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Chapter 1

Introduction

In the ocean basins topography and coasts may act to trap mechanical energy. This energy may

be in the form of wind-driven currents along bottom contours or gravity waves along coasts or

sloping beaches. Since waves do posses mean momentum when averaged over the wave cycle,

i.e. the Stokes drift (Stokes, 1847), they induce a net transport of water particles in the same way

as the more traditional wind-driven currents. Since these currents are trapped in regions close

to the coast, or over bottom slopes in the coastal region, they may directly affect human activity

and the coastal population through their ability to transport biological material, pollutants and

sediments in suspension along the shore.

1.1 Thesis objectives

The first objective of the work presented in this thesis is to provide better understanding of

the topographic effect on current variability. This is done by exploring specific topics where the

effect of topography may alter the currents. In wind-induced current case, the dynamics of flows

with closed potential vorticity (PV) contours is examined. Topography generally distorts the

geostrophic currents. If the topography is steep enough, it dominates the stationary part of the

potential vorticity, even causing closed PV contours. Therefore, mean flow can be excited and

exist on the closed contours (without encountering with boundaries) by wind-forcing. At ocean

depths that are intersected by topography, currents steer around major topographic features. In

addition, particularly at high latitudes, where the ocean is weakly stratified (Isachsen et al.,
2003), geophysical flows tend to be vertically coherent (or barotropic) due to the rotation of

the Earth. As a result currents near the ocean surface align in roughly the same direction as

deep ocean currents, and consequently often follow contours of constant depth, e.g. see (Gille
et al., 2004). Most major currents respond to sea floor topography. In the present study, we

investigated to what degree this mechanism works for the Caspian Sea which is a low latitude

water body.

The second objective is to estimate the mean currents induced by trapped gravity waves. For

that purpose, we investigated the Lagrangian mass transport in two different types of the gravity

waves; the Stokes edge waves over sloping topography in a non-rotating and rotating ocean, and

the internal coastal Kelvin wave. In practice, these waves are trapped due to a sloping bottom

and the earth’s rotation. In particular, the Lagrangian mass transport is obtained from the ver-
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tically integrated equation of momentum and mass, correct to second order in wave steepness.

The Lagrangian current is composed of a non-linear Stokes drift (inherent in the waves) and

a mean vertically-averaged Eulerian current. When waves propagate along topography (along

the coast), the effect of viscosity leads to a wave attenuation, and hence a radiation stress com-

ponent. The Eulerian current arises as a balance between the radiation stress, bottom friction,

and the Coriolis force in a rotating ocean. The associated Stokes drift and Eulerian currents

are investigated for the aforementioned waves. Additionally, their contributions to the mean

Lagrangian drift are examined. We wish to explore how the contributions of the Stokes drift

and Eulerian current varies with factors such as slope angle, wave amplitude, wave length and

the earth’s rotation.

In order to address these objectives four papers are included in this thesis. Objective number

1 is treated in paper I (Ghaffari et al., 2013), objective number 2 in papers II (Weber and
Ghaffari, 2009), III (Ghaffari and Weber, 2014), and IV (Weber and Ghaffari, 2014).

The remaining part of this thesis is organized as follows: chapter 2 presents a brief theory,

and chapter 3 provides a description of the study area. Results are presented and discussed in

chapter 4. This is then followed by prints of the papers.



Chapter 2

Theory

This section provides a short theoretical background of the wind-induced current variability

on closed PV contours. Additionally, some theory and explanation of the concept of wave-

induced currents, i.e. Stokes drift and Eulerian current are given. The section also presents a

brief overview of the Stokes edge wave, the internal coastal Kelvin wave, and the associated

wave-induced drifts.

2.1 On current variability over closed PV contours

2.1.1 Barotropic model

Most major currents respond to sea floor topography. For instance, topography seems to steer

the Antarctic Circumpolar Current (ACC) on certain part of its path (Gordon et al., 1978).

Also Gulf Stream and the Kuroshio Extension all steer around ridges and seamounts. It is the

conservation of potential vorticity which confines a water parcel to the PV contours. Hence, the

conservation equation for PV provides an equally powerful and simple tool for discussion of the

mean oceanic circulation on climatic scales (time scale of several months, length scale of about

500 km (Hasselmann, 1982)). In fact, strong topography may dominate the stationary part of

the PV, even causing closed PV contours. The dynamics of the closed PV contours is different

from those with blocked contours. With closed contours it is possible to obtain steady flows

parallel to the PV contours. Such mean flow, which is not present with blocked contours, can be

excited by wind forcing (Hasselmann, 1982; Kamenkovich, 1962; Greenspan, 1990). The mass

transport, the depth integrated horizontal velocity, can be modeled using an integral equation

derived from shallow water equation. In the linear limit, the model assumes a balance between

divergence in the surface Ekman layer and convergence in the bottom Ekman layer; the latter is

achieved via a flow parallel to the PV contours (Fig. 2.1). The flow strength can be predicted, if

one knows the wind stress and topography.

The theory is described by Isachsen et al. (2003). Consider a homogeneous ocean with a

rigid lid and varying topography. Ignoring non-linearity and exploiting the Boussinesq approx-

imation, the depth-integrated, horizontal momentum equation takes the form

∂�u

∂t
+ fk × �u = −g∇η +

1

H

(
�τs
ρ0

− �τb

)
, (2.1)
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Figure 2.1: Schematic of barotropic model spin-up.

where u is horizontal velocity vector, f is the Coriolis parameter, η is the sea surface displace-

ment, τs is the wind stress and τb is the bottom stress. Note that horizontal (eddy) diffusion of

momentum is excluded. Taking the curl yields

∂

∂t
∇× �u+ J(ψ,

f

H
) = k · ∇ ×

(
�τs
ρ0H

− �τb
H

)
, (2.2)

where J is the Jacobian operator and ψ is the transport stream function

0∫
−H

(u, v) dz = (−ψx, ψy) . (2.3)

The dominant term in (2.2) is the second one and that the temporal variability, wind forcing

and bottom drag are comparably small. This implies that the first-order flow is parallel to the

f/H contours. Therefore, to the extent that oceanographic flows are barotropic, they should be

steered along f/H contours. Assuming a linear bottom drag in line with Ekman damping, so

that τb = R�u (R is the bottom friction coefficient), and integrating (2.2) over an area bounded

by an f/H contour yields

∂

∂t

∮
f/H

�u · dl = 1

ρ0H

∮
f/H

τs · dl − R

H

∮
f/H

�u · dl, (2.4)

after applying Stokes’ theorem. The fist term on the right hand side is the net Ekman transport

in or out of the surface layer and the last term is the net transport in the bottom layer. An

imbalance between them determines a circulation pattern around the closed contour. In order to

get better impression about the response of the flow to forcing, it is convenient to take a Fourier

transform in time, which gives

�U0 =

(
k

H
×∇ f

H

)
Re

⎡
⎣

∮
f/H ρ−1

0 H−1�τs · dl∮
f/H H−1 (r + iω)

(
∇ f

H
· �n

)
dl

⎤
⎦ , (2.5)
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where r = R/H is an inverse frictional damping time scale and n is the surface normal unit

vector. Therefore, the surface circulation depends on the bottom friction and the forcing fre-

quency. Additionally, the model can be used to study Sea Surface Hight (SSH) variabilities by

determining the difference in Sea Level Anomalies (SLA) between different f/H contours

∂η0
∂(f/H)

=

(
f

g

)
Re

⎡
⎣

∮
f/H ρ−1

0 H−1�τs · dl∮
f/H H−1 (r + iω)

(
∇ f

H
· �n

)
dl

⎤
⎦ . (2.6)

The velocities resulting from the barotropic model are parallel to the PV contours, and SSH

displacements and the geostrophic velocities are inversely proportional to the bottom friction

coefficient. For example, assume the wind stress has a single frequency, �τ = �τ0 cos(ωt). The

velocity is then ∮
f/H

�u · dl = �τ0
r2 + ω2

[r cos(ωt) + ω sin(ωt)] (2.7)

From this it is evident that

∮
f/H

�u · dl ∼ �τ0
ω

sin(ωt), r ≤ ω,
∮
f/H

�u · dl ∼ �τ0
r
cos(ωt), r ≥ ω.

At frequency much lower than r, the response is in phase with the wind and inversely propor-

tional to r. At high frequencies, the amplitude is independent of r and the response lags the

wind by π/2. Barotropic theory is often supported by observations. For example, floats in the

Atlantic and Pacific Oceans preferentially spread along f/H contours rather than across them,

indicating that flow responds to topography (LaCasce, 2000).

2.1.2 Equivalent Barotropic model

In practice, since the ocean is stratified, and velocities tend to be faster near the ocean surface

than at mid-depth (Fig. 2.2), flow does not literally follow contours of f/H . Gille et al. (2004)

used float data to examine whether Southern Ocean velocities could be assumed to be equiva-

lent barotropic (EB), meaning that velocities attenuate with depth, with a fixed e-folding scale

(Killworth, 1992). In such a flow field the mean velocity is close to self-similar in the vertical

direction, i.e., velocity at one depth is parallel and also proportional to the velocity at adjacent

depth (Krupitsky et al., 1996). An EB model considers the velocity structure as EB. The con-

ventional barotropic model is a particular case of the EB model. Such models widely known

in atmospheric sciences since the application to the numerical weather forecasting by Charney
and Eliassen (1949). Primarily similar approach was used to estimate the density distribution

in the ocean. Later on, such models have been studied in the context of the Southern Ocean

(Ivchenko et al., 1999; Krupitsky et al., 1996; LaCasce and Isachsen, 2010).

As it mentioned before, in an EB flow, the variables (e.g. velocity and pressure) vary with

depth, but the direction of flow does not. Thus, horizontal velocity vector and pressure can be

define in terms of surface velocity and pressure and a vertical structure function as

(p, �u)(x, y, z, t) = (ps, �us)(x, y, t)P (z), (2.8)

where �u, �us and p, ps are velocity and pressure and their corresponding surface values, respec-
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Figure 2.2: Schematic of equivalent barotropic model spin-up.

tively. P (z) = exp(z/h0) is a vertical structure function, where h0 is e-folding scale.

Assuming a linear bottom drag in line with Isachsen et al. (2003), yields �τb = R�u(−H) =

re�us, where R is the bottom friction coefficient, and re is modified drag coefficient. Noting that

the surface pressure is proportional to the sea surface height, η, and substituting these into linear

depth-integrated horizontal momentum equation and taking curl yields the equivalent barotropic

potential vorticity equation

∂

∂t
∇× �us + J

(
ψ,

f

F

)
= ∇× �τs

ρ0F
−∇× re�us

F
, (2.9)

where ψ is transport streamfunction and Jacobian term J(ψ, f/F ) = F�us · ∇(f/F ) is the

advection of PV by flow. Under this assumption, (2.9) is dominated by the advection term, i.e.

J(ψ, f/F ) = 0. Therefore, flow is predicted to follow contours of f/F , i.e. the geostrophic

contours in the EB model, where F = h0 [1− exp(−H/h0)] (e.g. (Marshall, 1995; Krupitsky
et al., 1996; LaCasce and Isachsen, 2010)). Baroclinicity of the velocity structure determines

e-folding scale. For small e-folding scales, i.e. for h0 ≤ H , F is approximately constant and the

PV gradient is dominated by planetary β. In the limit where the e-folding scale, h0, is infinite,

this is equivalent to assuming that flow follows f/H contours, and the barotropic model is

recovered.

The flow response to forcing can be better understood by invoking the continuity equation

and eliminating the advection term by integrating (2.9) over a closed f/F contour.Taking a

Fourier transform in time yields

∮
f/F

(
iω +

re
F

)
�̃us · dl =

∮
f/F

�̃τ s
ρ0F

· dl, (2.10)

where [�τs, �us] (x, y, t) =
∑

ω

[
�̃τ s, �̃us

]
(x, y, ω) exp(iωt). An inbalance between the net diverg-

ing or converging Ekman transport, i.e. RHS term in (2.10), and the net transport in the bottom

layer, i.e. the second term on the LHS in (2.10), results in a change in the circulation around

closed PV contour. Here the surface circulation depends on the modified bottom friction co-
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efficient, the forcing frequency, and modified depth, F . At low frequencies (ω � re/F ), the

circulation is in phase with the forcing. At very high frequencies, the circulation lags the wind

by π/2, and is independent of the friction. The EB model flow senses less topographic control

than a barotropic one. The lowest-order velocity at everywhere on the closed PV contour and

SLA can be determined from (2.10).

2.2 Wave-induced flow

A net particle drift may occur for all cases of progressive wave motion (e.g. water waves, tides

and atmospheric waves). Stokes (1846) derived expressions for water wave drift in an inviscid

fluid. This nonlinear phenomenon extended to viscous fluids by Longuet-Higgins (1953). When

we consider linear waves, the particles move in closed circles in deep water. But, without

linearization, the individual fluid particles have a net drift in the direction of wave propagation.

In reality, the path of the fluid particles under progressive waves has a nearly closed shape. But,

the velocity of the fluid particles is slightly larger near the surface, than deeper down. Hence,

averaging the particles trajectory over a predefined amount of time, i.e. one wave period, yields

a small displacement of the particle in the direction of the wave propagation, i.e. the Stokes

drift (Fig. 2.3).

Direction of wave propagation

Stokes drift

Figure 2.3: Sketch of nonlinear motion of a fluid particle due to propagating wave.

The Stokes drift is important for understanding the fundamentals in surface ocean dynam-

ics and mixing. In particular, it plays an essential role in the oceanic Langmuir circulation

(McWilliams et al., 1997). Concerning its applications, adding an accurate assessment of the

Stokes drift in ocean model systems is of utmost importance in mapping out surface dynamics,

and increases the predictability of surface currents (Röhrs et al., 2012). Furthermore, Stokes

drift should be considered as an important factor in coastal process studies, especially in the

area of sediment transport, see e.g. (Longuet-Higgins, 1953; Nielsen, 1992; Vittori and Blon-
deaux, 1996; Blondeaux et al., 2002, 2012).

Consider a fluid particle initially located at �ro = (x0, y0, z0) at time t = t0, shifting to

�rL = �r0+D�r at a later time t. The expression D�r =
∫ t
t0
�vL(�r0, t

′
)dt

′
determines the fluid particle

displacement in the time interval t− t0, where �vL is Lagrangian velocity. The net displacement

of the particles under wave influence can be obtained from the Lagrangian velocity. With regard

to Eulerian specification, the relation between Lagrangian and Eulerian velocities is

�vL(�r0, t) = �vE(�rL, t) = �vE(�r0 +D�r, t). (2.11)
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Hence, from a Taylor series expansion we obtain

�vL(�r0, t) = �vE(�r0, t) +D�r · ∇L�vE + (H.O.). (2.12)

The first term on the RHS is traditional Eulerian velocity, while the second term is the Stokes

drift (�vS). The ratio of the second term of (2.12) to the first term is of the order of the wave

steepness (ε = kA). Under the hypothesis of small wave steepness, the difference between

�vL and �vE is negligible in the second term. Thus, the mean Lagrangian velocity correct to the

second order wave steepness is given by

�̄vL = �̄vE + �̄vS, (2.13)

where D�r =
∫ t
t0
�vE(�r0, t

′
)dt

′
, and the balance to the second order is obtained by averaging (2.12)

over a wave period, denoted by an over-bar. Hence, the Lagrangian mean current is composed

of Stokes drift plus a mean Eulerian current. While the former is inherent in the wave itself,

the later depends on friction. Since the Stokes drift arises from the average of the wave motion

along a Lagrangian trajectory, it is relevant for all floating and suspended particles present in

the water column, and not only for fluid particles considered in the original derivation. This

drift is basically related to the net particle motion in inviscid waves, and there is no Stokes drift

in the cross-wave direction.

2.3 On the Stokes edge wave

Before we commence on this task, it would be appropriate to indicate why an understanding

of this phenomenon, and the mechanisms that can bring it about, are important. Although,

from Stokes’ time to at least the later editions of Lamb’s text on hydrodynamics it was gen-

erally thought that the edge waves were a mathematical curiosity, this is no longer the case.

Apparently, many near-shore processes are controlled (or significantly affected) by the pres-

ence of edge waves (LeBlond and Mysak, 1978). Thus, edge waves play an important role in

the dynamics of the coastal zone, beach erosion processes, and energy and momentum transfer

(Ghaffari and Weber, 2014; Weber and Ghaffari, 2009; Weber and Støylen, 2011). Standing

edge waves, in particular, is likely to have an observable effect on beach erosion and, perhaps,

on the formation of sand bars close inshore. Edge waves are often considered as the major factor

of the long-term evolution of the irregular coastal line, forming rhythmic crecentic bars (Bowen
and Inman, 1971; Kurkin and Pelinovsky, 2003). These, and other more practical aspects, are

described in Howd et al. (1992) and in the many papers cited therein. Our main concern in this

study is the Stokes edge wave (Stokes, 1846) and the associated mass transport, which is the first

mode in the spectrum of the shelf mode that contains both discrete and continuous parts, e.g. see

(Eckart, 1951; Ursell, 1952; Reid, 1958). The essential features of this solution are described

in Lamb (1932), although it was Ursell (1952) which gave the first complete description of the

linear problem (being a mixture of continuous and discrete spectra). Several mechanisms for

edge wave generation are possible in nature; Direct wind stress, passing atmospheric fronts, and

tsunamis can generate large-scale; nonlinear interaction of wave groups and subharmonic res-

onance may trigger medium and small-scale edge waves, e.g. see (Ghaffari and Weber, 2014;
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Weber and Ghaffari, 2009). Other mechanisms for the generation of edge waves are described

by Evans (1989).

2.3.1 Mass transport in the Stokes edge wave in a rotating ocean

In earlier studies mass transport associated to edge waves has been investigated in the viscous

laminar bottom boundary layer (Dore, 1975; Mok and Yeh, 1999). In practice, bottom boundary

layers are turbulent and an additional mean interior Eulerian current is generated by frictional

effect at the bottom. In this section we focus on the mass transport induced by the Stokes edge

waves in a turbulent ocean.

We consider trapped surface gravity waves in a homogeneous rotating ocean (f > 0), with a

linearly sloping bottom. The motion is described in Cartesian coordinate system, where x-axis

is situated at undisturbed surface and directed into the semi-infinite ocean, y-axis is directed

along coastline. The bottom is given by z = −h = −x tan β, where β (≤ π/2) is the slope

angle, and free surface by z = η. Mean horizontal volume fluxes are defined as depth integrated

x

y

z

z=-h(x)

h=x tan β

β
0

Figure 2.4: Sketch depicting the coordinate system, with the surface and sloping bottom in-

cluded; y-axis is the along-shore coordinate and the seawards direction is x → ∞.

velocities

Ū =

η∫
−h

udz, V̄ =

η∫
−h

vdz. (2.14)

Since the velocities are integrated between material surfaces, they are actually the Lagrangian

fluxes (Phillips, 1966; Weber et al., 2006). Integrating the governing equations in the vertical

between material surfaces, and utilizing full nonlinear boundary conditions, we obtain the mean
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wave induced drift correct to second order in wave steepness (Phillips, 1966)

∂Ū

∂t
− fV̄ + gh

∂η̄

∂x
= − ∂

∂x

0∫
−h

p̄d
ρ
dz − g

2

∂

∂x
η̃2+

p̄d(−h)

ρ
tan β − ∂

∂x

0∫
−h

ũũ dz − ∂

∂y

0∫
−h

ũṽ dz − τ1

∂V̄

∂t
+ fŪ + gh

∂η̄

∂y
= − ∂

∂y

0∫
−h

p̄d
ρ
dz (2.15)

−g

2

∂

∂y
η̃2 − ∂

∂x

0∫
−h

ũṽ dz − ∂

∂y

0∫
−h

ṽṽ dz − τ2,

∂η̄

∂t
= −∂Ū

∂x
− ∂V̄

∂y
,

where, g is the gravitational acceleration, tilde represents wave quantities, and p̄d is the non-

hydrostatic (dynamic) pressure. Here, τ1 and τ2 are the mean turbulent bottom stress com-

ponents per unit density in x and y-axis direction, respectively. The mean bottom pressure

term in the x-momentum, i.e. p̄d(−h) tan β/ρ, was missing from Phillips’ derivation; see Mei
(1973); Ghaffari and Weber (2014); Weber and Ghaffari (2009). Above equations set contains

non-linear wave forcing terms. The wave-induced mass transport which is calculated indeed is

Lagrangian transport; Stokes drift plus Eulerian mean current arise by friction. We separate the

effect of friction on the wave motion and the mean flow. In this problem the oscillatory wave

motion is influenced by viscosity acting in thin surface and bottom boundary layers. Within

the top and bottom boundary layers the wave velocity varies rapidly with height, while in the

interior part the variation is that of inviscid waves.

In this analysis we assume that the boundary layers thickness (δ) are quite thin, i.e. δ < h,

hence, its contribution in wave velocity is negligible. Therefore, for the linear wave we impose

a no-slip, no surface stress condition and only the inviscid part of the solution with a damped

amplitude is used. The damping rate is determined by bottom boundary layer in shallow-water

with a no-slip bottom. While, in deep water the corresponding damping rate is proportional to

the square of the wave number. Hence, for a given wavelength, the Stokes edge wave at certain

distance from the coast may be characterized as a shallow-water or a deep-water wave for small

and large slope angles, respectively. We have resorted an averaging procedure for determining

the damping rate using the total mean energy and mean dissipation in the trapped zone, for all

admissible slope angles.

The linearized equations for the damped interior wave motion by adopting the aforemen-

tioned approach become

�̃u = −fk̂ × �̃u− 1

ρ
∇p− gk̂ − r�̃u, ∇ · �̃u = 0, (2.16)

where k̂ is unit vector in z-direction. The resulting linearized surface wave, which is trapped
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and may travel in both direction along the coast, is

η̃ = η0 exp (q) cos (θ) , (2.17)

where η0 is arbitrary constant, q = −arx − αy + brz is the exponential decay, and θ =

−aix + ky + biz − ωt is the phase function. Additionally, a = ar + iai and b = br + ibi
are complex parameters. In that connection, it can be readily seen that trapping at the coast

requires ar > 0. In this calculation ar has two roots, i.e. ar+ and ar−. In order to have trapped

wave propagating in positive and negative along-shore directions, we must exclude the ar− so-

lution. In this analysis we take that the frequency ω is real, while the wave number is complex,

i.e. we consider spatial damping waves. Hence,

κ = k + iα, (2.18)

where α is the spatial damping rate in along-shore direction. The effect of the friction is atten-

uating the real part of the wave velocity components show that the wave motion in the Stokes

edge wave occurs in planes parallel to the sloping bottom.

Following Longuet-Higgins (1953), the along-shore Stokes flux to the second order in wave

steepness can be easily obtained from linear wave solution by integrating Stokes drift in vertical

between material surfaces. However, in vertical limit (β = π/2) the problem should be treated

with some care. In this case, trapping requires ω < 0, and the resulting motion is coastal Kelvin

wave propagating with the coast, i.e. the vertical wall, to the right (f > 0). In this limit the

Stokes flux must be obtained by integrating the Stokes drift in vertical from minus infinity to

zero. As discussed in section 2.2, the Stokes drift is related to the net particle motion in inviscid

waves. Therefore, there is no Stokes drift in cross-wave direction. However, the presence of

friction in the fluid introduce a small drift in the cross wave propagating direction, which is

inseparable from Eulerian current. Hence, we take the Stokes flux in x-direction is zero, and

only the along-shore Stokes flux contributes in total wave momentum (Mw), in the trapped

zone. By comparing with total energy density in the trapped zone, we note that E = Mwc
∗,

where c∗ = ω/k − (f cos β) /(2k).

The mean wave-induced Lagrangian fluxes are obtained by integrating the momentum equa-

tion in vertical between material surfaces (2.15). The mean motion in cross-shore direction is

quite small, and we neglect the effect of friction in this direction. But, the friction term in

the along-shore direction must be modeled. It is almost common to use a bottom stress pro-

portional to the square of the mean velocity (Weber and Ghaffari, 2009; Weber and Støylen,

2011). Defining and using a friction coefficient that is proportional to characteristic velocity;

see Nøst (1994), not only provides identical effect, but also makes bottom friction linear in

terms of the mean velocity. The present approach separates the decay of wave momentum from

the frictional influence on the mean flow (Jenkins, 1989; Weber and Melsom, 1993; Ardhuin
and Jenkins, 2006). As the cross-shore Stokes flux is zero in this problem, following Phillips
(1966) the mean Eulerian volume flux in this problem can be written

ŪE = ŪL, V̄E = V̄L − V̄S, (2.19)

where subscripts L, E, and S denote the Lagrangian, the Eulerian and the Stokes fluxes, re-
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spectively. Utilizing 2.19, the steady state governing momentum equations 2.15 then reduce

to

x
∂2τ2
∂x2

− 2αfV̄E = 2α

(
fV̄S − ∂S

∂x

)
, (2.20)

where S is the total wave-forcing stress component (Ghaffari and Weber, 2014). We introduce

a non-dimensional Eulerian velocity QE and the non-dimensional Stokes drift velocity QS .

Eventually, the vertically-averaged non-dimensional Lagrangian drift velocity QL becomes

QL = QE +QS (2.21)

The non-dimensional form of 2.20 indicates that for the damped Stokes edge wave that prop-

agate in with the coast to the left in the northern hemisphere, both induced Stokes drift and

fractionally induced Eulerian current are trapped over the slope. On the other hand, for the

damped Stokes edge wave propagating with the coast to the right, the induced Stokes drift is

trapped over the slope, but the Eulerian current is not trapped. Solutions of the non-dimensional

form of (2.20) attained using exponential integrals and numerical evaluation.

2.3.2 Mass transport in the Stokes edge wave in a non-rotating ocean

In this study we look at the Stokes edge waves in a non-rotating ocean. Therefore, the terms

corresponded to the Coriolis force are disregarded from the momentum equation. We apply

an analysis similar to that of rotating ocean. We consider trapped surface gravity waves in a

homogeneous incompressible fluid with linearly sloping bottom. The motion is described in a

Cartesian system, with similar configuration as section 2.3.1. We investigate the nonlinear mass

transport by applying an Eulerian description of motion, and expanding the solution in series

after wave steepness as small parameter. An analytical expression for the vertically-averaged

Lagrangian drift velocity is derived by integrating the governing equations in the vertical be-

tween material surfaces. Utilizing the full nonlinear boundary conditions at the free surface and

the sloping bottom, we obtain the mean quantities correct to second order in wave steepness.

This drift is composed of Stokes drift plus Eulerian drift arises from the effect of friction. Here,

the effect of friction on the wave motion and the mean flow should be separated. In general; for

deep water waves, viscosity will affect the motion in the bulk of fluid, while for shallow water

the viscous boundary layer at the bottom will dominate. In both cases the potential part of the

wave field will attenuate exponentially in time. We can obtain the potential part of the wave

field by using a friction that is linear in the wave velocity, e.i. −r�̃u, where constant friction

coefficient r depends on viscosity. We can apply the potential theory of Stokes (1846), since

this friction does not introduce vorticity into the fluid. Therefore, we can write the linearized

complex velocity potential for the spatially damped Stokes edge wave in non-rotating ocean as

φ̃ = − iη0ω

k sin β
exp (−kx cos β − kz sin β − αy + i (ky − αx cos β + αz sin β − ωt)) , (2.22)

where η0 is wave amplitude, ω is wave frequency. Due to friction, the wave number κ in

y-direction is complex, i.e. κ = k + iα, where α is the small spatial attenuation coefficient.

Introducing the velocity potential makes the problem quite easy to obtain analytical expressions.
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Following Longuet-Higgins (1953), the Stokes drift to second order in wave steepness for this

problem is easily obtained from the linear wave solution.

In order to evaluate the steady mass transport, the turbulent bottom stresses are modeled as

to be proportional to the square of the mean Eulerian flux V̄E . The bottom friction is neglected

in the direction normal to the wave propagating direction, as the velocities are small. Therefore,

turbulent bottom stress in along-shore direction can be written as

τ̄

ρ
=

cD|V̄E|V̄E

h2
, (2.23)

where cD is a bottom drag coefficient, ρ is density, and h is local depth. The friction induced

along-shore mean Eulerian volume flux becomes

V̄E = V̄L − V̄S, (2.24)

where the mean Lagrangian flux, V̄L, is derived by integrating the governing equations in the

vertical between material surfaces, and the Stokes flux is readily obtained from linear wave

field. Furthermore, it is easy to show that |ŪE/V̄E| = O(α/k), which justifies the neglect of the

cross-shore velocity in the bottom drag. We realize that this problem is the special case of the

Stokes edge waves in the rotating ocean. By excluding the Coriolis parameter (f = 0), from the

expressions, all quantities in the rotating case simply recover the non-rotating case quantities;

see Ghaffari and Weber (2014).

2.4 On internal waves

In general, gravity waves can form at the interface between fluids of different densities or in

fluids with a continuous (stable) stratification. Most bodies of water at mid and lower latitudes

have a pronounced vertical stratification. Internal waves can be triggered in a variety of ways,

e.g. by the action of moving weather fronts, tides, wind stress, boats, currents moving over

topography. Since the density difference between different layers in a stratified fluid is quite

small, internal waves appear with longer periods, and larger amplitudes when compared to sur-

face gravity waves. Internal waves are ubiquitous in the interior of the oceans and have been the

focus of much attention in recent years due to their role in oceanic mixing and mass transport.

Nonlinear effects associated with internal waves include the transport of water along with sus-

pended mass such as sediment, nutrients, larvae, as well as contaminants. The details of such

effects are crucial to the understanding of a wide array of physical situations where transport by

internal waves is inherent. Leichter et al. (1996) showed that internal tides play an important

role in relocating of larvae and other organisms to the near shore, and have remarkable influ-

ence in the development of the benthic communities. Additionally, they showed that the spatial

distribution of plankton and consequently nutrient dispersal in coastal regions are strongly in-

fluenced by high frequency internal waves. Internal waves can be of particular interest in terms

of the transport of contaminants at beaches (Boehm et al., 2002a,b).
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2.4.1 Mass transport in internal coastal Kelvin waves

In small bodies of water with negligible tidal forcing, internal waves appear to be triggered

by temporal/spatial variation of the wind field. A stable stratified configuration along with a

straight coastline, makes that coastal region to act as a waveguide for internal Kelvin waves.

It is common to use a reduced-gravity model, which consider two layers of constant density,

e.i. the upper thin and active, and the lower deep and quiescent layer, in such configurations.

We will not use the reduce gravity model, as it filters out the higher baroclinic modes, and

provides an erroneous results for the Stokes drift. The main focus of the present study is the

main drift induced by internal coastal Kelvin waves. That drift may have influence on relocating

bio-materials, suspended loads, pollutants, and also may be contribute in general circulations of

the water bodies in question. We consider a stratified ocean of constant depth H , and Cartesian

coordinate system, where the x-axis is directed in along-shore, and y-axis directed cross-shore.

By using an Eulerian description of motion, and exploiting the hydrostatic approximation and

Bottom (constant depth = H) 

x

z

2ξ

Figure 2.5: Sketch depicting the coordinate system, with constant bottom included; x-axis is

the along-shore coordinate and the seawards direction is y → ∞.

Boussinesq approximation of density ρ, the governing equations become

∂�vh
∂t

+ �v · ∇�vh = −f�k × �vh − 1

ρr
∇hp+

∂

∂z

[
�τh
ρr

]
,

∂p

∂z
= −ρg,

∂ρ

∂t
+ �v · ∇ρ = 0, (2.25)

∇ · �v = 0,

where, �u is the velocity vector, p is pressure, f > 0 is the Coriolis parameter, �τh is the horizon-

tal turbulent stress, and ρr is a constant density. We take there is no friction from atmosphere.

The mean horizontal Lagrangian transport (ŪL, V̄L), correct to second order in wave steepness,

is obtained by integrating the governing equation in vertical between the bottom and the mov-

ing surface. Mean horizontal volume fluxes are defined as (2.14). As discussed in previous

sections, the mean horizontal Lagrangian flux is Stokes flux plus mean Eulerian flux (Phillips,

1966). We consider trapped internal Kelvin waves, which is generated by small perturbations
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of stratification from its state of rest, traveling in along-shore direction. Introducing the ver-

tical displacement of the isopycnals from their original position and Brunt-Väisälä frequency

N2 = −gdρ0(z)/(ρrdz), the linearized equations for internal Kevin waves is obtained from

(2.25). The variables may be separated into normal modes (Lighthill, 1969; Gill and Clarke,

1974). By inserting pressure normal modes into linearized momentum equation in z-direction,

it is easy to show that the eigenfunctions φn are solutions of

φ
′′
n(z) +

N2

c2n
φn(z) = 0, (2.26)

where, cn is the constant eigenvalue. Assuming a rigid lid at the surface, i.e. φn = 0, at

z = −H, 0, that eigenfunctions φ
′
n, constitute an orthogonal set for arbitrary Brunt-Väisälä

frequencies. Utilizing the orthogonality condition and modeling the friction by a turbulent

coefficient of momentum νT (Williams and Gibson, 1974), we find the governing equations for

mode n, where the along-shore linear wave velocities and wave amplitudes must be vanished as

y → ∞. The resulting linear internal coastal Kelvin wave motion for mode n becomes

ξ̄ =
∞∑
n=1

ξn(x, y, t)φn(z). (2.27)

Here

ξn = ξ0n exp(−αnx− a−1
n y) cos(knx+ lny − ωt), (2.28)

where, αn and kn are spatial decay rate and wave number in along-shore direction, respectively.

Furthermore, an and ln are the internal Rossby radius and the friction-induced wave number in

the y-direction, respectively. We note that the co-phase lines are slanted backwards for spatially

damped coastal Kelvin waves. It is shown that the associated Stokes volume flux for internal

coastal Kelvin waves is zero. Therefore, in this problem, the mean Eulerian volume flux is

determined entirely by mean Lagrangian flux:

ŪL = ŪE, V̄L = V̄E. (2.29)

Hence, the mean Eulerian velocities can be determined to second order in wave steepness from

(2.25).
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Observations

3.1 The Caspian Sea

The Caspian Sea (CS) is the largest inland water body of the world with a surface area of

379000 km2, a drainage area of approximately 3.5 million km2, and a volume of 78000 km2

(Ghaffari and Chegini, 2010; Zaker et al., 2007, 2011). This lake is located at northern hemi-

sphere between latitudes of 36◦ and 45◦. Conventionally southern, central and northern basins

are distinguished. The Southern and the central basins of the CS have maximum water depths

of 1025 and 788m, respectively. These basins are separated by a sill with a maximum depth of

about 170m and the northern basin with maximum depth about 20m is a very thin extension of

the central basin. The f/H contours in the Caspian Sea are indeed closed in both the central

and southern basins (Fig. 3.1).

The vertical structure and evolution of the density field is a function of both salinity and

temperature. Salinity in the CS is relatively constant with depth, and the density gradient can be

to a first approximation considered proportional only to the temperature gradient. In the south-

ern basin, the surface densities are significantly weaker, producing larger near-surface gradients

(Ghaffari et al., 2010, 2013). The process of hydrological fields transformation, redistribution

of biogenic and pollutant substances depends significantly on horizontal circulation of the CS,

which for different reasons have not been studied enough (Ghaffari and Chegini, 2010). Main

circulations in the CS consist of cyclonic eddies (Terziev et al., 1992) and meso-scale eddy fea-

tures which have seasonal evolution (Trukhchev et al., 1995). Due to lake of tide, the CS cur-

rents are considered to be mainly wind-generated. Wind and traveling weather fronts transfer

momentum directly as wind driven currents and indirectly by triggering different sort of sur-

face and internal waves. For instance, the periodic occurrence of rip currents and formation of

cusp-type beach, which are indications of edge waves on natural shorelines (Bowen and Inman,

1969, 1971), were stated by Sonu et al. (1969) in the CS . Furthermore, pronounced vertical

stratification in the southern basin (Ghaffari et al., 2010) along with straight coast, make that

coastal region favorable for internal wave generation and propagation. Other types of currents,

e.g. baroclinic currents and seiches also play important roles in local circulation patterns (Sur
et al., 2000). Over the central and southern basins of the CS, the main features of circulation

are a cyclonic (Ghaffari and Chegini, 2010). Although various field measurements were carried

out in the northern and the central basins of the CS (Bondarenko, 1993, 1994; Kosarev, 1975),
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but only a few number of measurements in order to investigate the coastal flow field have been

accomplished in the southern basin direct (Ghaffari and Chegini, 2010; Ghaffari et al., 2010,

2013; Zaker et al., 2007, 2011).

3.2 Field measurements

3.2.1 Study area

The study area is located in the southwestern part of the CS (Fig. 3.1). The depth decreases

gently from the coast to approximately −50m near the shelf break in almost 10 km, after that it

sharply decreases to ∼ 800m in 25 km. According to the bathymetric features, the continental

shelf spreads from the coast up to about 10 km seaward with mild declination, which ensues by

a drastic depression (the continental shelf break) extends to 20 km seaward and hits its lowest

point at 600m (Fig. 3.1). The continental rise commences from this point and goes down with

a relatively mild slope with respect to the continental shelf break toward the abyssal plain .

The continental shelf in the southern coastal areas is fairly narrow and topographic contours are

parallel to the coastline (Ghaffari et al., 2010; Ghaffari and Chegini, 2010; Zaker et al., 2007).

3.2.2 Satellite observations

Satellite observations (from January 1992 to December 2011, available at www.aviso.com) are

utilized to study the basin-scale spatial and temporal variations of Sea Level Anomaly (SLA)

in the CS. We use empirical orthogonal function (EOF) analysis to extract coherent variations

that are dominant, i.e. possible spatial modes of variability and how they change with time.

Utilizing that procedure, the spatial-temporal anomalies of the dataset is decomposed into its

leading patterns. In fact, by computing the eigenvalues and eigenvectors of a spatially weighted

anomaly covariance matrix of a field, the leading patterns in both time (Principal Component,

PC) and space (EOF) are determined.

The leading orthogonal function (EOF1) is remarkably similar to the f/H field in the cen-

tral basin. However, in the southern basin the the response is less clear. The first principal

component (PC1), the time series associated with EOF1, accounting for 92% of the total vari-

ance in the SLA field. The remaining higher EOFs account for only 8% of the variance, which

are less likely to be effective in dynamical posses of the basins (Fig. 3.2). As may one can

expect, the northern shallow extension of the CS display entirely separate pattern mostly under

the influence of the Volga River runoff.

3.2.3 Current meter observations

Three moorings were deployed in a line perpendicular to the coastline from November 2004

to early May 2005, in order to record the flow field over the south-western shelf of the CS .

The moorings were located over the 20m, 50m and 230m isobaths at [37.505 ◦N; 49.865◦E],

[37.531◦N; 49.866◦E], [37.553◦N; 49.864◦E], respectively. Recording Current Meters (RCM 9)

were installed near the surface, mid-depth (for the 230m mooring), and near the bottom, aiming

to provide current profiles throughout the water column. In order to capture fine details of the
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Figure 3.2: EOF analysis of SLA for the CS over f/H contours. Leading (right) and second

(left) EOFs, which accounts for 92% and 3% of total variance in the field, respectively.

flow field, the sampling frequency was originally set to 3 cph. However, the analysis presented

here is based on daily averaged time series. Furthermore, the currents were decomposed into

along-shore and cross-shore components based on their principal axes. Figure 3.3 shows the

along-shore daily averaged current time series for the three moorings. The first two moorings,

located on the continental shelf, demonstrate barotropic behavior of the flow field. In the third

mooring, strong temporal variations in the flow field corresponding to low frequency motions

were captured by all the current meters. However, relatively high frequency signals are not well

captured by the lower current meter. The latter instrument was located far below the seasonal

thermocline layer. But, estimates of the squared coherences among the current time series of

this mooring at various timescales, show high correspondence at periods longer than several

days. Therefore, the low frequency fluctuations have appreciable vertical coherence. We use

this mooring for further analysis, as it provides a better perspective of the velocity structure in

the basin interior.

Our analysis show that the depth averaged velocity accounts for ∼ 85% of the total velocity

variance in the study area. Additionally, variance ellipses are formed in order to study the to-

pographic influence on the velocity field. The current ellipses at all depths are anisotropic, and

the principal axes of the variabilities are closely aligned with ambient topographic contours in

all three moorings. This implies the tendency of the flow to be steered along the topographic

contours in the study area. This results are consistent with previous studies which showed

the alignment of current ellipses with topographic contours, and almost barotropic (equiva-

lent barotropic) behavior of the flow field in the eastern part of the southern CS (Ghaffari and
Chegini, 2010; Zaker et al., 2011).

3.2.4 Hydrographic observations

A total of 13 CTD-profiles along a transect extending from the coast towards the offshore region,

as shown in Fig. 3.1, were carried out in the early winter and summer of 2008. The stations
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were selected based on the bathymetric contours in approximately 3 km intervals to cover some

specific depths along the study area. The first station located at [37◦29.185′ N; 49◦27.959′ E]

and the last one located at [37◦44.121′ N; 49◦40.470′ E], which hits its lowest point at ∼ 750m

depth. According to the bathymetric features, the profiled stations well covered the deepest

parts of the south-western waters and could be representative for deep water characteristics in

this region. Figure 3.4 shows potential density and temperature structures in the study area based

on snapshot hydrographic observation. It reveals strong seasonal thermocline located at ∼ 30m

depth, which is typical seasonal thermocline depth in summer for almost whole basin (Ghaffari
et al., 2013). Contrary to the strong summer thermocline in southern part of the CS, the water

body in the cold phase over the continental shelf break is partially ventilated. Owing to the cold

phase erosion, the seasonal thermocline inevitably sinks down to the deeper layers and is located

between 80 to 100m depth, where the water mass is still stratified. As it mentioned before, due

to insignificant vertical salinity variation in the CS, temperature structure largely determines the

density stratification. Therefore, density stratification is weaker but does not vanish in winter

(Terziev et al., 1992; Kosarev, 1975; Ghaffari et al., 2010). These observation suggest that the

vertical stratification may be important in the study area. Therefore, an equivalent barotropic

description of currents seems appropriate. Taking into account the near barotropic structure

of the velocity field and presence of a permanent stratification in the southern basin, one can

expect that a simplified EB model of wind-driven variability be applicable in this region.

The permanent and profound stratification along with a straight coastline, makes the south-

ern coastal region of the CS an ideal environment for internal Kelvin waves. In general, our

understanding of wind-generated surface waves are considerably developed due to the exchange

between proper argued theories and careful and extensive observation. However, internal waves

studies are lacking in similar prolific interchange not because of the complexity of the problem,
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for cold (upper) and warm (lower) phases in 2008 (Ghaffari et al., 2010).

but due to difficulty of making significant measurements. Variations in water temperature and

salinity at a fixed point depth have often been attributed to internal waves (Phillips, 1966). In

order to investigate internal waves in the study area, the third mooring was equipped by thermis-

tor chains. Figure 3.5 shows vertical profile of temperature time series from surface to 120m
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Figure 3.5: Time series of isotherm fluctuations in the south-western part of the CS.

depth. The fluctuation with a period of about 5 days can be considered as indication of internal

Kelvin waves. Although little is known about the distribution of the energy among the differ-

ent internal waves mode, in fairly sharp thermocline the gravest mode may dominate (Phillips,

1966). In view of the considerably sharp thermocline in the CS, one may attribute the vertical

amplitude of the fluctuations ∼ 40m to a first mode internal wave.

In summary, the CS with its bottom contours, sloping beaches and stratification appears to

exhibit, or be capable of exhibiting the wind and wave-driven current phenomena discussed in

this thesis.



Chapter 4

Results

In the previous chapters, we provided an explanation of why and how our research for each

thesis objective was conducted. The results of the research will be addressed briefly in this

chapter, and a short discussion of the results will follow. The detailed investigation of each

objective and its results are mainly presented in the individual papers.

4.1 Topographic Effects on the Large-scale Flow Field in the
Caspian Sea

The barotropic and EB models which are described in chapter 2 are relevant in regions where

PV contours are closed. Such models have been used before to investigating wind-driven vari-

ability (Isachsen et al., 2003; Hasselmann, 1982; Killworth, 1992; Krupitsky et al., 1996; Ka-
menkovich, 1962). In this model, the primary component of the flow is parallel to the PV

contours. The flow is forced by wind-driven Ekman divergence at the surface and balanced by

frictional Ekman convergence at the bottom. As shown in the Fig. 3.1, the PV contours are

indeed closed in both the central and southern basins of the CS, and some of them cover both

basins. Satellite observation of SSH (Fig. 3.2) show that variability is localized in the basins;

this is particularly true in the central basin. Isachsen et al. (2003) found that SSH variability was

similarly localized in the gyres of the Nordic Seas, and there the f/H model successfully cap-

tured a large fraction of the observed variability. Furthermore, in-situ velocity field observations

show that the principal axes of the variabilities are closely aligned with ambient PV contours

in all three moorings. Therefore, the tendency of the flow to be steered along the topographic

contours in the study area, is evident. Despite to the Ekman flux in the surface layer, the flow

varies in correspond with the topographic variations, which supports the idea of investigating

the role of the topography in controlling the barotropic flow in the CS. In the following, the

barotropic linear model will be tested in these basins.

For the atmospheric forcing, we utilized almost 20 years (1992–2011) of wind stress data

from the European Centre for Medium-Range Weather Forecasts (ECMWF) operational anal-

ysis (available online at http://www.ecmwf.int). The transfer of the atmospheric momentum to

the sea can be altered by the sea surface ice coverage but the central and southern parts of the CS

are ice-free basins. Bathymetry data for the CS were obtained from the ETOPO2 (2′ × 2′) to-

pographic set (available online at http://www.ngdc.noaa.gov). For application in a linear model
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of the large-scale flow this topographic data set needs some smoothing, at the same time, exces-

sive smoothing of topographic gradients will lead to underestimated flow strength. However, it

is not that straightforward to define the appropriate smoothing scale. In fact, the PV contours

can be changed (broader or denser) or disappear with different smoothing bands (Krupitsky
et al., 1996). After some testing, we defined the large-scale component of the topography by

smoothing the bathymetry to ∼ 10 km in both latitudinal and longitudinal directions, at 40◦N.

We first compared the predicted velocity over the closed PV contours with in-situ current

observations, i.e., with currents at the deepest mooring there. The other two moorings are in

the vicinity of the third one and demonstrate very similar velocity field. The upper panel in

Fig 4.1 shows the predicted along-PV currents at the mooring location. The model produces

seasonal variation of the mean currents with maximum values in the winter times. Also shown

here is the duration of the in-situ current observation in the study area. The lower panel, shows

the observed depth-averaged currents against the barotropic model predictions for this period.

It is evident that most of the high frequency signals are not captured by the model. Some of

the observed low-frequency variations (> 1month) are captured. But the model predictions

are broad and systematically underestimate the observed currents. In fact the model appears to

act like as low-pass filter. In order to achieve a proper agreement between the observation and

prediction amplitude, we had to use bottom friction coefficient R = 1×10−4 m s−1, a value five

times lower than the drag coefficient was used by Isachsen et al. (2003). From 2.5, it is easy to

see that smaller R values maintains higher amplitudes. On the other hand, small bottom drag

coefficient makes iω more dominant, which smooths out the predicted current and causes phase

shift. Therefore, we expect the high frequency signals are filtered out in our predictions. We see
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Figure 4.1: The upper panel; the along-PV predicted current (1992–2011). The gray shaded

area shows the length of the in-situ current observation. In the lower panel, the gray dashed, red

and blue solid lines show the depth-averaged along-PV current based on the recorded (6 cpd),

daily mean time series, and the barotropic model prediction, respectively.

some skill and some problems of the model, but really need more observations to learn more.

Considering the measurements durations, we do not have sufficient amount of supporting data,
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and the comparison is inconclusive. Therefore, we look at altimetry observation. The spatial

and temporal structure of the large-scale flow is well captured by satellite altimetry. We com-

pare sea surface height anomalies among two transects over closed PV contours in the central

and southern basins of the CS (see Fig. 4.2). The sea level variations between the inner and
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Figure 4.2: Shown in the current figure are the two gyres (in the central and the southern basins)

for which the differences in sea level anomalies between satellite observations and model pre-

dictions, were compared. The thick lines indicate the integration paths, as well as the outer and

inner PV contours. The latter is considered for determining the sea level anomalies for satellite

observations.

outer contours are determined using weekly multi-satellite altimetry data from October 1992–

December 2010. For model comparison, sea surface anomalies in the southern and the central

basins over the sub-basin PV contours (the basin-wide contours were excluded) are predicted in

the barotropic equation (2.6). The central region of the southern basin is too flat. In fact, small

ups and downs in that region forms several closed cores, and PV contours are rather convoluted.

Therefore, we limit our calculations to the continental slope. The barotropic model behaves

quite different in the southern and central sub-basins. While the model predicts the sea surface

height anomalies relatively well in the central basin, the model performance diminishes in the

southern basin (Fig. 3.3). The satellite observations in the central basin reveals seasonal varia-

tion with lowest values in winters. This seasonal signal is captured very well by the barotropic

model. However, in the southern basin neither the observation nor the model show any clear

seasonal cycle. The linear correlation coefficients between the satellite measurements and the

barotropic model prediction in the central and the southern transects, are 0.68; 0.51, respec-

tively . The ratio of the RMS of the predicted SLA to the RMS of observed SLA for the central

and the southern basins are 0.8 and 0.3, respectively. Ergo, despite the better performance of

the model in the central basin, in both cases the predictions are underestimated.

In the barotropic model, the bottom topography is dominant. Weak stratification and equat-

ing the surface and bottom velocities to the depth-averaged velocity are bases for preeminent

topography in the barotropic solution. In fact, the topographic steering depends on both the

stratification and strength of the bottom currents. The topographic steering is attenuated by the

stratification, since the velocity decreases from the surface to the bottom in a stratified water

body. Additionally, the potential density distribution reveals that the southern basin is more

stratified comparing to the central basin. A measure of the relative importance of stratification

and rotation within a flow field is the Burger number. Estimations of the Burger number for
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Figure 4.3: Time series of the relative sea level displacements between the rim and the inner

PV contours in the two different transects over the central and the southern basins gyres of the

CS. The black and blue lines indicate weekly time series of the sea level anomalies based on

the satellite observation and the barotropic model prediction, respectively.

southern and central basins (considering a horizontal length scale as 50 km), are 0.057; 0.027,

respectively. In both cases, the Burger number is less than 1, but the stratification is stronger in

the southern basin. The observations show that the velocities in the lower layers are smaller than

the velocities in upper layers, but in the same direction (see, Fig. 3.3). Therefore, the velocities

are parallel, but decay with depth. This implies that, an equivalent barotropic (EB) model may

be applicable in the southern basin.

We examined different e-folding scale (h0) values in the central and the southern basins, to

achieve the best agreement between satellite measurements and EB model. For the EB model,

we used the same bottom drag coefficient as Isachsen et al. (2003) applied for the Nordic Seas

and Arctic Ocean (R = 5.0 × 10−4 m s−1). The best agreement between observation and EB

model in the central basin occurs at h0 = 800m. Although, the correlation coefficient is same

as the barotropic model, the amplitude remarkably is improved. Additionally, the ratio of the

RMS of predicted SLA to the RMS of observed SLA for the central basin is increased from

0.8 to 1.1. In the southern basin, the EB model shows high accordance with observation at

h0 = 500m. The correlation coefficient between observation and prediction is modified from

0.51 (barotropic model) to 0.58, also the amplitude is considerably improved. The RMS ratio

enhancement from 0.3 to 0.7 shows that, despite the barotropic model, the EB model predictions

are not extremely underestimate in the southern basin. Note, we used five times stronger drag

coefficient in the equivalent model than the pure barotropic one. Although, the stronger drag

coefficient decreases the amplitude, but P (−H) is small when H 	 h0, which reduces the drag

coefficient and, maintains the amplitude. In some studies an augmentative constant has been

introduced, to obviate the reducing effect of P (−H) (see, Krupitsky et al. (1996); Ivchenko
et al. (1999)). In line with LaCasce and Isachsen (2010), we did not apply that constant, and

apparently, the performance of the model in terms of the amplitude is acceptable. In fact, the

drag could be too weak, if the depth largely exceeds h0. In such a configuration, the wind

forcing is essentially unbalanced. Taking into account the best e-folding scale and maximum

depth, the large depth condition (H 	 h0) never fulfills in the CS. Therefore, the drag is not that

weak in this problem. Additionally, the stronger drag coefficient makes the iω less dominant

and reduces its filtering effect. As one might expect, the EB model renders relatively better
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performance in capturing of the high frequency signals. For more detailed discussions about

the application of the EB model in the CS, see paper I.

4.2 Mass transport in the Stokes edge wave for constant ar-
bitrary bottom slope

In this study we investigate the nonlinear mass transport in the Stokes surface edge wave in an

unbounded ocean. This is done by applying an Eulerian description of motion, and expanding

the solution in series after wave steepness as a small parameter. We derive analytical expressions

for the vertically-averaged Lagrangian drift velocity induced by Stokes edge wave in a rotating

and non-rotating ocean. This drift is composed of Stokes drift plus Eulerian velocity.

We derive analytical expressions for the total mean energy (E), and total dissipation rate

(D), from linear wave solution. Following Gaster (1962) and transition from temporal damping

to spatial damping, an expression for the spatial attenuation coefficient is obtained. It is shown

that the non-rotating case can be recovered by setting f = 0, in the rotating expression. It

was demonstrated by Longuet-Higgins and Stewart (1960) that the radiation stress (S) forcing

would be 1
2
(−∂E/∂y) for deep water waves and 3

2
(−∂E/∂y) for shallow water waves in a

non-rotating ocean for constant depth. For Stokes edge waves, the time rate of change of the

total Lagrangian momentum flux in the wave direction is forced by the divergence of the total

energy density −∂E/∂y, in both rotating and non-rotating cases.This value is mid-way between

the deep and shallow water values. Since the particles move in planes parallel to the sloping

bottom, there is a cross-wave velocity component. This transverse velocity contributes in wave

energy, but does not appear in the radiation stress term. Hence, one would expect a relation

that differs from that of Longuet-Higgins and Stewart (1960). Therefore, the wave energy in

the entire trapped zone yields
∫∞
0 Sdx = E/ρ. This is exactly same for the rotating and the

non-rotating Stokes edge wave, demonstrating that it is not the rotation, but the sloping bottom

that yields a value which is in between the deep and shallow water values of Longuet-Higgins
and Stewart (1960).

For a reasonable value of wavelength (λ = 1 km), for wave traveling with the coast to the

left (ω > 0), the critical slope angle becomes β∗ = 89.9◦, which is very close to the vertical

wall limit. Hence, in practice, our calculations are valid in the interval 0 < β < π/2 for the

chosen wavelength. In Fig. 4.4 we have displayed non-dimensional Eulerian velocity and non-

dimensional Stokes drift for various values of the bottom slope for (λ = 1 km). The results

show that for larger slope angles, the trapped zone is wider for non-dimensional Eulerian drift.

The calculations show that the Stokes drift and the Eulerian current have their maximum values

at the shore line. The spatial variation over the shelf for non-dimensional Stokes drift and

Eulerian current is almost similar for small and moderate slope angles. But, at the shore line it

mainly depends on the slope angle. The ratio between the mean Eulerian current and the Stokes

drift at the the shore is
vE0

vS0
= Rk sin β

⎡
⎣1 + 1

2

(
fω

gk

)2
⎤
⎦ , (4.1)

where, R is friction. Therefore, for wave motion in which the earth’s rotation becomes impor-

tant, we see that increasing values of the Coriolis parameter, increase the Eulerian currents for
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Figure 4.4: Non-dimensional Eulerian mean current QE (left) and non-dimensional Stokes drift

current QS (right) for λ = 1 km.

a given bottom slope. For the wavelength considered here (λ = 1 km), the last term in the in

the parenthesis is negligible. Therefore, the relative strength of the Eulerian current and the

Stokes drift depends on friction and bottom slope. As the frictional influence should be of order

unity, the slope angle plays vital role here. Hence, the relative importance of the mean Eulerian

current to the Stokes drift can be expressed as vE0/vS0 ∝ sin β. This demonstrate that for given

wavelength, the Stokes drift tends to dominate the Eulerian current for small and moderate slope

angles (see Fig. 4.4).

The theory developed here is valid for steeply sloping bottoms and our calculations for

ω > 0 are valid for all β < β∗. Such solutions may be convenient for comparison with exper-

iments in wave tanks, where a steep slope may be advantageous. But, in natural environments

beach slopes are mostly quite gentle. In order to relate our theoretical results to the natural

environments, we consider the CS as a case study. In the southern basin of the CS the depth

increases slowly from the coast over the continental shelf (see Fig. 3.1). As noted before, in

such case the Stokes drift exceeds the mean Eulerian velocity. In this example, we take that

the wave amplitude η0 is 0.1m, the wavelength λ is 1 km and f = 8.86 × 10−5 s−1. Further-

more, β = 0.25◦ is typical slope angle for the southern CS beach. By taking typical values

for the linear friction coefficient (K = 10−5 m s−1), and eddy viscosity (ν = 10−3 m2 s−1), we

obtain that R = 102 m in this problem. For this est of parameters, we find vE0 = 0.6 cm s−1

and vS0 = 5.5 cm s−1 for the CS. We note that the Stokes drift is dominating component of

transport and is comparable to traditional wind surge velocities. In the present study, the basis

of the derivation of the fluxes is expressing the solutions as expansions in power series after

the wave steepness as a small parameter. Hence, we must require that the second order Stokes

drift must be considerably smaller than the linear velocity field. Consequently, the Stokes drift

must be smaller than phase speed of the wave, which leads to η0k < sin β. Here, we have

η0k = 6.28× 10−4, and sin β = 4.36× 10−3, which fulfills the condition quite well. Figure 4.5

shows phase speed (cp = ω/k) and Stokes drift velocity for the CS example. As it shown, for

the chosen parameters, the Stokes drift is remarkably smaller than the phase speed, which indi-

cates that the nonlinear theory is valid. For same configuration the Stokes drift velocity exceeds

phase speed for waves with wave numbers larger than k > 0.043m−1, where the nonlinear the-

ory is not valid. We note that different values of slope angle and wave amplitude can alter the

Stokes drift. E.g. for larger bottom angles the Stokes drift velocity becomes smaller. Hence, for
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Stokes edge waves for the southern Caspian beach; η0 = 0.1m, λ = 1 km, f = 8.68× 10−5 s−1

and β = 0.25◦.

steeper bottom, the nonlinear theory is valid for even larger wave numbers. Conversely, wave

amplitude plays significant role in increasing the Stokes drift velocity, which decreases wave

number threshold for validity of the nonlinear theory.

Moreover, we consider two more locations; Slapton Beach (Huntley and Bowen, 1973), and

Lake Michigan (Donn and Ewing, 1956), where we find short and long waves, respectively. In

both cases the depth increases slowly. As we noted before, in such cases the Stokes drift is

comparable to or exceeds the mean Eulerian velocity. For more detailed discussions about the

Stokes edge wave-induced mass transport in aforementioned areas, see papers II and III.

4.3 Mass transport in internal coastal Kelvin waves

In the present study we have investigated the drift due to internal coastal Kelvin waves. We

find the Stokes drift trapped to the coast within the Rossby radius of deformation. However, by

integration in vertical, and application of proper boundary conditions, it is demonstrated that

the associated Stokes volume flux for internal coastal Kelvin waves is zero. In line with this

important result, the total mean Lagrangian transport attributes to only mean Eulerian transport.

The mean Eulerian current for each mode is trapped to the coast within the Rossby radius of

deformation, and that current is always positive (directed along the wave). Additionally, in a

balanced flow the ratio of forcing from the wave field (through the radiation stress) and the

restraint of bottom friction on the mean flow should be of order unity. The present approach

yields the Stokes drift as function of depth, while the mean Eulerian current is determined as a

depth average by integration from the bottom to the surface. This procedure masks the vertical

variation of the Eulerian drift current, and makes comparisons with the Stokes drift at a certain

depth difficult.

As an example for the Stokes drift in the internal coastal Kelvin waves, we consider the

continental shelf break of the CS (see Fig. 3.4). In order to obtain the eigenvalues c1, c2, c3



29

-480

-420

-360

-300

-240

-180

-120

-60

0

0 0.5 1 1.5 2-0.5-1-1.5

N
on

-d
im

en
si

on
al

 d
ep

th

Non-dimensional Stokes drift
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third (red dashed line) baroclinic mode in the CS as function of non–dimensional depth.

etc., we must prescribe Brunt-Väisälä frequency in study area. Using measurements by Ghaf-
fari et al. (2010) we find an expression for Brunt-Väisälä frequency, which is typical for win-

ter condition in the south-western part. The eigenvalue problem is easily solved by a simple

shooting procedure. We then obtain c1 = 1.21m s−1. The next successive eigenvalues become

c2 = 0.45m s−1 and c3 = 0.28m s−1 for the second and third baroclinic mode, respectively. The

non-dimensional Stokes drift ūSn/u0n at the coast for first three successive baroclinic modes in

the study area are shown in Fig. 4.6, where u0n ∝ cnξ
2
0n. Therefore, in dimensional form,

wave amplitude and eigenvalue at each specific mode determine the Stokes drift value. We note

that in the first baroclinic mode, the Stokes drift has its largest value at the coast, and reaches

its largest negative value about −80m, where the thermocline located and Brunt-Väisälä fre-

quency has its maximum value (Ghaffari et al., 2010). For fairly sharp thermocline, first mode

mostly comprise a substantial portion of the total energy (Phillips, 1966). Hence, we particu-

larly interested to the first mode, which we believe that contains majority of the energy fraction,

considering almost sharp thermocline in the study area (Fig. 3.4). The isothermal contours fluc-

tuation (Fig. 3.5) can be attributed to the first baroclinic mode of the internal Kelvin wave in

the south-western part of the CS, since they both have almost the same period. Therefore, the

measurements suggest a vertical amplitude of about ξ01 = 40m for the first baroclinic mode.

This implies that the dimensional Stokes drift varies from 7 cm s−1 at surface to −5 cm s−1 at

the thermocline location. The negative and positive lobs of the Stokes drift depth profile fulfills

the no-flux condition. However, the Eulerian flux is not zero, e.g. for first baroclinic mode, the

Eulerian transport occurs within a narrow region of width ∼ 7 km. Since the internal coastal

Kelvin waves always propagate with the coast to the right (for f > 0), we conclude that there is

a systematic contribution from such waves to the mean circulation in the CS. For more detailed

discussions about the internal coastal Kelvin wave-induced mass transport in the study area, see
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paper IV.



Chapter 5

Concluding remarks

This thesis discusses the topographic effect on wind-driven current variability as well as the

mean currents due to topographically trapped waves. Through the individual papers, we inves-

tigate the wind-driven transport in regions with closed potential vorticity contours, and estimate

the mean transport induced by trapped gravity waves such as the Stokes surface edge wave and

the internal Kelvin wave. Such transports are interesting from a fluid dynamics point of view,

but they also have practical implications. It is a fact that topographic changes in the ocean often

are strongest close to the coasts or the shore line. Therefore topographically steered currents

may advect effluents and pollution along coasts and beaches and thereby pose a threat to the

coastal population. Furthermore, for small bottom sediments in suspension, this mean drift may

contribute to beach erosion by relocating bottom material.

The mean drift velocity in progressive waves is not easy to observe using fixed point mea-

surement. It is partly due to the nature of the Stokes drift, but also due to the small ampli-

tudes which are easily masked by other dynamics, e.g. tidal and inertial currents. Lagrangian

measurements, e.g. drifters, are needed to capture the mean wave-induced transport. On the

other hand, a drifter also responds to the geophysical forcing by the wind, wind-waves, and the

oceanic currents. It is therefore not straightforward to decompose the wave drift from the drifter

motion. In this respect, the Caspian Sea as a tide-free, closed body of water seems a promising

place for such experiments. This large lake can be regarded as prototype laboratory. During

calm wind episodes, which are quite common in this region, the mean transport and drifter re-

sponse may entirely be attributed to the remotely generated, transient waves. Here, a coupling

of extensive numerical modeling with field observations would be quite profitable. Extracting

the particle drift from the model output using a Lagrangian approach, and comparing it with

Lagrangian observations would clearly improve our understanding of wave-driven currents.
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Topographic effects on current variability in the Caspian Sea
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[1] Satellite-derived surface height fields reveal that variability in the central and southern
basins of the Caspian Sea is correlated with topography. Consistently, empirical orthogonal
functions from current meter data from the southern basin are aligned with the isobaths. In
addition, the gravest mode, which accounts for over 80% of the variance, has an equivalent
barotropic structure in the vertical. To what extent this variability can be modeled using a
linear analytical model is examined. The latter assumes equivalent barotropic flow aligned
with the geostrophic contours, which in turn are dominated by the topography. With
ECMWF winds and ETOPO2 topography, the model yields surface height deviations which
are significantly correlated with satellite-derived estimates on seasonal and longer time
scales in the central basin. The model is somewhat less successful in the southern basin,
where the stratification is stronger. Nevertheless, the results are encouraging, given the
extreme simplicity of the model.

Citation: Ghaffari, P., P. E. Isachsen, and J. H. LaCasce (2013), Topographic effects on current variability in the Caspian Sea, J.
Geophys. Res. Oceans, 118, doi:10.1002/2013JC009128.

1. Introduction

[2] The Caspian Sea (CS) is the largest inland water
body of the world in both area (379,000 km2) and volume
(78,000 km3). The CS is located between 36�N and 47�N
in a region with complex bathymetric features [Ismailova,
2004]. There are three distinguished basins: the northern,
central, and southern basins. The southern and the central
basins have maximum depths of 1025 and 788 m, respec-
tively, and a sill with a maximum depth of approximately
170 m separates two [Peeters et al., 2000]. The northern
basin is a shallow extension with maximum depth of 20 m.
The CS is classified as a deep inland sea, due to its thermo-
haline structure and water circulation [Lebedev and Kostia-
noy, 2006].
[3] The CS is enclosed and tides are fairly weak.

Density-driven and wave-driven flows do occur [Bondar-
enko, 1993; Ghaffari and Chegini, 2010; Ibrayev et al.,
2010; Terziev et al., 1992], but the currents are primarily
forced by the winds. Due to the strongly variable topogra-
phy, the resulting flows are often spatially and temporally
variable, with an active mesoscale eddy field [Terziev
et al., 1992; Trukhchev et al., 1995].
[4] Diverse observations with floats and hydrography,

and the results of numerical models simple hydrodynamic
interpretations [Bondarenko, 1993; Terziev et al., 1992],

suggest that the circulation in all three basins is predomi-
nantly cyclonic. The circulation is thus associated with a
predominantly southward flow along the western coast and
northward flow along the eastern coast. Recent observa-
tions in the shallow coastal area (�100 m depth or less)
likewise indicate cyclonic flow, but also reveal exceptions.
In particular, the flow near the eastern coast has been
observed to reverse episodically [Ibrayev et al., 2010], as
has the flow near the southern boundary [Ghaffari and Che-
gini, 2010]. Further information about the hydrographic
structure and general circulation of the CS is given by Kos-
tianoy [2005].
[5] Although the region has been studied extensively, a

comprehensive picture of the circulation is lacking. In par-
ticular, we do not have a first-order model explaining the
response to wind forcing and, more generally, an explana-
tion for the predominantly cyclonic flow. The goal of the
present study is to propose such a model.
[6] Our model is relevant in regions where the ambient

potential vorticity contours (PV), or geostrophic contours,
are closed. For unstratified regions these are the f/H con-
tours, where f is the Coriolis parameter and H is the water
depth. Such models have been used before to investigate
wind-driven variability [see Kamenkovich, 1962; Hassel-
mann, 1982; Isachsen et al., 2003]. The main assumption
of such models is that the primary component of the flow is
parallel to the f/H contours. The flow is then forced by con-
vergence or divergence in the surface Ekman layer and bal-
anced by divergence or convergence in the frictional
Ekman layer at the bottom (details are given below).
[7] As shown in Figure 1, the f/H contours in the Caspian

Sea are indeed closed in both the central and southern
basins. We will, therefore, investigate the use of such a
model here. However, as there is significant stratification in
the CS, it is not certain that a barotropic model is sufficient.
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So we extend the existing model to allow for vertical shear.
As seen below, observations from the southern basin show
that current fluctuations are approximately equivalent baro-
tropic, and taking that into account is straightforward.
[8] The manuscript is organized as follows: relevant

observations are described in section 2. In section 3, the
equivalent barotropic model is derived. In section 4, the
model solutions are presented and discussed and conclud-
ing remarks are given in section 5.

2. Observations

2.1. Satellite Observations

[9] Satellite observations provide the most comprehen-
sive information about basin-scale variability in the sea.
Weekly updated gridded maps of sea level anomalies
(SLA) for the region and covering the period January 1992
to December 2011 are available (online at http://www.
aviso.oceanobs.com). We used these fields to conduct an
EOF analysis of the variability.
[10] The leading EOF, which accounts for 92% of the

total variance, is remarkably similar to the f/H field in the
central basin (Figure 2). This implies the sea surface is
oscillating coherently across the basin. A similar result was
found in the Norwegian, Lofoten, and Greenland basins by
Isachsen et al. [2003].
[11] The response in the southern basin is less clear. The

first mode does have a positive lobe that approximately
traces out the f/H contours in the western portion of the
basin, but the other lobes do not bear an obvious relation to
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the contours. EOF1 also exhibits distinct variability in the
north-west region. Here the depth is 5–6 m and the flow
moreover is heavily influenced by the Volga River.
[12] The remaining EOFs account for only 8% of the

variance. These structures (not shown) are dominated by
higher-wave number features that give little dynamical
insight. So we will focus on the first EOF hereafter.

2.2. Current Meter Observations

[13] Three current meter moorings were deployed in a
line perpendicular to the coastline off the south-western
shelf of the CS, from November 2004 to early May 2005
(Figure 3). The moorings were located over the 20, 50, and
230 m isobaths at (37.505�N; 49.865�E), (37.531�N;
49.866�E), (37.553�N; 49.864�E), respectively.
[14] Recording Current Meters (RCM 9) were deployed

near the surface, at middepths (for the 230 m mooring), and
near the bottom, to provide measurements throughout the
water column. The sampling frequency was 3 cph, but the
analysis presented here is based on daily averaged
velocities.
[15] Figure 4 shows the variance ellipses for the daily

averaged currents for the three moorings. These have high
eccentricities and the principal axes of the variability are
closely aligned with the f/H contours, at all three moorings.
[16] The alignment and magnitude of the ellipses sug-

gests the currents are fairly barotropic. To quantify this, we
calculated the fraction of energy in the barotropic mode:

R5Hhu2i= Hhu2i1
XN
n51

u0ð Þ2dz
* +" #

; (1)

where N is the total number of the depth layers, u and u0
are depth-averaged and depth-varying velocities, respec-
tively. The angle brackets in (1) are time averages and H is
the depth at the mooring. The depth-averaged velocity
accounts for 92%, 79%, and 83% of the total variance in
the moorings from the south to the north, respectively. This
is consistent with previous results which suggested the flow

field in the eastern part of the southern basin is nearly baro-
tropic [Ghaffari and Chegini, 2010; Zaker et al., 2011].
[17] The deepest mooring has current meters at 3.5, 65,

and 112 m. Thus, the upper two are in the seasonal thermo-
cline (which spans the upper �30 m in summer) and the
lower one is well below it (Figure 3, right). The very high
frequency fluctuations are not well correlated between the
upper two and the lower one. But the squared coherences
between the three time series are 0.6–0.8 at periods longer
than 3 days. So the low frequency fluctuations have a rea-
sonably large vertical coherence. As this mooring yields
the best information about the flow in the basin interior, we
use its currents for the subsequent analysis.
[18] The velocity ellipses suggest that the velocities at

the deepest current meter at the third mooring are weaker
than at the surface instruments, but also aligned (or coun-
ter-aligned) with them (Figure 4). To examine the vertical
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structure, we calculated complex EOFs for the three
instruments [Kaihatu et al., 1998]. The first mode,
which accounts for over 80% of the variance, is shown in

Figure 5. This mode has the largest velocities at the surface
and decays with depth, but the velocities are approximately
parallel throughout the water column. So the velocities are
approximately equivalent barotropic (EB). The e-folding
scale, determined by nonlinear least squares, is about 350
m. The velocities are also aligned with the topography,
consistent with the conclusions from the satellite data that
variability is so-aligned.
[19] Of course stratification can cause current fluctua-

tions, as those observed here, to decay with depth. Figure 3
(right) shows the potential density and temperature struc-
tures in summer (2008), along a transect extending from
the coast toward the offshore region, in the study area. It
reveals a strong seasonal thermocline located at �30 m
depth, which is a typical seasonal thermocline depth in
summer for almost whole basin [see Kostianoy, 2005].
Ghaffari et al. [2010] using hydrographic data (the same
transect) showed that during the unprecedented severe win-
ter (2008), the seasonal thermocline reached almost 100 m,
where the water mass was still stratified. In fact, the CS has
low salinity and the density stratification largely deter-
mined by temperature [Terziev et al., 1992]. Therefore, the
density stratification mimics the temperature structure, i.e.,
the stratification is weaker but does not vanish in winter
[Kosarev, 1975]. Figure 6 provides a large-scale picture of
the stratification in the CS. Basin-wide potential density
profiles reveal that the southern basin is more stratified than
the central basin. In the southern basin, the surface den-
sities are significantly less, producing larger near-surface
gradients. Correspondingly, estimates of the Burger num-
ber, Bu5 Ld

L

� �2
, where Ld is the internal deformation radius

and L is the scale of motion, are 0.057 and 0.027 for the
southern and central basins, respectively (assuming a
length scale as 50 km).
[20] So both current meter observations and hydrography

suggest that the vertical stratification may be important, at
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least in the southern basin. An equivalent barotropic
description of currents seems appropriate, and a simplified
model of wind-driven variability should thus assume EB
currents. Having such depth-decaying currents is significant
because topography will then exert a weaker influence than
in a purely barotropic flow. EB models have been studied
previously in the context of the Southern Ocean [Ivchenko
et al., 1999; Krupitsky et al., 1996; LaCasce and Isachsen,
2010]. Below, we develop such a model in the context of
closed-PV contours.

3. Theoretical Model

[21] The dynamics of flows with closed-PV contours dif-
fer from those with blocked contours. With blocked con-
tours, forcing is required to support a steady circulation, as
with the Sverdrup circulation. With closed contours, steady
flows parallel to the PV contours can exist in the absence of
forcing and dissipation [Kamenkovich, 1962; Killworth,
1992; Hasselmann, 1982; Greenspan, 1990; Young, 1981].
Such flows can be very strong and can be excited by wind
forcing.
[22] Isachsen et al. [2003] derived a linear, barotropic

model to study such flows. In the model (described below),
an imbalance between the net transport in the surface and
bottom Ekman layers results in a change in the geostrophic
circulation within the closed contour region. The model
was used to study wind-driven fluctuations in the Nordic
Seas and was reasonably successful at reproducing variabil-
ity observed from satellite and in a GCM. The success of
such a model at high latitudes is aided by having relatively
weak stratification. Whether such a model could work at
lower latitudes, as in the Caspian Sea, remains to be seen.
[23] As the current fluctuations in the Caspian have an

approximately EB structure, we recast the barotropic solu-
tion of Isachsen et al. [2003] for an EB flow. This involves
mostly slight modifications, and the barotropic solution is
recovered as a limiting case.
[24] As noted, the variables (e.g., pressure and velocity)

vary with depth, but the direction of flow does not. So we
can write

uðx; y; z; tÞ5usðx; y; tÞPðzÞ; (2)

and

pðx; y; z; tÞ5psðx; y; tÞPðzÞ; (3)

where u and p are the horizontal velocity vector and pres-
sure, us and ps are the corresponding surface values, and
P(z) is a vertical structure function. Following Isachsen
et al. [2003], we assume a linear bottom drag, so that the
bottom stress is:

sb5Ruð2HÞ5reus; (4)

where R is the bottom friction coefficient, Hðx; yÞ is depth,
and re5RPð2HÞ is a modified drag coefficient. Similar
equations were derived previously by Krupitsky et al.
[1996] and LaCasce and Isachsen [2010]. Substituting
these into the linear horizontal momentum equation and
integrating over the fluid depth yields:

@us
@t

1f k3us52grg1
ss

q0F
2
reus
F

� �
: (5)

where q0 is a constant density, g the acceleration due to
gravity, and k is the unit vector in the vertical direction.
Furthermore, ss is the surface stress vector, g is the sea sur-
face height, and Fðx; yÞ is the vertical integral of the profile
function:

F �
ð0
2H
PðzÞdz: (6)

[25] Substituting (2) into the continuity equation and
integrating vertically yields:

@

@x
Fusð Þ1 @

@y
Fvsð Þ50; (7)

where us and vs are eastward and northward velocity compo-
nents. Thus, we may define a transport stream function as:

Fus52wy; Fvs5wx: (8)

[26] Taking the curl of (5) and using (8), we obtain the
equivalent barotropic potential vorticity equation:

@

@t
r3us1J w;

f

F

� �
5r3

ss

q0F
2r3

reus
F

; (9)

where the Jacobian term Jðw; f =FÞ5Fus � rf =F is the
advection of PV by the flow. According to (9), a steady
flow must be parallel to the f/F contours in the absence of
forcing. These are the geostrophic contours in the EB
model.
[27] As in Krupitsky et al. [1996], Ivchenko et al. [1999],

and LaCasce and Isachsen [2010], we take P(z) to be an
exponential function

PðzÞ5exp z

h0

� �
; (10)

so that :

F5h0 12exp 2
H

h0

� �� �
: (11)

[28] We see that F, and hence the PV contours, are
affected by vertical shear. For strongly sheared flows, i.e.,
for h0 � H , F is approximately constant and the PV gradi-
ent is dominated by planetary beta. For deeper currents,
i.e., for h0 � H , F ! H and the barotropic model is recov-
ered. So the PV contours are intermediate between latitude
lines and f/H contours, depending on the e-folding scale.
Note too that the shear affects the effective bottom drag, as
the latter is proportional to the bottom velocity. In deeper
waters, where the depth is much greater than the e-folding
scale, the drag is weak.
[29] The solution then follows that of Isachsen et al.

[2003]. Assuming the forcing and friction are weak, and
that the variations occur on long times scales, the dominant
balance in (9) is:
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J w;
f

F

� �
50: (12)

[30] This implies that the first-order flow follows the f/F
contours (which we assume are closed). The model thus fil-
ters out, for example, topographic waves, which entail
cross-contour motion. So:

w5G
f

F

� �
; (13)

where G is some function. The surface velocity is then
given by:

us5
1

F
k3rG5 1

F
G0k3r f

F

� �
; (14)

where G0 is the derivative of G with respect to its argument,
f =F.
[31] To determines G, we integrate equation (9) over a

region bounded by an f/F contour. This eliminates the Jaco-
bian term, after invoking the continuity equation, and yields:

@

@t

þ
us � dl5

þ
ss

q0F
� dl2

þ
reus
F

� dl; (15)

after applying Stokes’ theorem. The first term on the RHS
is the net transport into the surface Ekman layer and the
last is the net transport in the bottom layer. An imbalance
between these two results in a change in the circulation
around the contour.
[32] We solve (15) by Fourier transforming the variables

in time:

ss x; y; tð Þ5
X
x

~ss x; y;xð Þeixt; us x; y; tð Þ5
X
x

~us x; y;xð Þeixt:

[33] With this, (15) is:

þ
ix1

re
F

� 	
~us � dl5

þ
~ss
q0F

� dl: (16)

[34] The surface circulation depends on the bottom fric-
tion and the forcing frequency. At low frequencies
(x � re=F), the circulation is in phase with the winds and
has an amplitude which is inversely proportional to the
modified bottom friction coefficient. At high frequencies,
the circulation lags the wind by 90� and is independent of
friction.
[35] Finally, inserting (14) into (16) gives:

G05

þ
~ss= q0Fð Þ � dlþ

ix=F1re=F2ð Þr f =Fð Þ � n̂dl
; (17)

which is the EB equivalent to equation (8) in Isachsen
et al. [2003]. They also discussed the equivalent barotropic
model, but neglected that baroclinicity alters the PV con-
tours. Assuming the flow is zero outside the region of
closed contours, (14) can be integrated sequentially inward,

yielding G and hence the stream function (applying the
inverse Fourier transform). Furthermore, since the stream
function is proportional to the surface pressure, i.e., G5Fð
g=f Þg the result can also be used to find sea surface height
deviations between the inner and outer contours.

4. Results

[36] First, we compare the model prediction against sea
level anomaly (SLA) measurements from the satellite. To
do this, we estimated time series of SLA differences across
both the central and southern basins, between an ‘‘inner’’
f/F contour in the deep basin and an ‘‘outer’’ contour near
land. This SLA difference is proportional to the geostrophic
transport between the two contours. The satellite-based
estimate was calculated as the difference between SLA
averaged over the two contours while the model estimate
was calculated by integrating g05f =ðgFÞG0 over a set of
closely spaced contours between the inner and outer ones.
[37] The 0.125� 3 0.125�-resolution European Centre

for Medium-Range Weather Forecasts (ECMWF) opera-
tional analysis (available online at http://www.ecmwf.int)
was used as wind forcing for the model. Topographic data
were obtained from the ETOPO2 0�20 3 0�20 data set
(available at http://www.ngdc.noaa.gov). The raw topo-
graphic data were smoothed to �10 km, a scale which is
comparable to the internal deformation radius here [see
also Isachsen et al., 2003; LaCasce, 2000; Krupitsky et al.,
1996].
[38] The model’s free parameters are the bottom friction

coefficient R and the e-folding scale of the vertical shear,
h0. We set the bottom friction coefficient, R55:0310

24 m
s21, following Gill [1982] and Isachsen et al. [2003]. We
tested a range of values for h0 for both basins.

4.1. Central Basin

[39] To do this, we calculated the correlation between
the observed and modeled sea level differences, between
an inner and an outer f/F contour, as a function of h0; the
result for the central basin is shown in Figure 7. The corre-
lations are low at small values, confirming that topography
is important for the response (recall that with small values
of h0, the PV contours are essentially latitude lines). As h0
is increased, the correlations grow and they are constant
above h05800. The correlation coefficients are 0.68,
implying reasonably good agreement.
[40] The latter is confirmed by comparing the two time

series (Figure 8). Both are dominated by the seasonal sig-
nal, with negative values (SLA lower on inner contour than
on outer contour) during winter months, indicating anoma-
lous cyclonic circulation. The ratio of the model’s RMS
value to the observed value is 1.1, so the model captures
both the variability and the amplitude of the signal.
[41] The fact that the correlations do not decrease as h0

gets large suggests that a model based on f/H would do
equally well as the equivalent barotropic model here. We
confirmed this. This in turn implies topography exerts a
controlling effect in the central basin, regardless of the
stratification.

4.2. Southern Basin

[42] Figures 9 and 10 show the corresponding results for
the southern basin. As in the central basin, the model-data
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correlations are lowest with small values of h0 and they are
larger and approximately constant for large values. But
they are also slightly higher at an intermediate decay scale,
around h05500. So it would seem the EB model is slightly
better than a barotropic f/H model here. The correlations
nevertheless are somewhat lower than in the central basin,
reaching a maximum value of about 0.58.
[43] The time series from the satellite and the model,

with h05500, are shown in Figure 10. The seasonal cycle
is less pronounced than in the central basin, in both time
series. But the two series are less similar than in the central
basin. Moreover, the ratio of the RMS amplitudes is 0.7; so
the model somewhat under-predicts the amplitude of the
response.
[44] The preceding results suggest perhaps that the

agreement is superior in the central basin because the sea-
sonal signal is more pronounced there. This is partly true.
Shown in Figure 11 are the coherences as functions of fre-
quency. Results are shown both for the EB model and the
barotropic (large h0) version of the model. The coherences
are insignificant on time scales less than about 5 months, in

both basins. In the central basin, the coherence peaks at
around 10 months, or roughly one year; this is consistent
with the model capturing the seasonal cycle. It decays at
longer time scales. And the barotropic model performs
equally well as the EB model, as noted before. In the south-
ern basin the response is similar, but the coherences are
also lower. They are largest at around 1 year too, but the
difference is less marked from the lower frequencies. Fur-
thermore, the barotropic model produces consistently lower
coherences than the EB model.
[45] The fact that the coherences are low on the short

time scales is to be expected from the model. With H
� 1000 m and R5531024 m, the barotropic decay time
scale, Td � H=R, is on the order of a month. The time scale
in the EB model is longer because the velocity shear
reduces the bottom velocities; with h05500 m, it is roughly
five times longer. The model assumes that time variations
in the circulation are equally long (otherwise the first-order
flow would not be along f/F contours). So it is not surpris-
ing we capture only time scales exceeding a few months.
[46] That the coherences also decrease for the long time

scales is consistent with the results found by Isachsen et al.
[2003]. At these scales, baroclinic effects presumably come
into play, effects which cannot be captured in an equivalent
barotropic model. So the model is most effective on the
intermediate time scales, particularly at the seasonal
frequency.

4.3. Comparison With Current Meter Observations

[47] Lastly we revisit the mooring data from the southern
basin and compare the along- f/F velocities at the deepest
mooring with the model predictions. The model velocities
were calculated from (14) and (17). As before, we use a
drag coefficient of R55:031024 m s21 and an e-folding
scale of h05500 m.
[48] The observed and modeled velocity time series (Fig-

ure 12) show some similarities. The correlation coefficient,
0.48, is slightly lower than that obtained with the SLA data
in the southern basin. This is to be expected, as the entire
current meter record is just over six months long. From the
preceding discussion, the model is better at capturing the
month-to-month variations than those on shorter time
scales. The ratio of the RMS velocities is �0.8, so the pre-
dicted amplitude is also reasonable.
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Figure 7. The correlation coefficient ðRcÞ between the
satellite observations and the EB model as a function of
e-folding scale ðH0Þ for the central basin.
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[49] Note that the assumed e-folding scale of 500 m is
somewhat larger than the e-folding scale deduced from the
first EOF from the current meter, which was 350 m. Using
h05350 m yields a slightly lower correlation �0.4 and also
a lower amplitude ratio �0.6. Nevertheless, this is fairly
inconclusive, given the short record length.
[50] Interestingly, the observed fluctuations lag the EB

model prediction, by roughly 1 week. Accordingly, adding
a 5 day lag to the model time series raises the correlation
coefficient from 0.48 to 0.64, and most of the increase is
due to a better match at shorter time scales. But it is clear
that such comparisons should be done with a longer time
series before any speculation is made.

5. Summary and Conclusions

[51] We have used a linear analytic model to study cur-
rent fluctuations in the central and southern portions of the
Caspian Sea. The model assumes the flow is wind driven
and that dissipation is entirely by bottom drag. Motivated

by current meter satellite altimeter observations, the veloc-
ities are assumed to be equivalent barotropic (EB) and
aligned with EB PV contours, the f/F contours (where F is
a modified function of depth which takes the vertical decay
of the velocities into account). These contours close on
themselves in both the central and southern basins of the
Caspian Sea and allow us to estimate the flow variability
from a simplified expression. A barotropic version of the
model was used previously to study the response in the
Nordic Seas and Arctic Ocean [Isachsen et al., 2003]. The
modification to EB flow and the application to the midlati-
tude Caspian Sea is new.
[52] The model was reasonably successful at simulating

current variability on time scales exceeding a few months.
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Figure 10. Time series of the relative sea level displacements between the rim and inner qe contours in
the southern basin where H05500. The thin and thick lines indicate weekly time series of the sea level
anomalies based on the satellite observations and the EB model predictions, respectively.
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Figure 9. The correlation coefficient ðRcÞ between the
satellite observations and the EB model as a function of
e-folding scale ðH0Þ for the southern basin.
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In the central basin, where the stratification is weaker, the f/
F model and the barotropic f/H limit yield comparable
results. Both agree with the satellite observations of low
frequency (seasonal to annual time scales) sea surface
height variability. In the southern basin, the stratification is
stronger. As such, the EB model is more successful than
the barotropic model. We find reasonable correlations with
both the satellite data and with the current meter data, again
primarily on time scales of seasons to a few years.
[53] The coherences here are also somewhat less than

those obtained in the Nordic Seas. In some cases there, the
correlation coefficients exceeded 0.8. This is likely due to
having weaker stratification at those latitudes. Neverthe-
less, the dependence of the coherences on frequency was
similar. The (barotropic) model was most successful at
intermediate frequencies, capturing primarily seasonal
variations.
[54] It should be emphasized what the analytical model

leaves out. The assumption that the flow is dominated by a
component which is purely along the PV contours removes
all dynamics with cross-contour flow. This includes topo-
graphic and internal Kelvin waves. The associated time
scales are on the order of several days in the Caspian Sea
(J. E. H. Weber and P. Ghaffari, Mass transport in internal
coastal Kelvin waves, submitted to European Journal of
Mechanics B, 2013.) The assumption of barotropic or
quasi-barotropic motion neglects baroclinic effects, and
this evidently decreases coherences on interannual time
scales. To take such effects into account will require addi-
tional assumptions about the density field. As suggested by
the findings of Nöst and Isachsen [2003] and Aaboe and
Nöst [2008], a time-mean solution may then be found in
which the connection between the top and bottom Ekman
layers is modified by the divergence of the meridional ther-
mal wind transport.
[55] Nevertheless, the model is appealing for its extreme

simplicity. A first-order assessment of intermonthly vari-
ability can be estimated using a single equation and a sim-
ple Matlab routine. The model moreover should be
applicable in other regions, and possibly in large inland
lakes.

[56] Further assessments in the Caspian Sea would
clearly benefit from more observations, particularly from
longer-term current measurements in both basins. Studies
using primitive equation models would also help unravel
the possible role of nonlinearities and eddy momentum
transport, processes that have been ignored here.

[57] Acknowledgments. We thank Andrey Trebler and Paula P�erez
Brunius for helpful comments.
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Mass transport in the Stokes edge wave

by Jan Erik H. Weber1,2 and Peygham Ghaffari1

ABSTRACT
The Lagrangian mass transport in the Stokes progressive edge wave is obtained from the vertically

integrated equations of momentum and mass, correct to second order in wave steepness. The
cross-shore momentum balance is between the mean pressure at the sloping bottom, the radiation
stress, and the pressure gradient due to the mean surface slope. In the alongshore direction, the effect
of viscosity leads to a wave attenuation, and hence a radiation stress component. The frictional effect
on the mean Eulerian motion is modeled through a turbulent bottom drag. The alongshore
momentum balance is between the mean pressure gradient due to the surface slope, the radiation
stress, and the turbulent drag on the mean Eulerian flow. It is shown that ��E/� y, where E is the total
mean energy density for waves along the y-axis, is the wave-forcing term for the total mean
Lagrangian momentum in the trapping region. This result is independent of the bottom slope angle.
Vertically-averaged drift velocity components are obtained from the fluxes, divided by the local
depth. Utilizing physical parameters relevant for field conditions, it appears the traditional Stokes
drift in the Stokes edge wave is negligible compared to the mean Eulerian velocity component. The
importance of this drift for the near-shore transport of effluents and suspended light sediments is
discussed.

1. Introduction

After being regarded as a mere curiosity for many years, e.g. Lamb (1932), edge waves
have fairly recently received renewed interest. This is because such waves apparently play
an important role in the dynamics of coastal zone and beach erosion processes (LeBlond
and Mysak, 1978). Edge waves are often considered as the major factor of the long-term
evolution of the irregular coastal line, forming rhythmic crescentic bars (Bowen and
Inman, 1971; Kurkin and Pelinovsky, 2003; Quevedo et al., 2008). Holman and Bowen
(1982) showed that the steady drift, generated by the nonlinear self-interaction of edge
waves inside the bottom boundary layer, can cause a net displacement of the sediment and
give rise to bottom patterns similar to those detected in the field.

We here concentrate on the Stokes edge wave (Stokes, 1846), which is the first mode in
the spectrum of shelf modes that contains both discrete and continuous parts (Eckhart,
1951; Ursell, 1952; Reid, 1958). Several mechanisms for generating edge waves are
possible in nature. Large-scale edge waves can be generated by direct wind stress above the

1. Department of Geosciences, University of Oslo, Norway.
2. Corresponding author. email: j.e.weber@geo.uio.no

Journal of Marine Research, 67, 213–224, 2009
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water, by traveling air pressure, or by tsunamis (Munk et al., 1956; Aida, 1967; Beardsley
et al., 1977; Fuller and Mysak, 1977; Golovachev et al., 1992; Boss et al., 1995; Kurkin
and Pelinovsky, 2003; Galletta and Vittori, 2004; Monserrat et al., 2006), while medium-
and small-scale edge waves may occur through nonlinear interaction of wave groups or
nonlinear subharmonic resonance mechanisms (Gallagher, 1971; Minzoni and Whitham,
1977; Bowen and Guza, 1978; Chapman, 1984). The occurrence of edge waves has also
been demonstrated in wave tank experiments (Yeh, 1985; Mok and Yeh, 1999).

In the present study we focus on the mass transport induced by the Stokes edge wave.
Earlier papers, (e.g. Kenyon (1969)) have considered the pure Stokes drift (Stokes, 1847)
in inviscid edge waves applying the hydrostatic approximation, while Dore (1975) and
Mok and Yeh (1999) have calculated the mass transport velocity in the viscous laminar
bottom boundary layer associated with edge wave motion. But obviously, real field bottom
boundary layers are turbulent. Furthermore, the frictional effect at the bottom will generate
a mean interior Eulerian flow, in addition to the Stokes drift (Longuet-Higgins, 1953). It is
the aim of the present paper to quantify the mean Eulerian mass transport generated by the
Stokes edge wave in a turbulent ocean. When we add the Stokes flux, we obtain the total
mean Lagrangian mass transport in the system. It is this transport that advects neutral
tracers and bottom sediment in suspension in the region of wave trapping. In order to
obtain a robust formulation, we consider the vertically integrated equations of momentum
and mass, e.g. Phillips (1977), and derive the mean Lagrangian mass transport to second
order in wave steepness. The vertically-averaged drift velocity is obtained by dividing the
volume flux by the local depth. In this way we do not resolve the motion in the bottom
boundary layer, so this method is not directed at sediment transport very close to the sea
bed. However, for finer sediment that is mixed in the entire water column, and the drift of
biological material, the present approach yields new and interesting results.

2. Mathematical formulation

We consider trapped surface gravity waves in a homogeneous incompressible fluid with
a linearly sloping bottom. The motion is described in a Cartesian system, where the x-axis
is situated at the undisturbed surface and directed into the semi-infinite sea, the y-axis is
directed along the shore line, and the vertical z-axis is positive upwards; see the sketch in
Figure 1. The corresponding velocity components are (u, v, w). Furthermore, the pressure
is p and the constant density is �. The bottom is given by z � �h � �x tan �, where �
(��/2) is the sloping angle, and the free surface by z � �. At the free surface the pressure
is constant. In this study we disregard the effect of the earth’s rotation.

We denote periodic wave variables by a tilde, and the mean flow (averaged over the
wave period) by an over-bar. Mean horizontal volume fluxes (U� , V� ) are defined by

U� � �
�h

�

udz, V� � �
�h

�

vdz. (1)
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These are actually the Lagrangian fluxes, since we integrate between material boundaries
(Phillips, 1977; Weber et al., 2006). Integrating the governing equations in the vertical, and
utilizing the full nonlinear boundary conditions at the free surface and the sloping bottom,
we obtain for the mean quantities, correct to second order in wave steepness (Phillips,
1977):
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By neglecting the effect of friction in the vertical component of the momentum equation,
Phillips found for the mean pressure to this order:

p�

�
� g	�� � z
 � w̃2 �

�

�x �
z

0

ũw̃d� �
�

�y �
z

0

ṽw̃d�, (3)

Figure 1. Sketch depicting the coordinate system, with the surface and sloping bottom included; y is
the alongshore coordinate and the seawards direction is x3
.
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where g is the acceleration due to gravity. As shown by Mei (1973) for the Stokes standing
edge wave, the dynamic mean bottom pressure term in the x-momentum, tan �p� (�h)/�
which is missing from Phillips’ derivation, must be present here. Furthermore, (���h

( x) , ���h
( y))

in (2) are the mean turbulent bottom stress components.
In this problem the oscillatory edge wave motion is influenced by viscosity. In general;

for deep water waves, viscosity will affect the motion in the bulk of the fluid, while for
shallow water the viscous boundary layer at the bottom will dominate. In both cases the
potential part of the wave field, which is the relevant one in flux consideration, will
attenuate exponentially in time. For deep water the damping coefficient will be propor-
tional to the small viscosity coefficient, while in shallow water the damping coefficient will
be larger (no slip at the bottom). In this case it is proportional to the square of the viscosity
coefficient, e.g. Phillips (1977). In any case, we can obtain the potential part of the wave
field by using a friction that is linear in the wave velocity, yielding the small exponential
decay in time. Accordingly, we write the frictional force per unit mass on the linear wave
motion as �r�ũ, where the constant friction coefficient r depends on the viscosity. This
kind of friction does not introduce vorticity into the fluid, so we can apply the potential
theory of Stokes (1846). The linearized relation between the velocity potential �̃ and the
pressure then becomes

p̃ � �����̃

�t
� gz � r�̃�. (4)

In the present problem we consider waves with given frequency �. Then, due to friction,
the wave number � in the y-direction (along the coast) will be complex, i.e. � � k � i�,
where k � 0, and � is the small spatial attenuation coefficient (�/k �� 1). In fact, for a
general set of wave problems, the temporal attenuation coefficient is equal to the spatial
one times the group velocity of the wave (Gaster, 1962).

For the spatially damped Stokes edge wave, we can write the complex velocity potential

�̃ � �
ia�

k sin �
exp	�kxcos� � kzsin� � �y � i	ky � �xcos� � �zsin� � �t

,

(5)

where a is the wave amplitude. The potential part of the velocity is given by �ũ � ��̃, and it
is easily seen that (5) satisfies the Laplace equation, and the tangential flow condition at the
linearly sloping bottom. From the dynamic condition at the free surface, p̃( z � �̃) � 0, we
find to lowest order for the wave frequency and the spatial damping coefficient:

�2 � gk sin �, � �
kr

�
. (6)

Hence waves can propagate in both directions, becoming damped as they progress along
the y-axis. We here consider propagation to the right, i.e. take � � 0.
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To determine the damping rate, we need to quantify the friction coefficient r. If we
neglect the effect of a viscous boundary layer along the sloping bottom, which is
permissible for large depths (i.e. large x), we can determine the temporal wave attenuation
coefficient � from energy considerations (Phillips, 1977). Using real parts from potential
theory, we find for the total mean energy density that

E � �
0


 ��
�h

0 �

2
	ũ2 � ṽ2 � w̃2
dz � �g �

0

�̃

zdz�dx �
�ga2

4k cos �
exp	�2�t
, (7)

while the total dissipation D in this problem is readily found to be

D � �
��gka2

2 cos �
exp	�2�t
. (8)

Assuming that dE/dt � D (Phillips, 1977) we obtain

� � k2�, (9)

which is exactly half the value for ordinary deep-water surface waves. Utilizing Gaster
(1962), we find the spatial attenuation coefficient for this case:

� �
�

d�/dk
�

2k3�

�
. (10)

For shallow water waves the temporal damping coefficient is related to the eddy
viscosity coefficient � by the relation � � �/(2H�), where H is the mean depth, and � �
(2�/�)1/2 is the viscous boundary-layer thickness (Phillips, 1977). A typical depth here will
be that at the outer edge of the trapping region, i.e. we take H � tan �/k. Then, applying
Gaster’s result, the spatial attenuation coefficient in this case becomes:

� �
k2

tan � � �

2��
1/2

. (11)

It should be noted that (10) and (11) are the two extreme values for frictional damping in
our problem. For realistic field conditions the water will be shallow. Therefore, the value
given by (11) will in practice represent the magnitude of the spatial damping in our
problem. In any case, the friction coefficient is obtained from (6), i.e. r � ��/k.

Utilizing the real part of (5), it is trivial to calculate the right-hand side of (2). The x- and
y-components of the Lagrangian fluxes to second order in wave steepness then becomes

�U�

�t
� gh

���

�x
� �gka

� � 2

	kx cos2 � sin �
 exp	�2kx cos � � 2�y
 � ���h
	x
 /�. (12)

�V�

�t
� gh

���

�y
�

�

2k �gka

� �2

	kx sin 2� � sin �
 exp	�2kx cos � � 2�y
 � ���h
	y
 /�. (13)
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In this calculation we have neglected all terms proportional to (�/k)2, and higher orders.
As demonstrated by Mei (1973) for standing edge waves in the absence of friction, the first
term on the right-hand side of (12) is the divergence of the radiation stress component by
Longuet-Higgins and Stewart (1960) plus the contribution from the dynamic bottom
pressure, i.e. {��S11/� x � tan �p� (�h)}/�. It is easily verified that the first term on the
right-hand side of (13) is just {��S22/� y}/�, where S22 is given by Mei (1973) in the case
when � � 0.

Following Longuet-Higgins (1953), the Stokes drift (u� S, v�S) to second order in wave
steepness for this problem is easily obtained from the linear wave solutions. By integrating
in the vertical, we get the Stokes flux for this problem:

U� S � �
�h

0

u� Sdz � 0,

(14)

V� S � �
�h

0

v� Sdz �
gka2

2� sin2 �
	exp	�2kx cos � � exp	�2kx sec �

 exp	�2�y
.

The total wave momentum in the trapped region thus becomes:

M � � �
0




V� Sdx �
�ga2

4� cos �
exp	�2�y
. (15)

For inviscid flow (� � 0), and shallow water (cos � � 1), this result conforms to that of
Kenyon (1969). For the spatially damped Stokes edge wave, the energy density (7)
becomes

E �
�ga2

4k cos �
exp	�2�y
. (16)

From (15) and (16) we note that E � Mc, where c � �/k is the phase speed. This is in
accordance with Starr’s (1959) general result for waves.

For the total momentum balance in the trapping region, we integrate the alongshore
component (13) in the x-direction from the shore to infinity. Defining

Q � � �
0




V� dx, B � �g �
0




h�� dx, TB � �
0




�� �h
	y
 dx, (17)

we find for the rate of change of the total mean Lagrangian momentum Q that

�Q

�t
� �

�B

�y
�

�E

�y
� TB. (18)
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We note the interesting difference between the Stokes edge wave and plane surface waves
in the y-direction. In the latter case the radiation stress forcing on the right-hand side would
be ��(E/ 2)/� y for deep water waves and ��(3E/ 2)/� y for shallow water waves
(Longuet-Higgins and Stewart, 1960). For the Stokes edge wave the water appears shallow
for small x, and deep for large x. Hence, the cross-shore integration yields the in-between
value ��E/� y for the forcing term, as seen from (18).

3. Steady mass transport

We consider the steady mass transport. The turbulent bottom stresses are modeled by the
mean Eulerian velocities. In the direction normal to the coast the velocities are small. Here
we can neglect the bottom friction, and the balance to lowest order in this direction is
between the pressure gradient due to the mean surface slope, the radiation stress
component, and the mean dynamic pressure at the sloping bottom (Mei, 1973). From (12)
we then obtain for the mean surface slope

g�� � �
1

2 �gka cos �

� �2

exp	�2kx cos � � 2�y
. (19)

Assuming that the alongshore mean velocity is much larger than the cross-shore one, we
write the turbulent bottom stress in the y-direction:

�� �h
	y
 /� � cD�V� E�V� E/h2. (20)

where cD is a bottom drag coefficient. From Longuet-Higgins (1953) we have for the mean
alongshore Eulerian volume flux induced by friction:

V� E � V� L � V� S. (21)

where the Lagrangian flux V� L is equal to V� in (1), and V� S is given by (14). Inserting (19)
and (20) into (13), we obtain for the steady mean Eulerian volume flux:

V� E � �g�a2

2cD
� 1/2

x tan � exp	�kx cos � � �y
. (22)

The present approach separates the decay of wave momentum from the frictional influence
on the mean flow, which is physically sound (Jenkins, 1989; Weber and Melsom, 1993;
Ardhuin and Jenkins 2006). We note from (22) that it is the divergence of the radiation
stress through spatial wave decay that drives the mean Eulerian flow, while the magnitude
depends on the turbulence (the roughness etc.) at the sloping bottom. A turbulent decay of
wave energy (� � 0) cannot exist without a turbulent bottom drag on the mean flow, so the
limit: � small and finite, cD3 0 in (22), is unphysical.

From the continuity equation we obtain for the cross-shore flux in a steady state:
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�U� E

�x
� �

�	V� S � V� E


�y
. (23)

We then find, assuming that U� E ( x � 0) � 0:

U� E �
g�a2

2� sin2 � cos �
	sin2 � � exp	�2kx cos �


� cos2 � exp	�2kx sec �

 exp	�2�y


� �g�3a2

2cDk4�1/2 sin �

cos3 �
	1 � 	1 � kx cos �
 exp	�kx cos �

 exp	��y
.

(24)

We realize that from this that �U� E/V� E� � O(�/k), which justifies the neglect of the
cross-shore velocity in the bottom drag (20).

We now define the along-shore vertically-averaged Stokes drift �vS�, the and Eulerian
mean current �vE� by

�vS� � V� S/h, �vE� � V� E/h, (25)

where h � x tan �. The vertically-averaged Lagrangian drift thus becomes

�vL� � �vS� � �vE�. (26)

It easily seen that these average velocities have a maximum at the coast ( x � 0).
In order to relate our theoretical results to the natural environment, we consider shallow

water, and take � � 0.1 as a typical beach slope angle. High-frequency edge waves yield
the largest drift velocities, while low-frequency waves related to the motion of atmospheric
low-pressure systems have higher total mass fluxes (Kenyon, 1969). We here focus on drift
velocities, and use the classic observation by Munk (1949) in the surf-beat range, giving a
wave period T � 60 s, and a wave amplitude a � 0.1 m. For the modeling of tidal currents
in the Barents Sea typical values of the eddy viscosity and bottom drag coefficients are
� � 10�3 m2 s�1 (Nøst, 1994), and cD � 3 � 10�3 (Gjevik et al., 1994; Nøst, 1994),
respectively. At a sloping beach, eddy viscosity estimates are higher by a factor of 10
to 50 (Apotsos et al., 2007), mainly due to turbulence induced by breaking waves.
Reported drag coefficients seaward of the surf zone is comparable with those used for
tidal current modeling. From Feddersen et al. (2003) we find that cD � 2 � 10�3 outside
the surf zone. Normally, we will expect a considerable amount of turbulence within the
trapping region of edge waves. Without specifying the source of turbulence, which
is outside the scope of this paper, it seems reasonable to take � � 5 � 10�3 m2 s�1 and
cD � 2.5 � 10�3 in quantifying the drift induced by the Stokes edge wave. In Figure 2 we
have plotted the vertically-averaged velocities (25) and (26) as function of seaward
distance for the physical parameters given here. We note that the Eulerian mean velocity is
the dominating component of the Lagrangian drift velocity. In the present example we find
�vL� ( x � 0, y � 0) � 6 cm s�1. This is in fact a mean mass transport velocity which is
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comparable to traditional wind surge velocities. The drift velocity components decay
exponentially in the seaward direction. The alongshore drift becomes negligible outside the
wave trapping zone x � L, where L � �/k � 280 m in this example.

4. Discussion and concluding remarks

In this paper we have shown for the Stokes edge wave that the time rate of change of the
total Lagrangian mean momentum is forced by the divergence of the total energy density
�E/� y, independent of the bottom slope. This is exactly mid-way between the deep and
shallow water values for ordinary surface waves (Longuet-Higgins and Stewart, 1960).
This appears to be a novel result.

Furthermore, we have derived an analytical expression for the vertically-averaged
Lagrangian drift velocity induced by the Stokes edge wave. This drift is composed of a
Stokes drift component plus an Eulerian mean velocity, where the latter arises from the
effect of bottom friction. Examples from moderately sloping beaches show that the mean
Eulerian part of the velocity dominates, and are by far the largest contribution to the
Lagrangian drift velocity, as seen from Figure 2. This has not been reported in the literature
before.

Figure 2. Mean drift velocity components (25) and (26) at y � 0, vs. distance from the coast x.
Dashed line depicts �vS�, dotted and solid lines depict �vE�, and �vL�, respectively. The physical
parameters are: a � 0.1 m, T � 60 s, � � 5 � 10�3 m2 s�1, and cD � 2.5 � 10�3.

2009] 221Weber & Ghaffari: Mass transport in the Stokes edge wave



For given wave amplitude, the drift velocities increase with decreasing slope angle. In
the example given by Kenyon (1969), the slope angle was 0.02 radians, yielding a Stokes
drift at the shore of 15 cm s�1. This is rather extreme. For a more reasonable slope like 0.1
radians, as in the present example, the Stokes drift at the shore becomes 0.1 cm s�1, which
is negligible, compared with the Eulerian mean component of about 6 cm s�1, as seen from
Figure 2. The contribution from the Stokes drift increases with increasing amplitude. This
is obvious from Figure 3, where we have plotted the drift velocity components when the
amplitude is 0.3 m, which is probably on the larger side for high-frequency edge waves.
Still we must conclude that the Stokes drift contribution is negligibly small. The Stokes
drift contribution also increases with decreasing value of the viscosity coefficient.
However, even with a molecular viscosity coefficient (� � 1.2 � 10�6 m2 s�1) in this
problem, which is highly unrealistic, the Stokes drift contribution would be smaller than
the mean Eulerian flow.

The present approach does not resolve the viscous bottom boundary layer, so the results
should not be used to assess the drift of heavy bottom sediments. However, it yields the
vertically-averaged drift in the water column as function of the seaward distance. In
practice, the maximum of this drift current occurs near the shore. We think that this drift
may be of importance for the transport along the shore of biological material, pollutants, as
well as light sediments in suspension. The Stokes edge wave and the associated drift

Figure 3. Same as in Figure 2, but with wave amplitude a � 0.3 m.
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current can have either direction along a straight coast. This is important to keep in mind
when we try to estimate the whereabouts of effluents released in the near-shore zone.
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ABSTRACT

The Lagrangian mass transport in the Stokes surface edge wave is obtained from the vertically inte-
grated equations of momentum and mass in a viscous rotating ocean, correct to second order in wave
steepness. The analysis is valid for bottom slope angles β in the interval 0 < β ≤ π/2. Vertically-
averaged drift currents are obtained by dividing the fluxes by the local depth. The Lagrangian
mean current is composed of a Stokes drift (inherent in the waves) plus a mean Eulerian drift
current. The latter arises as a balance between the radiation stresses, the Coriolis force, and bottom
friction. Analytical solutions for the mean Eulerian current are obtained in the form of exponential
integrals. The relative importance of the Stokes drift to the Eulerian current in their contribution
to the Lagrangian drift velocity is investigated in detail. For given wavelength, the Eulerian current
dominates for medium and large values of β, while for moderate and small β, the Stokes drift
yields the main contribution to the Lagrangian drift. Since most natural beaches are characterized
by moderate or small slopes, one may only calculate the Stokes drift in order to assess the mean
drift of pollution and suspended material in the Stokes edge wave. The main future application
of the results for large β appears to be for comparison with laboratory experiments in rotating tanks.

1. Introduction

In recent years the interest in coastally trapped waves;
e.g. the Stokes edge wave, has risen considerably. This
is particularly so because they have been shown to be of
fundamental importance in the dynamics and the sedimen-
tology of the near-shore zone through their interaction with
ocean swell and surf to produce rip current patterns, beach
cusps and crescentic bars (LeBlond and Mysak 1978). The
non-linear mean mass transport in such waves has also been
investigated, e.g. Weber and Ghaffari (2009) for a non-
rotating ocean, where a comprehensive list of references to
earlier works in a homogeneous ocean can be found. The
edge wave problem has also been carried on to a stratified
ocean (Greenspan 1970). A thorough discussion of the lin-
ear edge wave problem in a rotating ocean with continuous
stratification can be found in Llewellyn Smith (2004). Fi-
nally, the nonlinear wave drift in interfacial edge waves in
a rotating viscous ocean has been investigated by Weber
and Stöylen (2011), using a shallow-water approach.

For a rotating ocean, Johns (1965) discovered that trapped
edge waves with frequency ω are restricted to slopes such
that cosβ > f/ω , where f is the constant Coriolis param-
eter. In Johns’ case the waves travelled northward along

a western boundary. For edge waves propagating with the
coast to the right in the Northern hemisphere, there is no
restriction on the slope (Weber 2012). In the limit where
the sloping bottom becomes a vertical wall, the edge wave
becomes a geostrophically balanced Kelvin wave.

In the present study we focus on the mean Lagrangian
mass transport induced by the Stokes edge wave. It is
this transport that advects neutral tracers and bottom
sediment in suspension along the shore in the region of
wave trapping. In order to obtain a robust formulation,
we consider the vertically integrated equations of momen-
tum and mass, e.g. Phillips (1977), and derive the mean
Lagrangian mass transport to second order in wave steep-
ness. The vertically-averaged drift current is obtained by
dividing the volume flux by the local depth. The total La-
grangian drift current can be written as the sum of the
Stokes drift (Stokes 1847) and a mean Eulerian current;
see e.g. Longuet-Higgins (1953). In the present paper the
Eulerian current arises as a balance between the radiation
stresses, the Coriolis force, and bottom friction. Earlier,
Kenyon (1969) has considered the pure Stokes drift in in-
viscid non-rotating edge waves by applying the hydrostatic
approximation, which is valid for small slope angles. How-
ever, the Stokes drift and the Eulerian mean current de-
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Fig. 1. Sketch depicting the coordinate system, with the
surface and sloping bottom included.

pend on the slope angle in different ways, so we need a
formulation that is valid for arbitrary slopes in order to
determine their relative importance for given β to the La-
grangian drift current. This constitutes the main aim of
the present paper.

2. Mathematical formulation

We consider trapped surface gravity waves in a homo-
geneous incompressible fluid with a linearly sloping bot-
tom. The motion is described in a Cartesian system, where
the x-axis is situated at the undisturbed surface and di-
rected towards the semi-infinite sea, the y-axis is directed
along the shore line, and the vertical z-axis is positive up-
wards; see the sketch in Fig. 1. The corresponding veloc-
ity components are (u, v, w). Furthermore, the pressure is
p and the constant density is ρ. The bottom is given by
z = −h = −x tanβ, where β(≤ π/2) is the slope angle,
and the free surface by z = η. At the free surface the
pressure is constant. The system rotates about the z-axis
with constant angular velocity f/2. We denote periodic
wave variables by a tilde, and the mean flow (averaged over
the wave period) by an over-bar. Mean horizontal volume
fluxes (Ū , V̄ ) are defined by

Ū =

η∫
−h

u dz, V̄ =

η∫
−h

v dz. (1)

These are actually the Lagrangian fluxes, since we inte-
grate between material boundaries (Phillips 1977; Weber
et al. 2006). By neglecting the effect of friction in the verti-
cal component of the momentum equation, Phillips (1977)
found for the mean pressure, correct to second order in
wave steepness, that

p̄

ρ
= g (η̄ − z) +

p̄d
ρ
. (2)

Here p̄d is the non-hydrostatic (dynamic) part given by

p̄d
ρ

= −w̃2 +
∂

∂x

0∫
z

ũw̃ dξ +
∂

∂y

0∫
z

ṽw̃ dξ, (3)

and g is the acceleration due to gravity. It is implicit here
that the wave (tilde) quantities are represented by the real
parts in a complex formulation. Integrating the governing
equations in the vertical, and utilizing the full nonlinear
boundary conditions at the free surface and the sloping
bottom, we obtain for the mean quantities, correct to sec-
ond order in wave steepness (Phillips 1977)

∂Ū

∂t
− fV̄ + gh

∂η̄

∂x
= − ∂

∂x

0∫
−h

p̄d
ρ

dz − g

2

∂

∂x
η̃2+

p̄d(−h)

ρ
tanβ − ∂

∂x

0∫
−h

ũũ dz − ∂

∂y

0∫
−h

ũṽ dz − τ1,

∂V̄

∂t
+ fŪ + gh

∂η̄

∂y
= − ∂

∂y

0∫
−h

p̄d
ρ

dz (4)

−g

2

∂

∂y
η̃2 − ∂

∂x

0∫
−h

ũṽ dz − ∂

∂y

0∫
−h

ṽṽ dz − τ2,

∂η̄

∂t
= −∂Ū

∂x
− ∂V̄

∂y
.

Here

τ1 ≡ τ̄ (x)

ρ

∣∣∣∣
−h

, τ2 ≡ τ̄ (y)

ρ

∣∣∣∣
−h

, (5)

are the mean turbulent bottom stress components per unit
density in the x and y-directions, respectively. Their ex-
plicit form will be specified later on.

As shown by Mei (1973) for the Stokes standing edge
wave, the mean bottom pressure term in the x-momentum
of (4), p̄d(−h) tanβ/ρ , which is missing from Phillips’
derivation, must be present here; see also Weber and Ghaf-
fari (2009).

3. Linear waves

In this problem the oscillatory wave motion is influ-
enced by viscosity acting in thin boundary layers at the
surface and at the bottom. Denoting the kinematic viscos-
ity by ν, the boundary layer thickness δ in a non-rotating
ocean becomes δ = (2ν/|ω|)1/2 (Longuet-Higgins 1953).
In a turbulent ocean ν is the eddy viscosity, and may take
different values in the top and bottom boundary layers.
For shallow water waves of the tidal type, there are two
bottom layers, δ = (2ν/|ω ± f |)1/2, associated with the
cyclonic and anticyclonic component of the solution (Sver-
drup 1927). Within the top and bottom boundary layers
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the wave velocity varies rapidly with height, while in the
interior the variation is that of inviscid waves. The only ef-
fect of friction here is that the wave amplitude varies slowly
in time or space due the boundary-condition coupling (no
surface stress, no-slip bottom) with the boundary-layer so-
lutions. In this analysis we assume that the boundary lay-
ers are thin, i.e. δ � h. Hence, in the integrals of the wave
forcing terms (with a tilde) in (4), the contributions from
the boundary-layer parts of the wave velocity can be ne-
glected, and we use the inviscid part of the solution (with
a damped amplitude); see e.g. Weber et al. (2009). In
shallow water with a no-slip bottom, the bottom bound-
ary layer dominates in determining the damping rate. For
a non-rotating ocean, this yields a temporal damping rate
(2ν|ω|)1/2/(4h). In a deep ocean the corresponding damp-
ing rate becomes 2νk2, where k is the wave number. In
both cases the correct attenuation of the interior motion
is obtained by replacing the viscous term ν∇2�̃u by −r�̃u in
the linearized momentum equation, where ∇ is the gradi-
ent operator and �̃u = (ũ, ṽ, w̃) is the linear wave velocity in
the interior. Here the friction coefficient r can be related to
ν for the case in question. Classifications like deep-water
or shallow-water depend on the value of λ/h, where λ is the
wavelength. Hence, for a given wavelength, the Stokes edge
wave at a certain distance offshore may be characterized as
a shallow-water wave for small slope angles, while for large
slopes the same wave may be a deep-water wave (here we
investigate slope angles in the interval 0 < β ≤ π/2 ). We
have therefore resorted to an averaging procedure for cal-
culating the damping rate of such waves for all admissible
β. A physically appealing and robust formulation is ob-
tained through the calculation the total wave energy E and
the total dissipation rate D in the trapped region. Then
the damping rate is determined by dE/dt = −D; see e.g.
Phillips (1977). We return to the detailed calculations in
Section 4. By adopting the approach outlined above, the
linearized equations for the damped interior wave motion
become:

ũt − fṽ = −1

ρ
p̃x − rũ,

ṽt + fũ = −1

ρ
p̃y − rṽ, (6)

w̃t = −1

ρ
p̃z − g − rw̃,

and
ũx + ṽy + w̃z = 0. (7)

Here subscripts denote partial differentiation. The effect
of friction on the wave motion is taken to be small. More
precisely, we assume that

r

|ω| � 1. (8)

By applying the curl and the divergence on (6), utilizing
(7), the velocity components are easily eliminated. We then
find for p̃:

(∂/∂t+ r)
2 ∇2p̃+ f2p̃zz = 0. (9)

We consider surface waves that are trapped at the coast,
i.e.

η̃ = η0 exp (−ax+ i (κy − ωt)) , (10)

where � (a) > 0, and η0 is an arbitrary constant. Further-
more, ω is the wave frequency and κ is the wave number in
the y-direction (along the coast). The dynamic boundary
condition in this problem becomes

p̃ = p0, z = η̃. (11)

We then infer from (10) and (11) that the pressure in the
linear case can be written (Johns 1965):

p̃ = p0 − ρgz + ρgη0 exp (−ax+ bz + i (κy − ωt)) , (12)

where b is a complex parameter. Inserting (12) into (6),
we obtain

ũ =
gη0 (−ra+ i (ωa+ fκ))

ω2 − f2 + 2iωr
exp (−ax+ bz + i (κy − ωt)) ,

(13)

ṽ =
gη0 (ωκ+ fa+ iκr)

ω2 − f2 + 2iωr
exp (−ax+ bz + i (κy − ωt)) ,

(14)

w̃ = − gη0b

r − iω
exp (−ax+ bz + i (κy − ωt)) . (15)

The kinematic boundary conditions for the linear problem
are

w̃ = η̃t, z = 0. (16)

and
w̃ = −ũ tanβ, z = −x tanβ (17)

In this analysis we take that the frequency is ω real, while
the wave number is complex, i.e. we consider spatially
damped waves. Then we can write

κ = k + iα,

a = ar + iai, (18)

b = br + ibi,

where α is the spatial damping rate. Trapping at the coast
requires ar > 0. In this analysis the parameters α, ai, bi
are related to the effect of friction. We show in Appendix
A that they all are proportional to the small parameter r;
see (8). Hence, in a non-dimensional formulation kα � 1,
kai � 1, kbi � 1. In this problem we assume that the
wave number k along the coast is given. The three com-
plex equations (9), (16), and (17) are sufficient to deter-
mine the friction-independent parameters ω, ar, br, and
the small friction-related quantities α, ai, bi. In this calcu-
lation we neglect squares or products of the small quantities
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r, α, ai, bi. The effects of rotation and friction will appear
through the non-dimensional parameters Ω and R, defined
by

Ω =
f

ω
, R =

r

ω
, (19)

where Ω is of order unity, and R is small, see (8). The
calculations of ω, ar, br and α, ai, bi are straightforward,
but somewhat time consuming. Therefore, we defer the
details to the Appendix A.

To calculate the mean quantities in (3) and (4), we need
real values of our wave solutions. Defining the exponential
decay q and the phase function θ by

q = −arx− αy + brz,

θ = −aix+ ky + biz − ωt, (20)

we can write the real part of the surface elevation

η̃ = η0 exp q0 cos θ0, (21)

where q0 = q|z=0 , θ0 = θ|z=0. The real part of the pressure
becomes

p̃ = p0 − ρgz + ρgη0 exp q cos θ. (22)

The velocity components (13)–(15) can be simplified by
using the expressions for α, a, b derived in the Appendix
A. We obtain for the real parts after some algebra

ũ = − gkη0 cosβ

ω (1− Ωcosβ)
exp q sin θ, (23)

ṽ =
gkη0

ω (1− Ωcosβ)
exp q cos θ, (24)

w̃ =
gkη0 sinβ

ω (1− Ωcosβ)
exp q sin θ. (25)

We note from (A16) that 1−Ωcosβ is always positive.
It is easily seen from (23) and (25) that w̃ = −ũ tanβ for all
q, θ, which shows that the wave motion in the Stokes edge
wave occurs in planes parallel to the sloping bottom. This
has been utilized by Weber (2012) to find exact solutions
for the Stokes edge wave in a rotating inviscid ocean in
Lagrangian coordinates.

4. The damping rate

As mentioned in Section 3, we use the formulation of
Phillips (1977) to relate the friction coefficient r to the eddy
viscosity ν. We find for the total mean energy density that

E =

∞∫
0

⎧⎪⎨
⎪⎩

0∫
−h

ρ

2
(ũ2 + ṽ2 + w̃2) dz + ρg

η̃∫
0

z dz

⎫⎪⎬
⎪⎭ dx

=
ρgη20
8k

[
2− Ωcosβ

cosβ − Ω

]
exp (−2αy) . (26)

The total dissipation rateD in this problem is readily found
to be

D = ρν

∞∫
0

⎧⎨
⎩

0∫
−h

⎡
⎣
(
∂�̃u

∂x

)2

+

(
∂�̃u

∂y

)2

+

(
∂�̃u

∂z

)2
⎤
⎦ dz

⎫⎬
⎭ dx

=
ρνgkη20

4

[
2 (1− Ωcosβ)

2
+Ω2 sin2 β

(cosβ − Ω) (1− Ωcosβ)
2

]
exp (−2αy) .

(27)

Here ν is the bulk eddy viscosity in the fluid. For time
damped waves we must have dE/dt = −D (Phillips 1977).
From Gaster (1962) we know that the transition from tem-
poral damping to spatial damping is obtain through d/dt −→
cgd/dy, were cg = dω/dk is the group velocity. Hence, for
the present problem

cgdE/dy = −D. (28)

From (A15) we obtain that

cg =
g sinβ

ω (2− Ωcosβ)
. (29)

Then, from (26)–(29), we find that the spatial attenuation
coefficient is related to the eddy viscosity through

α =

(
νk3

ω

) (
2 (1− Ωcosβ)

2
+Ω2 sin2 β

)
(1− Ωcosβ)

3 . (30)

Utilizing (A16), we find

α =
2νk2ω

g sinβ

[
1 +

1

2

(
fω

gk

)2
]
. (31)

For the non-rotating case (f = 0), we recover the result
α = 2νk3/ω from Weber and Ghaffari (2009). The friction
coefficient for the linear problem is obtained from (31) and
(A21):

r = 2νk2

[
1 +

1

2

(
fω

gk

)2
]
. (32)

We note that in this case the friction coefficient is directly
proportional to the eddy viscosity.

5. The mean flow

Utilizing (21)–(25), it is trivial to calculate the right-
hand side of (3). In this problem we note that ũṽ = 0.
Hence we can write the radiation stress components S1

and S2 in the x and y-directions, respectively by

S1 =

0∫
−h

p̄d
ρ
dz +

g

2
η̃2 +

0∫
−h

ũũdz. (33)
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S2 =

0∫
−h

p̄d
ρ
dz +

g

2
η̃2 +

0∫
−h

ṽṽdz. (34)

Utilizing that here ũũ = ṽṽ cos2 β, we can write S1 as

S1 = S2 − sin2 β

0∫
−h

ṽṽdz. (35)

Defining ∂P̄ /∂x = (p̄d(−h) tanβ)/ρ, the total wave-forcing
stress component S in the x-direction in (4) becomes

S = S1 − P̄ = S2 − sin2 β

0∫
−h

ṽṽdz − P̄ , (36)

see e.g., Mei (1973). Utilizing (21)–(25), we find that the
last two terms cancel exactly. Accordingly, we can write
S = S2, where

S =
1

4kω2 sinβ

[
gkη0

1− Ωcosβ

]2 [
2kx (cosβ − Ω) sin2 β+(

sin2 β +Ωcosβ
)
(1− Ωcosβ)− {Ω (1− Ωcosβ) cosβ}

exp (−2brx tanβ)] exp (−2αy − 2arx) . (37)

Hence, we find that the radiation stress component in the
y-direction also forces the flow in the x-direction. In (37),
ar, br are given by (A10) and (A19), respectively. In these
calculations we have neglected all terms proportional to
(α/k)

2
, and higher orders. We note that for Ω = 0, (37)

reduces to

S =

(
g2kη20 sinβ

4ω2

)
[2kx cosβ + 1] exp (−2αy − 2kx cosβ)

which is obtained from eqns. (12) and (13) of Weber and
Ghaffari (2009).

The x-and y-components of the Lagrangian fluxes to
second order in wave steepness then become

∂Ū

∂t
− fV̄ + gh

∂η̄

∂x
= −∂S

∂x
− τ1,

∂V̄

∂t
+ fŪ + gh

∂η̄

∂y
= −∂S

∂y
− τ2. (38)

It was demonstrated by Longuet-Higgins and Stewart
(1960) that the radiation stress forcing would be 1

2 (−∂E/∂y)
for deep water waves and 3

2 (−∂E/∂y) for shallow water
waves in a non-rotating ocean of constant depth. As pointed
out by Weber and Stöylen (2011), the relation between
the radiation stress components and the total wave en-
ergy depends on the wave type. For example, for Poincaré
waves in a shallow rotating ocean there is a velocity com-
ponent in the cross-wave direction that contributes to the
wave energy, but not to the radiation stress. Then, in this

case S2 = 1
2

(
3− f2/ω2

)
E/ρ. Since |ω| > |f | for Poincaré

waves, we have that S2 < 3E/ (2ρ) for this particular shal-
low water problem. For the Stokes edge wave we also have a
cross-wave velocity component, since the particles move in
planes parallel to the sloping bottom. We therefore would
expect a relation that differs from that of Longuet-Higgins
and Stewart. In addition, the wave amplitude here decays
exponentially in the cross-shore direction. It is therefore
natural to consider the wave energy in the entire trapped
region, i.e. (26). From (26) and (37) it is easy to see that

〈S〉 = E/ρ, (39)

where 〈S〉 = ∫ ∞
0

Sdx. This is exactly the same result as ob-
tained by Weber and Ghaffari (2009) for the non-rotating
Stokes edge wave, demonstrating that it is not the rota-
tion, but the sloping bottom that yields a value which is
in between the deep and shallow water values of Longuet-
Higgins and Stewart (1960).

Following Longuet-Higgins (1953), the Stokes drift to
second order in wave steepness for this problem is easily
obtained from the linear wave solutions (23)–(25).

By definition

v̄S =

(∫
ũdt

)
ṽx +

(∫
ṽdt

)
ṽy +

(∫
w̃dt

)
ṽz

=
ωkη20
sin2 β

exp (−2arx+ 2brz − 2αy) . (40)

We note that the Stokes drift has a maximum at the shore-
line. Here

v̄S(x = 0, z = 0) =
ωkη20
sin2 β

exp(−2αy). (41)

The alongshore Stokes flux for this problem becomes:

V̄S =

0∫
−h

[(∫
ũdt

)
ṽx +

(∫
ṽdt

)
ṽy +

(∫
w̃dt

)
ṽz

]
dz

=
1

2ω (1− Ωcosβ) sinβ

[
gkη0
ω

]2
[1−

exp (−2brx tanβ)] exp (−2arx− 2αy) . (42)

In the vertical wall limit (β = π/2) we must treat this
problem with some care. Now, from (A15), (A10) and
(A19) we find ω2 = gk, ar = −fk/ω, br = k. The Stokes
drift (40) then becomes

v̄S(β = π/2) = ωkη20 exp

(
2fk

ω
x+ 2kz − 2αy

)
. (43)

We note that trapping now requires ω < 0. The result-
ing wave motion is a coastal Kelvin wave propagating with
the coast (the vertical wall) to the right in the northern
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hemisphere. The trapping distance is the baroclinic Rossby
radius (|ω|/k/f). In this limit the Stokes flux must be ob-
tained from (43) by integrating in the vertical from minus
infinity to zero, yielding

V̄s(β = π/2) =
1

2
ωη20 exp

(
2kf

ω
x− 2αy

)
. (44)

For slope angles in the interval 0 < β < π/2 we can apply
(42) and expand the exponential functions for small x. We
then obtain

V̄S =
kωη20

sinβ cosβ
x exp(−2αy). (45)

In this paper we shall work with depth-averaged drift ve-
locities. We define the depth-averaged Stokes drift by

v̂S =
V̄S

h
, (46)

where h = x tanβ, and V̄S is given by (42). By comparison
with (41), we note from (45) and (46) that v̂S yields the
correct Stokes drift at the shoreline, i.e.

v̂S(x = 0) = v̄S(x = 0, z = 0) = vS0 exp(−2αy), (47)

where

vS0 =
kωη20
sin2 β

. (48)

The Stokes drift is basically related to the net particle
motion in inviscid waves, and there is no Stokes drift in the
direction perpendicular to the wave propagation direction.
In the presence of friction in the fluid, Longuet-Higgins for-
mulation yields a small drift in the cross-wave direction, be-
ing proportional to the small friction coefficient. This part
is inseparable from the frictional mean Eulerian current in
the cross-wave direction, into which it can be included; see
e.g., Weber and Drivdal (2012). Hence, we take that the
Stokes flux in the x-direction, ŪS , is zero. Thus, the total
wave momentum in the trapped region becomes from (42)

Mw = ρ

∞∫
0

V̄Sdx =
ρgη20

4ω (cosβ − Ω)
exp (−2αy) . (49)

We note that for β = π/2, the total wave momentum could
equally well have been obtain by integrating (44) for the
vertical wall limit. By comparing with the total energy
density (26), we note that for this problem E = Mwc

∗,
where c∗ = (2− Ωcosβ)ω/ (2k). In a non-rotating ocean
f = 0, c∗ becomes equal to the phase speed c = ω/k, so
then E = Mwc; see e.g. Starr (1959).

When we express the solutions as expansions in power
series after the wave steepness as a small parameter, which
is the basis of the derivation of the flux equations (4), we
must require that the second order Stokes velocity must be

considerably smaller than the linear velocity field, which
in turn must be smaller than the phase speed of the wave.
From (24) and (48), utilizing (A16), the conditions | v̂S |�|
ṽ | and | ṽ |�| ω | /k both lead to

kη0 � sinβ. (50)

This condition must be fulfilled for the Stokes edge wave
when applying the non-linear theory for calculating wave-
induced mean drift currents in practical cases.

6. The steady Eulerian mass transport

As first shown by Longuet-Higgins (1953), the mean
wave-induced Lagrangian velocity could be written as a
sum of the Stokes drift and a mean Eulerian current, where
the latter depended on friction. Hence, the mean Eulerian
volume fluxes in this problem can be written

ŪE = ŪL,

V̄E = V̄L − V̄S . (51)

where the Lagrangian fluxes
(
ŪL, V̄L

)
are equal to

(
Ū , V̄

)
in (38), and

(
V̄S

)
is given by (40).

For a given wave field (and Stokes drift) at t = 0, as
assumed in this paper, the solutions for ŪE and V̄E will
contain a transient part. For a complete solution we must
state the appropriate initial conditions for this flow, which
we really do not know. But as time moves on, the solution
will equilibrate towards a steady state, independent of the
initial conditions. We here focus on this asymptotic so-
lution for large t. The steady state governing momentum
equations (38) then reduce to

−fV̄E + gh
∂η̄

∂x
= fV̄S − ∂S

∂x
− τ1,

fŪE + gh
∂η̄

∂y
= −∂S

∂y
− τ2. (52)

In the steady case, utilizing (51), the integrated continuity
equation in (4) becomes

∂ŪE

∂x
+

∂V̄E

∂y
= −∂V̄S

∂y
. (53)

At the coast we must have

ŪE

∣∣
x=0

= 0. (54)

We consider mean flow trapped over the slope. Then, we
must require

V̄E → 0, x → ∞. (55)

The mean motion in the cross-shore direction is small,
and we neglect the effect of friction in this direction. Then,
from the curl of (52)

gη̄y tanβ = −τ2x. (56)

6



Assuming that η̄ ∝ exp (−2αy), we find that

ghη̄x =
1

2α
xτ2xx. (57)

Then by inserting into the cross-shore component of (52):

xτ2xx − 2αfV̄E = 2α
(
fV̄S − Sx

)
. (58)

In a vertically integrated approach the friction term in
(58) must be modelled. Often one uses a formulation where
the bottom stress is proportional to the square of the mean
velocity in the problem. A similar effect is obtained by
defining a friction coefficient that is proportional to the
bottom drag coefficient times a characteristic velocity; see
e.g. Nöst (1994). Then the bottom friction becomes linear
in the mean velocity, which simplifies the analysis. We use
this approach here, and take

τ2 = Kv̂E . (59)

where v̂E = V̄E/h is the vertically averaged Eulerian ve-
locity, and K is a constant friction coefficient (dimension
velocity). The present approach separates the decay of
wave momentum from the frictional influence on the mean
flow as suggested in the literature (Jenkins 1989; Weber
and Melsom 1993; Ardhuin and Jenkins 2006). Using (59),
and introducing the vertically averaged velocities, we find
from (58) when x �= 0:

v̂Exx − 2α tanβ

K
v̂E =

2α

K

[
(f tanβ) v̂S − 1

x
Sx

]
. (60)

Applying (54), the y-component of (52) at the coast re-
duces to

τ2 = 2αS, x = 0. (61)

Then, utilizing (37) and (59), (61) yields the boundary
condition

v̂E = vE0 exp (−2αy) , x = 0, (62)

where

vE0 =
αgη20
2K

. (63)

Using (31), we find

vE0 =
νk

K

(
kωη20
sinβ

)[
1 +

1

2

(
fω

gk

)2
]
. (64)

Furthermore, for trapped mean motion, we must require

v̂E → 0, x → ∞. (65)

In (64) the ratio νk/K expresses the balance between the
forcing from the wave field (through the radiation stress)
and the bottom stress on the mean flow. This ratio may
vary numerically for various wave conditions, but from a

physical balance point of view, its magnitude should be of
order unity.

We now introduce a non-dimensional alongshore Eule-
rian drift velocity QE(x) by

QE =
v̂E

vE0 exp (−2αy)
. (66)

We also define a non-dimensional cross-shore coordinate
X = 2arx. The governing equation (60) then becomes

Q
′′
E − γ2QE = exp (−X) +

1

X
[F1 exp (−X) + F2 (−σX)] ,

(67)
where the primes denote differentiation with respect to X.
The boundary conditions are

QE = 1, X = 0,

QE → 0, X → ∞. (68)

In (67) we have defined

γ2 =
αf tanβ

2Kk2

[
1− Ωcosβ

cosβ − Ω

]2
(69)

and

σ =
1− Ωcosβ

(cosβ − Ω) cosβ
. (70)

Utilizing (37) and (40), we find that the coefficients in (67)
can be written

F1 =
Ω

(
1− 2Ω cosβ + cos2 β

)
(cosβ − Ω) sin2 β

,

F2 =− 2Ω (1− Ωcosβ)

(cosβ − Ω) sin2 β
. (71)

Before attempting to solve (67), we observe the follow-
ing: To have solutions that are trapped over the slope in a
rotating ocean (f > 0), we must require that the comple-
mentary part of the solution has an exponential behaviour,
i.e. that γ2 > 0. For ω > 0, α > 0, and β in the range
0 < β < β∗, i.e. waves propagating with the coast to the
left in the northern hemisphere, this is fine. But for waves
propagating with the coast to the right, we have ω < 0,
α < 0, and hence γ2 < 0. This yields a sinusoidal comple-
mentary part with no seaward limitation. Hence, for the
damped Stokes edge wave that propagates with the coast to
the right, the induced Stokes drift is trapped over the slope
(since the primary wave field is trapped), but the friction-
ally induced mean Eulerian current is not. Accordingly,
there is no steady trapped solution to the Eulerian drift
problem induced by such waves. Any transient behaviour
will not be pursued here. When the effect of the earth’s
rotation can be neglected (f = 0), then γ = 0, and we have
trapping of the Eulerian flow also when ω < 0. The details
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concerning the solution of (67) have been deferred to the
Appendix B.

We introduce the non-dimensional average Stokes drift
velocity QS from (46) and (63) by

QS =
v̂S

vE0 exp (−2αy)
= (72)

2Kk2 (cosβ − Ω) cosβ

αω (1− Ωcosβ) sin3 β

1

X
[exp (−X)− exp (−σX)] .

The expression for QE is given by (B10). The vertically-
averaged non-dimensional Lagrangian drift velocityQL thus
becomes

QL = QE +QS . (73)

7. Results

a. General discussion

In order to quantify the derived wave-induced mean
currents, we must assess the values of the physical param-
eters in this problem. For the modelling of tidal currents
in the Barents Sea a typical value of the eddy viscosity is
ν = 10−3m2 s−1 (Nöst 1994). At a sloping beach, eddy vis-
cosity estimates are higher by a factor of 10 to 50 (Apotsos
et al. 2007), mainly due to turbulence induced by breaking
waves. Without specifying the source of turbulence, which
is outside the scope of this paper, it seems reasonable to
take ν = 1−5×10−2 m2s−1 in quantifying the drift induced
by trapped waves, see Mei et al. (1998). By specifying the
eddy-viscosity ν that acts to dampen the linear wave field,
we obtain the friction coefficient r and the spatial wave at-
tenuation coefficient α from (32) and (A21) for prescribed
wavelength and bottom slope. As explained in the previous
section, the relation between the linear friction coefficient
K and the bottom drag coefficient cB for the mean flow
can be approximated as K = cBvB , where vB is a typical
near-bottom mean velocity (Gjevik et al. 1994; Nöst 1994).

The bottom drag coefficient depends on the seabed con-
ditions, e.g. the presence of ripples (Longuet-Higgins 2005).
Very close to the bottom in shallow waters the mean hori-
zontal stresses are partly used to accelerate sediment par-
ticles that are kept in suspension by the oscillating wave
motion. This part of the stress is not felt by the water
column just above the rippled bed. The effect of the sedi-
ment transport must be reflected in the value of the bottom
drag coefficient. For a corrugated bed cB = 0.1 appears to
be an appropriate value for short waves (Longuet-Higgins
2005). For longer waves and deeper waters, cB will be con-
siderably smaller, typically cB ∼ 10−3; see Gjevik et al.
(1994); Nöst (1994). Taking vB ∼ 10−2 ms−1, we obtain
that K ∼ 10−3 ms−1 and K ∼ 10−5 ms−1 in the short and
long wave limit, respectively.

In discussing the general properties of the solutions,
we take that the wavelength λ = 2π/k is 1 km,and use

β = 1 deg

β = 45 deg

β = 85 deg

Fig. 2. Non-dimensional mean Eulerian current for λ =
1km and β = 1◦ (thin solid line), β = 30◦ (dashed line),
β = 45◦ (dotted line), β = 85◦ (thick solid line) as a func-
tion of the seaward coordinate.

f = 1.2 × 10−4 s−1. For waves travelling with the coast
to the left (ω > 0), the critical slope angle (A18) becomes
β∗ ≈ 89.9◦, which is very close to the vertical wall limit.
Hence, in practice, the admissible slopes in this example
belong to the interval 0 < β < π/2. In this case Ω =
f/ω = 3.7× 10−3, so the effect of the earth’s rotation can
be neglected. Then in the solution (72) for the Stokes drift
σ = 1/ cos2 β > 1. Furthermore, in this example we have
taken ν = 1× 10−2 m−2s−1 and K = 10−5 ms−1 according
to the discussion above.

In Fig. (2) we have displayed QE from (B10) for various
values of the bottom slope (β = 1◦, 30◦, 45◦, 85◦). We note
from the figure that larger slope angles means wider trap-
ping region. If we compare with the Stokes drift in (72),
which varies over the shelf as (exp (−X)− exp (−σX)) / (σ − 1),
where X is non-dimensional, we find that this is very close
to the variation of QE in Fig. (2) for small and moderate
angles.

Although the spatial variation over the shelf for QE and
QS is not very different for small and moderate slopes, this
is not so for the maximum current values at the shoreline,
which depends very much on the slope angle. In fact, by
forming the ratio between the mean Eulerian current and
the Stokes drift at the shore, we find from (48) and (64):

d =
vE0

vS0
=

νk

K
sinβ

[
1 +

1

2

(
fω

gk

)2
]
. (74)

We note immediately that increasing values of f act to
favour vE0. However, for the wavelengths considered here,
the last term in the parenthesis is negligible. Then the
relative strength between vE0 and vS0 depends on friction
and wave slope. We have argued before that for the fric-
tional influence, there should be a balance so νk/K should
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β = 1.0 deg

β = 45 deg

β = 2.8 deg

Fig. 3. Non-dimensional Eulerian mean current QE for
β = 2.8◦ (solid line) and non-dimensional Stokes drift cur-
rent QS (broken line) as a functions of the seaward coor-
dinate. Here λ = 1km, and β varies from 1◦ to 45◦.

be of order unity. In the present example this ratio is 6.3.
Hence, in (74), the slope angle is the crucial parameter. In
Fig. (3) we have plotted the non-dimensional currents QE

and QS for various values of the slope angle. As noted from
Fig. (2), the spatial variation of QS is nearly the same for
small and moderate slopes. In the figure we have chosen
QE (β = 2.8◦). We see from Fig. (3) that for small angles,
the Stokes drift dominates in this example. The currents
are comparable in magnitude for β = 2.8◦. We have con-
sidered β = 1◦ as the lower limit. This is the slope used
by Kenyon (1969) in his calculations of the Stokes drift.

In reality, bottom slopes are not very steep. In fact,
in the practical examples we consider at the end of this
section, they are less than 10 degrees. However, our calcu-
lations for ω > 0 are valid for all β < β∗, see (A18). Such
solutions may be convenient for comparison with experi-
ments in wave tanks, where for laboratory model purposes,
a steep slope may be advantageous.

In practice, there is a limitation to the wave number in
this problem. The theory of the Stokes edge wave requires
a constant bottom slope, but in real cases the (approxi-
mately linear) bottom profile may change quite abruptly
at a distance L from the shore line. To have trapped waves
within the constant slope region, we then must require

arL > 1 (75)

where ar is given by (A10). For not too long waves, and
normal small slope angles, we can use the non-rotating
limit. Then (75) reduces to

k > L−1 (76)

b. Specific case studies

The existence of edge waves on natural shorelines has
been inferred from the periodic spacing of rip currents
(Bowen and Inman 1969) and forming of beach cusps and
crescentic bars (Bowen and Inman 1971). The theory de-
veloped here is valid for slope angles in the interval 0 <
β ≤ π/2. However, in natural environments most beach
slopes are quite gentle. In order to relate our theoretical
results to the natural environment, we consider two differ-
ent locations where we find short and long waves, respec-
tively. First, Slapton Beach (Huntley 1973), and second
Lake Michigan (Donn and Ewing 1956). In both cases the
depth increases slowly from the coast. As noted before, in
such cases the Stokes drift is comparable to or exceeds the
mean Eulerian current.

For short waves we used the field observation at Slap-
ton Beach by Huntley (1973). They demonstrated that the
observed wave field at 0.1 Hz did represent a Stokes stand-
ing edge wave. For such high frequency waves the effect
of the earth’s rotation can safely be neglected. The field
survey yielded a wavelength λ of about 30m. The beach
profile in the inter-tidal zone could be approximated by
the expression h = h0(1 − exp(−ax)), where h0 = 7.05m,
and a = 0.03m−1. Since the trapping distance in this
case is about 30m from the shore line, we take the equiv-
alent linear slope angle to be β = 10◦. Based on the ob-
served alongshore and cross-shore velocities, we estimate
a wave amplitude of 0.2m for the standing edge wave. It
seems reasonable to use half the standing wave amplitude
for our progressive wave, i.e., we take η0 = 0.1m in our
calculations. With these parameters the Stokes drift at
coast becomes vS0 = 4.4 cm s−1. We use the eddy vis-
cosity and bottom drag coefficient values for short waves
(ν = 3 × 10−2 m2 s−1, K = 10−3 ms−1). From (63), we
find vE0 = 4.8 cm s−1, which is comparable to the Stokes
drift. Here νk/K = 6.3. In this example kη0 = 0.02 and
sinβ = 0.17, which fulfils (50) quite well.

Our second example is from Lake Michigan. The disas-
trous surge in 1954 and the resulting gravity waves, were
explained by Ewing et al. (1954) as a resonant coupling be-
tween a fast-moving atmospheric squall line and the Stokes
edge wave. They utilized the theory of edge waves (Stokes
1846; Ursell 1951, 1952), in order to explain the long-period
high waves (periods of order 100min) which were corre-
lated with atmospheric pressure-jumps (Donn and Ewing
1956). In Lake Michigan the Stokes edge wave propagated
with the coast to the right (ω < 0), so formally the wave-
induced Eulerian current is not trapped to the coast in the
presence of rotation. However, the effect of rotation is neg-
ligible for edge waves with periods of order 100min in this
body of water (fω/gk = 2.7 × 10−3 � 1). In the Lake
Michigan, storm surge data from Waukegan yields a typi-
cal wave period of 109min, and a wave amplitude of about
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3m. A typical slope angle for Lake Michigan is β = 0.17◦,
and f = 1.01× 10−4 s. Then, with ω = −9.61× 10−4 s−1,
we find that vS0 = −3.4 cm s−1. Using ν = 3× 10−2 m2s−1

and K = 10−5 ms−1, we obtain vE0 ∼ 10−3 cm s−1, so the
Stokes drift dominates completely in this example. Despite
the large amplitude, the Stokes drift is quite moderate.
This is because the waves are quite long. With a period
109min, we find for the wave number in this problem that
k = 3.5 × 10−5 m−1, then λ ∼ 180 km. Finally, in this
example η0k = 1.1 × 10−4, and sinβ = 3.0 × 10−3 which
fulfils (50) very well.

8. Discussion and concluding remarks

In a previous paper (Weber and Ghaffari 2009), we in-
vestigated the nonlinear mass transport in the Stokes sur-
face edge wave in an unbounded non-rotating ocean. This
was done by applying an Eulerian description of motion,
and expanding the solution in series after wave steepness
as a small parameter. Utilizing almost same approach,
we have derived an analytical expression for the vertically-
averaged Lagrangian drift velocity induced by the Stokes
edge wave in a rotating ocean. This drift is composed of
a Stokes drift component plus an Eulerian mean velocity,
where the former is inherent in the wave motion and latter
arises from the effect of friction. Similar to the non-rotating
case, the time rate of change of the total Lagrangian mo-
mentum flux in the wave direction (y-direction) is forced
by the divergence of the total energy density −∂E/∂y,
which is mid-way between the deep and shallow water val-
ues for non-rotating surface waves in an ocean of constant
depth (Longuet-Higgins and Stewart 1960). The main aim
of this paper has been to quantify the contributions of
the Stokes and Eulerian mean currents to the vertically-
averaged mean Lagrangian drift velocity.

The calculations show that the Stokes drift and the Eu-
lerian current attain their maximum values at the shore
line. For wave motion in which the earth’s rotation be-
come important, we find that this effect tends to enhance
the mean Eulerian current for given bottom slope. When
we can neglect the effect of the earth’s rotation, the relative
importance of the mean Eulerian current to the Stokes drift
can be expressed as vE0/vS0 = νk sinβ/K, demonstrating
that, for given wavelength, the Stokes drift tends to dom-
inate for small bottom slopes. This is a novel result, and
shows that for most natural beach or coastal situations it
is sufficient to calculate the Stokes drift in the Stokes edge
wave in order to obtain the main part of the Lagrangian
alongshore drift velocity.

The transfer of mean momentum from damped waves to
mean Eulerian currents follows from the fundamental con-
cept of conservation of total momentum. To balance the
Eulerian flow, friction is needed. In the present paper we
use a simple linear model for the bottom friction that does

this task. Since ocean flows are turbulent, we have to use
eddy values for the friction coefficients. Although these co-
efficients are assessed from physical reasoning, their values
can never be established with absolute certainty. Despite
those objections, it is of fundamental importance to include
the wave-induced mean Eulerian current as a part of the to-
tal drift current. However, natural beach or coastal slopes
are rather gentle. As demonstrated in the present paper
for the Stokes edge wave, this tends to enhance the Stokes
drift relative to the mean Eulerian current in their contri-
bution to the mean Lagrangian drift velocity. The Stokes
drift follows basically from inviscid wave theory, and easy
to calculate. For steeper slopes, the importance of the Eu-
lerian current increases, as noted from our example from
Slapton Beach. Since steep slopes are easily made in the
laboratory, our analytical results for large bottom slope
may be of importance for comparisons with (future) lab-
oratory experiments in rotating tanks. In conclusion, we
find that the Stokes edge wave induces a mean drift veloc-
ity that may be of importance for the alongshore transport
of pollutants, biological materials and suspended loads.
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APPENDIX A

Determination of Parameters

Inserting from (10) and (11) into the boundary condi-
tion (16), we obtain

ω2 + iωr − gb = 0. (A1)

To lowest order in the small quantities, we obtain from the
real and imaginary parts

ω2 = gbr, (A2)

bi =
ωr

g
= Rbr. (A3)

By inserting (12) into (9), utilizing (A3), we obtain from
the real and imaginary parts, respectively,(

1− Ω2
)
b2r + a2r − k2 = 0, (A4)

−kα+ arai +Rb2r = 0. (A5)

Inserting (13) and (15) into the boundary condition (17),
again utilizing (A3), we obtain(

1− Ω2
)
br − (Ωk + ar) tanβ = 0, (A6)
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(
1− Ω2

)
(Ωα+ ai +Rar)− 2R (Ωk + ar) = 0. (A7)

From (A4) and (A6) we find expressions for ar and br. In
particular

ar =
k

1− Ω2 cos2 β

(−Ω+ Ωcos2 β ± (
1− Ω2

)
cosβ

)
,

(A8)
For two signs in (A8), we apply the identities

−Ω+ Ωcos2 β + cosβ − Ω2 cosβ =

(cosβ − Ω) (Ω cosβ + 1) ,

−Ω+ Ωcos2 β − cosβ +Ω2 cosβ = (A9)

− (cosβ +Ω) (Ω cosβ − 1) .

Hence, for the plus and minus signs, respectively

ar+ =
k (cosβ − Ω)

1− Ωcosβ
, (A10)

ar− = −k (Ω + cosβ)

1 + Ω cosβ
. (A11)

In this study we take that f > 0 (Northern hemisphere),
so the sign of Ω = f/ω depends solely on ω. As noted in
connection with (10), trapping at the coast requires ar >
0. To have trapped waves that travel in both directions
along the coast (Ω > 0, Ω < 0), we must exclude the ar−
solution. This is shown as follows: From (A2) and (A6) we
have a general expression for ar:

ar =
(1− Ω2)ω2

g tanβ
− kΩ. (A12)

By taking ar− = ar we readily obtain

ω2 + (f cosβ)ω + gk sinβ = 0. (A13)

Hence

1 + Ωcosβ = −gk sinβ

ω2
< 0. (A14)

Obviously, this can not be true for Ω > 0. For Ω < 0,
(A14) requires Ω < −1/ cosβ. But in this case we note
from (A11) that ar− < 0. Hence ar− must be discarded
for Ω > 0 as well as for Ω < 0. For ar+ = ar in (A12), we
obtain

ω2 − (f cosβ)ω − gk sinβ = 0. (A15)

Now

1− Ωcosβ =
gk sinβ

ω2
> 0. (A16)

In this case we note that ar+ > 0 for all ω < 0 (waves
with the coast to the right). For waves with the coast to
the left (ω > 0), we see from (A10) that trapping requires
cosβ > Ω (Johns 1965). The correct dispersion relation

for this problem is (A15), leading to the two roots (Weber
2012)

ω1 =
1

2
f cosβ +

1

2

(
f2 cos2 β + 4gk sinβ

)1/2
> 0,

ω2 =
1

2
f cosβ − 1

2

(
f2 cos2 β + 4gk sinβ

)1/2
< 0. (A17)

Here ω1 is the frequency of a trapped wave that travels with
the coast to the left, while ω2 represents a wave travelling
with the coast to the right in the northern hemisphere. The
limiting trapping angle β∗ for ω1 is given in Weber (2012).
Inserting cosβ∗ = f/ω1 (β

∗) into (A15), yields

β∗ = arcsin
((

δ2 + 1
)1/2 − δ

)
, (A18)

where δ = f2/ (2gk). For β > β∗, there exists no trapped
wave traveling with the coast to the left. With ar = ar+,
we obtain from (A6):

br =
k sinβ

1− Ωcosβ
. (A19)

Then, from (A3):

bi =
Rk sinβ

1− Ωcosβ
. (A20)

By combining (A5) and (A7), we obtain for the damping
rate

α =
Rk

1− Ωcosβ
. (A21)

Since 1 − Ω1,2 cosβ > 0, see (A16), we note that α > 0
for ω = ω1 > 0, and α < 0 for ω = ω2 < 0. In the latter
case the propagation is in the negative y-direction, and we
consider damped trapped waves in the interval −∞ < y ≤
0, i.e. exp (−αy) ≤ 1 in (21)–(25). Finally, by inserting
into (A5), we obtain

ai =
Rk cosβ

1− Ωcosβ
. (A22)

APPENDIX B

Analytical solution for the mean Eulerian flow

An analytical solution of (67) can be found in terms of
exponential integrals; see e.g. Weber and Stöylen (2011).
Assuming that γ2 is a positive constant, the complemen-

tary part Q
(c)
E of the solution becomes

Q
(c)
E = C1 exp (γX) + C2 exp (−γX) , (B1)

where C1, C2 are constants. Applying the variation of

parameters method, we write the particular solution Q
(p)
E

as

Q
(p)
E = m1 (X) exp (γX) +m2 (X) exp (−γX) . (B2)
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The functions m1, m2 are then determined by

m
′
1 exp (γX) +m

′
2 exp (−γX) = 0,

γm
′
1 exp (γX)− γm

′
2 exp (−γX) = G (X) , (B3)

where

G (X) = exp (−X) +
1

X
[F1 exp (−X) + F2 exp (−σX)] .

(B4)
The Wronskian in this problem is −2γ . Hence we find

m1 =
1

2γ

∫
exp (−γX)G (X) dX,

m2 =− 1

2γ

∫
exp (γX)G (X) dX. (B5)

We can express the terms with a singularity at X = 0
as exponential integrals Ei, e.g. Abramowitz and Stegun
(1972). By definition

Ei (X) =

X∫
−∞

exp (t)

t
dt. (B6)

Hence (B2) can be written

Q
(p)
E = − 1

γ2 − 1
exp (−X) (B7)

+
F1

2γ
[exp (γX)Ei (− (γ + 1)X)− exp (−γX)Ei ((γ − 1)X)]

+
F2

2γ
[exp (γX)Ei (− (γ + σ)X)− exp (−γX)Ei ((γ − σ)X)] .

For the special case γ = 1, m1 in (B5) becomes unaltered,
while

m2 = −1

2
[X + F1 lnX + F2Ei ((1− σ)X)] . (B8)

To satisfy the boundary conditions (68), we must require
for the complementary solution (B1) that

C1 =0,

C2 = 1−Q
(p)
E

∣∣∣
x→0+

(B9)

Inserting from (B7) and (B9), the complete solution for the
non-dimensional mean Eulerian drift velocity becomes

QE = C2 exp (−γX) +Q
(p)
E (B10)
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• The Stokes and mean Eulerian drifts are trapped to the coast.

• The non-linear transports yield a jet-like flow along the southern Caspian coast.

• While the Stokes flux is zero, the Eulerian flux is not.

• The wave-induced drift may contribute to the mean circulation in the Caspian Sea.
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a b s t r a c t

We investigate theoretically the mass transport in internal coastal Kelvin waves by integrating the

horizontal momentum equations in the vertical. Applying a perturbation method, the time-averaged

Lagrangian horizontal fluxes are determined to second order in wave steepness. The linear wave field is

expanded in the vertical using orthogonal functions. Due to the orthogonality property of these functions,

formulae for the non-linear Stokes drift and themean vertically-averaged Eulerian transport driven by the

radiation stress can be derived for arbitrary vertical variation of the Brunt–Väisälä frequencyN . For values

of N typical of the thermocline in the Caspian Sea, the calculation of the non-linear transports yields a

jet-like mean flow along the coast, limited in the off-shore direction by the internal Rossby radius. It is

suggested that this wave-induced mean drift may contribute to the mean circulation in the Caspian Sea.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

Most bodies of water at mid and lower latitudes have a pro-
nounced vertical stratification. Together with the presence of a
relatively straight coastline, this stratification may support inter-
nal Kelvin waves, being trapped in the region between the coast
and the internal Rossby radius. For a small sea, like the Caspian
Sea, with negligible tidal forcing, and a typical length scale of less
than 1000 km, internal waves appear to be generated by tempo-
ral/spatial variations of the meso-scale wind field. In the south-
western part of the Caspian Sea, we find a strong thermocline
around 60m depth [1], which is much less than the total depth
of the basin. To discuss the dynamics of such regions, a reduced-
gravity model is often applied [2,3]. In this approach there are two
layers of constant density, where the upper is thin and active, and
the lower is very deep and passive with negligible velocity. Then,
by replacing the acceleration due to gravity by the reduced grav-
ity, the interfacial Kelvin wave can be obtained directly by analogy

∗ Corresponding author. Tel.: +47 22855826.

E-mail address: j.e.weber@geo.uio.no (J.E.H. Weber).

with the barotropic wave. However, the reduced-gravity model
filters out higher baroclinic modes, and will not be used here. In
addition, it yields an erroneous result for the Stokes drift, as shown
in [4].

The main focus of the present study is the mean drift induced
by internal coastal Kelvin waves. Such waves possess mean
momentum, and hence induce a Stokes drift. In addition, since
the waves are damped due to friction, they will generate a mean
Eulerian flow. For spatially damped waves, this baroclinic flow is
driven by the radiation stress in the waves. This theme has been
thoroughly discussed for barotropic flows by Longuet-Higgins and
Stewart [5]. It has also been studied for interfacial coastal Kelvin
waves in a reduced gravity context [6].We here consider this effect
in the continuously stratified case. This application appears to be
novel.

The rest of this paper is organized as follows: in the Section 2
we state the basic assumptions and the governing equations, while
in the Appendix we consider linear internal coastal Kelvin waves.
In Section 3 we derive the Stokes drift in internal Kelvin waves,
and in Section 4 we apply the results to the Caspian Sea. The mean
vertically-averaged Eulerian velocity is derived in Section 5, while
Section 6 contains a discussion and some concluding remarks.

http://dx.doi.org/10.1016/j.euromechflu.2014.02.006

0997-7546/© 2014 Elsevier Masson SAS. All rights reserved.
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2. Basic assumptions and governing equations

We consider a viscous ocean of constant depth H , and we
chose a Cartesian coordinate system (x, y, z) such that the origin
is situated at the undisturbed sea surface, the x-axis is directed
along the coast, the y-axis is positive towards the sea, and the
z-axis is directed vertically upwards. The respective unit vectors

are (�i,�j, �k). The reference system rotates about the vertical axis
with angular velocity (f /2), where f is the constant Coriolis
parameter. Furthermore, we use an Eulerian description ofmotion,
which means that all dependent variables are functions of x, y, z
and time t . We take that the horizontal scale of the motion
is so large compared to the depth that we can make the
hydrostatic approximation in the vertical. Furthermore, we apply
the Boussinesq approximation for the density ρ. We also take
that the density of an individual fluid particle is conserved. The
governing equations for this problem then become

∂�vh

∂t
+ �v · ∇�vh = −f �k × �vh − 1

ρr

∇hp + ∂

∂z

[ �τh
ρr

]
, (1)

∂p

∂z
= −ρg, (2)

∂ρ

∂t
+ �v · ∇ρ = 0, (3)

∇ · �v = 0. (4)

Here �v = (u, v, w) is the velocity vector, p is the pressure,
subscript h means horizontal values, and �τh = (τ (x), τ (y)) is the
turbulent stress in the horizontal direction. Furthermore, ρr is a
constant reference density, and g the acceleration due to gravity.
We take that there is no forcing from the atmosphere in this

problem, i.e. at the surface: τ
(x)
s = τ

(y)
s = ps = 0. The surface

is material and given by z = η(x, y, t). Integrating our governing
equations from the horizontal bottom to the moving surface, we
obtain equations for the horizontal Lagrangian volume transport
(UL, VL) in the fluid:

∂UL

∂t
− fVL = − 1

ρr

∂

∂x

∫ η

−H

pdz − ∂

∂x

∫ η

−H

u2dz − ∂

∂y

∫ η

−H

uvdz

− τ
(x)
B

ρr

, (5)

∂VL

∂t
+ fUL = − 1

ρr

∂

∂y

∫ η

−H

pdz − ∂

∂x

∫ η

−H

uvdz − ∂

∂y

∫ η

−H

v2dz

− τ
(y)
B

ρr

, (6)

where we have defined

UL =
∫ η

−H

udz, VL =
∫ η

−H

vdz. (7)

Furthermore, (τ
(x)
B , τ

(y)
B ) are the turbulent bottom stresses.

In principle we expand our solutions in series after the wave

steepness as a small parameter (although we retain our dimen-

sional variables). The first order (linear) wave solution will be

marked by a tilde, while to second orderwe consider averages over

thewave period. Such (non-linear) quantities will bemarked by an

over-bar.

We consider trapped internal waves propagating along the x-
axis. The waves result from small perturbations from a state of
rest characterized by a horizontally-uniform stable stratification
ρ0(z). We take that the velocity in the y-direction vanishes
identically, characterizing theKelvinwave. Introducing the vertical
displacement ξ(x, y, z, t) of the isopycnals from their original

horizontal position, linear theory yields ∂ξ̃/∂t = w̃, where the
tilde is used to mark linear perturbation quantities. The linearized
system of equations for internal coastal Kelvin waves can then be
written from (1) to (4):

∂ ũ

∂t
= − 1

ρr

∂ p̃

∂x
+ ∂

∂z

[
τ̃ (x)

ρr

]
,

f ũ = − 1

ρr

∂ p̃

∂y
,

∂ p̃

∂z
= −ρrN

2ξ̃ , (8)

∂ ũ

∂x
= − ∂2ξ̃

∂z∂t
.

Here N is the Brunt–Väisälä frequency defined by

N2 = − g

ρr

dρ0(z)

dz
. (9)

The variables may be separated into normal modes [7], and we
refer to [8] for details. For didactic reasons we give a short account
of the wave solutions in the Appendix.

In summary, letting real parts represent the physical solution,
we have from the Appendix:

ξ̃ =
∞∑
n=1

ξn(x, y, t)φn(z), ũ =
∞∑
n=1

un(x, y, t)φ
′
n(z), (10)

where φn is given by (A.2), and

ξn = An exp
(−αnx − a−1

n y
)
cos (knx + lny − ωt) , (11)

un = cnAn exp
(−αnx − a−1

n y
) [

cos (knx + lny − ωt)

+ αn

kn
sin (knx + lny − ωt)

]
.

As for temporally damped waves [9], we note that the lines
of constant phase for spatially damped coastal Kelvin waves are
straight lines slanting backwards. In principle, the displacement
amplitudes A1, A2, A3 . . . must be determined from field observa-
tions, or from analytical/numerical model runs with appropriate
forcing.

3. The Stokes drift

As first shown by Stokes [10], periodic waves possess non-
zero mean wave momentum, leading to a net drift of particles in
the fluid. This mean drift is referred to as the Stokes drift, and is
basically related to the inviscid part of the wave field, eventually
modified by a slow temporal or spatial viscous decay of wave
amplitude. To second order in wave steepness the Stokes drift in
the x-direction can be expressed by the Eulerian wave field [11]:

ūs =
(∫

ũdt

)
∂ ũ

∂x
+

(∫
ṽdt

)
∂ ũ

∂y
+

(∫
w̃dt

)
∂ ũ

∂z
, (12)

where the over-bar denotes average over one wave period T =
2π/ω. In the present problem ṽ = 0, and w̃ = ξ̃t . Hence, from (10)
and (11) for internal Kelvin waves:

ūs = 1

2

∞∑
n=1

cnA
2
n

((
φ′
n

)2 + φnφ
′′
n

)
exp

(−2αnx − 2a−1
n y

)
. (13)

The expression (13) is valid for arbitrary N(z). Inserting from (A.2),
we obtain that

ūs = 1

2

∞∑
n=1

cnA
2
n

((
φ′
n

)2 − N2

c2n
φ2
n

)
exp

(−2αnx − 2a−1
n y

)
. (14)
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Fig. 1. N2 versus depth. Solid line from (16), and dashed line from observations.

Since the second term in (14) is always negative, we realize
that the Stokes drift component for the mode in question must
be negative at the z-level where the horizontal wave velocity
is zero. In fact, by integration in the vertical, and application of
the boundary conditions (A.3), we find for the associated Stokes
volume flux for internal Kelvin waves; see e.g. [4] that

Ūs =
∫ 0

−H

ūsdz = 0. (15)

This is an important result that will be used later on when we
consider the total Lagrangian transport induced by these waves.

4. Application to the Caspian Sea

As an example, we consider the Caspian Sea. In order to obtain
the eigenvalues c1, c2, c3 etc., we must prescribe N(z) in this body
of water. The measurements by Ghaffari et al. [1] suggest that we
can take

N2 = N2
0

[
− az

H0

]
exp

[
−b2z2

2H2
0

]
, (16)

where a and b are dimensionless constants, and where a =
b exp (1/2). For the maximum value of N2 at z = −H0/b, we take

N2
0 = 3×10−4 s−2

. UsingH0 = 120m and b = 2 in (16), we obtain

a spatial distribution ofN2 much like that reported in [1]; see Fig. 1.

Introducing z = H0ẑ, (A.2) and (A.3) become

d2φn

dẑ2
+ R2

nF
(
ẑ
)
φn = 0, (17)

φn = 0, ẑ = −h, 0 (18)

where h = H/H0, and

R2
n = H2

0N
2
0

c2n
, (19)

F (z) = −aẑ exp

(
−b2ẑ2

2

)
.

This eigenvalue problem is easily solved by a simple shooting
procedure. Using H = 700 m we find for the lowest eigenvalue

Fig. 2. Non-dimensional Stokes drift (ūs1/u0) at the coast for the first baroclinic

mode in the Caspian Sea as function of depth.

that R1 = 1.71. From (19) we then obtain c1 = 1.21 m s−1. The
next eigenvalues become R2 = 4.61 and R3 = 7.46, yielding
c2 = 0.45 m s−1 and c3 = 0.28 m s−1 for the second and third
baroclinic mode, respectively.

According to [12], for a fairly sharp thermocline, a substantial
fraction of the total energy resides in the first mode. It is therefore
particularly interesting to calculate the Stokes drift for this mode.
The numerically obtained eigenfunction φ1(z) is then inserted into
(14). In Fig. 2 we have plotted the non-dimensional Stokes drift
ūs1/u0 at the coast as a function of the depth, where

u0 = c1A
2
1

2H2
0

. (20)

We note that the Stokes drift has its largest positive value at the
surface, while it attains its largest negative value z = −90m; close
towhereN2 has itsmaximum. This is a typical behavior for the first
mode internal wave, and is discussed more thoroughly in [4]. The
depth profile fulfills the no-flux condition (15).

In dimensional terms, the value of the depicted Stokes drift
(1. mode) for variable N in Fig. 2 should be multiplied by (20).
In order to assess the vertical displacement amplitude A1, we
consider some temperature measurements over the shelf break at
the location in the south-western part of the Caspian Sea described
in [1]. The depicted temperature variations in Fig. 3 are from
November–December, 2004, at a fixed position off the coast when
the summer thermocline still prevails.We note a period between 4
and 5 days for the depicted oscillations. From the power spectrum
in Fig. 4 we note a marked peak at 4.7 days, which fits well with
the observations in Fig. 3.

In addition, we note from Fig. 4 that the along-shore velocity is
much larger than the cross-shore velocity, indicating the presence
of internal Kelvin waves. However, it is difficult to decide whether
this is internal wave mode 1 or 2. At this station the sensors were
basically positioned within the thermocline. Hence, the isotherm
displacements could be detected, while the resolution of the
vertical structure of the currentswas not sufficient for determining
the modal structure. We therefore use these observations only
as an indication of the typical isotherm displacement amplitude
we may expect in this region associated with internal Kelvin
waves. In this case we find amplitudes of about 30 m. As pointed
out by Phillips [12], a substantial fraction of the total energy
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Fig. 3. Time series of isotherm fluctuations in the south-western part of the Caspian Sea.

Fig. 4. Spectral density versus frequency in the thermocline depicted in Fig. 3.

usually resides in the first mode when the thermocline is sharp

(for a discontinuous density distribution all the internal energy

resides in the 1. mode, i.e. in the interfacial wave). In the southern

Caspian Sea the summer/autumn thermocline is quite sharp, and

we therefore choose to attribute the observations in Fig. 3 to the 1.

baroclinic mode. If T1 = 4.7 days, and typically c1 ∼ 1m s−1, the

corresponding wavelength would be 406 km, which is within the

lateral geometry of the Caspian Sea. Since this measurement site

is positioned about 3 km off the shelf break (corresponding to our

coast), and the typical 1.mode Rossby radius is 10 km,we find from

(11) for the maximum amplitude A1 ∼ 30× exp(3/10)m = 40m.

Taking A1 = 40m, H0 = 120m and c1 = 1.21m s−1, we find

for the scaling factor (20): u0 = 0.07m s−1. This implies that the

dimensional drift current varies from 0.07m s−1 at the surface to

−0.05m s−1 at 90m depth, which is quite a remarkable result.

The derivation of the Stokes drift presupposes that the linear
wave field velocity is much larger than the Stokes drift velocity,
i.e. |ūs| � |ũ|. This means from (11) and (14) that

An � 2H0. (21)

For the first mode considered here (A1 = 40m), (21) is reasonably

well fulfilled.

5. The mean vertically-averaged Eulerian current

Since the mean Lagrangian (particle) velocity generally can be
written as a sum of the Stokes drift velocity (ūs, v̄s) and a mean
Eulerian current (ūE, v̄E) [11], we have for the volume fluxes,
defined by integration from the bottom to the undisturbed surface:

ŪL = ŪE + ŪS (22)

V̄L = V̄E + V̄S .

Since the Stokes flux components are identically zero for the
present problem, e.g. (15), we have

ŪL = ŪE, V̄L = V̄E . (23)

Hence,
(
ŪE, V̄E

)
can be determined to second order in wave

steepness from (5) and (6). Utilizing (23), and the fact that ṽ = 0
for this problem, we find from (5) and (6) for the mean horizontal
Eulerian fluxes (valid to second order in wave steepness):

∂ŪE

∂t
− f V̄E = −∂ P̄

∂x
− ∂Q̄

∂x
− τ̄ (x), (24)

∂ V̄E

∂t
+ f ŪE = −∂ P̄

∂y
− τ̄ (y),

where τ̄ (x,y) = τ̄
(x,y)
B /ρr . Here we have defined the averaged

integrated pressure P̄ as

P̄ = 1

ρr

∫ η

−H

pdz. (25)

Furthermore, we have a wave-forcing term Q̄ defined by

Q̄ =
∫ 0

−H

ũ2dz. (26)

Inserting from (10), we obtain to the lowest order, using (A.4)

Q̄ = 1

4H

∞∑
n=1

c2nA
2
n exp

(−2αnx − 2a−1
n y

)
. (27)

By integrating the continuity equation∇ · �v = 0 in the vertical, we
obtain the exact expression

∂η

∂t
= − ∂

∂x

∫ η

−H

udz − ∂

∂y

∫ η

−H

vdz = −∂UL

∂x
− ∂VL

∂y
. (28)
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We seek steady solutions to the mean drift problem. Utilizing (23),
(28) then reduces to

∂ŪE

∂x
+ ∂ V̄E

∂y
= 0. (29)

Since the mean motion in the direction normal to the wave
propagation (the y-direction) is very small (to be verified a
posteriori), we neglect the effect of friction

(
τ̄ (y)

)
in this direction.

Hence, in the y-direction, the integrated pressure gradient is in
geostrophic balance with the Coriolis force. From the vorticity of
the steady version of (24), we obtain by utilizing (29)

df

dy
V̄E = ∂2Q̄

∂x∂y
+ ∂τ̄ (x)

∂y
. (30)

On an f -plane, we then obtain directly, when we take that the
bottom stress vanishes as y → ∞:

τ̄ (x) = −∂Q̄

∂x
. (31)

Since ∂Q̄/∂x is proportional to the spatial damping of the
wave field, it constitutes a radiation stress [5]. Then (31) simply
expresses a balance between the radiation stress from the wave
field and the bottom stress on the mean Eulerian flow.

The mean bottom stress is generally a function of the mean
Eulerian flow in the fluid. Since the motion near the bottom
is turbulent, a quadric function of the vertically-averaged mean
velocity is often assumed, i.e. τ̄ (x) = cDŪE |ŪE |/H2, where cD is

a non-dimensional drag coefficient of order 10−3
. However, for

small velocities, we can simplify and introduce a linear friction
coefficient R = cDU0/H

2, where U0/H is a typical bottom
velocity [13]. With this simplification, we have that

τ̄ (x) = RŪE . (32)

Then, from (31):

ŪE = −1

R

∂Q̄

∂x
. (33)

Defining the vertically-averaged alongshore mean velocity

ūE = ŪE

H
=

∞∑
n=1

uEn(y) exp (−2αnx) , (34)

we find from (27) and (33) that

uEn(y) = 1

4H2

(
Kn

R

)
cnA

2
n exp

(−2a−1
n y

)
. (35)

We note that the wave-induced mean Eulerian current for each
mode is trapped to the coast within the internal Rossby radius, and
that the current is always positive (directed along the waves). This
is similar to the findings in [6] for interfacial coastal Kelvin waves.
However, as shown in [4] and in this paper, the Stokes drift for
the first baroclinic mode is different for the internal Kelvin waves
with continuously varying N , and interfacial Kelvin waves where
N is infinite at the transition between layers. For the two-layer
case with a jump in density across the interface, the Stokes drift
is positive in both layers, while for a continuous density variation
it attains a negative value near the depth where the buoyancy
frequency peaks. We note the important factor Kn/R, where Kn

is given by (A.9). It expresses the relative importance between
forcing from the wave field (through the radiation stress) versus
the restraint of bottom friction on themean flow. In balanced flow,
Kn/R should be of order unity.

Defining the vertically-averaged off-shore mean velocity by

v̄E = V̄E

H
=

∞∑
n=1

vEn(y) exp (−2αnx) , (36)

we now obtain from (29), using the boundary condition V̄E = 0,
y = 0:

vEn(y) = 1

8H2

[
K 2
n

fR

]
cnA

2
n

(
1 − exp

(−2a−1
n y

))
. (37)

Since Kn is a small quantity, we note that vn � un. This justifies our
neglect of the turbulent bottom friction in the y-direction in (30).

6. Discussion and concluding remarks

Themean Lagrangian velocity is composed of a Stokes drift plus
a mean Eulerian current. While the Stokes drift is inherent in the
waves, and determined basically from the inviscid fluid motion,
themeanwave-induced Eulerian flow is strongly dependent on the
effect of friction. We note from (35) that it is directly proportional
to Kn/R, where Kn is related to the spatial decay of the wave field,
while R represents the effect of friction on the mean flow. In this
way we see that it is the wave decay that drives the mean Eulerian
flow (through the radiation stresses), while friction on the mean
flow is needed to maintain balance.

In the present paper we have studied the drift due to internal
coastal Kelvin waves. Both the Stokes drift and the mean Eulerian
current are trapped to the coast within the Rossby radius of
deformation. The present approach yields the Stokes drift as a
function of depth, while the mean Eulerian current is determined
as a depth average by integration from the bottom to the surface.
This procedure masks the vertical variation of the Eulerian drift
current, and makes comparisons with the Stokes drift at a certain
depth difficult. For the first baroclinic Kelvin mode at the coast, we
find from (20) and (35) that the ratio between the depth-averaged
Eulerian current and the surface value of the Stokes drift becomes

uE1

uS1

= H2
0

2H2

[
K1

R

]
. (38)

This shows that pycnocline position, total basin depth and friction
all contribute to the relative strength of these currents.

We have applied our general results to the Caspian Sea, using a
Brunt–Väisälä frequency distribution with depth which is typical
for autumn/early winter conditions in the south-western part.
Estimating the amplitude of the vertical thermocline displacement
from observational data, we find Stokes drift velocities at the
coast of order 0.07m s−1 at the surface, and −0.05m s−1 just
below the Brunt–Väisälä frequency maximum at 60m. Obviously,
from (38), the vertically-averaged Eulerian current are smaller
than 0.07m s−1. However, one interesting point here is that while
the integrated Stokes drift (the Stokes flux) is zero; see (15), the
Eulerian flux is not. For the first mode we find from (35) for the
total volume flux q1 in the trapped region

q1 =
∫ ∞

0

ŪE1dy = c21A
2
1

4Hf

[
K1

R

]
. (39)

For the Caspian Sea with f = 8.83 × 10−5 s−1, the Rossby radius
for the first mode is a1 = c1/f = 13.7 km, so the transport in
(39) occurs within a narrow region of width a1/2 = 6.9 km. Since
internal coastal Kelvin waves always propagate with the coast to
the right in the northern hemisphere, we conclude that there is a
systematic contribution from such waves to the mean circulation
in the Caspian Sea.
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Appendix A. Linear internal coastal Kelvin waves

According to the adopted approach, we assume that

ũ =
∞∑
n=1

un(x, y, z)φ
′
n(z),

ṽ = 0,

p̃ = ρr

∞∑
n=1

pn(x, y, z)φ
′
n(z), (A.1)

ξ̃ =
∞∑
n=1

ξn(x, y, t)φn(z),

where the primes denote differentiation with respect to z.
Separation of variables requires that pn = c2nξn, where cn is the
constant eigenvalue. The eigenfunctions φn are solutions of

φ′′
n + N2

c2n
φn = 0. (A.2)

For the baroclinicmodeswe assume a rigid lid at the surface. Hence
the boundary conditions become

φn = 0, z = −H, 0. (A.3)

It is easily shown that the eigenfunctions φ′
n constitute an

orthogonal set for arbitrary N = N(z). Assuming that φn is
dimensionless, we can normalize φ′

n by assuming

∫ 0

−H

(
φ′
n

)2
dz = 1

2H
. (A.4)

For N = N(z) the eigenvalues and the eigenfunctions must be

obtained numerically.

Utilizing the orthogonality property, the governing equations
may be written

∂un

∂t
= −c2n

∂ξn

∂x
+ τ (x)

n ,

fun = −c2n
∂ξn

∂y
, (A.5)

∂ξn

∂t
= −∂un

∂x
,

where the baroclinic modes are given by n = 1, 2, 3, etc. Further-
more, we have defined

τ (x)
n = 2H

ρr

∫ 0

−H

∂τ̃ (x)

∂z
φ′
ndz, (A.6)

where τ̃ (x) is the turbulent stress on the wave motion in the x-
direction. Since ṽ = 0,we have taken τ̃ (y) = 0. In the present prob-
lem we model the friction on internal Kelvin waves by a turbulent
diffusion coefficient of momentum νT such that τ̃ (x) = ρrνT∂ ũ/∂z.
With ũ given by the series expansions (8), this formulation cannot
capture the effect of bottom stress, but works well for the viscous
dissipation in the bulk of the fluid for the baroclinic modes. In this
analysis we assume that νTN

2 is independent of z; see e.g., [14].
More specifically, from Williams and Gibson [15], νTN

2 = Cε,
where C is a constant and ε the rate of dissipation of turbulent ki-
netic energy. Utilizing (A.1) and (A.4), (A.6) reduces to

τ (x)
n = −νTN

2

c2n
un. (A.7)

The governing equations for mode n then become

∂un

∂t
= −c2n

∂ξn

∂x
− Knun,

fun = −c2n
∂ξn

∂y
, (A.8)

∂ξn

∂t
= −∂un

∂x
,

where

Kn = νTN
2

c2n
. (A.9)

The trapping condition becomes

un, ξn → 0, y → ∞. (A.10)

We consider spatially damped waves and take that

un, ξn =
{
ûn(y), ξ̂n(y)

}
exp(i(κnx − ωt)), (A.11)

where ω is a real positive frequency and κn the complex wave
number for mode n. We define κn = kn + iαn, where kn is a real
wave number and αn the spatial decay rate. By eliminating un from
(A.8), we obtain

∂2ξn

∂t2
− c2n

∂2ξn

∂x2
+ Kn

∂ξn

∂t
= 0. (A.12)

We assume solutions of the form

ξn = AnGn(y) exp(i(κnx − ωt)). (A.13)

Inserting into (A.12), we obtain the dispersion relation

ω2 + iKnω − c2nκ
2
n = 0. (A.14)

Assuming that |αn|/kn � 1, the real and imaginary parts of (A.14)
yield that

kn = ± ω

cn
, (A.15)

αn = knKn

2ω
. (A.16)

Finally, from the geostrophic balance in (A.8) we obtain

∂ξn

∂y
+ f

ω
(kn − iαn) ξn = 0. (A.17)

Inserting from (A.13), we find for the coastal Kelvin wave:

Gn(y) = exp
(−a−1

n + iln
)
y, (A.18)

where

an = ω

knf
, (A.19)

ln = f αn

ω
. (A.20)

Here an is the internal Rossby radius, and ln the friction-induced
wave number in the y-direction. We note that trapping requires
that kn > 0, i.e. we must choose the positive sign in (A.15),
implying wave propagation with the coast to the right. Hence,
cn = ω/kn > 0.
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