
Department of Informatics
University of Oslo

Improvements of the
Linux SCTP API

Master thesis

Geir Ola Vaagland

May 27, 2014

Improvements of the Linux SCTP API

Geir Ola Vaagland

May 27, 2014

Acknowledgments

I wish to acknowledge the help provided by my supervisors Ernst G. Gran and Thomas
Dreibholz for giving great advice, and patient guidance during my work with this the-
sis.

I would also like to thank Michael Tüxen and Vladislav Yasevich for providing me
with valuable and constructive suggestions during the implementation phase.

Finally, I would like to thank my good friend and co-student Øystein for helping me
gather my thoughts when things were difficult.

Abstract

This master thesis outlines the changes that need to be made to get the current Linux
implementation of the Stream Control Transmission Protocol (SCTP) up to date with
recently released "Sockets Application Programming Interface Extensions for the Stream
Control Transmission Protocol" (RFC 6458). The thesis contains a thorough review of
the discovered changes, and describes the work done in this thesis with regards to
implementing some of the new features. SCTP is a transport layer communication
protocol that serves a similar role to popular protocols like the Transmission Control
Protocol (TCP) and the User Datagram Protocol (UDP), but SCTP has unique features
like multistreaming, multihoming and better validation and acknowledgement mech-
anisms that further enforce security.

Contents

1 Introduction 1

1.1 The Internet Protocol Suite . 1

1.1.1 The sockets API . 2

1.2 What is SCTP? . 2

1.2.1 The new SCTP API - RFC 6458 . 3

1.3 Background . 4

1.3.1 History of SCTP . 4

1.4 Short comparison of TCP and SCTP . 5

1.4.1 Multihoming . 5

1.4.2 Multistreaming . 6

1.4.3 Unordered message delivery . 6

1.4.4 Message framing . 7

1.5 Problem Definition and limitations . 7

1.6 Research Method . 8

1.7 Main Contributions . 8

1.8 Outline . 8

1.9 Summary . 9

2 Overview of the current Linux SCTP architecture 11

2.1 Ancillary data . 11

2.1.1 The msghdr structure . 11

2.1.2 The cmsghdr structure . 12

2.1.3 struct sctp_sndrcvinfo . 13

2.2 Notifications . 13

2.2.1 Notification Interest Options . 15

2.3 The state machine . 16

2.4 The smart pipes . 16

2.5 SCTP Associations . 17

2.5.1 The association setup phase . 18

2.6 SCTP Message structure . 20

2.6.1 The SCTP common header . 20

2.6.2 Chunks . 21

2.7 Summary . 22

iii

iv Improvements of the Linux SCTP API

3 Changes in RFC 6458 25
3.1 New functions . 25
3.2 Ancillary data . 28

3.2.1 struct sctp_nxtinfo . 30
3.3 Notifications . 30
3.4 Socket options . 31

3.4.1 Selecting which associations to affect 31
3.4.2 New socket options . 34

3.5 Summary . 36

4 Design and Implementation 37
4.1 Implementing support for sending ancillary data 38

4.1.1 sctp_msghdr_parse() . 39
4.1.2 Back in sctp_sendmsg() . 39

4.2 Implementing new socket options . 42
4.3 Adding new functions . 46

4.3.1 Implementation of sctp_sendv() and sctp_recvv() 48
4.4 New struct sctp_sndinfo flags . 50

4.4.1 Implementation of the SCTP_COMPLETE flag 50
4.4.2 Implementation of the SCTP_SENDALL flag 51

4.5 Summary . 53

5 Evaluation and Discussion 55
5.1 Retrospect . 55
5.2 Problems with the SCTP_SENDALL solution 56
5.3 Submitting patches to LKSCTP . 56

5.3.1 Submitting the sctp_nxtinfo implementation 57
5.3.2 Submitting the sctp_sndinfo implementation 57
5.3.3 Submitting the new functions sctp_sendv() and sctp_recvv() . . . 58

5.4 Future work . 61
5.5 Summary . 61

6 Conclusion 63
6.1 Summary . 63

Glossary 65

A Where to get the code 69
A.1 Code example 1 . 70
A.2 Code example 2 . 71
A.3 Code example 3 . 72
A.4 Code example 4 . 73
A.5 Code example 5 . 74

List of Figures

1.1 The Internet Protocol Suite . 1
1.2 Multistreaming: An SCTP association with multiple streams. 6

2.1 Example of an SCTP association . 17
2.2 A view of the association setup phase. 18
2.3 An SCTP packet . 20
2.4 The SCTP common header . 20
2.5 The chunk header . 21
2.6 The DATA chunk . 22

v

List of Tables

2.1 Types of ancillary data . 12
2.2 Notification types . 14
2.4 The states in the SCTP state machine and their meanings 16
2.5 Chunk types . 21

3.1 New ancillary data types in RFC 6458. 29
3.2 Affected socket options . 33

vii

Code listings

2.1 struct msghdr . 12
2.2 struct cmsghdr . 12
2.3 struct sctp_sndrcvinfo . 13
2.4 union sctp_notification . 14
2.5 struct sctp_event_subscribe . 15
2.6 Example: Enabling notifications with SCTP_EVENTS. 15
3.1 Prototype of sctp_sendv() . 26
3.2 struct sctp_sendv_spa . 26
3.3 Prototype of sctp_recvv() . 27
3.4 struct sctp_recvv_rn . 27
3.5 The new structs: struct sctp_sndinfo and struct sctp_rcvinfo 29
3.6 Example: Selecting a stream number with struct sctp_sndinfo and sctp_sendv() 30
3.7 struct sctp_nxtinfo . 30
3.8 setsockopt() . 31
3.9 Setting the MAX_SEG socket option . 32
4.1 Socket options implemented in this thesis 38
4.2 Prototype of sctp_msghdr_parse . 38
4.3 The new struct sctp_cmsgs_t in structs.h 39
4.4 sctp_msghdr_parse() . 40
4.5 Handling a sendmsg() with struct sctp_sndinfo 41
4.6 Showing where SCTP_DEFAULT_INFO was added to sctp_setsockopt(). 43
4.7 The two new boolean options. 44
4.8 Checking the deprecated sctp_data_io_event field. 44
4.9 The put_cmsg call that copies a struct sctp_sndrcvinfo to userspace. . . . 44
4.10 Verifying that the recvrcvinfo field is set before proceeding. 45
4.11 The put_cmsg call that copies a struct sctp_rcvinfo to userspace. 45
4.12 Checking if a next message is present on the queue. 46
4.13 The struct proto for SCTP (IPv4) . 47
4.14 Constants used by sctp_sendv() . 48
4.15 Constants used by sctp_recvv() . 48
4.16 Prototypes for the new functions . 49
4.17 New sinfo_flags . 50
4.18 Implementation of the SCTP_COMPLETE flag. 51
4.19 Preparing for a SCTP_SENDALL . 51
4.20 Prototype of sctp_sendmsg_to_association() 51
4.21 Calling sctp_sendmsg_to_association() . 52
5.1 Checking if a next message is present on the queue. 57

ix

x Improvements of the Linux SCTP API

5.2 Freeing up allocated space properly. 57
5.3 The new struct sctp_cmsgs_t in structs.h 58
5.4 sctp_msghdr_parse() . 59
5.5 Handling a sendmsg() with struct sctp_sndinfo 60
A.1 Example: Sending a message with ancillary data using sendmsg() 70
A.2 Example: Receiving a message with ancillary data using recvmsg() . . . 71
A.3 Example: Sending a message to all associations with SCTP_SENDALL and sctp_sendv() 72
A.4 Example: Setting a default struct sctp_sndinfo with SCTP_DEFAULT_SNDINFO 73
A.5 The new sctp_setsockopt_default_sndinfo() function 74

Chapter 1

Introduction

Since the early days of computer networking, even before the Internet as we know
it today was introduced, there has been constant research on finding a good way of
letting computers communicate fast, reliably and in a "universal language", known as
a protocol. Newcomers to the network, like mobile devices and all other new types of
electronical gadgets should be able to learn these protocols, and the protocols should
be able to cater for their needs. Even though the Internet is becoming more and more
grown up these days, some people are always trying to come up with something better,
faster and more clever than what is currently available. One such new protocol is
the Stream Control Transmission Protocol (SCTP) [1]. The SCTP implementation for
the Linux operating system [2] is lagging behind compared to the general progress of
the standardization work performed by the Internet Engineering Task Force (IETF). To
help Linux developers who want to use SCTP as their communication protocol, it is
necessary to understand what measures that need to be taken to bring SCTP for Linux
up to the same level of quality and support as with the other operating systems. The
Request For Comments (RFC) no. 6458 [3], defines the mappings between SCTP and
a socket application programming interface (API). This includes compatibility with
existing APIs for the Transmission Control Protocol (TCP) [4] and access to new SCTP
features such as an error/event notification scheme and a new control data scheme.

1.1 The Internet Protocol Suite

The Internet protocol suite, commonly known as the TCP/IP model, is maintained by
the IETF. This model was named after the first two protocols to be defined in this stan-

Figure 1.1: The Internet Protocol Suite

Layers Common protocols

Application SMTP, HTTP, etc.
↑ Sockets API interface ↓

Transport TCP, UDP, SCTP

Network IPv4, IPv6
Link Ethernet, Serial, etc.

1

2 Improvements of the Linux SCTP API

dard, which also is the two most widely used and known: the Transmission Control
Protocol (TCP) and the Internet Protocol (IP) [5]. The idea of having a layered network-
ing model was conceived in the late 1960s by the Defence Advanced Research Projects
Agency (DARPA), an agency funded by the United States Department of Defence.

The model specifies how data should be formatted, addressed, transmitted, routed
and received at the destination. It is split into four layers (Figure 1.1), where the basic
idea is to allow one application running on one host to talk to another application
on a different host. Put simply, a packet from the application layer travels down the
layers and each layer places control information on the packet and passes it on. At the
receiving end the opposite happens. The packet is stripped of its control information
and its content received by the application layer of the receiving part.

The link layer is responsible for communication with the physical interfaces, the
network layer handles movement of packages through the network, specifically rout-
ing, and the transport layer, which is where SCTP resides, regulates the flow of packets
between endpoints1. It also presents the application its endpoint for communication,
known as ports. The application layer makes use of the underlying architecture by
sending the actual data and giving it meaning through the use of the operating sys-
tem’s network system calls. These system calls makes communication with the lower
layers a lot less complex. For Linux, and most other operating systems, this implemen-
tation of system calls is known as the sockets API.

1.1.1 The sockets API

A socket API is provided by an operating system, and allows applications to use the
concept of network sockets. A socket is an endpoint of a two-way communication
link between two entities. Like the opening of a tube that data gets pushed or pulled
out of. A socket is bound to a port number, so that the transport layer knows which
application the data is destined to or from.

The BSD sockets (or Berkeley sockets2) are very similar to the Portable Operating
System Interface (POSIX) sockets that are being used in Linux. The Socket API has
functions to create a socket and to receive and write data to it. It also contains func-
tions to bind a socket to a specific port (bind()), getting and setting socket options with
get-/setsockopt() and means to accept connection requests and connect sockets to other
sockets (accept()/connect()). These functions and their related data structures make up a
complete socket API.

1.2 What is SCTP?

SCTP is a reliable, general-purpose transport layer protocol intended for use on IP net-
works, serving a similar role as popular protocols such as the User Datagram Protocol
(UDP) [6] and TCP, lending ideas from both. SCTP is message-oriented, similar to UDP,

1Think of an endpoint as one of the parties communicating with SCTP. E.g. a network interface or
even better, a single IP address.

2The Socket API originated with the 4.2BSD Unix operating system released in 1983.

Improvements of the Linux SCTP API 3

and further ensures reliability and in-sequence message transport with congestion con-
trol, similar to TCP. For completeness a short section that outlines the most important
similarities and differences between TCP and SCTP will be provided in Section 1.4.

Although TCP had provided excellent services as the primary means of reliable
data transfer in IP networks over the past decades, an increasing number of applica-
tions found TCP too limiting in certain areas. Thus people started making their own
reliable data transfer protocols based on UDP. It was decided that a new protocol was
needed, and it had to satisfy the following requirements:

• Reliable message delivery
The recipient of a message3 acknowledges that it has received it, or the sender
should make sure to retransmit if something went wrong.

• Network-failure tolerance
A failure in the network should be detected and handled in a reasonable way.
E.g. wait to retransmit or figure out an alternative path to the destination.

• Avoid the head-of-line [7] problem
Avoid packets queuing up while waiting for a blocked packet to get out of the
way. See Subsection 1.4.2.

• Better security
Security is always an important issue when designing protocols. It is never de-
sirable to not know whether someone else can intercept your e-mails or tamper
with your bank transactions. Although several mechanisms to improve security
have been developed, TCP is fundamentally more vulnerable to denial of service
attacks [8] than SCTP.

1.2.1 The new SCTP API - RFC 6458

The main design goals of the SCTP API are three-fold, and are summarized as follows
in RFC 6458:

• Maintain consistency with the existing sockets API.

• Support a one-to-many UDP-style interface.

• Support a one-to-one TCP style interface.

As the two latter goals are not completely compatible, RFC 6458 defines two dif-
ferent modes of operation. Although they share some data structures and operations,
they require different programming styles. The decision of which style to use depends
on the indent of the application. This API for Linux has never been completely imple-
mented.

3TCP is also a reliable protocol, but handles streams of bytes rather than messages. This will be
covered in Section 1.4 on page 5.

4 Improvements of the Linux SCTP API

1.3 Background

The SCTP implementation for Linux is developed by the Linux Kernel SCTP project
(LKSCTP) [9]. LKSCTP provides both a userspace library and a kernel part. But since
the development of the "final" RFC 6458 has taken so long, more than 10 years and 33
draft versions, it seems fair to assume that the developers have been a bit discouraged
about keeping their APIs’ up to date. On the other hand, the FreeBSD [10] SCTP im-
plementation has been maintained by the authors of the RFC, and is thus far more up
to date. However, the largest deployment of SCTP is by various Linux4 distributions,
so having SCTP up to date for this platform would surely be very useful.

1.3.1 History of SCTP

SCTP was defined by the IETF Signaling Transport (SIGTRAN) [11] working group
in 2000, and is currently maintained by the IETF Transport Area (TSVWG) working
group [12]. The SIGTRAN group is concerned with the transport of telephony sig-
nalling data over IP. They concluded that none of the existing transport protocols sat-
isfied the transport requirements of signalling data, and decided that they required a
transport protocol that met the needs mentioned in Section 1.2.

To solve this, SIGTRAN selected a proposed standard from Randall R. Stewart
and Qiaobing Xie, two Motorola employees, as a starting point. Stewart and Xie
had been developing a Distributed Processing Environment called Quantix [13], which
was aimed at telephony applications. This environment had been successfully demon-
strated at Geneva Telecom in 1999. Quantix brought support for multihoming, multi-
streaming and message framing. These concepts will be explained in Section 1.4. Even-
tually, the Internet Engineering Steering Group (IESG) 5, decided that the protocol was
robust enough to be elevated from a specialised transport for telephony signalling to a
more general purpose transport protocol like TCP and UDP.

4The Linux kernel has had built-in support for SCTP since version 2.6.x
5The IESG (Internet Engineering Steering Group) are the ones who make final reviews of proposed

IETF standards

Improvements of the Linux SCTP API 5

1.4 Short comparison of TCP and SCTP

When forming SCTP, the working group took care to incorporate lessons learnt from
TCP, such as:

• Selective ACKs
Selective ACKs well tuned retransmission scheme. Basically it involves the re-
ceiver being able to say "I have not received packet 3, but I have gotten packet 4,5
and 6" instead of just saying "I still only have gotten packet 2.", thus forcing the
sender to retransmit all packets that have been sent from that point.

• Message fragmentation and bundling
Fragmentation is the technique of splitting up messages larger than the link’s
Maximum Transmission Unit (MTU) into smaller fragments, and bundling is
pretty much the opposite. Smaller messages get bundled together to keep the
"message header to payload"-ratio at a reasonable level.

• Congestion control
Congestion control is accomplished using the same model as for TCP, but SCTP
has some specifics with regards to its multihoming traits. E.g. slow-starts6 for
each possible destination address. Congestion control is meant to detect and
avoid bottlenecks in the network flow.

In addition to these similarities, TCP and SCTP are both connection oriented7.
While TCP has its connections, SCTP operates with associations. A listen()-connect()-
accept() cycle is needed to transfer data, although it works a bit differently for SCTP
than for TCP.

Although SCTP has inherited these features from TCP, there are some notable dif-
ferences that sets them apart. Subsection 1.4.1-1.4.4 presents a quick look at the key
differences.

1.4.1 Multihoming

An essential property of SCTP is its ability to bind to several addresses on a single node.
If allowed to use several addresses, SCTP can e.g. use the extra path simply for redun-
dancy. Making use of the extra network path as a destination for failed messages, can
make SCTP more resistant to network failure. All SCTP endpoints monitor the state of
its path in an association by sending a heartbeat at some configurable interval. As one
side sends a HEARTBEAT chunk (More on chunks will be covered in Subsection 2.6.2),
the other responds with a HEARTBEAT_ACK, thus allowing the sender to detect a
possible path failure, and proceed sending over another path.

6Slow start basically means sending a small chunk of data initially, and then slowly increasing the
amount of transferred data until the other end chokes, and then settling on some value less than the
choke point.

7SCTP’s one-to-many/UDP style is also connection oriented, since the association is setup implicit-
ly/on the fly.

6 Improvements of the Linux SCTP API

Figure 1.2: Multistreaming: An SCTP association with multiple streams.

Peer Peer

In Linux there are currently three ways to handle multihoming:

• Ignore it, only use one address.

• Bind all addresses.

• Using the sctp_bindx()-function to bind a specific subset of addresses.

The latter option is the most flexible, as it allows binding additional addresses to a
socket after it has been bound with bind().

1.4.2 Multistreaming

Another interesting feature of SCTP is that its associations support multiple streams.
In simple terms, an SCTP packet header gets annotated with a stream number that
identifies which stream the packet belongs to. These streams can e.g. be used for
separating control packets from data packets, so that a stuck data packet will not delay
more important control packets. Traditionally, with the single stream TCP approach,
a packet awaiting retransmission because of a packet loss would imply that all other
packets that were scheduled to move over the same channel would have to wait. This is
called head-of-line blocking, which is what SCTP multistreaming is designed to solve.

Also contrary to having multiple TCP connections open, the SCTP multistream will
not require the use of multiple ports. This is an important point, as the establishment
of brand new connection would typically require a much larger amount of system
resources compared to the multistreaming approach.

Multistreaming enables an association to have subflows inside the overall SCTP
message flow and choose whether or not to enforce message ordering by the use of
unordered message delivery [14].

1.4.3 Unordered message delivery

SCTP can be configured on a per stream basis, or for a single message within a stream,
to send messages reliably, but unordered. An unordered message is "unordered" with
respect to any other message, both ordered and unordered. It might be delivered be-
fore or after an ordered message sent on the same stream. This is useful for a message
oriented protocol when it is dealing with independent transactions where ordering is

Improvements of the Linux SCTP API 7

not important. Essentially, without unordered message delivery enabled, an endpoint
delivers user data messages to the upper layer according to the message’s Stream Se-
quence Number. And if a message arrives out of order, it will be held back by the
SCTP stack until enough messages have arrived. Another brief look at the more tech-
nical aspects of unordered messages will be given in Subsection 2.6.2.

1.4.4 Message framing

SCTP data transportation is message-oriented, while TCP is byte-oriented. This means
that TCP guarantees that every chain of bytes that is sent will get to the recipient in
the correct order, but with no conservation of any message boundaries. An application
using TCP must thus often include length information within the message to tell the
receiver how much to read. The receiver of a TCP message needs a reassembly buffer,
since every time data is received either more or less data than is expected may show
up. SCTP will not only deliver the messages in correct order, it will also indicate to
the receiver both the beginning and the end of the received data. This relieves the
application developer of the complex task of doing the buffering and framing of the
messages manually. The SCTP approach also strips away the overhead of including
length information in each data transmission.

1.5 Problem Definition and limitations

This section will briefly outline the main goals, and also the scope and limitations of
this thesis. The goal is to present a thorough investigation of the latest SCTP API de-
scribed in RFC 6458 up against the current SCTP implementation in Linux. Identifying
out-of-date functions and related features that have been neglected by the Linux SCTP
community the past few years. As FreeBSD already is up to date, it will be used as
inspiration. So, although an attempt will be made at implementing some of the new
concepts from RFC 6458, the main goal will be to identify all the changed functional-
ity. A secondary goal is to get some of the features that are implemented during the
work this thesis submitted to the Linux kernel developers and possibly also included
in future Linux deployments.

Limitations

Due to time constraints and complexity, this thesis will not necessarily serve as a good
step-by-step recipe covering every aspect of how to update the API. The task is not
trivial, and requires a certain set of skills and good knowledge of the SCTP stack as it
is implemented today. This document will however hopefully serve as a good start-
ing point for anyone, with time and knowledge, who wants to commit to the task of
developing the remaining features that are not present today.

Changing things that already works, i.e. taking away features that have been dep-
recated in RFC 6458, will not be the intent in this thesis. The current goal of the imple-
mentations is rather to have the new functionality reuse the deprecated features.

8 Improvements of the Linux SCTP API

1.6 Research Method

A lot of the work done in this thesis has revolved around getting acquainted with
the SCTP implementation, both at the user space level and at the kernel level. There
has been a lot of browsing through source code and searching for needles that are not
necessarily present. Some missing functionality was found by the use of grep [15] to
search both the userspace library and the kernel for what was present and what was
not. Often a more thorough search was required, as some functionality could e.g. be
"hidden" through the use of different names than the ones used in RFC 6458.

Eventually, a list was compiled containing all found changes. It was then neces-
sary to write test applications to verify that the userspace library failed to handle the
changes from RFC 6458. Finally, some of the new functionality was implemented and
added to the existing source code of the Linux kernel. As part of the work with this
thesis, the implementations were also submitted to the Linux Kernel SCTP mailing list
for further review, and possible inclusion in the mainline Linux kernel one day in the
future. This process will be described in Chapter 5.

1.7 Main Contributions

The main contributions implemented as part of the work with this thesis are:

• The functions sctp_recvv() and sctp_sendv() should work as intended now.

• Implemented the socket options SCTP_RECVV_NXTINFO and SCTP_RECVV_-
RCVINFO to enable retrieval of these types of ancillary data.

• Implemented the socket option SCTP_DEFAULT_SNDINFO.

• The structure type sctp_recvv_rn is used to enable receival of both struct sctp_-
rcvinfo and struct sctp_nxtinfo in one call to sctp_recvv().

• Renamed the state types SCTP_STATE_* to just SCTP_* according to RFC 6458.

• Identified missing functionality.

• Set the SCTP_COMPLETE flag for complete messages.

• Implemented a simple draft solution to the SCTP_SENDALL flag, to send mes-
sages to all associations established on a socket with sctp_sendv().

1.8 Outline

This thesis is outlined like this: First, chapter 2 will give an overview of the state of
the current Linux implementation, how things are done today, regardless of whether
RFC 6458 will change it or not. A brief, but slightly technical introduction to some
of the key concepts of SCTP will also be given here, like the concepts of chunks, as-
sociations, notifications and ancillary data. Chapter 3 will describe the shortcomings

Improvements of the Linux SCTP API 9

and missing pieces that were found in the current implementation of Linux. It will
present the new functions introduced in RFC 6458, changes to how ancillary data is
to be handled and which new socket options and notifications that have been intro-
duced. Chapter 4 contains a presentation of what was implemented during the work
with this thesis. This includes all the changes mentioned in the previous section. Most
code listings will be found in this chapter. Chapter 5 presents a retrospective view with
thoughts about the implementation process, a description of the submittal process of
the code to the LKSCTP-developers, and a critical view on how the new features were
implemented. Finally, chapter 6 will conclude the thesis by listing the key components
of project, and propose a path for future work on SCTP.

1.9 Summary

This chapter has introduced the goals and methods that will be used in this thesis. It
has presented the SCTP protocol, and outlined the purpose and scope of the thesis.
The next chapter will look a bit closer at the current state of the SCTP implementation
on the target platform, Linux.

Chapter 2

Overview of the current Linux SCTP
architecture

As mentioned in Section 1.3, the Linux kernel has had support for SCTP since version
2.61. In this chapter we will take a look at how some things have been implemented in
Linux. This includes how multihoming works, how ancillary (control) data is handled
and a closer look at the data types that are used to tie it all together.

2.1 Ancillary data

Ancillary data is metadata used to give information about the state of the SCTP sub-
system. For instance, a developer can by using the functions sendmsg() and recvmsg(),
make use of the ancillary data structures to decide which association or stream num-
ber a message should be sent to, or which stream it belongs to. Although ancillary
data is crucial for multistreaming, it can be useful for other things as well. For one-to-
many style communication, the ancillary data can be used to manage the associations
as pleases. Ancillary data can also be used for requesting that a message should be
delivered unordered, as was described in Subsection 1.4.3.

2.1.1 The msghdr structure

The msghdr structure is used to pass messages around with sendmsg() and recvmsg().
As is shown in Listing 2.1, the msg_control field is of type void, and can thus point to
structures of any kind. Subsection 2.1.2 will show how this can come in handy when
sending SCTP specific control structures.

Table 2.1 shows the only types of ancillary data that is being used by Linux in its
current state. The new types that have been introduced in RFC 6458 are shown in
Table 3.1.

The last field, the msg_flags, is set to MSG_NOTIFICATION (defined in sctp.h) when
the message contains a notification. More details about notifications will be covered in
Section 2.2.

1Version 2.6 of the Linux kernel was released in December 2003

11

12 Improvements of the Linux SCTP API

Table 2.1: Types of ancillary data

Description cmsg_type cmsg_data[]
SCTP Initiation Structure SCTP_INIT struct sctp_initmsg
Header Information Structure SCTP_SNDRCV struct sctp_sndrcvinfo

1 struct msghdr {

2 void *msg_name; /* optional address */

3 socklen_t msg_namelen; /* size of address */

4 struct iovec *msg_iov; /* scatter/gather array */

5 size_t msg_iovlen; /* # elements in msg_iov */

6 void *msg_control; /* ancillary data, see below */

7 size_t msg_controllen; /* ancillary data buffer len */

8 int msg_flags; /* flags on received message */

9 };

Listing 2.1: struct msghdr

2.1.2 The cmsghdr structure

The cmsghdr structure [16] is used to specify SCTP options for sendmsg(), and to de-
scribe SCTP header information when receiving a message. Note that both this struc-
ture and struct msghdr is defined in the header file include/linux/socket.h in the Linux
kernel source code. It is thus not a structure specific to SCTP, but is used to pass con-
trol data regardless of the protocol used.

1 struct cmsghdr {

2 socklen_t cmsg_len; /* data byte count, including

3 header */

4 int cmsg_level; /* originating protocol */

5 int cmsg_type; /* protocol-specific type */

6
7 /* followed by unsigned char cmsg_data[]; */

8 };

Listing 2.2: struct cmsghdr

As mentioned, the msg_control field of the struct msghdr in Listing 2.1 can point to
anything. Most commonly it will point to a struct cmsghdr, shown in Listing 2.2, which
in turn contiains one of the SCTP specific control structures. So, for SCTP the cmsg_data
field contains one of the SCTP-specific structures in Table 2.1, and the msg_control field
of the struct msghdr is set to point to this struct cmsghdr.

Improvements of the Linux SCTP API 13

2.1.3 struct sctp_sndrcvinfo

A single structure, struct sctp_sndrcvinfo (described in section 5.3.2. [3]) is used for
both sending options to the SCTP stack (with sendmsg()) , and receiving configura-
tion parameters and control information (with recvmsg()). This structure was split with
RFC 6458, and two new structures have been introduced instead: struct sctp_rcvinfo
and struct sctp_sndinfo. These will be covered in Chapter 3. The options from struct
sctp_sndrcvinfo that were only relevant to sending was placed in struct sctp_sndinfo and
vice versa. Listing 2.3 shows this structure as it is today.

1 struct sctp_sndrcvinfo {

2 uint16_t sinfo_stream;

3 uint16_t sinfo_ssn;

4 uint16_t sinfo_flags;

5 uint32_t sinfo_ppid;

6 uint32_t sinfo_context;

7 uint32_t sinfo_timetolive;

8 uint32_t sinfo_tsn;

9 uint32_t sinfo_cumtsn;

10 sctp_assoc_t sinfo_assoc_id;

11 };

Listing 2.3: struct sctp_sndrcvinfo

An example on how to send ancillary data with sendmsg() and how to receive it
with recvmsg() has been included in Section A.1 and Section A.2 of the Appendix.

2.2 Notifications

When SCTP applications receive messages, the SCTP stack can "piggyback" notifica-
tions related to non-data events. When a notification arrives, sctp_recvmsg() (defined in
net/sctp/socket.c) sets the MSG_NOTIFICATION flag, and sends the message to the ap-
plication layer as it normally would. The available notifications are listed in Table 2.2.
Each one of these notification types has a structure that holds data related to the noti-
fication. A notification is represented by the union shown in Listing 2.4. Note that a
union means that it will only contain one of its members.

14 Improvements of the Linux SCTP API

Table 2.2: Notification types

Notification type Description

SCTP_ASSOC_CHANGE An SCTP association has
started/ended.

SCTP_PEER_ADDR_CHANGE A multihomed peer has
changed state.

SCTP_REMOTE_ERROR Can indicicate various error
conditions. [14]

SCTP_SEND_FAILED SCTP cannot deliver mes-
sage. Deprecated.

SCTP_SHUTDOWN_EVENT One of the peers have shut
down.

SCTP_ADAPTATION_INDICATION Adaptation Layer Indication
received. [17]

SCTP_PARTIAL_DELIVERY_EVENT Various events related to par-
tial delivery.

SCTP_AUTHENTICATION_EVENT Can report various events re-
lated to authentication. [18]

SCTP_SENDER_DRY_EVENT No more user data to send or
retransmit.

SCTP_NOTIFICATIONS_STOPPED_EVENT Indicates that the stack is out
of buffer space, and stops fur-
ther notifications.

1 union sctp_notification {

2 struct sctp_tlv {

3 uint16_t sn_type; /* Notification type. As shown in

4 Table~2.2. */

5 uint16_t sn_flags;

6 uint32_t sn_length;

7 } sn_header;

8 struct sctp_assoc_change sn_assoc_change;

9 struct sctp_paddr_change sn_paddr_change;

10 struct sctp_remote_error sn_remote_error;

11 struct sctp_send_failed sn_send_failed;

12 struct sctp_shutdown_event sn_shutdown_event;

13 struct sctp_adaptation_event sn_adaptation_event;

14 struct sctp_pdapi_event sn_pdapi_event;

15 struct sctp_authkey_event sn_auth_event;

16 struct sctp_sender_dry_event sn_sender_dry_event;

17 struct sctp_send_failed_event sn_send_failed_event;

18 };

Listing 2.4: union sctp_notification

Improvements of the Linux SCTP API 15

1 struct sctp_event_subscribe {

2 uint8_t sctp_data_io_event;

3 uint8_t sctp_association_event;

4 uint8_t sctp_address_event;

5 uint8_t sctp_send_failure_event;

6 uint8_t sctp_peer_error_event;

7 uint8_t sctp_shutdown_event;

8 uint8_t sctp_partial_delivery_event;

9 uint8_t sctp_adaptation_layer_event;

10 uint8_t sctp_authentication_event;

11 uint8_t sctp_sender_dry_event;

12 };

Listing 2.5: struct sctp_event_subscribe

1 struct sctp_event_subscribe events;

2
3 memset(&events, 0, sizeof(events));

4
5 events.sctp_data_io_event = 1;

6 events.sctp_association_event = 1;

7
8 setsockopt(sd, IPPROTO_SCTP, SCTP_EVENTS, &events,

sizeof(events));

Listing 2.6: Example: Enabling notifications with SCTP_EVENTS.

2.2.1 Notification Interest Options

No notifications are enabled by default, so in order to be able to receive notifications
from the SCTP stack, an application must set the appropriate socket option. Notifica-
tions can be enabled by setting the SCTP_EVENTS socket option. By passing along
a struct sctp_event_subscribe the developer can choose exactly which events from the
SCTP stack that are desired. The events could e.g. be a new association coming up or
an address transport failure. Notifications are distinguished from other data since they
have a MSG_NOTIFICATION flag set in the msg_flags field of the struct msghdr.

One or more of these notifications can be enabled with a single setsockopt()-call. By
setting the fields to 1 the SCTP stack will inform the upper layer whenever one of
those respective events happen. The data_io_event field is of particular interest for this
thesis, as it is how SCTP prior to RFC 6458 knew when to include struct sctp_sndrcvinfo
ancillary data.

An example borrowed from section 6.2.1. of RFC 6458 [3] is provided in Listing 2.6

16 Improvements of the Linux SCTP API

Table 2.4: The states in the SCTP state machine and their meanings

State Meaning
CLOSED No connection
COOKIE-WAIT Waiting for a cookie
COOKIE-ECHOED Waiting for a cookie acknowledgment
ESTABLISHED Connection is established; data are being transferred
SHUTDOWN-PENDING Sending data after receiving close
SHUTDOWN-SENT Waiting for SHUTDOWN acknowledgment
SHUTDOWN-RECEIVED Sending data after receiving SHUTDOWN
SHUTDOWN-ACK-SENT Waiting for termination completion

2.3 The state machine

The kernel part of SCTP maintains a finite state machine that converts header informa-
tion and produces a set of side-effects that it then processes, and creates actions. The
state machine is queried to determine which actions to perform during association es-
tablishment, association termination and data transfer. There are four types of events
(as defined in net/sctp/constants.h in the Linux kernel) that can cause a transition in the
state machine:

• SCTP_EVENT_T_CHUNK

• SCTP_EVENT_T_TIMEOUT

• SCTP_EVENT_T_OTHER

• SCTP_EVENT_T_PRIMITIVE

These events are processed by the function sctp_do_sm() in sm_sideeffect.c. It cre-
ates a struct sctp_sm_retval that contains a description of the side effects of the given
event. The side effect processor function sctp_side_effects() then converts the struct
sctp_sm_retval into actions.

More information about the state machine can be found in the LKSCTP paper [13].

2.4 The smart pipes

The smart pipe is described as an oven. Raw input is injected in one end, and it serves
"cooked" output in the other end. There are four types of smart pipes being used in
LKSCTP, which will all be explained here.

SCTP_inqueue and SCTP_ULPqueue

These two smart pipes are used to carry data from "the wire" to the user. SCTP_in-
queue turns packets into chunks (See Subsection 2.6.2), reassembles fragmented mes-
sages, tracks received Transmission Sequence Numbers (TSN) for acknowledgments,

Improvements of the Linux SCTP API 17

and manages the receiving window-size for congestion control. Each endpoint has an
inqueue for handling unassociated messages, and another for each association.

The SCTP_ULPqueue (Upper-layer-protocol) accepts events (data messages or no-
tifications) from the state machine and delivers these to the upper layer through the
sockets layer. It is responsible for delivering streams of messages in order.

SCTP_outqueue

The SCTP_outqueue is responsible for the bundling logic, transport selection, outbound
congestion control, fragmentation, and any necessary data queueing. Every outbound
chunk goes through a queue like this, although the state machine is able to put a chunk
directly on the wire. Currently, only ABORT uses this feature.

The SCTP_packet queue

The SCTP_packet queue is called a "lazy packet transmitter". It blindly bundles chunks
and transmits. It does not accept packets that need fragmenting, nor does it handle
any congestion logic. An example packet created by this queue is shown in figure 2.3.

2.5 SCTP Associations

As SCTP is a connection-oriented transport protocol, the two SCTP endpoints must
create an association before exchanging data. One specific pair of endpoints can never
have more than one association between them. However, the endpoints can always
have associations to other endpoints simultaneously. Figure 2.1 shows how this re-
lation works. Machine A has two network interfaces, and each has its own, unique
association to machine B’s single network interface. The association provides a fea-
ture of particular importance, the multiple stream feature. This enables an endpoint to
transfer multiple separate sequences of reliable messages simultaneously and indepen-
dently. An association can be setup to have up to 65536 different streams which can be
created and used for simultaneous data transfer. In order to indicate over which spe-
cific stream a message is to be sent, the developer must "tag" the message with a stream
identifier through the use of the snd_sid / sinfo_stream field mentioned in Section 2.1.

Figure 2.1: Example of an SCTP association

Machine A Machine B

Application 1 Application 2

SCTP port 100 SCTP port 100

IP1: 192.168.1.100

IP2: 10.0.0.5

IP: 128.33.6.12

NI = Network Interface

18 Improvements of the Linux SCTP API

Figure 2.2: A view of the association setup phase.

IN
IT

C
O
O
K
IE
-E
C
H
O

IN
IT-A

C
K

C
O
O
K
IE
-A
C
K

Endpoint A

Endpoint B

Association is up

Time

2.5.1 The association setup phase

SCTP uses a 4-way handshake in contrast to TCP’s 3-way handshake [4]. This was cho-
sen as means to avoid TCP’s vulnerability to a SYN packet flooding denial of service
attack 2. SCTP sends a signed state cookie [1] to protect against this form of attack3.

The signed state cookie should contain:

• A timestamp indicating when the cookie was created.

• A Message Authentication Code (MAC) [20].

• Lifespan of the state cookie

• Information necessary to establish the association.

While an additional packet exchange in the handshake often indicates additional
overhead, it is worth noting that two of the SCTP packets in the handshake can carry
other types of information, such as user data. This is done to minimize the delay bur-
den for the application without compromising the improved security. As is shown in
Figure 2.2, there are four chunks involved in a SCTP association setup.

The cookie is embedded inside the INIT-ACK chunk and is echoed back to endpoint
Z. When this is received, a COOKIE-ACK chunk is sent back and the association is set
up.

2"A SYN flooding attack is one of a number of denial-of-service attacks that have been used on the Internet.
It is usually executed by a malicious host (the attacker) sending a targeted host (the victim) a large number of
SYN messages. (The SYN message is the first setup message in a TCP connection, similar to SCTP’s INIT
message)" [19]

3Note that more recent implementations of TCP have incorporated a similar system, but they do not
use a signed cookie.

Improvements of the Linux SCTP API 19

Here is a short review of each chunk involved in the handshake:

• INIT
This is the client initiating an association to another endpoint. It contains infor-
mation (in the a_rwnd field) about:

– How much buffer resources the initiator has dedicated to the association.

– How many streams the local user is requesting to open to the remote peer.

– The maximum number of inbound streams it is capable of supporting.

– The initiation tag value. This value serve as a mechanism to verify that an
SCTP packet truly belongs to this association.

– A list of addresses available to the association.

Before the chunk is transmitted, the sender starts a timer called the T1-init timer
at his end so that if the chunk is lost, in other words if no INIT-ACK returns
to the initiator, it can be retransmitted in the event that the timer expires. The
retransmission also restarts the timer. A counter keeps track of how many re-
transmissions have been performed, and if it eventually reaches some threshold
the upper layer will be informed that the destination host is unreachable, and the
initiator will give up.

• INIT-ACK
This is generated at the receiving side of an INIT chunk. The receiver will not
allocate memory to store information about this association yet (this would make
it vulnerable to exhausting its resources in the event of a denial of service attack),
but it must decide what values would go there if it were to do it. In particular
it will form a cookie. It contains the receiving side’s a_rwnd field, how many
streams to open and a corresponding list of reachable addresses as was included
in the INIT chunk. The generated cookie should contain a timestamp of when it
was created, a time to live value and a signature for authentication, to help the
next step ensure that the cookie has not been tampered with.

• COOKIE-ECHO
When receiving the INIT-ACK chunk, the initiator will stop its T1-init timer and
reset any retransmission counter. Then it will proceed to update its address list
with the addresses read from the INIT-ACK chunk. The host then starts a new
timer called the T1-cookie timer. Finally the host will pack the received cookie into
a COOKIE-ECHO chunk and send it back to the sender. The COOKIE-ECHO
chunk can as mentioned earlier also contain data, so in the event of data waiting
to be transmitted, it can be added here.

• COOKIE-ACK
When the COOKIE-ECHO is received, the recipient will verify the cookie’s au-
thenticity and build a Transmission Control Block (TCB). The TCB is an internal
data structure containing a set of information that an endpoint must maintain
in order to manage a SCTP association, the exact structure of the TCB is imple-
mentation dependent. If there is data to be read in the COOKIE-ECHO chunk,

20 Improvements of the Linux SCTP API

Figure 2.3: An SCTP packet

IP Header
SCTP common header

Chunk 1
Chunk 2
Chunk 3

...
Chunk N

Figure 2.4: The SCTP common header

Bits 0-7 8-15 16-23 24 - 31

Source port Destination port
Verification tag

Checksum

it will be processed and the host will send back a COOKIE-ACK chunk. The
COOKIE-ACK is just meant to tell the initiator that the cookie has been received
and accepted, that the peer can turn off its T1-cookie timer and that the peer can
change the internal state of the new association to ESTABLISHED.

2.6 SCTP Message structure

As can be seen in Figure 2.3 an SCTP packet consists of a SCTP common header which
contains properties needed to control and maintain an association. A packet also con-
tains a variable number of chunks which will be covered in Subsection 2.6.2.

2.6.1 The SCTP common header

Figure 2.4 shows the SCTP common header. It provides three basic services:

• A method to associate a SCTP packet with an association - The source/destina-
tion port

• Verification that the SCTP packet belongs to the current instance of this associa-
tion - The verification tag

• Transport-level verification that the data is intact and unaltered by inadvertent
network errors. - The checksum

The common header contains a source port number, a destination port number, a
verification tag and a checksum. The verification tag ensures that the packet does not
belong to an earlier SCTP association between the two peers, and it makes it more
difficult for an attacker to inject data into an existing association. The chunks in the
message, and the header itself form the basis for the checksum, which is used to verify
the itegrity of the packet (i.e. help ensure that the packet has not been tampered with).

Improvements of the Linux SCTP API 21

Figure 2.5: The chunk header

Bits 0-7 8-15 16-23 24 - 31
Chunk 1 type Chunk 1 flags Chunk 1 length

Table 2.5: Chunk types

Chunk number Chunk type
0 DATA
1 INIT
2 INIT ACK
3 SACK
4 HEARTBEAT
5 HEARTBEAT ACK
6 ABORT
7 SHUTDOWN
8 SHUTDOWN ACK
9 ERROR
10 COOKIE ECHO
11 COOKIE ACK
12 ECNE
13 CWR
14 SHUTDOWN COMPLETE
15-62 Reserved by IETF
63 IETF-defined chunk extensions
64-126 Reserved by IETF
127 IETF-defined chunk extensions
128-190 Reserved by IETF
191 IETF-defined chunk extensions
192-254 Reserved by IETF
255 IETF-defined chunk extensions

2.6.2 Chunks

Chunks are the basic building blocks meant to carry information in SCTP. They come
in two main types:

• Control chunks
The control chunks carry information, for controlling and maintaining an associ-
ation.

• Data chunks
The data chunks carry user messages across an association.

Each chunk comes with a chunk header that describes what type of chunk it is, and a
chunk-type specific flags field. The chunk length says how long the chunk is, including
the chunk header itself (See Figure 2.5). That means that for a chunk that has no data,
the chunk length will still be 4 bytes.

22 Improvements of the Linux SCTP API

Figure 2.6: The DATA chunk

Bits 0-7 8-12 13 14 15 16-31

Chunk type = 0 Reserved U B E Chunk length
Transmission Sequence Number (TSN)

Stream identifier (SID) Stream sequence number (SSN)
Payload protocol identifier (PPID)

Data

RFC 2960 [1] defines 16 chunk types (See Table 2.5), leaving space for an additional
240 chunk types that may be defined in the future. The concept of chunks was chosen
for its extensibility, and new chunk types can be added as fits.

A closer look at the DATA chunk

The DATA chunk (shown in Figure 2.6) carries user messages. A list of the options and
their respective meaning is given below:

• U - If set to 1, this chunk is unordered.

• B - Beginning fragment bit, indicates that this is the first fragment of a fragmented
message.

• E - Ending fragment bit, indicates that this is the last fragment of a fragmented
message.

Each chunk is assigned a 32-bit Transmission Sequence Number (TSN). It allows
the endpoint to detect duplicate deliveries and tell the sending part that the chunk has
been received successfully.

The Stream Sequence Number (SSN) is a 16-bit value that ensures sequenced de-
livery of a message within a given stream. Unordered messages do not have a SSN,
and fragments of a message all carry the same SSN. This is basically what makes an
unordered message "unordered". Normally, with ordered messages, if a DATA chunk
(See Figure 2.6) arrives out of order with the U bit set to 0, it must be held back until
the full message can be reassembled. On the other hand, DATA chunks with the U bit
set to 1 will tell the endpoint to bypass its ordering mechanism, and just deliver the
chunk to the upper layer as soon as it arrives.

Finally, the Payload Protocol Identifier (PPID) is just carried through the SCTP
stack. It has no functionality in SCTP by itself, but can be used by network entities and
applications as necessary.

2.7 Summary

This chapter has looked at the current state of the Linux implementation of SCTP and
introduced some key concepts that will be of interest for the remainder of this thesis.
Especially ancillary data and notifications will be touched upon in the next chapter,

Improvements of the Linux SCTP API 23

which will present all discrepancies between the Linux implementation of SCTP and
the API defined in RFC 6458 that were found as part of the work with this thesis.

Chapter 3

Changes in RFC 6458

A big part of the research conducted while working on this thesis has revolved around
figuring out which aspects of SCTP that would need to be changed due to changes in
RFC 6458. Thus, this chapter will provide an overview of the discrepancies found to be
missing from the current Linux implementation of SCTP. There are mainly four types
of changes that have been found.

1. New helper functions to handle ancillary data.

2. Various changes related to the structure of ancillary data.

3. Changes to how notification interest is specified.

4. New socket options, and ways to set socket options on a more fine-grained level.

3.1 New functions

The old API functions are implemented in the userspace library known as libsctp. Of
all the functions introduced in RFC 6458, only three functions have not been found in
libsctp:

• sctp_sendx()

• sctp_sendv()

• sctp_recvv()

Note that sctp_sendx() is deprecated, and should be replaced with sctp_sendv(). Thus,
it will not be covered in this thesis.

sctp_sendv()

The function sctp_sendv() provides an extensible way for an application to send various
attributes to the SCTP stack when sending a message. In this case, extensible means
that it has been designed to be very "open" as to what types of ancillary data that can be
attached to a message. It makes it easy to add new types of ancillary data in the future.

25

26 Improvements of the Linux SCTP API

1 ssize_t sctp_sendv(

2 int sd,

3 const struct iovec *iov,

4 int iovcnt,

5 struct sockaddr *addrs,

6 int addrcnt,

7 void *info,

8 socklen_t infolen,

9 unsigned int infotype,

10 int flags);

Listing 3.1: Prototype of sctp_sendv().

According to RFC 6458 it can be implemented as a library function or a system call.
The full prototype of this function as it is defined in RFC 6458, is shown in Listing 3.1.
Most notably, there are two things that sets sctp_sendv() apart from the bare sendmsg()-
approach1:

1. First, the combination of the parameters info, infolen and infotype will together
indicate whether the message includes any of the following types:

• struct sctp_sndinfo - General send parameters as will be described in Sec-
tion 3.2

• struct sctp_prinfo - Parameters related to Partial Reliability SCTP [21].

• struct sctp_authinfo - Parameters related to AUTH SCTP [18].

• struct sctp_sendv_spa - The struct sctp_sendv_spa is a collection structure used
when more than one setting is to be set at the same time. Listing 3.2 shows
how this structure is defined.

1 struct sctp_sendv_spa {

2 uint32_t sendv_flags;

3 struct sctp_sndinfo sendv_sndinfo;

4 struct sctp_prinfo sendv_prinfo;

5 struct sctp_authinfo sendv_authinfo;

6 };

Listing 3.2: struct sctp_sendv_spa

For one-to-many style sockets it is necessary to always include a struct sctp_snd-
info to specify which association(s) to affect2. This is an example of when the
struct sctp_sendv_spa is needed. A developer would copy structs to their respec-
tive spots in the struct shown in Listing 3.2, and then proceed to set the sendv_flags
field to a bitwise OR of either SCTP_SEND_SNDINFO, SCTP_SEND_PRINFO or

1In fact, sctp_sendv() and sctp_recvv() are just a convenient wrappers around sendmsg() and recvmsg().
The examples in Section A.1 and A.2 in the Appendix shows how this can be accomplished.

2Except when the sctp_sendv() call is used to setup an implicit association (RFC 6458 [3], Section 7.5.)

Improvements of the Linux SCTP API 27

SCTP_SEND_AUTHINFO to indicate which of the three fields that should be in-
cluded by sctp_sendv().

2. Secondly, the caller can provide a list of addresses in the addrs parameter shown
in Listing 3.1. These addresses can be used to set up an association or send to a
specific address. If NULL is passed, the message will be sent to whichever other
endpoint the socket is connected to.

sctp_recvv()

Like sctp_sendv(), sctp_recvv() provides a way to receive attributes from the SCTP stack
to an application. Listing 3.3 shows its prototype, which is defined in RFC 6458 in a
similar fashion as the one shown earlier for sctp_sendv().

1 ssize_t sctp_recvv(int sd,

2 const struct iovec *iov,

3 int iovlen,

4 struct sockaddr *from,

5 socklen_t *fromlen,

6 void *info,

7 socklen_t *infolen,

8 unsigned int *infotype,

9 int *flags);

Listing 3.3: Prototype of sctp_recvv().

RFC 6458 defines two types of attributes that can be returned by this function. The
attributes of the received message, and/or those of the next message. Before receiving
either of these (or both), the RECVRCVINFO and RECVNXTINFO socket options must
be enabled to tell the SCTP stack which one(s) are desired. As with sctp_sendv(), there
is a collection structure defined if both socket options are on. This is the struct sctp_-
recvv_rn shown in Listing 3.4.

1 struct sctp_recvv_rn {

2 struct sctp_rcvinfo recvv_rcvinfo;

3 struct sctp_nxtinfo recvv_nxtinfo;

4 };

Listing 3.4: struct sctp_recvv_rn

These structures will be shown in more detail in the next section. Before making
a call to sctp_recvv() the caller must prepare a buffer for the message and point the
iov_base field of the struct iovec to it. Also a pointer to a buffer to store the address of
the sender should be provided in the from-parameter to sctp_recvv(). The info pointer
is where the ancillary data will be stored, and the infolen and infotype will be filled
appropriately.

28 Improvements of the Linux SCTP API

3.2 Ancillary data

The new ancillary data types are listed in Table 3.1. As was mentioned in Section 2.1
the struct sctp_sndrcvinfo was split into two smaller structs, struct sctp_sndinfo and struct
sctp_rcvinfo. Listing 3.5 shows how these are defined in RFC 6458.

In short, the fields in Listing 3.5 give the application developer the possibility to
change various settings. A few examples will be provided here.

The field snd_sid specifies which stream number to send the message on. An ex-
ample of how this can be done with sctp_sendv() is shown in Listing 3.6. Conversely,
rcv_sid is used to check which stream a message came in on. As long as the stream
number is within a valid range, i.e. within the range of available in/out streams of the
communicating parties,3 this would send the message on stream number 5.

The snd_flags field can be used to tell the SCTP stack various things. The field con-
tains a bitwise OR of one or more of the following options:

• SCTP_UNORDERED
Setting this flag requests the message to be delivered unordered.

• SCTP_ADDR_OVER
Setting this requests that the SCTP stack overrides the primary address destina-
tion address with the one found in the call.

• SCTP_ABORT
Setting this flag causes the specified association to abort by sending an ABORT
message to the peer.

• SCTP_EOF
Setting this flag invokes a graceful shutdown procedure on the specified asso-
ciation. A graceful shutdown makes sure all untransmitted data is transmitted
before closing the association.

• SCTP_SENDALL
Setting this flag will cause a one-to-many style socket to send the message to all
associations currently established on the socket.

As most of these flags are directions to the SCTP stack, only SCTP_UNORDERED
can be seen from the receivers end. Hence, only SCTP_UNORDERED can possibly end
up in rcv_flags after a call to sctp_recvv(), telling the receiver that the received message
was sent out of order.

More information on what each individual field in sctp_sndinfo and sctp_rcvinfo can
be used for can be found in Section 5.3.4. and 5.3.5. of RFC 6458.

Note that the only field in Listing 2.3 that has been changed its name is the sinfo_-
stream field which has been renamed to snd/rcv_sid for the two new structures. Only
the sinfo_timetolive flag was left out. Setting this value was moved to Partial Reliability
SCTP (PR-SCTP) with the policy SCTP_PR_SCTP_TTL. The next sections will contain
a brief explanation of some of these fields.

3Section 8.2.1. of RFC 6458 [3] shows how to get an endpoints available in/out streams.

Improvements of the Linux SCTP API 29

Table 3.1: New ancillary data types in RFC 6458.

Description cmsg_type cmsg_data[]
SCTP Send Information Structure SCTP_SNDINFO struct sctp_sndinfo
SCTP Receive Information Structure SCTP_RCVINFO struct sctp_rcvinfo
SCTP Next Receive Information Structure SCTP_NXTINFO struct sctp_nxtinfo
SCTP PR-SCTP Information Structure SCTP_PRINFO struct sctp_prinfo
SCTP AUTH Information Structure SCTP_AUTHINFO struct sctp_authinfo
SCTP Destination IPv4 Address Structure SCTP_DSTADDRV4 struct in_addr
SCTP Destination IPv6 Address Structure SCTP_DSTADDRV6 struct in6_addr

1 struct sctp_sndinfo {

2 uint16_t snd_sid;

3 uint16_t snd_flags;

4 uint32_t snd_ppid;

5 uint32_t snd_context;

6 sctp_assoc_t snd_assoc_id;

7 };

8
9 struct sctp_rcvinfo {

10 uint16_t rcv_sid;

11 uint16_t rcv_ssn;

12 uint16_t rcv_flags;

13 uint32_t rcv_ppid;

14 uint32_t rcv_tsn;

15 uint32_t rcv_cumtsn;

16 uint32_t rcv_context;

17 sctp_assoc_t rcv_assoc_id;

18 };

Listing 3.5: The new structs: struct sctp_sndinfo and struct sctp_rcvinfo.

30 Improvements of the Linux SCTP API

1 struct sctp_sndinfo snd;

2 memset(&snd, 0, sizeof(snd));

3
4 snd.snd_sid = 5;

5 snd.snd_flags |= SCTP_SENDALL;

6
7 /* struct sockaddr_in *from - Address of the recipient.

8 sctp_sendv(sockfd, /* Socket identifier */

9 msg.msg_iov, /* The msghdr’s data storage. */

10 1, /* Number of iovec structs */

11 &from, /* Address of recipient */

12 1, /* Number of addresses */

13 &snd, /* Ancillary data */

14 sizeof(snd), /* Ancillary data length */

15 SCTP_SENDV_SNDINFO, /* Type of ancillary data */

16 0); /* Flags redirected to sendmsg() */

Listing 3.6: Example: Selecting a stream number with struct sctp_sndinfo and sctp_-
sendv().

1 struct sctp_nxtinfo {

2 uint16_t nxt_sid;

3 uint16_t nxt_flags;

4 uint32_t nxt_ppid;

5 uint32_t nxt_length;

6 sctp_assoc_t nxt_assoc_id;

7 };

Listing 3.7: struct sctp_nxtinfo

3.2.1 struct sctp_nxtinfo

In addition to the split of struct sctp_{snd/rcv}info, an extended version of sctp_rcvinfo
was present prior to RFC 6458. The structure struct sctp_extrcvinfo contained the same
information that struct sctp_sndrcvinfo normally would, but also information about the
next message to be received by recvmsg(). With RFC 6458, struct sctp_extrcvinfo has been
replaced with struct sctp_nxtinfo, which is shown in Listing 3.7.

3.3 Notifications

Although the events themselves have not changed much, the way they are handled
have changed a bit. The SCTP_EVENTS socket option which was described in Sec-
tion 2.2 has been replaced with a new socket option SCTP_EVENT. The SCTP_EVENTS
option that was used prior to RFC 6458 was not scalable enough. According to the RFC,
the struct sctp_event_subscribe, which was introduced in Subsection 2.2.1 would have to

Improvements of the Linux SCTP API 31

be expanded as new events are added to SCTP. This can cause an application binary
interface conflict, unless the implementation adds padding at the end of the structure.
To avoid this, SCTP_EVENTS has been deprecated and the new socket option SCTP_-
EVENT will take its place.

In addition, there are two minor changes to the actual events:

1. The event type SCTP_SEND_FAILED has been deprecated and replaced with
SCTP_SEND_FAILED_EVENT. They seem to be pretty much identical, except
that SCTP_SEND_FAILED_EVENT uses a struct sctp_sndinfo in its ssfe_info field.
This event, if enabled, will be sent to the application layer if SCTP is unable to
deliver a message. It includes a SCTP error code, which will reveal what type of
failure has occurred (more details on SCTP error codes can be found in section
3.3.10. in RFC 4960 [14]).

2. The SCTP_NOTIFICATIONS_STOPPED_EVENT is missing. According to RFC 6458
this event might trigger if the implementation runs out of socket buffer space.
When this occurs, it might wish to disable notifications and it will notify the ap-
plication layer of this by sending this event.

3.4 Socket options

As was briefly mentioned in Subsection 1.1.1, socket options in SCTP are set with the
function setsockopt(). Its prototype is shown in Listing 3.8.

1 int setsockopt(

2 int sd, /* File descriptor */

3 int level, /* Protocol number */

4 int optname, /* Name of option to change */

5 const void *optval, /* Option input */

6 socklen_t optlen); /* Length of option input */

7 };

Listing 3.8: setsockopt()

Although this function is specified in the operating systems socket API, calls to this
function with a level of IPPROTO_SCTP gets redirected to the SCTP function sctp_-
setsockopt() which is defined in socket.c in the Linux kernel implementation.

This function can be used to ask the SCTP stack for a lot of things, and some of
them will be listed here. The findings related to socket options will be presented in the
following subsections.

3.4.1 Selecting which associations to affect

Socket options set on a one-to-one style sockets automatically apply to all future sock-
ets, but a more fine-grained scheme is necessary for one-to-many sockets. Therefore,
many socket options that can be used with one-to-many style sockets include an sctp_-
assoc_id field in the structure that gets passed to the SCTP stack.

32 Improvements of the Linux SCTP API

1 /* This structure is defined in linux/sctp.h */

2 struct sctp_assoc_value {

3 sctp_assoc_t assoc_id;

4 uint32_t assoc_value;

5 };

6
7 /* Prepare an instance of the struct */

8 struct sctp_assoc_value myopt;

9 memset(&myopt, 0, sizeof(struct sctp_assoc_value));

10
11 /* Set desired values */

12 myopt.assoc_id = SCTP_FUTURE_ASSOC;

13 myopt.assoc_value = 100;

14
15 /* Send the settings to the SCTP stack */

16 setsockopt(sock,

17 IPPROTO_SCTP,

18 SCTP_MAXSEG,

19 &myopt,

20 sizeof(struct sctp_assoc_value));

Listing 3.9: Setting the MAX_SEG socket option

Listing 3.9 shows an example of how to set a socket option. To set the maximum
fragmentation size of a DATA chunk, a structure of type sctp_assoc_value specifies both
which association the new setting should affect, and how many bytes of data the DATA
chunks should be limited to.

For this particular socket option, SCTP_MAXSEG, the assoc_id field can be set to
either a specific association ID, which will make the option only affect that association,
or it can be set to SCTP_FUTURE_ASSOC. Different socket options allow different
combinations of these flags. These are the available options:

• SCTP_CURRENT_ASSOC
Only the currently existing associations on the socket will be affected by this call.

• SCTP_FUTURE_ASSOC
Only future associations that are established on the socket will be affected.

• SCTP_ALL_ASSOC
All associations, both current and future will be affected.

Since these three flags are not currently implemented on Linux, the example shown
in Listing 3.9 would unfortunately not work at this point.

The socket options that would need to be modified to accomodate for this change
are listed in Table 3.2. Note that this is not all socket options available in SCTP, merely
the ones that these flags would affect.

Improvements of the Linux SCTP API 33

Table 3.2: Affected socket options

Socket option CURRENT FUTURE ALL ID
SCTP_RTOINFO 7 3 7 3

SCTP_ASSOCINFO 7 3 7 3

SCTP_PRIMARY_ADDR 7 7 7 3

SCTP_PEER_ADDR_PARAMS 7 3 7 3

SCTP_DEFAULT_SEND_PARAMS 3 3 3 3M

SCTP_MAXSEG 7 3 7 3MM

SCTP_AUTH_ACTIVE_KEY 3 3 3 3

SCTP_DELAYED_SACK 3 3 3 3

SCTP_MAX_BURST 3 3 3 3

SCTP_CONTEXT 3 3 3 3

SCTP_EVENT 3 3 3 3

SCTP_DEFAULT_SNDINFO 3 3 3 3

SCTP_DEFAULT_PRINFO 3 3 3 3

SCTP_LOCAL_AUTH_CHUNKS 7 3 7 3

SCTP_AUTH_KEY 3 3 3 3

SCTP_AUTH_DEACTIVATE_KEY 3 3 3 3

SCTP_AUTH_DELETE_KEY 3 3 3 3

3: Should have support for this flag
7: Flag is not used here
M: This socket option has been deprecated with RFC 6458.
MM: The RFC is a bit unclear on this point. It says it is illegal to
use SCTP_CURRENT|ALL_ASSOC,but does not specifically say
that SCTP_FUTURE_ASSOC is allowed.

34 Improvements of the Linux SCTP API

3.4.2 New socket options

All of the following socket options are not available in Linux, or their implementation
has been found to be slightly different than what is proposed in RFC 6458. A short
description on what has been found for each socket option will be given below.

SCTP_FRAGMENT_INTERLEAVE

The fragmented interleave socket option controls whether the SCTP stack should post-
pone sending other messages while an endpoint is in the process of receiving a partial
delivery. According to RFC 6458, this option can be set to 3 different levels:

• Level 0: Block incoming messages on both other streams and associations.

• Level 1: Block incoming messages on other streams, but not on other associations.

• Level 2: Allow incoming messages on both streams and associations.

The suggested default is level 1, note that for one-to-one style sockets both level
0 and level 1 is the same, as they only have one association. The socket option is
implemented in Linux, but only with two levels. It has not been fully mapped out
during the writing of this thesis exactly which two levels are available, but it is safe to
assume that either level 0 or 1 are missing. Thus, the ability to give one-to-many style
sockets an optional fine-grained control over what to do is not implemented.

SCTP_GET_PEER_ADDR_INFO

Section 8.2.2. of RFC 6458 says that when the field spinfo_assoc_id in struct sctp_pad-
drinfo is set, it should be prioritized over the spinfo_address. Although the socket option
is supported, this particular detail is currently not considered in the Linux implemen-
tation of SCTP.

SCTP_USE_EXT_RCVINFO

This socket option has been deprecated according to section 8.1.22. of RFC 6458 [3].
The "extended" part of the struct sctp_sndrcvinfo added data fields for the next mes-
sage, which has been reworked to rather use the SCTP_NXTINFO (Described in Sub-
section 3.2.1). Nothing related to struct sctp_extrcvinfo has been implemented in Linux.

SCTP_REUSE_PORT

With this socket option a user can tell the SCTP stack to reuse the port of another socket
that has been registered with the REUSE_PORT setting enabled. This does not mean
that two sockets can be listening on the same port, but might enable multiple sockets
to "take turns" listening. This option only applies to one-to-one style sockets.

Improvements of the Linux SCTP API 35

SCTP_EVENT

Prior to RFC 6458 the events system was handled with the SCTP_EVENTS option (As
described in Section 2.2). The scalability of this solution was not optimal, as it relied
on a struct sctp_event_subscribe to describe which notifications the user was interested
in. As new features are added to SCTP this structure will have to be expanded, and
this can cause scalability issues. This notification interest mechanism has not been
implemented in Linux.

SCTP_RECVRCVINFO & SCTP_RECVNXTINFO

These options are used to enable receival of the new struct sctp_rcvinfo and struct sctp_-
nxtinfo as was described in Section 3.2. They replace the data_io_event-member in struct
sctp_event_subcribe, but neither are currently implemented in SCTP for Linux.

SCTP_DEFAULT_SNDINFO

If a developer does not want to use the sctp_sendv() call to pass ancillary data, it is
with this socket option possible to set default send parameters. It is as simple as filling
a struct sctp_sndinfo and passing it along to the setsockopt() call. This option replaces
the SCTP_DEFAULT_SEND_PARAM, but is not currently implemented in SCTP for
Linux.

SCTP_DEFAULT_PRINFO

This socket option is used to set or get the the default parameters for PR-SCTP. [3] It
has not been implemented in SCTP for Linux.

SCTP_AUTH_DEACTIVATE_KEY

A shared secret key can be used to built an association shared key. This can be set up
with the SCTP_AUTH_KEY socket option. A mechanism to deactivate it has not been
implemented in Linux, but deleting is possible with the SCTP_AUTH_KEY_DELETE
socket option.

SCTP_EXPLICIT_EOR

This socket option is described in section 8.1.26. of RFC 6458 [3]. It is not currently
available in SCTP for Linux. With this socket option enabled a developer should be
able to make multiple send system calls and then make sure to have the MSG_EOR flag
set on the last record. The MSG_EOR flag part of the sockets API is defined in socket.h.
To implement this, some work would need to be done in the file net/sctp/ulpqueue.c in
the Linux kernel.

36 Improvements of the Linux SCTP API

3.5 Summary

Chapter 3 has presented a rundown of possible improvements in the current SCTP im-
plementation for Linux. This includes new helper functions, changes to the handling
of ancillary data and notifications, and a new scheme for dealing with socket options.
In the next chapter we will have a look at how some of these improvements have been
designed as part of the work with this thesis.

Chapter 4

Design and Implementation

This chapter will examine in detail the changes that were designed, implemented and
evaluated on the Linux SCTP code base as part of this thesis. These implementations
were done with Linux kernel version 3.12.9, downloaded from https://www.kernel.org

in January 2014. Also the files sctp_sendv.c and sctp_recvv.c were added to libsctp version
1.0.15, downloaded from http://lksctp.sourceforge.net in January 2014. Section A in the
Appendix contains hyperlinks to the git repositories where all code can be found.

In total, five files from the kernel tree were modified and one file in the userspace
library in addition to the two new files that were added to the latter: sctp_recvv.c and
sctp_sendv.c.

Modified files - Linux kernel:

• socket.c (src/linux-3.12/net/sctp/)

• ulpevent.c (src/linux-3.12/net/sctp/)

• structs.h (src/linux-3.12/include/net/sctp/)

• ulpevent.h (src/linux-3.12/include/net/sctp/)

• sctp.h (src/linux-3.12/include/uapi/linux/)

Modified files - Userspace (libsctp):

• sctp_sendv.c (src/lib/)

• sctp_recvv.c (src/lib/)

• sctp.h (src/include/netinet/)

Early on, it became apparent that the first thing that needed to be done, was to up-
date the header file with all the new structures, flags and other related constants. As
these flags, structures and constants are what everything else depends on, it was neces-
sary to decide on a suitable location for them. In FreeBSD most of these seemed to have
been defined in the files sys/netinet/sctp_uio.h and sys/netinet/sctp/sctp.h. Many, if not all,
of the definitions found in these files were also found in the file include/uapi/linux/sctp.h
on Linux, so it seemed reasonable to assume that adding the new flags, structures and

37

https://www.kernel.org
http://lksctp.sourceforge.net

38 Improvements of the Linux SCTP API

constants would best be done here. As an example, the socket options were defined
in sys/netinet/sctp/sctp.h on FreeBSD. As the socket options in FreeBSD were simply
numbered constants, they were added in the same way to the already existing socket
options defined in Linux. There were 31 options already defined, so the numbers were
initially counted from 32 and onwards as shown in Listing 4.1.

1 #define SCTP_RECVRCVINFO 32

2 #define SCTP_RECVNXTINFO 33

3 #define SCTP_DEFAULT_SNDINFO 34

Listing 4.1: Socket options implemented in this thesis

The following sections will describe every accomplished implementation that has
been performed as part of this thesis.

First, the next section will describe the process of getting the ancillary data struct
sctp_sndinfo transferred properly with as little change to the existing structure as possi-
ble. Then, Section 4.2 will cover the implementation of the new socket options, and fi-
nally Section 4.3 and Section 4.4 will present the new functions that been implemented
and an overview of the new flags for struct sctp_sndinfo.

4.1 Implementing support for sending ancillary data

Being able to send ancillary data in the form of the struct sctp_sndinfo proved to be a bit
more complicated than receiving struct sctp_rcvinfo. This section will show a few of the
changes that were done to accommodate for this. The function sctp_sendmsg() in the file
socket.c calls a function called sctp_msghdr_parse() (shown in Listing 4.2). This function
takes a struct msghdr (Listing 2.1) and a pointer to a location to store the cmsghdrs that
is extracted from the struct msghdr. During this project, this storage structure has been
changed slightly to be able to hold other kinds of ancillary data than just the old struct
sctp_sndrcvinfo. The storage structure, sctp_cmsgs_t, is shown in Listing 4.3. Previously,
it had only two fields: a pointer to a struct sctp_initmsg1 and a pointer to a struct sctp_-
sndrcvinfo. The latter was replaced with the void *info seen in the listing. The purpose
of this change is to make the sctp_cmsgs_t able to hold both a struct sctp_sndinfo, or
the old struct sndrcvinfo. The cmsg_type-field was then added, to be able to distinguish
between them. This separation of the cmsg types is done in the function sctp_msghdr_-
parse(). The next subsection will show what happens inside sctp_msghdr_parse(), and
we will return to sctp_sendmsg() to see what happens further in Subsection 4.1.2.

1 static int sctp_msghdr_parse(const struct msghdr *msg,

sctp_cmsgs_t *cmsgs);

Listing 4.2: Prototype of sctp_msghdr_parse

1Nothing related to this structure has changed in this thesis. It is described in section 5.3.1. of
RFC 6458 [3].

Improvements of the Linux SCTP API 39

1 /* A convenience structure to parse out SCTP specific CMSGs

*/

2 typedef struct sctp_cmsgs {

3 struct sctp_initmsg *init;

4 void * info;

5 sctp_cmsg_t cmsg_type;

6 } sctp_cmsgs_t;

Listing 4.3: The new struct sctp_cmsgs_t in structs.h.

4.1.1 sctp_msghdr_parse()

The sctp_msghdr_parse() function loops through all control messages (cmsgs) in the
given struct msghdr. First it skips all cmsgs that is not of cmsg_level IPPROTO_SCTP.
In other words, cmsgs that are not meant for SCTP. Then the function proceeds to check
the type of the cmsg. Prior to this project, the supported cmsg types were SCTP_INIT or
SCTP_SNDRCV. If it finds a cmsg type it recognizes, it checks that the cmsg->cmsg_len
field is of correct size and then returns the CMSG_DATA 2 of the cmsg back to the given
storage structure sctp_cmsgs_t mentioned in the previous section.

Just like the ones that were supported in that storage structure sctp_cmsgs_t in
the previous section, the sctp_msghdr_parse()-function also needs support for the new
cmsg_type SCTP_SNDINFO. The code shown in Listing 4.4 shows the code that was
added to sctp_msghdr_parse() as part of this thesis.

At line 14-17 size-validation is done in the same manner as was already done for
the existing SCTP_SNDRCV case. The function then sets the cmsgs->info and cmsgs-
>cmsg_type properly. Line 22-26 checks that only allowed flags are being given, as was
done for the old SCTP_SNDRCV too. This time the SCTP_SENDALL flag was added,
as this is to be supported by the new API.

4.1.2 Back in sctp_sendmsg()

After sctp_msghdr_parse() has found its control messages and made them available for
the sctp_sendmsg() function, sctp_sendmsg() proceeds by validating a lot of things. It
ensures that flags are set correctly in regards to what type of socket is being used,
fetches the destination address for the message and performs various other checks.
Next, sctp_sendmsg() looks up the association, and checks that it is open for commu-
nication, i.e. not in state CLOSED. According to comments in socket.c this can happen
with certain one-to-one style sockets. If an association is not found, a new one will
be created3. After the association has been found or created, handling of the ancillary
data begins. Listing 4.5 shows another piece of code that has been contributed as part
of this thesis; How the new control message is being detected and kept for use later in
the function.

2It is recommended to handle control messages in Linux by utilizing a certain set of macros created
for this purpose. CMSG_DATA is one of these [16].

3Implicit association setup is described in section 7.5. of RFC 6458 [3].

40 Improvements of the Linux SCTP API

1 ...

2 case SCTP_SNDINFO:

3 /* SCTP Socket API Extension

4 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)

5 *
6 * This cmsghdr structure specifies SCTP options for

7 * sendmsg(). This structure and SCTP_RCVINFO replaces

8 * SCTP_SNDRCV which has been depleted.

9 *
10 * cmsg_level cmsg_type cmsg_data[]

11 * ------------ ------------ ---------------------

12 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo

13 * */

14 if(cmsg->cmsg_len !=

15 CMSG_LEN(sizeof(struct sctp_sndinfo))){

16 return -EINVAL;

17 }

18
19 cmsgs->info = (struct sctp_sndinfo *)CMSG_DATA(cmsg);

20 cmsgs->cmsg_type = SCTP_SNDINFO;

21
22 if (((struct sctp_sndinfo *) cmsgs->info)->snd_flags &

23 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |

24 SCTP_ABORT | SCTP_EOF | SCTP_SENDALL)){

25 return -EINVAL;

26 }

27
28 break;

29 ...

Listing 4.4: Excerpt from sctp_msghdr_parse(): Adding support for SCTP_-
SNDINFO

Improvements of the Linux SCTP API 41

1 ...

2 if(cmsgs.cmsg_type == SCTP_SNDINFO){

3 /* Put the cmsg data into a temporary struct

sctp_sndinfo and

4 move it into the struct sctp_sndrcvinfo

default_sinfo; */

5 sndinfo = (struct sctp_sndinfo*) cmsgs.info;

6 memset(&default_sinfo, 0, sizeof(default_sinfo));

7
8 default_sinfo.sinfo_flags = sndinfo->snd_flags;

9 default_sinfo.sinfo_stream = sndinfo->snd_sid;

10 default_sinfo.sinfo_assoc_id =

sndinfo->snd_assoc_id;

11 default_sinfo.sinfo_ppid = sndinfo->snd_ppid;

12 default_sinfo.sinfo_context = sndinfo->snd_context;

13
14 sinfo = &default_sinfo;

15 }else{

16 /* cmsgs.info could be NULL, but will be replaced

by a default sinfo later,

17 since sndinfo has not been set. */

18 sinfo = cmsgs.info;

19 }

20 ...

Listing 4.5: Excerpt from sctp_sendmsg(): Handling a sendmsg() with struct_-
sndinfo

42 Improvements of the Linux SCTP API

The default_sinfo structure is of type sctp_sndrcvinfo. It is intended to be used when
no ancillary data has been given. It is in this case just filled up with defaults taken from
the association. Earlier, the default approach was taken if no control message of type
SCTP_SNDRCV was found, but it has been modified to include the condition that no
control message of type SCTP_SNDINFO has been found either, leading to this default
creation not happening when a SNDINFO control message has been found. At line
14 in Listing 4.5 the sinfo pointer (of type struct sctp_sndrcvinfo *) is set to point to this
new default structure. Hence, sending a control message of type SCTP_SNDINFO is
handled just the same way as the SCTP_SNDRCV was handled previously.

4.2 Implementing new socket options

The socket options that were implemented in this project were all related to ancillary
data. Two of them are simple boolean options, that can be set either on or off. The
last one is the replacement of the deprecated option SCTP_DEFAULT_SEND_PARAM,
now SCTP_DEFAULT_SNDINFO, which is basically a part of the move from the struct
sndrcvinfo mentioned in Subsection 2.1.3 to struct sndinfo and struct rcvinfo. A little more
details on the implementation of each one will be provided here.

SCTP_DEFAULT_SNDINFO

As described in Subsection 3.4.2, this option just sets the default struct sctp_sndinfo to
be used, in cases where no struct sctp_sndinfo is provided. Apart from adding the con-
stant SCTP_DEFAULT_SNDINFO to include/uapi/linux/sctp.h, all changes related to this
option has been done in the file net/sctp/socket.c. In this latter file, three areas needed
to be modified. The function sctp_setsockopt() is called first (thanks to the struct proto,
which will be shown in Section 4.3). This function starts off by verifying that the option
is SCTP-related, it then locks the socket structure while it calls a helper function that
performs the necessary steps to do for the socket option in question. The invocation of
this helper function is shown in Listing 4.6.

This socket option is read/write, which means that one can also do a getsockopt() call
and get the current set of default parameters by passing in an empty struct sctp_sndinfo
as parameter.

The function that takes care of the socket option from there, sctp_setsockopt_default_-
sndinfo(), is very similar to the old function sctp_setsockopt_default_send_param(). The
new function, sctp_setsockopt_default_sndinfo(), just validates the input by checking that
the given structure has the size of a struct sctp_sndinfo and that it can be copied from
user space successfully. It then tries to find the association identifier given in the snd_-
assoc_id field of the struct snd_sndinfo. If this association identifier is not present on
a one-to-many style socket, the function returns an error. The whole function sctp_-
setsockopt_default_sndinfo() that has been implemented is shown in the Section A.5 in
the Appendix.

If the association is found, or if the option is set on a one-to-one style socket, a
default struct sctp_sndinfo is filled out with the given parameters and stored in the
socket structure itself or at the association structure. This default structure is then used

Improvements of the Linux SCTP API 43

1 ...

2 case SCTP_DEFAULT_SEND_PARAM:

3 retval = sctp_setsockopt_default_send_param(sk, optval,

optlen);

4 break;

5 case SCTP_DEFAULT_SNDINFO:

6 retval = sctp_set_sockopt_default_sndinfo(sk,

7 optval,

8 optlen);

9 break;

10 case SCTP_PRIMARY_ADDR:

11 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);

12 break;

13 ...

Listing 4.6: Excerpt from sctp_set_sockopt() in socket.c: Showing where SCTP_-
DEFAULT_INFO was added to sctp_setsockopt().

by future calls to sendmsg(), sendto() or sctp_sendv().
An example showcasing the use of this new socket option can be found in Sec-

tion A.4.

SCTP_RECVRCVINFO

Setting this socket option tells the SCTP stack to include a struct rcvinfo when subsequent
calls to recvmsg() is made. This socket option is also read/write, thus it is possible to
make a getsockopt() call and get information on whether or not this setting is enabled
or not.

Figuring out where best to store this setting proved a bit difficult, as the FreeBSD
implementation represents sockets quite differently. Settings like these in FreeBSD are
stored as a 64 bit integer in the struct in_pcb which is compared with masks like SCTP_-
PCB_FLAGS_RECVRCVNXTINFO. Since Linux does not have anything like this, it
was necessary to see how similar options to SCTP_RECVRCVINFO had been stored
before. The SCTP_NODELAY option, which turns on/off the Nagle-like algorithm
(Described in section 8.1.5. of RFC 6458 [3]) works a lot like this. It expects a boolean
integer to decide its status, and can be toggled on or off with a call to setsockopt().
Tracking down how the Linux implementation stored this setting led to the struct sctp_-
sock in include/net/sctp/structs.h that keeps this information stored as an unsigned 8 bit
field called nodelay. As a result of this discovery, the new options were added to the
struct sctp_sock as shown in Listing 4.7.

The similarity with SCTP_NODELAY does however stop here, as the functionality
of the two are completely different. The closest thing from here would be to look at how
the Linux SCTP stack used to know when to send the struct sctp_sndrcvinfo as ancillary
data. The way this was done prior to RFC 6458, was to set the sctp_data_io_event field
and call the SCTP_EVENTS socket option as was described in Subsection 2.2.1. So the
most logical followup was to check where sctp_data_io_event was being processed. In

44 Improvements of the Linux SCTP API

1 ...

2 __u8 nodelay;

3 __u8 disable_fragments;

4 __u8 v4mapped;

5 __u8 frag_interleave;

6 __u32 adaptation_ind;

7 __u32 pd_point;

8 __u8 recvrcvinfo;

9 __u8 recvnxtinfo;

10 ...

Listing 4.7: Excerpt from struct sctp_sock in structs.h: The two new boolean options.

1 ...

2 if (sp->subscribe.sctp_data_io_event)

3 sctp_ulpevent_read_sndrcvinfo(event, msg);

4 ...

Listing 4.8: Excerpt from sctp_recvmsg() in socket.c: Checking the deprecated sctp_-
data_io_event field.

the Linux source this was not too hard to find, as the sctp_data_io_event was just read
at one single location; In the function sctp_recvmsg() of net/sctp/socket.c.

As can be seen in Listing 4.8, the next function to handle a struct sctp_sndrcvinfo is
the function sctp_ulpevent_read_sndrcvinfo(). It takes a struct sctp_ulpevent4 (event) and
a struct msghdr (msg) as parameters. The event is a pointer to the socket buffer’s control
block5, which can be used by protocols for storing private per-packet information. In
this case, this is the data needed to fill a struct sctp_rcvinfo. The function sctp_ulpevent_-
read_sndrcvinfo() creates a struct sctp_sndrcvinfo and fills it with data taken from the
event. The msg mentioned in Listing 4.8 is a pointer to the struct msghdr the application
layer has provided, i.e. where the developer wants the data to go. Finally the filled up
struct sctp_sndrcvinfo is handled by the kernel function put_cmsg() which creates a new
struct cmsghdr (as was described in Subsection 2.1.2), copies the ancillary data into it
and copies it all back to userspace as shown in Listing 4.9.

Since sctp_ulpevent_read_sndrcvinfo() was created to handle a struct sctp_sndrcvinfo,

4A struct sctp_ulpevent carries information to the Upper Layer Protocol (ULP). E.g. the sockets API.
5This gets a bit complicated, but it is described in more detail at kernel.org [22]

1 ...

2 put_cmsg(msghdr, IPPROTO_SCTP, SCTP_SNDRCV, sizeof(struct

sctp_sndrcvinfo), (void *)&sinfo);

3 ...

Listing 4.9: Excerpt from sctp_ulpevent_read_sndrcvinfo() in ulpevent.c: The put_-
cmsg call that copies a struct sctp_sndrcvinfo to userspace.

Improvements of the Linux SCTP API 45

1 ...

2 if(sp->recvrcvinfo)

3 sctp_ulpevent_read_rcvinfo(event, msg);

4 ...

Listing 4.10: Excerpt from sctp_recvmsg() in socket.c: Verifying that the recvrcvinfo
field is set before proceeding.

1 ...

2 put_cmsg(msghdr, IPPROTO_SCTP, SCTP_RCVINFO,

sizeof(struct sctp_rcvinfo), (void *)&rinfo);

3 ...

Listing 4.11: Excerpt from sctp_ulpevent_read_rcvinfo() in ulpevent.c: The put_cmsg
call that copies a struct sctp_rcvinfo to userspace.

a new function was added to the file ulpevent.c called sctp_ulpevent_read_rcvinfo(). And
to call this, the __u8 recvrcvinfo field shown in Listing 4.7 is examined instead of the
sp->subscribe.sctp_data_io_event field shown in Listing 4.8. Listing 4.10 shows how this
is currently being done.

Even though these two functions, sctp_ulpevent_read_rcvinfo() and sctp_ulpevent_-
read_sndrcvinfo(), gets called by slightly different criterias, they are very similar. Instead
of a struct sctp_sndrcvinfo, sctp_ulpevent_read_rcvinfo() creates a struct sctp_rcvinfo, and it
sets the field rcv_sid instead of the deprecated sinfo_stream. Finally it puts the ancillary
data back in a similar fashion, by calling put_cmsg() (Shown in Listing 4.11).

Note that the type parameter to put_cmsg has been set to SCTP_RCVINFO in this
case, and the size parameter is now based on a struct sctp_rcvinfo.

SCTP_RECVNXTINFO

The RECVNXTINFO socket option is handled similarly to the RECVRCVINFO option,
but with a slightly different approach to getting the actual message information. While
the RECVRCVINFO information was taken from the socket buffer’s control block, rep-
resented by the struct sctp_ulpevent, as was shown in the previous section, the informa-
tion related to the next message took a bit more effort to extract. The socket buffers are
kept in a queue structure6 on Linux called the sk_receive_queue, a field of the struct sock7.
Listing 4.12 shows how this queue is examined in more detail. The skb_peek() function
takes a look at the next element in the queue without taking it out of the queue, thus
leaving it to be returned as RECVRCVINFO if that socket option is also enabled. If
the skb_peek() returns anything other than NULL, the queue has one element waiting
to be received. This socket buffer is then converted to a struct sctp_ulpevent with the
function sctp_skb2event() and then another new function gets called, the sctp_ulpevent_-

6Finding proper documentation on these queues seems difficult. The best found so far is the com-
ments in the source code of net/core/skbuff.c and include/linux/skbuff.h [23, 24].

7The struct sock is part of the Sockets API mentioned in Subsection 1.1.1.

46 Improvements of the Linux SCTP API

1 ...

2 if(sp->recvnxtinfo){

3 spin_lock_bh(&sk->sk_receive_queue.lock);

4 nxtskb = skb_peek(&sk->sk_receive_queue);

5 if (nxtskb)

6 atomic_inc(&nxtskb->users);

7 spin_unlock_bh(&sk->sk_receive_queue.lock);

8
9 if (nxtskb && nxtskb->len){

10 nxt_event = sctp_skb2event(nxtskb);

11 sctp_ulpevent_read_nxtinfo(nxt_event, msg, nxtskb);

12 }

13 /* If there is no nxtskb, just continue as if nothing

happened. */

14 }

15 ...

Listing 4.12: Excerpt from sctp_recvmsg() in socket.c: Checking if a next message is
present on the queue.

read_nxtinfo(). Again, this function does the same as the previous two (sctp_ulpevent_-
read_{sndrcv|rcv}info). The only difference here being that this one needs to provide the
nxt_length field. The nxt_length is the length of the message currently within the socket
buffer. According to section 5.3.6. of RFC 6458 [3], this does not necessarily mean the
entire length of the message, as the next message might be part of a partial delivery.
Only if the SCTP_COMPLETE (See Subsection 4.4.1) flag is set does this field represent
the size of the entire next message.

4.3 Adding new functions

When the kernel module for SCTP is first loaded by the operating system, it will first
look for the module_init() macro. This in turn, directs the operating system to the func-
tion sctp_init() defined in protocol.c. Sctp_init() initializes the whole SCTP "universe".
Notably, this function sets up a storage area for future associations, endpoints and
ports and then registers this universe with the operating system with a call to the func-
tion proto_register(). This function takes a structure of type struct proto as a parameter.

The struct proto for SCTP is shown in Listing 4.13. It tells the operating system
where to find SCTP specific function for a given system call. It is the interface be-
tween the transport layer and the application layer. So if an application invokes any
of the functions shown in the left column of Listing 4.13 the corresponding SCTP-
specific function will be called in its place. Adding new functions to the userspace
library does not require any modifications to the struct proto, as the struct proto is
strictly for directing system calls to the proper SCTP-specific functions. For instance,
the new sctp_recvv() and sctp_sendv() are implemented as userspace functions, as wrap-

Improvements of the Linux SCTP API 47

1 struct proto sctp_prot = {

2 .name = "SCTP",

3 .owner = THIS_MODULE,

4 .close = sctp_close,

5 .connect = sctp_connect,

6 .disconnect = sctp_disconnect,

7 .accept = sctp_accept,

8 .ioctl = sctp_ioctl,

9 .init = sctp_init_sock,

10 .destroy = sctp_destroy_sock,

11 .shutdown = sctp_shutdown,

12 .setsockopt = sctp_setsockopt,

13 .getsockopt = sctp_getsockopt,

14 .sendmsg = sctp_sendmsg,

15 .recvmsg = sctp_recvmsg,

16 .bind = sctp_bind,

17 .backlog_rcv = sctp_backlog_rcv,

18 .hash = sctp_hash,

19 .unhash = sctp_unhash,

20 .get_port = sctp_get_port,

21 .obj_size = sizeof(struct sctp_sock),

22 .sysctl_mem = sysctl_sctp_mem,

23 .sysctl_rmem = sysctl_sctp_rmem,

24 .sysctl_wmem = sysctl_sctp_wmem,

25 .memory_pressure = &sctp_memory_pressure,

26 .enter_memory_pressure = sctp_enter_memory_pressure,

27 .memory_allocated = &sctp_memory_allocated,

28 .sockets_allocated = &sctp_sockets_allocated,

29 };

Listing 4.13: The struct proto for SCTP (IPv4)

48 Improvements of the Linux SCTP API

1 #define SCTP_SENDV_NOINFO 0
2 #define SCTP_SENDV_SNDINFO 1
3 #define SCTP_SENDV_PRINFO 2
4 #define SCTP_SENDV_AUTHINFO 3
5 #define SCTP_SENDV_SPA 4

Listing 4.14: Constants used by
sctp_sendv().

1 #define SCTP_RECVV_NOINFO 0
2 #define SCTP_RECVV_RCVINFO 1
3 #define SCTP_RECVV_NXTINFO 2
4 #define SCTP_RECVV_RN 3

Listing 4.15: Constants used by
sctp_recvv().

pers around sendmsg() and recvmsg(). And thanks to this setup, calls to sendmsg() or
recvmsg() get redirected to their respective SCTP-specific counterparts sctp_sendmsg()
and sctp_recvmsg() functions that are defined in socket.c.

4.3.1 Implementation of sctp_sendv() and sctp_recvv()

By studying the code of FreeBSD, it was apparent that some of the work on the user-
space side was already done. Hence, the functions sctp_sendv() and sctp_recvv() were
initially copied from the file /usr/src/lib/libc/sctp_sys_calls.c in FreeBSD to their own, sep-
arate files in the lib-directory of the Linux userspace library. This is where all the other
userspace functions were defined already, so it seemed appropriate to add the two new
functions here as well. Both functions did, however, have many references to things
that were not currently present in the Linux implementation. The definitions shown in
Listing 4.14 and 4.15 were found in the file sys/netinet/sctp_uio.h in FreeBSD.

As none of these definitions existed in Linux yet, they were added to the file in-
clude/netinet/sctp.h in libsctp, and to include/uapi/linux/sctp.h for the kernel8.

In addition, a few build-oriented changes had to be made to add the new files.
After the new files had been put in the lib-directory, their names had to be added to
the lib/Versions.map file, which already contained the names of all the old userspace
functions. Note that this particular file, lib/Versions.map, is specific to libsctp, and that
this is not meant to be a general recipe on how to add new files to other software
projects. The filenames of the new files were then added to the lib/Makefile.am, which
is part of the GNU Automake [26] software package.

Finally, the prototypes of the new functions were added to include/netinet/sctp.h as
shown in Listing 4.16.

After the prototypes and the necessary constants had been added for both files, a
quick cleanup of the #include-directives at the top of each file was all that was nec-
essary. The FreeBSD versions of the new functions came from a file that contained
numerous other functions, so a lot of the included files were unnecessary for the Linux
version.

The only thing that had to be changed within the functions themselves, when in-
cluding the FreeBSD code in libsctp, was a check to see if the given struct sockaddr *ad-
drs-field contained addresses that were not of equal size as a struct sockaddr_in. The

8These two files are closely related, but since version 3.5 of the Linux kernel they have been split into
kernelspace and userspace versions. A discussion of this subject has been written by Michael Kerrisk
and can be read on Linux Weekly News [25].

Improvements of the Linux SCTP API 49

1 ...

2 /* RFC 6458 - Section 9.12*/

3 int sctp_sendv(int sd,

4 const struct iovec *iov,

5 int iovlen,

6 struct sockaddr *addrs,

7 int addrcnt,

8 void *info,

9 socklen_t infolen,

10 unsigned int infotype,

11 int flags);

12
13 /* RFC 6458 - Section 9.13*/

14 int sctp_recvv(int sd,

15 const struct iovec *iov,

16 int iovlen,

17 struct sockaddr *from,

18 socklen_t *fromlen,

19 void *info,

20 socklen_t *infolen,

21 unsigned int *infotype,

22 int *flags);

23 ...

Listing 4.16: Excerpt from include/netinet/sctp.h: Prototypes for the new functions

50 Improvements of the Linux SCTP API

struct sockaddr_in does not have the field sin_len in Linux, so this might have to be
checked in a different way, but that has not been considered further in this thesis.

4.4 New struct sctp_sndinfo flags

The sctp_sendv()-function can include ancillary data in the form of a struct sctp_sndinfo.
Listing 4.17 shows the three new flags added to include/uapi/linux/sctp.h. The new flags
were added in the same order as the already existing ones. The SCTP_EOF is special,
it is defined as MSG_FIN which in turn is set to 0x200 (or 512) in Linux. There should
be enough room to put a few more flags here until this causes any trouble. Note that
no new flags for the struct sctp_rcvinfo were introduced in RFC 6458.

1 enum sctp_sinfo_flags {

2 SCTP_UNORDERED = 1, /* Send/rcv message unordered. */

3 SCTP_ADDR_OVER = 2, /* Override primary dest. */

4 SCTP_ABORT=4, /* Send ABORT message to peer. */

5 SCTP_SACK_IMMEDIATELY = 8, /* SACK without delay */

6 SCTP_EOF=MSG_FIN, /* Initiate graceful shutdown. */

7 SCTP_SENDALL = 16,

8 SCTP_COMPLETE = 32,

9 };

Listing 4.17: New sinfo_flags.

Details regarding SCTP_COMPLETE and SCTP_SENDALL will be given in the fol-
lowing sections.

4.4.1 Implementation of the SCTP_COMPLETE flag

This flag helps determine whether a message is complete or not. It has been imple-
mented in the function sctp_ulpevent_make_rcvmsg() in the file ulpevent.c. According to
Stewart and Xie (Section 3.2.5 "The DATA chunk" [19]), a message is complete if both
the B (beginning fragment bit) and E (ending fragment bit) bits are set in the chunk’s
header. The implementation of SCTP_COMPLETE is shown Listing 4.18. It makes
sure that the chunk header has both the E and B bits set, and then sets the SCTP_COM-
PLETE flag on the given event. This is the same type of event that was used to fill the
struct sctp_rcvinfo and struct sctp_nxtinfo earlier. Note that the U, B and E-bits were also
mentioned in Section 2.6.2.

Improvements of the Linux SCTP API 51

1 ...

2 if (chunk->chunk_hdr->flags & SCTP_DATA_FIRST_FRAG &&

3 chunk->chunk_hdr->flags & SCTP_DATA_LAST_FRAG) {

4 event->flags |= SCTP_COMPLETE;

5 }

6 ...

Listing 4.18: Excerpt from sctp_ulpevent_make_rcvmsg() in ulpevent.c:
Implementation of the SCTP_COMPLETE flag.

4.4.2 Implementation of the SCTP_SENDALL flag

Calling sctp_sendv() with the field snd_flags set to SCTP_SENDALL indicates that the
caller wants that particular message to be sent to all associations currently established
on a socket. The SCTP_SENDALL flag is meant to be used by one-to-many style sock-
ets, since a one-to-one style socket will only have at most one association, and will
thus essentially just ignore this flag. In Section 1.7 it was listed that a solution to this
problem had been implemented, and this section will describe that solution. Note that
this implementation has its drawbacks, as will be explained in Section 5.2.

A few more changes to sctp_sendmsg() was made than those that were shown in
Section 4.1. If the given struct sctp_sndinfo has the SCTP_SENDALL flag set, it will be
turned off, and put back onto the message msg as shown in Listing 4.19. A check to see
if the socket is of one-to-many style is performed first. Finally, the boolean sendall is set
to 1, just as a reminder that this needs to be handled later on. At least one association
has to be created or found prior to handling the rest.

1 if(sinfo_flags & SCTP_SENDALL && sctp_style(sk, UDP)){

2 sinfo->sinfo_flags &= ~SCTP_SENDALL;

3 put_cmsg(msg, IPPROTO_SCTP, SCTP_SNDRCV,

4 sizeof(struct sctp_sndrcvinfo), (void *)sinfo);

5 sendall = 1;

6 }

Listing 4.19: Preparing for a SCTP_SENDALL

A simpler version of sctp_sendmsg() was created which skips the whole association
lookup/creation part and just sends the message to the given association. Its prototype
looks like this:

1 static int sctp_sendmsg_to_association(

2 struct kiocb *iocb,

3 struct sock *sk,

4 struct msghdr *msg,

5 size_t msg_len,

6 struct sctp_association* asoc);

Listing 4.20: Prototype of sctp_sendmsg_to_association().

This special function gets called from sendmsg() after looping through each associa-
tion established on the socket’s endpoint. How this is done is shown in Listing 4.21.

52 Improvements of the Linux SCTP API

1 if(sendall){

2 tmp = NULL;

3
4 list_for_each_entry(tmp, &sctp_sk(sk)->ep->asocs,

asocs){

5 /* The socket is locked in

sctp_sendmsg_to_association(), so it must be

released for

6 each iteration. If something fails,

sctp_sendmsg_to_association() will release it

7 itself. */

8 sctp_release_sock(sk);

9 err = sctp_sendmsg_to_association(iocb, sk, msg,

msg_len, tmp);

10 if(err <= 0){

11 goto out_free;

12 }

13 }

14 goto out_unlock;

15 }

Listing 4.21: Calling sctp_sendmsg_to_association().

An example of how the SCTP_SENDALL-flag might be used has been included in
Section A.3 in the Appendix.

Improvements of the Linux SCTP API 53

4.5 Summary

This chapter has described in detail the attempts at implementing some of the missing
functionality mentioned in Chapter 3. Again, the solution to SCTP_SENDALL has its
weakness, thus the following chapter will highlight some ways to improve upon the
SCTP_SENDALL implementation, as well as provide a discussion and a retrospective
view on other points that have been brought up in this chapter.

Chapter 5

Evaluation and Discussion

This chapter will first present a retrospective view of what was presented in the pre-
vious chapter, and also try to provide a short evaluation of the implementations that
were shown. The challenges with the SCTP_SENDALL implementation is given in Sec-
tion 5.2. Furthermore, Section 5.3 will review the given feedback from the developers
on the LKSCTP-mailing list and show some of the suggested improvements. Finally,
an overview of possible improvements for future work is shown in Section 5.4.

5.1 Retrospect

In retrospect, it would be more useful to look at bigger changes to SCTP than most of
the subjects that were discussed in the previous chapter. The main new feature that
has been contributed in this thesis is the support for sctp_nxtinfo. Since the deprecated
struct sctp_extrcvinfo system was never implemented for Linux, it has not been possi-
ble for a developer to retrieve ancillary data about the next message from the SCTP
stack before. Apart from that, the implemented changes are more of an evolutionary
nature to bring the Linux implementation of SCTP a little closer to being compliant
with RFC 6458. The old struct sctp_sndrcvinfo with its accompanying SCTP_SNDRCV
control message type worked the same way as the struct sctp_sndinfo and struct sctp_-
rcvinfo does now. The new sctp_recvv() and sctp_sendv() functions are helper functions
for doing something that was already possible prior to RFC 6458, but it required more
effort.

The main part of the conducted research has without question been identifying
missing pieces in the puzzle. RFC 6458 does, for the most part, not say explicitly what
has changed or not. Thus, several aspects had to be examined very closely to figure
out whether they had discrepancies or not. Small things like the SCTP_FRAGMENT_-
INTERLEAVE discrepancy described in Subsection 3.4.2 was particularly difficult to
catch.

Getting the SCTP_SENDALL flag to work properly would have been a good achieve-
ment, but unfortunately time constraints and the general complexity of the problem as
a whole was too much to handle in the available time frame. Also, although setting
the SCTP_COMPLETE flag might be useful when checking whether the next incoming
message is fragmented or not, it is not really useful on a user level. The SCTP stack

55

56 Improvements of the Linux SCTP API

will continue to deliver complete messages regardless of the fact that the flag is set or
not.

It has been necessary to make some difficult decisions along the way, such as how
to handle the new struct sctp_sndinfo in socket.c. Deciding to reuse the default_sinfo
struct that was already being used for other things, is not necessarily the most elegant
solution to the problem.

5.2 Problems with the SCTP_SENDALL solution

In Section 1.7, "Main contributions", the solution to SCTP_SENDALL was described
as a simple draft solution. The reason for classifying it as such, is primarily that it
does not factor in scalability at all. Michael Tüxen says (email exchange, 26. apr 2014)
"What if the socket has 100000 associations? ... Now you run a huge loop in the kernel. This
might result in the system becoming unresponsive as long as the loop runs." While testing
the implementation done in this thesis, having such numbers of associations running
simultaneously was not an option, so the solution outlined in the previous chapter did,
however, work for a small number of concurrent associations.

According to Tüxen, the developers of SCTP for FreeBSD utilized a separate kernel
thread called the iterator thread for this purpose. So that the main kernel thread would
keep running even if a large number of simultaneous send operations were scheduled
at the same time due to a SCTP_SENDALL flag.

Finally, the reuse of pretty much the entire sctp_sendmsg() function in sctp_sendmsg_-
to_association() is not particularly elegant. It should be possible to implement this in a
better way, making use of the Linux kernel thread system found in linux/kthread.h1.

5.3 Submitting patches to LKSCTP

Four patches were submitted for review to the Linux kernel developers as part of the
work with this thesis. The following features were submitted and are currently up for
discussion:

1. New structures sctp_sndinfo and sctp_rcvinfo.

2. New structure sctp_nxtinfo and the socket option SCTP_RECVNXTINFO

3. New socket option SCTP_DEFAULT_SNDINFO to set a default struct sndinfo.

4. New functions sctp_recvv() and sctp_sendv().

Note that the implementation of SCTP_COMPLETE has not been submitted. The
specification is still a bit vague on what the criterias for setting it is, and it is still not
certain that the implementation is correct. A developer working on SCTP for Linux

1Kernel threads are similar to user threads, but they only operate in kernel space. It was unfortu-
nately difficult to find good documentation on this, but the source code for kthread.h can be found at
https://github.com/torvalds/linux/blob/master/include/linux/kthread.h

https://github.com/torvalds/linux/blob/master/include/linux/kthread.h

Improvements of the Linux SCTP API 57

1 ...

2 if(sp->recvnxtinfo){

3 nxtskb = sctp_skb_recv_datagram(sk, MSG_PEEK, noblock,

&err2);

4
5 if (nxtskb && nxtskb->len){

6 nxt_event = sctp_skb2event(nxtskb);

7 sctp_ulpevent_read_nxtinfo(nxt_event, msg, nxtskb);

8 }

9 }

10 ...

Listing 5.1: Excerpt from sctp_recvmsg() in socket.c: Checking if a next message is
present on the queue.

1 ...

2 out:

3 if(nxtskb)

4 kfree_skb(nxtskb);

5 sctp_release_sock(sk);

6 ...

Listing 5.2: Freeing up allocated space properly.

has said that SCTP_COMPLETE probably has to be done in relation to a reassembly
routine elsewhere.

The initial review given by the people at the LKSCTP mailing list revealed a cou-
ple of mistakes regarding what was presented in the previous chapter. The following
sections will quickly run what these mistakes were, and how they have been resolved.

5.3.1 Submitting the sctp_nxtinfo implementation

The way sctp_nxtinfo was handled had a few mistakes. The feedback given showed
that using the function sctp_skb_recv_datagram() with the proper MSG_PEEK flags would
be cleaner than what was being done. The new version can be seen in Listing 5.1. It
can be compared to the previous version in Listing 4.12.

In addition to peeking at the next message in a less cluttered fashion, some code
was added to properly free the nxtskb if space had been allocated for it. Listing 5.2
shows how this was done at the very end of the sctp_recvmsg()-function in socket.c.

5.3.2 Submitting the sctp_sndinfo implementation

A few changes has also been done to the way control messages is handled. The feed-
back indicated that using a C union was cleaner than using the void pointer approach
as was shown in Listing 4.3. Thus, the new version of struct sctp_cmsgs_t looks like
what is shown in Listing 5.3.

58 Improvements of the Linux SCTP API

1 /* A convenience structure to parse out SCTP specific CMSGs

*/

2 typedef struct sctp_cmsgs {

3 struct sctp_initmsg *init;

4 union{

5 struct sctp_sndrcvinfo *srinfo;

6 struct sctp_sndinfo *sinfo;

7 } info;

8 sctp_cmsg_t cmsg_type;

9 } sctp_cmsgs_t;

10
11 #define sr_info info.srinfo

12 #define s_info info.sinfo

Listing 5.3: The new struct sctp_cmsgs_t in structs.h.

The changes to struct sctp_cmsgs_t induced a few changes to how sctp_msghdr_-
parse() extracts the control messages off of a struct msghdr too, as shown in Listing 5.4.
The original version is shown in Listing 4.4.

Using a union in sctp_cmsgs_t also allowed for a cleaner way of setting the default_-
sinfo struct in the function sctp_recvmsg(). Listing 5.5 shows the new way, compared to
the earlier version shown in Listing 4.5.

5.3.3 Submitting the new functions sctp_sendv()- and sctp_recvv()

According to a kernel developer, since the functions were not implemented as system
calls in FreeBSD, but as userspace functions inclusion in the Linux implementation of
SCTP should not be a problem. However, as mentioned in Section 4.3, Linux seems to
have never implemented a sin_len member in the sockaddr structure. The fact that BSD
is trying to validate the address that is passed in makes sense. This can currently not be
done the same way in Linux. One could make assumptions based on the length of the
sa_family2 field, but as this is not completely the same the whole inclusion is on hold
for now. A discussion on whether this could lead to a problem or not is in progress,
and there is thus not much more to be said at this point.

As a result, the structures struct sctp_sendv_spa and struct sctp_recvv_rn has not been
submitted at this point.

2A field specifying if the address is of the IPv4 or IPv6 family among others [27].

Improvements of the Linux SCTP API 59

1 ...

2 case SCTP_SNDINFO:

3 /* SCTP Socket API Extension

4 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)

5 *
6 * This cmsghdr structure specifies SCTP options for

7 * sendmsg(). This structure and SCTP_RCVINFO replaces

8 * SCTP_SNDRCV which has been depleted.

9 *
10 * cmsg_level cmsg_type cmsg_data[]

11 * ------------ ------------ ---------------------

12 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo

13 * */

14 if(cmsg->cmsg_len !=

15 CMSG_LEN(sizeof(struct sctp_sndinfo))){

16 return -EINVAL;

17 }

18
19 cmsgs->info.sinfo = (struct sctp_sndinfo

*)CMSG_DATA(cmsg);

20 cmsgs->cmsg_type = SCTP_SNDINFO;

21
22 if (cmsgs->s_info->snd_flags &

23 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |

24 SCTP_ABORT | SCTP_EOF | SCTP_SENDALL)){

25 return -EINVAL;

26 }

27 break;

28 ...

Listing 5.4: Excerpt from sctp_msghdr_parse(): Adding support for SCTP_-
SNDINFO

60 Improvements of the Linux SCTP API

1 ...

2 if(cmsgs.cmsg_type == SCTP_SNDINFO){

3 /* Put the cmsg data into a temporary struct

sctp_sndinfo and

4 move it into the struct sctp_sndrcvinfo

default_sinfo; */

5 memset(&default_sinfo, 0, sizeof(default_sinfo));

6
7 default_sinfo.sinfo_flags =

cmsgs.s_info->snd_flags;

8 default_sinfo.sinfo_stream = cmsgs.s_info->snd_sid;

9 default_sinfo.sinfo_assoc_id =

cmsgs.s_info->snd_assoc_id;

10 default_sinfo.sinfo_ppid = cmsgs.s_info->snd_ppid;

11 default_sinfo.sinfo_context =

cmsgs.s_info->snd_context;

12 sinfo = &default_sinfo;

13 }else{

14 /* cmsgs.info could be NULL, but will be replaced

by a default sinfo later,

15 since sndinfo has not been set. */

16 sinfo = cmsgs.sr_info;

17 }

18 ...

Listing 5.5: Excerpt from sctp_sendmsg(): Handling a sendmsg() with struct_-
sndinfo

Improvements of the Linux SCTP API 61

5.4 Future work

The main topics that could be improved upon, but that have not been covered in this
thesis are:

1. The SCTP_EVENTS mechanism is used by many SCTP applications, so it would
be beneficial to get the new SCTP_EVENT system working to replace it. It is
quite possible that implementing the new SCTP_EVENT mentioned in Section 3.3
might be as simple as just storing all options as their own fields on either the
socket or association itself (or both), similarly to what was done with the SCTP_-
RECVRCVINFO and SCTP_RECVNXTINFO shown in Section 4.2. The most
straightforward approach would be for the SCTP stack to take in the notification
interest messages with the new SCTP_EVENT socket option, but then store these
the same way that has been done earlier, i.e. in a struct sctp_event_subscribe. But
then no real progress would have been done. The same scalability issues would
still be present. Figuring out the best way to store which notifications a peer is
interested in receiving is a key issue with this mechanism.

2. The SCTP_SEND_FAILED_EVENT described briefly in Section 3.3 looks rather
simple to do. But as SCTP_EVENT is not implemented it would not make too
much sense to focus on a small detail like this.

3. Being able to set socket options for currently established-, future- or all sockets
will be a big part of getting the Linux SCTP implementation closer to RFC 6458
compliancy. These options can be used in place of association identifiers in mul-
tiple places throughout the API defined in RFC 6458. Subsection 3.4.1 described
these options. Unfortunately, implementing support for these options, would en-
tail a rather complex system to store the settings on both the endpoint level and
at the association level. There would also be necessary to come up with a system
for inheritance values from endpoints or associations higher up in the hierarchy,
to implement things like SCTP_FUTURE_ASSOC. Implementing this change in
this thesis was not possible mainly due to its complexity.

4. Everything related to the Partially Reliability SCTP [21] extension and the AUTH [18]
extension seem to be of pretty high focus in RFC 6458. These extensions were,
however, not covered in great detail in this thesis since the whole concept of these
seem to span over several RFCs’ and be generally slightly too complex and out of
scope of the problem. The AUTH extension’s intended functionality seems to be
partially implemented, but the Partially Reliability SCTP extension seems to be
completely left out of the current Linux source code. Further proposals regarding
future work on these extensions are therefore not covered here.

5.5 Summary

This chapter has made an attempt at providing a more critical look at the work per-
formed in this thesis. The individual features that were developed have been discussed

62 Improvements of the Linux SCTP API

and an evaluation of both the submitted features and the reasoning behind leaving
some of them out have been given.

Chapter 6

Conclusion

This thesis has outlined the necessary steps needed to get the SCTP API up to date
with the new standard defined in RFC 6458. The outcome of the contributed patches
is still not decided, but will hopefully be accepted after another round of review by
the LKSCTP developers. However, even with the contributions presented here, get-
ting the SCTP API up to date will continue to be a work in progress, but the work and
research conducted in this thesis will take the implementation one step closer to final-
ization. Of particular significance in respect to getting the implementation done, is the
identification of which features that need more work.

6.1 Summary

The first chapter has established the universe this thesis revolves around, SCTP, pro-
tocols and general capacities of SCTP compared to its closest sibling protocol, TCP.
Then, chapter 2 explained the state of the SCTP implementation on Linux today. To
address the problem statement in Section 1.5 a full review of the discovered discrep-
ancies between the current Linux SCTP implementation and RFC 6458 was given in
Chapter 3. Two out-of-date functions, and many other features were found to be miss-
ing or needed change to comply to the new API standard. A large portion of these
discoveries were changes to the way ancillary data are to be handled. The process of
implementing of some of the changes has been described in detail in Chapter 4.

A final summary of the changes that have been implemented as part of this thesis
is given here:

• New socket option: SCTP_RECVV_NXTINFO.

• New socket option: SCTP_RECVV_RCVINFO.

• New socket option: SCTP_DEFAULT_SNDINFO.

• New struct: struct sctp_nxtinfo.

• New struct: struct sctp_rcvinfo.

• New struct: struct sctp_sndinfo.

63

64 Improvements of the Linux SCTP API

• New snd_flag: SCTP_COMPLETE.

• Developed draft solution to SCTP_SENDALL flag.

• New function: sctp_recvv().

• New function: sctp_sendv().

Finally, Chapter 5 gave a more critical review of the accomplishments in Chapter 4,
but also described the process of submitting patches to the LKSCTP mailing list, and
the handling of the given feedback. The submitted code that await approval are as of
now the socket options and the structs, but the functions are likely to be added in the
near future.

Glossary

ABI Application Binary Interface.

API Application Programming Interface.

FreeBSD A free operating system descended from AT&T Unix.

Head-of-line blocking When a message M1 has to wait to be transmitted since a failed
message M2 is blocking the transmission path of M1..

IEEE Institute of Electrical and Electronics Engineering.

IETF Internet Engineering Task Force.

Linux Linux is the worlds most popular non-proprietary operating system..

LKSCTP Linux Kernel SCTP.

Operating System Computer software that works as a layer between user applica-
tions and the computer hardware..

POSIX Portable Operating System Interface - A family of standards specified by IEEE
for maintaining compatibility between operating systems..

RFC Request For Comments - A document describing a technical issue.

SCTP Stream Control Transmission Protocol.

Sockets API An API used for communication between the transport layer and the up-
per layer (the application layer)..

TCP Transmission Control Protocol.

UDP User Datagram Protocol.

65

Bibliography

[1] R.R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Rytina,
and M. Kalla. Stream Control Transmission Protocol. RFC 2960, Internet Engineering
Task Force, October 2000.

[2] The Linux Foundation. About Linux Kernel. June 2013.
https://www.kernel.org/linux.html.

[3] R.R. Stewart, M. Tüxen, K. Poon, P. Lei, and V. Yasevich. Socket API Extensions
for the Stream Control Transmission Protocol (SCTP). Request for Comments 6458,
Internet Engineering Task Force, December 2011.

[4] J. B. Postel. Transmission Control Protocol. RFC 793, Internet Engineering Task
Force, September 1981.

[5] J. B. Postel. Internet Protocol. RFC 791, Internet Engineering Task Force, September
1981.

[6] J. B. Postel. User Datagram Protocol. RFC 768, Internet Engineering Task Force,
August 1980.

[7] R. Mandeville and J. Perser. Benchmarking Methodology for LAN Switching Devices.
RFC 2889, Internet Engineering Task Force, August 2000.

[8] W. Eddy. TCP SYN Flooding Attacks and Common Mitigations. Request for Com-
ments 4987, Internet Engineering Task Force, August 2007.

[9] Linux Kernel Stream Control Transmission Protocol Tools.
http://lksctp.sourceforge.net/.

[10] The FreeBSD Project. FreeBSD - The Power To Serve. https://www.freebsd.org/.

[11] Signaling Transport Working Group. http://datatracker.ietf.org/wg/sigtran/.

[12] Transport Area Working Group. http://datatracker.ietf.org/wg/tsvwg/charter/.

[13] La Monte H.P. Yarroll and Karl Knutson. Linux Kernel SCTP: The third transport.
2001. http://old.lwn.net/2001/features/OLS/pdf/pdf/sctp.pdf.

[14] R.R. Stewart. Stream Control Transmission Protocol. Request for Comments 4987,
Internet Engineering Task Force, September 2007.

[15] GNU grep. http://www.gnu.org/software/grep/.

67

https://www.kernel.org/linux.html
http://lksctp.sourceforge.net/
https://www.freebsd.org/
http://datatracker.ietf.org/wg/sigtran/
http://datatracker.ietf.org/wg/tsvwg/charter/
http://old.lwn.net/2001/features/OLS/pdf/pdf/sctp.pdf
http://www.gnu.org/software/grep/

68 Improvements of the Linux SCTP API

[16] Linux Programmer’s Manual CMSG(3). http://man7.org/linux/man-pages/man3/cmsg.3.html.

[17] R.R. Stewart, Q. Xie, M. Tüxen, S. Maruyama, and M. Kozuka. Stream Transmis-
sion Protocol (SCTP) Dynamic Address Reconfiguration. Request for Comments 5061,
Internet Engineering Task Force, September 2007.

[18] M. Tüxen, R.R. Stewart, P. Lei, and E. Rescorla. Authenticated Chunks for the Stream
Control Transmission Protocol (SCTP). Request for Comments 4895, Internet Engi-
neering Task Force, August 2007.

[19] R.R. Stewart and Q. Xie. Stream Control Transmission Protocol (SCTP):
A Reference Guide. Addison-Wesley Professional, 2001.

[20] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Message Au-
thentication. RFC 2104, Internet Engineering Task Force, February 1997.

[21] R.R. Stewart, M. Ramalho, Q. Xie, M. Tüxen, Univ. of Applied Sciences Muen-
ster, and P. Conrad. Stream Control Transmission Protocol (SCTP) Partial Reliability
Extension. RFC 3758, Internet Engineering Task Force, May 2004.

[22] How SKBs work. http://vger.kernel.org/~davem/skb.html.

[23] kernel/git/torvalds/linux.git - linux kernel source tree (skbuff.c).
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/net/core/skbuff.c.

[24] kernel/git/torvalds/linux.git - linux kernel source tree (skbuff.h).
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/include/linux/skbuff.h.

[25] The uapi header file split. http://lwn.net/Articles/507794/.

[26] Automake - gnu project - free software foundation (fsf).
http://www.gnu.org/software/automake/.

[27] Address family numbers. http://www.iana.org/assignments/address-family-numbers/address-family-

http://man7.org/linux/man-pages/man3/cmsg.3.html
http://vger.kernel.org/~davem/skb.html
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/net/core/skbuff.c
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/include/linux/skbuff.h
http://lwn.net/Articles/507794/
http://www.gnu.org/software/automake/
http://www.iana.org/assignments/address-family-numbers/address-family-numbers.xhtml

Appendix A

Where to get the code

This appendix contains some code examples that was too big to fit within the actual
document. All code that has been developed during this project can be viewed at the
following git repositories:

• https://bitbucket.org/geirola/linux-sctp for the changes to the kernel module.

• https://bitbucket.org/geirola/lksctp for the changes to the userspace library.

69

https://bitbucket.org/geirola/linux-sctp
https://bitbucket.org/geirola/lksctp

70 Improvements of the Linux SCTP API

A.1 Code example 1

1 / * I n i t i a l i z e s t r u c t s * /
2 struct msghdr outmsg ;
3 memset(&outmsg , 0 , sizeof (outmsg)) ;
4 struct iovec iov ;
5 memset(&iov , 0 , sizeof (iov)) ;
6 char outcmsg [CMSG_SPACE(sizeof (struct sc tp_sndrcvinfo))] ;
7 struct cmsghdr *cmsg ;
8 struct sc tp_sndrcvinfo * s i n f o ;
9 char buf [SIZE] ;

10 memset (buf , 0 , SIZE) ;
11
12 s t rcpy (buf , "Hello, World!") ;
13
14 outmsg . msg_iov = &iov ;
15 iov . iov_base = (void *) buf ;
16 iov . iov_len = SIZE ;
17 outmsg . msg_iovlen = 1 ;
18
19 outmsg . msg_control = outcmsg ;
20 outmsg . msg_control len = sizeof (outcmsg) ;
21 outmsg . msg_flags = 0 ;
22
23 cmsg = CMSG_FIRSTHDR(&outmsg) ;
24 cmsg−>cmsg_level = IPPROTO_SCTP ;
25 cmsg−>cmsg_type = SCTP_SNDRCV ;
26 cmsg−>cmsg_len = CMSG_LEN(sizeof (struct

sc tp_sndrcvinfo)) ;
27
28 outmsg . msg_control len = cmsg−>cmsg_len ;
29 s i n f o = (struct sc tp_sndrcvinfo *)CMSG_DATA(cmsg) ;
30 memset (s info , 0 , sizeof (struct sc tp_sndrcvinfo)) ;
31 s info−>sinfo_stream = 5 ;
32
33 sendmsg (sockfd , &outmsg , 0) ;

Listing A.1: Example: Sending a message with ancillary data using sendmsg().

Improvements of the Linux SCTP API 71

A.2 Code example 2

1 struct sc tp_event_subscr ibe event ;
2 memset(&event , 0 , sizeof (struct sc tp_event_subscr ibe)) ;
3 event . sc tp_data_ io_event = 1 ;
4 se tsockopt (c l i e n t _ s o c k f d , IPPROTO_SCTP , SCTP_EVENTS ,

&event , sizeof (event)) ;
5
6 struct sc tp_sndrcvinfo sndrcv ;
7 struct msghdr msg ;
8 struct cmsghdr cmsg ;
9 struct iovec iov ;

10 memset(&msg , 0 , sizeof (msg)) ;
11 memset(&cmsg , 0 , sizeof (cmsg)) ;
12 memset(&sndrcv , 0 , sizeof (sndrcv)) ;
13 memset(&iov , 0 , sizeof (iov)) ;
14
15 char cmsgbuf [CMSG_SPACE(sizeof (struct sc tp_sndrcvinfo))] ;
16 char buf [SIZE] ;
17 memset (buf , 0 , SIZE) ;
18
19 iov . iov_base = buf ;
20 iov . iov_len = SIZE ;
21
22 msg . msg_iov = &iov ;
23 msg . msg_iovlen = 1 ;
24 msg . msg_control = cmsgbuf ;
25 msg . msg_control len = sizeof (cmsgbuf) ;
26
27 recvmsg (c l i e n t _ s o c k f d , &msg , 0) ;
28
29 struct cmsghdr * cmsgptr ;
30 for (cmsgptr = CMSG_FIRSTHDR(&msg) ; cmsgptr != NULL;

cmsgptr = CMSG_NXTHDR(&msg , cmsgptr)) {
31 if (IPPROTO_SCTP == cmsgptr−>cmsg_level && SCTP_SNDRCV

== cmsgptr−>cmsg_type)
32 break ;
33 }
34 if (cmsgptr)
35 memcpy(&sndrcv , CMSG_DATA(cmsgptr) , sizeof (struct

sc tp_sndrcvinfo)) ;
36 p r i n t f ("Received sndrcv.sinfo_stream = %d\n" ,

sndrcv . s info_stream) ;

Listing A.2: Example: Receiving a message with ancillary data using recvmsg().

72 Improvements of the Linux SCTP API

A.3 Code example 3

1 struct iovec iov;

2 struct msghdr msg;

3 char buf[SIZE];

4 struct sctp_sndinfo snd;

5
6 memset(&snd, 0, sizeof(snd));

7 memset(&iov, 0, sizeof(iov));

8 memset(&buf, 0, sizeof(buf));

9 memset(&msg, 0, sizeof(msg));

10
11 snd.snd_flags = SCTP_SENDALL;

12
13 iov.iov_len = sizeof(buf);

14 iov.iov_base = buf;

15
16 strnpy(buf, "Message to all");

17 iov.iov_len = strlen(buf);

18 sctp_sendv(sockfd,

19 msg.msg_iov,

20 1, /* no. iovs */

21 (struct sockaddr*) &to, /* Dest addr */

22 1, /* no. addrs */

23 &snd,

24 sizeof(snd),

25 SCTP_SENDV_SNDINFO,

26 0);

Listing A.3: Example: Sending a message to all associations with SCTP_SENDALL
and sctp_sendv().

Improvements of the Linux SCTP API 73

A.4 Code example 4

1 struct sctp_sndinfo snd;

2 memset(&snd, 0, sizeof(snd));

3 snd.snd_sid = 4;

4
5 setsockopt(sockfd, IPPROTO_SCTP, SCTP_DEFAULT_SNDINFO,

&snd, sizeof(snd));

6
7 iov.iov_base = buf;

8 strcpy(buf, "Message");

9 iov.iov_len = strlen(buf);

10
11 msg.msg_iov = &iov;

12 msg.msg_iovlen = 1;

13
14 sendmsg(sockfd, &msg, 0);

Listing A.4: Example: Setting a default struct sctp_sndinfo with SCTP_DEFAULT_-
SNDINFO.

74 Improvements of the Linux SCTP API

A.5 Code example 5

1 static int sctp_setsockopt_default_sndinfo(struct sock *sk,

2 char __user

*optval,

3 unsigned int

optlen){

4 struct sctp_sndinfo info;

5 struct sctp_association *asoc;

6 struct sctp_sock *sp = sctp_sk(sk);

7
8 if (optlen != sizeof(struct sctp_sndinfo))

9 return -EINVAL;

10 if (copy_from_user(&info, optval, optlen))

11 return -EFAULT;

12
13 asoc = sctp_id2assoc(sk, info.snd_assoc_id);

14 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))

15 return -EINVAL;

16
17 if (asoc) {

18 asoc->default_stream = info.snd_sid;

19 asoc->default_flags = info.snd_flags;

20 asoc->default_ppid = info.snd_ppid;

21 asoc->default_context = info.snd_context;

22 /* Note! asoc->default_timetolive is not set

in this way anymore.

23 * The PR-SCTP extension needs to be

implemented. */

24 } else {

25 sp->default_stream = info.snd_sid;

26 sp->default_flags = info.snd_flags;

27 sp->default_ppid = info.snd_ppid;

28 sp->default_context = info.snd_context;

29 /* Note! sp->default_timetolive is not set in

this way anymore.

30 * The PR-SCTP extension needs to be

implemented. */

31 }

32 return 0;

33 }

Listing A.5: The new sctp_setsockopt_default_sndinfo() function.

	Introduction
	The Internet Protocol Suite
	The sockets API

	What is SCTP?
	The new SCTP API - RFC 6458

	Background
	History of SCTP

	Short comparison of TCP and SCTP
	Multihoming
	Multistreaming
	Unordered message delivery
	Message framing

	Problem Definition and limitations
	Research Method
	Main Contributions
	Outline
	Summary

	Overview of the current Linux SCTP architecture
	Ancillary data
	The msghdr structure
	The cmsghdr structure
	struct sctp_sndrcvinfo

	Notifications
	Notification Interest Options

	The state machine
	The smart pipes
	SCTP Associations
	The association setup phase

	SCTP Message structure
	The SCTP common header
	Chunks

	Summary

	Changes in RFC 6458
	New functions
	Ancillary data
	struct sctp_nxtinfo

	Notifications
	Socket options
	Selecting which associations to affect
	New socket options

	Summary

	Design and Implementation
	Implementing support for sending ancillary data
	sctp_msghdr_parse()
	Back in sctp_sendmsg()

	Implementing new socket options
	Adding new functions
	Implementation of sctp_sendv() and sctp_recvv()

	New struct sctp_sndinfo flags
	Implementation of the SCTP_COMPLETE flag
	Implementation of the SCTP_SENDALL flag

	Summary

	Evaluation and Discussion
	Retrospect
	Problems with the SCTP_SENDALL solution
	Submitting patches to LKSCTP
	Submitting the sctp_nxtinfo implementation
	Submitting the sctp_sndinfo implementation
	Submitting the new functions sctp_sendv() and sctp_recvv()

	Future work
	Summary

	Conclusion
	Summary

	Glossary
	Where to get the code
	Code example 1
	Code example 2
	Code example 3
	Code example 4
	Code example 5

