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1 Introduction

The fact that individuals are different is a fundamental observation of life. Some

differences are obviously important, like being a female compared to a male, if

you are to bear a child. Other differences are more subtle, and harder to observe.

Genetic predisposition towards a disease is one example. A population consists of

a mix of individuals, where some may have a high risk, some may have a low risk,

or some may even be immune to the outcome we are studying. We say that the

population is heterogeneous.

Survival data, consisting of the time from some starting point to an event,

is frequently encountered in a large range of fields, from medicine to economics.

Survival analysis, that comprises the statistical tools for analyzing such data, has

become very important. Of special importance is the hazard rate, which expresses

the instantaneous rate of having an event at a particular time (given survival up

to that time). For many, the method of choice for handling survival data, is the

Cox proportional hazards model [1]. The model allows for the inclusion of indi-

viduals that are lost to follow-up, i.e. censored, and the population is divided into

subgroups by different covariates that we suspect to have an impact on the phe-

nomenon under study. In fact, describing the differences between individuals by

means of covariates is the way heterogeneity between individuals are usually taken

into account in medical statistics and in epidemiology. In general it is not likely

that all relevant covariates can be included in such an analysis. Some covariates

are not included because of practical, ethical or economic reasons, while others are

simply not suspected to have an influence. This consequently leads to some unob-

served heterogeneity between individuals. What if the ’important’ heterogeneity is

caused by these unobserved covariates? Even if all relevant covariates could have
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been included, there will always be some unexplained rest. Failing to account for

unobserved differences may be serious.

Accounting for unobserved heterogeneity between individuals has a long his-

tory. In 1959, Beard studied mortality in a population, and introduced a random

effect to model survival data [2]. The term frailty, however, was not introduced

until 1979, by Vaupel et al. [3]. The frailty is considered a random variable

that models the variation in risk between individuals. The individual hazard rate

is defined as the frailty variable multiplied with some basic hazard rate that is

shared by all individuals, but possibly influenced by covariates. In this way, the

heterogeneity due to observed and unobserved factors are separated.

Several cancers has peaking incidence rate curves with respect to age. In the

interpretation of such an observation, it can be of crucial importance to take into

account possible frailty effects. One straight forward interpretation of the shape of

the incidence curve could be that each individual experiences an increasing risk of

developing the disease up to a certain age, before the risk starts to decline. Taking

the frailty view, on the other hand, the explanation would be that the shape of the

incidence curve is a result of selection effects in the population. While the risk for

each individual is increasing throughout life, there are some individuals with a very

high susceptibility. The highly susceptible, or frail, individuals will develop the

disease early. After some time, the population will contain a smaller and smaller

proportion of highly susceptible individuals, and the incidence rate will drop. The

age-incidence curves of several cancers fit this description, and the incidence curves

of e.g. testicular cancer [4], colorectal cancer [5], nasopharyngeal carcinoma [6] and

Hodgkin lymphoma [7] have all been analyzed from a frailty point of view. Also

the incidence rates of other diseases, like Schizophrenia [8], have been modeled by
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this approach. It is important to note that in such studies, the frailty approach has

biological underpinnings, and is not just a mathematical construct. For cancers,

or other diseases, where some heritable component is thought to be present, frailty

models offers a way of describing the varying genetic disposition to the disease. In

a cancer setting, these models use the knowledge available on the individual level,

trough e.g. a carcinogenic model like the Armitage-Doll model [9], combined with

the notion of a varying susceptibility between individuals, to describe observations

in a population.

In many situations it is not reasonable to assume that individuals are inde-

pendent. For monozygotic twins, for instance, the times to some event are often

associated in some way (e.g. when a disease that has some genetic component

is under consideration). The simplest multivariate frailty model that accounts

for this is the shared frailty model, introduced by Clayton in 1978 [10]. Rather

than letting the frailty be distributed across individuals, the frailty is distributed

across clusters, which could e.g. be pairs of monozygotic twins. However, in many

situations the shared frailty model is not flexible enough, and it might be more

reasonable to let the frailties be correlated rather than shared within the clusters.

If a pair of monozygotic twins have another sibling, it is often the case that the

twins are more correlated than a twin and the other sibling. Several other types of

multivariate frailty models has been proposed to handle such situations. Hougaard

introduced a multiplicative frailty model, where the frailty of an individual was the

product of two independent frailties [11]. One of these frailties would be common

for all siblings, while the twins share another part of the frailty independently of

the ordinary sibling. Another correlated frailty model, uses an additive decompo-

sition of each individuals’ frailty, and different parts of the additive components
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are shared between individuals to construct different correlation structures. Early

papers introducing this type of models were Pickels et al. in 1994 [12] and Yashin

et al. in 1995 [13].

This thesis considers several aspects of frailty analysis applied in a cancer set-

ting. Paper 1 modifies the Armitage-Doll model with random frailty, to capture

the narrow peaks in the age-incidence curves of osteosarcoma and Ewing sarcoma.

Paper 2 analyzes population wide data on the incidence of testicular germ-cell tu-

mors (TGCTs) in Norwegian families, and we emphasize the calculation of familial

risk of disease. The paper considers a frailty model that randomizes a parameter in

the compound Poisson distribution for individual frailty. The randomized param-

eter is decomposed additively to account for the correlation structure in a family

with up to five children. In paper 3, the persuasive evidence of the presence

of (unmeasured) inter-individual variation in the risk of cancer, as well as other

diseases, is discussed, and several potentially surprising effects of frailty on stan-

dard epidemiological measures is pointed out. Paper 4 introduces frailty effects

as a possible explanation of the peaks seen in the hazard rates (with respect to

re-occurrence and mortality) after treatment of several cancers, including breast

cancer. A modified univariate frailty model for modeling bimodal hazard rates is

introduced, and applied to analyze a dataset of breast cancer patients to examine

whether the bimodality of the hazard rate, with respect to mortality, could be

explained by this hypothesis.

Carcinogenic models are often used as a justification of the parametric form

of the basic hazard rate in the frailty model, and such carcinogenic models are

discussed in Section 2. In Section 3, the different frailty models mentioned in this

introduction are discussed in somewhat more detail, and the hierarchical frailty
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model is introduced [14–17]. Section 4 considers the definition, and calculation, of

familial risk of diseases. The frailty relative risk (FRR) is introduced. Section 5

gives summaries of the four papers, while a discussion and some ideas for future

work are given in Section 6.
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2 Models of carcinogenesis

Inspired by the work of Nordling [18], Armitage and Doll postulated their famous

model of carcinogenesis in 1954 [9]. Their model stated that a cell had to go

through certain transitions to become malignant. They stressed the fact that

these transitions did not necessarily have to be mutations, and that the actual

nature of the transitions was not important in a mathematical analysis. The basic

observation was that incidence rates of many cancers increased with a certain power

of age, such that a plot of the logarithm of age versus the logarithm of the incidence

rate gave a straight line. Such cancers are often termed log-log cancers. Armitage

and Doll demonstrated this feature for a number of cancers, limited to the age

interval 25-74 years. However, the model did not fit all cancers, especially not

those with a peaking incidence at an early age. In their original article Armitage

and Doll stated that

”The relatively high rates at the younger ages could result if the

population contained a group of subjects specially susceptible to cancer

(...)”.

After the Armitage-Doll model was first published, other models have been

proposed. The Moolgavkar-Knudson model considered two mutations [19]; first a

transformation from a normal cell to an intermediate cell, followed by a period of

clonal expansion, culminating in a mutation of an intermediate (daughter) cell to

a malignant cell. Various shapes of population incidence rates were explained by a

varying number of available susceptible stem cells, and a peaking age-incidence rate

were explained by the exhaustion of susceptible stem cells within each individual.

Several modifications of the model have been made [20–23], including allowing for

more than two mutations [20].
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Even though it is simple, the Armitage-Doll model continues to play a funda-

mental role in the theory of carcinogenesis. Combined with a proper treatment

of the unobserved heterogeneity between individuals, the Armitage-Doll model is

able to capture also the peaking incidence rate of cancers [4, 5, 8], which is what

Armitage and Doll foresaw in the above given quote. Rather than the exhaustion

of susceptible stem cells, the heterogeneity, in the susceptibility to the disease,

between individuals is considered as a possible explanation of a peaking incidence

curve.

Throughout this thesis, and in the papers that comprise it, we consider an

individual hazard rate as the product of a basic hazard rate and a random variable

that describes the frailty of the individual. In papers 1-3, the basic hazard rate

is assumed to increase with some power of age, which corresponds to a Weibull

form, and the Armitage-Doll model is used as the justification. However, other

approaches also give rise to a Weibull form of the basic hazard rate [24, 25]. In fact,

the Weibull model is the most commonly used parametric model for carcinogenesis

[25].

3 Frailty models

This section gives an overview of the models that form the starting points for

methods developed and used in the papers in this thesis. However, all types of

frailty models are not considered here, and the reader is referred to one of the

books of the field for a complete overview [26–30].
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3.1 The proportional frailty model

In the proportional frailty model the hazard rate of an individual is given as a

basic hazard rate, λ(t), multiplied with a quantity, Z, that expresses the extent of

frailty in the individual (see e.g. chapter 6 in Aalen et al. [28]),

α(t|Z) = Zλ(t), (1)

where t is the time from some starting point (typically, t is age). The frailty,

Z, is considered a random variable over the population. The individual survival

function is given by

S(t|Z) = exp(−ZΛ(t)),

where Λ(t) =
∫
λ(t)dt. The population survival function is found by integrating

out the frailty variable in the individual survival function,

S(t) = E[exp(−ZΛ(t))] =

∫
exp(−zΛ(t))f(z)dz,

where E denotes expectation, and f is the distribution function of Z. Since the

Laplace transform of the distribution function of Z is given by

L (c) = E[exp(−cZ)] =

∫
exp(−cz)f(z)dz,

the population survival function can be expressed as S(t) = L (Λ(t)). The popu-

lation hazard rate is then found as

μ(t) = λ(t)
−L ′(Λ)
L (Λ)

.
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As mentioned above, a Weibull form of the basic hazard rate is usually assumed,

λ(t) = katk−1, k > 0,

where a is a scale parameter. When studying cancer incidence, this is justified by

carcinogenic models [9, 25], and k is interpreted as the number of events necessary

for a cell to become malignant [4]. Thus, k > 1 is a more realistic interval for k

[4]. The model combines the available information on the individual level, from

the carcinogenic model, with what is actually observed in the population. The risk

of having an event (i.e. cancer) will increase throughout life. The most frail, or

susceptible, individuals are likely to have an event early, causing the population

hazard rate to rise. With time, there will be a decreasing proportion of highly

susceptible individuals left in the population, and the population hazard rate will

decrease. In paper 1, the proportional frailty model (with Weibull basic hazard

rate) is referred to as The Armitage-Doll model with random frailty.

3.2 Frailty distributions

The most commonly used frailty distribution is the gamma distribution [28].

Hougaard presented the power variance function (PVF) family of distribution

that includes both the gamma distribution and several other distributions as spe-

cial cases [26, 31]. Aalen showed that the compound Poisson (cP) distribution is

also included in this class of distributions [32]. The cP distribution may be defined

as the sum of N independent gamma distributed variables, each with scale param-

eter ν and scale parameter η, where N is Poisson distributed with expectation ξ.

The papers in this thesis considers the gamma and the cP distributions only. The
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Laplace transforms are given as

LcP (c) = exp

(
−ξ

(
1−

(
ν

ν + c

)η))
, (2)

where and ξ, ν and η are all > 0, and

Lgamma(c) = exp (−δ (log (θ + c)− log (θ))) ,

where the shape parameter, δ, and the scale parameter, θ, are both > 0. However,

the PVF distributions are part of a broader class of distribution, namely the Lévy-

type distributions. Consider the Laplace transform

L (c) = exp(−sφ(c)), (3)

where s is a non-negative parameter and φ(c) is called a Laplace exponent, and has

a parametric form depending on the frailty distribution. This is a valid Laplace

transform for all Lévy-type distributions [28, 33]. For the cP, and the gamma

distribution, the Laplace exponents are given as

φcP (c) = ξ

(
1−

(
ν

ν + c

)η)
, ξ > 0

and

φgamma(c) = δ (log (θ + c)− log (θ)) . (4)

However, for the cP distribution, s is usually subsumed in the ξ parameter, or,

equivalently, the re-parameterization ρ = sξ is used, and the Laplace transform
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and the Laplace exponent are consequently frequently written as

LcP (c) = exp(−ρφcP (c))

and

φcP (c) = 1−
(

ν

ν + c

)η

,

respectively [28], yielding the Laplace transform in (2), with ρ considered the

expectation of the underlying Poisson variable. A similar re-parameterization may

be done for the gamma distribution. However, it can be useful to keep the s

parameter explicit, especially in the formulation of the hierarchical frailty model

(Section 3.6), as done by Moger et al. [17].

3.3 Modeling bimodal hazard rates

Several cancers, and other diseases, exhibits incidence rates with more than one

peak. Taking frailty into account may be of crucial importance in these instances.

For nasopharyngeal carcinoma, Haugen et al. proposed a method for modeling the

two peaks seen in the incidence rate [6]. They modeled the individual hazard rate

as a linear combination of two independent frailties,

α(t|Z1, Z2) = Z1λ1(t) + Z2λ2(t).

The first frailty, Z1 represented the risk due to unobserved ”genetic and viral

factors”, while Z2 represented risk due to unobserved lifestyle factors. Both λ1

and λ2 were assumed to have a Weibull form, and the population hazard rate was

found by the same approach as in Section 3.1. The model has also been used
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for modeling the bimodal hazard rate of Hodgkin lymphoma [7]. In both these

applications [6, 7], data from large registries with many events were analyzed.

However, it is well known that the estimation of frailty models from single event

data may be accompanied by a high degree of uncertainty [28]. For situations where

less data are available, this could pose a problem. Furthermore, it can be hard to

justify the separation of the unobserved heterogeneity into two different sources.

In paper 4, a simpler model for modeling bimodal hazard rates is proposed, where

the individual hazard rate is given as

α(t|Z) = Z (λ1(t) + λ2(t)) .

The frailty acts multiplicatively on the sum of two basic hazard rates. The basic

idea is that there are two distinct underlying biological processes that are both,

over time, increasing the individual risk of having an event. One of these may, for

instance, be increasing steadily from some defined starting point, while the other

process might be increasing much more slowly in the beginning of the period under

study, and then increase more rapidly and at some point begin to dominate the

sum of the two hazards. In that case, it would mean that the frailest individuals

are likely to have an event related to the first hazard, while only the strongest

(least frail) will in practice be influenced by the second process. This would lead

to a bimodal shape of the population hazard rate. In paper 4, where survival after

conservative breast cancer treatment is studied, it is hard to justify the separation

of the unobserved heterogeneity in the same way as by Haugen et al. [6]. Especially

considering the relatively short time span in our study (∼ 10 years of follow-up).
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3.4 Shared frailty models

In the proportional frailty model (Section 3.1), Z expresses the level of frailty in

an individual. However, in many situations it is likely that some survival times are

related to each other. Organs within the same individual, or units in a hospital

are examples. As mentioned in the Introduction, it is, for a genetic disease, often

the case that two monozygotic twins have a similar predisposition for attaining

the disease (beyond what is modified by possible measured environmental risk

factors). One way of accounting for this is to let the twins share the same value

of the frailty.

The shared frailty model takes the same form as the proportional frailty model,

but the frailty is distributed over clusters (e.g. families) rather than individual

entities (persons). The proportional frailty model is thus a special case of the

shared frailty model, with cluster size one. The shared frailty model is discussed

at great length in the books by Hougaard [26] and Duchateau and Janssen [27].

While we are interested in the distribution of the frailty in the univariate (i.e.

proportional) frailty model, it is possible to estimate the level of frailty in each

cluster from the shared frailty model using an empirical Bayes approach (see e.g.

Aalen et al. chapter 7 [28]).

3.5 Additive frailty models

Letting each member of a cluster share the same value of the frailty may be too

simplistic. In a multi-center trial, it is for instance possible that hospitals that

are geographically closer to each other might be more correlated than those fur-

ther apart. Different units within hospitals may have different frailties, but are

likely to be correlated to some degree. Different members of a family will most
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certainly have some correlation, but it is for instance obvious that a father and a

son is more correlated than a father and a mother, if a disease with some genetic

component is under consideration. Additive frailty models are constructed to take

these aspects, i.e. correlation structures within clusters, into account, and are

therefore frequently referred to as correlated frailty models (although correlated

frailty models is a broader class of models, where the frailty of an individual is not

necessarily decomposed additively).

Yashin et al. considered a frailty model where a sum of several frailty variables

acted multiplicatively on the basic hazard rate [13]. They noted that in twin

studies, the frailty should be correlated rather than shared, to e.g. be able to

include both monozygotic and dizygotic twins. They considered three independent

gamma distributed variables, Y0, Y1 and Y2. The frailty of the twins was expressed

as Z1 = Y0 + Y1 and Z2 = Y0 + Y2, respectively. In fact, studies of twins is the

most frequent application in papers developing and/or applying additive frailty

models [12, 13, 34–40]. The model can, however, easily be extended to model

other correlation structures [41, 42]. Several types of correlated frailty models are

thoroughly discussed in the book by Wienke [29].

Korsgaard and Andersen gave several examples of what they have named ad-

ditive genetic frailty models [41]. Their simplest example considered a family of a

mother, a father and a child. They considered four identically, independently dis-

tributed gamma(λ/2, λ) random variables, Y1, Y2, Y3 and Y4. Here, ZF = Y1 + Y2,

ZM = Y3 + Y4 and ZC = Y1 + Y3 represented the additively decomposed frailties

of the father, mother and the child, respectively. Thus, Y1 and Y3 was the parts

of the parents’ genes affecting the frailty transmitted to the child. There was no

correlation between the frailty of the parents, whereas the child and each parent
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had correlation 1/2. This simple model forms the basis of the familial correlation

structure used in paper 2.

3.6 Hierarchical frailty models

A hierarchical frailty model is a useful combination of the models described in

Sections 3.1, 3.4 and 3.5. Let the distribution function of the frailty variable Z1

have Laplace transform

LZ1(c) = E[exp(−cZ1)] =

∫
exp(−cz1)fZ1(z1)dz1 = exp(−z2φ1(c)), (5)

where E denotes expectation and fZ1 denotes the distribution function of Z1.

The parametric form of the Laplace exponent φ1 depends on the choice of frailty

distribution, and z2 is a constant parameter. The population survival function is

S(t) = LZ1(Λ(t)), as in Section 3.1.

Let now the parameter z2 be randomized by Z2, which has Laplace transform

LZ2(c) = exp(−z3φ2(c)),

where φ2 depends on the distribution of Z2, and z3 is a non-negative constant

parameter. The marginal Laplace transform for the combined frailty of each indi-

vidual is then given by

L (c) = E[exp(−Z2φ1(c)] =

∫
exp(−z2φ1(c))fZ2(z2)dz2 = exp(−z3φ2(φ1(c))),

where fZ2 is the distribution function of Z2. Similarly, we could add another level

in the model, by randomizing z3 by Z3, whose distribution function has the Laplace

15



transform LZ3(c) = exp(−z4φ3(c)). The Laplace transform of the combined frailty

of an individual would then be

L (c) = E[exp(−Z3φ2(φ1(c)))] = exp(−z4φ3(φ2(φ1(c)))).

If even further levels are needed, one could continue by randomizing z4, and so

on. The first level could represent the frailty variation between individuals, as in

the proportional frailty model, the second level could represent the frailty that

varies between families (but are shared within families). The third level could e.g.

represent frailty variation between neighborhoods and so on. However, in paper

2 we have two levels only.

As discussed in Section 3.2, the parameter zi+1 in the Laplace transform for

the variable Zi, can be viewed directly as a parameter in the distribution of Zi

[14–16], or as a scale transformation of that parameter [17]. If Zi is cP distributed,

and

φi(c) = 1−
(

ν

ν + c

)η

,

then the parameter zi+1 is equivalent the underlying Poisson parameter in the

cP distribution. This parameterization is used for the cP distributed first-level

frailty in paper 2. For the gamma distribution, the parameterization given in

expressions (3) and (4) is used in paper 2. That is, zi+1 is viewed as a scale

transformation of a parameter in the frailty distribution. However, since no more

levels were added, zi+1 = 1 in that case (and hence there is no difference between

the two parameterizations of Section 3.2).

Hierarchical frailty models have been developed in recent years [14–16], and

does not fit in the same group as other classes of multivariate frailty models (e.g.
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additive). Interpretation-wise, letting the first-level frailty be cP distributed is

very interesting. Randomizing z2 allows the members of different families to have

different probabilities of having zero frailty. Given z2, the individuals in a family

are independent. Although members of a family shares the value of z2, the model

e.g. allows for two members of a family were one has zero frailty, while the other

could have a positive frailty.

It does not always make sense that all the family members have the same

second-level frailty. Moger et al. proposed to decompose a level in the hierarchical

frailty model, to impose a certain correlation structure in the family [17]. They

used the same approach as Korsgaard and Andersen [41], although allowing for

two children in a family. Furthermore, they had three levels in their model; the

first one described the varying individual frailty, the second level described the

correlation structure of a family in an genetic additive fashion as described by

Korsgaard and Andersen, and the third level described a frailty shared among the

family members due to environmental factors. The frailties on all levels (and in

the additive decomposition) were gamma distributed, with the expectation on each

level set to one. A consequence is that they were able to estimate the parameter

of the third-level frailty due to the correlation between the parents in the family.

As mentioned above, the model in paper 2 has two levels only; the individual

variation in frailty on the first level, and the familial frailty variation on the second

level. The model allows for up to five children, and decomposes the genetic second-

level frailty into 16 components, as opposed to two in Korsgaard and Andersen

[41], and four in Moger et al. [17]. Since females are not considered, adding

another level, to serve as a shared environment term is not feasible. However, we

add a term accounting for the environment shared among brothers independently
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of their fathers, inspired by the work on additive models [41, 42]. In this way

it is ensured that the correlation is larger between brothers than between father

and son. Furthermore, the model in paper 2 uses a cP distributed first-level

frailty, that opens up for interesting interpretational aspects. The randomized z2

parameter is correlated rather than shared between individuals in a family. This

means that two individuals does not need to have the same probability of having

zero frailty, although the probabilities are correlated.

4 Familial Risk

There are several cancers that shows some degree of familial clustering. Such a

clustering naturally leads us to think that there are some heritable aspects involved

in the development of the cancer. Families usually share a very similar environ-

ment, and environmental risk factors could also play a role in familial clustering.

However, as discussed in paper 3, such risk factors are not likely to be the main

drivers of familial risk [43, 44]. In any case, familial risk is something that both

patients and their families might be concerned with, and it is something that even

show up in the general media form time to time. It is therefore of great interest

how such risks are estimated.

Familial risks are usually considered as the risk of developing the disease in

question if a family member is affected, and compare that risk to the general risk

level in the population. It is not obvious how to give such an estimate, especially

for siblings, and there are several different approaches. One option is to have an

index case in each family (the proband), and to compare the incidence rate in

family members of these index cases to the incidence rate in the population [45].

Another approach is to let the first individual in the family who has an event be
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the index case, and to let the family members be a part of the risk set from the

time of the index case had the event [46].

Usually, estimation of familial risk is based on data from population wide reg-

istries. Over the last decade or so, the most dominant approach for providing

estimates for sibling risks is the cohort method given by Hemminki et al. [47]. As

mentioned in paper 2, it is not entirely clear how these calculations are done,

because there appears to be an error in the formula in Hemminki et al. [47] (see

paper 2). The paper is nevertheless heavily cited (see selected references in pa-

per 2), and the formula is even reproduced with the same error elsewhere [48, 49].

However, the approach seems to be to pool all siblings with at least one affected

sibling into one big cohort, and find the standardized incidence ratios (SIRs) by

comparing the incidence rate in this cohort to that of the general population. This

means that in a group of siblings with more than one affected individual, all in-

dividuals give a contribution to this defined cohort. It is not intuitively easy to

understand the rationale behind the formula, and it needs better justification. In

any case, although useful, the SIR approach provides merely summary measures.

4.1 Frailty relative risk (FRR)

The large population wide registries in the Nordic countries provides, because of

the possible linkage trough the personal identification number, unique opportuni-

ties to study familial diseases. More advanced analyses of the complex data that

are available could provide much more information than analyses giving summary

measures. Hierarchical (and additive) frailty models can be very useful in this

regard.

Consider two members of the same family, individuals A and B. Moger and

19



Aalen proposed a frailty relative risk (FRR) to express the familial association of

a disease [15, 16],

FRR =
P(A has disease within time tA|Family member B has disease within time tB)

P(A has disease within time tA|Family member B has not had disease within time tB)
. (6)

The fact that given all higher level frailties any pair of individuals are independent,

the FRR can be expressed trough the Laplace transforms of the frailty variables.

The relative risk in (6) resembles a traditional relative risk, comparing two ex-

clusive groups. In studies of familial risk, however, the comparison of interest is

usually the general risk level in the population. With this in mind, the FRR in

paper 2 is defined as

FRR =
P(A has disease within time tA|Family member B has disease within time tB)

P(A has disease within time tA)
, (7)

which is actually the same as the definition originally given by Moger et al. [14].

The FRR may be expanded to include more members in the family that develops

disease or not within specified ages. In Web Appendix 4 of paper 2 the FRRs for

certain constellations are expressed in terms of the survival functions. However,

the FRR may easily be calculated for any constellation. Also, the FRR can be

defined to condition on the exact timing of when the family member developed

then disease. The FRR would then be expressed in terms of the derivative of the

survival function.

The FRR allows for great flexibility with regards to the structures and the

sizes of the families, and enables us to be very precise in our definition of familial

risks. The ease of which the relative risk given multiple affected and/or unaffected

family members are found, once the model parameters have been estimated, is

particularly appealing. As of now, the hierarchical frailty model is somewhat
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computing intensive, and one advantage of the SIR approach is that it is easy to

calculate.

5 Summary of papers

5.1 Paper 1

Frailty modeling of age-incidence curves of osteosarcoma and Ewing sarcoma among

individuals younger than 40 years.

The Armitage-Doll model with random frailty (i.e the proportional frailty model

with Weibull basic hazard rate) model the incidence rate of several cancers well

[4–6]. In this paper it is demonstrated that this model is not able to capture

the very steeply increasing, and later plummeting, incidence rates of the bone

cancers osteosarcoma and Ewing’s sarcoma. This is the case even if the cP frailty

distribution is used. The peaks in the incidence rates of the two cancers coincides

with the growth spurt period in adolescence, a period where the host tissue (i.e.

bone) is expanding. A model that takes into account a biological mechanism that

is accelerated at some, possibly short, period of life, is presented. The model fit

the incidence curves of osteosarcoma and Ewing’s sarcoma well when growth is

seen as the accelerated process, and the results support evidence for an underlying

susceptibility for these diseases. It is indicated that (susceptible) individuals with

an unusually rapid growth spurt may develop the diseases earlier than they would

have if their growth spurts had been closer to the average. This could lead to an

excess incidence early in puberty, followed by a compensation leading to a faster

decrease of the incidence rate than would have been expected if growth spurts were
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more similar across individuals.

5.2 Paper 2

A hierarchical frailty model for familial testicular germ-cell tumors.

We analyzed incidence data on testicular germ-cell tumors (TGCT) in all Norwe-

gian families registered since the personal identification number was introduced in

1960, obtained trough a linkage between Statistics Norway and the Cancer Reg-

istry of Norway. A total of 1,135,320 families were included, and 7,524 families

had at least one member affected by TGCT.

Moger et al. developed a hierarchical frailty model where the frailty on a certain

level were decomposed in an additive fashion to take the correlation structures

within families into account [17]. We modified the model to analyze a male cancer

that is also, possibly, influenced by a maternal mode of inheritance. Furthermore,

we expanded the model to take into account more children in a family, and we let

the correlation between brothers be larger than the correlation between father and

son.

The paper highlighted how the FRR provides accurate definitions of familial

risks, and the flexibility of the FRR as a measure of familial association. This was

demonstrated by its calculation given multiple affected or healthy family members.

Given one affected brother, the lifetime FRR was 5.88 (95% confidence interval

(CI): 4.70, 7.36). Given two affected brothers, the FRR was 21.71 (95% CI: 8.93,

52.76), and if there were two additional healthy brothers in the family, the FRR

was 15.80 (95% CI: 9.56, 26.11). A borderline significantly higher FRR for non-

seminoma than for seminoma (P =0.06), the two main histological subtypes of
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TGCT, were found for sons of affected fathers.

Several of the different FRRs estimated in the paper (those who took multiple

diseased and/or healthy siblings into account), have not previously been reported

for TGCT.

5.3 Paper 3

Understanding variation in disease risk: the elusive concept of frailty.

The paper pointed out how variation in risk that goes beyond measured risk factors

are present. It gave examples of how variation in risk of cancers, and other diseases,

may be established early in life, or even prior to birth. It was discussed that much

of this variation may be due to randomness. Also, it was discussed how even

moderate familial risks are indications of very large individual variations in risk

of disease. Furthermore, a number of consequences of frailty on fairly standard

epidemiological measures were pointed out. This included peaking age-incidence

curves, as in paper 1, and also how frailty may affect incidence rates over calendar

time. It was also discussed how frailty may play an important role when comparing

hazard rates of different groups in e.g. a clinical trial. The paper stressed that

observations in a population may be totally unrepresentative for the individual,

and the biological processes within. In many situations the presence of unobserved

heterogeneity cannot be ignored.

5.4 Paper 4

Investigating tumor dormancy with frailty models.
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Several cancers show peaking hazard rates with respect to re-occurrence and, even-

tually, death, after treatment of the original tumor [50, 51]. The peak in the hazard

rate may be found a long time after the initial treatment. For some cancers, several

peaks have been observed, and the latest peak have occurred many years after ini-

tial treatment. This phenomenon is usually explained by tumor dormancy, which

means that malignant cells or micrometastases remains non-proliferative a long

time after treatment. We studied overall survival in a dataset from the Milan Na-

tional Cancer Institute, consisting of 1657 breast cancer patients having received

conservative surgery followed by radiotherapy.

A frailty model for capturing bimodal hazard rates was proposed. The model

was simpler than previously suggested models [6, 7], in the sense that only one

frailty variable was introduced in the model. The model took on the form of a

proportional frailty model, but the frailty variable was multiplied with the sum

of two basic hazard rates. The two basic hazard rates represented the two main

micrometastatic processes, i.e. originating from single dormant cells or from dor-

mant micrometastases, and were both assumed to have a Weibull form. The model

captured the two peaks in the hazard rate, and the paper set forth the hypothesis

that this behavior could be, at least in part, due to a selection phenomenon. Al-

though it is clear that other models based on different assumptions might fit the

date equally well (or even better), the paper offered a new view on the bimodality

of the hazard rates (with respect to death) following treatment of breast cancer.

6 Discussion

As the title of this thesis suggests, the aim has been to elucidate the presence, and

importance, of unobserved individual differences in cancer. The term cancer is,
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of course, very broad, and includes over 100 diseases that may arise from almost

any cell type in the body [52]. Even though they have some common features,

it is challenging to make general statements about such a large range of diseases.

Nevertheless, it makes intuitively sense that the development of any disease is

subject to individual differences beyond the ones that are known to have an effect.

Paper 3 focuses on pointing out the evidence for large variation in individual risk,

and demonstrates, using only hypothetical examples, some possible implications

of this variation on epidemiological measures. Papers 1, 2 and 4 focuses on

specific cancer types. These three papers all have some degree of methodological

development, and an applied side. When univariate frailty models are applied to

data, there is always some speculative elements involved. Both paper 1 and paper

4 are no exceptions in that regard, and paper 4 is perhaps the most speculative.

However, the assumptions made are reasonable from a biological point of view in

both papers. When clustered data is analyzed, the degree of speculation is reduced

[28], and Paper 2 is, perhaps, the most interesting from both a methodological

and applied standpoint.

The contribution of paper 1 is the modification of the Armitage-Doll model

with random frailty, to account for an accelerated biological process in the host

tissue of the cancer, at some point in time. One (at least implicit) criticism

of the Armitage-Doll model as such, has been that it is not able to take into

account an expanding host tissue [19]. Paper 1 shows that this is the case even

when frailty is accounted for. However, a consequence of the paper is that the

Armitage-Doll model may easily be modified to take this into account, which

was also mentioned in paper 3. The proposed model fits the incidence data of

osteosarcoma and Ewing’s sarcoma well, and another contribution of paper 1
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is thus to act as supporting evidence for an underlying predisposition for these

cancers. Possible extensions of this work would be to include data from several

sources. Since obesity may influence both the timing of puberty and the velocity

of growth in adolescence [53], it would be of great intresest to analyze data from

countries at different stages of the so-called obesity epidemic. Furthermore, the

model could possibly be improved by letting the timing of the onset and end of the

period of enhancement of the biological process be distributed according to some

distribution, rather than being fixed quantities.

A contribution of paper 2 is the development of a hierarchical frailty model

that takes familial correlation into account, for a disease that only males can de-

velop, but that has a possible maternal mode of inheritance. Furthermore, the

model allows for a correlation that are different for siblings than for parent-child

pairs (as opposed to the study by Moger er al. [17]), as well as allowing for more

children per family. The paper demonstrates how, once the parameters of the

model has been estimated, the familial risk given virtually any combination of

healthy/diseased family members may be found. Of special interest is the 21-fold

increased risk of developing TGCT if two brothers have had the disease, and how

this estimate is affected by additional, healthy brothers. Such estimates have,

to our knowledge, not previously been published for TGCT. Although this study

was the first analyzing data from a complete national registry using this type of

methodology, it would be very interesting to be able to combine data from all (or

some) of the Nordic countries. In this way, more precise estimates for the relative

risks considering multiple affected family members could be obtained. Further-

more, it would be useful to have a ready-made computer program for estimating

this type of models. Although estimation of the model used in paper 2 was some
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computer intensive, this could be feasible by implementing the program in a faster,

lower-level programming language than R.

The contributions of paper 3 are related to the illustrations of the existence

of frailty effects in many aspects of biology and in the development of cancers and

others diseases. The paper discusses how artefacts due to frailty, well known from

survival analysis, may be of crucial importance for correctly interpreting fairly

standard epidemiological measures. Thus, the paper contains both justifications

of the importance of a frailty approach in analyzing data in various situations,

as well as communicating to a non-statistical audience that frailty variation is

important for correct interpretation.

The main contribution of paper 4 is that it generates the hypothesis that

the bimodal mortality rate after treatment of breast cancer patients is, in part,

due to selection (i.e. frailty) effects. A univariate frailty model for capturing

bimodal hazard rates is developed, and used to estimate the population hazard

rate with respect to mortality in breast cancer patients receiving conservative

treatment. The knowledge of the mechanisms that control what is referred to as

tumor dormancy is limited, and the effects of the included covariates may thus

be useful with regards to which patients that should be followed up most closely.

With regards to further work, it would be interesting to apply the model to a even

larger dataset, to obtain more precise results. Furthermore, a dataset (of breast

cancer or other, relevant types of cancer) with longer follow-up could allow for the

model to be expanded to include another basic hazard rate, possibly capturing

another peak (if present). Also, it could be interesting to study the causes of

death, and to apply a competing risks model where the cause-specific hazard rates

could take on the form of the proposed model, with possibly correlated frailties.
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Abstract: 

Background 

The concept of frailty plays a major role in the statistical field of survival analysis. Frailty 

variation refers to differences in risk between individuals which goes beyond known or 

measured risk factors. In other words, frailty variation is unobserved heterogeneity. Although 

understanding frailty is of interest in its own right,  the literature on survival analysis has 

demonstrated that frailty effects can lead to surprising artefacts in statistical estimation that 

are important to examine.  

Methods 

We present literature that demonstrates the presence and significance of frailty variation. We 

discuss the practical content of frailty, and show the link between frailty and biological 

concepts like (epi)genetics and heterogeneity in disease risk. 

Results 

Evidence is pointed out for the pervasive presence of heterogeneity between individuals. 

There are numerous suggestions in the literature that a good deal of this variation may be due 

to randomness. Heterogeneity often manifests itself as clustering of cases in families. We 

emphasize that apparently moderate familial relative risks can only be explained by strong 

familial variation. Finally, we highlight the potential impact of frailty on standard 

epidemiological measures. 

Conclusions 
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Frailty variation is normally present and a good understanding of this phenomenon may be 

important in order to correctly interpret statistical analyses in epidemiological studies. Even 

moderate familial risk points to a high degree of variation between families and individuals. 

Statistical artefacts may arise as the result of frailty variation in many settings, and one should 

be cautious in the interpretation of hazard and incidence rates. 

Keywords:  Frailty, heterogeneity, random variation, epigenetics 

Key messages: 

 Variation in risk of disease often goes far beyond what is captured by measured risk 

factors.  

 Much of the heterogeneity in risk may be established early in life, and stochastic 

variation in these processes could be a major contributor in this regard.  

 Even moderate familial risk points to the existence of large variations in risk between 

families, and individuals, in the population.  

 Failing to take into account the unobserved heterogeneity between individuals may 

lead to erroneous interpretations of standard epidemiological measures, like hazard 

ratios and age-incidence curves.
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Introduction 

In epidemiology and clinical science, it is often tacitly assumed that the risk of individuals 

with respect to a certain disease is similar in a population, apart from well documented 

differences due to risk factors or genetics. It is often presumed, for instance, that all 

individuals are vulnerable to the same risk factors. Differences between individuals tend to be 

ignored unless they can be expressed in terms of known risk factors or known genetic 

properties. However, the fact of the matter is that individuals are generally highly dissimilar 

also for a number of unknown, or just partly known, reasons. Indeed, the extent of this 

heterogeneity is probably not generally appreciated. 

 

Heterogeneity which is unknown, or not represented in available data, is often referred to as 

frailty, a quantity that is varying between individuals. The term frailty comes from the 

statistical field of survival analysis, where there is a strong interest in this type of 

heterogeneity. Frailty is usually modeled by assuming that the hazard rate (baseline hazard) 

for an “average individual” is multiplied by a factor Z that renders the level for a specific 

individual: 

 

When we integrate out the variation in Z to get the (observable) population hazard rate, the 

resultant function is quite different from the baseline hazard (t). A number of various 

distributions exists for the frailty Z.1, 2 Note that the baseline hazard may be a function of 

observed individual covariates, e.g. through a Cox model. 
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A number of diseases exhibit  incidence rates that peak at young ages, including cancers like 

childhood leukemia and Hodgkin lymphoma, but also schizophrenia, which has recently been 

analyzed from a frailty point of view.3 In several cases frailty variation is a reasonable 

explanation for an early peak in incidence, especially when the disease has a strong 

heritability, which is the case for diseases like schizophrenia and testicular cancer. The frailty 

approach has yielded particularly fruitful insights for testicular cancer.4-7 Furthermore, the so-

called frailty models form a basis for the analysis of familial association in cancer incidence.6-

8 

One goal of the present paper is to point out the ubiquity of heterogeneity, or varying frailty. 

We shall also emphasize the role of stochasticity. Furthermore, we will discuss how important 

indications of frailty variation may be deduced from data on familial association. Indeed, 

moderate familial association implies surprisingly strong variation in risk between individual 

families. Although understanding frailty variation is important in its own right, it may also be 

essential in order to correctly interpret statistical analyses in epidemiological studies. Finally, 

we will cover an issue that has been pointed out in the statistical literature: that unobserved 

frailty variation may lead to misleading comparisons of hazard rates and incidence rates, 

resulting in, among other things, an artificial cross-over effect. 

 

Heterogeneity between individuals may be high 

Individual variation in susceptibility 

It is often obvious that disease risk is a fluid phenomenon, dependent on risk factors, genes, 

and the country of residence, among other things. For example, the risk of colon cancer varies 

widely across different countries; it has increased sharply (in fact more than tripled) in the last 
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few decades in many industrialized countries, and it varies substantially between different 

countries worldwide. This means that the risk of colon cancer is not a given quantity, but 

rather something that varies widely. It would follow that the individual risk of colon cancer is 

also a fluid phenomenon; that it varies considerably between individuals even when the outer 

circumstances are similar. Furthermore, there are large differences in risk across regions 

(Figure 1).9 Therefore, it seems logical that the risk will not be homogeneous within regions 

(especially given the arbitrariness of many borders). In short, the variation in risk between 

regions strongly suggests a considerable variation within regions. This kind of variation has 

been clearly demonstrated for the United States with regard to the dependence on race of 

colorectal cancer incidence.10 However, it is highly likely that there are other variations based 

on unknown risk factors. 

 

Some  of the biomedical literature has indicated that there is a high degree of variation in 

individual cancer susceptibility, thereby supporting the presence of frailty variation. An 

interesting paper is Balmain et al.11 where they indicate a strong variation in susceptibility to 

breast cancer. They studied a population without high-risk individuals (those with BRCA1 

and BRCA2 mutations), and still suggest a 40-fold difference in the risk of breast cancer 

between the top 20% and bottom 20% of the study population. Their model also suggests that 

more than 50% of cancers occur in the 12% of the population that is most susceptible. Peto 

and Mack12 reached similar conclusions by studying the relatives of breast cancer patients. 

They observed a very strong familial risk in monozygotic twins which could only be 

explained by a large individual variation in risk. They make the following statement: “Our 

most surprising conclusion is that a high proportion of all breast cancers, and perhaps the 

majority, arise in women at very high risk.” Also, the increased risk of a second breast 



7 

 

malignancy after ductal carcinoma in situ of the breast, even after adjustment for type of 

treatment, points to a large variation between individuals in susceptibility to this disease.13 

 

Regarding colorectal cancer (CRC), Win et al.14 suggest that “the risk of developing CRC 

varies approximately 20-fold between the people in the lowest quartile (average 1.25% 

lifetime risk of CRC) versus the highest quartile for familial risk profile (average 25% risk)”. 

Another study of colorectal cancer in DNA mismatch repair gene mutation carriers showed a 

U-formed distribution in risk distinguishing a high-risk group from a moderate risk-group.15  

 

It is important to be aware that even for cancers with strong attributable risk factors, frailty 

remains a large component. In lung cancer, for instance, there are strong indications that some 

people are much more vulnerable to the damage inflicted by smoking than others; with just 

10-15% of smokers developing lung cancer.16 

 

Susceptibility may be established early in life 

The notion of “early life programming” has become popular. This idea was formulated in the 

Forsdahl-Barker hypothesis, which states that the risk of many diseases is strongly influenced 

by what happens very early in life, e.g. at or prior to birth. Forsdahl17 showed a strong 

correlation between mortality rates for arteriosclerotic heart disease in people aged 40-69 

years, and infant mortality in the same birth cohorts within Norwegian counties.  Earlier 

works include Ravelli et al,18 who observed babies born to women who were pregnant during 

the Dutch famine. They found that the weight of these children later in life depended on 

which trimester the famine affected. Kermack et al. found an association between childhood 
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and adult mortality for different birth cohorts.19, 20 Barker et al. studied heart disease and 

found that areas in England that had the highest coronary heart disease mortality in the 1980s 

also had the highest child mortality rates 70 years earlier.21, 22 Since then, many papers have 

been published indicating a relationship between early life conditions and disease risk later in 

life,23 including the recent paper by Eriksson et al.24 who assert in the title that “Boys live 

dangerously in the womb”.  

 

Epigenetics is used to describe heritable changes in gene expression that are not caused by 

alterations in the nucleotide sequence of the genome, and Forsdahl- Barker type effects have 

been tied to such epigenetic alterations.25, 26 Painter et al showed that the children of those 

exposed to the Dutch famine in utero during World War II (WWII) were also at increased risk 

for ill health, which indicates that epigenetic effects in utero can even have transgenerational 

consequences.27 Studies from the Netherlands and Scandinavia have shown a decreased risk 

of testicular cancer for birth cohorts born during WWII compared to those born before and 

after.28, 29  

 

All these examples show that epigenetic alterations early in life may lead to a large degree of 

heterogeneity between adult individuals in a population.  

 

Different types of variation 

Figure 2 illustrates various ways in which risk can be distributed between individuals. Panel 1 

indicates a risk that is quite similar across individuals, with some variation. Panel 2 shows a 
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situation where most individuals have a relatively similar risk, but there are some individuals 

who deviate quite a lot (the upper tail). This is expressed even more clearly in panel 3, where 

many individuals have a risk close to zero, while there are a number of individuals with high 

risk. An even stronger variation is illustrated in panel 4, where most individuals have risk 

close to zero, while some individuals have a very high risk. All these types of variation could 

actually occur. The examples given in this paper show that even the types of variation shown 

in panels 3 and 4 could be common. However, another issue is how risk develops over time. 

One view is that there is a rather small variation in risk at an early age, which increases over 

time as the result of the varying stresses of life. An alternative view argues that much of the 

variation in risk between individuals is determined very early in life, maybe even prior to 

birth. 

Heterogeneity may be due to stochastic processes 

Randomness 

Heterogeneity, or varying frailty, between individuals may have a number of different 

explanations: environment, genetics or epigenetics; or it may be a purely stochastic 

phenomenon. There is a growing recognition in biology that both stochastic variation and 

chaotic variation are important30. 

 

Many studies point to large individual differences that do not have obvious explanations. A 

recent paper points out a strong association between the telomere length of finches at 25 days 

and later mortality over several years.31 Kirkwood and Finch32 show that even genetically 

identical (i.e. isogenic) worms have great variation in their lifetimes. They stress the random 
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and unpredictable nature of cell damage that occurs with ageing. Epigenetic factors are also 

likely contributors to these time-dependent processes.  

 

Le and Cheng33 studied the problem of why genetically identical cells in the body vary widely 

in their storage of fat, even when there is no difference in the expression of the particular 

genes that affect this storage. They found that the differences between cells were due to 

variation occurring in a cascade of events within an insulin-signaling pathway. These 

variations were very slight at the beginning of the cascade, but led to very different results at 

the end. This phenomenon of small variations in starting conditions yielding very big 

differences in the end product is well known in mathematics and is related to nonlinear 

equations;  comprising essential elements of chaos theory. Nonlinearity is probably a common 

phenomenon in biology, and cascade phenomena would be expected to be nonlinear with 

complex feedback dynamics. 

 

In an interesting Nature letter, Frank and Nowak34 suggest a model where random mutations 

at a very young age can produce a developmental disposition to cancer. The idea is that during 

the gestational phase stem cells may mutate and then multiply randomly. If the mutation rate 

is high enough, this variation could be a dominant feature.35, 36  

 

The examples given here show that great individual variation may simply be an accumulation 

of purely random variation combined with nonlinear dynamics. 
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Smith offered a fascinating discussion of the importance of randomness in epidemiology.37 He 

asserts that epidemiology cannot capture the pervasive randomness which averages out at the 

population level. Our point here, though, is that when time is considered, there are telltale 

indications of random variation. 

Genetic variation and rare variants 

The lack of clear findings in many genome wide association (GWA) studies has led people to 

think that rare mutations might be responsible for many diseases. Rare gene combinations are 

difficult to discover in GWA studies, which may explain the apparent lack of genetic 

effects.38, 39 Also, Fletcher and Houlston40 explain how disease susceptibility may be an effect 

of common low-penetrance genes or rare gene combinations. Cirulli and Goldstein41 suggest 

that “rare variants could be the primary drivers of common diseases” and state that e.g. rare 

copy number variants “are associated with an effect on the risk of disease that  dramatically 

exceeds the effects of most common variants associated with a disease”.  

 

While a simple polygenic model, where the risk is a linear combination of a (possibly large) 

number of factors, will give a normally distributed risk like that in panel 1 of Figure 2, rare 

variants make it more likely that we will get variations of the type seen in panels 3 and 4. 

 

Epigenetic stochasticity 

During recent years, there has been growing recognition that environmental exposure affects 

cancer susceptibility through epigenetic changes, in addition to the traditional gene-

environment interactions, which can promote mutations. This is particularly relevant in the 

developmental origins of health and disease hypothesis.42 Some authors argue for a paradigm 
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shift, where the old view on the importance of DNA mutations is weighed down and 

supplemented by the modern view of epigenetic modifications.43 There is, however, 

indication of an important stochastic component to these modifications, and it has even been 

speculated that the majority of important epigenetic changes may not be due to the 

environment, but to random events early in life.43 This might explain the large variation that is 

often observed between genetically identical individuals.44 

 

The competing explanations: frailty selection versus biological 

mechanism 

Frailty explanations of observed incidence rates will typically attribute certain findings to 

statistical selection effects. A disease where frailty is likely to play a role is testicular cancer. 

The incidence of this disease is typical of cancer forms originating in early (fetal) life, 

reaching a peak at a rather young age (approx. 30 years) and then declining sharply. A 

reasonable explanation for this observation is that some men are susceptible to, and have an 

increased risk of acquiring testicular cancer, and do so relatively early. The declining 

incidence of testicular cancer with age is presumed to be due to high-risk individuals being 

selected out from the population after they acquire the disease. This in fact fits well with 

biological evidence suggesting that testicular cancer may be caused by cellular damage during 

fetal life, which has been used as a basis for a so-called frailty analysis of incidence.4 In fact, 

the origin of testicular cancer is believed to be carcinoma in situ cells, the malignant 

transformation of which is initiated during early development from primordial germ cells, or 

gonocytes that either fail to end their proliferation or undergo proper differentiation.45 Since 

the incidence rate of testicular cancer also has increased substantially during the last decades, 
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this damage appears to have become more prevalent over time. It should be noted that this 

kind of a statistical explanation typically competes with a biological mechanistic one. It has 

also been suggested that the decline in the risk of testicular cancer with age could be due to a 

declining testosterone level. Although the surge in testosterone level during puberty is 

important for the transformation of dormant carcinoma in situ cells to invasive testicular 

cancer, there is no evidence that individual testosterone level is a risk factor for testicular 

cancer.46 Furthermore, the decline in testosterone is rather modest from the age of 30 years. 

 

On the other hand, there are clearly cases where frailty is not the major cause of the decline in 

risk. One example is retinoblastoma, where there are almost no cases in individuals over 10 

years of age. The likely explanation is that the retinoblasts are fully differentiated at the age of 

10, and thus thereafter are not susceptible to malignant transformation.47  However, in his 

seminal study on retinoblastoma, Knudson actually took varying frailty into account.48 Long 

before the Rb1 gene was identified, he separated a very frail group (those with an inherited 

germ line mutation) from a less frail group (those who had the non-hereditary form), and used 

this to formulate his famous two-hit hypothesis. The case of retinoblastoma is thus an 

example of how the consideration of varying frailty combined with biological knowledge may 

provide valuable insights.  

 

Competing frailty and biologic mechanistic explanations are often suggested, and it may not 

be obvious which one is correct. Part of the difficulty is that when frailty is estimated from 

single event data (e.g. the single occurrence of a specific type of cancer for an individual), 

there will necessarily be uncertainty. A much more precise assessment of frailty can be done 
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in a setting where there are repeated events (e.g. cancer in both breasts, or in the kidneys or 

testicles), or when studying cancer incidence in families, e.g. testicular cancer among 

brothers.6, 7 

Familial cancer risk points to large individual heterogeneity 

For many diseases there is a familial association in risk. A surprising and counterintuitive 

issue is that even a moderate familial association points towards a large variation in risk 

between families. Hence, the existence of a familial association is another argument for the 

presence of considerable individual heterogeneity in risk. 

 

There is generally a familial association when it comes to cancer risk. For example, in breast 

cancer the genes BRCA1 and BRCA2 confer a very high familial risk. But even in the 

absence of such genes, sizeable familial association is still observed. Johns and Houlston49 

pointed out that having a first-degree relative with colorectal cancer more than doubles one’s 

risk for the disease, while the risk is increased more than 4-fold when one has two first-degree 

relatives with CRC. The risk of testicular cancer for a brother of a case is increased about 6-

fold.6, 7 Tumors of the nervous-system also show a strong heritability (standardized incidence 

ratios around 2, but up to 27 for the rare multiplex families).50 

 

Even familial risks that appear modest, like the relative risk of about 2 seen for relatives of 

breast or colon cancer patients, still imply a large variation in risk between individuals.50-52  

This has also been pointed out by Moger et al.,7 and by Aalen53 in a cardiovascular disease 

setting. In fact the variation in individual risk when even small familial risks are observed will 
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typically be of the type in panels 3 and 4 of Figure 2. An interesting quote from Hopper51 

stresses this surprising fact:  

“… even for a disease for which there is only what one might consider in epidemiological terms 

‘modest’ familial aggregation (such as a two-fold increased risk for close relatives of affecteds), people 

of the same age  and sex must differ greatly in their familial risks of disease (e.g. a 20-fold or more 

difference in risk between the quarter of the population at lowest familial risk and the quarter of the 

population at greatest familial risk). This familial risk gradient is in addition to differences due to ‘non-

familial’ environmental or lifestyle factors that are specific to individuals. Finding the causes of even a 

modest proportion of familial aggregation of a disease could be a major step in understanding the causes 

of the disease itself.” 

 

Let us consider a very simple situation: Assume that the population is divided into two groups 

of equal size, and such that the probability of acquiring a specific disease is 1% in one group 

and 20% in the other. All the members of a given family belong to the same group, be it the 

high-risk or low-risk group. Consider that the familial relative risk is defined as follows: the 

conditional probability of developing the disease if a specific family member has acquired it, 

divided by the average risk of getting the disease. In our example the familial relative risk 

equals 1.82. Hence a relative risk of 20 at the individual level translates into a very modest 

familial risk just as suggested by Hopper.51 

 

Since familial relationships are important for disease risk, it is useful to use study designs that 

to some extent control for such relationships. Within-pair twin studies are useful in this 

regard.54  
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Statistical models for familial risk 

In order to get a deeper understanding one has to consider statistical models. The familial risk 

association depends on two conditions, namely the correlation between the risk factors within 

a family, and the variation in risk within the population associated with these factors. Assume 

that the risk depends exponentially on normally distributed risk factors with a correlation , 

and that s denotes the relative risk associated with a change in the risk factor from mean – 

2SD to mean + 2SD. The familial relative risk, r, associated with a diseased sibling is given 

by 

,     (1) 

a special case of a more general formula given by Aalen.53 Assume for instance that  = 0.5 

which is a very strong familial correlation. Then formula (1) as a function of s is plotted in 

Figure 3. One sees that even for s = 10 which represent a very strong effect of the risk factor, 

the value of r is still less than 1.2. Hence, for simple polygenetic inheritance at the risk factor 

level, the familial relative risk associated with even strong risk factors is very moderate. 

 

In practice, familial association will have several sources, partly genetic, and partly a shared 

environment or culture, or attitude toward various risk behaviors. It can be shown that 

environmental influences contribute only very slightly to the observed familial risk 

association. However, measured risk factors could be poor surrogates for risk factors that are 

more strongly familial, and the effect could be somewhat prone to e.g. measurement error. 52 
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Formula (1) presumes a normal distribution, which one would usually assume for simple 

polygenetic inheritance. Some skewness might be introduced, which might appear more 

realistic if some genes have a stronger effect than others, for example due to higher 

penetrance. We shall assume that two individuals have a common risk component which is 

gamma distributed with shape parameter . Following Aalen53, the familial relative risk, rF, is 

given by: 

     (2) 

Note that when the shape parameter  goes to infinity, this expression will converge to r 

(because an infinite  implies a normal distribution for the common component). Plots of 

formula (2) as a function of  and r are given in Figure 4. The major deviation occurs for 

 which corresponds to an exponential distribution of the common familial risk. This 

represents a high degree of skewness (Figure 5). It means that members of a minority of 

families have a much higher risk than others. Figure 5 also includes an illustration of an even 

more skewed gamma distribution. 

 

Similar results are presented in Moger et al.7 where a totally different mathematical model 

also indicated that even a very skewed familial frailty distribution will result in very moderate 

familial relative risks. The paper presents the following useful formula 

 

where CV is the coefficient of variation of the probability of being susceptible, as it varies 

between families, and R is the relative risk of another member of the family acquiring the 

disease if there is already a case in the family. From the above formula it is seen that 
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assuming e.g. R = 2 implies CV = 1. This means that the standard deviation equals the 

expectation, which again implies a strongly skewed distribution. If the distribution comes 

from the gamma family, then it has to be an exponential distribution. If CV is greater than 1, 

then the shape parameter of the gamma distribution is less than 1 which yields an extremely 

skewed distribution (Figure 5). In fact the cases discussed here correspond to panels 3 and 4 

of Figure 2.  

 

The conclusion from this brief review of familial association is that a familial relative risk of 

2 or above is a strong indication for the existence of high risk groups of individuals. 

Interpretation of epidemiological measures 

Taking heterogeneity, or varying frailty, between individuals into account can be of crucial 

importance for the understanding of epidemiological features in a population. There is a 

natural tendency to assume that hazard rates and incidence rates can be taken at face value. 

Although these concepts appear to be simple, their interpretation can still be very difficult. 

The statistical interest in frailty stems in part from the fact that it can lead to curious statistical 

artefacts. 

 

Cross-over effects 

Consider two groups of individuals with hazard rates  and , such that the hazard 

ratio is 2. In each of these groups there would necessarily be some unobserved heterogeneity 

between individuals. By introducing equally distributed frailty variables in the two groups, a 

decreasing hazard ratio over time may be obtained. Depending on the choice of frailty 
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distribution, the hazard ratio may even cross-over, and become lower than 1, such that the 

high-risk group appears to become the low-risk group (Figure 6).  The decrease (and possible 

cross-over) of the hazard ratio over time is a frailty effect. Individuals in the high-risk group 

will on average experience events earlier than those in the low-risk group. This causes the 

proportion of highly susceptible individuals in the high-risk group to decrease faster than in 

the low-risk group, leaving an increasing proportion of less susceptible individuals. Thus, the 

hazard ratio will decrease. If, for instance, the population contains a non-susceptible 

subgroup, then the susceptible individuals in the high-risk group would be exhausted earlier 

than in the low-risk group, causing the relative risk to cross-over, and become lower than one, 

even if the hazard ratio stays constant on the individual level. This means that when frailty is 

not observed and cannot be accounted for, a wrong conclusion could be drawn regarding the 

true relationship between two groups. This is in fact a time-dependent version of Simpson’s 

paradox, which means that the observed relationship (concerning e.g. risk of disease) between 

two groups is reversed at an aggregate level compared to what would be observed at a more 

detailed level if covariates could be conditioned on. 

 

Another interesting effect of frailty occurs when discontinuing treatment in a clinical trial. Let 

us assume that the treatment group has hazard rate  and the control group has hazard 

rate , presuming the treatment is effective. At the start of the study, the hazard ratio is 

two. Because the treatment is effective, patients in the control group will on average have 

events earlier than in the treatment group, and the hazard ratio will decrease with time. At 

some point the difference between the hazard rates is so small that it is decided treatment is no 

longer effective, and it is stopped. A possible consequence of this decision is that the hazard 

ratio drops below one, and it appears protective to be a member of the control group (Figure 
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7). In the control group the most frail individuals would already have had an event at this 

point, and at the time of discontinuing the treatment, there would be a higher proportion of  

less frail individuals in the control group. In the treatment group, frail individuals that would 

already have had an event if they had not been treated, have a very high risk immediately after 

the treatment is stopped. Not being aware of a possible frailty effect may lead to a wrong 

impression of the effect of discontinuing a treatment for an individual. 

 

False protectivity 

In a competing risks framework, two (or more) events compete in determining the failure of 

an individual. The failure rate of each cause is expressed in terms of a cause-specific hazard 

rate. As in the example above, the hazard rates may be influenced by frailties. If these frailties 

are correlated, then one may observe a false protectivity.55 If a covariate has a detrimental 

effect on one of the two competing risks, it may, at the population level, appear to be 

protective in the other cause-specific hazard rate.  

Frailty and models of carcinogenesis 

The famous multi-stage model of Armitage and Doll set the stage for a mathematical 

approach to understanding cancer incidence, and it continues to play a fundamental role in our 

understanding of the carcinogenic process. This was exemplified by the re-publication of the 

original article in the International Journal of Epidemiology at its 50 year anniversary in 

2004. Since it was first suggested, however, more sophisticated models have been published. 

Moolgavkar and Knudson proposed a two-hit model (combined with clonal expansion of 

initiated cells) that took heterogeneity of the carcinogenic process itself into account, and 

explained peaking incidence rates of certain cancers by the varying (decreasing) number of 
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stem cells susceptible to mutation. Their model has later been expanded to allow for a cell to 

undergo several transitions before going into the clonal expansion phase,56 as well as other 

further developments of the model.57, 58  All these models were created to facilitate the 

understanding of cancer development on an individual level. Meza et al. studied the effect of 

gestational mutations on cancer risk, and stated that “Even with identical gestational mutation 

rates in all individuals in a population, at birth individuals are at different risk because of 

random variation in the number of mutated cells at birth”.35 Taking varying frailty into 

account (i.e. heterogeneity in risk between individuals), a Weibull hazard rate, as suggested 

by the Armitage-Doll model, makes sense. This is the case, even when assuming clonal 

expansion at some intermediate step. A mathematical formulation is that, on the individual 

level, the hazard rate of an event is given as a product of the Weibull hazard and an individual 

frailty factor. As opposed to the exhaustion of susceptible stem cells within the individual, the 

model considers the exhaustion of initially highly susceptible individuals as an explanation of 

a peaking incidence curve. This approach may also be modified in several ways, including 

taking into account an expanding host tissue during e.g. puberty.59  An important element is 

thus to combine models of carcinogenesis with a realistic understanding of individual 

differences,5, 59, 60 to better understand features of population age-incidence rates. 

 

Interpretation of incidence rates 

It turns out that also changes in epidemiological incidence rates over calendar time can be 

wrongly interpreted if one does not take into consideration the possible heterogeneity between 

individuals. Consider the simple Armitage-Doll multistage model of carcinogenesis, which 

states that a cell has to go through a certain number of transitions to reach malignancy. As an 

example, consider the simple version of a multi-stage model as shown in Figure 8. Assume 
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that the transition rates are not the same for all individuals, but that there is a strong variation 

in susceptibility. Consider for instance a population where only a small subgroup is 

susceptible to the cancer in question, and the majority has a zero rate of cancer initiation 

(transition from a normal cell to an intermediate cell). If the initiation rate increases abruptly 

at a given point in (calendar) time, the incidence rate may increase to a peak, then drop and 

stabilize on a higher level. This is illustrated in Figure 9a, for the simple multistage model in 

Figure 8, with only 1% of the population being susceptible. The same point, with 90% being 

susceptible, is illustrated in Figure 9b. Although a simplification, the abrupt increase in the 

initiation rate could be the result of a risk factor that becomes more pronounced in the 

population at a given time. 

 

The above example is simple, but illustrate that changes in the prevalence of risk factors may 

have an impact on observed incidence rates, even a long time after the change occurred. 

While the real biological change here was an abrupt increase in the prevalence of a risk factor, 

the observed incidence rates gave the impression of a risk that first increased and then 

decreased. It is of course more likely that the presence of risk factors changes gradually over 

time, and this will have a similar effect on observed incidence rates as in the above example. 

The observed incidence rate will continue to change after the prevalence of the risk factor has 

stabilized. If a cell requires more events to become malignant, changes in prevalence of 

different risk factors may affect the transition rates to various states. This could possibly also 

lead to multimodal shapes of hazard rates.  
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The point we are making, is that changes in the incidence rate may not be a simple reflection 

of what is happening at a biological level. It is well known that underlying effects will be 

smoothed out in the observed incidence. But in addition to this, frailty may produce incidence 

rates with aspects that are unrepresentative of the underlying changes. Care should be taken 

before drawing conclusions on an individual level based on observations in a population. 

 Conclusion 

We have pointed out a number of findings that indicate the presence of a considerable 

individual variation in the risk of cancer and other diseases that goes beyond what is due to 

measured risk factors. Varying frailty may create artefacts when studying incidence rates and 

other epidemiological measures, such as a decline in incidence due to the frailest individuals 

experiencing the event early. 

 

Familial associations that appear moderate may cover a large underlying variation in risk 

between individuals. This and other aspects of individual variation point towards caution in 

interpretation. The presence of individual heterogeneity cannot be ignored. It may be 

necessary to perform mathematical modeling to get a proper understanding of the nature and 

magnitude of the phenomenon of frailty in any given study population. 
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Figure 1: Colorectal cancer incidence in various regions. Picture constructed by Globocan.9 

 

 

 

 

 

 



 

Figure 2: Various types of distributions of risk (frailty) at an early age: (1) small variation in risk 
between individuals, (2) large group at moderate risk, and a smaller group of individuals at high risk, 
(3) very skewed: many individuals at low risk and a small group at high risk, (4) most individuals at 
close to zero risk and a few individuals at a high risk. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 3: The familial relative risk, r, associated with a diseased sibling as a function of s according to 
formula (1) in the text, where s denotes the relative risk associated with a change in a risk factor 
from mean minus two standard deviations to mean plus two standard deviations. Based on normally 
distributed variation in risk. 
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Figure 4: The familial relative risk, , associated with a diseased sibling as a function of r according 
to formula (2) in the text, where the two individuals in the family have a common risk component 
that is gamma distributed with shape parameter . Here r is the familial relative risk from formula 
(1), that is the familial relative risk without the skewness introduced by the common, gamma 
distributed component.  is plotted for given values of . Note that  implies . 

 

 

 

 

 

 



 

Figure 5: Probability densities for the exponenetial distribution (solid line) and the gamma 
distribution with shape parameter 0.5 (dashed line). 

 

 

 

 

 

 

 

 



 

 

 

Figure 6: Assume that the hazard rates in two risk groups are  and  respectively. When 
frailty variables are introduced, the observed relative risk declines over time as shown in the figure. 
Three frailty distributions are used; one leads to a crossover of the hazard ratio. This case 
corresponds to a frailty distribution with a positive probability of zero frailty (i.e. a non-susceptible 
group). See Aalen et al.2, Chapter 6, for technical details. 
 

 

 

 

 

 

 



 

 

 

 

Figure 7: Effect of discontinuing treatment. A control group with hazard rate  is compared with 
a treatment group with hazard rate . Treatment is discontinued at time point 1.



 

 

Figure 8: Simple illustration of an Armitage-Doll multi-stage model of carcinogenesis. The states 
represent the stages of the carcinogenic process. State one is the healthy state, state two is an 
intermediate state, and in state three a malignant cell has developed. State four is a censored state. 
The s and s are transition rates. 

 

 

 

 



 
Figure 9: Incidence rates for the model in Figure 8. Assume that 10,000 individuals enter state one 
per time unit. The transition rates are  for time , and  for time . Also, 

,  and    a) 1% of the population is susceptible, i.e. having . b) 
90% of the population is susceptible, i.e. having . 
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