(rSi), vs. z-distance (rz).

in the bins from 2 to 3 Ångström, but a big spike just below 2 Å. This spike is most
likely caused by water-oxygen atoms that are bound to silicon atoms, which we
placed there when passivating the system (silicon-water atoms from the initial
silica crystal are not included in the counting, but we use water-oxygen when
passivating). If we had used the z-distance in a flat fracture in a system like this,
we would most likely have gotten a very different distribution below 4 Å, with a
more flat distribution instead of it going to zero, since the angular distribution
of the oxygen atoms around the silica atoms makes the z-distance vary.

7.2 Voxelation

The method of voxelation is a method where we divide our simulation system
into adjacent boxes or voxels (3-dimensional pixels). The system is divided into
nx× ny × nz voxels of size lx× ly × lz. Depending the what we want to calculate
we can calculate the voxel size from the number of voxels, or vice versa, using
the following relation

ni = Li
li
,

where Li is the system size, and we assume that the voxel size li is set so that Li
is evenly divisible by li (meaning that the remainder of Li/li is zero). If we have
a maximum or minimum voxel size lmax

i or lmin
i we can use the following relations

to calculate the number of voxels

ni =
⌊
Li
lmax
i

⌋
or ni =

⌈
Li
lmin
i

⌉
,

78 Measurements Chapter 7

where bxc is the floor-function and dxe is the ceil-function.

The voxels are indexed (i, j, k) where i, j, k ∈ [0, ni− 1], and a voxel is defined as
the points (x, y, z) where ⌊

x

lx

⌋
= i, (7.1)

and similarly for the other dimensions.

7.2.1 Neighbor lists

When doing calculations and measurements on a molecular system, we often need
information about the neighboring atoms of each atom, and we want to make a
so-called neighbor list, which are lists of which atoms are within a distance dr of
each atom. Finding out which atoms are within a certain distance of each atom
can take a long time; the trivial way of checking each atom against all other
atoms scales as O(N2), N being the number of atoms.

Since we want to find all neighbors within a distance dr of a point, for all or most
of the atoms, we can use the voxelation method to do it efficiently. To do this
we first voxelate the system using a minimum voxel size equal to r. We then find
which voxel each atom belongs to, and store this. We can then find the atoms
within a distance dr from a point (x, y, z) by first finding the voxel this point lies
in using (from eq. (7.1))

i =
⌊
x

lx

⌋
, j =

⌊
y

ly

⌋
, j =

⌊
z

lz

⌋
,

where lx × ly × lz is the actual voxel size (we need an even number of voxels, so
the actual voxel size is governed by the system size). We then check the distance
between the point and the atoms in the voxel the point belongs in, and the atoms
in the 26 neighboring voxels of this voxel.

Checking the 26 neighboring voxels ensure that we included all atoms within the
distance dr. We can see this by looking at the worst case example, where we
have a point right at the edge of the voxel it belongs to, at (i+ (1− ε0)), and an
atom in voxel (i + 2) being as close to the point as possible, at (i + 2 + ε). The
distance between those two points would then be

((i+ 2)l + ε1)− (il + (l − ε0)) = ((i+ 2)− (i+ 1)− ε0)l + ε1 + ε0

= l + ε+ ε0,

which is larger than l, since ε0, ε1 have to be larger than 0.

Section 2 Voxelation 79

When voxelating the system using the distance r we should take care not to use a
too small distance, i.e. make the voxels too small and create a lot of voxels. Since
the total number of voxels goes as n3 the memory needed to store the matrix
increases rapidly with decreasing voxel size. To avoid this we usually implement
a hard limit to the number of voxels, and found that a limit of n < 256 or even
n < 128 seemed to work good in most cases. On the other hand, if we make the
voxels too large we soon find that the program is not especially efficient. This is
because most voxels will have a lot of atoms in then, and we have to look through
a lot of atoms when checking the 26+1 voxels for each atom.

An implementation of the voxelation method for creating neighbor lists can be
seen in listing 7.1. Note that when calculating distances between points we
usually calculate and compare squared distances like r2 = (x1−x2)(x1−x2)+. . . ,
since calculating roots are a time-consuming operation on a computer (at least
compared to multiplication and addition).

7.2.2 Finding distance to surface

When doing measurements on water molecules we often want to know the dis-
tance from the water molecule to the surface of the pore the water molecule is in.
To find this we first define the position of the water molecule as the position of
the oxygen atom in the molecule. We then use the distance between this oxygen
atom to the nearest silicon atom as the distance to the surface.

To use the voxelation method we need to have a maximum distance to look for
silicon atoms in. This atom should be set as small as possible, to efficiently use
the voxelation method1. We divide the system into voxels using the technique
from section 7.2, and sort all silicon atoms into the voxels. For each water-
oxygen atom we then find the distance to the nearest silicon atom by calculating
the distance between the oxygen atom and the silicon atoms in the voxel the
oxygen atom belongs in, and the silicon atoms in all 26 neighbor voxels. See
section 7.2.1 for more details.

1We usually implement a hard upper bound on the number of voxels, or a lower bound on
the voxel size, to keep the memory consumption of our program in check.

80 Measurements Chapter 7

int nVoxels = floor(systemSize/radius);
double voxelSize = systemSize*nVoxels;

sortAtomsIntoVoxels(atoms, voxelSize, voxels);

vector<vector<Atom*> > neighborAtoms(atoms.size());

// Loop over all atoms
for (Atom *atom : atoms) {

// Index of the voxel this atom belongs to
ivec3 index = floor(atom.position() / voxelSize)

// Loop over all 27 neighbor voxels (including self)
for (int di = -1; di <= 1; di++)
for (int dj = -1; dj <= 1; dj++)
for (int dk = -1; dk <= 1; dk++)
{{{

// Index of neighbor voxel using periodic boundary conditions
// nx, ny, nz is the number of voxels in each direction
int i = (index[0] + di + nx) % nx;
int j = (index[1] + dj + ny) % ny;
int k = (index[2] + dk + nz) % nz;

neighborAtoms[atom.index()].push_back(
findAtomsWithinRadius(atom, voxels[i][j][k], radiusSquared)

);
}}}

}

Listing 7.1: An example of how to find the neighbor atoms within a given
distance (radius) of all atoms. This example assumes a cubic system of size
systemSize. See listings 7.2 and 7.3 for example implentations of sortAtom-
sIntoVoxels and findAtomsWithinRadius.

Section 2 Voxelation 81

void sortAtomsIntoVoxels(
const vector<Atom*> &atoms,
double voxelSize,
vector<vector<vector<Atom*> > > &voxels) {

for (Atom *atom : atoms) {
// Index of the voxel this atom belongs to
int i = floor(atom.position().x() / voxelSize);
int j = floor(atom.position().y() / voxelSize);
int k = floor(atom.position().z() / voxelSize);
voxels[i][j][k].push_back(atom);

}
}

Listing 7.2: Example of implementation of sortAtomsIntoVoxels from list-
ing 7.1, for sorting atoms into voxels with size voxelSize. We use the floor
function to get the index of the voxel each atom belongs in, using zero-based
numbering.

vector<Atom*> findAtomsWithinRadius(
Atom *atom1, const vector<Atom*> &voxel, double radiusSquared) {

vector<Atom*> neighborAtoms;

// Loop over atoms in neighbor voxel
for (Atom *atom2 : voxel) {

if (atom2 != atom1) {
double drSquared =

calculateDistanceSquaredBetweenAtoms(atom1, atom2);
if (drSquared < radiusSquared) {

neighborAtoms.push_back(atom2);
}

}
}
return neighborAtoms;

}

Listing 7.3: Example implementation of findAtomsWithinRadius from list-
ing 7.1. See listing 7.4 for an example implementation of calculateDis-
tanceSquaredBetweenAtoms.

82 Measurements Chapter 7

double calculateDistanceSquaredBetweenAtoms(Atom *atom1, Atom *atom2) {
vec3 dr = atom2->position() - atom1->position();

// Minimum image convention
for (int dim = 0; dim < 3; dim++) {

if (dr[dim] > L[dim]/2.0) dr[dim] -= L[dim];
else if (dr[dim] < -L[dim]/2.0) dr[dim] += L[dim];

}

// Calculate dr2 instead of
√
dr2, since sqrt() is a very

// slow operation, and in this case is unnecessary
return dr.lengthSquared();

}

Listing 7.4: Example implementation of calculateDistanceSquaredBe-
tweenAtoms from listing 7.3.

Section 4 Density 83

7.3 Density

To measure the density in a uniform system consisting of just one atom type, we
can use

ρ = Nm

V
,

where N is the number of atoms, m the mass of an atom, and V the volume of the
whole system. But if we have a more complicated system, like in our case where
we have three different atom types, liquid water in some parts of the system,
and solid silica in other parts, we can not use that simple relation. What we do
instead is to assiociate a volume V j

i with each atom of type j, and calculate the
density of atom type j using

ρj = mjM∑M
i=0 V

j
i

,

where mj is the mass an atom of type j, and M is the number of atoms of type
j. We identify as the ρj/mj number density. We can find the mass of an atom
type from standard tables of molar masses, but we still need to find the volumes
V j
i associated with each atom. To do this we use something called Voronoi cells

and the process of Voronoi tesselation. Voronoi tesselation is done by dividing
the system into non-overlapping convex polyhedra (or convex polygons in 2 di-
mensions), with one atom in each polyhedra. The volume inside the polyhedron
surrounding each atom consists of all points in space closer to that atom than
any other atom.

We use the C++-library Voro++ to find the Voronoi cells, and calculate the volumes
of the cells. See fig. 7.3 for an illustration of a 2-dimensional Voronoi, and fig. 7.4
for a rendering of a 3D Voronoi diagram.

When measuring the Voronoi volume of each water molecule we simplify the
calculations by removing all hydrogen atoms. In some systems we noticed that
we had some strange vacuum bubbles in the water, very close to the silica surface
in some systems. To avoid problems with this when calculating the density, we
removed the upper 10% of the Voronoi volumes, to remove this long tail of high
densities.

7.4 Diffusion

When we talk about diffusion in this thesis we mean the process of self-diffusion,
which is different from “normal” diffusion, which is the net movement of a sub-
stance in the presence of a gradient, which can be for example a concentration

84 Measurements Chapter 7

Figure 7.3: Illustration of Voronoi cells
in 2 dimensions. Freely after Wikipedia
Commons[47].

Figure 7.4: Rendering of Voronoi cells
in 3 dimensions, in a system of 27 parti-
cles. Voronoi cells created using the C++-
library Voro++[34, 33], and rendered using
the program povray[31].

gradient, a temperature gradient, or a pressure gradient. With self-diffusion we
mean the random movement in a substance that has no gradients.

Diffusion can be characterized by a constant D, which is related to the displace-
ment of each atom relative to a initial position. We can measure this constant
by measuring the mean square displacement r2

i (t) of each atom as a function of
time, and average over all atoms. The mean square displacement is measured
as

〈
r2(t)

〉
= 1
N

N∑
i=1

(
ri(t)− ri(t = 0)

)2
,

where ri(t = 0) is the initial position of atom i. From theoretical considerations
of the diffusion process we can relate the diffusion constant to the mean square
displacement through[13, Section 4.4.1]

lim
t→∞

∂

∂t

〈
r2(t)

〉
= 2dD (7.2)

where d is the spatial dimension. This means that we can find the diffusion
constant in a molecular dynamics simulation by measuring the mean square dis-
placement for many timesteps, and find the slope of this data as the diffusion
constant in the limit t→∞. We are limited in that we can not actually simulate
infinite number of timesteps, but have to find a reasonable number of timesteps
to measure over. An example of how to sample the mean square displacement〈
r2(t)

〉
in a simulation can be seen in listing 7.5.

To measure D we see from eq. (7.2) that we have to let t → ∞, but in practice
we usually see that the gradient of

〈
r2(t)

〉
usually have stabilzed near its final

Section 5 Tetrahedral order parameter 85

double diffusionSample(System &system) {
double rSquared = 0.0;
for (Atom *atom : system.atoms()) {

drVec = atom->positiom() - atom->initialPosition()
+ atom->getBoundaryCrossings()*system.size();

rSquared += drVec.lengthSquared();
}
rSquared /= system.nAtoms();
return rSquared;

}

Listing 7.5: An example of how to calculate the mean square displace-
ment in a molecular dynamics simulation. Example implementation of dif-
fusionSample from listing 1.9. We store the inital positions of the atoms
as atom->initialPosition(), and when using periodic boundary conditions
we count the number of times we have to translate the atom one system-
size in each direction, so while the atoms will always be inside the sys-
tem, the actual positions of the atoms can be calculated by adding atom-
>getBoundaryCrossings()*system.size() to r.

value after ∼5 k timesteps of 0.050 picoseconds. We can use this to get more
samples for our measurements, by using different time origos. This technique
involves using different initial positions for the atoms, from different timesteps
in the simulation, and then finding

〈
r2(t)

〉
for ti ≤ t ≤ ti+n, where we n is

the number of timesteps we want to use for each time origo. We can in theory
use overlapping intervals for t, but we chose to use adjacent, non-overlapping
intervals.

See fig. 7.5 for an example of how we find the diffusion constant as the gradient
of
〈
r2(t)

〉
, using different time origos.

7.5 Tetrahedral order parameter

The tetrahedral order parameter[8] is effectively a measure of how tetrahedral
a set of four points are. The tetrahedral order parameter Q for a point k is
calculated as follows

Qk = 1− 3
8

3∑
i

4∑
j=i+1

[
cos θikj + 1

3

]2

, (7.3)

where θikj is the angle i− k − j (with k in the vertex of the angle) and the two
sums go over the 6 possible angles θ, between the main point and its four nearest
neighbors. See fig. 7.6 for an illustration of the angles and points involved in the

86 Measurements Chapter 7

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t [ps]

0.0

0.1

0.2

0.3

0.4

〈r
2 〉
/6

[Å
2]

Finding the diffusion constant

D = 0.122
D = 0.136

Figure 7.5: Illustration of how we find the diffusion constant, using two
different time origos, with 40 timesteps of 0.050 picoseconds for each time
origo. We find the diffusion constant as the gradient of 〈r2(t)〉/6 for the 25
last timesteps for each origo. We then use the average of the gradients for
each time origo as our approximation of D.

calculation. If we have Q = 1 the four points are arranged in a perfect tetra-
hedron, with θijk = 2 arctan(2

√
(2)) ≈ 109.47 for all 6 possible angles between

the four points, and as the points move away from this arrangement Q decreases
following eq. (7.3) (negative Q-values are possible).

k

j

θikj

i

Figure 7.6: Illustration of the angles and points involved in the calculation of
the tetrahedral order parameter. The blue dots are points, in our case usually
water molecules. We have the center point k, and its four nearest neighbors.
θikj is the angle between point i, k and j, as indicated by the orange line.

We use the tetrahedral order parameter for investigating the coordination of water
molecules relative to other water molecules. When we lower the temperature in
water below freezing the average Q will increase, since the water molecules in ice
has very high coordination. Liquid water also has high coordination caused by
the hydrogen bonds, but much lower coordination than ice, so the distribution of
Q-values are more spread out, with the mean lower than the mean for ice.

When we measure the tetrahedral order parameter we measure Q for all water
molecules, defining the position of the water molecules as the position of the
oxygen atom in each molecule, and plot the relative occurrence (or probability

Section 7 Distance to nearest atom 87

density), P (Q), to investigate the distribution of Q-values. Since Q is not de-
pendent on several timesteps (like for example diffusion), averaging over several
timesteps is trivial. Since silica is hydrophilic we expect Q to be different for
water molecules near the silica surface, so we will measure P (Q) as function of
distance to the silica matrix.

7.6 Distance to nearest atom

To help visualize and characterize our nanoporous system we developed a pro-
gram that creates a 3d map of the distance to the nearest atom, in each point in
space on a regular grid. The implementation of this program is almost straigh-
forward, but since we have to do a lot of calculations if we want to have a map
with decent resolution, we have also parallellized the program to reduce the com-
putation time.

7.7 Manhattan distance to nearest atom

Since the program from section 7.6 takes a long time to run to get decent maps
with high resolution, we decided to also develop a similar program that creates a
3d map of the space, but this time creating a map with the Manhattan distance
from each point on the grid to the nearest atom. To ease calculation we this time
used a method inspired by the voxelation technique from section 7.2.

This program first divides the system into nx × ny × nz voxels, and make a
3d matrix of the same size for storing the Manhattan distance to the nearest
atom in each point. We first give all voxels with one or more atoms in them
the distance 0. We then label the rest of the voxels using an iterative method,
increasing the number by one for each iteration. In each iteration we find the
voxels that have a neighbor voxel labelled with the previous label (label-1),
using 6-nearest-neighbor connectivity, and give them the current label. When
all voxels are labelled, they should have a label corresponding to the Manhattan
distance to the nearest atom.

Although the Manhattan distance is not as useful as the regular Euclidean dis-
tance we calculate using the “distance to atom”-program, the benefit is that
making a 3d map of the Manhattan distances uses about 3% of the time that
“distance to atom” uses for the same system and same resolution. For a system
of 347k atoms, a nanoporous silica system, using 256 voxels in each direction (a
total of 2563 ≈ 16.7M voxels), the program that finds the Manhattan distance

88 Measurements Chapter 7

uses about 5 seconds, but the program that finds the Euclidean distance uses 2
minutes and 27 seconds.

Chapter 8

Studied systems

We have do experiments on a total of 8 different systems, all consisting of a
slab of silica with a fracture in the center filled with water. Four of them are
“reference” systems with just a flat fracture in the center, and the other four are
systems with a random fracture with different geometries.

All systems are created using the experimental procedure from section 6.1. The
systems are initialized as a perfect crystal of β-cristobalite. The system is then
brought to 4500 Kelvin using a thermostat, to melt the silica crystal. It is then
cooled back down to 300 Kelvin, and a fracture is cut out of the solid slab of
silica, the system dangling ends are passivated, and the fracture is filled with
water. The system is then thermalized at 300 Kelvin.

A summary of the different systems can be seen in table 8.1, where we have listed
the dimension, porosity, the number of atoms, and the number of SiO2 and water
species in each system.

In all systems with narrow pores and fractures we noticed that the water filling
method had some problems. This is caused by the voxelation method used to
fill the system, where we divide the system into voxels, mark all voxels with
atoms in them (before filling the system with water) as occupied, and then put
one water molecule in each unoccupied voxel. When marking occupied voxels
we usually end up marking a lot of the voxels at the silica surface as occupied.
This means that when we have very narrow pores, with the distance between the
pore walls in the same range as the voxel size, a large fraction of the pore will be
occupied voxels, and the resulting water density in the pore will be lower than
the expected density. To rectify this we use higher input densities when filling
narrow fractures and pores with water.

89

90 Studied systems Chapter 8

System Dimensions [Å] φ [%] r [Å] N NSiO2 NH2O
Rough fracture #1 179× 179× 179 ∼12 - 393 k 111 k 19 k
Rough fracture #2 172× 172× 172 ∼13 - 347 k 97 k 18 k
Rough fracture #3 172× 172× 172 ∼13 14.4 349 k 99 k 16 k
Rough fracture #4 172× 172× 172 ∼23 28.8 368 k 89 k 34 k
Reference #1 179× 179× 179 48 86 260 k 25 k 60 k
Reference #2 179× 179× 179 48 86 271 k 25 k 64 k
Reference #3 143× 143× 57 25 14.4 90 k 19 k 10 k
Reference #4 143× 143× 57 50 28.8 107 k 13 k 22 k

Table 8.1: An overview of the 8 different systems we have done experiments
on. “Flat fracture” 1 through 4 are reference systems, that consist of a silica
slab with a single flat fracture filled with water. “Rough fracture” 1 through
4 consist of a silica slab with different water-filled fractures with different
geometries.
φ is the approximate porosity of the system, defined as the volume of the
fracture relative to the volume of the whole system. r is the distance between
the surfaces used to create the fracture. N is the total number of atoms
(silicon, oxygen and hydrogen), NSiO2 is the number of SiO2-units, and NH2O
is the number of water molecules.

Rough fractures

The fractures in the systems labelled “rough fracture” are all created using pe-
riodic surfaces with a Hurst exponent close to 0.75, generated using successive
random additions from section 5.2.2, and the fractures cut out using the method
from section 5.3. “Rough fracture” #1 and #2 are created using different sur-
faces for the top and bottom of the fracture, while “rough fracture” #3 and #4
are created using the same surface repeated twice for the top and bottom of the
fracture, with a distance of respectively 14.4 and 28.8 Å between the surfaces,
which gives an approximately constant width fracture.

When filling system #1 and #2 with water we used an input density of 1050
kg/m3, and for system #3 and #4 we used 1273 kg/m3.

Reference systems

To compare with the fracture systems we have also prepared four “reference”
systems, all consisting of one flat pore with constant width.

“Reference” #1 and #2 both have a 86 Å wide pore. When filling system #1 and
#2 with water we used an input density of respectively 1050 and 1126 kg/m3.

Section 1 Visualizations 91

These two systems will serve as good references for the behaviour and structure
of water near the silica surface, and in bulk-like conditions, as we expect the
water in the middle of the pore to display bulk-like behaviour.

“Reference” #3 and #4 consist of flat pores that are respectively 14.4 and 28.8 Å
wide, which we will compare to the random fracture systems with random uniform
fractures in them. When filling the pores in these systems with water we used
input densities of 1273 kg/m3. This is a pretty high density, but the voxelation
method had some problems in very narrow fractures, giving a lower density than
intended, which made us use a higher density to reach an approximate density
of 1000 kg/m3.

8.1 Visualizations

We have made some renderings of the systems we have studied, as can be seen in
figs. 8.1 to 8.6. All renderings and visualizations were made using the program
Ovito[39], using the built-in open-source “Tachyon” rendering engine.

In the renderings in this section we have colored the silicon atoms yellow, the
oxygen atoms blue, and the hydrogen atoms white. The silicon atoms have been
given a radius of 1 Å, the oxygen atoms 0.6 Å, and the hydrogen atoms 0.3
Å.

92 Studied systems Chapter 8

(a) The whole system. (b) The whole system, with the size of the sili-
con and silica-oxygen atoms reduced to 0.1 Å.

(c) 20 Å thick slice. (d) The pore volume.

Figure 8.1: “Rough fracture #1”, a randomly generated fracture with vary-
ing width. Generated from two random surfaces. The size of this system is
179× 179× 179.

Section 1 Visualizations 93

(a) The whole system. (b) The whole system, with the size of the sili-
con and silica-oxygen atoms reduced to 0.1 Å.

(c) 20 Å thick slice. (d) The pore volume.

Figure 8.2: “Rough fracture #2”, a randomly generated fracture with vary-
ing width. Generated from two random surfaces. The size of this system is
172× 172× 172.

94 Studied systems Chapter 8

(a) The whole system. (b) The whole system, with the size of the sili-
con and silica-oxygen atoms reduced to 0.1 Å.

(c) 20 Å thick slice. (d) The pore volume.

Figure 8.3: “Rough fracture #3”, a randomly generated fracture generated
from one surface repeated for the top and bottom half, with 14.4 Å between
the surfaces, giving approximately uniform width of the pore. The size of this
system is 172× 172× 172.

Section 1 Visualizations 95

(a) The whole system. (b) The whole system, with the size of the sili-
con and silica-oxygen atoms reduced to 0.1 Å.

(c) 20 Å thick slice. (d) The pore volume.

Figure 8.4: “Rough fracture #4”, a randomly generated fracture generated
from one surface repeated for the top and bottom half, with 28.8 Å between
the surfaces, giving approximately uniform width of the pore. The size of this
system is 172× 172× 172.

96 Studied systems Chapter 8

(a) “Reference #1”. (b) “Reference #2”.

Figure 8.5: Reference systems #1 and #2, 86 Å wide flat pores. Both these
systems have size 179× 179× 179.

(a) “Reference #3”. (b) “Reference #4”.

Figure 8.6: Reference systems #3 and #4, respective a 14.4 and a 28.8 Å
wide flat pore. Both these systems have size 143× 143× 57.

Chapter 9

Results

Here we present the result of all the measurements we have done. Most of the
measurements have been done for 200 different states for each system, with 100
timesteps of 0.050 picoseconds between each state (5 picoseconds between each
state). Most measurements have been measured as function of distance to the
silica matrix to study the effects of the interactions between water and silia, and
we have tried to find the bulk-like behaviour of all measurements for compari-
son.

We will compare results between the random rough fractures to the results for
bulk like-water in reference system #1 and #2, and against the two narrow flat
reference systems #3 and #4, to see if the changes from flat pores to rough
fractures have an effect on the water. The results for the rough fracture systems
will also be compared against each other to see if the different fracture geometries
have any effect.

We will first present and analyze the results from each measurement individually
in sections 9.1 to 9.5, and then later in chapter 10 we will give a summary of the
results, and compare the results from the different measurements against each
other to see if there are any further conclusions to be drawn.

9.1 Density of water

We have measured the density of water ρ as function of distance to the silica
matrix in all of our systems, averaged over 200 states for each system, with 100
timesteps of 0.050 picoseconds between each state (5 picoseconds between each
state). The results are plotted in figs. 9.1 to 9.2. We measured for distances
ranging from 0 to 10 Å from the silica matrix, in steps of 0.25 Å. We have also

97

98 Results Chapter 9

measured the bulk density in the systems where this was possible, the results
of which are listed in table 9.1. The plots start at 3.0 Å, since water molecules
closer to the silica matrix than this are most likely bound to silica atoms, and
are part of the passivating silanol groups, as we saw in section 7.1.1.

3 4 5 6 7 8 9 10
r [Å]

950

1000

1050

1100

1150

ρ
[k
g/
m

3]

Density of water in reference systems

#1
#2
#3
#4

(a) Dashed lines are 14.4 Å (red, #3) and
28.8 Å (teal, #4) narrow flat pores, solid lines
are 86 Å wide flat pores.

3 4 5 6 7 8 9 10
r [Å]

900

950

1000

1050

ρ
[k
g/
m

3]

Density of water in rough systems

#1
#2
#3
#4

(b) Dashed lines are 14.4 Å (red, #3) and
28.8 Å (teal, #4) narrow fractures, solid lines
are random fractures.

Figure 9.1: Water density (ρ) as function of distance to silica matrix (r) in
(a) all four reference systems (flat pores) and (b) rough fracture systems.

The most significant trend we notice in fig. 9.1, for all systems, is that the water
density seems stable at 9-10 Å from the silica matrix, but as we move closer than
this we see a clear reduction in density. When we go from 10 Å and move closer
to the matrix we see that the density falls off at around 7-8 Å and is reduced by
almost 10% at around 5 Å. The density then increases to densities higher than
the initial densities (the ones at 10 Å) when we move towards 3 Å. The relative
reduction and then increase in density seems to be similar in all systems with
similar overall densities, but in the systems with the highest overall density the
relative change seems to be a bit smaller than in the other systems.

We now look at the density in the four reference systems, which is plotted in
fig. 9.1a. We see that the densities all have the same quantitative behaviour
as we move further from the silica matrix, even though the net density is very
different in the four systems, with the densities stabilizing at values ranging from
1050 to almost 1150 kg/m3 at 8-10 Å. One trend we notice is that the point where
the density stabilizes, at around 7 Å, seems to appear closer to the matrix when
we increase the overall density (see also the dashed plots and arrows in fig. 9.2a

Section 1 Density of water 99

for a visualization of this). The minimum point seems to appear at approximately
the same distance for the systems with a 86 Å wide flat pore (system #1 and
#2), but a bit closer to the matrix for the narrow flat pores (system #4 and
#3).

In fig. 9.1b we have plotted the density in the four random fracture systems.
We see that the density is very similar in all systems, at all distances to the
matrix, and that the density seems to stabilize between 1010 and 1025 kg/m3

at 8-10 Å from the silica matrix for all systems. We see that even though these
four fractures have different geometries (especially system #1 and #2 are very
different from system #3 and #4), the behaviour of the density as we go from
8 to 3 Å from the silica matrix seems to be the same in all four systems. We
also see that the density seems peak at around 8 Å, and stabilize at a value a bit
lower than this peak as we go further from the silica matrix. This peak is similar
to a peak observed around 5 Å from the silica matrix by Bonnaud et al. in [5]
(see Figure 6 in the article). In the article they use a different measure for the
distance to the silica matrix, which might explain the difference in the distance
at which the peak is observed.

We have estimated the bulk water density by the same technique we use for
measuring water density as function of distance to the silica matrix, but now
by averaging the density for all water-oxygen atoms further away from the silica
matrix than a certain distance (typically 10 Å or more). This measurement
requires that we have a fracture at least twice as wide as this distance to have
any atoms we can measure the density of, so estimating the bulk density was
only possible in reference systems #1 and #2 with a flat, constant fracture of 86
Å, and in the two random fractured systems #1 and #2, which have fractures
with varying width.

r > 10 Å r > 30 Å
System ρ [kg/m3] N ρ [kg/m3] N
Reference #1 1038.4 49k 1038.5 20k
Reference #2 1092.7 52k 1090.4 21k
Rough #1 1017.9 5.0k - 0
Rough #2 1002.8 4.2k - 0

Table 9.1: Estimated bulk water densities, and the number of water molecules
used in the calculations. Estimated using Voronoi tesselation, averaged over
voronoi volumes for all water-oxygen atoms further away from silica matrix
than 10 and 30 Å (hydrogen atoms were removed before Voronoi tesselation).

The estimated bulk densities are listed in table 9.1, where we have measured

100 Results Chapter 9

the bulk density for water atoms at least 10 Å and at least 30 Å from the silica
matrix. We see that the estimated bulk density does not change if we use 10 or
30 Å as the minimum distance from the matrix, indicating that a limit of 10 Å
is adequate, and that the density does not change much from 10 to 30 Å. If we
compare the bulk densities to the plots of the density as function of distance from
the matrix in figs. 9.1a and 9.1b, we see that the density seems to be close to
the bulk density at 10 Å, indicating that water have close to bulk-like properties
from around 8 Å and further from the silica matrix.

In fig. 9.2a we have plotted the density in all eight systems we have simulated.
For easier comparisons we have also tried normalizing the density against an
estimated bulk density (estimated from the density at 8-10 Å), plotted in fig. 9.2b.
In both figures we see the same trend as before, where the falloff for the density
seems to move closer to the matrix as we increase the overall density. We see a
hint of a similar trend for the minimum point of the density, but not nearly as
clear as for the falloff point. We also notice that the falloff seems to be closer to
the silica matrix for the rough fracture systems than for the flat pores, with the
falloff being near 8 Å in the rough fracture systems, but from 7 to 8 Å for the
flat pores, depending on the overall density.

Filling density vs. actual density

To check the accuracy of the method we use for filling the fractures and pores
with water, we want to compare the input densities used when filling the pores
to the resulting density in the systems. We have already found the bulk density
in four of the systems, but in the other systems we are not able to measure the
density in the same way. What we do in these systems (“rough fracture” #3
and #4, and reference system #3 and #4) is to approximate the bulk density by
looking at the value of the density near 10 Å from the silica matrix. This should
give us a rough estimate of the bulk density in the system1.

The results can be seen in table 9.2. We see that using density at 10 Å gives a
good approximation to the measured bulk density, by comparing the bulk density
measured for atoms further away than 10 Å to the density estimated from the
density at 10 Å, at least for the system where we are able to measure the bulk
density. We see that the method for filling the fractures and pores with water
performs well when the pores and fracures are very large. But we also see that
in the systems with very narrow pores, the method for filling the pore with
water seems to struggle with acheving the wanted density. This is cause by the

1In rough fracture system #3 and reference system #3 we do not have any measurements
for water molecules around 10 Å from the matrix, since these systems have pores that are
narrower than 20 Å. For these systems we extrapolate the the density at 10 Å from the values
we have.

Section 1 Density of water 101

3 4 5 6 7 8 9 10
r [Å]

850

900

950

1000

1050

1100

1150

ρ
[k
g/
m

3]

Density of water in all systems

#1
#2
#3
#4

#1
#2
#3
#4

(a)

3 4 5 6 7 8 9 10
r [Å]

0.85

0.90

0.95

1.00

ρ
/ρ

0
[k
g/
m

3]

Relative density of water in all systems

#1
#2
#3
#4

#1
#2
#3
#4

(b)

Figure 9.2: Density of water in all systems, as function of distance from the silica
matrix. Dashed lines are reference systems, and solid lines rough fracture systems. In
(b) the density has been normalized against the approximate bulk density, estimated
from the density at 10 Å from the silica matrix (see “Approx ρ at 10 Å” in table 9.2
for these normalization factors).

102 Results Chapter 9

System Input ρ [kg/m3] Measured ρ [kg/m3] Approx. ρ at 10 Å
Reference #1 1050 1038 1045
Reference #2 1126 1093 1098
Reference #3 1273 - 1085
Reference #4 1273 - 1135
Rough #1 1050 1018 1022
Rough #2 1050 1003 1010
Rough #3 1273 - 1025
Rough #4 1273 - 1016

Table 9.2: A comparison of the estimated and measured bulk water density
in the systems we have simulated, with the input density we used when filling
the fractures with water. “Approx ρ” is the density we see at 10 Å from the
silica matrix, and “Measured ρ” is the average density for atoms further away
from the silica matrix than 10 Å.

voxelation method we use when finding room for water molecules, as expected
and noted previously.

9.2 Diffusion

We have measured the diffusion constant D for water in the four reference sys-
tems, and the four random fracture systems. We have measured D as function
of distance to the silica matrix, in steps of 0.25 Åfor the distance. We used 200
states for each system, with 100 timesteps of 0.050 picoseconds between each
state (5 picoseconds between each state). To improve the statistics we divided
each set of states into 5 non-overlapping origos, with 40 states per origo. The
results are plotted in figs. 9.3 to 9.4. We have also measured the bulk diffusion
constant, the results of which are listed in table 9.3.

The overall trend we see in all plots and for all systems is that the diffusion
constant is reasonably stable from 10 down to 6-7 Å from the silica matrix,
where it does a dip between 5 and 6 Å, goes over a peak near 5 Å, and then goes
almost linearly from this peak to zero at 3 Å. We see that the diffusion constant
for all systems follow this trend, even though the overall diffusion is different in
different systems.

We now look at the diffusion for the four reference systems, which are plotted
in fig. 9.3a. We see that system #1 has overall higher diffusion than system #2,
even though these two systems have very similar characteristics, as both consist
of a 86 Å wide flat pore. We notice a somewhat higher diffusion in the 14.4 Å

Section 2 Diffusion 103

3 4 5 6 7 8 9 10
r [Å]

0.0

0.5

1.0

1.5

2.0

2.5

D
[Å

2 /
ps
]

1e-1 Diffusion for reference systems

#1
#2
#3
#4

(a) Dashed lines are respectively a 14.4 Å
(red, #3) and a 28.8 Å (teal, #4) flat pore,
and solid lines are 86 Å wide flat pores.

3 4 5 6 7 8 9 10
r [Å]

0.0

0.5

1.0

1.5

2.0

2.5

D
[Å

2 /
ps
]

1e-1 Diffusion for rough fractures

#1
#2
#3
#4

(b) Dashed lines are respectively a 14.4 Å
(red, #3) and a 28.8 Å (teal, #4) narrow
rough fracture, and solid lines are random
rough fractures.

Figure 9.3: Diffusion constant D as function of the distance from the silica
matrix r. In (a) we have all reference systems with flat pores, and in (b) all
rough random fractures.

flat pore in system #3 than in the 28.8 Å flat pore in system #4. The diffusion
constant behaves very similarly in all four systems.

In fig. 9.3b we have the diffusion for the four random fracture systems. We
see that the diffusion constant behaves very similarly in all four systems, but
that in system #3, which is the 14.4 Å narrow fracture, we have overall lower
diffusion.

The bulk diffusion constants have been estimated in the two reference systems
with 86 Å wide flat pores (reference #1 and #2), and in rough system #1 and
#2, by measuring D for all water molecules further away from the silica matrix
than 10 Å. The results can be seen in table 9.3. The other four systems have
very narrow pores and fractures, with most of the water molecules closer to the
silica matrix than 10 Å, and as we see from fig. 9.3 the transport properties of
water in these regions are different from bulk water, so we have not been able to
estimate the diffusion of bulk-like water in these systems.

If we compare the bulk diffusion constants in table 9.3 with the plots in fig. 9.3,
we see that the diffusion constant has reached values close to the bulk value at
around 6-7 Å from the silica matrix.

In fig. 9.4a we have plotted diffusion for the two random fractures with varying

104 Results Chapter 9

System Bulk D [Å2/ps] N
Reference #1 0.202 48k
Reference #2 0.179 50k
Rough #1 0.198 4.3k
Rough #2 0.209 3.4k

Table 9.3: Bulk diffusion constant for water (for water molecules more than
10 Å from the silica matrix), and the number of water molecules used in the
calculations (N).

pore width (the two solid lines) together with all four reference systems (the four
dashed lines). We see that the behaviour of D in both the rough systems are
very close to the behaviour in reference system #1, which is the 86 Å wide flat
pore, and that the overall diffusion is lower in the three other reference system
than in the plotted rough fracture systems.

In fig. 9.4b we have plotted the diffusion for the two random narrow fractures
with uniform width (the two solid lines) together with all four reference systems
(the four dashed lines). We see that the diffusion in the 14.4 Å narrow fracture
(“Rough #3”) matches the the diffusion in reference system #3 very well, which
is a 14.4 Å flat pore. We also notice that the 28.8 Å narrow fracture has overall
higher diffusion than reference system #4, which has a 28.8 Å flat pore, but that
it matches reference system #1 very well, which has a 86 Å flat pore.

Section 3 Tetrahedral order parameter 105

3 4 5 6 7 8 9 10
r [Å]

0.0

0.5

1.0

1.5

2.0

D
[Å

2 /
ps
]

1e-1
Diffusion for random rough fractures

and reference systems

Rough #1
Rough #2
Ref #1

Ref #2
Ref #3
Ref #4

(a)

3 4 5 6 7 8 9 10
r [Å]

0.0

0.5

1.0

1.5

2.0

D
[Å

2 /
ps
]

1e-1
Diffusion for uniform width rough fractures

and reference systems

Rough #3
Rough #4
Ref #1

Ref #2
Ref #3
Ref #4

(b)

Figure 9.4: Diffusion constant (D) as function of distance from silica matrix
(r). Solid lines are (a) rough fracture system #1 and #2 (normal rough
fractures), and (b) the narrow uniform width fractures (fracture system #3
and #4). Dashed lines are the four reference systems, in both (a) and (b).

9.3 Tetrahedral order parameter

We have measured the thetrahedral order parameter for our four reference sys-
tems, and the four random fracture systems, and plotted the relative occurrence
(or probability) P (Q), for water molecules with different distances from the silica
matrix. We used used 150 bins for the Q-values, with ∆Q = 0.01, and bins of
∆r = 0.5 for the different distances to the matrix, for all measurements presented
here. The results are plotted in figs. 9.5 to 9.9. We have also measured the bulk
order parameter, which is plotted in fig. 9.5.

We have estimated P (Q) in bulk water by measuring the tetrahedral order pa-
rameter for all water molecules further from the silica matrix than 10 Å, in the
two reference systems with 86 Å wide flat pores. The results for bulk water can
be seen in fig. 9.5. We see that we get two peaks in the distribution, one just
above Q = 0.5 and one right below Q = 0.75. These results, and the two peaks,
fit well with the results of Kumar et al. in [19] for water at 300 K.

In fig. 9.6 we have plots of P (Q) for all four reference systems, and in fig. 9.7 we
have plots for all four random rough fracture systems. The overall trend we see
is that the different geometries and pore widths does not affect P (Q) a lot, but
we see a clear change in the structure of water as we get closer than 5.5 Å to the
silica matrix. From 6.5 to 5.5 Å P (Q) is very similar to bulk, but as we go closer

106 Results Chapter 9

-0.5 0.0 0.5 1.0
Tetrahedral order parameter Q

0.0

0.5

1.0

1.5

2.0

R
el
at
iv
e
oc
cu

rr
en

ce
P(

Q
)
[%

]

r = 10.0 Å

Tetrahedral order parameter for bulk water

Reference #1
Reference #2

Figure 9.5: Plot of tetrahedral order parameter for bulk water (water
molecules further than 10 Å from the silica matrix), in the two reference
systems with 86 Å wide flat pores (reference system #1 and #2). The average
Q is indicated by a vertical line.

than this the right peak get gradually lower, and P (Q) is more spread out. This
indicates a clear change in the structure of water molecules when we get close to
the silica matrix, a change that seems almost independent of the structure of the
surface of the matrix, and the width of the fracture.

We now look at fig. 9.6, where we have plotted P (Q) for all four reference systems.
We see that P (Q) is almost identical for all four reference systems, at all distances
from the silica matrix.

In fig. 9.7 we have plotted P (Q) for all four rough fracture systems, with random
fractures in solid lines and uniform width fractures in dashed lines. We see that
all four systems have very similar P (Q) from 3.0 to 5.0 Å, but at 5.5 Å and
further out the right peak near Q = 0.75 peak seems to rise faster for the two
narrow fractures of uniform width (#3 and #4, the two dashed lines) than for
the fractures with random width. At 6.0 and 6.5 Å the right peak for system #1
seems to start catching up to the uniform width fractures.

In fig. 9.8 we have plots of P (Q) for the two random rough fractures with varying
pore width (the solid lines), and for all four reference systems (the dashed lines).
We see that the two peaks in P (Q) generally lie lower for the rough fractures than
the reference systems, for distances smaller than 5.5 Å, but that this difference
disappears at 6.0 and 6.5 Å, where they all have bulk-like appearance. There are
no clear differences between the two rough fracture systems, other than a slightly
higher right peak for rough fracture system #1 at 6.5 Å.

In fig. 9.9 we have plots of P (Q) for the two random fractures with uniform width
(the solid lines), and for all four reference systems (the dashed lines). We again

Section 3 Tetrahedral order parameter 107

0.0

0.5

1.0

1.5

2.0 r = 3.0 Å

Ref. #1 Ref. #2 Ref. #3 Ref. #4

r = 3.5 Å

0.0

0.5

1.0

1.5

2.0 r = 4.0 Å r = 4.5 Å

0.0

0.5

1.0

1.5

2.0 r = 5.0 Å r = 5.5 Å

0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0 r = 6.0 Å

0.0 0.5 1.0

r = 6.5 Å

Tetrahedral order parameter for all reference systems

Tetrahedral order parameter Q

R
el
at
iv
e
oc
cu

rr
en

ce
P(

Q
)
[%

]

Figure 9.6: Plots of P (Q) for all reference systems, for different distances to the silica
matrix r. The solid lines are 86 Å wide flat pores, and the dashed lines respectively a
14.4 Å wide flat pore (#3, red) and a 28.8 Å wide flat pore (#4, teal).

108 Results Chapter 9

0.0

0.5

1.0

1.5

2.0 r = 3.0 Å

Rough #1 Rough #2 Rough #3 Rough #4

r = 3.5 Å

0.0

0.5

1.0

1.5

2.0 r = 4.0 Å r = 4.5 Å

0.0

0.5

1.0

1.5

2.0 r = 5.0 Å r = 5.5 Å

0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0 r = 6.0 Å

0.0 0.5 1.0

r = 6.5 Å

Tetrahedral order parameter for all rough fracture systems

Tetrahedral order parameter Q

R
el
at
iv
e
oc
cu

rr
en

ce
P(

Q
)
[%

]

Figure 9.7: Plots of P (Q) for all all rough fracture systems, for different distances to
the silica matrix r. The solid lines are random fractures generated from two different
surfaces, and the dashed lines are random fractures of uniform width, generated from
the same random surface repeated for the top and bottom of the fracture, with a
distance of respectively 14.4 Å (red, #3) and 28.8 Å (teal, #4) between the surfaces.

Section 3 Tetrahedral order parameter 109

0.0

0.5

1.0

1.5

2.0 r = 3.0 Å

Rough #1
Rough #2

Ref. #1
Ref. #2

Ref. #3
Ref. #4

r = 3.5 Å

0.0

0.5

1.0

1.5

2.0 r = 4.0 Å r = 4.5 Å

0.0

0.5

1.0

1.5

2.0 r = 5.0 Å r = 5.5 Å

0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0 r = 6.0 Å

0.0 0.5 1.0

r = 6.5 Å

Tetrahedral order parameter for two random rough fractures
and all reference systems

Tetrahedral order parameter Q

R
el
at
iv
e
oc
cu

rr
en

ce
P(

Q
)
[%

]

Figure 9.8: Plots of P (Q) for the two random rough fractures (“rough” #1 and #2,
solid lines), and all four reference systems (dashed lines).

110 Results Chapter 9

0.0

0.5

1.0

1.5

2.0 r = 3.0 Å

Rough #3
Rough #4

Ref. #1
Ref. #2

Ref. #3
Ref. #4

r = 3.5 Å

0.0

0.5

1.0

1.5

2.0 r = 4.0 Å r = 4.5 Å

0.0

0.5

1.0

1.5

2.0 r = 5.0 Å r = 5.5 Å

0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0 r = 6.0 Å

0.0 0.5 1.0

r = 6.5 Å

Tetrahedral order parameter for two uniform width random fractures
and all reference systems

Tetrahedral order parameter Q

R
el
at
iv
e
oc
cu

rr
en

ce
P(

Q
)
[%

]

Figure 9.9: Plots of P (Q) for the two random rough fractures of uniform width (solid
lines), with fractures respectively 14.4 Å (“rough #3”, blue solid line) and 28.8 Å
(“rough #4”, green solid line) wide, and all four reference systems (the dashed lines).

Section 5 Distance to nearest atom 111

see that the two peaks near Q = 0.5 and Q = 0.75 seems to be lower for the
rough fractures than the flat pores, at least up to 5.5 Å. As for the random rough
fractures, there are again no clear differences between the two rough fracture
systems with uniform width, other than a slightly higher peak for rough fracture
system #3 at 6.5 Å.

9.4 Distance to nearest atom

We have made 3d maps of the system labelled “rough fracture #2”, using the
method from section 7.6, which finds the distance to the nearest atom on a grid
of points. The results can be seen in figs. 9.10a and 9.10b, where we show slices
of the maps in the yz- and xy-plane. For the first figure we used a max distance
of 5 Å, while for the second one we used a max distance of 20 Å. The maps were
made from the molecular system after cutting out the atoms to make the pore and
passivating the dangling ends, but before filling the pore with water. A similar
map can me made by not including the water molecules in the calculations.

In fig. 9.10a we can clearly see the positions of the atoms in the silica matrix as
the dark blue dots, while the pores light up as red areas.

In fig. 9.10b we still see the positions of the atoms, but they are less visible now
since we have a bigger range for the colormap. We can still see the pores easily,
colored white, and we now also see some characteristics of the pore itself, where
it has a darker red color.

9.5 Manhattan distance to nearest atom

We have made 3d maps of the system labelled “rough fracture #2”, of the Man-
hattan distance to the nearest atom to each point on a grid, using the method
from section 7.7. See figs. 9.11a and 9.11b for the results, where we show slices
of the maps in the yz- and xy-plane.

We see that the 3d maps made using this method shows a lot of the same details
as the maps in figs. 9.10a and 9.10b, but we see that using the Manhattan distance
can make the results harder to interpret, since the Manhattan distance between
two points is generally shorter than the Euclidean distance, and we are not used
to interpreting the Manhattan distance. In molecular dynamics simulations it is
also unusual to use the Manhattan distance.

112 Results Chapter 9

5

0y

x

z

y
(a) Max distance rmax = 5.0 Å.

20

0y

x

z

y
(b) Max distance rmax = 20 Å.

Figure 9.10: Slices of 3d maps of the distance to the nearest atom in the system la-
belled “rough fracture #2”, generated using method from section 7.6, using a colormap
that goes from (a) 0 to 5 Å, and (b) 0 to 20 Å.

Section 5 Manhattan distance to nearest atom 113

5

0y

x

z

y
(a) Max distance rmax = 5.0 Å.

20

0y

x

z

y
(b) Max distance rmax = 20 Å.

Figure 9.11: Slices of 3d maps of the Manhattan distance to the nearest atom, in
the system labelled “rough fracture #2”, made using the method from section 7.7. We
have used colormaps from 0 to rmax, with (a) rmax = 8 Å, and (b) rmax = 30 Å.

Chapter 10

Discussion, conclusions and
future

10.1 Discussion

After doing a thorough study of the measurements done in the simulations, we
will now try to draw some conclusions from the different results we have found.
We will first discuss the individual results from each physical quantity we have
measured, before we try to put these results into perspective.

The results of the measurements of the water density in the different simulated
systems shows that some of our systems has much higher density than the other
systems, especially refence system #2-4. When filling the pores in these systems
with water we used a higher input density, so this was according to our intention,
and shows that the method we use for filling pores with water works as intended
for those systems. But we also used much higher input densities in rough fracture
system #3 and #4 than #1 and #2, and we did not measure higher water
density in those systems. This can be explained by looking at the geometry of
the fractures in system #3 and #4, which are very narrow fractures, respectively
14.4 and 28.8 Å wide. The method we use for filling the pores with water first
divides the system into cuboid voxels (with the size of the voxels calculated from
the wanted density), marks all voxels with an atom in them as occupied, and
then puts one water atom in each unoccupied voxel. This voxelation approach
has trouble when we use it on rough surfaces, as it will mark a lot of the voxels
near the surface as occupied, even though we in reality could fit several water
molecules near the surface. In a narrow pore, with a lot of surface area compared
to the pore volume, a lot of the voxels near the surface will be marked as occupied,
and the result is that we get a lower water density then we wanted.

115

116 Discussion, conclusions and future Chapter 10

When we look at the water density as function of distance to the silica matrix
we see the same behaviour in all systems, independently of the structure of the
pores and fractures. The density peaks at around 7-8 Å from the silica matrix,
and drop by almost 10% at 5 Å. This is a clear indication of interactions between
the silica matrix and the water molecules.

We also saw a trend in the peak in density, which appeared around 7-8 Å from
the silica matrix, but which seemed to move closer to the silica matrix as we
increased the bulk density. It seems like the increased water pressure makes the
water molecules retain bulk-like behaviour closer to the silica surface.

In the measurements of the diffusion we saw clear changes in the transport prop-
erties as we got close to the silica matrix. We saw the same behaviour in all
simulations, independent of the pore geometry. The diffusion constant was sta-
ble up to around 7 Å from the silica matrix, where it made a dip near 5.5 Å,
before reaching a local peak at 5 Å, and then going linearly to zero from 5 to 3
Å. We again see clear results of interactions between the water molecules and the
silica matrix. We know that silica is hydrophilic, so when the diffusion goes to
zero the cause can be that the water molecules are attracted to the silica surface,
which slows down the self diffusion. We will also have an effect of water molecules
colliding with the silica surface, which further slows down diffusion.

When comparing reference systems #1 and #2 which have the exact same pore
geometry and dimensions, we see a clearly reduced diffusion in one of the sys-
tems. As the only difference between those two systems is the density, we see an
indication an increase in density lowers self diffusion. When we increase density
we expect collisions between water molecules to happen more often, reducing the
mean free path of the molecules, and slowing down diffusion.

Although the diffusion all systems had very similar behaviour, rough fracture
system #3, which is a 14.4 Å narrow rough fracture, displayed a somewhat
reduced diffusion constant at all distances from the matrix, compared to the
other rough fracture systems. We should compare this to to rough fracture
system #4, which has a similar fracture, but twice as wide (28.8 Å). This system
shows no reduction in the diffusion, but almost perfectly matches the diffusion
in a 86 Å wide flat pore (reference system #1). We also compare it to reference
system #3, which has a 14.4 Å flat pore. This system has very similar diffusion
to rough fracture system #3, although this system also has a somewhat higher
water density, which may cause reduced diffusion. We conclude with that the
reduction in diffusion in rough fracture system #3 is caused by the width of the
fracture itself, since the water density in this system is similar to the density in
the other rough fracture systems.

When measuring the tetrahedral order parameter we saw similar behaviour in all
systems, independent of pore geometry and structure. We observed clear changes

Section 2 Conclusions 117

in the structure of the water molecules as we go close to the silica matrix. At
5.5 Å and further away from the matrix the water had close to bulk properties
in all cases, but as we moved closer than this one of the observed peaks in the
distribution was reduced, by almost a factor 2 by the time we get to 3.5 Å.
This is a clear indication that the silica matrix is affecting the internal structure
in the water, and the arrangement of the water molecules. This can again be
caused by the hydrophilic silica, which can make the water molecules arrange
themselves in a structure similar to the nearby silica structure. Since water has
strong hydrogen bonds between water molecules, this effect and arrangement can
be retained several layers of water molecules from the silica matrix, beyond the
reach of the force from the silica itself.

Although the tetrahedral order parameter was very similar for all systems in-
dependent of pore geometry and other characteristics, we see that the reference
systems are more similar to each other than to the rough fracture systems, and
that the rough fracture systems are more similar to each other than to the ref-
erence systems. The only real deviation we see is in rough fracture system #3,
which is a 14.4 Å narrow fracture. For this system we see that one of the peaks in
the distribution of tetrahedral order paramters seems to rise a bit faster when we
increase the distance to the silica matrix, compared to the other rough fracture
systems.

10.2 Conclusions

To investigate the structure of water trapped in pores in nanoporous silica we
have measured the density and tetrahedral order parameter of water, as function
of the distance to the silica matrix. We found that the structure and density of
water changed drastically as we got within 6-8 Å of the silica matrix.

When measuring the water density we saw that it seemed to decrease by around
10% of the bulk density when we got to around 5 Å from the silica matrix, before
increasing to at higher than the the bulk density at 3 Å from the matrix. The
minimum point around 5 Å seemed roughly constant for all pore geometries and
bulk densities, but the falloff for the density, around 7 Å seemed to move closer
to the silica matrix as we increased the bulk density.

When we measured the tetrahedral order parameter for water molecules, a num-
ber between 0 and 1 that tells us something about how “tetrahedral” a set of four
points is, we saw that the water molecules had the expected structure in bulk
conditions (more than 10 Å from a silica matrix), but that as we got to 5.5 Å
and closer to the silica matrix this parameter was disturbed by the silica matrix,
and we saw what appeared to be changes in the intermolecular structure.

118 Discussion, conclusions and future Chapter 10

This change in the structure and density of the water molecules can be caused
by the hydrophilic nature of silica, and the interactions between the silica matrix
and the water molecules. What may happen is that the water molecules close
to the silica matrix are attracted to the matrix, and they arrange themselves in
a structure similar to the silica structure. Since the water molecules has strong
hydrogen bonds between them, this change in structure will be retained several
layers of water molecules into the water, beyond the reach of the water-silica
interaction.

To study the transport properties of water in nanoporous silica we measured the
self-diffusion constant of the water, both in bulk-like water far from the silica
surface, and as function of the distance to the silica surface, closer than 10 Å
from the silica matrix. We found that the diffusion was approximately equal to
the bulk at up to around 7 Å from the silica matrix, where it started decreasing.
The diffusion constant decreased approximately linearly from 5 to 3 Å from the
silica matrix, at which point all diffusion stopped. This behaviour can again be
caused by the surface interaction between water and silica, where the silica attract
the water molecules, and hinders the movement and diffusion. This attraction
causes the water molecules to arrange in a certain way near the silica surface,
which again affects the next layers of water molecules via the strong hydrogen
bonds between water molecules, and we see a reduction in diffusion several up 7
Å from the silica matrix.

When measuring diffusion we also noticed that the self diffusion decreased with
increasing water density, which can be caused by the reduced mean free path in
water with increased density.

Perhaps the most interesting thing we saw during our simlulations was that the
geometries of the fractures and pores had little to no effect on the water, as
water in both completely flat pores and in very rough and random fractures
seemed to exhibit almost the same characteristics, both in transport properties
and structure. The system that deviated the most from this was the system with
a narrow 14.4 Å rough fracture, which had about the same water density as the
other rough fracture systems, but showed a somewhat reduced diffusion at all
distances from the matrix, compared to the other rough fractures. This system
also showed some differences in the tetrahedral order parameter.

10.3 Future

When doing measurements on the structure and transport properties of water we
were surprised to see that the simulations we did showed little differences, even
though the structure and characteristics of the different systems we simulated

Section 3 Future 119

were very different. We saw some interesting differences when simulating systems
with pores as narrow as 14.4 Å, and a more extensive and thorough study of pores
of this size, and smaller, could turn out to be fruitful.

One big problem if one wants to study narrow pores is, as we discovered, control-
ling the density of water in the pores. The method we developed and used for
filling pores and fractures with water works good in large fractures and far from
the silica surface, but in narrow fractures with a lot of silica surface the voxe-
lation technique breaks down, and we are unable to insert the number of water
molecules needed to get the density we want. To do further studies of water in
nanoporous silica one should thus try to improve this method for filling pores
with water, or develop a completely new method for filling narrow pores with
water. A grand canonical Monte Carlo based approach might work well here, or
perhaps some way of starting to fill the pore with water at the silica surface, so
the surface is properly saturated.

One of the hurdles in studying any surface, or a fractured or porous system, is
defining where the surface actually is. We circumvented this problem by defining
the distance to the surface as the distance to the nearest silicon atom, since we
only needed the distance to the surface. This works well in a lot of cases, but
partly breaks down when we go to distances similar to or smaller than the average
distances between the atoms the surface consist of (closer than about 3 Å in our
case). A different solution is to define the surface as a set of mathematical planes,
and the most practical thing to do here is probably to define the surface as sets
of triangles. Triangulation of surfaces and volumes is a method studied a lot
both by mathematicians and by computer graphics developers, so there are a lot
of efficient methods for doing calculations on these kinds of data. Although a
method based on triangles seem good at first glance, one must ask if it is even
possible to define the surface of something as a plane at an atomic scale. Because
at those scales a surface actually consist of atoms and molecules, and not simple
planes.

An improvement that could improve on our results would be to develop a method
that generates fractures with actual uniform width across the whole system, since
the “uniform width” fractures we simulated only really had uniform distance
between the two surfaces in the z-direction, and thus the actual width of the
pore varied throughout the system, although it is limited by and related to the
distance between the two surfaces.

Lastly we would have liked to measure the diffusion normal to and parallell to
the silica surfaces in our systems. As this would require us to locate and define
the surface, which we have seen is a complicated problem, we were unable to do
this.

Part IV

Appendices

121

Appendix A

Verlet integrators

The Verlet algorithm[44] is a simple method for numerically integrating second
order differential equations of the form

d2r(t)
dt2 = F

[
r(t), t

]
= F (t).

The algorithm has several equivalent forms, and the form originally used by Verlet
is

r(t+ ∆t) ≈ 2r(t)− r(t−∆t) + a(t)∆t2,

where ∆t is the timestep, and a(t) is the velocity at time t. An equivalent
formulation, usually called the velocity Verlet algorithm, has the form

r(t+ ∆t) = r(t) + v(t)∆t+ F (t)
2m ∆t2

v(t+ ∆t) = v(t) + F (t+ ∆t) + F (t)
2m ∆t.

The velocity Verlet algorithm is the most used form of the algorithm, and it has
a accumulated error of O(∆t2), as we show in appendix A.2.3.

We will now first derive the regular Verlet and the velocity Verlet algorithms
using Taylor expansions, and then using the Liouville formulation of classical
mechanics.

123

124 Verlet integrators Chapter A

A.1 Deriving the Verlet algorithm using Taylor
expansions

To derive the algorithm we first let

dr(t)
dt = v(t),

and

dv(t)
dt = a(t) = F (t)

m
.

We then do a Taylor expansion of r(t±∆t) around time t

r(t+ ∆t) = r(t) + v(t)∆t+ a(t)∆t2
2 + d3r(0)

dt3
∆t3
6 +O(∆t4), (A.1)

r(t−∆t) = r(t)− v(t)∆t+ a(t)∆t2
2 − d3r(0)

dt3
∆t3
6 +O(∆t4). (A.2)

By summing these two equations we get

r(t+ ∆t) + r(t−∆t) = 2r(t) + a(t)∆t2 +O(∆t4),

which by rearranging can be written as

r(t+ ∆t) ≈ 2r(t)− r(t−∆t) + a(t)∆t2.

This is the equation used to update the positions in the regular Verlet algorithm.
We see that the estimate of the new position contains an truncation error for one
timestep ∆t of the order O(∆t4).

The Verlet algorithm does not use the velocity to compute the new position, but
we can find an estimate of the velocity by taking the difference between eqs. (A.1)
and (A.2)

r(t+ ∆t)− r(t−∆t) = 2v(t)∆t+O(∆t3),

which by rearranging can be written as

v(t) = r(t+ ∆t)− r(t−∆t)
2∆t +O(∆t2).

We see that this estimate of the velocity has a truncation error of the order
O(∆t2), compared to the error in the position O(∆t4).

Section 2 Deriving the Verlet algorithm using Taylor expansions 125

A.1.1 Velocity Verlet

A modification of the Verlet algorithm usually called the velocity Verlet algorithm
can be derived in a similar way. We have the same Taylor expansion of r(t+ ∆t)
around t as before

r(t+ ∆t) = r(t) + v(t)∆t+ a(t)∆t2
2 +O(∆t3), (A.3)

and now we also expand v(t+ ∆t) around t

v(t+ ∆t) = v(t) + a(t)∆t+ d2v(t)
dt2

∆t2
2 +O(∆t3). (A.4)

We now need an expression for d2v(t)
dt2 , which can be found by a Taylor expansion

of dv(t+∆t)
dt

dv(t+ ∆t)
dt = dv(t)

dt + d2v(t)
dt2 ∆t+O(∆t2),

which by rearranging and multiplying with ∆t
2 gives

d2v

dt2
∆t2
2 =

(
dv(t+ ∆t)

dt − dv(t)
dt

)
∆t
2 +O(∆t3)

=
[
a(t+ ∆t)− a(t)

]∆t
2 +O(∆t3).

Inserting this into eq. (A.4) we get

v(t+ ∆t) = v(t) + a(t)∆t+
[
a(t+ ∆t)− a(t)

]∆t
2 +O(∆t3)

= v(t) +
[
a(t) + a(t+ ∆t)

]∆t
2 +O(∆t3). (A.5)

So the total velocity Verlet algorithm with truncation of the higher-order terms
is

r(t+ ∆t) = r(t) + v(t)∆t+ a(t)∆t2
2 (A.6)

v(t+ ∆t) = v(t) +
[
a(t) + a(t+ ∆t)

]∆t
2 , (A.7)

with the truncation error for one timestep ∆t being of the order O(∆t3) for both
the position and the velocity.

126 Verlet integrators Chapter A

A.2 Deriving velocity Verlet using Liouville op-
erator

We will now derive the velocity Verlet algorithm in a more rigorous way, using
the Liouville formulation of classical mechanics. This approach will give us better
insight into why the algorithm is so powerful, and a good estimate of the global
(or accumulated) error of this algorithm. The derivation closely follows section
4.3.3 in [13].

A.2.1 Liouville operator

We have a system consisting of N particles, with positions r and momenta p.
We define a function of these variables f(r(t),p(t)) = f(t), that has the time
derivative (denoted by a dot)

ḟ(t) = ṙ
∂f(t)
∂r

+ ṗ ∂f(t)
∂p

= iL̂f(t). (A.8)

where we have defined the Liouville operator, iL̂, as

iL̂ = ṙ
∂

∂r
+ ṗ ∂

∂p
= iL̂r + iL̂p

where iL̂r and iL̂p denotes the left and right part if this operator, respectively.
We can formally integrate eq. (A.8) to obtain

f(t) = eiL̂tf(0), (A.9)

which allows us to define the time evolution operator Û = exp(iL̂t). We see that
this integration doesn’t get us any closer to finding f(t), since evaluating the
right-hand side is equivalent to the exact integration of the classical equations
of motion. To get around this we define the time evolution operator for posi-
tions Ûr(t) = exp(iL̂rt), and try applying just this operator. If we do a Taylor
expansion of the exponential we get

Ûr(t)f(0) = f(0) + iL̂rtf(0) + (iL̂rt)2

2! f(0) + . . .

= exp
(
ṙ(0)t ∂

∂r

)
f(0)

=
∞∑
n=0

(
ṙ(0)t

)n
n!

∂n

∂rn
f(0)

= f
{[
r(0) + ṙ(0)t

]
,p(0)

}
,

Section 2 Deriving velocity Verlet using Liouville operator 127

where r(0) and p(0) are the positions and momenta at t = 0. We see that this
has the effect of moving the positions r a step t forward in time according to
their derivative. It’s easy to see that the equivalent momentum time evolution
operator Ûp(t) = exp(iL̂pt) has a similar effect on the momenta.

A.2.2 Velocity Verlet

In a molecular dynamics simulation we would like to be able to apply these
operators independently, since

Û = eiL̂ = eiL̂r+iL̂p ,

but unfortunately, for two noncommuting operators Â and B̂ we have

eÂ+B̂ 6= eÂeB̂.

To solve this we can use the following Trotter identity

eÂ+B̂ = lim
P→∞

(
eÂ/2P eB̂/P eÂ/2P

)P
.

Applying the operators an infinite number of times (P →∞) is unpractical, but
fortunately the expression can be truncated for large but finite P as

eÂ+B̂ =
(
eÂ/2P eB̂/P eÂ/2P

)P
eO(1/P 2). (A.10)

To derive the velocity Verlet scheme using this truncation we first identify the
operators Â and B̂ as

Â

P
≡ iL̂pt

P
≡ ∆tṗ(0) ∂

∂p

B̂

P
≡ iL̂rt

P
≡ ∆tṙ(0) ∂

∂r

where ∆t = t/P . We can now identify the truncated time evolution operator
Û∗(t) as follows

Û(t) =
(
eiL̂p∆t/2eiL̂r∆teiL̂p∆t/2

)P
eO(1/P 2)

≈
(
eiL̂p∆t/2eiL̂r∆teiL̂p∆t/2

)
= Û∗(t), (A.11)

and the the truncated operator for moving one timestep forward as

Û∗(∆t) = eiL̂p∆t/2eiL̂r∆teiL̂p∆t/2. (A.12)

128 Verlet integrators Chapter A

To see the effect of the operator Û∗(∆t) on the coordinates and momenta of the
particles we first apply exp(iL̂p∆t/2) to f(0), and get

eiL̂p∆t/2f(0) = f

{
r(0),

[
p(0) + ∆t

2 ṗ(0)
]}

.

We then apply exp(iL̂r∆t) and get

eiL̂r∆tf

{
r(0),

[
p(0) + ∆t

2 ṗ(0)
]}

= f

[
r(0) + ∆tṙ

(
∆t
2

)]
,

[
p(0) + ∆t

2 ṗ(0)
] ,

and finally we apply exp(iL̂p∆t/2) once more, and get

f

[
r(0) + ∆tṙ

(
∆t
2

)]
,

[
p(0) + ∆t

2 ṗ(0) + ∆t
2 ṗ(∆t)

] .

If we look at the total effect of applying the operator we see that

r(0)→ r(0) + ∆tṙ
(

∆t
2

)
(A.13)

p(0)→ p(0) +
[
ṗ(0) + ṗ(∆t)

]∆t
2 . (A.14)

Using the relations p = mv, ṗ = F , and, if we assume that the forces only
depend on the positions, F (r(t)) = F (t), the relation

ṙ(∆t/2) = r(0) + F (0)
m

∆t
2 ,

we can rewrite eqs. (A.13) and (A.14) to

v(∆t) = v(0) +
[
F (0)
m

+ F (∆t)
m

]
∆t
2

r(∆t) = r(0) + v(0)∆t+ F (0)
m

∆t2
2 ,

which is exactly the velocity Verlet algorithm, as we saw in eqs. (1.3) and (1.4).

A.2.3 Error in velocity Verlet

When we approximate the exact time evolution operator for one timestep Û(∆t)
with Û∗(∆t), going from eq. (A.10) to eqs. (A.11) and (A.12), we do a trunca-
tion

Û(∆t) = Û∗(∆t)eO(1/P 2) ≈ Û∗(∆t).

Section 2 Deriving velocity Verlet using Liouville operator 129

To investigate the error introduced by this truncation we express it as an error
operator ε̂

eiL̂p∆t/2eiL̂r∆teiL̂p∆t/2eO(1/P 2) = eiL̂∆t+ε̂,

which, using Campbell-Baker-Hausdorff expansion, can be expressed in terms of
the commutators of Lp and Lr as

ε̂ =
∞∑
n=1

(∆t)2n+1c2n+1, (A.15)

where cm denotes a combination of mth-order commutators.

From this it can be shown that, if the expansion in eq. (A.15) converges, Verlet
style integrators will rigorously conserve a pseudo-Hamiltonian, and that the
difference between this pseudo-Hamiltonian and the actual Hamiltonian is of
the order (∆t)2n, where n depends on the order of the algorithm[13, section
4.3.3].

Appendix B

Nosé-Hoover thermostats

We will here derive the Nosé-Hoover thermostat. We closely follow the derivation
in section 6.1.2 [13]. See also [30, 15] for more information.

To show how the thermostat works we need to use the Lagrangian and Hamilto-
nian formulation of classical mechanics. The Lagrangian L of a classical N -body
system is defined as the kinetic energy minus the potential energy U

L = K − U

and what is called the generalized momentum pi of a generalized coordinate qi
defined as

pi = ∂L
∂q̇i

, (B.1)

where we denote the time derivative by a dot. These generalized coordinates
and momenta are not bound to any one coordinate system, and may be any
quantitative attribute of the system.

What the Nosé-Hoover thermostat does is to introduce an additional coordinate
s to the Lagrangian, creating a virtual, extended system, with the following
Lagrangian[30]:

LNosé =
N∑
i=1

mi

2 s2ṙ2
i − U(r) + Q

2 ṡ
2 − 3NkBT ln s, (B.2)

where Q is an effective “mass” associated with s, and ri is the generalized coor-
dinate from earlier, interpreted as a virtual position of an atom using cartesian
coordinates. The momenta of this virtual system follow from eqs. (B.1) and (B.2)

131

132 Nosé-Hoover thermostats Chapter B

as

pi = ∂L
∂ṙi

= mis
2ṙi

ps = ∂L
∂ṡ

= Qṡ.

This gives the following Hamiltonian for the extended system

HNosé =
N∑
i=1

p2
i

2mis2 + U(r) + p2
s

2Q + 3NkBT ln s, (B.3)

It can be shown that we can relate the generalized coordinates to real variables
(real variables indicated by a prime) as follows

r′ = r

p′ = p/s

s′ = s

∆t′ = ∆t/s. (B.4)

From eq. (B.4) we see that s can be interpreted as a scaling factor of the time
step.

From the Hamiltonian eq. (B.3) we can derive the equations of motion for the
virtual variables r, p, and t, and the real variables r′, p′, and t′ [15]

dr′i
dt′ = s

dri
dt = pi

mis
= p′i
mi

dp′i
dt′ = s

d(pi/s)
dt = dpi

dt −
1
s
pi

ds
dt = −∂U(r′)

∂r′i
− s′p′s

Q
p′i

1
s

ds′
dt′ = s

s

ds
dt = s′p′s

Q

d(s′p′s/Q)
dt′ = s

Q

dps
dt =

 N∑
i=1

p′2i
mi

− 3NkBT

 /Q.

These equations can further be simplified if we introduce a thermodynamic fric-
tion coefficient ξ = s′p′s/Q and drop the primes. We then get the following

Section 0 133

equations of motion

ξ = sps
Q

(B.5)

ṙi = pi
m

(B.6)

ṗi = − ∂U(r)
∂ri

− ξpi (B.7)

ξ̇ =

 N∑
i=1

p2
i

mi

− 3NkBT

 /Q (B.8)

List of Figures

1.1 Plot of the Lennard-Jones potential, as stated in eq. (1.1). Using
the parameters usually used for simulating Argon, σ = 3.405 Å
and ε = 0.010318 eV[13]. 10

1.2 An illustration of cell lists in 2 dimensions. We truncate the po-
tential at rcutoff by only calculating the force between atom i and
all atoms in the cell of that atom, and between that atom and all
atoms in the 8 neighbor cells (26 neighbor cells in 3 dimensions). 17

3.1 Plot of the relative energy change in a molecular dynamics simu-
lation of water in nanoporous silica, with a total of approximately
400 000 atoms, 111k SiO2 units and 19k H2O-units. Simulations
were done in the NV E-ensemble, and we have plotted 100 000
timesteps of 0.050 picoseconds. 32

3.2 A randomly generated fracture. 35

4.1 Samples of fractional Brownian motion (fBm) with different Hurst
exponents, generated using the built-in Matlab function wfbm, which
uses uses a wavelet-based synthesis method[1] for generating fBm. 40

4.2 Illustration of three extreme cases for the parameter θ in DMA, on
a surface. The dots are points where the main surface is defined,
the red star is the point (km, jm), and the black square marks the
subsurface, and the points averaged over to calculate f̄n(i, j) in
eq. (4.2). The illustrations use n = 3. 43

4.3 Plot of the Hurst exponent against the exponent used as input
when generating the signals, as estimated by the detrending mov-
ing average method, used on data from four different synthetic
signals, and for three different values of the parameter θ used in
DMA. For the 1d methods we have averaged over 1000 samples
for each point, and for synth2 we have averaged over 100 samples,
for input Hurst exponents between 0.05 and 0.95 in steps of 0.1.
All methods except synth2 generate 1-dimensional signals, while
synth2 generates a 2-dimensional signal. 45

135

136 List of Figures Chapter B

5.1 Illustration of the midpoint displacement method in 1 dimension.
We increase the number of points from 2 to 9 using 3 iterations. . 48

5.2 Illustration of the two steps used in the diamond square algorithm
for generating random surfaces. The grey points are old points,
the black points are new points, and the red points are the points
used in the calcuation of the averages when generating the new
points. 50

5.3 The diamond-square algorithm applied once on a grid of 3 × 3
points, increasing the number of points from 9 to 25. The orange
square points are generated by the square-step (see fig. 5.2a), and
the blue star-shaped points by the diamond-step (see fig. 5.2b). . 51

5.4 A surface with resolution 33× 33 created using the midpoint dis-
placement method called successive random additions. 54

5.5 Plot of the Hurst exponent measured using detrending moving
average (DMA), as function of the input Hurst exponent to the
synthesizing method. The dashed grey line indicates a measured
Hurst exponent of 0.75, the solid grey line a measured exponent
exactly equal to the input exponent (Hin = Hout). The green
lines are for surfaces created using periodic boundary conditions
(PBC), the red lines using non-periodic boundaries, the dashed
lines using successive random additions (SRA), and the solid lines
using the regular midpoint displacement method (MDM). We used
100 samples for each point, and input Hurst exponents between 0
and 1.2 in steps of 0.1. We have plotted the standard deviation
in each point for SRA with periodic boundary conditions, and the
standard deviation is about the same for the other combinations. 55

6.1 β-cristobalite unit cell, with 8 silicon atoms and 16 oxygen atoms. 64
6.2 Plot of the temperature (in kilo-Kelvin) as function of timesteps

when melting and cooling down a silica system, using the Berend-
sen thermostat. We use timesteps of 0.050 picoseconds, and use
2 500 timesteps with the thermostat turned on, and then 10 000
timesteps to let the system thermalize (with the thermostat off),
for each step in temperature. 65

6.3 Visualizations of the different stages of initialization of a fracture
in silica filled with water. We show a 75 × 75 × 25 Å slice of a
much larger system (172 Å)3. The silicon atoms are yellow, the
silica-oxygen blue, and hydrogen and water-oxygen red. 66

6.4 Illustration of four different incomplete silica tetrahedra, with re-
spectively one, two, three and no missing oxygen atoms ((d) is a
complete silica tetrahedra). 68

Section 0 List of Figures 137

6.5 Illustration of a method for finding atoms and voxels at the surface
of a fracture. All gray voxels are occupied voxels (with at least
one atom in them), and the dark gray voxels are the voxels with
at least one unoccupied neighbor voxel. 70

6.6 Example of the result of the passivation procedure. Here the oxy-
gen and hydrogen molecules are red, silicon atoms are yellow, and
silicon-oxygen atoms are light yellow. 70

6.7 To find voxels that make up the void/pore in we can either a)
mark the voxel each existing atom belongs in as occupied, or b)
mark all voxels within a radius from each atom as occupied. We
can assign a different radius to each atom. We have illustrated
using part of a silica tetrahedra, with one silicon atom (the large
blue dot) and two oxygen atoms (the smaller red dot). The center
of each voxel is marked by a dot 73

7.1 Plot of the number of atoms in each bin, when using the distance
to the nearest atom for binning. 77

7.2 Illustration of binning when using distance to nearest silicon atom
as definition of distance to silica matrix (rSi), vs. z-distance (rz). . 77

7.3 Illustration of Voronoi cells in 2 dimensions. Freely after Wikipedia
Commons[47]. 84

7.4 Rendering of Voronoi cells in 3 dimensions, in a system of 27 par-
ticles. Voronoi cells created using the C++-library Voro++[34, 33],
and rendered using the program povray[31]. 84

7.5 Illustration of how we find the diffusion constant, using two dif-
ferent time origos, with 40 timesteps of 0.050 picoseconds for each
time origo. We find the diffusion constant as the gradient of
〈r2(t)〉/6 for the 25 last timesteps for each origo. We then use
the average of the gradients for each time origo as our approxima-
tion of D. 86

7.6 Illustration of the angles and points involved in the calculation of
the tetrahedral order parameter. The blue dots are points, in our
case usually water molecules. We have the center point k, and its
four nearest neighbors. θikj is the angle between point i, k and j,
as indicated by the orange line. 86

8.1 “Rough fracture #1”, a randomly generated fracture with varying
width. Generated from two random surfaces. The size of this
system is 179× 179× 179. 92

8.2 “Rough fracture #2”, a randomly generated fracture with varying
width. Generated from two random surfaces. The size of this
system is 172× 172× 172. 93

138 List of Figures Chapter B

8.3 “Rough fracture #3”, a randomly generated fracture generated
from one surface repeated for the top and bottom half, with 14.4
Å between the surfaces, giving approximately uniform width of
the pore. The size of this system is 172× 172× 172. 94

8.4 “Rough fracture #4”, a randomly generated fracture generated
from one surface repeated for the top and bottom half, with 28.8
Å between the surfaces, giving approximately uniform width of
the pore. The size of this system is 172× 172× 172. 95

8.5 Reference systems #1 and #2, 86 Å wide flat pores. Both these
systems have size 179× 179× 179. 96

8.6 Reference systems #3 and #4, respective a 14.4 and a 28.8 Å wide
flat pore. Both these systems have size 143× 143× 57. 96

9.1 Water density (ρ) as function of distance to silica matrix (r) in
(a) all four reference systems (flat pores) and (b) rough fracture
systems. 98

9.2 Density of water in all systems, as function of distance from the
silica matrix. Dashed lines are reference systems, and solid lines
rough fracture systems. In (b) the density has been normalized
against the approximate bulk density, estimated from the density
at 10 Å from the silica matrix (see “Approx ρ at 10 Å” in table 9.2
for these normalization factors). 101

9.3 Diffusion constant D as function of the distance from the silica
matrix r. In (a) we have all reference systems with flat pores, and
in (b) all rough random fractures. 103

9.4 Diffusion constant (D) as function of distance from silica matrix
(r). Solid lines are (a) rough fracture system #1 and #2 (nor-
mal rough fractures), and (b) the narrow uniform width fractures
(fracture system #3 and #4). Dashed lines are the four reference
systems, in both (a) and (b). 105

9.5 Plot of tetrahedral order parameter for bulk water (water molecules
further than 10 Å from the silica matrix), in the two reference sys-
tems with 86 Å wide flat pores (reference system #1 and #2). The
average Q is indicated by a vertical line. 106

9.6 Plots of P (Q) for all reference systems, for different distances to
the silica matrix r. The solid lines are 86 Å wide flat pores, and
the dashed lines respectively a 14.4 Å wide flat pore (#3, red) and
a 28.8 Å wide flat pore (#4, teal). 107

Section 0 List of Figures 139

9.7 Plots of P (Q) for all all rough fracture systems, for different dis-
tances to the silica matrix r. The solid lines are random fractures
generated from two different surfaces, and the dashed lines are
random fractures of uniform width, generated from the same ran-
dom surface repeated for the top and bottom of the fracture, with
a distance of respectively 14.4 Å (red, #3) and 28.8 Å (teal, #4)
between the surfaces. 108

9.8 Plots of P (Q) for the two random rough fractures (“rough” #1
and #2, solid lines), and all four reference systems (dashed lines). 109

9.9 Plots of P (Q) for the two random rough fractures of uniform width
(solid lines), with fractures respectively 14.4 Å (“rough #3”, blue
solid line) and 28.8 Å (“rough #4”, green solid line) wide, and all
four reference systems (the dashed lines). 110

9.10 Slices of 3d maps of the distance to the nearest atom in the sys-
tem labelled “rough fracture #2”, generated using method from
section 7.6, using a colormap that goes from (a) 0 to 5 Å, and (b)
0 to 20 Å. 112

9.11 Slices of 3d maps of the Manhattan distance to the nearest atom, in
the system labelled “rough fracture #2”, made using the method
from section 7.7. We have used colormaps from 0 to rmax, with
(a) rmax = 8 Å, and (b) rmax = 30 Å. 113

List of Tables

8.1 An overview of the 8 different systems we have done experiments
on. “Flat fracture” 1 through 4 are reference systems, that consist
of a silica slab with a single flat fracture filled with water. “Rough
fracture” 1 through 4 consist of a silica slab with different water-
filled fractures with different geometries. φ is the approximate
porosity of the system, defined as the volume of the fracture rela-
tive to the volume of the whole system. r is the distance between
the surfaces used to create the fracture. N is the total number
of atoms (silicon, oxygen and hydrogen), NSiO2 is the number of
SiO2-units, and NH2O is the number of water molecules. 90

9.1 Estimated bulk water densities, and the number of water molecules
used in the calculations. Estimated using Voronoi tesselation, av-
eraged over voronoi volumes for all water-oxygen atoms further
away from silica matrix than 10 and 30 Å (hydrogen atoms were
removed before Voronoi tesselation). 99

9.2 A comparison of the estimated and measured bulk water density
in the systems we have simulated, with the input density we used
when filling the fractures with water. “Approx ρ” is the density we
see at 10 Å from the silica matrix, and “Measured ρ” is the average
density for atoms further away from the silica matrix than 10 Å. . 102

9.3 Bulk diffusion constant for water (for water molecules more than
10 Å from the silica matrix), and the number of water molecules
used in the calculations (N). 104

141

List of listings

1.1 An example of a typical implementation of a molecular dynamics
program using object-oriented programming. See listings 1.2, 1.4
and 1.9 for examples of implementations of the functions calcu-
lateForces, integrateEquationsOfMotion, and sample. 8

1.2 Implementation of calculateForces from listing 1.1. See list-
ing 1.3 for example implementation of calculateTwoParticleForce. 11

1.3 Implementation of calculateTwoParticleForce from listing 1.2,
using the Lennard-Jones potential. 11

1.4 Implentation of integrateEquationsOfMotion from listing 1.1, us-
ing regular Verlet integration. 13

1.5 An example of how to find the distance between two points u and v
in a periodic system of size systemSize using the minimum image
convention. We calculate the distance squared to avoid taking the
square root, since this is a slow operation. 16

1.6 An example of an implementation of the force calculation cal-
culateForces from listing 1.1, using the Lennard-Jones potential
with a cutoff length for the force, and cell lists. Notice that we do
not use Newton’s third law, to simplify the example. 18

1.7 An example of an implementation of sortAtomsIntoCells from
listing 1.6. This listing shows how to sort atoms into cells for the
cell list optimization described in section 1.5. 19

1.8 An example of an implementation of calculateForceFromNeigh-
borCells from listing 1.6. This listing shows how to calculate the
force on an atom (atom1), from the atoms in the cell it belongs to
(cells[i1][j1][k1]), and from the atoms in all 26 neighbor cells. 19

1.9 Implementation of the function sample from listing 1.1. See list-
ing 1.10, listing 1.11, and listing 7.5 for example implementation
of the functions used. 20

1.10 An example of how to calculate the temperature in a molecular
dynamics simulation. Example implementation of temperature-
Sample from listing 1.9. 21

143

144 List of listings Chapter B

1.11 An example of how to calculate the pressure in a molecular dy-
namics simulation. Example implementation of pressureSample
from listing 1.9. Note that this function needs the temperature
of the system as input, and assumes that the system is homoge-
neous, so we can estimate the density using ρ = N/V . We assume
that the contribution to the pressure from each atom

∑
i<j F (rij) ·

rij (stored as atom->pressure()) has been calculated previously.
This is usually calculated while calculating the forces between the
atoms, since we need F (rij). See section 1.6.2 for more information. 22

2.1 Example of how to implement the Berendsen thermostat. 24

7.1 An example of how to find the neighbor atoms within a given dis-
tance (radius) of all atoms. This example assumes a cubic system
of size systemSize. See listings 7.2 and 7.3 for example implenta-
tions of sortAtomsIntoVoxels and findAtomsWithinRadius. . . . 80

7.2 Example of implementation of sortAtomsIntoVoxels from listing 7.1,
for sorting atoms into voxels with size voxelSize. We use the floor
function to get the index of the voxel each atom belongs in, using
zero-based numbering. 81

7.3 Example implementation of findAtomsWithinRadius from listing 7.1.
See listing 7.4 for an example implementation of calculateDis-
tanceSquaredBetweenAtoms. 81

7.4 Example implementation of calculateDistanceSquaredBetweenAtoms
from listing 7.3. 82

7.5 An example of how to calculate the mean square displacement
in a molecular dynamics simulation. Example implementation of
diffusionSample from listing 1.9. We store the inital positions of
the atoms as atom->initialPosition(), and when using periodic
boundary conditions we count the number of times we have to
translate the atom one system-size in each direction, so while the
atoms will always be inside the system, the actual positions of the
atoms can be calculated by adding atom->getBoundaryCrossings()*system.size()
to r. 85

Bibliography

[1] P. Abry and F. Sellan. “The wavelet-based synthesis for fractional Brown-
ian motion proposed by F. Sellan and Y. Meyer: Remarks and fast imple-
mentation”. In: Applied and computational harmonic analysis 383 (1996),
pp. 377–383.

[2] E. Alessio et al. “Second-order moving average and scaling of stochastic
time series”. In: The European Physical Journal B - Condensed Matter
27.2 (2002), pp. 197–200.

[3] M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Clarendon
Press, 1989.

[4] H. J. C. Berendsen et al. “Molecular dynamics with coupling to an external
bath”. In: The Journal of Chemical Physics 81.8 (1984), p. 3684.

[5] P. A. Bonnaud, B. Coasne, and R. J.-M. Pellenq. “Molecular simulation
of water confined in nanoporous silica”. In: Journal of physics. Condensed
matter: an Institute of Physics journal 22.28 (2010), p. 284110.

[6] A. Carbone. “Algorithm to estimate the Hurst exponent of high-dimensional
fractals”. In: Physical Review E 76.5 (2007), p. 056703.

[7] A. G. Császár et al. “On equilibrium structures of the water molecule.” In:
The Journal of chemical physics 122.21 (2005), p. 214305.

[8] J. R. Errington and P. G. Debenedetti. “Relationships between structural
order and the anomalies of liquid water”. In: Nature 409.January (2001),
pp. 318–321.

[9] J. Fan. “Rescaled Range Analysis in Higher Dimensions”. In: Research
Journal of Applied Sciences, Engineering and Technology 5.18 (2013), pp. 4489–
4492.

[10] J. Feder. Fractals. Springer, 1988.
[11] A. Fournier, D. Fussell, and L. Carpenter. “Computer rendering of stochas-

tic models”. In: Communications of the ACM 25.6 (1982), pp. 371–384.
[12] FRACLAB 2.1, A Fractal Analysis Toolbox for Signal and Image Process-

ing. url: http://fraclab.saclay.inria.fr/ (visited on 01/20/2014).

145

http://fraclab.saclay.inria.fr/

146 Bibliography Chapter B

[13] D. Frenkel and B. Smit. Understanding Molecular Simulation. 2nd Edition.
Academic Press, Inc., 2001.

[14] G.-F. Gu and W.-X. Zhou. “Detrending moving average algorithm for mul-
tifractals.” In: Physical Review E 82.1 (2010), p. 011136.

[15] W. G. Hoover. “Canonical dynamics: equilibrium phase-space distribu-
tions”. In: Physical Review A 31.3 (1985), pp. 1695–1697.

[16] W. G. Hoover. “Constant-pressure equations of motion”. In: Physical Re-
view A 34.3 (1986), pp. 4–5.

[17] H. E. Hurst. “Long-term Storage Capacity of Reservoirs”. In: American
Society of Civil Engineers 116 (1951), pp. 770–808.

[18] H. E. Hurst, R. P. Black, and Y. M. Simaika. Long-Term Storage: An
Experimental Study. Constable, 1965.

[19] P. Kumar, S. V. Buldyrev, and H. E. Stanley. “A tetrahedral entropy for
water.” In: Proceedings of the National Academy of Sciences of the United
States of America 106.52 (2009), pp. 22130–4.

[20] J. E. Lennard-Jones. “On the Determination of Molecular Fields. II. From
the Equation of State of a Gas”. In: Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences 106.738 (1924), pp. 463–
477.

[21] N. Levinson. “The Wiener RMS (root mean square) error criterion in filter
design and prediction”. In: MIT Journal of Mathematics and Physics 25
(1947), pp. 261–278.

[22] P. D. Lickiss. “The synthesis and structure of organosilanols”. In: Advances
in Inorganic Chemistry 42 (1995), pp. 147–262.

[23] C. A. Mack. “Fifty Years of Moore’s Law”. In: IEEE Transactions on Semi-
conductor Manufacturing 24.2 (2011), pp. 202–207.

[24] B. Mandelbrot. The Fractal Geometry of Nature. 1983.
[25] B. B. Mandelbrot. “Technical Correspondence: Comment on Computer

Rendering of Fractal Stochastic Models”. In: Communications of the ACM
25.8 (1982), pp. 581–583.

[26] B. B. Mandelbrot and J. W. V. Ness. “Fractional Brownian Motions, Frac-
tional Noises and Applications”. In: SIAM Review 10.4 (1968), pp. 422–
437.

[27] G. J. Martyna, M. L. Klein, and M. Tuckerman. “Nosé–Hoover chains: The
canonical ensemble via continuous dynamics”. In: The Journal of Chemical
Physics 97.4 (1992), p. 2635.

[28] G. J. Martyna et al. “Explicit reversible integrators for extended systems
dynamics”. In: Molecular Physics 87.5 (1996), pp. 1117–1157.

Section 0 Bibliography 147

[29] G. E. Moore. “Cramming more components onto integrated circuits”. In:
Electronics 38.8 (1965).

[30] S. Nosé. “A unified formulation of the constant temperature molecular dy-
namics methods”. In: The Journal of Chemical Physics 81.1 (1984), p. 511.

[31] Persistence of Vision Pty. Ltd. (2004). Persistence of Vision (TM) Ray-
tracer [Computer software]. url: http : / /www . povray. org/ (visited on
05/21/2014).

[32] F. Renard, T. Candela, and E. Bouchaud. “Constant dimensionality of fault
roughness from the scale of micro-fractures to the scale of continents”. In:
Geophysical Research Letters 40.1 (2013), pp. 83–87.

[33] C. H. Rycroft. Voro++ [Computer software]. url: http://math.lbl.gov/
voro++/ (visited on 05/21/2014).

[34] C. H. Rycroft. “VORO++: A three-dimensional voronoi cell library in
C++”. In: Chaos: An Interdisciplinary Journal of Nonlinear Science 19.4
(2009), p. 041111.

[35] D. Saupe. “Algorithms for Random Fractals”. In: The Science of Fractal
Images. Ed. by H.-O. Peitgen and D. Saupe. Springer-Verlag New York,
Inc., 1988. Chap. 2, pp. 71–113.

[36] Y.-H. Shao et al. “Comparing the performance of FA, DFA and DMA using
different synthetic long-range correlated time series.” In: Scientific reports
2 (2012), p. 835.

[37] A. Shekhar et al. “Nanobubble Collapse on a Silica Surface in Water:
Billion-Atom Reactive Molecular Dynamics Simulations”. In: Physical Re-
view Letters 111.18 (2013), p. 184503.

[38] A. Shekhar et al. “Supplemental Material to Nanobubble Collapse on a
Silica Surface in Water”. In: Physical Review Letters 111.18 (2013).

[39] A. Stukowski. “Visualization and analysis of atomistic simulation data with
OVITO–the Open Visualization Tool”. In: Modelling and Simulation in
Materials Science and Engineering 18.1 (2010), p. 015012.

[40] W. C. Swope. “A computer simulation method for the calculation of equi-
librium constants for the formation of physical clusters of molecules: Appli-
cation to small water clusters”. In: The Journal of Chemical Physics 76.1
(1982), p. 637.

[41] The Inkscape Team. Inkscape [Computer software]. url: http : / /www .
inkscape.org/ (visited on 05/26/2014).

[42] M. E. Tuckerman, B. J. Berne, and G. J. Martyna. “Reversible multiple
time scale molecular dynamics”. In: The Journal of Chemical Physics 97.3
(1992), p. 1990.

http://www.povray.org/
http://math.lbl.gov/voro++/
http://math.lbl.gov/voro++/
http://www.inkscape.org/
http://www.inkscape.org/

148 Bibliography Chapter B

[43] P. Vashishta et al. “Interaction potential for SiO2: A molecular-dynamics
study of structural correlations”. In: Physical Review B 41.17 (1990), pp. 12197–
12209.

[44] L. Verlet. “Computer ‘Experiments’ on Classical Fluids. I. Thermodynam-
ical Properties of Lennard-Jones Molecules”. In: Physical Review 159.1
(1967), pp. 98–103.

[45] R. F. Voss. “Random Fractal Forgeries”. In: Fundamental Algorithms for
Computer Graphics. Ed. by R. A. Earnshaw. Vol. 17. Proceedings of the
NATO Advanced Study Institute on Fundamental Algorithms for Com-
puter Graphics held at Likley, Yorkshire, England, March 30 - April 12,
1985. See also [46]. Springer-Verlag, 1985. Chap. 8, pp. 805–835.

[46] R. F. Voss. “Fractals in nature: From characterization to simulation”. In:
The Science of Fractal Images. Ed. by H.-O. Peitgen and D. Saupe. See
also [45]. Springer-Verlag New York, Inc., 1988. Chap. 1, pp. 21–70.

[47] Wikimedia Commons. Voronoi. 6, 2013. url: http://en.wikipedia.org/
wiki/File:Euclidean_Voronoi_Diagram.png (visited on 05/21/2014).

[48] A. T. A. Wood and G. Chan. “Simulation of stationary Gaussian processes
in [0,1]ˆd”. In: Journal of computational and Graphical Statistics 3.4 (1994),
pp. 409–432.

[49] G. Zhou and N. S.-N. Lam. “A comparison of fractal dimension estima-
tors based on multiple surface generation algorithms”. In: Computers &
Geosciences 31.10 (2005), pp. 1260–1269.

[50] L. Zhuravlev. “The surface chemistry of amorphous silica. Zhuravlev model”.
In: Colloids and Surfaces A: Physicochemical and Engineering Aspects 173.1-
3 (2000), pp. 1–38.

http://en.wikipedia.org/wiki/File:Euclidean_Voronoi_Diagram.png
http://en.wikipedia.org/wiki/File:Euclidean_Voronoi_Diagram.png

	Introduction to the thesis
	Background and motivation
	Structure of the thesis

	I Molecular dynamics
	Introduction
	A simple molecular dynamics model
	The main program
	Calculation of forces
	Newton's third law

	Integration scheme
	Regular Verlet integration
	Velocity Verlet

	Boundary conditions
	Minimum image convention

	Optimization via force truncation
	Cell lists

	Observables
	Temperature
	Pressure

	Ensembles
	Berendsen thermostat
	Andersen thermostat
	Nosé-Hoover thermostat and Nosé-Hoover chains
	Nosé-Hoover thermostat
	Nosé-Hoover chains

	Molecular dynamics program used for simulations
	Potential
	Integrator

	II Fractures
	Introduction
	Fractals and fractures
	Hurst exponent
	Rescaled range analysis

	Detrending moving average
	Detrending moving average in 2 dimensions
	Validation

	Generating surfaces and fractures
	Midpoint displacement methods
	Successive random additions
	Infinite grids
	Finite size effects
	Implementation
	Validation

	Generating fractures from surfaces
	Finding a point inside a tetrahedron

	III Simulations
	Introduction
	Simulation procedure
	Initialization
	Passivation
	Water chemistry
	Passivating using hydrogen and hydroxide
	Counting number of bonds
	Only passivating surface atoms
	Passivation examples

	Injecting water
	Finding correct voxel size
	Identifying the voxels that make up the void

	Measurements
	Distance to silica matrix
	Note on this method

	Voxelation
	Neighbor lists
	Finding distance to surface

	Density
	Diffusion
	Tetrahedral order parameter
	Distance to nearest atom
	Manhattan distance to nearest atom

	Studied systems
	Visualizations

	Results
	Density of water
	Diffusion
	Tetrahedral order parameter
	Distance to nearest atom
	Manhattan distance to nearest atom

	Discussion, conclusions and future
	Discussion
	Conclusions
	Future

	IV Appendices
	Verlet integrators
	Deriving the Verlet algorithm using Taylor expansions
	Velocity Verlet

	Deriving velocity Verlet using Liouville operator
	Liouville operator
	Velocity Verlet
	Error in velocity Verlet

	Nosé-Hoover thermostats

