
MULTISCALE MODELING OF
DIFFUSION PROCESSES IN

DENDRITES AND DEDRITIC SPINES

by

Fredrik Eksaa Pettersen

Thesis

for the degree of

Master of Science

Faculty of Mathematics and Natural Sciences
University of Oslo

June 2014

Acknowledgements
This masters thesis marks the end of a five year education, which I could not
have completed without the support of my parents.

I would like to thank my counselor, Hans Petter Langtangen, for convincing
me to rewrite the entire thesis. It was hard, but worth it. Thanks to Geir
Halnes, and Gaute Einevoll for help with the applications part of the thesis,
and interesting discussions.

Thanks to Torbjørn Seland, for giving me valuable input on formulations.

And finally, a special thanks to my fantastic girlfriend, Nina, who has put
up with my complaining throughout this project!

Contents

1 Introduction 5
1.1 Outline . 7

2 Theory 9
2.1 Random Walks . 10

2.1.1 An error estimate for a diffusion RW solver 12
2.1.2 Random number generator 12

2.2 Backward Euler schemes in two or more spatial dimensions . . 12
2.3 Combining micro and macro scale models 17

2.3.1 The algorithm . 17
2.3.2 Conversion between length scales 18
2.3.3 Coupling the models through step length 19
2.3.4 Boundary conditions for the random walk 20

2.4 Potential problems . 20
2.5 Other possible coupling methods 22

3 Analysis 25
3.1 Computation of the error . 26
3.2 Verification techniques . 26
3.3 Testing the PDE solver . 28

3.3.1 Verification by manufactured solutions 28
3.3.2 Verification by convergence tests 29
3.3.3 Verification of FE scheme by exact numerical solution . 32
3.3.4 Verification of BE scheme by exact numerical solution . 34

3.4 Verification of the RW solver 36
3.5 Verification of the hybrid solver 38

4 Physical application 41
4.1 Physical scope . 42
4.2 Implementation . 43
4.3 Parameters and details . 44

v

vi Contents

5 Results 47
5.1 Results of verification . 48

5.1.1 The FE scheme . 48
5.1.2 The BE scheme and the block tridiagonal solver 48
5.1.3 The RW solver . 49
5.1.4 The hybrid diffusion solver 49

5.2 Results for physical application 49
5.3 Using other particle dynamics 50

6 Discussion and conclusion 53
6.1 Discussion . 54

6.1.1 Application . 54
6.1.2 Possible extensions . 55
6.1.3 Other work on the topic 56

6.2 Concluding remarks . 56

A Appendix 59
A.1 Debugging . 60

A.1.1 Compiler/syntax errors 60
A.1.2 Segmentation faults . 60
A.1.3 Finite difference methods 61
A.1.4 Random Walk and Monte Carlo methods 63
A.1.5 The developed software 64
A.1.6 Last resorts . 64

List of Figures

2.1 A general volume contained by a surface. 10
2.2 Illustration of C(x) . 12
2.3 Reason for RW update each time step 19
2.4 Workaround for negative concentrations, illustration 21
2.5 Idea behind averaging solutions 23
2.6 Combination by polynomial regression 24

3.1 Error plots FE . 29
3.2 Error plots BE . 29
3.3 Convergence tests in time FE scheme 30
3.4 Convergence tests for BE scheme 31
3.5 Spatial error tests . 31
3.6 Numerical exact error plots FE 34
3.7 Numerical exact error plots for BE scheme 35
3.9 Test RW . 37
3.10 Error test for BE combined with RW in 1D 39
3.11 Effects of increasing relative size of walk area 39

4.1 Pyramidal neuron . 42
4.2 Difference between hybrid diffusion solver and dendrite - spine

diffusion model . 44
4.3 Initial condition used in the application 45

5.1 Diffusion time for long necked spines 50
5.2 Diffusion times with least squares fit 51
5.3 Hybrid solver with DSMC particle model 52

A.1 Visual debugging . 62

1

List of Abbreviations

BE Backward Euler

DSMC Direct Simulation Monte Carlo

FE Forward Euler

FLOP Floating point Operation

MC Monte Carlo

PDE Partial Differential Equation

RW Random Walk

3

Chapter 1

Introduction

5

6 Introduction Chapter 1

Diffusion processes are extremely important in modern science, and have so
many applications that it is challenging to list them all. Brownian motion of
particles, momentum in liquids, and atomic diffusion are just some examples
of processes described by the diffusion equation.
Both in general transport processes, and particularly in diffusion processes,
there are cases in which parts of the process cannot be described by a con-
tinuum model, but the rest of the process can. Examples of such processes
are fluid flow in nanoporous media and diffusion in the extracellular space of
the brain. There are also many examples in materials design.

These types of processes can be called multi scale processes in the sense that
more than one model is required to describe the entire system. Usually these
are on different length scales. There are three obvious ways to handle multi
scale problems. The first alternative is to ignore the problem, and assume
that the chosen model can accurately solve the problem. For diffusion pro-
cesses, this approach often works a lot better than it should. A more realistic
approach is to create an intermediate scale and model. In the limit between
continuum and particle dynamics this is often called a meso scale model. An
example of a meso scale model is dissipative particle dynamics [14], where
clusters of particles are modeled as individual particles. The particle clusters
have different properties than the individual atoms or molecules which make
up the substance. A final alternative is a hybrid model that uses more than
one model of the problem in order to describe it. Some hybrid models exist
today, but these are mostly aimed at specific problems, like dendritc solidi-
fication [11], or hybrid fluid flow models which combine molecular dynamics
and Navier-Stokes solvers [10]. Other hybrid solvers for diffusion processes
have also been developed [6], but they are closed in the sense that the com-
puter code is not commonly available.

The aim of this masters thesis is to develop and implement a simple, yet
flexible hybrid diffusion solver from the ground and up where all parts of
the theory and implementation are fully understood and transparent. In
principle, any particle dynamics model could be used, but for the sake of
verification a stochastic model has been implemented. This is no limitation,
as the interface to the lower scale model is simple, and the lower scale model
works as a standalone unit.

A large emphasis has been put on verification of all parts of the hybrid model.
Each individual solver has tested both as a standalone unit, and as a part
of the combined, hybrid solver in order to verify that the code functions
properly.

Section 1 Outline 7

1.1 Outline
The thesis in your hands has the following structure:

Chapter 2 contains a detailed review of the coupling between a diffusion
equation and a lower scale Random Walk model, as well as a look at band
diagonal linear systems.

Chapter 3 defines the error estimate and shows a thorough analysis of all
parts of the developed software in order to verify that it functions properly.

In chapter 4 the developed software is modified to describe a physical appli-
cation in which a hybrid diffusion solver is demanded.

Chapter 5 presents and discusses the results from the verification of the com-
puter code and the physical application.

Finally, chapter 6 discusses the thesis as a whole and looks at possible im-
provements and extensions that can be done.

The appendix is a general guide to debugging the methods that have been
implemented during this project.

Chapter 2

Theory

9

10 Theory Chapter 2

This chapter will concern the theory needed to implement a hybrid diffu-
sion solver that combines a diffusion equation and Random Walk solver as a
lower scale model. A Random Walk is a Monte Carlo (MC) method, which is
a large group of algorithms that use random sampling to produce numerical
results.

2.1 Random Walks
A random walker is a point object which after a certain amount of time jumps
a fixed step length either right or left with equal probability for jumping either
way. In d spatial dimensions the axis on which the jump happens is chosen
at random before the direction of the jump is decided.
Say N random walkers are placed at the same position within a volume, V of
arbitrary shape, to make a spatial distribution of walkers, C = Nδ(x). Here,
δ(x) is the Dirac Delta function [3], defined by its properties

δ(x− a) =

{
0, x 6= a

∞, x = a
(2.1)

V is contained by a surface S and the relation is shown in Figure 2.1.

Figure 2.1: A general volume contained by a surface.

A flux of walkers is a vector size describing the number of walkers passing a
surface element dS per unit time, per unit area.

As the random walkers start to move, some of them will leave V , which
results in a change in C. The number of walkers leaving V is described by

Section 1 Random Walks 11

the change in C integrated over the entire volume,∫
V

∂C

∂t
dV. (2.2)

The number of walkers leaving V must be equal to the number of walkers
crossing S per unit time and area. Integrating the outward normal compo-
nent of the flux of walkers, J over the entire surface results in the number of
walkers leaving V ,

∫
S

J · n dS. (2.3)

Since the number of walkers is conserved, the change in C per time must be
equal to the number of walkers leaving V plus any walkers added to V :∫

V

∂C

∂t
dV =

∫
S

J · n dS + s(x, t), (2.4)

where s(x, t) denotes a source term. Through Greens theorem, (2.3) can be
reformulated

∫
V

∂C

∂t
dV =

∫
V

∇ · J dV + s(x, t). (2.5)

The flux J can be expressed by Fick’s first law as the diffusive flux

J = D∇C, (2.6)

where D is the diffusion coefficient. Since V was chosen as an arbitrary vol-
ume (2.5) is independent of the integration and the integrals can be dropped.
The diffusive flux J (2.6) is also inserted to yield the diffusion equation

∂C

∂t
= D∇2C + s(x, t). (2.7)

Throughout this thesis C will denote a spatial distribution of random walkers
while u will denote the solution to the diffusion equation, which is a concen-
tration distribution. The difference between u and C is best illustrated in
Figure 2.2.

12 Theory Chapter 2

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0
co

nc
en

tr
at
io
n,
 u

u

(a)

0.0 0.2 0.4 0.6 0.8 1.0
x

0

200

400

600

800

1000

Nu
m
be

r o
f w

al
ke
rs

C

(b)

Figure 2.2: Illustration of the difference between u(x, t) (in (a)) which is the
solution to the diffusion equation, and C(x, t) (in (b)) which is the number
of random walkers within an area of ±∆x

2
around each mesh point.

2.1.1 An error estimate for a diffusion RW solver

In general a Monte Carlo method will fluctuate around the correct (steady
state) solution. The fluctuations have an amplitude related to the number
of samples, N used by the relation

ε ∝ 1√
N
. (2.8)

Equation (2.8) will be used as an error estimate for the solution of diffusion
processes by a random walk (RW) model and is assumed to hold for all parts
of the simulation, not only the steady state.

2.1.2 Random number generator

To produce a random walk one must have random numbers. The random
numbers in this thesis are produced by a five seeded xor-shift algorithm
copied from George Marsaglia [9]. This generator is chosen because of its
very large period (∼ 1048) compared to the computational cost.

2.2 Backward Euler schemes in two or more
spatial dimensions

The reader is assumed to know the basics of solving partial differential equa-
tions (PDEs) by finite difference methods. For the sake of clarity the two

Section 2 Backward Euler schemes in two or more spatial dimensions 13

schemes used to solve the diffusion equation (2.7) in this thesis are written
out using the theta rule for finite differences:

uk+1 − uk
∆t

= θD
∂2uk+1

∂x2
+ (1− θ)D∂

2uk

∂x2
. (2.9)

Setting θ = 0 gives the Forward Euler (FE) scheme which is explicit and
conditionally stable with stability criterion

∆t ≤ ∆x2

2dDmax

, (2.10)

where d is the spatial dimension and Dmax denotes the maximum value of the
diffusion coefficient. Setting θ = 1 gives the Backward Euler (BE) scheme
which is unconditionally stable.
This section will present a simple, but elegant way of efficiently solving the
diffusion equation by the implicit BE scheme in more than one spatial di-
mension. The reason for using the BE scheme is that we want to use a large
time step and still have a large spatial resolution. First, let us look at the
BE discretization of the diffusion equation in 1D:

uk+1
i =

∆t

2∆x2

(
(Di+1 +Di)(u

k+1
i+1 − uk+1

i)− (Di +Di−1)(uk+1
i − uk+1

i−1)
)

+ uki .

(2.11)

Here u is the unknown function which solves the diffusion equation. Note
that

uki = u(t0 + k ·∆t, x0 + i ·∆x),

and not u to the k’th power.
Neumann boundary conditions will be used, these are described in (2.12).

∂u

∂n
= 0|on boundary (2.12)

Solving the BE scheme by hand for a very small mesh consisting of 4 mesh
points will reveal the structure of the BE scheme.

uk+1
0 =

∆t

2∆x2

(
2(D0 +D1)(uk+1

1 − uk+1
0)

)
+ uk0

uk+1
1 =

∆t

2∆x2

(
(D2 +D1)(uk+1

2 − uk+1
1)− (D1 +D0)(uk+1

1 − uk+1
0)

)
+ uk1

uk+1
2 =

∆t

2∆x2

(
(D3 +D2)(uk+1

3 − uk+1
2)− (D2 +D1)(uk+1

2 − uk+1
1)

)
+ uk2

uk+1
3 =

∆t

2∆x2

(
2(D2 +D3)(uk+1

3 − uk+1
2)

)
+ uk3

14 Theory Chapter 2

Rearranging this and setting α = ∆t
2∆x2

results in a normal system of linear
equations:

uk+1
0 (1 + 2α(D0 +D1))− 2αuk+1

1 (D1 +D0) = uk0

uk+1
1 (1 + α(D2 + 2D1 +D0))− αuk+1

2 (D2 +D1)− αuk+1
0 (D1 +D0) = uk1

uk+1
2 (1 + α(D3 + 2D2 +D1))− αuk+1

3 (D3 +D2)− αuk+1
1 (D2 +D1) = uk2

uk+1
3 (1 + 2α(D3 +D2))− 2αuk+1

2 (D3 +D2) = uk3

which is arranged as a coefficient matrix multiplied by the unknown next
time step

1 + 2a(D0 +D1) −2a(D1 +D0) 0 0
−a(D1 +D0) 1 + a(D2 + 2D1 +D0) −a(D2 +D1) 0

0 −a(D2 +D1) 1 + a(D3 + 2D2 +D1) −a(D3 +D2)
0 0 −2a(D3 +D2) 1 + 2a(D3 +D2)

uk+1 = uk

(2.13)

Denote the coefficient matrix in (2.13) by M

Muk+1 = uk. (2.14)

If a linear system like the one in (2.14) has a solution it can always be
found by Gaussian elimination. However, for a sparse linear system a lot
of the calculations in a Gaussian elimination will be done with zeros. A
dramatically more efficient way to solve the linear system in (2.14) is by
exploiting the fact that it is tridiagonal. In order to be more consistent with
the algorithm to be used, (2.14) will be rewritten as

Mu = up, (2.15)

where up = uk denotes the solution at the previous time step, and u = uk+1

denotes the solution at the current time step. Tridiagonal systems can be
solved extremely efficiently by the “tridiag“ algorithm listed below.

vo i d t r i d i a g (doub l e ∗u , doub l e ∗up , i n t n , doub l e ∗a ,
doub l e ∗b , doub l e ∗c) {
doub l e ∗H = new doub l e [n] ;
doub l e ∗g = new doub l e [n] ;
f o r (i n t i =0; i<n ; i++){

H[i] = 0 ;
g [i] = 0 ;

}
g [0] = up [0] / b [0] ;
H [0] = c [0] / b [0] ;
f o r (i n t i =1; i<n ; i++){

// fo rwa rd s u b s t i t u t i o n

Section 2 Backward Euler schemes in two or more spatial dimensions 15

H[i] = −c [i] / (b [i] + a [i]∗H[i −1]) ;
g [i] = (up [i] − a [i]∗ g [i −1]) /(b [i] + a [i]∗H[i −1]) ;

}
u [n−1] = g [n−1] ;
f o r (i n t i =(n−2) ; i >=0; i−−){

//Backward s u b s t i t u t i o n
u [i] = g [i] − H[i]∗ u [i +1] ;

}
}

Algorithm 2.1: The tridiag algoritm

Algorithm 2.1 uses three vectors a, b and c to describe the coefficient matrix,
M. Vector b contains the diagonal elements, a contains the sub-diagonal
elements, and c contains the elements above the diagonal.

In two spatial dimensions the BE discretization gives the scheme shown
below,

uki,j = − D∆t

∆x2︸ ︷︷ ︸
α

(
uk+1
i+1,j + uk+1

i−1,j

)
+

(
1 +

2D∆t

∆x2
+

2D∆t

∆y2

)
︸ ︷︷ ︸

γ

uk+1
i,j −

2D∆t

∆y2︸ ︷︷ ︸
β

(
uk+1
i,j+1 + uk+1

i,j−1

)
.

(2.16)
If (2.16) is solved by hand on a 3 × 3 mesh by the same steps as in 1D it
gives the following linear system

γ −2β 0 −2α 0 0 0 0 0
−β γ −β 0 −2α 0 0 0 0
0 −2β γ 0 0 −2α 0 0 0
−α 0 0 γ −2β 0 −α 0 0
0 −α 0 −β γ −β 0 −α 0
0 0 −α 0 −2β γ 0 0 −α
0 0 0 −2α 0 0 γ −2β 0
0 0 0 0 −2α 0 −β γ −β
0 0 0 0 0 −2α 0 −2β γ

u = up (2.17)

The dashed lines confine a total of nine 3 × 3 matrices which can be used
to reformulate the 2n + 1 = 7 band diagonal system as a block tridiagonal
system as shown below. B0 C0 0

A1 B1 C1

0 A2 B2

u = up (2.18)

16 Theory Chapter 2

All entries in eq. (2.18) are 3 × 3 matrices. In the general case where the
diffusion equation is discretized and solved on a mesh of size n × n the
resulting block tridiagonal system will consist of n2 matrix entries which all
are n× n matrices.

One should note that the n × n matrix u which solves the 2D diffusion
equation has be rewritten as a vector u of size n2.

In order to solve this block tridiagonal linear system Algorithm 2.1 must
be generalized to support matrices as entries in M. Luckily this generaliza-
tion is trivial and all that is needed is to replace divisions by matrix inverses
[13]. An updated pseudo coded scheme is listed in (2.19)
There is a forward substitution

H0 = −B−1
0 C0

g0 = B−1
0 up0

Hi = − (Bi + AiHi−1)−1Ci

gi = (Bi + AiHi−1)−1 (upi − Aigi−1) (2.19)

Followed by a backward substitution

un−1 = gn−1

ui = gi +Hiui+1

It is possible to solve the BE scheme in 3D by the block tridiagonal solver
as well. The linear system will be 2n2 + 1 band diagonal and must first be
reduced to a block matrix which is 2n + 1 band diagonal like the one in eq.
(2.17) before it is further reduced to a block tridiagonal form. Matrix entries
will be n2 × n2 matrices.

Efficiency of the block tridiagonal algorithm

In general the FE scheme will solve a discrete PDE in d spatial dimensions
with n mesh points in each dimension using

O(nd)

floating point operations (FLOP). This is the maximum efficiency possible
for a PDE in d dimensions (without using some form of symmetry argument)
and will be the benchmark for the BE scheme as well.

Implicit schemes like BE result in linear systems which, as mentioned,
can always be solved by Gaussian elimination by some O(n3) FLOPs for a

Section 3 Combining micro and macro scale models 17

n × n matrix. In d spatial dimensions the matrices are nd × nd, meaning
that Gaussian elimination will require O(n3d) FLOPs which is extremely
inefficient.

The block Tridiagonal solver requires inverting n matrices of size nd−1 ×
nd−1 as well as some matrix-matrix multiplications. All of these steps require
O(n3(d−1)) FLOPs, but as long as the coefficient matrix is constant they need
only be done once. In other words, the Hi terms from (2.19) can be stored.
The remaining calculations include three matrix vector multiplications, one
of which demands n FLOPs because the matrix is diagonal. The other two
matrices are dense, so (for now) the remaining two matrix - vector multipli-
cations require n2 FLOPs. In summary, the block tridiagonal solver requires
O(n2n−1) FLOPs, which is an order more efficient than a general LU decom-
position, and in fact any other direct solver the author knows of. In 2D the
block tridiagonal solver is one order slower than the FE scheme, which means
it is still very much usable for small meshes.

Another point which should be mentioned is that the block tridiagonal
solver is extremely memory efficient compared to other linear system solvers.
Since the algorithm only loops through the non zero entries, there is no need
to assemble the entire matrix. For a 2D simulation on a 100× 100 mesh, the
full assembled matrix will have 1002×1002 = 108 matrix entries, all of which
are double precision floats. The total size of the matrix in RAM will be 8 ·108

bytes, which is getting close to the available RAM of a normal computer at
∼ 8 · 109 bytes. In comparison, storing only the non zero entries requires
three block vectors of size 100 with entries that are 100 × 100 matrices. A
total of 24 · 106 bytes, or a factor 100 less. Effectively, the memory impact
is also reduced from 8 · n2d bytes to 8 · n2d−1 bytes by switching to the block
tridiagonal solver.

2.3 Combining micro and macro scale models

2.3.1 The algorithm

After setting an initial condition and diffusion constant the diffusion problem
is solved on both the microscopic and macroscopic meshes and combined into
a common solution by the following steps.

• The result from previous PDE time step, up, is converted to a distri-
bution of random walkers and sent to the RW solver.

• The RW solver does a predefined number of micro scale time steps

18 Theory Chapter 2

which correspond to one PDE time step.

• The result from the RW solver is converted back to a concentration
and this replaces the PDE solution, up.

• up is then used as input to calculate the next time step.

2.3.2 Conversion between length scales

As the previous section states, the result from the last PDE time step is
converted to a distribution of random walkers. This is done by specifying a
conversion rate denoted Hc (as was done by Plapp and Karma [11]) which
is a single, real integer defined by

Cij = Hc · uij (2.20)

As before uij is the solution to the 2D diffusion equation evaluated at x0 +
i∆x and y0 + j∆y, and Cij is the number of random walkers located in the
rectangle defined by xi±∆x

2
and yj±∆y

2
. Walkers are given a random position

within this rectangle at the beginning of each PDE time step.

The reason to not simply use the positions from last time step is that
the concentration in the RW area could change from one time step to the
next. This will result in a different distribution of walkers which must be
calculated at each time step. This is illustrated in Figure 2.3.

Section 3 Combining micro and macro scale models 19

0 1 2 3 4 5
x

0.0

0.5

1.0

1.5

2.0

2.5

u

u(x, t = 0 ·∆t)

u(x, t = 103 ·∆t)

Figure 2.3: This figure shows an exaggerated case of how the concentration in
an area changes over the course of a simulation. The distribution of walkers
is directly proportional to the integral of u(x, t), illustrated by a colored
area. There is clearly a larger concentration in the area after 1000 time steps
than at the beginning of the simulation, meaning that the number of walkers
should be recalculated at each time step. This figure was made using the FE
scheme with ∆x = 1

300
, D = 1 and ∆t ≈ 5.56 · 10−6.

Equation (2.20) effectively states that one ”unit“ of the solution u will
directly correspond to Hc random walkers. Depending on the application
and the units of the PDE solution, Hc ≈ 20− 50.

2.3.3 Coupling the models through step length

To ensure that the τ time steps performed by the RW solver sums up to
one time step for the PDE solver a limitation must be imposed on the RW
solver. This limitation can only be imposed on the step length of the random
walkers, so the task at hand is to relate the step length to the PDE time step,
∆t, and τ .
Through an Einstein relation the variance in position is coupled to the dif-
fusion constant.

〈∆̃x2〉 = 2Dd∆̃t (2.21)

20 Theory Chapter 2

Where ∆̃t is the time step for the random walkers which is exactly ∆̃t = ∆t
τ
.

Similarly ∆̃x is the spatial resolution on the micro scale which is also the
step length, l, for the random walkers. Rewriting equation (2.21) gives the
final expression for the step length

l =

√
2dD

∆t

τ
(2.22)

2.3.4 Boundary conditions for the random walk

Because the RW area must correspond to an area on the PDE mesh which
has a finite, constant size the RW model must have boundary conditions
imposed on it. In order to make absolutely sure that no walkers disappear
and by extension that the amount of concentration is conserved, perfectly
reflecting boundaries are chosen for the RW model. Reflecting boundaries
correspond to zero flux Neumann boundaries

∂C

∂n
= 0 (2.23)

Neumann boundaries might seem unphysical, but the redistribution of walk-
ers at each PDE time step must also to some extent be considered as a
boundary condition in which fluxes are exchanged between the two models.
In hindsight, a possibly better choice of boundary conditions for the RW
model would have been perfect exchange of flux between the two solvers.

∂u

∂n
=
∂C

∂n
(2.24)

Since time does not allow for this to be implemented and tested it will be
left as a reference to possible future work.

2.4 Potential problems
This section will list and discuss some of the problems which were encoun-
tered while working on the thesis and present the solutions or workarounds.

Negative concentration of walkers

Physically a negative concentration does not make sense, but if an initial
condition with negative values is imposed on the system, the software will try
to allocate a negative number of walkers. Trying to handle this is more of an
oddity than anything else, but a workaround has been found. If the absolute

Section 4 Potential problems 21

value of the negative concentration is taken as input to the RW solver and the
sign at each mesh point is stored while the RW solver advances the system,
the resulting solution can be multiplied by the stored sign to give back a
negative concentration. The workaround will at least keep the simulation
from crashing, but has a fundamental problem.

Figure 2.4a shows how a negative concentration is converted to a positive
concentration by taking the absolute value. This results in an abrupt change
where the original function, u(x, t), crossed the x-axis. Seeing as a diffusion
process very efficiently evens out abrupt changes, the point where u(x, t)
crossed the x-axis will get an increased value. As Figure 2.4b shows, this
point should remain equal to zero, but does not.

0.0 0.2 0.4 0.6 0.8 1.0-1.0

-0.5

0.0

0.5

1.0

u(x,t)
abs(u(x,t))
0

(a)

0.0 0.2 0.4 0.6 0.8 1.0
−1.0

−0.5

0.0

0.5

1.0

|u(x, t+∆t)|
signmap · |(u(t+∆t))|
u(x, t+∆t))

0

(b)

Figure 2.4: An illustration of the proposed workaround for negative concen-
trations and an illustration of how it performs (b). The fundamental problem
is that a diffusion process will even out discontinuities such as the one in (a).
The result of this evening out is shown in (b) as an increase in concentration
in the middle mesh point which should remain equal to zero.

Smooth solutions

A diffusion process is very effective when it comes to dampening fast fluctua-
tions, and so any solution of the diffusion equation will be smooth. Random
walks are stochastic and though a RW will describe a diffusion process it will
fluctuate around the solution. In this case a dilemma arises; on the one hand
there is the smoothness of the solution to consider, on the other hand the
stochastic term was introduced believing that it adds detail to the model.
This is partly the reason for solving the RW model before the PDE model.
The fluctuations will be reduced by the PDE solver and the solution, though
still fluctuating, will be smoother.

22 Theory Chapter 2

Section 2.5 describes some other methods which were attempted in order
to reduce the fluctuations from the RW model.

Number of time steps on the random walk level

The reason for introducing a random walk model in the diffusion solver was
to include an area with more advanced dynamics than regular diffusion on a
smaller time-, and length scale. This means that the RW solver must take τ
time steps for each PDE time step. τ could in principle be any integer, but
should be chosen large enough so the central limit theorem is satisfied. This
usually means τ ≥ 50.
Alternatively τ can be calculated from the assumption that the error term
with respect to time arising from the RW model is proportional to the square
root of the time step,

ε ∝
√

∆̃t. (2.25)

This assumption comes from the fact that the step length is proportional to
the square root of the time step. In order to make the error of the same size
as the error from the PDE model we use

∆̃t =
∆t

τ

=⇒ ε ∝
√

∆t

τ

O(∆t) ≥
√

∆t

τ

=⇒ τ ≥ 1

∆t

Note that the error associated with the number of walkers introduced is of
much higher significance than the error from the time step.

2.5 Other possible coupling methods
Running the solution from the PDE model through a RW model gives two
solutions for a part of the mesh. As it turns out it is sufficient to simply
replace the PDE solution with the RW solution in this area, which is nice
seeing as it is the simplest possible method. There are, however, some other
ways to do this which have been tested, and found inadequate or simply been
disregarded. Three of these are mentioned below.

Section 5 Other possible coupling methods 23

Averaging the two solutions

Taking the arithmetic mean of the two solutions will reduce the magnitude of
the fluctuations, as shown in Figure 2.5. This method is simple and reduces
fluctuations by approximately one half (approximately because fluctuations
will be present after the first time step).

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65
x

0.8

1.0

1.2

1.4

1.6

u(
x,
t)

u(x,t)
Hc*C(x,t)
0.5*(u(x,t) + Hc*C(x,t))

Figure 2.5: This plot shows the PDE solution before and after the stochastic
solver has been called, and the arithmetic mean of the two solutions which
has fluctuations of smaller amplitude.

The reason an average was scrapped is simply that equally satisfactory
results were achieved by only replacing the solution.

Polynomial regression

In order to smoothen out the solution from the RW model a polynomial
regression function was tested. The principle was to look at the solution
from the RW model as a set of data points which have some dependency
on their position on the PDE mesh. Figure 2.6 shows how this method
worked for a slightly exaggerated case. This approach turns out to have
two problems; first and foremost the amount of concentration is no longer
conserved, secondly the endpoints are usually way off.

24 Theory Chapter 2

Figure 2.6: This plot shows the PDE solution before and after the stochastic
solver has been called, and a polynomial regression of degree 6 using C(x, t)
as data points.

Cubic spline interpolation

Doing an interpolation will force the combined solution to be equal to the RW
solution at some mesh points. In practice this means choosing which points
are correct, and which are not. The author has not found any reasonable
way to do this.

In addition, cubic spline interpolation has the same problem as polyno-
mial regression when it comes to conserving energy.

Chapter 3

Analysis

25

26 Analysis Chapter 3

3.1 Computation of the error
Solving PDEs numerically will result in errors because derivatives are ap-
proximated by finite differences and the PDE is required to be fulfilled only
on the mesh points.

The error, ε, is measured by comparing the result from a numerical simu-
lation to an exact solution, ue and taking the norm of the difference. Specif-
ically ε is measured by the L2 norm which is defined in (3.1):

ε(tk) = ||u(tk)− ue(tk)||2
=

∫∫ √
(u(tk, x, y)− ue(tk, x, y))2 dx dy (3.1)

≈

√√√√∆x∆y
k∑
i=0

k∑
i=0

(u(tk, xi, yj)− ue(tk, xi, yj))2.

A time dependent error estimate has been chosen because it allows for inves-
tigation of the evolution of the error over the course of a simulation. Some
of the error tests will require a single number as an error measure. In these
cases the norm of ε(t), shown below, is used:

ε =

√√√√∆t
T∑
k=0

ε(tk)2. (3.2)

3.2 Verification techniques
All parts of the hybrid diffusion solver are subject to testing. First, the PDE
and RW solver will be tested individually, then the hybrid solver is tested.
This thesis will focus on three verification techniques which are described
below. The aim for all of these techniques is to make sure that the imple-
mentation is correct by comparing simulations to an exact solution.

For the PDE solver, there are errors arising from both the spatial derivative
and from the time derivative. Since an incorrect implementation of the spa-
tial derivative will cause the solution to be unstable, which is easily noticed
through visual inspection, the tests will focus on verifying the time deriva-
tive. In some cases, isolating the contribution to ε(t) from the time derivative
will be necessary, and is ensured by setting ∆t � ∆x2. A time step of this
size violates the stability criterion for the FE scheme, and so some of the
tests are slightly inaccurate for this scheme.

Section 2 Verification techniques 27

The verification techniques that will be carried out are:

• Manufactured solutions
By adjusting the source term, s(x, t), one can, in principle, choose any
solution to the diffusion equation. Should we, for example, want the
solution to be u(x, t) = 1

x+1
, all that is needed is to set the source term

equal to −D ∂2u
∂x2

;

s(x, t) =
2D

(x+ 1)3
,

and the problem is solved (as long as the boundary conditions are
correct). For the verifiation that follows, the chosen solution is

u(x, y, t) = e−π
2t cos(πx) cos(πy) + 1, (3.3)

which requires no source term and fulfills the zero flux boundary condi-
tions naturally. The point of these tests is to verify that ε ∼ ∆t and the
tests can be done for a time step which fulfills the stability criterion.

• Convergence tests
For the schemes used in this thesis the error term is described by

ε = Cx∆x
2 + Ct∆t

1, (3.4)

where the coefficients Cx and Ct are unknown. Notice that there is
one term arising from the time derivative and one from the spatial
derivative and that they are of different order.
Where possible, convergence will be tested by isolating one of the error
terms. For example, setting ∆t� ∆x2, implies Cx∆x2 ≈ 0 and

ε ∝ ∆tr,

where r = 1. As ∆t tends to zero, r is expected to converge to one,
and that is the purpose of these tests. By comparing the error from
two simulations with different time steps, the convergence rate, r, can
be measured from

r ' log (ε1/ε2)

log (∆t1/∆t2)
.

Notice that a single number must be used to describe the error, as
shown in (3.2).

28 Analysis Chapter 3

• Exact numerical solutions
The numerical schemes are actually reformulations of the PDE as dif-
ference equations, which have their own exact solutions. These will
be called the numerical exact solutions, and they are slightly different
from the exact solutions to the PDE. The reason for finding the nu-
merical exact solutions is that the scheme theoretically will represent
this solution with no error. In practice there will always be round off
errors and other factors, but an error term close to machine precision
is expected.

3.3 Testing the PDE solver

3.3.1 Verification by manufactured solutions

Equation (3.3) solves the diffusion equation, so using u(x, y, t = 0) as the
initial condition for a simulation will give us both the numerical solution
and the exact solution. An important property of both the FE and BE
discretization schemes is that the difference between these solutions is of the
same order as the time step.

ε(t) ∼ O(∆t)

Figures 3.1 and 3.2 show that for both the FE and BE scheme in both 1D
and 2D the error is of the expected magnitude, which is roughly ∆t. Another
interesting property of the error plots is that the error tends to zero after a
large number of time steps. By inserting the limit t→∞ in (3.3) we observe
that the error is expected to tend to zero because the limit value of one can
be exactly recreated by both schemes.

lim
t→∞

e−π
2t cos(πx) cos(πy) + 1 = 1

Section 3 Testing the PDE solver 29

0 1000 2000 3000 4000 5000 6000 7000 8000
timestep no.

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

ǫ(
t)

∆t = 0.002
∆t = 0.0005
∆t = 8e-05

(a)

0 1000 2000 3000 4000 5000 6000 7000 8000
timestep no.

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

ǫ(
t)

∆t = 0.002
∆t = 0.0005
∆t = 8e-05

(b)

Figure 3.1: Error plot for the FE scheme in 1D (a) and 2D (b). All simu-
lations have been run using ∆t = ∆x2

5
which fulfills the stability criterion in

1D and 2D.

0 1000 2000 3000 4000 5000 6000 7000 8000
timestep no.

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

ǫ(
t)

∆t = 0.002
∆t = 0.0005
∆t = 8e-05

(a)

0 1000 2000 3000 4000 5000 6000 7000 8000
timestep no.

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

ǫ(
t)

∆t = 0.002
∆t = 0.0005
∆t = 8e-05

(b)

Figure 3.2: Error plot for the BE scheme in 1D (a) and 2D (b). Notice that
the error is roughly of the same order as the time step. Figures 3.1b and
3.2b show the same simulation using FE and BE schemes in 2D. The error
is slightly larger in the BE discretization by a factor of 4.

3.3.2 Verification by convergence tests

The convergence tests are done by isolating the error term from either the
time derivative or the spatial derivative, and refining the relevant discretiza-
tion parameter over several simulations. However, for the FE scheme it is
impossible to isolate the error from the time derivative without violating the

30 Analysis Chapter 3

stability criterion. To cope with this problem a single discretization param-
eter, h, is introduced by ensuring

∆t

∆x2
= k,

where k is a constant. The error term from (3.4) can now be rewritten by
setting ∆t = h;

ε(t) = Cth+ Cx
h

k
= (Ct + Cx/k)h

= Ckh
r,

where r is still expected to converge to one.

Figures 3.3 and 3.4 verify that the error associated with the time derivative
is of the expected order.

In Figure 3.5 the error from the spatial derivative has been isolated, and
tested for both schemes. The error term associated with the spatial derivative
is of second order, as seen in (3.4). A second order error term is expected to
have second order convergence.

0.0004 0.0006 0.0008 0.0010 0.0012 0.0014 0.0016 0.0018 0.0020 0.0022
∆x

0.0

0.2

0.4

0.6

0.8

1.0

r

(a)

0.0004 0.0006 0.0008 0.0010 0.0012 0.0014 0.0016 0.0018 0.0020 0.0022
∆x

0.0

0.2

0.4

0.6

0.8

1.0

r

(b)

Figure 3.3: Convergence tests with respect to the single discretization pa-
rameter, h, for the FE scheme in 1D (a) and 2D (b).

Section 3 Testing the PDE solver 31

0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055
dt

0.0

0.2

0.4

0.6

0.8

1.0

r

Convergence rate

(a)

0.00 0.01 0.02 0.03 0.04 0.05 0.06
dt

0.0

0.2

0.4

0.6

0.8

1.0

r

Convergence rate

(b)

Figure 3.4: Convergence tests with respect to the time derivative for the BE
scheme in 1D (a) and 2D (b).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
timestep no.

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

er
ro
rn
or
m
 (l
2)

Error plot; dt = 6e-05

dx = 0.1
dx = 0.05
dx = 0.02

(a)

0.05 0.06 0.07 0.08 0.09 0.10
dx

1.4

1.5

1.6

1.7

1.8

1.9

2.0

r

Convergence rate

(b)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
timestep no.

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

er
ro
rn
or
m
 (l
2)

Error plot; dt = 0.0001

dx = 0.1
dx = 0.05
dx = 0.02

(c)

0.05 0.06 0.07 0.08 0.09 0.10
dx

1.94

1.96

1.98

2.00

2.02

r

Convergence rate

(d)

Figure 3.5: These plots show the error and convergence from the spatial
derivative using BE (a & b) and FE (c & d) discretization schemes. The
expected convergence rate for both discretizations is r = 2, which is recreated
to a decent accuracy. Testing has been done using 1D simulations for the BE
scheme, and 2D simulations for the FE scheme. This should not make any
difference for the results.

32 Analysis Chapter 3

3.3.3 Verification of FE scheme by exact numerical so-
lution

Discretization of the diffusion equation by the FE scheme yields the following
numerical scheme in 1D:

uk+1 = D∆tuk2x + uk, (3.5)

where u2x denotes the double derivative of u with respect to x. Equation
(3.5) is a difference equation, which is most easily solved by writing out the
first four iterations and finding a pattern

u1 = D∆t u0
2x + u0

u2 = D∆t u1
2x + u1

= D∆t
[
D∆tu0

4x + u0
2x

]
+D∆t u0

2x + u0

= (D∆t)2 u0
4x + 2D∆tu0

2x + u0

u3 = D∆t u2
2x + u2

= D∆t
[
(D∆t)2 u0

6x + 2D∆tu0
4x + u0

2x

]
+ (D∆t)2 u0

4x + 2D∆tu0
2x + u0

= (D∆t)3 u0
6x + 3 (D∆t)2 u0

4x + 3D∆tu0
2x + u0

u4 = D∆t u3
xx + u3 = . . .

= (D∆t)4 u0
8x + 4 (D∆t)3 u0

6x + 6 (D∆t)2 u0
4x + 4D∆tu0

2x + u0

From the iterations above a pattern can be recognized for iteration k + 1:

uk+1 =
k∑
i=0

(
k

i

)
(D∆t)i u0

2ix, (3.6)

where u0 is the initial condition;

u0 = cos(πx). (3.7)

The spatial derivatives are found by inserting the initial condition into the
centered difference approximation to the second derivative :

u0
2x =

1

∆x2
(cos(π(x+ ∆x))− 2 cos(πx) + cos(π(x−∆x)))

=
2

∆x2
(cos(π∆x)− 1) cos(πx)

u0
4x = [u0

2x]2x
1

∆x2

[
u0

2x

cos(πx)
(cos(π(x+ ∆x))− 2 cos(πx) + cos(π(x−∆x)))

]
=

4

∆x4
(cos(π∆x)− 1)2 cos(πx)

. . .

Section 3 Testing the PDE solver 33

The pattern continues allowing the final numerical exact solution to be ex-
pressed below:

uk+1 =
k∑
i=0

(
k

i

)
(D∆t)i

2i

∆x2i
(cos(π∆x)− 1)i cos(πx). (3.8)

By construction the Neumann boundary conditions are fulfilled since ∂ cos(πx)
∂x

=
−π sin(πx) and sin(0) = sin(π) = 0.

Although the FE scheme is expected to reproduce (3.8) to machine pre-
cision (ε ≈ 10−16) there are two problems with the solution which will have
an effect on the error:

• ∆x2i will quickly tend to zero, and the computer will interpret it as
zero. This will cause division by zero, which again results in “Not a
number” (nan) and ruins the simulation. Testing if ∆x2i > 0 and
returning zero if the test fails will fix the problem. The argumentation
for ignoring the troublesome terms is given below.

•
(
k
i

)
goes towards infinity for large k and i. The computer can only

represent numbers up to ∼ 10308, which limits the number of steps to
170 since k! > 10308 for k > 170.

As a side note, (3.8) illustrates how the stability criterion for the FE
scheme comes into place. In the numerical exact solution, the exponential
which is found in the exact solution to the PDE (eq. 3.3) is replaced by an
amplification factor Ak. This amplification factor can be found in equation
(3.8) as

Ak =

(
2D∆t

∆x2

)i
. (3.9)

Inserting a time step larger than ∆x2

2D
will make the amplification factor, A,

larger than one, which in turn makes the solution blow up.

The stability criterion also illustrates why the terms where

1

∆x2i
→∞

can be dropped. By the stability criterion, the time step will cancel out ∆x2,
and the result will be a number smaller than 1 raised to a rather large power,
resulting in a number comparable to zero.

34 Analysis Chapter 3

The results from comparing a 1D simulation to the numerical exact is
shown in Figure 3.6a. As expected the error is larger than machine precision
by at most two orders of magnitude because of accumulating error terms
from the dropped terms in (3.8).

Using the same method as in the 1D case, a numerical exact solution can be
found to the 2D FE scheme;

uk+1 =
k∑
i=0

(
k

i

)
(D∆t)i

[
2i−1 cos(πx) cos(πy)

(
(cos(π∆x))i

∆x2i
+

(cos(π∆y))i

∆y2i

)]
.

(3.10)
The same problems as in the 1D case will apply to (3.10) with the same

solutions. Figure 3.6b shows how the 2D simulation compares to the numer-
ical exact solution. As was the case in 1D, the error is larger than machine
precision, but much smaller than ∆t.

0 20 40 60 80 100 120 1400

1

2

3

4

5

6

71e−14

(a)

0 20 40 60 80 100 120 1400.0

0.5

1.0

1.5

2.0

2.5

3.0

3.51e−13

(b)

Figure 3.6: Error plots for the FE scheme in 1D (a) and 2D (b) when com-
paring with the numerical exact solution. Some of the terms in the numerical
exact solutions are ignored to prevent overflow and these are responsible for
the increasing error which is slightly larger than machine precision.

3.3.4 Verification of BE scheme by exact numerical so-
lution

The exact numerical solution to the BE scheme is found by solving the linear
system which arises from the discretization (see Section 2.2). Given the k’th
time step, the next time step is found by

Section 4 Testing the PDE solver 35

Muk+1 = un

uk+1 = M−1uk

= M−1
(
M−1uk−1

)
Doing the separation to the end relates the n’th time step to the initial
condition

uk =
(
M−1

)k
u0, (3.11)

where (M−1)
k is the inverse of M to the k’th power.

Taking the inverse ofM will result in a dense matrix where a lot of the entries
are close to zero (e.g. 10−20). Doing calculations with such a matrix results
in a lot of round-off errors which will reduce the accuracy of the numerical
exact solution. The error should theoretically be machine precision, but is
expected to at least, be much smaller than ∆t. Errors from both 1D and 2D
simulations are shown in Figure 3.7. Though computationally intensive, the
numerical exact solution for the BE scheme has none of the limitations that
were found for the FE scheme.

0 50 100 150 200 250 300
timestep

0.0

0.2

0.4

0.6

0.8

1.0

1.2

er
ro

rn
or

m

1e−9 Error compared to numerical exact

(a)

0 50 100 150 200 250 300
timestep

1.0

1.5

2.0

2.5

3.0

3.5

er
ro

rn
or

m

1e−10 Error compared to numerical exact

(b)

Figure 3.7: Plots showing the error for the BE scheme in 1D (a) and 2D (b)
compared to the numerical exact solution. The error is not machine precision,
but significantly smaller than ∆t which for these simulations is ∆t = 0.01.
This increased error originates in the many round-off errors in the inverted
matrix where a lot of terms are of the order 10−16 and smaller.

36 Analysis Chapter 3

3.4 Verification of the RW solver
The aim of this section is to verify that the implemented RW model will solve
the diffusion equation on the correct time scale, and to verify that the error
term from the RW solver is dependent on the conversion factor, Hc. In order
to carry out the tests, a new initial condition that can easily be recreated by
random walkers will be introduced.

u(t = 0, x) = H

(
x− 1

2

)
(3.12)

Where H(x) denotes the Heaviside step function [1], which is defined by its
properties

H(x− a) =

1 x > a
1
2
x = a

0 x < a

(3.13)

The new initial condition gives a new exact solution which is found by sepa-
ration of variables and Fourier series as

u(x, t) =
1

2
+ 2

∞∑
n=odd

(−1)
n−1
2

nπ
e−(nπ)2t cos(nπx) (3.14)

Figure 3.9 verifies that the error term improves by adding more walkers. And
Figure 3.8 shows that the RW model will fulfill the chosen time step on the
PDE level. The convergence rate is not very good, but this is expected.
Stochastic effects causes the error to fluctuate around a certain value rather
than converge to zero, making it very difficult to get a good error measure.

Section 4 Verification of the RW solver 37

0 100 200 300 400 500
timestep no.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

er
ro
rn
or
m
 (l
2)

Error plot; dt = 0.025

dt = 0.1
dt = 0.05
dt = 0.02
dt = 0.025

(a)

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11
dt

0.0

0.2

0.4

0.6

0.8

1.0

r

Convergence rate

(b)

Figure 3.8: Error plot (a) and convergence test (b) for 1D RW solver using a
Heaviside step function as initial condition. In these tests both the time step
and the conversion factor are changed for each simulation, and the conversion
factor follows the previously proposed limit Hc ≥ 1

∆t2
. For each ∆t the RW

simulation does 250 steps with a step length calculated from (2.22). The
expected convergence rate is 0.5, and to some extent this is achieved here.
Note, however, that due to fluctuations in the solution, getting a good error
measure is difficult and beyond our control.

0 50 100 150 200 250 300
timestep no.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

er
ro
rn
or
m
 (l
2)

Error plot; dt = 0.05

Hc = 300
Hc = 500
Hc = 1000
Hc = 5000
Hc = 10000

0 1000 2000 3000 4000 5000
0.0

0.2

0.4

0.6

0.8

1.0

r

Convergence rate

Hc (Conversion rate)

Figure 3.9: As a comparison to Figure 3.8, this test has been done for the
same 1D Heaviside step function as initial condition, but keeps the time step
fixed at ∆t = 0.05 and increases the conversion factor. The convergence rate
(fig. b) is worse than for the time convergence test, and seems to reach a
limit where increasing the number of walkers has little effect on the error.

38 Analysis Chapter 3

3.5 Verification of the hybrid solver

This section aims to achieve first order convergence in time for the hybrid
solver by introducing a sufficient number of walkers. Effects of varying the
number of mesh points affected by the RW solver will also be illustrated.

The hybrid diffusion solver is a combination of the PDE and RW solvers,
which means that the error term for the hybrid model is described by

ε(t) = Ct∆t+ Cx∆x
2 +

CRW√
Hc

, (3.15)

where CRW is an unknown stochastic coefficient.

From (3.15) it is clear that the error term from the RW solver is dominant, as
it is of order r = 0.5. In order to achieve first order convergence, a limitation
must be placed on the conversion rate. Assuming that the spatial error term
is negligible:

ε(t) = Ct∆t+ Cx∆x
2︸ ︷︷ ︸

≈0

+
CRW√
Hc

(3.16)

O(∆t) ≈ Ct∆t+
CRW√
Hc

(3.17)

=⇒ 1√
Hc
≤ ∆t. (3.18)

Which finally gives the restriction on the conversion rate

Hc ≥ 1

∆t2
. (3.19)

By (3.19) the time step should be as large as possible in order to limit the
number of walkers and achieve a reasonable computational performance. The
FE scheme has a strict limitation on the time step from the stability criterion,
making the BE scheme desirable. For this reason all tests will be done with
the BE scheme.
Figure 3.10 shows first order convergence for the hybrid model.

Section 5 Verification of the hybrid solver 39

0 50 100 150 200 250 300
timestep no.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

er
ro
rn
or
m
 (l
2)

Error plot; dt = 0.005

dt = 0.05
dt = 0.01
dt = 0.005

(a)

0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055
dt

0.96

0.97

0.98

0.99

1.00

1.01

1.02

1.03

r

Convergence rate

(b)

Figure 3.10: 3.10a shows the error plot for a test where ∆x was fixed at
∆x = 1

100
and ∆t was reduced from 0.05 to 0.01 and finally to 0.005. The

conversion rate, Hc was updated for each simulation to have the value Hc =
1

∆t2
, meaning the error from the walkers should be smaller than the error from

the time derivative. Walkers are placed on 10% of the mesh from x = 0.4 to
x = 0.5. 3.10b shows the convergence rate in time for the same test.

Decreasing or increasing the relative size of the microscopic model has
serious effects on the error. Figure 3.11a shows that the error term is com-
parable to the error from a simulation without walkers when only 5% of the
mesh points are affected by walkers. As a comparison, Figure 3.11b shows
that the error will not be comparable to a simulation without walkers, even
for a large conversion rate, when as much as 35% of the mesh points are
affected by walkers.

0 100 200 300 400 500
timestep no.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

er
ro
rn
or
m
 (l
2)

Error plot; dt = 0.005

Deterministic
Hc = 100
Hc = 1000
Hc = 10000

(a) Walkers on 5% of the mesh points.

0 100 200 300 400 500
timestep no.

0.00

0.05

0.10

0.15

0.20

0.25

er
ro
rn
or
m
 (l
2)

Error plot; dt = 0.005

Deterministic
Hc = 100
Hc = 1000
Hc = 10000

(b) Walkers on 35% of the mesh points.

Figure 3.11: The effect of increasing the size of the walk area for a fixed
∆t = 0.05 and ∆x = 0.01 using the BE discretization.

Chapter 4

Physical application

41

42 Physical application Chapter 4

The following chapter is included to show that the developed hybrid diffu-
sion solver can be applied to real life problems with only minor modifications.

4.1 Physical scope

“To understand the central nervous system of even the simplest animals re-
quires an understanding of the nervous system at many different levels, over
a wide range of both spatial and temporal scales” - David Sterratt [7].

There are potentially many applications of a hybrid diffusion solver within
the field of neuroscience, which is the study of the central nervous system.
This chapter will look at a small part of a neuron located in the brain of a
rat.

Figure 4.1: A pyramidal neuron with an apical dendrite (starting by the
arrow). The inset shows an amplification of the apical dendrite and illustrates
the size of dendritic spines (small outgrowths). The arrow points to the cell
body, called the Soma. Note that this image does not show how neurons are
located within the brain. Image from www.neurolex.org.

www.neurolex.org

Section 2 Implementation 43

Figure 4.1 shows a pyramidal neuron with an apical dendrite, and an
inset with dendritic spines. Pyramidal neurons take their name from the
triangular shape of the Soma, and an apical dendrite is a dendrite springing
from the apex of the Soma. Spines are (often) the receiving end of a chemical
synapse, which is a junction between two neurons that allows for communi-
cation between the two cells.

This application will look at diffusion of PKCγ in a segment of an apical
dendrite and into dendritic spines. PKCγ is a protein found in neurons
which is associated with memory storage and associative learning [12]. Upon
activation it will diffuse out of the Soma, through a dendrite, and into a
dendritic spine to reinforce or reduce the absorption of neurotransmitters.

Effectively we will investigate the diffusion time for random walkers through
spine necks which are very narrow (≤ 0.5µm). Spine necks are thought to act
as diffusion barriers which hinder, but do not stop diffusion [4]. The results
will be compared to results by Craske et.al [4], who in 2005 studied a similar
problem in rodent pyramidal neurons harvested from the hippocampus.

4.2 Implementation

There is a difference between the approach of the developed hybrid solver
and the dendrite - spine system with respect to geometry which is best sum-
marized in Figure 4.2.

The dendrite segment is approximated as a cylinder with diameter ∼ 10µm
and length ∼ 50µm. Furthermore, little of interest is assumed to happen in
the radial direction. All things considered, diffusion in the dendrite will be
modeled as a 1D process.

Spines have a wide variety of geometries, with various properties [2]. For
this application, however, only the neck length and width of a spine is of
interest. The spines will therefore be modeled as two dimensional objects
with rectangular necks and trapezoidal heads.

44 Physical application Chapter 4

x
1D PDE

2D RW

(a)

y

x

PDE

RW

(b)

Figure 4.2: The geometric difference between the original hybrid diffusion
solver (b) and the numerical setup to model PKCγ diffusing into dendritic
spines (a). Spines are attached by a few mesh points on the PDE mesh,
which also determines the neck width of the spine.

The hybrid diffusion solver has been slightly modified in order to recreate
the new geometry. Mathematically the largest difference is that the random
walkers are left alone, meaning that the diffusion equation is not solved in the
spines. There are also some differences in the coupling; at each PDE time step
there is a probability for a protein to diffuse into a spine if the concentration
at the beginning of the spine neck is large enough. This probability decreases
with the number of proteins which have already diffused into the spine. The
width of a spine neck is determined by the number of PDE mesh points it
connects to, which, for this purpose, is chosen at random. All other length
parameters are determined randomly, but required to fit with measurements
from Arellano et.al [2].

4.3 Parameters and details

Within the first three seconds after PKCγ is released from Soma, a portion
of the released amount will bind to the dendrite wall. This process is not
governed by the diffusion equation, and seems to increase the speed with
which PKCγ diffuses into the spine [4]. For this application, these dynamics
are not of interest. In order to still have a realistic model, the initial condition
has been altered:

Assuming that the actual release of PKCγ from Soma can be modeled as
a delta pulse, the solution will be a Gaussian function. The modified initial

Section 3 Parameters and details 45

condition places a small amount of PKCγ over the entire dendrite, and adds
some random fluctuations. This is illustrated in Figure 4.3.

Figure 4.3: Initial condition used in the application

The result of using this new initial condition is simply that approximately 3
seconds can be added to all the measured times.

As Figure 4.3 shows, the concentration of PKCγ has units nMol
L . Craske

et.al. [4] measured increases in concentration of around 5nMol
L in spine heads,

which corresponds to 1− 2 proteins once the volume of a spine is taken into
account. In fact, by calculating the volume of the dendrite segment we are
simulating, the conversion factor has been estimated at Hc = 5− 25.

The model should have a few properties in order to be a realistic represen-
tation. First of all, if a large number of proteins are located at the junction
to a spine, it is more likely that a protein diffuses into the spine. This is
ensured by making the probability for a protein to diffuse into a spine to
be dependent on the amount of PKCγ present at the beginning of the spine
neck.

In order for a spine to be two dimensional, it must cover at least two
points of the PDE mesh. This limits the minimal spatial resolution to the
minimal neck diameter of a spine, which is 0.22µm [2].

Real particles will “feel” a concentration gradient, but random walkers do
not. As spine heads are filled with proteins, new proteins must therefore be
hindered from entering a spine if it is full. This is achieved by reducing the
probability for a particle to diffuse into a specific spine each time a particle
is absorbed in the head of that spine.

Chapter 5

Results

47

48 Results Chapter 5

This chapter will summarize and discuss the results from chapters 3 and 4.

5.1 Results of verification

The plots that are discussed in this section can be found in chapter 3.

5.1.1 The FE scheme

In general, the results from testing the FE implementation are very good.
Especially the results from testing the exact numerical solution are informa-
tive. The numerical exact solution test is a verification of the implementation
of the FE scheme. A successful test indicates that the scheme is correct and
will solve the diffusion equation to the expected accuracy. Both the error
plots from section 3.3.1 and the spatial convergence test are very close to
perfect, further suggesting a correct implementation.
Considering all of the three tests are close to perfect, the FE scheme is deemed
correctly implemented within the limits of the applied tests.

5.1.2 The BE scheme and the block tridiagonal solver

Two of the tests done on the BE scheme are slightly off target. These are
the spatial convergence test and the numerical exact solution.
Though the numerical exact solution test is expected to give an error close
to machine precision, the results are five orders of magnitude larger than
machine precision. On the other hand, the error term is also eight orders of
magnitude smaller than the time step and there are a lot of possible round-off
errors in the inverted coefficient matrix which can explain the lack of accu-
racy.
The spatial convergence test demands that the error associated with the spa-
tial derivative is much larger than the error from the time derivative. As the
spatial resolution is increased, the spatial error becomes less dominant be-
cause the time step is held constant. Because the spatial convergence is still
clearly larger than one, and starts out at two (which is the value it should
converge to), this is considered to be adequate.

Effectively, the manufactured solution test and convergence tests verify the
assembly of the coefficient matrix, since an incorrect assembly would produce
a larger error term. The numerical exact solution test verifies the imple-
mentation and accuracy of the block tridiagonal solver, since an incorrectly
implemented solver would give results comparable to the numerical exact

Section 2 Results for physical application 49

solution.

In summary, the tests done on the BE scheme verifies that it, and the block
tridiagonal solver, are implemented correctly.

5.1.3 The RW solver

Due to fluctuations in the solution it is hard to get a good convergence rate for
the RW solver. However, it is measured to be close to 0.5 both with respect
to the time step and with respect to the number of walkers introduced. The
result of verifying the RW solver is that it is deemed correctly implemented
within the limits of the applied tests.

5.1.4 The hybrid diffusion solver

For this thesis it is considered very important that the hybrid diffusion solver
can have first order convergence in time given a high enough conversion rate.
As Figure 3.10b shows this was achieved, and the hybrid solver is therefore
considered adequately implemented for the time being.

Effects of varying the relative size of the RW area were also illustrated.
The result of increasing the portion of the PDE mesh affected by an RW
model is clearly a larger error term overall, while decreasing the size of the
RW area significantly improves the error term. All of this is expected since
more fluctuations are introduced by the RW solver.

5.2 Results for physical application

Craske et.al. [4] suggest that the neck of spines act as diffusion barriers which
slow down, but don’t completely stop the diffusion of PKCγ into spines. The
function of this barrier is a bit unclear, but the presence of it is undisputed.
In their measurements they found a delay of around 5 − 10 seconds from
elevated concentration levels in the dendrite until a similarly elevated con-
centration level occurred in spines with necks longer than 0.5µm. Using
parameter values which resemble the values found in actual (rodent) neurons
and neurites in the developed software, the observed delay-times have been
recreated. Figure 5.2 shows plots of the observed diffusion times into spines.
This figure shows a clear trend for longer diffusion times as the neck length
of the spine increases. Figure 5.1 further supports this claim and implies the
average diffusion time for PKCγ into long necked spines to be in accordance

50 Results Chapter 5

with the results from Craske et.al. Seeing as there are no additional com-
plexities added to the RW model we can assume that the spine neck does in
fact function as a diffusion barrier.

10

5

10

15

20

25

30

35

40
di
ffu

si
on

 ti
m
e
[s
]

diffusion times for spines with neck length > 0.5 um

Figure 5.1: Boxplot of the relative diffusion times (time between elevated con-
centration in dendrite and elevated concentration in spine head) into spines
with necks longer than 0.5µm. Similar studies were done by Craske et.al. [4]
and found diffusion time (unclear whether relative or not) to be somewhere
around 5-10 seconds.

Through the simulations it became apparent that there must be some sort
of limiting factor which limits the number of PKCγ particles that are let into
the spine. In real life this is achieved by a concentration gradient which tends
to zero (or negative values), meaning that no particles will diffuse into the
spine after it is “filled” up. A random walker will not feel this concentration
gradient unless it is explicitly told so. The alternative solution then, is to
reduce the probability for particles to diffuse into a spine for each particle
that gets caught in the spine head by a factor 1

10
.

5.3 Using other particle dynamics
The aim of this project has always been to create a flexible framework where
especially the particle dynamics can be substituted. A test was therefore
executed where Direct Simulation Monte Carlo (DSMC) code developed by
Anders Hafreager for his masters thesis [8], was used in stead of the RW

Section 3 Using other particle dynamics 51

0.0 0.2 0.4 0.6 0.8 1.0
spine neck length [um]

0

5

10

15

20

to
ta
l d

iff
us

io
n
tim

e
[s
]

observed
lstsq fit

(a) Absolute diffusion times.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
spine neck length [um]

0

5

10

15

20

di
ffu

si
on

 ti
m
e
[s
]

observed
lstsq fit

(b) Relative diffusion times.

Figure 5.2: Absolute (a) and relative (b) diffusion times into spines with
outliers removed from the data. Outliers are the observations illustrated by
crosses in Figure 5.1. The lines represent a least squares fit of the results.
For (a) the least squares fit is y ≈ 0.0346x+ 0.4424, where y is the diffusion
time and x is the neck length of the spine. For (b) the least squares fit is
y ≈ 0.0249x+ 0.4189.

model. DSMC is a particle dynamics approach where the velocities of indi-
vidual particles are modeled, but some particle interactions are modeled by
a stochastic process. Typically, particle collisions are modeled by a Monte
Carlo method, but boundary conditions are not.

A problem arises with respect to the coupling described in this thesis: In the
DSMC model, there is no fixed step length for each particle. It is possible to
measure a diffusion coefficient which, to some extent, can be controlled by
adjusting the temperature of the system, but this has not been done.

As a result, this must be viewed as an experiment in which the aim is for
the two softwares to communicate as intended. In this sense, the experiment
was successful. Figure 5.3 shows one time step of a simulation where the
DSMC model was used as particle dynamics model. As is apparent from the
figure, the coupling is not very good.

52 Results Chapter 5

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

Figure 5.3: This figure shows the hybrid diffusion solver with a DSMC par-
ticle model. The coupling between the two modes is not very good, but the
communication between them works.

Chapter 6

Discussion and conclusion

53

54 Discussion and conclusion Chapter 6

6.1 Discussion
A large portion of the work that has been put into this thesis has been on
code implementation. Because it is very demanding to read computer code
on paper, and it does not necessarily provide extra clarity, the code is not
included in this text. The complete computer code is published at github.com
under the following address

https://github.com/fepettersen/thesis

In summary, this project contains

• Implementation of both explicit and implicit solvers for the (anisotropic)
diffusion equation using finite difference methods in one and two spatial
dimensions. The implicit solver can also handle three dimensions, but
this requires writing code that assembles the coefficient matrix.

• Implementation of a direct solver for banded linear systems which
rewrites the system as block tridiagonal. To my knowledge, this block
tridiagonal solver is one order more efficient than any other direct
solver.

• Implementation of a RW model for (anisotropic) diffusion in one and
two spatial dimensions, with the grounds for three dimensions laid.

• Combination of the PDE and RW models into a hybrid diffusion model.

• Thorough testing and verification of all the implemented solvers.

• An application of a slightly modified version of the hybrid diffusion
model on diffusion of PKCγ from thick apical dendrites into very nar-
row dendritic spines.

6.1.1 Application

The model gives fairly good results for the application on PKCγ into spines
which largely are in agreement with the results by Craske et.al [4]. However,
the mean diffusion times found from simulations seem to consistently lie
towards the lower limits of the experimental results. One possible extension
to the model which might fix this is to introduce an absorption probability in
the spine head which is fairly large (say 80% per second), or even increases
with the amount of time spent in the spine head. A setup like this should
increase the average diffusion time by a few seconds. It does not, however,

https://github.com/fepettersen/thesis

Section 1 Discussion 55

reflect the physical process to a better accuracy seeing as a concentration
increase in a spine head will be measured quickly.

6.1.2 Possible extensions

As the project stands now it is mostly a proof of concept for hybrid diffusion
solvers as well as a first attempt at a flexible framework for similar problems.
This means that there are quite a few possible extensions that can be done
to the project, perhaps in conjunction with another masters thesis.

A simple RW was chosen for the lower scale model because it fulfills the
diffusion equation and is therefore easy to work with. The idea, however,
was always to create a software in which the lower scale model can easily
be substituted for a better one. By letting the lower scale model work as a
standalone unit which communicates with the rest of the software through a
file containing the positions of all the walkers (or particles), this is ensured.
All that is needed to switch lower scale model is to put the new solver in the
correct place with respect to the rest of the software, and make sure it can
communicate in the described manner. As a test, the DSMC code developed
by Anders Hafreager [8] was used as a lower scale model for one simulation.
Naturally, a few problems arose, but from a strictly programming point of
view it worked.

Another, rather simple extension would be to find an application which re-
quires modeling anisotropic diffusion. This has already been implemented in
the PDE and RW solvers. The anisotropic RW implementation is based on
the article by Farnell and Gibson [5].

As mentioned in section 2.3.4, perfect flux exchange between the higher and
lower scale model might have been a better boundary condition for the RW
model than zero flux boundary conditions. In principle, changing boundary
conditions on the RW solver is simple, seeing as it is completely separate
from the rest of the software. The reason the boundary conditions have not
been changed is that it requires a complete workover of the coupling between
the two models as well, which is a too large job to complete at this point.

Perhaps the biggest weakness of the software, as it stands, is the limitation
in mesh geometry. Implementing a mesh geometry which is not square in
a finite difference method turns out to be very complicated, and requires
transforming the PDE to a new set of coordinates. Ultimately, one must
solve an entirely different equation. Alternatively, a finite element method

56 Discussion and conclusion Chapter 6

can be used. Finite element software will already have support for new mesh
geometries built in, making the suggested transformations unnecessary.

There are, of course, a lot of physical problems which the developed soft-
ware can be applied to. One possibility is modeling sodium ions that diffuse
through ion channels in the cell membrane of neurons into the extracellular
space of the brain.
Ion channels are very narrow, often only allowing one ion through at a time,
and they are (often) specific to one ion. Two 1D PDEs can describe the
intra-, and extra-cellular concentrations of ions, and a lower scale model
can describe the ion channel. This problem would also need to consider drift
terms arising from Coulomb forces and using a modified particle model which
can describe the dynamics inside an ion channel.

In principle, any diffusion process where a small portion of a large number
of particles diffuse into narrow passages could be modeled by the developed
hybrid diffusion solver.

6.1.3 Other work on the topic

As the project was being finished, I came across an article by Flekkøy et.al.[6]
describing the same problems that are addressed in this thesis. In this article,
the authors try to combine a simple diffusion solver with a simple random
walk solver and end up concluding that this is possible. This thesis has been
done completely independently of said article, and takes a slightly different
approach to the problem as well.

6.2 Concluding remarks

In this thesis a hybrid diffusion solver in which parts of the process can be
modeled by a particle dynamics description has been developed. All parts
of the solver have been verified to work properly, including the hybrid model.

The developed software mainly relies on the implicit BE scheme to solve
the diffusion equation, both in 1D and in 2D. Like any implicit scheme, the
BE scheme results in a system of linear equations of size nd×nd which must
be solved at each time step. In order to do so, a block tridiagonal solver has
been implemented, with an efficiency of O(n2d−1). To my knowledge, this is
the most effective direct solver available, with alternatives like LU decompo-
sition and Levinson recursion using O(n2d) FLOPs. The limiting factors of

Section 2 Concluding remarks 57

the block tridiagonal solver are two matrix-vector multiplications which will
use O(n2(d−1)) FLOPs. If a faster matrix-vector multiplication scheme exists
it will reduce the computational work to O(nd).

Appendix A

Appendix

59

60 Appendix Chapter A

A.1 Debugging

In any project which involves programming one is bound to do some debug-
ging. This project is no exception. Debugging can be extremely frustrating
because no one sees all the hours that go into finding the bugs. Should a
bug not be found, however, it will be noticed immediately. This appendix
is an introductory guide to debugging finite difference (FD) solvers and RW
implementations. It starts out with some general tips on how to handle error
messages, and moves on to deal with FD and RW implementations. Finally,
some words on how to debug the developed software are included.

A.1.1 Compiler/syntax errors

If you are programming in a compiled language like Fortran or C/C++ it is
very easy to forget or misspell some syntax. Usually, the compiler will tell
you what is wrong. Should it not do so, there are compiler options which pro-
vide extra information about syntactically correct but questionable looking
code (-Wall). Some times one error results in several error messages. Start
with the messages that are understandable, and recompile before checking
out the other messages.

If you are building a larger project which requires linking, remember that
packages must be linked in the correct order. For example; the Armadillo
linear algebra library is backened by LAPACK and BLAS. In addition to
linking the Armadillo library, both LAPACK and BLAS must be linked, and
they must be linked in the correct order:

g++ myprog . cpp −o myprog −O2 − l a r m a d i l l o − l l a p a c k − l b l a s

Anything else will give very cryptic compiler errors.

Interpreted languages, like Python or MatLab, mostly include debuggers
which provide extensive information about any errors in the code, read them
thoroughly.

A.1.2 Segmentation faults

Segmentation fault is a very common abort message to get from C++. It
means that the program has tried to access a part of the computer memory
(RAM) which it is not allowed to access by the operating system. Inter-
preted languages will abort with a more informative error message, saying

Section 1 Debugging 61

something about where the error was encountered. In a compiled language,
“Segmentation fault” is all you get, which basically means that there is some-
thing wrong somewhere in your code. As an illustration, the terminal output
below shows the output from a python- and C++- program (both named
“segfault”) for the same error:

f r e d r i k@Wo r k s t a t i o n :~/ u io$ python s e g f a u l t . py
Traceback (most r e c e n t c a l l l a s t) :

F i l e " s e g f a u l t . py" , l i n e 3 , i n <module>
b = sy s . a rgv [1]

I n d e xE r r o r : l i s t i nd e x out o f range

f r e d r i k@Wo r k s t a t i o n :~/ u io$. / s e g f a u l t
Segmentat ion f a u l t (co r e dumped)

The gnu-compiler has an environment called gdb in which you can run
your program. “gdb” will catch segmentation faults and provide some infor-
mation about where they were encountered. Furthermore, advanced editors
like “qt creator” have built-in debuggers and the ability to place breakpoints
in the code, making it possible to step through code line by line.
Some times though, the thing that works best is to print messages or key
values at various places, signaling that a code block is finished. For example,
making each function print its name when it is called will quickly identify
problems.

A.1.3 Finite difference methods

First and foremost: Do the discretization by hand. It will give valuable in-
sight, which makes implementation and debugging a lot simpler. Secondly,
the numerical stability of the scheme should be investigated prior to imple-
mentation. This ensures that a conditionally stable scheme does not fail tests
because of a to large discretization parameter.

There is one very important rule in programming in general: “First make it
work, then make right, then make it fast”. When solving PDEs numerically
this principle is extra important. A numerical discretization scheme will (to
my knowledge) either result in a main loop or a linear system which solves the
equation. Regardless of the overall structure of the final program, this main
block will be located unchanged somewhere within the final structure. This
part should therefore be implemented and tested first. Structural changes
and efficiency issues can be addressed at a later point.

62 Appendix Chapter A

Visualization is an invaluable tool while implementing a numerical PDE
solver. Even though the code runs through all the steps without crashing, it
does not have to be correct. This is illustrated in Figure A.1.

0.0 0.2 0.4 0.6 0.8 1.0−1.5

−1.0

−0.5

0.0

0.5

1.0

1.51e10

(a) Incorrect implementation

0.0 0.2 0.4 0.6 0.8 1.0−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

(b) Correct implementation

Figure A.1: Illustration of an implementation which does not crash the pro-
gram, but is still clearly incorrect (a). (b) shows the correctly implemented
version of the same time step.

At this point I would like to introduce rubber-duck debugging which is said to
be invented by Dennis Ritchie, the developer of the C programming language.
The story goes that he would keep a rubber duck at his desk and whenever
he was stuck, would describe the code in detail (what each statement did
and was supposed to do) to the rubber duck. Asking questions, and saying
thing out loud forces you to think about things in a slightly different manner.

When the code seems to reproduce the intended results it is time to start the
verification. This is where we make an error estimate and do some numerical
analysis. Making sure an implementation is correct is a lot harder than it
sounds, but there are a few points that should be fulfilled:

• Manufactured solution
As was described earlier, the source term of the equation can be used
to force almost any solution upon the equation.

• Stationary solution
This is a special type of manufactured solution. Using the source term,
and initial condition, the solution can be forced to be constant. If a
scheme reproduces a stationary solution it conserves energy, which is
very desirable.

Section 1 Debugging 63

• Exact numerical solution
Depending on the discretization, it should be possible to find an exact
solution to the discretized version of the PDE. An example of this is
found in chapter 3.3.3. The scheme is expected to reproduce this so-
lution to machine precision, but there are often several factors which
limit the accuracy. At the very least, the error should be significantly
smaller than the largest error term.

• Convergence test
It is often difficult to make convergence tests work properly, but they
are arguably the most powerful tests and therefore important to im-
plement. The principle is to verify that using a smaller discretization
parameter results in a smaller error, and that the error is reduced by
the expected amount.

There are probably more ways to make sure that a finite difference scheme
is working properly, but the ones listed will usually give a good implication.

A.1.4 Random Walk and Monte Carlo methods

While solving a PDE numerically, the intermediate calculations can be checked
and verified. Since Monte Carlo methods are based on random numbers, the
results of intermediate calculations will be random, making it impossible to
verify them completely. Instead, some statistical properties of the random
numbers can be verified. For example, using uniformly distributed random
numbers will give a certain mean and standard deviation, while a Gaus-
sian distribution will give another. The random number generator should be
tested in order to verify that these properties are reproduced to a reasonable
accuracy.

Random walkers have some additional properties which can be tested. Both
a one-dimensional and a two-dimensional random walk will fill all available
space, given infinitely many time steps. Letting 4-5 walkers jump around for
around 104 time steps, and plotting their paths should give an indication of
how well this property is reproduced.

Finally, it is very useful to specify a random seed. This will ensure that
the random number generator produces the same sequence of numbers each
simulation, which often makes testing easier.

64 Appendix Chapter A

A.1.5 The developed software

Since the developed software combines two solvers, it is of course very impor-
tant to make sure that each solver is working properly. This can be verified
by performing the tests mentioned earlier.

While implementing the hybrid solver, there were four main points which
either made the work easier, or would have made the work easier:

• Unit testing
This is a way to test a single unit of code, often a single function, and
verify that it does exactly what it should do.

• Version control
During implementation and testing, a lot of changes will be made to
the code. It is surprisingly difficult to remember all the changes, which
often means that functioning code will be lost. Using version control
software eliminates this problem. Version control software allows a de-
veloper to save snapshots of code with a comment, as well as some
more advanced options. This allows for tracking of progress, commit-
ting working code before changes are made, and much more. Should
some changes be made to a working piece of code, it can be reverted
to the last working version.

• Make independent modules
This applies to most code development. If the code is divided into in-
dependent modules, it is not only easier to test the code, it will also be
much easier to reuse the code.
As an example, the block tridiagonal solver has been implemented as a
separate module, which since then has been used by Torbjørn Sæland
in his masters thesis.

• Do not be nostalgic
Because you are now using version control, there is no need to comment
out sections of code in case it is needed later. This makes the rest of the
code less messy, and reduces the risk of forgetting to remove something.

A.1.6 Last resorts

If nothing else seems to work, I like to try these techniques in order to get a
fresh view on the problem.

Section 1 Debugging 65

First off all, doing some form of verification of intermediate steps by hand
is often very useful. If everything seems to be implemented correctly, but the
results are still wrong, it is time to really verify as much as possible. Try
verifying indexing, counting, etc.

Changing parameters is often useful. As a rule of thumb, it is unwise to
use “simple” parameter values, like zero or one, because values like these are
often special cases which give simple effects. Changing a constant from one
to a random value between zero and ten can often illustrate errors in parts of
the code which has already been tested. Similarly, any matrix calculations
done by hand should be done with matrices larger than 3 × 3. It is much
harder to recognize patterns in smaller matrices.

If neither of these work, try starting from scratch in a different program-
ming language (preferably an interpreted language). The slight difference in
syntax often reveals a lot of problems.

Finally, it often helps to get some distance from the problem. Work with
something else for a couple of days, and come back with a fresh, and more
critical view.

Bibliography

[1] Milton Abramowitz and Irene A Stegun. Handbook of mathematical
functions: with formulas, graphs, and mathematical tables. Courier Dover
Publications, 2012.

[2] Jon I Arellano et al. “Ultrastructure of dendritic spines: correlation be-
tween synaptic and spine morphologies”. In: Frontiers in neuroscience
1.1 (2007), p. 131.

[3] Mary L Boas. Mathematical Methods in the Physical Sciences. John
Wiley & Sons., Inc, 2006. Chap. 8.

[4] Madeleine L Craske et al. “Spines and neurite branches function as
geometric attractors that enhance protein kinase C action”. In: The
Journal of cell biology 7.170 (2005), pp. 1147–1158.

[5] L Farnell and WG Gibson. “Monte Carlo simulation of diffusion in a
spatially nonhomogeneous medium: A biased random walk on an asym-
metrical lattice”. In: Journal of Computational Physics 208.1 (2005),
pp. 253–265.

[6] EG Flekkøy, J Feder, and G Wagner. “Coupling particles and fields in
a diffusive hybrid model”. In: Physical Review E 64.6 (2001), p. 066302.

[7] Bruce Graham, Andrew Gillies, and David Willshaw. Principles of
computational modelling in neuroscience. Cambridge, 2011.

[8] Anders Hafreager. “Flow of dilute gasses in complex nanoporous me-
dia”. MA thesis. University of Oslo, 2014.

[9] George Marsaglia. “Xorshift RNGs”. In: Journal of Statistical Software
8.14 (2003), pp. 1–6.

[10] Sean T O’Connell and Peter A Thompson. “Molecular dynamics–continuum
hybrid computations: a tool for studying complex fluid flows”. In: Phys-
ical Review E 52.6 (1995), R5792.

67

68 Bibliography Chapter A

[11] Mathis Plapp and Alain Karma. “Multiscale finite-difference-diffusion-
Monte-Carlo method for simulating dendritic solidification”. In: Journal
of Computational Physics 165.2 (2000), pp. 592–619.

[12] Naoaki Saito and Yasuhito Shirai. “Protein kinase Cγ (PKCγ): function
of neuron specific isotype”. In: Journal of biochemistry 132.5 (2002),
pp. 683–687.

[13] James M Varah. “On the solution of block-tridiagonal systems arising
from certain finite-difference equations”. In: Mathematics of Computa-
tion 26.120 (1972), pp. 859–868.

[14] Patrick B Warren. “Dissipative particle dynamics”. In: Current opinion
in colloid & interface science 3.6 (1998), pp. 620–624.

	Introduction
	Outline

	Theory
	Random Walks
	An error estimate for a diffusion RW solver
	Random number generator

	Backward Euler schemes in two or more spatial dimensions
	Combining micro and macro scale models
	The algorithm
	Conversion between length scales
	Coupling the models through step length
	Boundary conditions for the random walk

	Potential problems
	Other possible coupling methods

	Analysis
	Computation of the error
	Verification techniques
	Testing the PDE solver
	Verification by manufactured solutions
	Verification by convergence tests
	Verification of FE scheme by exact numerical solution
	Verification of BE scheme by exact numerical solution

	Verification of the RW solver
	Verification of the hybrid solver

	Physical application
	Physical scope
	Implementation
	Parameters and details

	Results
	Results of verification
	The FE scheme
	The BE scheme and the block tridiagonal solver
	The RW solver
	The hybrid diffusion solver

	Results for physical application
	Using other particle dynamics

	Discussion and conclusion
	Discussion
	Application
	Possible extensions
	Other work on the topic

	Concluding remarks

	Appendix
	Debugging
	Compiler/syntax errors
	Segmentation faults
	Finite difference methods
	Random Walk and Monte Carlo methods
	The developed software
	Last resorts

