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4. INTRODUCTION 

4.1 Development of cancer  

Cancer encompasses a group of diseases characterized by uncontrolled cell proliferation. 

Malignant tumours, in contrast to benign tumours, possess the ability to invade adjacent 

tissues and metastasize to more distant locations. The different cancer forms are classified 

according to the tissue and cell type from which they are believed to arise. For example, 

ovarian carcinoma (OC) is believed to arise from the ovarian surface epithelium. 

Development of cancer is a multistep process involving several sequential alterations, 

resulting in several biological properties required for cancer development. 

 

4.1.1 Cancer and genetics 

Cancer develops as a result of changes in gene expression caused by genetic or epigenetic 

alterations. Genetic alterations are caused by stable changes in the DNA sequence 

(mutations), whereas epigenetic alterations involve non-DNA changes, which are functionally 

relevant modifications of the genome, such as DNA methylation and histone modifications. 

Genetic and epigenetic alterations inflict varying biological effects depending on where in the 

genome or epigenome they occur and whether they alter a gene product. For cancer to 

develop, it is required that these changes result in altered gene expression that causes specific 

biological properties. 

Mutations may occur in a number of ways. According to effect on structure, mutations can be 

classified as small-scale mutations and large-scale mutations. Small-scale mutations affect a 

small genetic region of one or a few nucleotides, and include point mutations, deletions and 

insertions, where nucleotides are substituted, removed or added, respectively. Large-scale 

mutations affect larger genetic regions such as chromosomal structures, and include 

amplifications, deletions and translocations, causing chromosomal regions to be copied, lost 

or exchanged, respectively. 

Genetic and epigenetic alterations are usually not hereditary, although germline mutations 

may predispose for the development of cancer. It is currently accepted that development of 

cancer is the result of accumulation of several genetic errors (1-3). Subsequent genetic 

alterations in a malignant cell may lead to tumour heterogeneity, which contributes to 

differences in phenotype and response to treatment. 
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4.1.2 Cancer genes 

An adult human being is composed of approximately 1015 cells (3). Cell turnover involves cell 

division and differentiation, approximately 1012 cell divisions per day in humans (3). 

Complex molecular mechanisms ensure a strict balance between cell proliferation and cell 

death, and the total number of cells remains quite stable under normal conditions. Genome 

errors that occur during cell division are normally corrected by DNA repair mechanisms. 

However, if mutations in key regulatory genes, so-called “cancer genes”, are not repaired, the 

balance between cell proliferation and cell death may be disturbed, and cancer may develop.  

Cancer genes may encode proteins involved in the control of cell proliferation and cell death. 

These genes include oncogenes and tumour-suppressor genes (4;5). Oncogenes are mutated 

genes (proto-oncogenes) that stimulate proliferation. An activating mutation (“gain of 

function mutation”) of proto-oncogenes may therefore contribute to the development of 

cancer. Tumour-suppressor genes inhibit proliferation and/or promote cell death, and an 

inactivating mutation (“loss of function mutation”) may likewise contribute to development of 

cancer.  

The tumour suppressor gene TP53 is frequently mutated in human cancer (6). Its protein p53 

(protein 53) has been called the “guardian of the genome”, acting as a “molecular policeman”, 

monitoring the integrity of the genome (7) and deciding whether a cell proliferates or dies. 

Based on the intracellular level of stress and abnormality, such as a DNA damage or the 

presence of aberrant growth signals, p53 has the capacity to either delay replication by 

causing cell cycle arrest or induce cell death if repair fails (6;8).  

The recently discovered microRNAs (miRNAs), a class of small non-coding RNAs that 

regulate gene expression post-transcriptionally, may act as tumor suppressor genes or 

oncogenes (9), depending on whether they target oncogenes or tumor suppressor genes, 

respectively. 

 

4.1.3 mRNA and miRNA expression  

A gene is the molecular unit of heredity in all living organisms, and may be defined as a 

sequence of nucleic acids encoding a functional gene product, such as protein and RNA. If a 

certain gene encodes a protein, the result of transcription is a messenger RNA (mRNA), 

which is an information carrier encoding information necessary for synthesis of one or more 

proteins. A gene may also encode a non-coding RNA (ncRNA), which is a functional RNA 

molecule involved in the regulation of several cellular processes such as gene expression. The 
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miRNAs are a class of short ncRNAs first discovered in the roundworm Caenorhabditis 

elegans in 1993 (10). However, they were not recognized as a distinct class of biological 

regulators until the early 2000s, and have recently been found to be present and highly 

conserved in a wide range of species (11).  

Gene expression is the process by which information from a gene is used in the synthesis of a 

functional gene product. The gene expression process encompasses several steps, including 

transcription and post transcriptional modification as well as translation and post-translational 

modification of proteins. An overview of mRNA and miRNA expression is given in Figure 1. 

 
Figure 1. mRNA and miRNA expression. 
TF: Transcription factor. RNApol: RNA polymerase. RISC: RNA-induced 
silencing complex. Pasha, Drosha and Dicer: Enzyme complexes. 

 

Transcription is the first step in gene expression, in which a particular segment of DNA is 

copied into RNA by the enzyme RNA polymerase in the nucleus. In eukaryotes, transcription 

is initiated by the binding of RNA polymerase to a promoter sequence in the DNA in the 

presence of various specific transcription factors. To create a RNA copy of the DNA 

template, RNA polymerase adds one RNA nucleotide at a time to a growing RNA strand by 

using base pairing complementarity to the DNA template.  
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Transcription produces a precursor, which matures through several post-transcriptional 

modifications. For mRNAs, a primary RNA (pre-mRNA) is transcribed and subsequently 

modified by 5' capping, 3' cleavage and polyadenylation as well as RNA splicing. These 

modifications protect the RNA from degradation and are necessary for the mRNA export 

from the nucleus to the cytoplasm for translation into proteins. Alternative splicing, a process 

where exons of a pre-mRNA are included or excluded from the finally processed mRNA, 

implies that one specific gene may encode multiple different mRNAs, contributing to mRNA 

and protein heterogeneity.  

The majority of the miRNAs is believed to be produced from their own independent genes, 

but may possibly also originate from introns (12-14). Initially, primary miRNAs (pri-

miRNAs) are transcribed as long double stranded precursors, which are processed into 

stemloop structures (70-100 nucleotides) known as precursor miRNAs (pre-miRNAs) by the 

enzyme Drosha and its cofactor Pasha. The pre-miRNAs are exported to the cytoplasm, where 

they are further cleaved by the enzyme Dicer into 17-25 nucleotides long mature miRNAs. 

The mature miRNAs may incorporate into an RNA-induced silencing complex (RISC), and 

target mRNAs by complementary base pairing (13;14). This process may result in 

translational repression or mRNA degradation (15). However, it has also been reported that 

miRNAs can activate translation (14;16). Therefore, miRNAs play a central role in regulating 

gene expression and are likely to be involved in multiple biological processes (13;14). 

At present, about 1600 miRNAs encoded by the human genome have been identified 

(www.mirbase.org, Manchester University, UK). It has been estimated that a single miRNA 

may have about 200 targets and that miRNAs may control the expression of about one-third 

of all human mRNAs (13;17;18). The reason for this may be that human miRNAs do not 

seem to require perfect complementarity for functional interactions with mRNA targets. 

However, continuous base-pairing of the miRNA nucleotides 2 to 8 (the seed region) is 

apparently required for efficient mRNA targeting (14). Therefore, a single miRNA may have 

multiple different mRNA targets and conversely, a given mRNA might be targeted by 

multiple miRNAs. Consequently, alterations in miRNA expression may alter the level of a 

wide specter of mRNAs and proteins and consequently affect cellular functions.   

The regulation of gene expression gives the cell control over structure and function, and is the 

basis for morphogenesis and cellular differentiation as well as the diversity and adaptability of 

any organism. Accordingly, gene expression varies between different cell types based on 
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specific cell function, and also within the same cell type according to variable cell 

requirements. Each cell transcribes RNAs from only a fraction of the genes, which is 

considered "on" when it is transcribed, otherwise "off". The aberrant mRNA and miRNA 

expression in cancer is a result of complex multifactorial processes, based on genetic and 

epigenetic alterations. Interestingly, at least half the miRNA encoding genes are located in 

cancer-associated genomic regions or in fragile sites, frequently exposed for mutations (19). 

 

4.1.4 The hallmarks of cancer 

Hanahan and Weinberg published in 2000 a review listing “The hallmarks of cancer” (20), 

revised in 2011 (1), encompassing a set of biological capabilities needed for the development 

of cancer, enabling tumour growth and metastasis. Well accepted are six capabilities, 

illustrated in Figure 2A. 

1. Sustaining proliferative signalling, the most fundamental hallmark of cancer. Cancer cells 

are able to sustain proliferation through growth-promoting signals, mainly growth factors 

produced by cancer cells themselves or normal cells in the tumour-associated stroma as a 

consequence of signalling from the cancer cells (21). 

2. Evading growth suppressors. Cancer cells evade inhibition of cell proliferation, frequently 

dependent on tumour-suppressor genes such as TP53.  

3. Resisting cell death. Cell death is triggered by physiologic stress factors including DNA 

damage and oncogenic signalling. Cancer cells may circumvent cell death in different 

ways, for instance by the loss of p53 tumour suppressor function.  

4. Enabling replicative immortality. Normal cells are able to divide only a limited number of 

times due to shortening of the chromosomal ends at each cell cycle. This leads to 

senescence, an irreversible entrance into a nonproliferative state, and eventually to a crisis 

with cell death. Apparently, telomeres, which protect the ends of the chromosomes as well 

as its enzyme telomerase, are centrally involved in the immortalization process in cancer 

(22). 

5. Inducing angiogenesis. The formation of new vasculature is essential for tumour growth, 

to meet the tumour’s increasing need for nutrients and oxygen as well as for removal of 

metabolic waste products. The VEGFA (vascular endothelial growth factor A) protein 

binds to stimulatory cell surface receptors displayed by vascular endothelial cells and is a 
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well known angiogenesis inducer. Different factors influence the expression level of 

VEGFA, such as hypoxia (23). 

6. Activating invasion and metastasis. This is a multistep process involving a sequence of 

biological changes (1;24). Initially, the cancer cells are released and adhere to other cells 

and to the extracellular matrix by local invasion. For carcinoma cells, this process often 

involves down regulation of E-cadherin and up regulation of N-cadherin (25). By 

haematogenous and lymphatic spread cancer cells are transported to a distant location by 

extravasation. Cancer may also spread via a fluid-filled cavity which is the main route for 

metastasis in ovarian cancer. At the distant site, the cancer cells may form small nodules 

(micrometastases) and finally grow into macroscopic tumours. 

Two emerging hallmarks of cancer have recently been introduced by Hanahan and Weinberg 

as shown in Figure 2B (1). 

1. Deregulating cellular energetics, involving reprogramming of the cellular energy 

metabolism in order to meet the increasing energy demand due to the cell proliferation. 

2. Avoiding immune destruction, which involves avoidance of attack and elimination by the 

immune system.  

Requirements for the development of these hallmarks are the presence of genome instability 

and mutation (genetic and epigenetic alterations) as well as a tumour-promoting inflammation 

(Figure 2B). The hallmarks of cancer act both independently and complementary. 

The tumour-associated stroma, constituting the tumour microenvironment, participates in the 

tumourigenesis. This was hypothesised already in 1889 by Pagets “seed and soil” hypothesis, 

suggesting that the cancer cells (seeds) need a specific microenvironment (soils) to proliferate 

(26). Tumour progression has quite recently been recognized as the product of a crosstalk 

between cancer cells and other cells within the tumour and its surrounding stroma (27). The 

microenvironment encompasses immune inflammatory cells, endothelial cells, pericytes and 

cancer associated fibroblasts. For example, the immune cells produce several biologically 

active factors that generate a tumour-promoting inflammatory state. The cancer cells 

communicate with the tumour microenvironment, producing gene products which may  
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Figure 2A. The hallmarks of cancer.  
Reprinted from Cell 2011; 144(5):646-74. Hanahan D, Weinberg RA. Hallmarks of 
cancer: the next generation. Copyright (2013), with permission from Elsevier (1).  

 

 
Figure 2B. Emerging hallmarks and enabling characteristics.  
Reprinted from Cell 2011; 144(5):646-74. Hanahan D, Weinberg RA. Hallmarks of 
cancer: the next generation. Copyright (2013), with permission from Elsevier (1). 
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promote tumour progression by processes as angiogenesis, inflammation and remodelling of 

the extracellular matrix (28). 

 
4.2 Ovarian cancer 

4.2.1 Epidemiology 

Ovarian cancer is the fourth and fifth most frequent cause of cancer death in women in 

Norway and the United States, respectively (29;30). The ovarian cancer death rate is only 

ranging behind lung, breast and colorectal cancer, and in the United States also behind 

pancreas cancer (29;30), as shown in Figure 3. Worldwide, it is the seventh most frequent 

cause of cancer death in females, ranging behind breast, lung, colorectal, cervical, stomach 

and liver cancer (31). Whereas the overall cancer death rate since 2002 has consistently 

decreased by 1.6 percent per year females, the death rate has been quite stable for ovarian 

cancer patients (30). Despite the high death rate, ovarian cancer is only about one-tenth as 

common as breast cancer (30). 

The incidence in the Scandinavian countries is among the highest in the world (32). In 

Norway, the incidence during the last decade was about 450 patients per year (33). The 

median age at diagnosis of OC, the most common histological type of ovarian cancer, is 

between 60 and 65 years (34). 

 

4.2.2 Etiology 

The etiology of OC remains uncertain, though several etiologic hypothesis have been 

proposed and evaluated (32;34). Apparently, ovulation causes disruption and repair of the 

ovarian surface epithelial cells, involving a risk of spontaneous mutations in cancer genes. 

The number of ovulatory cycles appears to influence the ovarian cancer incidence, as low 

parity, infertility, early menarche and late menopause increase the risk of developing ovarian 

cancer (34-36).  

Ninety percent of OC occur sporadically, whereas 10% have a strong hereditary component, 

predisposed by mutations predominantly in BRCA1 or BRCA2 genes in hereditary breast and 

ovarian cancer syndrome or in DNA mismatch repair genes in the hereditary nonpolyposis 

colorectal cancer syndrome (32;34).  
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Figure 3. Trends in death rates among females for selected cancers, United States, 1930 
to 2008. 
Rates are age adjusted to the 2000 US standard population. Due to changes in International 
Classification of Diseases (ICD) coding, numerator information has changed over time. 
Rates for cancers of the uterus, ovary, lung and bronchus, and colorectum are affected by 
these changes. *Uterus includes uterine cervix and uterine corpus. Reprinted from CA: 
Cancer Journal for Clinicians 2012; 62(1):10-29.  Siegel R, Naishadham D, Jemal A. Cancer 
statistics, 2012. Copyright (2013), with permission from John Wiley and Sons (30). 

 

4.2.3 Origin  

OC is presumed to originate in the ovarian surface epithelium (OSE) or its derivatives as 

epithelial inclusion cysts through “Müllerian neometaplasia” (37), a process where epithelial 

cells redifferentiate into cells morphologically resembling those derived from the Müllerian 

ducts (embryonic ducts that have developed into most of the female genital tract). The basis 

for this theory is that the OSE cells closely resemble the continuing mesothelium lining the 

peritoneal cavity, in contrast to the OC cells, which resemble Müllerian phenotypes.  

An alternative origin of a subset of OC has recently been proposed, implying that Müllerian 

derived non-OSE cells involve the ovary secondarily. For serous ovarian carcinoma (SC), the 

model describes an additional carcinogenetic pathway postulating that exfoliated carcinoma 
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cells originated in the tubal fimbria implant the ovary or alternatively, that SC develop via 

malignant transformation of implanted tubal epithelial cells (endosalpingiosis). Likewise, it 

has been proposed that endometrioid ovarian carcinoma and clear cell ovarian carcinoma 

(CCC) develop via malignant transformation of implanted endometrial epithelial cells 

(endometriosis) (38). The basis for this model are studies of the tubes of women predisposed 

to or operated for OC. Women with germline BRCA1 or BRCA2 mutations, who are 

predisposed to developing mainly high-grade serous ovarian carcinoma (HGSC) (39), have 

recently been shown to be burdened with a high frequency of dysplasia (40) and (serous) tubal 

intraepithelial carcinoma (TIC) (41) in the tubal fimbria. Cytological and molecular 

resemblance between TIC and HGSC has also been found (38;42-45). Moreover, a recent 

study of the Fallopian tube in patients with serous carcinoma, OC included, showed 

involvement of the endosalpinx in about 70% and TIC in about 50% (45). Recently, Fallopian 

tube precursor lesions have also been found in low-grade serous ovarian carcinoma (LGSC) 

(46;47). Based on these findings, the tubal fimbria has been proposed as a possible site of 

origin for SC (41;42;48). However, a direct transition from lesions in the Fallopian tube to OC 

has still not been demonstrated although a common embryological origin of fimbrial 

epithelium and OSE has been hypothesized (49). 

 

4.2.4 Classification   

Surface epithelial-stromal tumours comprise a heterogeneous group of tumours (50). 

According to the WHO (World Health Organization) histological classification, they are 

classified histologically into serous, mucinous, endometrioid, clear cell, transitional cell, 

squamous cell, mixed epithelial and undifferentiated/unclassified tumours (50). Most of these 

tumours are further subdivided into malignant, borderline and benign, based on the degree of 

cell proliferation and nuclear atypia as well as the presence or absence of stromal invasion 

(50). Malignant surface epithelial-stromal tumours, commonly referred to as OC or epithelial 

ovarian cancer, constitutes about 90% of all ovarian cancers in North America and Western 

Europe (50). 

OC are graded as well differentiated (WD; grade 1), moderately differentiated (MD; grade 2) 

or poorly differentiated (PD; grade 3). There is currently no universally accepted histological 

grading system for OC (51). However, the International Federation of Gynecology and 

Obstetrics (FIGO) grading system (52) is one of the most widely used. This grading system is 

based on architectural pattern, characterizing WD, MD and PD tumours by <5%, 5%-50% 
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and >50% solid growth, respectively. Another frequently used grading system is Silverberg’s 

grading system (53), which includes the assessment of architectural pattern, nuclear grade and 

mitotic activity.  

It is now generally accepted that OC is not a single homogenous disease, but encompasses 

several distinct diseases, each with different oncogenesis and clinical aspects. Therefore, new 

classification models for OC have been proposed. Based on similarity, MD and PD tumours 

are merged and generally referred to as high-grade (HG) tumours, whereas WD tumours are 

referred to as low-grade (LG) tumours. A dualistic model, separating the tumours in Type I 

tumours (LG serous, LG endometrioid, clear cell and mucinous carcinomas) and Type II 

tumours (HG serous, HG endometrioid and undifferentiated carcinomas) was proposed more 

than a decade ago (54;55). Since tumour subgroups within this dualistic classification 

represent distinct diseases both clinically, morphologically and molecularly, a broader 

classification system has recently been proposed (38). In this model OC is divided into at least 

five subgroups; HG serous (about 70%), clear cell (about 10%), endometrioid (about 10%), 

mucinous (about 3%) and LG serous carcinomas (<5%), comprising 98% of OC. These five 

subgroups are different regarding predisposing genetic risk factors, putative precursor lesions, 

patterns of spread, molecular alterations, chemosensitivity and prognosis (38;56) and 

furthermore, they can be distinguished histopathologically (38).   

SC is the most common histological subtype of OC (51;57), of which the MD and PD are 

predominant compared with the WD (51). The merging of MDSC and PDSC into HGSC is 

based on several studies showing that patients with WDSC have a substantially better survival 

than those with MDSC or PDSC (51;58;59). MDSC and PDSC apparently represent one 

common tumour subclass distinct from WDSC and also from serous ovarian borderline 

tumour (SBOT) with respect to origin, pathogenesis, molecular abnormalities and clinical 

outcome (54;60-66). SBOT is a tumour subgroup exhibiting histological malignant 

characteristics, but lack stromal invasion. The LGSC are generally thought to develop in a 

stepwise manner from OSE via precursor lesions in benign serous cyst adenomas and SBOT. 

Progression from SBOT to LGSC has been found in about seven percent (67). The HGSC are 

generally believed to originate directly from the OSE and not via a defined precursor lesion 

(54;62;63). Other postulated origins than OSE are discussed above. Mutations of TP53 and 

BRCA1/2 genes are typical in HGSC, whereas KRAS and BRAF mutations are common in 

LGSC and SBOT (61;62).  
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CCC is the second most common histological subtype of OC in North America and Europe, 

with a prevalence of 1–12% (68;69). The prevalence varies among different populations, 

being 15–25% in Japan (68;69).  As shown in Table 1, there are several characteristics 

discriminating CCC from HGSC, including age and stage at diagnosis, putative precursor 

lesions, prevalence in different populations, chemosensitivity, molecular alterations and 

outcome (68).  

Table 1. Discriminating features of clear cell (CCC) and high-grade serous carcinomas 
(HGSC)  
Clear cell carcinoma High-grade serous carcinoma 
Presents at younger age and low stage (pelvic 
mass) 
• 57–81% stage I/II at presentation 

Present at older age and high stage (ascites 
common) 
• ~ 80% stage III/IV at presentation 

Associated with endometriosis 
(putative precursor lesion) 

Associated with serous tubal intraepithelial 
carcinoma (STIC; putative precursor lesion) 

Low-stage outcome better than (stage matched) 
HGSC 

High-stage outcome better than (stage matched) 
CCC 

Higher proportion in Japanese/Asian 
populations (up to 25% of OC) 

Higher proportion in European populations 

Higher frequency of thromboembolic 
complications 

Lower frequency of thromboembolic 
complications (compared to CCC) 

Inherently chemoresistant to current treatment 
standards (Platinum/taxane) 

Good initial response rates to current treatment 
standards (Platinum/taxane) 

Low frequency of BRCA1/2 mutations BRCA dysfunction 
• Higher proportion of hereditary (germline) 
BRCA1/2 mutation carriers 

TP53 wild-type TP53 mutant 
Genomically stable Genomically Unstable 
High frequency of PIK3CA mutations 
(activating) 

Low frequency of PIK3CA mutations 

High frequency ARID1A mutations 
(loss of function) 

No detectable mutation of ARID1A 

Reprinted from Gynecologic Oncology 2011; 121(2):407-15. Anglesio MS, Carey MS, Köbel 
M, Mackay H, Huntsman DG. Clear cell carcinoma of the ovary: a report from the first 
Ovarian Clear Cell Symposium, June 24th, 2010. Copyright (2013), with permission from 
Elsevier (68).  
 
 
4.2.5 mRNA and miRNA expression 

The development of OC is apparently a result of accumulation of multiple genetic changes 

(70;71). However, the molecular mechanisms involved are not fully understood. Several 

oncogenes have been shown to be activated, and tumour suppressor genes inactivated (34;70). 

These mutations may lead to altered expression of genes controlling critical regulatory 
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processes, which finally may result in cancer. The spectrum of genes and pathways involved 

in OC development is generally wide and varied.  

Until recently, most OC biomarker studies have evaluated only one or a few biomarkers at a 

time. These studies have shown that ovarian carcinogenesis is a complex, multifactorial 

process associated with abnormalities in multiple genes (71). Gene expression profiling 

performed by the use of DNA microarrays allows the expression level of thousands of 

previously identified genes to be simultaneously measured, enabling the identification of the 

most important differentially expressed genes as well as deregulated key molecular pathways 

in the specimen examined. This technique may provide a better biological understanding of 

the oncogenesis and be useful in identifying biomarkers of clinical importance, improving 

diagnostic and prognostic classifications and facilitating development of a better anticancer 

treatment.  

mRNA expression profiling based on DNA microarrays has been used for different purposes 

in OC research (72-74). Several studies have tentatively classified OC into clinically relevant 

subtypes by identifying mRNA expression profiles able to predict response to chemotherapy 

(75-78) or clinical outcome (79-83). Gene expression patterns in relation to suboptimal versus 

optimal cytoreduction (84) and in metastasis versus primary tumour (85;86) have also been 

studied. These studies have moreover been used for molecular classification of OC (60;64;87-

93), of which a few have included OSE (60;83;89) as control material, by identifying several 

differentially expressed genes distinguishing subgroups of OC. 

Gene expression analyses of miRNAs have in recent years been increasingly explored. 

Several miRNAs show abnormal expression patterns in different cancer forms, including OC 

(94). Some of these miRNAs may act as tumour suppressor genes or oncogenes and may be 

important in cancer development. Expression profiling of miRNAs in different cancer forms 

has revealed miRNAs to be tumour specific and may hopefully become potential diagnostic 

and prognostic markers (95). In addition, they may represent targets for therapy, which is 

currently under investigation (96;97).  

Various gene expression analysis approaches have identified several differentially expressed 

miRNAs in OC (9;98-100). A limited number have been based on microarrays (101-110), of 

which some have employed OSE as control material (102-104). These studies have shown 

that miRNAs may be useful in prediction of ovarian cancer outcome (106-112) and 
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chemotherapy resistance (107;108;113), and that they may play important roles in tumour 

progression (105). Furthermore, studies have shown that miRNAs may have potential as 

circulating diagnostic biomarkers (114-116). Unfortunately, these studies have almost 

exclusively utilized non subgroup specific patient cohorts (100), which is inappropriate with 

respect to the molecular differences between OC subgroups (117). Still, a limited number of 

miRNAs have been found aberrantly expressed in more than one study, including miRNAs 

belonging to miR-200 family (9;101;106;108).  

The clinical relevance of gene expression profiling studies has been questioned due to 

inconsistency of the gene expression patterns in the different studies and lack of 

reproducibility. This is apparently due to diversity in the experimental design, including 

analysis of tumours of various histological type, small sample sizes as well as lack of 

appropriate controls. The application of different microarray techniques and analytical tools 

has also contributed to this disagreement (118). Still, the microarray studies have greatly 

increased our understanding of OC oncogenesis. An inspiring example of the value of gene 

expression profiling studies are the multigene expression assays used in clinical practice for 

quantifying risk of distant recurrence in breast cancer patients. However, such assays are not 

yet part of the clinical practice for OC patients. A classification of tumours based on gene 

expression profiles in relation to outcome parameters, resulting in a more individualized 

treatment and subsequently an improved survival for OC patients will hopefully be 

accomplished in the future.  

 

4.2.6 Staging and metastasis 

Tumour staging of OC is according to the FIGO classification (Table 2), based on findings 

mainly at surgery, but also findings from clinical evaluation and diagnostic imaging (119).  

OC metastasize mainly within the peritoneal cavity, by exfoliation of cancer cells from the 

tumour into the peritoneal cavity and formation of solid lesions on the peritoneal surface. 

However, spread via lymphatic vessels to paraaortal and pelvic lymph nodes is also common. 

The extent of spread, which is essential for correct staging, can only be determined with any 

certainty by surgery. When diagnosed, about 65% of OC patients have distant spread of 

disease (stage III-IV) (30;33). Haematogenous spread is uncommon at diagnosis, but may 

occur later as the disease progresses (34).  
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Table 2. Carcinoma of the ovary: FIGO nomenclature (Rio de Janeiro 1988)  
Stage I Growth limited to the ovaries 

      Ia  Growth limited to one ovary; no ascites present containing malignant cells. No 
tumour on the external surface; capsule intact 

       Ib Growth limited to both ovaries; no ascites present containing malignant cells. 
No tumour on the external surfaces; capsules intact 

        Ica Tumour either Stage Ia or Ib, but with tumour on surface of one or both 
ovaries, or with capsule ruptured, or with ascites present containing malignant 
cells, or with positive peritoneal washings 

Stage II  Growth involving one or both ovaries with pelvic extension 
        IIa Extension and/or metastases to the uterus and/or tubes 
        IIb Extension to other pelvic tissues 
         IIca Tumour either Stage IIa or IIb, but with tumour on surface of one or both 

ovaries, or with capsule(s) ruptured, or with ascites present containing 
malignant cells, or with positive peritoneal washings 

Stage III  Tumour involving one or both ovaries with histologically confirmed 
peritoneal implants outside the pelvis and/or positive retroperitoneal or 
inguinal nodes. Superficial liver metastases equals Stage III. Tumour is 
limited to the true pelvis, but with histologically proven malignant 
extension to small bowel or omentum 

         IIIa Tumour grossly limited to the true pelvis, with negative nodes, but with 
histologically confirmed microscopic seeding of abdominal peritoneal surfaces, 
or histologic proven extension to small bowel or mesentery 

         IIIb Tumour of one or both ovaries with histologically confirmed implants, 
peritoneal metastasis of abdominal peritoneal surfaces, none exceeding 2 cm in 
diameter; nodes are negative 

         IIIc Peritoneal metastasis beyond the pelvis >2 cm in diameter and/or positive 
retroperitoneal or inguinal nodes 

Stage IV  Growth involving one or both ovaries with distant metastases. If pleural 
effusion is present, there must be positive cytology to allot a case to Stage 
IV. Parenchymal liver metastasis equals Stage IV 

a In order to evaluate the impact on prognosis of the different criteria for allotting cases to 
Stage Ic or IIc, it would be of value to know if rupture of the capsule was spontaneous, or 
caused by the surgeon; and if the source of malignant cells detected was peritoneal 
washings, or ascites. 

Reprinted from International Journal of Gynecology & Obstetrics. 2006; 95: Suppl.1:S161-92. 
Heintz AP, Odicino F, Maisonneuve P, Quinn MA, Benedet JL, Creasman WT, Ngan HY, 
Pecorelli S, Beller U. Carcinoma of the ovary. FIGO 26th Annual Report on the Results of 
Treatment in Gynecological Cancer. Copyright (2013), with permission from Elsevier (119). 

 
4.2.7 Symptoms and examination  

The symptoms of early stage ovarian cancer are vague and unspecific, and the majority of 

patients are diagnosed with advanced disease. However, more than 90% of ovarian cancer 

patients have experienced symptoms during the last year before diagnosis, most commonly 

bloating, increased abdominal size, fatigue, urinary tract symptoms as well as pelvic or 

abdominal pain (120).  
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The level of CA125 (cancer antigen 125), currently the most clinically relevant biomarker for 

OC, is elevated in about 80% of patients with advanced ovarian cancer, but only in 50-60% of 

early stage ovarian cancer patients (32). Due to the high proportion of false positive tests 

relative to the low incidence of ovarian cancer, CA125 is not useful for detecting early stage 

OC (121). Recently, HE4 (human epididymis protein 4) has shown promising results in 

distinguishing benign from malignant adnexal masses in the premenopausal women (122). 

Ovarian tumours can be visualized by ultrasound, and by CT and MR imaging. Examination 

of the ovarian cancer patient normally includes a CT scan of the thorax, abdomen and pelvis 

to assess abdominal spread and lymph node status. In advanced disease, a biopsy from the 

tumour is collected to ensure a correct histological diagnosis. 

 

4.2.8 Treatment  

Primary maximal cytoreductive surgery, followed by postoperative chemotherapy is the 

standard primary treatment for patients with OC. However, for patients with low risk FIGO 

stage I disease, only surgery is indicated. The aim of surgery is cytoreduction to microscopic 

(zero macroscopic) residual disease (RD), in addition to correct FIGO staging and a 

histological diagnosis. A standard surgery procedure includes bilateral salpingo-

oophorectomy, hysterectomy, omentectomy, bilateral para-aortic and pelvic lymph node 

resection, complete removal of macroscopic tumour tissue from all other locations, and 

collection of ascites or peritoneal washing for cytological evaluation. A delayed primary 

surgery after preoperative chemotherapy is an option for selected patients with stage IIIC or 

IV ovarian cancer (123-125).  

The intravenously administrated combination treatment of platinum (carboplatin) and taxane 

(paclitaxel) is standard postoperative first line treatment for OC patients (126). At Oslo 

University Hospital (OUH), six courses of carboplatin (AUC=5-6) and paclitaxel (175 mg/m2) 

given every third week is currently the recommended regimen. Treatment alternatives include 

carboplatin in combination with docetaxel, pegylated liposomal doxorubicin (PLD) or 

gemcitabine, as well as carboplatin single. Selected patients may be considered for 

intraperitoneal chemotherapy treatment with cisplatin or paclitaxel (www.oncolex.no).   

The majority of OC patients responds to surgery and chemotherapy temporarily, but the 

disease persists and recurs in most patients (34). In recurrent disease chemotherapy is 

indicated for the majority of patients and depends on prior treatment response and platinum 
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treatment-free interval. The disease is traditionally classified as platinum resistant, partially 

platinum sensitive or platinum sensitive, corresponding to a platinum treatment-free interval 

until recurrence of <6 months, 6-12 months and >12 months, respectively. Platinum refractory 

disease recurs during first-line therapy.  

A platinum-based combination therapy, often carboplatin and paclitaxel, is currently the 

recommended regimen for patients with platinum sensitive or partially sensitive disease (126). 

Other treatment options include carboplatin plus PLD (126;127) and carboplatin plus 

gemcitabine (126;128). Surgery may be appropriate in recurrent disease for selected patients 

(126;129). 

Chemotherapy for patients with platinum-resistant or platinum-refractory disease has shown 

significant effect on tumour control but not on overall survival (OS) (130). Treatment options 

include nonplatinum-based monotherapy with paclitaxel, docetaxel, PLD, topotecan or 

gemcitabine (126;130).  

After recurrence OC is incurable. As the disease relapses and progresses, most OC patients 

receive multiple lines of chemotherapy, and finally develop multiresistance to chemotherapy.  

 

Targeted therapy 

In targeted therapy, specific molecules needed for carcinogenesis and tumour growth are 

targeted, as opposed to traditional chemotherapy, which interferes with rapidly proliferating 

cells. Targeted therapies are expected to be more effective and less harmful to normal cells 

than chemotherapy.  

Targeted therapies for OC are now under evaluation in randomized trials, and those targeting 

angiogenesis seem most promising. The antiangiogenetic agent bevacizumab is a humanized 

monoclonal antibody against the VEGFA protein, which induces angiogenesis and endothelial 

cell growth, promotes cell migration and inhibits apoptosis. Bevacizumab in combination with 

standard chemotherapy have shown to improve progression-free survival (PFS) in OC patients 

in several phase III trials, including front line (131;132) and second line recurrent platinum 

sensitive (128) and platinum resistant disease (133).  

Other anti-angiogenic agents under evaluation are tyrosine kinase inhibitors (TKIs), which 

target receptors involved in the formation of blood vessels, i.e. receptors of VEGFs, PDGFs 

and FGFs. Ongoing phase III trials investigating TKIs effect on primary PFS include 
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nintedanib and pazopanib. Trebananib is another antiangiogenic agent under evaluation in 

several phase III trials, targeting the proteins angiopoietin 1 and 2, which are important in 

angiogenesis binding to tyrosine kinase receptors (126) (www.clinicaltrials.gov). 

Other targeted therapies under evaluation include poly-ADP-ribose-polymerase (PARP) 

inhibitors, targeting the PARP enzyme needed for compensatory DNA repair in tumours with 

BRCA (and other homologous recombination genes) dysfunction to prevent cell death. The 

PARP inhibitor olaparib has in phase II studies shown improved PFS in patients with 

platinum-sensitive, relapsed serous (134) and high-grade serous (135) OC. Evaluation of other 

PARP inhibitors is ongoing (126) (www.clinicaltrials.gov). 

 

4.2.9 Prognostic factors and clinical course 

Ovarian cancer is associated with poor survival since most women are diagnosed at an 

advanced stage due to lack of specific symptoms and effective screening methods, when cure 

is rare. About 65% of the patients have distant spread of disease (stage III-IV) at diagnosis, 

and their 5-year relative survival rate is less than 30% (30;33). From 1970 to 2009, the 5-year 

relative survival rate for ovarian cancer patients in Norway has improved from 39% to 44% 

for all stages and from 15% to 29% for patients with distant spread of disease (33).   

Many prognostic clinicopathological factors have been described for OC patients. The most 

important are the FIGO stage, RD (after initial surgery), histological subtype, differentiation 

grade, age, performance status, presence of ascites, CA125 levels and DNA ploidy (32;34). 

FIGO stage, RD and differentiation grade correlate best with outcome (34). In stage III OC, 

histological subtype, RD, age and performance status have been shown to be independent 

predictors of prognosis (136). The most important prognostic factors for survival at diagnosis 

of OC is the FIGO stage (32), and the 5-year survival rate vary from 89% in stage 1a to 13% 

in stage IV (137).  

Even though the ideal surgical outcome implies zero RD, a reduction of macroscopic RD to 

one cm or less is probably associated with some benefit (123).  The Cochrane database 

systematic review has recently evaluated the impact on various RD sizes (0 cm, 1 cm and 2 

cm) on survival in patients with advanced OC (stage III and IV), and concluded that patients 

with no macroscopic RD after surgery had a significantly prolonged PFS and OS (138). Also, 

significantly better survival was found for women with RD<1cm compared to those with 
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RD>1cm. There was no significant difference in OS and only borderline differences in PFS 

when RD< 2cm and RD>2 cm were compared (138). 

Mucinous and clear cell carcinomas are independently associated with a poor prognosis when 

compared with SC after standard first line therapy in stage III/IV OC (139). Patients with 

CCC have a much shorter OS (21 months) compared to SC (41 months) in stage III/IV 

disease (139). 

Serum CA125 is the best studied biomarker for OC. Whereas several studies have shown that 

the CA125 level during chemotherapy has prognostic relevance (71;140;141), the clinical 

significance of pre-treatment CA125 level is controversial (71). The CA125 kinetics during 

early chemotherapy has been evaluated in different ways, including the absolute value after 

two or three cycles of chemotherapy, the nadir level, the time to reach nadir level, and the 

CA125 half-life (71). For example, patients with normalization of CA125 after the third 

chemotherapy cycle have a significantly better (doubled) PFS and OS compared with patients 

without normalization (140;141). Moreover, it is hypothesized that normalization of the 

CA125 level after the third chemotherapy cycle is an independent predictor of survival for 

patients with advanced OC, regardless of RD status (140).  

Several other biomarkers than CA125 have been evaluated both in sera and tissue samples 

from OC patients in order to detect prognostic or predictive biomarkers (71;142). However, 

only a few have shown a reliable function as prognostic or predictive biomarkers. An elevated 

preoperative serum VEGF level has shown to be an independent prognostic variable for poor 

survival, whereas the prognostic relevance of p53 gene status is still under discussion (71). 

Other potential circulating markers include HE4, mesothelin, M-CSF, FGF-1, cyclin D1/E 

and IL6-8, whereas potential tissue specific markers include claudin 3, MMP2/9, MT1-MMP, 

FAK, levels of the microRNAs miR-200, miR-141, miR-18a, miR-93, miR-429, let-7b, miR-

199a as well as Dicer and Drosha expression (142). However, a multivariate analysis on 

larger series of patients followed for a longer period of time is needed to further evaluate their 

prognostic relevance.  
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5. AIMS OF THE THESIS  

Malignant tumours which apparently have the same tissue and cytological origin may have 

very different biological and clinical properties such as cellular growth, tendency to 

metastasize and variable sensitivity to therapy. Such differences are understood to reflect 

molecular heterogeneity, which will characterize the tumour both phenotypically and 

clinically. Identification of molecular regulatory genes and pathways involved in the 

development of different cancer subgroups will not only be an important supplement to 

tumour classification, but will apparently also have a diagnostic, prognostic, predictive and 

therapeutic impact. 

Ovarian cancer is one of the most frequent causes of cancer death in women. About 65% of 

the patients have distant spread of disease at diagnosis, and their 5-year survival rate is less 

than 30%. OC, constituting more than 90% of the ovarian cancers, encompasses several 

distinct tumour subgroups with respect to molecular profiles, biological behavior and clinical 

features. However, due to lack of understanding of ovarian carcinogenesis and the biological 

differences between these tumour subgroups, the OC patients generally receive similar 

treatment. For example, whereas the initial response rate to current chemotherapy treatment 

for HGSC, the most common form of OC, is high, it is low for CCC. This may explain the 

poorer prognosis for patients with late stage CCC compared with that of late stage HGSC 

(68). Therefore, improved insight into the carcinogenesis and the molecular characteristics of 

different OC subgroups is needed to identify new therapeutic targets and subsequently to 

develop novel, more subgroup-specific and effective treatment regimens that hopefully will 

improve the poor prognosis for these patients. 

The overall aim of this thesis was to increase the understanding of the carcinogensesis and the 

molecular characteristics of different ovarian cancer subgroups. More specifically, the aim 

was to identify differentially expressed mRNAs and miRNAs and key molecular markers and 

pathways focusing on HGSC and CCC and to evaluate their association with clinical 

parameters, including survival. The specific aims of the thesis are as follows: 

1.  To a) evaluate the expression of six mRNAs previously found to be strongly 

overexpressed in other malignancies in PDSC, MDSC and CCC compared primarily with 

OSE, but also with biopsies from normal ovaries (BNO) and benign ovarian cysts 

(BBOC), by RT-qPCR (Quantitative Reverse Transcription-Polymerase Chain Reaction) 

and b) evaluate their correlation with clinical parameters (Paper I).  
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2.  To a) identify differentially expressed mRNAs between HGSC (MD/PD SC), SBOT and 

OSE by global gene expression profiling, b) validate selected differentially expressed 

mRNAs by RT-qPCR in an extended patient cohort, c) evaluate the prognostic role of 

validated differentially expressed mRNAs in HGSC compared with OSE and d) search for 

key molecular pathways of HGSC through IPA (Ingenuity Pathway Analysis) (Paper II). 

3.  To a) identify differentially expressed miRNAs between HGSC, CCC and OSE by global 

gene expression profiling, b) validate selected differentially expressed miRNAs by RT-

qPCR in an extended patient cohort and c) evaluate the prognostic role of differentially 

expressed miRNAs in HGSC and CCC compared with OSE (Paper III). 

4.  To map interactions between differentially expressed mRNA identified in Paper II and 

differentially expressed miRNAs identified in Paper III in HGSC (Paper III).  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

35

6. MATERIALS AND METHODS 

All studies provided patient data and biological samples and were approved by the Regional 

Committee of Medical and Health Research Ethics in South-Eastern Norway (OUH, Ullevaal: 

ref.no.530-02163, OUH, The Norwegian Radium Hospital (TNRH): ref.no. S-04300), and all 

participants signed informed consent. All analyses related to gene expression were performed 

at Department of Medical Biochemistry, OUH.  

 

6.1 Patients and tissue material 

The women were recruited prior to operations for gynaecological diseases at OUH, in the 

period 2003 to 2012. For all studies, patients were recruited from a research biobank at OUH, 

Ullevaal. In order to obtain a sufficient cohort of patients with CCC in the study presented in 

Paper III, additional nine women with CCC were recruited in the period 2003 to 2010 from a 

biobank at OUH, TNRH.  

The samples from OUH, Ullevaal were from a research biobank (“Gynaecological tumours 

and invasion potential”) at the Departments of Obstetrics and Gynaecology, of which Bente 

Vilming Elgaaen has included more than 100 patients. Professor Anne Cathrine Staff is 

responsible for the research biobank study. At the time of patient selection for the last paper 

of this thesis, this biobank comprised benign and malignant ovarian tissue samples from more 

than 450 patients. Patient recruitment, preoperative patient interviews, as well as tissue- and 

blood sampling for this thesis has been performed almost exclusively by two PhD students 

(Bente Vilming Elgaaen and Elin Ødegaard) and a technician (Lise Levy), who have 

contributed after careful instruction in patient recruitment, material sampling and storage 

procedures. In order to avoid mRNA degradation, the tissue samples and the OSE scrapings 

were immediately harvested from the removed ovaries at surgery and snap-frozen in liquid 

nitrogen or transferred to TRIzol or QiaZol solution (Invitrogen, Carlsbad, CA, United 

States), respectively. 

The tissue samples obtained at OUH, TNRH were taken from a tumour and effusion biobank 

at the Department of Pathology. The specimens were immediately collected and snap-frozen 

under the supervision of Associate Professor Ben Davidson, after immediate transport of the 

removed ovaries to the Department of Pathology. All samples from OUH were stored at 

-80°C until processed.  
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An overview of number of patients included in the present papers based on histopathology 

and analysis method used is given in the flowchart below (Table 3). In total, 109 patients 

were included, from which biopsies from 49 MDSC and PDSC, referred to as HGSC, 22 

CCC, 13 SBOT, 19 OSE samples, 3 BNO and 3 BBOC were utilized. Patients with HGSC 

were included in all papers, whereas patients with CCC were included in Paper I and III. 

Figure 4 shows number of separate and shared patients with HGSC (A) and CCC (B) 

included in Paper I-III, regardless of the analysis method used. SBOT was employed for gene 

expression comparison in Paper II.  Control material was collected from patients operated for 

benign gynaecological diseases. A small number of BNO and BBOC was evaluated in Paper 

I, wheras OSE samples were employed in all papers. Initially, cervical PAP smear brushings 

of OSE were harvested. However, since these samples yielded insufficient amount of 

material, a new procedure for OSE sampling was developed (Bente Vilming Elgaaen and 

Professor Torill Sauer) and subsequently employed. The surface of normal ovaries was gently 

scraped with a scalpel, and the vast majority of the harvested cells were verified cytologically 

as normal OSE cells, being positive for pan-cytokeratin by immunocytochemistry, evaluated 

by Torill Sauer. Bente Vilming Elgaaen harvested these samples. 

The histological classification and clinical stage were according to the WHO classification of 

tumours and the International Federation of Gynecology and Obstetrics classification, 

respectively.  

The diagnoses of all tumours were re-evaluated by at least one senior pathologist specialized 

in gynaecological pathology, including Vibeke Engh for the biobank at Ullevaal and Ben 

Davidson for the biobank at TNRH. Further re-evaluation of the tumours from Ullevaal was 

done by Torill Sauer (Paper I-II) and Ben Davidson (Paper II-III). To ensure satisfying sample 

quality and representativeness frozen sections from the biopsies were examined prior to RNA 

isolation. Only carcinomas presenting histologically more than 50% tumour cells were 

included for RT-qPCR analyses in Paper II and all analyses in Paper III, evaluated by Ben 

Davidson. All cancer specimens were from primary tumours, obtained pre-chemotherapy at 

primary surgery. 

Clinicopathological and laboratory data were obtained from hospital records, and for patients 

recruited from OUH, Ullevaal, additional preoperative patient interviews. This information 

included age, preoperative condition, preoperative CA125 level, FIGO stage, volume of RD 

after surgery, time until start of chemotherapy after surgery, CA125 response and optimal  
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Table 3. Flowchart for number of patients included in the thesis based on histology and 
analysis method. 

HGSC: High-grade serous carcinoma. CCC: Clear cell carcinoma. SBOT: Serous borderline
tumour. OSE: Ovarian surface epithelium. BNO: Biopsies from normal ovaries. BBOC: 
Biopsies from benign ovarian cysts. *Patients not previously included in this thesis. ^9 
samples from biobank at OUH, TNRH, the remainder from biobank at OUH, Ullevaal.

Figure 4. Venn diagram showing separate and shared number of patients with HGSC 
(A) and CCC (B) included in the thesis. 

Paper I Total
RT-qPCR Microarray RT-qPCR Microarray RT-qPCR

HGSC 23 9 7 7 7
  2* 1 1 1

6 3 2
3

  7* 1 1
2
2

 17*
HGSC, total 23 11 21 12 35 49

CCC 8 5 5
  4* 4

    10*^
CCC, total 8 9 19 22

SBOT 8 8
  5*

SBOT, total 8 13 13

OSE 6 2 2
  2* 2

1   9* 9
  2*

OSE, total 6 4 7 9 9 19

BNO, total 3 3

BBOC, total 3 3

Paper II Paper III
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CA125 normalization after treatment, time until progression, time until death as well as status 

at last follow-up. Clinical parameters of the OC patients, including time until progression and 

time until death, optimal CA125 normalization and RD were evaluated for correlation with 

selected mRNAs/miRNAs. 

Primary surgery was performed in all patients, and when indicated they received standard 

chemotherapy. The patients included had no other diseases influencing survival, and had not 

previously received chemotherapy. Detailed clinicopathological information is given in the 

manuscripts. 

Follow-up data including clinical examinations, standard laboratory analyses and 

complementary diagnostic imaging were available for all patients. The protein CA125 was 

generally measured prior to each chemotherapy cycle and was used as a marker for response 

to therapy. A CA125 response was defined according to The Gynecologic Cancer Intergroup 

(GCIG) criteria, including at least a 50% reduction in CA125 levels from a pre-treatment 

sample. A CA125 normalization was defined as optimal when normalized (<35 kU/L) within 

four cycles of chemotherapy. After completion of treatment, the patients were evaluated every 

third month for two years, every six months for the next three years, and thereafter once a 

year. Time until progression and time until death were defined as the time interval from the 

date of surgery to the date of first confirmed disease recurrence and to the date of death, 

respectively. Disease progression was based on an increase in the CA125 level according to 

the GCIG criteria and a verified clinical relapse, and the date of the first event was used.  

 

6.2 Gene expression quantification 

Gene expression was measured at the steady-state levels of mRNAs and miRNAs, and 

represent the amount of RNA species taken at the timepoint of operation. The amount of RNA 

is the result of transcription and RNA degradation, and the half-life of RNAs is regulated and 

differ from one cell to another. The amount of mRNA generally parallels the amount of 

translated protein. According to general knowledge, the expression levels of mRNAs and 

miRNAs within a biological material will give relevant and important information about 

ongoing fundamental biological processes. 
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6.2.1 RNA isolation 

Upon preparation, all samples were handled carefully to ensure correct instant “mirror image” 

of the original RNA levels as possible. To avoid further enzymatic reactions and RNA 

degradation the samples were handled under RNAse free conditions, exposed to room 

temperature as short as possible and treated with a lysis reagent. 

For mRNA isolation (Paper I and II), tissue specimens were either crushed frozen (Paper I) or 

homogenized directly in TRIzol lysis reagent using a tissuelyzer (Qiagen, Hilden Germany) 

(Paper I and II). Total RNA was extracted using the Trizol method (Invitrogen) and further 

purified by the RNeasy MinElute cleanup spin columns (Qiagen) according to the 

manufacturer’s instructions.  

For miRNA isolation (Paper III), tissue specimens were homogenized directly in QIAzol lysis 

reagent using a tissuelyser (Qiagen). Total RNA was extracted using the QIAzol method of 

the miRNeasy Mini Kit (Qiagen) and Phase Lock Gel Tubes (5 PRIME GmbH, Biocompare 

Hamburg, Germany) to increase yields according to the manufacturer’s instructions.  

To determine the quantity as well as to assess the purity of the isolated total RNA, a Nano 

Drop spectrophotometer (Saveen Werner, Malmö, Sweden) was used.  This 

spectrophotometer requires a very small sample amount to quantitatively measure the 

different molecule’s absorbance at different wavelength. In order to control for RNA 

degradation the BioAnalyzer 2100 system (Agilent Technologies, Palo Alto, CA, US) was 

used. This system uses a chip technology which is based on traditional polyacryl gel 

electrophoresis principles, allowing electrophoretic reactions of several RNA samples 

simultaneously. The RNA fragments are detected by laser induced fluorescence, and 

translated into electropherograms. The RNA quality can be determined through visual 

inspection of an electropherogram and through RNA integrity number (RIN), an algorithm for 

assigning integrity values to RNA measurements. All samples showed appropriate RNA 

quality and quantity. 

 

6.2.2 Global gene expression profiling - mRNA and miRNA  

By global gene expression profiling the expression of every gene present in a material can be 

measured simultaneously, creating a snapshot of the global gene expressional status in the 

material analysed. The DNA microarray technology is a method used for gene expression 

profiling, measuring the relative gene expression of thousands of previously identified genes. 
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Thus, by identifying changes in gene expression in i.e. malignant versus non-malignant 

material, DNA microarrays is used to identify diagnostic and prognostic markers as well as to 

achieve a better understanding of molecular pathways for cancer.  

A DNA microarray is a multiplex lab-on-a-chip, constituting tens of thousands of orderly 

microscopic DNA spots, each containing thousands of identical specific DNA sequences 

(probes) attached to a solid matrix. A brief overview of the DNA microarray analysis used in 

this thesis is given in Figure 5. Upon the mRNA experiment, mRNA of the isolated total 

RNA sample is initially reversely transcribed to single stranded (ss) cDNA (complementary 

DNA), which is further synthesised by DNA polymerase into double stranded (ds) cDNA. 

The ds cDNA is then amplified to cRNA and biotin labelled for detection by in vitro 

transcription. Optionally, the cRNA (complementary RNA) can be further transcribed to 

cDNA. The resulting biotin labelled cRNA/cDNA is then fragmented before hybridization. 

Upon the miRNA experiment, the miRNA of the isolated total RNA sample is labelled 

directly with biotin before hybridization. When subjected to the microarray, cRNA/cDNA 

molecules present in the sample (target) will hybridize to complementary DNA sequences on 

the chip. After washing off the non-hybridized sequences, a staining procedure involving a 

fluorescent molecule (streptavidin-phycoerythrin) that binds to biotin is performed. 

Hybridized fluorescent labelled DNA fragments will subsequently generate signals when 

shining a laser light on the array (fluorescence scanning). The total signal intensity generated 

from one spot depends on the amount of nucleic acid sequences binding to the probes of that 

specific spot, allowing detection as well as quantification of probe-target hybridization. 

A major challenge with microarray analyses is to handle the great amount of data generated, 

and also the choice of method for the identification of most differentially expression genes. 

Advanced bioinformatics and statistical analyses are therefore essential after the microarray 

experiment, involving several different processes to achieve meaningful biological results 

(briefly described in statistical analysis).  

In Paper II and III the DNA microarrays from Affymetrix (Santa Clara, CA, US) were 

employed for global gene expression analyses. In Paper II, the microarray Human Genome 

U133 Plus 2.0 Arrays, representing 47000 transcripts for 38500 well characterized human 

genes were used. In Paper III, the microarray miRNA 2.0 Arrays, representing 1105 mature 

human miRNAs were used. The microarrays were used according to Affymetrix’ 
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recommendations. Microarray signal intensities were thereafter detected by a Hewlett Packard 

Gene Array Scanner 3000 7G (Hewlett Packard, Palo Alto, CA, US).  

 
Figure 5. DNA microarray analysis of mRNA and miRNA.  
    : primer. Rt: Reverse transcriptase. ss: single stranded. ds: double 
stranded. RT: Reverse transcription. DNApol: DNA polymerase. RNApol: 
RNA polymerase. IVT: In vitro transcription. 

 

6.2.3 RT-qPCR - mRNA and miRNA 

Quantitative Reverse Transcription-Polymerase Chain Reaction (RT-qPCR) is one of the most 

powerful and sensitive gene analysis techniques available (143), and is regarded as the gold 

standard method for quantification of gene expression. This technique is also a valuable tool 

for validation of results obtained from global gene expression analyses.  

An overview of the RT-qPCR technique is given in Figure 6. RT-qPCR includes a reverse 

transcription (RT) reaction, generating a ss cDNA from an RNA transcript by the enzyme 

reverse transcriptase and predesigned specific RT primers (for miRNAs) or a mix of random 

RT and oligo(dT) primers (for mRNAs). The cDNA is used as a template for the polymerase 

chain reaction (PCR), a technology for exponential amplification, making multiple copies of a 

specific DNA sequence by repetitive enzymatic and temperature dependent reactions in order 

to produce measurable amounts of the DNA sequence of interest. A PCR analysis includes up 

to 40-45 cycles of three distinct steps: 1. Denaturation of ds cDNA into ss cDNA (95 C). 2. 
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Hybridisation of the cDNA and two specific PCR primers; nucleotide sequences 

complementary to the ends of the specific DNA sequence we intend to amplify (primer 

annealing, 50-60 C). 3. Polymerization by the enzyme DNA polymerase, resulting in the 

synthesis of a DNA copy of the specific DNA sequence (about 70 C). The amplified DNA is 

doubled at each PCR cycle, which is why this technique is called a chain reaction. 

 
Figure 6. RT-qPCR analysis of mRNA and miRNA.  
RT: Reverse transcription. PCR: Polymerase Chain Reaction.     : primer. 
Rt: Reverse transcriptase. ss: single stranded. DNApol: DNA polymerase. 

 

The amplified DNA (the PCR product) is measured at each cycle in the exponential phase of 

the PCR reaction, when the PCR product is exactly doubled at each cycle. qPCR (quantitative 

PCR) is often referred to as “real-time” PCR, since the results appear as the reactions 

progress. The PCR product is measured by the detection of a fluorescent signal, and the 

strength of the signal is proportional to the amount of the PCR product. There are two main 

categories of fluorescent DNA labelling techniques of the PCR product. The non-sequence 

specific DNA binding dyes (i.e. SYBR Green; Paper I) bind preferentially to any ds cDNA 

sequence, whereas the sequence specific fluorescent labelled probes (i.e. the TaqMan probe;  

Paper II, III) are designed for binding to the specific cDNA target of interest. The PCR cycle 

at which the reaction reaches a fluorescent intensity above background fluorescence is called 

the quantification cycle (Cq), which is used for the quantitative determination of the amount 
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of template cDNA. The greater the quantity of template cDNA, the faster a significant 

increase in fluorescent signal will appear, the lower the Cq.  

In Paper I, total RNA was reversely transcribed into cDNA and the mRNAs of interest further 

PCR amplified with specific primers designed by using the Invitrogen database. The primers 

were tested for homology with other sequences at the NCBI (National Center for 

Biotechnology Information) gene website (www.ncbi.nlm.nih.gov). The samples were 

analysed on a real-time fluorescence LightCycler instrument and detected by using a 

LightCycler Fast start SYBR Green kit according to the manufacturer’s instructions (Roche 

Diagnostics GmbH, Mannheim; Germany). 

RT-qPCR may be performed for multiple mRNA or miRNA simultaneously by employing 

microfluidic arrays, also called TaqMan Low Density Array (TLDA) cards, for the PCR-part 

of the analysis. These cards comprise up to hundreds of wells (n=384), each of which 

performs a specific qPCR reaction. cDNA samples generated by reverse transcription and 

optionally preamplified are mixed with necessary reagents including DNA polymerase, 

nucleotides and buffer, and applied to the 8 ports of the cards. All the wells are loaded with 

specific predesigned or custom designed primers of the corresponding DNA sequence of 

interest and sequence specific fluorescent labelled probes in advance. TLDA cards (Applied 

Biosystems, Life technologies, Carlsbad, CA, US), were custom designed to validate the 

expression of selected mRNAs (Paper II) and miRNAs (Paper III) obtained from the global 

gene expression analyses. For quantification, the ABI Prism 7900 HT system (Applied 

Biosystems, Life technologies) was used in Paper II, whereas, the ViiA7 System (Applied 

Biosystems, Life technologies) was used in Paper III.  

The data generated by the RT-qPCR can be used to calculate relative gene expression in 

several samples. In this thesis, gene expression levels were calculated using the comparative 

crossing threshold method of relative quantification ( Cq method) (144), presented as 

relative quantification cycle ( Cq) and fold change (FC) values. Cq was designated as the 

mean Cq (mean of replicates) of an mRNA or miRNA in a sample subtracted by the mean Cq 

(mean of replicates) of a reference gene in the same sample. In general, FC was designated as 

2 Cq , where Cq was Cq of one tumour/tumour group subtracted by Cq of another 

tumour/tumour group. Mean FC values were calculated for comparison of mean expression 

levels between different groups. For correlation to clinical parameters, Cq for each tumour 

sample was calculated as mean Cq of the control group subtracted by Cq of each tumour 
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sample. For comparison of mean expression levels between different groups in Paper I, 

similar calculation was used, and mean of the individual FC values for each tumour group 

were calculated. For comparison of mean expression levels between different groups in Paper 

II and III, Cq was calculated as mean Cq of one group (i.e. control group) subtracted by 

mean Cq of another group, and FC was 2 Cq. 

Selection and quantification of reference genes (also known as endogenous gene controls or 

housekeeping genes) are required when using the Cq method, as the relative changes of 

each transcript of interest will be calculated in comparison with the reference genes. 

Reference genes have relatively constant expression levels in all cells of an organism and 

preferentially independent of different conditions since their products are often required for 

the maintenance of basic cell functions. The most frequently employed reference genes are 

GAPDH (glyceraldehyd-3-phosphate dehydrogenase) and -actin, used in Paper I and II. In 

Paper III, hsa-miR-26a and hsa-miR-24, having the lowest variation detected among the 

global miRNA expression analyses, were selected as reference genes.  

 

6.3 Ingenuity Pathway Analysis (IPA) 

Ingenuity Systems (Ingenuity Systems, Redwood City, CA, US) is a company that provides 

software to aid researchers to explore, interpret and analyse complex biological systems. The 

Ingenuity products are linked to the Ingenuity Knowledge Base, a repository of functional 

annotations as well as biological and chemical interactions between proteins, genes, cells, 

tissues, drugs and diseases. This knowledge base is based on findings from primary literature 

sources, including articles and textbooks, as well as other sources such as several databases 

(i.e. targetScan Human, miRecords, TarBase) and Ingenuity Expert Findings. The findings are 

manually reviewed for accuracy, and include contextual details and link to the original article.  

The IPA software is used to analyse gene expression data that generate gene lists in order to 

achieve insight into molecular and chemical interactions, biological functions and related 

diseases. Furthermore, obtained information can be used to model biological systems and 

signalling pathways, derived from existing findings of the Ingenuity Knowledge Base. IPA 

thereby provides a tool for understanding causes and effects of gene expression changes 

observed in experimental data. In Paper II and III, IPA was used for identifying biological 

functions and related diseases (functional analyses) and for modelling signalling pathways 
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(network analyses) of differentially expressed mRNAs and miRNAs. In Paper III IPA was 

also used for identifying mRNA/miRNA interactions.  

 

6.4 Statistical analysis 

6.4.1 Global gene expression analysis  

In general, the scanned images of a microarray experiment are processed by appropriate 

software to convert signal intensities to raw data of signal values (CEL files). The raw data is 

then imported into suitable software for further processing, involving normalization 

(adjustment for technical variation) in addition to background correction and log-

transformation. Thereafter, significantly expressed genes may be identified, involving 

different statistical tests including t-tests, ANOVA (analysis of variance) as well as FDR 

(False Discovery Rate) and Benjamini-Hochberg correction, which take correction for 

multiple testing into account. The signal values may be further analysed by cluster analysis; 

grouping of similarly expressed genes, which may be visualized by heatmaps. Biological 

information as well as information of involved networks or pathways of selected genes may 

furthermore be obtained. 

In Paper II and III, the scanned images were processed with the Affymetrix GeneChip® 

Operating System v1.4 (GCOS 1.4) software and the Affymetrix GeneChip® Command 

Console (AGCC) software, respectively. In Paper II, the raw data (CEL files) were imported 

into Array Assist software (v5.2.0; Iobion Informatics LLC, La Jolla, CA), where the PLIER 

(probe logarithmic intensity error) algorithm was applied to generate relative signal values, 

including normalization and log-transformation. The MAS5 algorithm (Array Assist) was 

used to filter for background correction. In Paper III, the CEL files were imported into Partek 

Genomics Suite software (Partek, Inc. MO, US), where the Robust Multichip Analysis 

(RMA) algorithm was applied for generation of relative signal values, including 

normalization, log-transformation and background correction. Complete microarray 

expression data were deposited in NCBI's Gene Expression Omnibus (GEO) (145) (accession 

number GSE36668 for Paper II and GSE47841 for Paper III). GEO is one of several open-

source data warehousing facilities available, enabling integration of different datasets and also 

further analyses of the datasets by others. 

For expression comparisons of different groups, unpaired t-tests and Benjamini-Hochberg 

correction of p-values for multiple testing was used in Paper II, whereas a 1-way ANOVA 
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model followed by FDR was used in Paper III. The results were expressed as FC- and p-

values. Relative signal values were clustered by hierarchical cluster analysis and visualized by 

a heatmaps.  

 

6.4.2 RT-qPCR analysis 

As earlier described, gene expression levels of the RT-qPCR analyses were calculated using 

Cq method (144). When comparing Cq values in different histological subgroups, a two-

sided independent samples t-test was used since the Cq values were close to normally 

distributed. A significance level of 5% (Paper I) and 1% (Paper II-III) was used for 

differential mRNA/miRNA expression. Cq values were clustered by hierarchical cluster 

analysis and visualized by heatmaps.  

 

6.4.3 Evaluation of associations between gene expression and clinical parameters 

mRNAs and miRNAs expression levels given as FC were evaluated for association with 

clinical parameters in all papers. In Paper I, a linear regression model (146) was used. In 

Paper II and III, Cox regression analyses were used for evaluation of association of mRNA 

and miRNA expression with time until death and time until progression. When significant, 

Kaplan-Meier plots were used to estimate survival curves. To compare mRNA and miRNA 

expression levels in two groups of patients in Paper II and III, a two-sided Mann-Whitney U-

test was used, since the FC expression levels were not normally distributed. A significance 

level of 5% (all papers) was used for correlation of mRNAs and miRNAs with clinical 

parameters. The statistical analyses were performed by employing MATLAB (Paper I) and 

SPSS version 18/20 (Paper II-III).
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7. SUMMARY OF RESULTS 

7.1 Paper I 

“POLD2 and KSP37 (FGFBP2) correlate strongly with histology, stage and outcome in 

ovarian carcinomas” 

In this study, a few mRNAs differentially expressed in HGSC and CCC was identified, 

including POLD2 and KSP37 as potential prognostic markers. 

Expression of six mRNAs previously found to be strongly overexpressed in human 

osteosarcomas and other malignancies were analysed by RT-qPCR in PDSC (stage III–IV, 

n=11), MDSC (stage III–IV, n=12) and CCC (stage I–IV, n=8). OSE, referred to as SNO 

(superficial scrapings from normal ovaries; n=6) as well as BNO (n=3) and BBOC (n=3) were 

analysed for comparison. Compared with OSE, POLD2 was significantly overexpressed in 

both PDSC (FC=19.4, p=3.4x10-8) and MDSC (FC=2.5, p=9.1x10-4), and also significantly 

overexpressed in PDSC compared with MDSC (p=1.7x10-8), increasing from 2.5- to almost 

20-fold (Paper I; Figure 1, 3 and Table 2). This increase might parallel the degree of 

dedifferentiation and reflect the slightly worse prognosis for PDSC compared with MDSC. 

Other significantly differentially expressed mRNAs in the carcinomas compared with OSE 

included PRAT4A (FC=2.8, p=8.1x10-5), NOLA2 (FC=3.0, p=1.3x10-4) and ANT2 (FC=3.1, 

p=6.3x10-5), all overexpressed in PDSC (Paper I; Figure 1, 3 and Table 2). Except for the 

higher overexpression of POLD2 in PDSC compared with MDSC, the SC showed a similar 

profile, being clearly different from CCC (Paper I; Figure 2). Similar profiles were found 

when OSE and BBOC were used as control material, but differed when BNO was used 

(Paper I; Figure 2, 3, S1 and S2).  

When dividing the CCC into stage I (n=4) and stage II-IV (n=4), KSP37 showed six- to eight-

fold higher levels in stage I CCC compared with the more advanced staged carcinomas 

(Paper I; Figure 3, Table 2). Evaluation of associations between the mRNAs and 

clinicopathological parameters revealed that KSP37 correlated positively (p<0.05) with FIGO 

stage I disease as well as PFS and OS (Paper I; Table 3). 
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7.2 Paper II 

“ZNF385B and VEGFA are strongly differentially expressed in serous ovarian carcinomas 

and correlate with survival” 

This study revealed several differentially expressed mRNAs in HGSC, including a set with 

apparent prognostic role. 

Differentially expressed mRNAs between HGSC (MD/PD SC), SBOT and OSE, referred to 

as SNO, were identified by global gene expression profiling (n=23) and validated by RT-

qPCR (n=41). Thirty mRNAs differentially expressed between the three groups were selected 

from the global gene expression analyses, and 21 were verified (p<0.01) to be differentially 

expressed (Paper II; Table 4). A cluster analysis heatmap of the expression levels of these 

mRNAs showed an almost perfect segregation of the three groups, with differential mRNA 

expression between HGSC versus both SBOT and OSE, which showed similar patterns 

(Paper II; Figure 1).  

Thirteen mRNAs distinguished HGSC from OSE (p<0.01) (Paper II; Table 4) and were 

evaluated for association with clinical parameters. ZNF385B, the most aberrantly expressed 

mRNA, was underexpressed (FC=-130.5, p=1.2x10-7) and correlated with OS (p=0.03). 

Patients with the lowest ZNF385B tertile level had a much longer OS than patients with the 

highest ZNF385B tertile level, with a median time until death of 48 and 16 months, 

respectively (Paper II; Figure 3A). VEGFA was overexpressed (FC=6.1, p=6.0x10-6) and 

correlated with PFS (p=0.037), and patients with the lowest VEGFA expression levels had a 

much longer PFS than patients with the highest and intermediate levels, with a median time 

until progression of 28 and 11 months, respectively (Paper II; Figure 3B). Increased levels 

of TPX2 and FOXM1 mRNAs (FC = 28.5, p = 2.7x10-10 and FC = 46.2, p = 5.6x10-4, 

respectively) were associated with optimal normalization of CA125 after treatment (p=0.03 

and p=0.044, respectively).  

A molecular pathway for HGSC, including VEGFA, FOXM1, TPX2, BIRC5 and TOP2A, 

five of the most overexpressed mRNAs in MD/PD SC vs. OSE, showed a direct molecular 

interaction with TP53 (Paper II; Figure 2) as generated through IPA.  
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7.3 Paper III 

“Global miRNA expression analysis of serous and clear cell ovarian carcinomas identifies 

differentially expressed miRNAs including miR-200c-3p as a prognostic marker” 

In this study, several differentially expressed miRNAs in HGSC and CCC were identified, 

including a few with apparent prognostic role. 

Differentially expressed miRNAs between HGSC, CCC and OSE were identified by global 

miRNA expression profiling (n=30) and validated by RT-qPCR (n=63). The global miRNA 

expression analysis showed that 78 miRNAs were differentially expressed between the groups 

applying a FDR <0.01%. A cluster analysis heatmap of the expression levels of these 

miRNAs showed an almost perfect segregation of the three groups with striking differences 

between HGSC and OSE, whereas CCC had an intermediate profile (Paper III; Figure 2). 

Eighteen of these miRNAs were selected for RT-qPCR analyses (Paper III; Table 2A) and 

all were verified (p<0.01) to be differentially expressed (Paper III; Table 2B). Compared 

with OSE, miR-205-5p was the most overexpressed miRNA in HGSC. miR-200 family 

members and miR-182-5p were the most overexpressed in HGSC and CCC compared with 

OSE, whereas miR-383 was the most underexpressed. miR-509-3-5p, miR-509-5p, miR-509-

3p and miR-510 were among the strongest differentiators between HGSC and CCC, all being 

significantly overexpressed in CCC compared with HGSC. Further three miRNAs were 

selected for validation by RT-qPCR based on possible association with survival. 

The miRNAs analysed by RT-qPCR were evaluated for association with clinical parameters. 

High miR-200c-3p expression was associated with poor PFS (p=0.031) and OS (p=0.026) in 

HGSC. Patients with the highest tertile level had shorter OS than patients with the 

intermediate or lowest levels, with median time until death of 18 and 30 months, respectively 

(Paper III; Figure 3A). Patients with the highest tertile level had also shorter PFS compared 

with patients with the lowest levels, with a median time until progression of 7 and 11 months, 

respectively (Paper III; Figure 3B). Reduced levels of miR-202-3p and miR-1281 were 

associated with macroscopic RD (p=0.018 and p=0.035, respectively). 

Interacting differentially expressed miRNAs and mRNA targets were mapped through the use 

of IPA for HGSC, including those of the TP53-related pathway presented previously (Paper 

III; Table 3 and Figure 4). 
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8. GENERAL DISCUSSION 

8.1. Considerations of patients and material 

8.1.1 Selection of patients and tissue material 

Patient material from two biobanks at OUH; the biobank at Ullevaal and the biobank at 

TNRH, was used in this thesis. Material from the biobank at Ullevaal was included in all 

studies, whereas nine CCC patients were included from the biobank at TNRH in the study 

presented in Paper III in order to increase the sample size of this OC subgroup.  

Since OC subtypes are regarded as different diseases in respect to molecular profiles, 

biological behaviour and clinical features (38), separate analyses of the subgroups is essential 

to achieve meaningful results. Hence, it is a strength that the patient selection primarily was 

based on histological subgroups. We focused on HGSC and CCC, aiming to find molecular 

and clinical distinctive features for these OC subgroups. CCC encompasses only about 10% 

of the OC (38), and available material may therefore be limited. Only primary ovarian 

tumours were included, and no patients had received preoperative chemotherapy.  

The preoperative data of the patients of the biobank at Ullevaal were based on hospital 

records as well as additional patient interviews, whereas the clinical information of the 

patients of the biobank at TNRH was based on hospital records only. Additional preoperative 

patient interviews involving collection of specific data will generally increase the probability 

that clinical information is complete. Preoperative information that potentially could be 

missing from the hospital records of the patients included from the biobank at TNRH included 

only information on past and existing diseases and ethnicity, but information about these 

subjects was present in the records.  

A limitation of the study is the relative small sample size, especially in Paper I and II. Both 

type I (false positive results) and type II (false negative results) may occur when studying 

small series. However, a small sample size implies primarily a risk for not revealing even 

strong associations (false negative results). Therefore, particularly negative results should be 

interpreted with great caution, and the results should be evaluated in larger patient cohorts. 

Furthermore, a too small sample size of a specific tumour type might not be representative for 

the tumour type in general due to intertumour heterogeneity. However, the gene expression 

patterns of the differentially expressed genes of the different subgroups were in general 

homogenous. 
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Sample size calculations were not performed prior to the studies, as no standard deviation of 

the expression levels of the genes in the tissues analysed was available.  

Another concern might be the general intratumour heterogeneity of OC, implying different 

molecular alterations and thereby gene expression patterns in different parts of the tumour. In 

our studies, only one tissue fragment from each tumour was analysed. However, as described 

below, all samples were quality controlled by experienced pathologists. 

 

8.1.2 Evaluation of histological diagnosis and sample quality 

Setting the correct histopathological diagnosis is of superior importance to obtain correct 

scientific results when biological material is utilized. In a large Norwegian study during a 10-

year period, the accuracy of ovarian cancer diagnosis was estimated to be 92% when 

reevaluated by a senior pathologist (147). In the present thesis, all specimens used were re-

evaluated by at least one senior pathologist specialized in gynaecological pathology, and most 

of the samples were further re-evaluated. Furthermore, frozen sections from the biopsies were 

examined prior to RNA isolation to ensure satisfying sample quality and representativeness. 

Therefore, we conclude that it is unlikely that the tissue material used is not of correct and 

appropriate histopathology. 

The molecular alterations within the cancer cell itself are believed to be of greater 

carcinogenetic importance than those of the microenvironment. Therefore, it is generally 

accepted that the proportion of tumour cells in a material examined should be at least 50%, 

preferably 80%. Hence, only carcinomas presenting histologically more than 50% tumour 

cells were included for RT-qPCR analyses in Paper II and for all analyses in Paper III.  

Since cells in the tumour microenvironment are important contributors to the development of 

cancer, cancer cells and the microenvironment should ideally be analysed separately to obtain 

a better understanding of the molecular alterations in these two tumour constituents. 

Presently, microdissection is very time-consuming and requires technology and diagnostic 

experience, and was not available.  

 

8.1.3 Control material 

One strong aspect of this thesis might be the use of OSE as control material. OC is generally 

believed to originate from the single-layered OSE (37;148-151), which therefore should be 

the optimal control material. However, a challenge related to the understanding the 
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carcinogenesis of ovarian cancer has been the use of different control tissue. The 

identification of differentially expressed genes in SC by microarray studies has been shown to 

be strongly influenced by the control material utilized, including OSE brushings, whole ovary 

samples, short-term cultures of normal OSE and immortalized OSE cell lines (152). It was in 

this study concluded that OSE brushings were the most representative control material, since 

it is not exposed to in vitro manipulations and does not contain stromal components, which 

apparently may cause changes in gene expression. In accordance we found a different gene 

expression pattern when whole normal ovaries were used as control material compared to 

OSE or benign ovarian cysts (Paper 1). Thus, the choice of control material is of great 

importance for achieving representative and relevant scientific results. The use of different 

control materials for gene expression analyses in ovarian cancer may be a reason for 

conflicting results presented in different studies. 

Because the OSE represents only a small fraction of the total ovary, the availability of OSE 

RNA is limited. Since we experienced that brushing of normal ovaries yielded insufficient 

amount of material, we developed a procedure for superficial scrapings of the ovaries. Sample 

evaluation revealed that the vast majority of the cells was OSE, and therefore appropriate as 

control material. Still, stromal cells accounted for a small portion of the samples.  

In this thesis, OSE, as represented by superficial scrapings from normal ovaries, have been 

used as reference material in all studies. Furthermore, BNO and BBOC were included for 

additional comparisons in Paper I. Our results from Paper I showed that the investigated 

mRNAs were similarly expressed in the carcinoma when compared to OSE scrapings and 

BBOC, but differed when compared to BNO (Paper I; Figure 2, 3, S1 and S2). These 

findings are not unexpected, since the benign ovarian cysts are believed to originate from 

OSE, whereas whole normal ovaries mainly consist of stromal tissue (151). Based on these 

findings benign ovarian cysts appear to be an alternative to OSE as control tissue for OC. 

However, since only six mRNAs were analysed in a small numbers of controls, and an altered 

global gene expression during the development from OSE to benign ovarian cysts is likely, 

OSE scrapings was chosen as control tissue in Paper II and III. 

 

8.1.4 Collection of material 

All samples except for nine CCC from TNRH were taken from the biobank at Ullevaal, OUH, 

ensuring a similar harvesting procedure. After removal of the ovaries the tumour samples and 

the OSE scrapings were immediately harvested and snap-frozen or transferred to 
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Trizol/Qiazol, respectively, in order to prevent RNA degradation and altered gene expression. 

The samples at TNRH were collected and snap-frozen under the supervision of Ben Davidson 

after careful assessment of the removed ovaries immediately after their arrival at the 

Department of Pathology, TNRH. The transportation of the ovaries was done as soon as 

possible after removal. Thus, the collection procedures of the samples from the biobank at 

Ullevaal and TNRH are somewhat different. The samples from Ullevaal were generally 

harvested and frozen after a shorter time of exposure to room temperature than the samples 

from TNRH, thereby reducing the risk of RNA degradation and altered gene expression. The 

samples from TNRH were harvested under the supervision of a specialist in gynecological 

pathology, assuring high sample quality. However, isolated total RNA was quantified and 

quality assessed before the analyses, documenting adequate RNA quality and quantlty for all 

samples. Although not likely, we cannot entirely rule out the possibility that the time from 

removal to freezing may have affected the results. 

  

8.1.5 Follow-up data 

Follow-up data were available for all patients included. The patients were routinely evaluated 

every third months for two years, every six months for the next three years and thereafter once 

a year, or more frequently when indicated, and the PFS data are based on findings at these 

consultations. Since the increase of CA125 level (according to the GCIG criteria) is not 

always the first sign of disease recurrence, a verified clinical relapse was used for estimating 

PFS when this was the first sign of disease recurrence.  

In all studies gene expression levels of the RT-qPCR analyses were evaluated for associations 

with clinical parameters, including survival. Parameters possibly influencing these parameters 

are discussed under 8.3.3. 

 

8.2 Methodological considerations 

Before performing gene expression quantification analyses, study design considerations are of 

great importance, as appropriate sample selection is a basic criterion for obtaining biologically 

meaningful results. Careful assessment of material selection with respect to histopathological 

diagnosis, sample quality and clinicopathological variables has been performed upon all 

studies as described above.  
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8.2.1 RNA quality 

In all studies we have handled samples as carefully as possible to prevent RNA degradation, 

altered gene expression and DNA contamination, which is of critical importance. Evaluation 

of the quality of the isolated RNA is a prerequisite for correct results, and has been performed 

in all studies. 

 

8.2.2 Global gene expression analysis 

The microarray technology has during the last two decades had a great impact on gene 

expression research. However, this technology and the subsequent data analyses are burdened 

with several potential pitfalls. The microarray data sets are usually very large, and the results 

are influenced by a number of variables. Therefore, several methodological aspects should be 

considered carefully if valid conclusions are to be drawn. Some of the most important 

considerations of the microarray experiment and the data processing in general are briefly 

described below. 

Pitfalls of the probe-target hybridization process include a possibility for cross-hybridization 

of targets to probes that are supposed to detect other targets. Errors during cDNA synthesis 

and in vitro transcription may occur, and probes may be incorrectly designed. The small size 

of miRNAs and the challenges of obtaining uniform hybridization conditions across the 

microarray imply a risk for cross-hybridization of miRNAs that are highly related in 

sequence. 

There are several challenges regarding the statistical analyses of the data. Correct data 

processing is dependent on appropriate subtraction of background noise as well as 

normalization and visualisation of spot intensities. For identifying differentially expressed 

genes correct statistical analyses must be used, including test accounting for multiple 

comparisons and type I errors. 

Concerns regarding the reliability of the microarray technology have been raised, as dissimilar 

results when using different microarray platforms analysing identical RNA samples in a few 

studies has been shown. One explanation is the lack of inter microarray platform experimental 

standardization for assay protocols, analysis methods as well as platform fabrication for “in-

house” arrays. Therefore, several projects have tried to standardize the microarray 

experiments. MIAME (Minimum Information About a Microarray Experiment) is a standard 

for reporting microarray experiments, though a specific format is not required. The 
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"MicroArray Quality Control (MAQC) Project" (performed by the US Food and Drug 

Administration) has developed standards and quality control metrics, aiming the use of 

microarray data in i.e. clinical practice and drug discovery. The MAQC project has shown 

both acceptable inter- and intraplatform reproducibility of gene expression measurements for 

genes identified as differentially expressed (153). Furthermore, high correlation between 

quantitative gene expression values, such as RT-qPCR, and microarray platform results has 

been found (153;154), as is demonstrated also in this thesis (Paper II and III).  

Other reasons for lack of overlap between gene lists from different studies include differences 

in experimental design and intra- and/or inter-tumoural heterogeneity. Moreover, overfitting 

may occur when large numbers of potential predictors are used to discriminate among a small 

number of outcome events (155). 

A limitation of the DNA microarrays is that they do not cover the whole genome. Whereas the 

DNA microarray technology may analyse the expression of all known genes, “next 

generation” RNA-sequencing technology is a technique that in theory can capture all genes 

present in the sample analysed. Therefore, possible unknown important genes not included in 

the microarrays, have not been captured in our experiments. However, next generation 

sequencing is time- and resource-consuming, as well as expensive. 

In this thesis, microarrays from Affymetrix, a pioneer in microarray technology and among 

the leaders in genomics, have been used. Procedures recommended by the manufacturer have 

been carefully followed, ensuring as reliable results as possible. Our studies followed the 

MIAME guidelines, which is required for releasing the data at GEO.  

 

8.2.3 RT-qPCR analysis 

The PCR is an extremely sensitive analysis with a high dynamic range for quantification. 

There are several potential pitfalls of the RT-qPCR analysis, and many standard procedures 

involved, of which some are described below. 

Upon the qPCR experiment, a correct reverse transcription of RNA to cDNA requires 

appropriate and sufficient amount of primers (i.e. oligo(dT) primers), enzyme (reverse 

transcriptase), buffer and nucleotides. However, the RT reaction is expected to be the 

uncertain step in gene expression analysis, having several potential sources of error (156). 

These include presence of secondary and tertiary RNA structures, variations in efficiencies of 
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primers and enzyme (156), reaction inhibitors present in the material examined (157) and 

abundance of transcripts (158). Because these errors are hardly controllable, the success of a 

given RT reaction is difficult to evaluate. However, optimizing reaction conditions employed 

in all analyses include high RNA quality, the use of equal RNA quantity in all reactions and 

simultaneously preparation of the reaction mix for all reactions.  

An appropriate qPCR reaction requires sufficient amount of correct designed primers, 

sufficient amount of high fidelity enzymes (DNA polymerase), appropriate concentration of 

MgCl2, adequate amount of nucleotides and buffer, and correct temperatures. Furthermore, the 

qPCR reaction may not work readily for DNA templates above the length of 2000-3000 base 

pairs. False negative qPCR reactions may occur due to insufficiently designed primers not 

able to hybridize with the cDNA or that result in primer-primer hybridization (“primer-

dimer”), or suboptimal reaction conditions including incorrect temperature and MgCl2 

concentration. Internal folds caused by base-pairing between nucleotides within the cDNA 

(“hairpins”) or the primer may also result in decreased product yield or reaction failure. False 

positive qPCR results may be caused by inappropriate designed primers that hybridize not 

only to the specific cDNA sequence of interest, but to several areas on the cDNA, resulting in 

several PCR products comprising not only the cDNA sequence of interest. Moreover, 

unsuitable temperature and DNA contamination may lead to false positive results.  

In all papers, the instructions of the manufacturers have carefully been followed and reaction 

conditions optimized as described to obtain as reliable results as possible. The PCR primers 

for Paper I was designed by our research group, whereas the PCR primers for Paper II and III 

were designed by Applied Biosystems, Life technologies, a company considered to be among 

the most trusted producers of PCR-related products worldwide. Negative PCR control 

reactions without cDNA/RT reaction (a reaction without reverse transcriptase) have been 

included for all analyses to control for DNA contamination.  Sufficient technical replicate 

number is important for obtaining a reliable result, and was taken into account in all papers, 

with replicate numbers of minimum two (Paper I and III) and three (Paper II). 

For correct quantification of the PCR product, efficient probes are needed. In Paper I, the non-

sequence specific DNA binding dye SYBR Green was used. This compound is easy to use 

since designing of specific probes is not necessary. However, since it binds to any ds cDNA 

sequence, it cannot discriminate between the ds cDNA segments from the PCR products and 
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those from unspecific PCR products like primer-dimers. Consequently, there is a risk for 

overestimation of the target quantification. 

In Paper II and III, the sequence specific fluorescent labelled TaqMan probe applied in the 

TLDA cards was used. Since the TaqMan probes are designed for binding to the specific PCR 

product of interest it gives a more accurate RT-qPCR results than SYBR Green. However, the 

TaqMan probe is expensive, since separate probes must be designed for each cDNA target 

analysed. TLDA cards greatly simplify the qPCR experiments, and minimize the variability 

due fewer pipettings. 

In qPCR analyses, reference genes are used to estimate relative gene expression values and 

for internal controls. For a gene to be valid as a reference gene, its expression should not vary 

in the material investigated. The most frequently used reference genes, GAPDH and -actin 

were both used in Paper I and II, since these have been shown to remain unchanged during 

different conditions (159) and to be useful as reference genes for normalization of qPCR 

analyses in cancer specimens (160). They showed overall similar results in our analyses. 

However, it has become clear that no single gene is constitutively expressed in all cell types 

and under all experimental conditions, implying that the reference gene(s) suitable for the 

actual material analysed should be validated upon each experiment (161-163). Apparently, 

accurate normalization may require averaging of multiple internal control genes (164). 

Accordingly, the miRNAs with lowest expression variation (n=2) of the global analysis in 

Paper III were selected as reference genes, and since their mean value reduced the variation, 

this value was used for calculations. 

Based on a lack of consensus on how to best perform and interpret qPCR experiments, 

standardisation protocols have been developed (157;165), including the MIQE (Minimum 

Information for Publication of Quantitative Real-Time PCR Experiments) guidelines (165).  

 

8.3 Interpretation of results   

8.3.1 Differential mRNA and miRNA expression and correlation with prognostic factors 

and survival in HGSC 

In Paper I, overexpression of POLD2 in PDSC compared with three different control tissues 

(OSE, BBOC, BNO) as well as with MDSC and CCC was found (Paper I; Figure 1, 3 and 

Table 2). POLD2 encodes a protein involved in DNA replication and repair (166), and is 

downregulated by the PTEN tumour suppressor gene (167), already known to be involved in 
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ovarian carcinogenesis (54;168-170). Repression of POLD2 by p53 in breast cancer cells 

arrested in G0-G1 phase of the cell cycle has also been identified (171). The fact that POLD2 

mRNA expression increased from 2.5-fold in MDSC to almost 20-fold in PDSC implies a 

possible prognostic relevance for this gene, since patients with PDSC generally have a 

slightly worse clinical outcome than patients with MDSC (53;172). Hypothetically, a possible 

prognostic disadvantage for patients with tumour cells overexpressing POLD2 may be 

explained by a replicative advantage in these cells, as the protein of POLD2 is involved in 

replication. Moreover, since POLD2 is involved in DNA repair, a lower degree of 

differentiation, possibly implying a higher need of repair, may furthermore explain a higher 

level of POLD2 in PDSC compared to MDSC. In support of this theory, chromosomal 

alterations involving altered regions harbouring genes associated with patient survival 

including POLD2, have been found in glioma (173), and overexpression of POLD2 has 

previously been found in OC (174). 

The global mRNA expression analyses of Paper II confirmed an overexpression of POLD2 in 

HGSC vs. OSE (p=0.001), although a lower FC was found (FC=2). Differential POLD2 

expression between MDSC and PDSC was however not found. The somewhat diverging 

findings in Paper I and II may be explained by inter- and intra- tumour heterogeneity and 

sample size. Among the 23 patients included in Paper I only nine were included in the 

microarray analyses of Paper II (Table 3) and the samples from these nine patients were not 

identical in Paper I and II. Furthermore, the sample size of the microarray analyses might 

have been too small to capture the differential POLD2 expression between MDSC and PDSC 

found in Paper I. For example, only one pure MDSC group comprising three patients was 

included (Paper II; Table 1). 

Similar mRNA expression profiles in MDSC and PDSC were shown both in Paper I and II, 

and is in agreement with previous findings and their assumed common carcinogenesis 

(38;54;64). In Paper I, the mRNA expression was similar for PDSC and MDSC compared 

with OSE (Paper I; Figure 2), although not all comparisons demonstrated statistically 

significant results, possibly due to a small sample size. As for POLD2, this mRNA was 

significantly overexpressed in both MDSC (p=9.1x10-4) and PDSC (p=3.4x10-8) compared 

with OSE (Paper I; Figure 1), but also in PDSC compared with MDSC (p=1.7x10-8). In 

Paper II, no statistically significant differences were found when comparing expression of 

thirty mRNAs in MDSC versus PDSC (t-test of Cq values, p<0.01). When MDSC and 

PDSC were separately compared with OSE and SBOT, (t-test of Cq values, p<0.01) only 
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three (A2BP1, CRISP2 and DNAH9) and two (A2BP1, CRISP3) mRNAs had dissimilar 

expression, respectively. Based on the similarity between MDSC and PDSC, evaluated in 

Paper I and II and also by others (38;54;64), MDSD and PDSC were merged when analysing 

miRNA expression in Paper III, in accordance with the general opinion (38). 

In Paper II, several known and hitherto partly unrecognized mRNAs were identified as 

significantly differentially expressed between HGSC, SBOT and OSE (Paper II; Table 4). 

Compared with OSE, ZNF385B was 130 times less expressed in HGSC and was significantly 

associated with OS. The more underexpressed, the longer was the OS (Paper II; Figure 3A). 

The present knowledge about the biological functions of ZNF385B is limited. It belongs to 

the family of zinc-finger genes, which encode transcription factors, playing an essential role 

in gene expression. This mRNA is supposed to be a repressor of transcription, but the specific 

function is not known (175).  However, it has been found expressed in Burkitt's lymphoma 

and also in its healthy B cell counterpart, and has been shown to interact with p53 and induce 

B cell apoptosis (176). Based on our findings, one might postulate that ZNF385B has a 

stimulating effect on carcinogenesis, and that defense mechanisms might inhibit its function. 

Consequently, the more effective the repression of ZNF385B, the more inhibited is the 

carcinogenesis, and the longer is the OS supposed to be. To our knowledge, this is the first 

time ZNF385B has been linked to OC and implied in outcome.  

Other mRNAs found to be differentially expressed and correlating with prognostic factors and 

survival in HGSC (Paper II) included VEGFA, TPX2 and FOXM1, all being overexpressed in 

HGSC compared with both OSE and SBOT. VEGFA, an important mediator of tumour 

angiogenesis (177) was significantly overexpressed in HGSC, and high expression was 

associated with a short PFS (Paper II; Figure 3B). Overexpression of VEGFA and its 

association with poor prognosis have previously been found in several malignant tumours 

including OC (178-181), underscoring VEGFA as a possible prognostic marker. A humanized 

monoclonal antibody targeting VEGFA, bevacizumab, has been approved for the treatment of 

several cancers, including OC (131;132;177). For ovarian cancer patients bevacizumab in 

combination with standard chemotherapy has shown to improve PFS in several phase III 

trials, including front line (131;132) and platinum-resistant recurrent (133) treatment. 

However, an improvement in OS has not yet been established.  

High expression levels of TPX2 and FOXM1 correlated with optimal CA125 normalization 

(Paper II), implying that effective chemotherapy appears to be associated with overexpression 
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of these genes. TPX2, which has an important function in spindle assembly during cell 

division (182), has previously been shown to be overexpressed in ovarian cancer and other 

malignancies (64;183-187). In accordance with our findings, a higher expression of TPX2 in 

MDSC and PDSC compared with SBOT and WDSC was found in an oligonucleotide array 

profiling study (64). TPX2 activates AURKA, which is overexpressed in cancer and 

apparently is a key regulator of mitosis. Co-overexpression of AURKA and TPX2 has been 

found in many cancer forms, including ovarian cancer (178;184), and TPX2 and AURKA 

have been proposed to be a functional unit with oncogenic properties (184). Accordingly, the 

global mRNA analyses retrospectively showed that AURKA was overexpressed in HGSC 

compared with OSE (p=0.10, FC=3.8) and SBOT (p=5.9x10-4, FC=6.3).  

FOXM1 encodes a transcriptional activator involved in cell proliferation, and is 

overexpressed in various human malignancies, including carcinomas of the ovary, prostate, 

breast, lung, colon, pancreas, stomach, bladder, liver and kidney (188). In HGSC 

overexpression of FOXM1 has previously been described (65;91), also when compared with 

SBOT (91). FOXM1 seems to stimulate tumor progression (189;190) and activate metastasis 

(191), and overexpression correlates with poor prognosis in breast and gastric cancer 

(190;192). FOXM1 regulates several genes involved in the cell cycle progression, including 

BIRC5 and TP53 (193). FOXM1 expression is stimulated by oncogenes (194) and is 

regulated by tumor suppressor genes such as TP53 (195;196).  

A molecular pathway of HGSC was identified, involving five markedly overexpressed 

mRNAs (BIRC5, FOXM1, TOP2A, TPX2 and VEGFA), all directly interacting with TP53 

(Paper II; Figure 2, Table 4). The p53 tumor suppressor is important in preventing the 

development of cancer, playing a crucial role in orchestrating the cellular stress response. The 

microarray analyses showed that TP53 was significantly overexpressed in HGSC compared 

with both OSE (p=1.2x10-3, FC=2.0) and SBOT (p=2.5x10-4, FC=2.4). This may seem 

surprising since TP53 should inhibit the mRNAs in the pathway except for VEGFA. 

However, TP53 is mutated in almost all HGSC (65), and the increase may represent a 

compensatory mechanism as a result of high levels of dysfunctional TP53 protein. We 

therefore postulated that a mutation in the TP53 gene results in a decreased inhibition and 

consequently an upregulation of BIRC5, FOXM1, TOP2A and TPX2. In support of our 

hypothesis, the high rate of TP53 mutation in HGSC has been suggested to contribute to 

FOXM1 overexpression (65;196), since a normal TP53 represses FOXM1 after DNA damage 

(195). 
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In accordance with our findings, The Cancer Genome Atlas Research Network (65) recently 

identified several genes in a FOXM1 transcription factor network, including BIRC5, 

consistently overexpressed and significantly altered in 87% of HGSC. Interestingly, these 

mRNAs were not altered by DNA copy number changes, indicating a transcriptional 

regulation. This study concluded that the FOXM1 pathway provides opportunities for 

therapeutic treatment. 

BIRC5 was highly overexpressed in HGSC compared with OSE and SBOT, which is in 

accordance with other studies (65;91;197). Survivin, the protein product of BIRC5, is 

regarded as one of the most cancer specific proteins identified, and has a crucial function in 

the cell cycle, inhibiting apoptosis and promoting cell proliferation (198). BIRC5 is repressed 

by TP53 protein and is overexpressed in the majority of cancers (199-201). Survivin is 

expressed in more than 90% of OC (202;203), and appears to be a prognostic marker for OC 

(203-206). Strategies for inhibiting BIRC5 are now utilized in several ongoing clinical trials 

on different cancer forms (198), but so far not in ovarian cancer. Our results suggest that 

BIRC5 might be a potential target for therapy in OC. Recently, an increased sensitivity to 

paclitaxel has been found in ovarian cancer cells with a decreased survivin level (206).  

Similar differential mRNA expression was found for several mRNAs in HGSC when 

compared to both OSE and SBOT (Paper II; Table 4). A lower potential of malignancy 

combined with a reduced proportion of tumour cells in SBOT compared with HGSC may at 

least partly explain the similarity. 

In Paper III, several miRNAs significantly differentially expressed between HGSC, CCC and 

OSE were identified (Paper III; Table 2B). The most differentially expressed miRNAs in 

HGSC compared with OSE were, as for CCC, miR-200 family members, including miR-

200a-3p, miR-200b-3p, miR-200c-3p and miR-141-3p. The miR-200 family is aberrantly 

expressed in a number of cancer forms (207-210). Members of this miRNA family have been 

found overexpressed in SC in a few studies. Two studies have found miR-200a, miR-200b, 

miR-200c and miR-141 to be overexpressed (101;106), and another study found elevated 

expression of miR-200a (104). However, the SC was unfortunately of mixed grading. 

miR-200 family members have been demonstrated to regulate epithelial-mesenchymal 

transition (EMT) by targeting ZEB1 and ZEB2, resulting in altered expression of the cell-cell 

adhesion molecule E-cadherin (211-214). E-cadherin down-regulation is apparently important 
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in cancer progression and metastasis, as the strength of cellular adhesion is decreased, 

facilitating cell detachment and metastasis. At a favorable distant location, the cells may 

thereafter undergo mesenchymal-epithelial transition (MET) and re-express E-cadherin 

resulting in reversion to an epithelial state and attachment to other cells. In concordance, the 

expression of E-cadherin has been shown to be elevated whereas the level of ZEB1 is reduced 

in metastatic OC (215). ZEB1 and ZEB2 are also targets of miR-205-5p (211), which was the 

most overexpressed miRNA in HGSC compared with OSE, and also significantly expressed 

in HGSC when compared with CCC (Paper III; Table 2B). 

miR-200c-3p and miR-200b-3b, having similar seed sequences, have been shown to decrease 

VIM expression and thereby its protein vimentin (213). Vimentin is found in various non-

epithelial cells, especially mesenchymal cells, and is used as a marker for EMT during 

metastasis. An elevated expression of miR-200c-3p and miR-200b-3b, resulting in reduced 

VIM and vimentin levels, is therefore expected in metastatic cancer, where epithelial cell 

features are important for re-colonization.  

miR-200c-3p was the most differentially expressed miRNA in both SC and CCC compared 

with OSE separately, according to p-values and FC values as a whole (Paper III; Table 2B). 

Accordingly, this miRNA has previously been found to be overexpressed in SC (101;106), 

HGSC cell lines (216), serum from HGSC patients (216) and also in a small series of CCC 

(101). A high level of miR-200c-3p was associated with short PFS and OS in HGSC, 

indicating that this miRNA may be a potential prognostic marker for HGSC. Kaplan-Meier 

curves showed that patients with the highest tertile level had the shortest PFS and OS (Paper 

III; Figure 3A, B). This finding is supported by a study analysing miRNA expression in SC 

vs. normal ovaries (106). Moreover, miR-200c-3p has also been associated with survival in 

stage I OC patients (217) and chemotherapy response (218). The HGSC comprised only 

FIGO stages IIIc and IV, strengthening the association between survival and miRNA 

expression.  

Based on the global miRNA expression analyses in Paper III, associations between miRNAs 

with signal values>7 (n=297) and PFS (FDR q<0.1) and OS (FDR q<0.25) were evaluated in 

HGSC and CCC separately. No statistically significant associations were found. However, 

when not corrected for multiple testing, 11 miRNAs had p<0.05, indicating a possible 

association with survival. For HGSC, high expression of miR-29b-2-5p, miR-31-5p, miR-

486-5p, miR-505-5p and miR-1281 had a potential association with short OS, whereas high 
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expression of all these miRNAs but miR-31-5p had a potential association with short PFS. 

Moreover, high expression of miR-26b-5p and miR-141-3p had a potential association with 

long PFS in HGSC. In CCC, high expression of miR-106b-3p had a potential association with 

short OS and PFS. Furthermore, high expression of miR-25-5p as well as miR-30a-3p, miR-

30a-5p and miR-31-5p had a potential association with short and long PFS, respectively. 

When applying a significance level of 3%, high miR-505-5p expression had a potential 

association with short PFS and OS in HGSC, whereas high miR-1281 and miR-29b-2-5p 

expression had a potential association with short PFS in HGSC. These three miRNAs were 

evaluated for association with survival in the extended patient cohort analysed by RT-qPCR. 

However, they were not found to be associated with survival.  

Through the use of IPA, interactions between differentially expressed mRNA and miRNA in 

HGSC were identified. The vast majority of these RNA molecules has previously been related 

to cancer and cancer-related functions, and may represent potential important key molecular 

pathways in this subgroup of OC (Paper III; Table 3). Differentially expressed miRNAs 

targeting the HGSC pathway identified in Paper II were also identified (Paper III; Figure 4). 

Interestingly, VEGFA, which we found to be overexpressed and positively associated with 

PFS in HGSC in Paper II, is a target of miR-200c-3p with high predicted confidence. Since 

both RNAs were overexpressed, an interaction may be explained by activation of gene 

expression (16;219;220). However, these interactions should be experimentally evaluated in 

HGSC.  

In addition to the five overexpressed mRNAs included in the molecular pathway for HGSC, 

we further identified eight differentially expressed mRNAs (p<0.01) in HGSC compared with 

OSE (Paper II). These mRNAs were also linked to differentially expressed miRNAs (FC>±2) 

of the global gene expression analyses in HGSC compared with OSE (Paper III). Inclusion 

criteria for these interactions were similar as for the interactions between differentially 

expressed miRNAs and the mRNAs of the HGSC pathway (Paper III). Four of the mRNAs 

were interacting with the miRNAs. CTCFL was a predicted target for miR-23a-3p, miR-449a 

and miR-370 and LCN2 for miR-491-5p, all miRNAs participating in the HGSC pathway 

identified in Paper II (Paper III; Figure 4).  ZNF385B, found to be associated with OS in 

HGSC, and CRIPS2 were not included in this pathway. However, they were both predicted 

target for miR-625-5p, which also target NTRK3 (221), encoding the receptor tyrosine kinase 

TrkC receptor, which is involved in the oncogenic PIK3CA pathway. Further miRNAs 

targeting CRISP2 included miR-27a, miR-502-3p and miR-510.  
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8.3.2 Differential mRNA and miRNA expression and correlation with prognostic factors 

and survival in CCC 

In Paper I (Paper I; Figure 3 and Table 2), KSP37 was identified as overexpressed (FC=4.3) 

in stage I CCC compared with advanced stage disease, including stage II-IV CCC (FC=0.5) 

and stage III-IV PDSC (FC=0.7) and MDSC (FC=0.5). Additionally, KSP37 associated 

positively (p<0.05) with FIGO stage I disease as well as PFS and OS (Paper I; Table 3). 

These findings are to the best of our knowledge novel for OC. In concordance with our 

findings, a high KSP37 expression level has been found to associate positively with survival 

also in patients with high-grade gliomas, even more closely correlated than histological grade 

(222).   

KSP37, also known as FGFBP2, encodes a serum protein which is a member of the fibroblast 

growth factor binding protein 2 family. This protein is secreted by cytotoxic lymphocytes, and 

may be involved in cytotoxic lymphocyte-mediated immunity (223).  

Global mRNA analyses were unfortunately not available for CCC. However, global miRNA 

expression was analysed in CCC, along with HGSC and OSE (Paper III). The most 

differentially expressed miRNAs in CCC compared with OSE were, as for HGSC, miR-200 

family members, including miR-200a-3p, miR-200b-3p, miR-200c-3p and miR-141-3p 

(Paper III; Table 2B). In accordance with these findings, miR-200a (101;104) and miR-200c 

(101) have previously been found to be overexpressed in CCC. However, the sample size for 

the CCC has unfortunately been very small; n= 4 (101), n=3 (104). Important functions of the 

miR-200 family members are described under the HGSC part of this section. 

Among the other most aberrantly expressed miRNAs, miR-182-5p had the highest FC in CCC 

compared with OSE (Paper III; Table 2B). This miRNA regulate the expression of PIK3CA, 

a frequently mutated gene in CCC and a candidate for targeted therapy (224).  

To our knowledge, we are the first to identify differentially expressed miRNAs in a relatively 

large CCC series. The miRNAs most clearly separating CCC from HGSC were miR-509-3-5p 

and miR-509-5p, having similar seed sequences, and also miR-509-3p (Paper III; Table 2B). 

MiR-509-3p has been shown to target NTRK3 (221), and miR-509-3-5p, miR-509-3p and 

miR-513a-5p have been found overexpressed in stage I disease of SC and endometrioid 

ovarian carcinoma (107). miR-509-5p have been shown to  inhibit cancer cell proliferation 
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(225). miR-510 targets SPDEF (226), which have been found underexpressed in OC 

compared with breast carcinomas (227). 

A larger patient cohort is warranted to explore associations between miRNAs and survival in 

CCC. The correlation of clinical parameters with miRNA expression revealed miR-202-3p 

and miR-1281 to be associated with RD in CCC. However, the CCC, comprising FIGO stage 

I-IV, could not be adjusted for FIGO stage due to the small series of this subgroup.  

 

8.3.3 General remarks 

When evaluating associations between gene expression and prognostic factors as well as 

survival, other factors than gene expression of potential influence should ideally be recorded. 

Factors that might influence apart from the tumour biology in relation to first line treatment 

are briefly described below.  

General preoperative issues that might delay treatment include lack of symptoms, patient 

delay of consulting a doctor, doctor delay, general condition and comorbidity. Perioperative 

factors that might influence the outcome include tumour resectability and the volume of RD, 

standard surgery routine, the patient’s general condition and comorbidity, the skills of the 

surgeon and perioperative complications. Ovarian cancer surgery has during the last few years 

become more aggressive, aiming zero RD and bilateral para-aortic and pelvic lymph node 

resection (123). However, some years ago, removal of lymph-nodes was not routinely 

performed, and the aim was RD of 2 cm, since this was believed to be the correct cut-off in 

relation to survival. An increased short-term survival for patients operated by gynaecologic 

oncologists compared to general gynaecologists has been shown (228), and ovarian cancer 

surgery is now recommended to be performed by a gynaecologic oncologist (123). 

Primary surgery was performed in all patients included, but the volume of RD varied 

markedly. Furthermore, removal of lymph nodes and consequently complete staging was not 

performed in all patients. Since RD after initial surgery has been shown to be one of the most 

important factors influencing survival in ovarian cancer (32;34), it will have an impact on the 

survival also in the patients included in this thesis.  

Postoperative factors that might influence the prognosis include postoperative complications, 

time until start of chemotherapy, the patient’s general condition, comorbidity and 

chemotherapy treatment and toxicity. Among the patients included, the vast majority received 
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standard adjuvant chemotherapy. However, a few patients did not receive standard 

chemotherapy treatment, received a reduced dose, or chemotherapy was delayed or 

discontinued due to poor general condition, toxicity or comorbidity. There was also some 

variation of the time from surgery to start of chemotherapy, as shown in the manuscripts. 

However, the impact of time from surgery to start of chemotherapy is uncertain, though start 

of chemotherapy within or after six weeks does not seem to influence short-term survival 

(229).  

The survival analyses in this thesis had high test power for the patients with HGSC, since all 

but five (Paper I), three (Paper II) and two (Paper II) had died from ovarian cancer. As for the 

CCC patients, several were still alive at last follow-up, implying a lower test power for the 

survival analyses in these cases.  

Inclusion of patients with comparable stages of disease, would reduce the influence of stage 

on outcome. The CCC series comprised small numbers at each FIGO stage due to lack of 

available samples, and a larger patient cohort would have increased the probability of 

identifying associations. However, the HGSC assessed in the RT-qPCR analyses comprised 

mainly FIGO stages III and IV, with comparable expected prognosis. In Paper I, only stage III 

and IV tumours were included, in Paper II all but three were at stage III (of which all but one 

were stage IIIc) and IV and in Paper III only stage IIIc and IV tumours were included.  

Several mRNAs and miRNAs differing markedly between HGSC, CCC and OSE have been 

identified through global miRNA expression and RT-qPCR analysis, suggesting a role for 

these RNA molecules in ovarian carcinogenesis. The different transcriptional profiles of 

HGSC and CCC emphasize the biological distinctiveness of these OC subgroups, and support 

the relevance of the current subgrouping of OC (38).  

The mere identification of differentially expressed genes in OC is insufficient to understand 

the underlying molecular carcinogenesis, since these changes may not necessarily have any 

physiological impact on the OC development. The translation of mRNA to protein, the 

distribution of gene products and interaction with other genes are decisive for a physiological 

effect. Gene expression levels are not necessarily correlated with protein levels, but 

differences in gene expression levels in general indicate similar differences also at the protein 

level. 
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Since entire molecular pathways apparently are deregulated in cancer, it is crucial to identify 

key deregulated pathways, as we might have done in Paper II. Identification of 

mRNA/miRNA interactions will moreover improve the understanding of the molecular 

mechanism underlying this disease. Hopefully, some of these pathways represent therapeutic 

targets. However, these pathways need to be experimentally validated in OC.  

Although the present thesis is based on a relatively small number of patients, the strong 

associations found between some of the genes and outcome parameters suggest that the 

identified mRNAs and miRNAs may be potential cancer markers and targets for therapy.  
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9. CONCLUSIONS  

1. Several mRNAs and miRNAs differentially expressed in HGSC and CCC have been 

identified, including some with apparent prognostic relevance (Paper I, II and III). 

2. POLD2 is significantly overexpressed in both MDSC and PDSC compared with OSE, and 

also significantly overexpressed in PDSC compared with MDSC, a difference which 

might reflect the slightly worse prognosis for PDSC compared with MDSC (Paper I). 

3. KSP37 is overexpressed in stage I CCC compared with CCC and HGSC at higher FIGO 

stages and is positively associated with PFS and OS (Paper I).  

4. Gene expression profiles for HGSC and CCC are similar when compared with OSE and 

BBOC, but differ when compared with BNO (Paper I). 

5. Several mRNAs are similarly differentially expressed in HGSC when compared with OSE 

or SBOT (Paper II). 

6. PDSC and MDSC have similar mRNA expression profile (Paper I and II). 

7. CCC displays a different mRNA and miRNA expression profile compared with HGSC 

(Paper I and III). 

8. ZNF385B is strongly underexpressed in HGSC and is inversely associated with OS  

(Paper II).  

9. VEGFA is markedly overexpressed in HGSC and is inversely associated with PFS   

(Paper II).  

10. TPX2 and FOXM1 are highly overexpressed in HGSC and associated with optimal 

normalization of CA125 after treatment (Paper II). 

11. A molecular pathway generated through IPA was identified for HGSC, encompassing 

VEGFA, FOXM1, TPX2, BIRC5 and TOP2A, five of the most overexpressed mRNAs in 

HGSC and all directly interacting with TP53 (Paper II).  

12. miR-205-5p was identified as the most differentially expressed (overexpressed) miRNA in 

HGSC compared with OSE, followed by miR-200 family members and miR-182-5p 

(Paper III). 
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13. miR-200 family members, miR-182-5p and miR-200a-5p were identified as the most 

differentially expressed (overexpressed) miRNAs in CCC compared with OSE (Paper III). 

14. miR-509-3-5p was identified as the strongest differentiator between HGSC and CCC, 

followed by miR-509-5p, miR-509-3p, miR-510 and miR-508-5p, all being significantly 

overexpressed in CCC compared with HGSC (Paper III). 

15. High miR-200c-3p expression is inversely associated with PFS and OS in patients with 

HGSC (Paper III).  

16. Reduced levels of miR-202-3p and miR-1281 are associated with macroscopic RD in 

patients with CCC, unadjusted for FIGO stage (Paper III). 

17. For HGSC, several interacting differentially expressed miRNAs and mRNA targets are 

mapped through the use of IPA, including those of the TP53-related pathway of HGSC 

(Paper III). 
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10. FUTURE PERSPECTIVES 

Increased biological knowledge is the basis for the development of novel and more 

individualized treatment strategies that hopefully will improve the poor prognosis for ovarian 

cancer patients. The high frequency of early recurrence of ovarian cancer, and the low 

response rates to cytotoxic agents available for recurrent disease (230) reveal that the search 

for novel therapeutic agents is required.  

Recent research has shed some light on the molecular mechanisms involved in ovarian 

carcinogenesis. In this thesis, mRNA and miRNA expression analyses have been used to 

improve the understanding of ovarian carcinogenesis and the molecular characteristics of 

HGSC and CCC. Global gene expression profiling is a reasonable approach for identifying 

the most differentially expressed genes in cancer, and some of these are likely to be relevant 

to cancer development. It is important that future gene expression studies are clinically and 

histopathologically optimally designed with appropriate control material for identifying 

biomarkers of clinical relevance. MIAME have aimed to improve and conform microarray 

analyses and to make results from different investigations comparable, and their advice should 

be implemented in future studies. To validate the findings of the retrospective studies, 

prospective studies are needed.  

Although it has long been known that OC is not a single disease, but comprises several 

different subgroups, patients with different OC disease are currently treated as though they 

had one homogenous disease. This treatment approach will hopefully in the future be replaced 

by more knowledge based and individualized therapies targeting specific genes and molecular 

pathways involved in ovarian carcinogenesis. OC biomarker studies should therefore in the 

future be subgroup specific, in contrast to most of the studies so far. Development of separate 

trials are now advised for most of the OC subgroups, including CCC (123).  

The clinical heterogeneity among OC patients with similar tumour subgroup and comparable 

clinically prognostic factors is apparently due to biological differences. A better 

understanding of the molecular biology of OC should enable the identification of new 

subgroups of ovarian cancer patients that are most likely to benefit from a particular 

treatment.  

Since a neoplastic tumour encompasses tumour cells and their surrounding tumour stroma, 

both these tumour compartments should be investigated, aiming a combined treatment 
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targeting both compartments. Ideally, the different aspects of a tumour should be investigated 

separately to achieve an optimal biological understanding. Moreover, based on the lower 

response rate of recurrent disease, samples from recurrent disease should also be analysed. 

Improved insight into the roles of miRNAs in OC will hopefully in the future improve ovarian 

cancer therapy. Since miRNAs regulate the expression of several mRNAs and thus entire 

pathways, miRNAs might be promising treatment targets. Normalization of aberrantly 

expressed tumour suppressor miRNAs and oncogenic miRNAs are suggested approaches 

(231). The inactivation of oncogenic miRNAs using complementary anti-miRNA 

oligonucleotides (AMOs) and the induction of overexpression of tumour suppressor miRNAs 

have already shown a potential as therapeutic targets (99). Likewise, miRNAs could 

potentially be used to manipulate the expression of tumour suppressor genes and oncogenes. 

The identification of miRNAs with a therapeutic potential is likely to be a major focus in 

future OC research. However, extensive knowledge of differential miRNA expression in 

different subgroups of OC is crucial for obtaining useful miRNA based treatment. 

Circulating miRNAs have apparently a potential as biomarkers (115;232;233). In the search 

for circulating biomarkers of OC patients, we have already an ongoing study on circulating 

miRNAs in the same patient cohort as in Paper III. Identification of circulating miRNAs that 

are able to distinguish between individuals with and without cancer may facilitate an earlier 

cancer diagnosis.  

Global mRNA profiling of CCC were not performed in the studies included in this thesis. 

However, it would be of great interest to perform global mRNA profiling on the same CCC 

material as used in Paper III, and to compare these profiles with those of HGSC and also to 

identify differentially expressed mRNA targets of the differentially expressed miRNAs in 

CCC identified in Paper III.  

The identified differentially expressed mRNAs and miRNAs should be analysed in future 

studies as candidates for biomarkers and targets for therapy, and the identified pathways 

should be experimentally validated and further explored in OC. The identification of mRNAs 

and miRNAs responsible for cancer development and progression as well as a better 

understanding of their interactions will hopefully in the future increase the biological 

knowledge and improve therapy and outcome in ovarian cancer patients.  
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11. ERRATUM

Page 37, Table 3 

Row number 6 and 12, concerning RT-qPCR in Paper III, has been corrected from 3 and 

36 to 2 and 35, respectively. 

Paper I, Figure 1 

The three columns (vertical) representing SNO (first column), BBOC (second column) 

and BNO (third column) should have been visualized underneath all heatmaps, not only 

underneath the heatmap of the clear cell carcinomas.  

Paper II, page 5 

“Progression-free survival (PFS) and overall survival (OS) were defined as the time 

interval from the date of surgery to the date of first confirmed disease recurrence and to 

the date of death, respectively.”

Should read:  

“Time until progression and time until death were defined as the time interval from the 

date of surgery to the date of first confirmed disease recurrence and to the date of death, 

respectively.”

Paper III, page 3 

“Selected candidate miRNAs were validated by RT-qPCR in all samples analyzed by 

global miRNA expression profiling and in additional samples, totaling 35 HGSC, 19 CCC 

and 9 OSE samples.”

Has been corrected to: 

“Selected candidate miRNAs were validated by RT-qPCR in all samples analyzed by 

global miRNA expression profiling (except one excluded) and in additional samples, 

totaling 35 HGSC, 19 CCC and 9 OSE samples.”
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Abstract

Background: Epithelial ovarian cancer (EOC) constitutes more than 90% of ovarian cancers and is associated with high
mortality. EOC comprises a heterogeneous group of tumours, and the causes and molecular pathology are essentially
unknown. Improved insight into the molecular characteristics of the different subgroups of EOC is urgently needed, and
should eventually lead to earlier diagnosis as well as more individualized and effective treatments. Previously, we reported a
limited number of mRNAs strongly upregulated in human osteosarcomas and other malignancies, and six were selected to
be tested for a possible association with three subgroups of ovarian carcinomas and clinical parameters.

Methodology/Principal Findings: The six selected mRNAs were quantified by RT-qPCR in biopsies from eleven poorly
differentiated serous carcinomas (PDSC, stage III–IV), twelve moderately differentiated serous carcinomas (MDSC, stage III–
IV) and eight clear cell carcinomas (CCC, stage I–IV) of the ovary. Superficial scrapings from six normal ovaries (SNO), as well
as biopsies from three normal ovaries (BNO) and three benign ovarian cysts (BBOC) were analyzed for comparison. The gene
expression level was related to the histological and clinical parameters of human ovarian carcinoma samples. One of the
mRNAs, DNA polymerase delta 2 small subunit (POLD2), was increased in average 2.5- to almost 20-fold in MDSC and PDSC,
respectively, paralleling the degree of dedifferentiation and concordant with a poor prognosis. Except for POLD2, the serous
carcinomas showed a similar transcription profile, being clearly different from CCC. Another mRNA, Killer-specific secretory
protein of 37 kDa (KSP37) showed six- to eight-fold higher levels in CCC stage I compared with the more advanced staged
carcinomas, and correlated positively with an improved clinical outcome.

Conclusions/Significance: We have identified two biomarkers which are markedly upregulated in two subgroups of ovarian
carcinomas and are also associated with stage and outcome. The results suggest that POLD2 and KSP37 might be potential
prognostic biomarkers.
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Introduction

In Norway and the United States, ovarian cancer is the fourth

and fifth most frequent cause of cancer death in women,

respectively [1,2]. At the time of diagnosis, almost 70% of the

patients have distant spread of disease (stage III–IV), and their 5-

year relative survival rate is only about 30% [1,2]. The cause(s)

and mode of progression are poorly understood, and the patients

are treated similarly in spite of tumour heterogeneity [3–6].

EOC comprises several subtypes of histopathologically different

tumours [7]. There is growing evidence for the existence of at least

two distinct tumourigenetic pathways, corresponding to the devel-

opment of type I and type II tumours [3,6,8–10]. Type I tumours

include highly differentiated serous carcinomas, mucinous carcino-

mas, endometroid carcinomas, clear cell carcinomas and malignant

Brenner tumours. They are thought to arise from precursor lesions

such as cystadenomas, borderline tumours or endometriosis and

suggested to be a result of mutations in e.g. KRAS, BRAF, CTNNB1

or PTEN genes [4,6,8,9]. Type II carcinomas include moderately

and poorly differentiated serous carcinomas, carcinosarcomas and

undifferentiated carcinomas, and appear to originate de novo from as

yet no known identified precursor lesions, possibly resulting from

mutations in e.g. TP53 [4,6,8,9,11]. Thus, ovarian carcinogenesis

appears to be associated with abnormalities in multiple gene families.

How these genetic alterations are reflected in changes in transcrip-

tional activity and carcinogenesis are not understood.
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Previously, we reported a limited number of mRNAs strongly

upregulated in human osteosarcomas and several other malignan-

cies [12]. Further analyses on various types of human malignant

cell lines and normal tissues showed that six mRNAs were highly

expressed: KSP37, C9orf89, PRAT4A, NOLA2, ANT2 and POLD2

(Table 1). Apart from C9orf89 and PRAT4A (unknown at project

start), these mRNAs code for proteins known to be associated with

malignancy [13–16]. We hypothesized that these mRNAs might as

well be associated with ovarian cancer. In the present study, we

quantified these mRNAs by RT-qPCR in biopsies from eleven

PDSC (stage III–IV), twelve MDSC (stage III–IV) and eight CCC

(stage I–IV) as well as control tissue representing six SNO, three

BNO and three BBOC. The expression levels were related to

histological, clinical and laboratory parameters. We found that two

of the mRNAs were markedly upregulated in two subgroups of

ovarian carcinomas and also associated with stage and outcome.

Results

Mean expression levels of six selected mRNAs in three
subgroups of ovarian carcinomas compared with three
different control groups
Expression levels of the six selected mRNAs in PDSC, MDSC

and CCC are presented in Figures 1,2,3. Figure 1 shows heat-

maps of log10 transformed p-values (t-test) comparing the mean

expression levels as DCq (delta quantification cycles) values in

PDSC, MDSC and CCC with SNO, BNO and BBOC. P-values

less than 0.05 were used as cut-off value for significance. When

comparing PDSC with SNO and BBOC, respectively, the

following mRNAs were significantly differentially expressed:

PRAT4A (p = 8.161025 and 2.661023), NOLA2 (p = 1.361024

and 3.561023), ANT2 (p = 6.361025 and 2.661023) and POLD2

(p = 3.461028 and 2.461025), whereas comparing these carcino-

mas with BNO, ANT2 (p = 1.961022) and POLD2 (p = 3.161022)

showed a differential expression. For MDSC, POLD2

(p = 9.161024) showed differential transcription when compared

with SNO. NOLA2 (p = 1.161022) and POLD2 (p = 4.361022)

were differentially expressed when CCC were compared with

BNO. These significantly differentially expressed mRNAs were all

upregulated in PDSC and MDSC, while downregulated in CCC

(data not shown). Thus, several of the six previously shown

upregulated mRNAs in osteosarcomas were also differentially

expressed in the ovarian carcinomas. Furthermore, the overall

transcriptional activity of these genes was similar when comparing

BBOC with SNO and BNO, while PRAT4A and POLD2 showed

significant differential expression (p,0.05) when BNO and SNO

were compared (data not shown).

Individual expression levels of six selected mRNAs in
three subgroups of ovarian carcinomas compared with
SNO controls
Figure 2 shows mRNA expression profiles of all 31 carcinomas

employing SNO as a control group, depicted as heat-maps of

normalized log2 transformed original fold change (FC) values.

Higher mRNA levels were detected in PDSC and MDSC for

PRAT4A, NOLA2, ANT2 and POLD2. PRAT4A, NOLA2 and ANT2
showed a similar mRNA expression in PDSC and MDSC in

contrast to POLD2, being clearly more upregulated in PDSC

compared with MDSC. The mRNA levels were reduced for

KSP37 and C9orf89 in both PDSC and MDSC. Furthermore,

except for C9orf89, a distinct mRNA expression pattern of the

mRNAs was present in CCC. The heat-maps looked almost

identical when BBOC were used as the control group, but differed

slightly when BNO were used (Figure S1).

Mean expression levels of six selected mRNAs in three
subgroups of ovarian carcinomas compared with SNO
controls
Figure 3 shows bar plots of mean mRNA expression (loge

transformed original FC values) in PDSC, MDSC and different

stages of CCC, using SNO for comparison. In PDSC, POLD2 was

almost 20-fold upregulated (FC 19.4), whereas C9orf89, PRAT4A,
NOLA2 and ANT2 were only moderately upregulated (FC 1.2–3.1)

and KSP37 slightly downregulated (FC 0.7). In MDSC, transcrip-

tion levels of KSP37 and C9orf89 were reduced (FC 0.5 and 0.7

respectively), while the other mRNAs showed moderate upregula-

tions (FC 1.8–2.5). In CCC stage I, KSP37 was markedly

upregulated (FC 4.3), but downregulated in the more advanced

stages of CCC (FC 0.5). In both stage I and stages II–IV of CCC,

PRAT4A, ANT2 and POLD2 were slightly upregulated (FC 1.4–

1.7), whereas C9orf89 and NOLA2 were slightly downregulated (FC

0.6–0.96). Thus, when comparing KSP37 expression levels in CCC

stage I with the more advanced stages of CCC, MDSC and

PDSC, a six- to eight-fold difference was detected. Further

analyses of the FC values in Figure 3 are shown in Table 2. The

mean mRNA profiles were almost identical when BBOC were

used as control tissue, but differed more when BNO were used

(Figure S2).

The mean mRNA expressions, given as loge transformed

original FC values, in the different ovarian carcinoma subgroups

were also compared (t-test). P-values less than 0.001 were used as

cut-off value for significance. POLD2 mRNA levels were

significantly higher in PDSC compared with both MDSC (FC

19.4 vs. 2.5; p = 1.761028) and CCC (FC 19.4 vs. 1.5;

p = 5.661028), whereas transcription levels of NOLA2 and ANT2

Table 1. Title and assumed function of six selected mRNAs [12].

Title Assumed function

Killer-specific secretory protein of 37 kDa; KSP37 Cytotoxic lymphocyte-mediated immunity [13]

Chromosome 9 open reading frame 89; C9orf89 CARD binding region* [29]

Protein associated with TLR4,A; PRAT4A TLR4 associated* [30]

Nucleolar protein family A, member 2; NOLA2 Associated with telomerase and snoRNPs [14]

Adenine nucleotide translocator 2; ANT2 ADP/ATP exchange [15]

DNA polymerase delta 2 small subunit; POLD2 DNA replication and repair [16]

*Unknown at project start. CARD: Caspase Recruitment Domain. TLR: Toll-like receptor. SnoRNPs: small nucleolar ribonucleoproteins. KSP37 is synonymous with
fibroblast growth factor binding protein 2; FGFBP2 (www.ncbi.nlm.nih.gov/genebank).
doi:10.1371/journal.pone.0013837.t001

POLD2, KSP37 in Ovarian Cancer
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were significantly higher in PDSC compared with CCC (FC 3.0

vs. 0.8; p = 3.061026 and FC 3.1 vs. 1.5; p = 5.761024,

respectively). The results were similar irrespectively of the control

tissue used (data not shown).

Correlation of mRNA expression to clinical, laboratory
and histological parameters
In a single-factor linear regression model, normalized FC values

of the six mRNAs, employing SNO as controls, were correlated

with clinical, laboratory and histological parameters. The

parameters shown in Table S1 as well as histological subgroups

were included in the regression analysis. The significant positive

correlations (p,0.05) between mRNA expression levels and these

parameters are shown in Table 3. Only KSP37 was significantly

associated with several clinical parameters, being positively

associated with favourable prognostic factors such as localized

disease, long progression-free survival (.18 months) and long

overall survival (.36 months). Furthermore, it was negatively

associated with unfavourable prognostic factors such as more

advanced disease, short progression-free survival and short overall

survival (data not shown). When correlating the FC values with

histological subgroups, KSP37 expression was positively associated

with CCC, whereas PRAT4A, NOLA2 and POLD2 were positively

associated with PDSC. The transcriptional levels of C9orf89 and

ANT2 did not correlate with any of the parameters.

Discussion

A major finding in this study was the strong upregulation of

POLD2 in PDSC compared to control tissues and other

histological subgroups of ovarian carcinomas examined. POLD2

is a subunit of the DNA polymerase delta complex, encoding a

protein involved in DNA replication and repair [16]. It is

downregulated by the PTEN tumour suppressor gene [17],

already known to be involved in ovarian carcinogenesis

[4,6,8,9]. In gliomas, a consistent pattern of chromosomal

Figure 1. Mean differential expression levels of six selected mRNAs (horizontal) in three subgroups of ovarian carcinomas
compared with three different control tissues (vertical). Log10 p-values of the T-test of delta Cq values are shown as heat-maps, where the
smaller the p-value, the brighter the blue colour (scale bar). P,0.05 represents significant differential expression. SNO: superficial scrapings from
normal ovaries. BBOC: biopsies from benign ovarian cysts. BNO: biopsies from normal ovaries.
doi:10.1371/journal.pone.0013837.g001
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alterations were found involving altered regions which harboured

seven ‘‘landscape genes’’ associated with patient survival, among

these POLD2 [18].

KSP37 mRNA levels were clearly and distinctly regulated in

early stage of CCC, another histological subgroup of ovarian

cancer. KSP37 is identified as FGFBP2, a member of the fibroblast

growth factor binding protein 2 family (www.ncbi.nlm.nih.gov/

genebank). It is expressed in cytotoxic T lymphocytes and natural

killer cells, and is suggested to have a ‘‘cytotoxic potential’’ which

so far has not been identified [13]. Yamanaka et al. found that a

high KSP37 expression in high-grade gliomas was positively

correlated with survival. Furthermore, KSP37 was more closely

correlated with survival than histological grade [19], while in the

present study, a positive correlation with histological type, clinical

stage as well as good prognosis was observed.

A challenge related to the understanding of molecular portraits of

ovarian cancer has been the lack of representative control tissue.

Histologically, EOC is thought to originate from the single layer of

ovarian surface epithelium (OSE) [5,7,20–22], which therefore

should be the most representative control tissue. Because the OSE

represents only a small fraction of the total ovary, the availability of

OSE RNA is limited. Zorn et al [23] compared the gene expression

profiles of OSE brushings, whole ovary samples, cultures of normal

OSE and immortalized OSE cell lines. The transcriptional profiles

were markedly distinct, but it was concluded that OSE brushings

were most representative as control material, since it is not exposed

to in vitro manipulations and does not contain stromal components.

In the present study, OSE, as represented by six superficial

scrapings from normal ovaries (SNO) was used as reference

material. Furthermore, three biopsies from normal ovaries (BNO)

and three biopsies from benign ovarian cysts (BBOC) were included

for additional comparisons. Our results showed that the investigated

six mRNAs were similarly expressed in SNO and BBOC, but

differed more in BNO (data not shown). Furthermore, the mRNA

levels of the carcinomas were similar both when compared to SNO

and BBOC, but different when compared to BNO (Figures 1,2,3

and Figure S1, S2). Apparently, SNO and BBOC showed

comparable transcriptional activity for these six mRNAs. The

findings are not unexpected, since the benign ovarian cysts used for

control tissue are believed to originate from OSE, whereas BNO

mainly consist of stromal tissue [7]. Thus, for study purposes, benign

cysts originating from OSE, being simpler to obtain than OSE, and

superficial scrapings of normal ovaries appear to be alternative

choices as control tissue for EOC.

Except for the marked upregulation of POLD2 in PDSC, the

expression levels of the other mRNAs in PDSC and MDSC were

similar, in agreement with a common tumourigenetic pathway for

moderately and poorly differentiated serous carcinomas as previously

suggested [10]. Thus, the fact that POLD2 mRNA expression

paralleled the dedifferentiation of MDSC to PDSC, increasing from

2.5-fold in MDSC to almost 20-fold in PDSC, underscores the

uniqueness of this transcript. Since patients with PDSC generally

have a worse clinical outcome than patients with MDSC, the

significantly higher POLD2 expression in PDSC compared with

MDSC could have a bearing on a poor prognosis, possibly through a

replication advantage in cells overexpressing POLD2.

The marked upregulation of KSP37 confined to CCC stage I, as

well as its positive association with clinical variables of good

prognosis, suggest also a possible predictive role of this transcript.

Even though these results are very much in concordance with

overall results from studies on other malignancies, the present

results are novel related to ovarian carcinomas and need to be

confirmed. The different transcriptional profiles for clear cell

carcinomas and serous carcinomas are in agreement with distinct

Figure 2. Differential expression levels of six selected mRNAs
(vertical) in 31 individual tissue samples (horizontal) of three
subgroups of ovarian carcinomas compared with superficial
scrapings from normal ovaries. Normalized log2 transformed
original FC values (Z-scores) are shown as heat-maps, where the
higher/lower the FC value, the brighter the red/green colour,
respectively (scale bar). Black colour illustrates no difference in FC
values of cancer tissue and control tissue.
doi:10.1371/journal.pone.0013837.g002
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tumourigenetic pathways for these carcinomas and also consistent

with other studies [24,25]. Although the present study is based on

a limited patient cohort of only three subgroups of ovarian

carcinomas, the strong association of two of the mRNAs with

histology, stage and outcome suggest that they may have potential

as cancer markers.

Materials and Methods

Patients and tissue material
The study was approved by the Regional Committee of Medical

and Health Research Ethics (REK) in Eastern Norway and all

participating women signed informed consent. Tissue specimens as

well as clinical and laboratory information were obtained from

women primarily operated for gynecological tumours at Oslo

University Hospital, Ulleval, in the period 2003 to 2008. All tissue

samples were snap-frozen in liquid nitrogen, except SNO, which

were transferred to 500 ml TRIzol solution (Invitrogen.com)

immediately after harvesting in order to avoid mRNA degrada-

tion. The samples were stored in a biobank at 280uC until

processed.

The expression of the six selected mRNAs was studied in a total

of 31 epithelial ovarian carcinomas and twelve benign samples.

The carcinomas included twelve MDSC (stage III–IV), eleven

PDSC (stage III–IV) and eight CCC (stage I–IV). Six SNO, three

BNO and three BBOC were used for comparison. SNO were

taken from the surface of normal ovaries by scraping the ovaries

with a scalpel, as cervical pap smear brushings yielded too little

material (data not shown). By this method, the vast majority of

harvested cells were immunologically verified as epithelial (data

not shown). The three benign cysts were cystadenofibromas,

containing both epithelial and stromal cells. BNO consisted almost

exclusively of stromal cells as confirmed by histology. In

accordance with the literature [23], we used OSE, represented

by SNO, as reference material. The histological diagnoses of all

samples were confirmed by an experienced pathologist.

Clinical and laboratory information was collected from hospital

records and additional preoperative patient interviews, shown in

Table S1. All patients and controls were of Western European

descent, postmenopausal (apart from two being perimenopausal)

and had no diseases influencing survival other than the ovarian

cancer. All patients but four (two with MDSC and two with

PDSC) were primarily operated by at least a total hysterectomy or

a uterus amputation, a bilateral salpingo-oophorectomy and an

omentectomy. No patients received neoadjuvant chemotherapy,

whereas all patients but three (one in each histological group)

received adjuvant chemotherapy. The effect of treatment was

evaluated by clinical examinations and serum CA125 measure-

ments at minimum.

Selected mRNAs
Six mRNAs were selected from a subtraction cDNA library of

human osteosarcoma [12]. They represented interesting candi-

date genes, being strongly upregulated in several osteosarcoma

and other malignant human cell lines, and showed a differential

expression between human cancers and normal tissues. Except

for C9orf89 and PRAT4A, whose identities and functions were

unknown at project start, these mRNAs code for proteins

possibly associated with malignancies. The titles and assumed

protein functions of the selected candidate mRNAs are shown in

Table 1.

Primer sequences
PCR primers (Table S2) were designed by using the Invitrogen

database and tested for homology with other sequences at the

Figure 3. Mean expression levels of six selected mRNAs in moderately and poorly differentiated serous carcinomas (stage III–IV)
and clear cell carcinomas (stage I and II–IV) compared with superficial scrapings from normal ovaries. Loge transformed original FC
values with standard deviation are shown as bar plots.
doi:10.1371/journal.pone.0013837.g003
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NCBI gene website (www.ncbi.nlm.nih.gov). All primers were

intron spanning to avoid co-amplification of genomic DNA.

RNA isolation
Tissue specimens were either crushed frozen or homogenized

directly for 262 minutes in 750 ml TRIzol using a Tissuelyzer

(Qiagen.com). Total RNA was extracted using the TRIzol method

according to the manufacturer’s instructions. Isolated total RNA

was quantified (Nano Drop spectrophotometer, Saveen Werner

AB) and quality controlled by the RNA Nano 6000 assay on the

Bioanalyzer 2100 system (Agilent). RNA integrity number (RIN)

and 28S/18S ratios were calculated to ensure a satisfactory RNA

quality and integrity of the samples. To remove genomic DNA,

total RNA was treated using RNase-free DNase I (Roche.com).

Total RNA was further purified on RNeasy MinElute clean up

spin columns (Qiagen.com), eluted with RNase free water,

aliquoted and stored at 280uC until analyzed.

Quantitative reverse transcription-polymerase chain
reaction (RT-qPCR)
One mg of total RNA from each sample was reversely

transcribed using 2.5 U/ml Omniscript enzyme (Qiagen.com), 1

X RT-buffer, 1 mM dNTPs, 2.5 mM oligo-d(T)-primer and 1 U/

ml RNase inhibitor (final concentrations) in a total volume of 20 ml
for one hour at 37uC. For all samples, a negative RT-control

without Reverse Transcriptase enzyme was included. cDNA was

PCR-amplified with primers from the six specific mRNAs and two

endogenous reference genes (b-actin and GAPDH) in replicate sets

of two to six, with a coefficient of variation of less than 1.6 percent.

The samples were analyzed on a real-time fluorescence Light-

Cycler instrument (Roche.com) according to the manufacturer’s

instructions in a final volume of 20 ml using a LightCycler Fast

start SYBR Green kit. PCR conditions essentially contained 2 ml
cDNA, 25 mM MgCl2 and 0.5 mM of forward and reverse

primers. The following cycle conditions were used: 10 min

denaturation at 95uC before 45 cycles at 95uC for 0 s, 56uC for

10 s and 70uC for 5 s.

Gene expression patterns for the six selected mRNAs were

calculated using the comparative crossing threshold method of

relative quantification (DDCq method) [26], and presented as

relative (DCq) and fold change (FC) values. All expression levels

were normalized to the reference genes separately, giving overall

similar results. b-actin quantification was most linear over a wide

dilution range and preferred as reference gene. DCq was

designated as the mean quantification cycle of an mRNA in a

tissue subtracted with the mean quantification cycle of a reference

RNA in the same tissue. DDCq was calculated as mean DCq of

each of the three different control groups subtracted by DCq of

each cancer tissue sample (mean of replicates), whereas FC was

2DDCq.

Table 3. Results of single-factor regression analysis.

KSP37 PRAT4A NOLA2 POLD2

Clinical parameters

FIGO stage I (all CCC) 7.961027

Progression-free survival $18 months 1.661022

Overall survival $36 months 3.361022

Status at last follow-up: Alive, no relapse of EOC 8.061025

Status at last follow-up: Alive, relapse of EOC 1.261022

Histological parameters

PDSC 1.861022 2.161023 1.261025

CCC 6.861023

CCC: Clear cell carcinomas. PDSC: Poorly differentiated serous carcinomas. EOC: Epithelial ovarian cancer. Significant positive correlations (p-values) between mRNA
expression levels and parameters are shown. Detailed explanation is given in Table 1 and Table S1.
doi:10.1371/journal.pone.0013837.t003

Table 2. Statistical analyses of the FC values shown in
Figure 3.

KSP37 C9orf89 PRAT4A NOLA2 ANT2 POLD2

PDSC,
stage III–IV

Average 0.70 1.17 2.77 3.03 3.12 19.42

Stdev 0.62 0.93 1.06 1.43 1.11 14.79

Min 0.07 0.50 1.24 1.36 1.51 5.90

Max 1.64 3.27 4.82 6.73 4.92 59.30

MDSC,
stage III–IV

Average 0.52 0.69 1.98 1.78 2.40 2.50

Stdev 0.39 0.46 1.15 1.42 2.36 1.13

Min 0.06 0.29 0.60 0.74 0.77 1.38

Max 1.42 1.79 3.97 6.06 9.42 4.66

CCC, stage I

Average 4.28 0.69 1.42 0.96 1.35 1.66

Stdev 3.11 0.46 1.32 0.50 0.28 1.54

Min 0.95 0.17 0.39 0.57 1.17 0.67

Max 8.40 1.29 3.34 1.68 1.77 3.94

CCC, stage II–IV

Average 0.49 0.64 1.38 0.73 1.60 1.43

Stdev 0.40 0.23 0.65 0.12 0.91 0.35

Min 0.12 0.36 0.90 0.56 0.82 1.11

Max 1.04 0.90 2.31 0.83 2.76 1.75

PDSC: Poorly differentiated serous carcinomas. MDSC: Moderately differentiated
serous carcinomas. CCC: Clear cell carcinomas. Stdev: Standard deviation. Min:
minimal value. Max: Maximal value. mRNA description is given in Table 1.
doi:10.1371/journal.pone.0013837.t002
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Statistical analysis
Mean DCq values of each histological subgroup of ovarian

carcinomas were compared to mean DCq values of each control

group by performing a two-tailed t-test, presented in heat-maps by

log10 transformed p-values (Figure 1). Log2 transformed original

FC values of each individual sample (n = 31) were normalized (Z-

scores) and shown as heat-maps by applying a two-way clustering

method [27] (Figure 2 and Figure S1). Mean original FC values of

the three ovarian carcinoma subgroups were presented by loge
transformed bar plots (Figure 3 and Figure S2). Finally, a linear

regression model [28], testing the correlation of histological,

clinical and laboratory parameters with mRNA expression levels

given as normalized FC values, was used (Table 3).

Supporting Information

Figure S1 Differential expression levels of six selected mRNAs

(vertical) in 31 individual tissue samples (horizontal) of three

subgroups of ovarian carcinomas compared with biopsies from

benign ovarian cysts (a) and biopsies from normal ovaries (b).

Normalized log2 transformed original FC values (Z-scores) are

shown as heat-maps, where the higher/lower the FC value, the

brighter the red/green color, respectively (scale bar). Black color

illustrates no difference in FC values of cancer tissue and control

tissue.

Found at: doi:10.1371/journal.pone.0013837.s001 (1.92 MB TIF)

Figure S2 Mean expression levels of six selected mRNAs in

moderately and poorly differentiated serous carcinomas (stage III–

IV) and clear cell carcinomas (stage I and II–IV) compared with

biopsies from benign ovarian cysts (a) and biopsies from normal

ovaries (b). Loge transformed original FC values with standard

deviation are shown as bar plots.

Found at: doi:10.1371/journal.pone.0013837.s002 (2.74 MB

TIF)

Table S1 Clinical and laboratory information for patients

included.

Found at: doi:10.1371/journal.pone.0013837.s003 (0.05 MB

DOC)

Table S2 Primer sequences of six selected mRNAs.

Found at: doi:10.1371/journal.pone.0013837.s004 (0.04 MB

DOC)
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Figure S1 

 



Figure S2 

 



Table S1. Clinical and laboratory information for patients included.
Parameters MDSC (n=12) PDSC (n=11) CCC (n=8)

n=6 n=5 n=4

Preoperative condition

Good n=11 n=11 n=7

Poora n=1 n=0 n=1

Preoperative CA 125

<35 kU/L (normal) n=1

35-500 kU/L n=3 n=4 n=3

>500 kU/L n=9 n=7 n=4

FIGO stage

I n=4 (1 IA, 3 IC)

II n=1 (IIA)

III n=10 (IIIC) n=8 (1IIIA, 7IIIC) n=2 (IIIC)

IV n=2 n=3 n=1

Start of chemotherapyb

< 28 days after surgery n=3 n=3 n=1

n=8 n=7 n=6

Standard chemotherapy treatmentc n=5 n=9 n=4

Optimal CA 125 normalizationd n=5 (of 11) n=8 (of 10) n=5 (of 6)e

Progression-free survivalf

<18 months n=10 n=7 n=3

n=2 n=4 n=5

Overall survival 

<36 months n=9 n=6 n=4

n=3 n=5 n=4

Status at last follow-up

Alive, no EOC n=1 n=1 n=4

Alive, with EOC n=2

Dead of EOC n=11 n=7 n=4

Dead of other disease n=1
MDSC: Moderately differentiated serous carcinomas. PDSC: Poorly differentiated serous 
carcinomas. CCC: Clear cell carcinomas. EOC: Epithelial ovarian cancer. a

surgery, haemoglobin <10 g/dL and albumin<36 g/L. b: one patient in each group did not receive 
chemotherapy. c: four to nine cycles of Carboplatine and Paclitaxel. d: normalization of CA125 (< 35 
kU/L) within four cycles of chemotherapy. e: two patients had normal preoperative CA 125. f:
progression: Doubling of pathologic CA 125 levels or clinical relapse.

 



Table S2. Primer sequences of six selected mRNAs.
mRNAs Primer sequences
KSP37, fw 5´- TGG GAA CAT TGT TGG AAA CC -3´

KSP37, rv 5´- GGT TGT CTG TCA GGG AGA GG -3´

C9orf89, fw 5´- GTA CTG CTA TCC GCC AGA CC -3´

C9orf89, rv 5´- CAG GAA GGC CAG CAG GTA G -3´

PRAT4A, fw 5´- AGA GGT GGC TGA CCT CAA GA -3´

PRAT4A, rv 5´- AGG TCT TCC TCC TGG TGG TT -3´

NOLA2, fw 5´- TTT TGG CAG GAG ACA CAC TG -3´

NOLA2, rv 5´- CAC CCA GGT CCG TCT TAG AG -3´

ANT2, fw 5´- ATC TAC CGA GCC GCC TAC TT -3´

ANT2, rv 5´- ATC CAG CTG ATG ACG ATG TG -3´

POLD2, fw 5´- TCC AAA TGA GAC CCT TCC TG -3´

POLD2, rv 5´- CCA CAC AGC ACT TCT CCT CA -3´
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Abstract

Background: The oncogenesis of ovarian cancer is poorly understood. The aim of this study was to identify mRNAs
differentially expressed between moderately and poorly differentiated (MD/PD) serous ovarian carcinomas (SC), serous
ovarian borderline tumours (SBOT) and superficial scrapings from normal ovaries (SNO), and to correlate these mRNAs with
clinical parameters including survival.

Methods: Differences in mRNA expression between MD/PD SC, SBOT and SNO were analyzed by global gene expression
profiling (n = 23), validated by RT-qPCR (n = 41) and correlated with clinical parameters.

Results: Thirty mRNAs differentially expressed between MD/PD SC, SBOT and SNO were selected from the global gene
expression analyses, and 21 were verified (p,0.01) by RT-qPCR. Of these, 13 mRNAs were differentially expressed in MD/PD
SC compared with SNO (p,0.01) and were correlated with clinical parameters. ZNF385B was downregulated (FC=2130.5,
p = 1.261027) and correlated with overall survival (p = 0.03). VEGFA was upregulated (FC= 6.1, p = 6.061026) and correlated
with progression-free survival (p = 0.037). Increased levels of TPX2 and FOXM1 mRNAs (FC = 28.5, p = 2.7610210 and
FC= 46.2, p = 5.661024, respectively) correlated with normalization of CA125 (p = 0.03 and p= 0.044, respectively).
Furthermore, we present a molecular pathway for MD/PD SC, including VEGFA, FOXM1, TPX2, BIRC5 and TOP2A, all
significantly upregulated and directly interacting with TP53.

Conclusions: We have identified 21 mRNAs differentially expressed (p,0.01) between MD/PD SC, SBOT and SNO. Thirteen
were differentially expressed in MD/PD SC, including ZNF385B and VEGFA correlating with survival, and FOXM1 and TPX2
with normalization of CA125. We also present a molecular pathway for MD/PD SC.
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Introduction

Ovarian cancer is the fourth and fifth most frequent cause of

cancer death in women in Norway and the United States,

respectively [1,2]. When diagnosed, about 65% of the patients

have distant spread of disease (stage III–IV), and their 5-year

relative survival rate is less than 30% [1,2].

Epithelial ovarian cancer (EOC) constitutes more than 90% of

ovarian cancers and comprises a heterogeneous group of tumours.

Serous ovarian carcinomas (SC) are the most common histological

subtype [3,4], of which the moderately differentiated (MD) and

poorly differentiated (PD) are predominant compared with the

well differentiated (WD) [3]. It is generally understood that MD

and PD SC represent a common tumour subclass distinct from

that of WD SC and serous ovarian borderline tumours (SBOT)

with respect to origin, pathogenesis, molecular profile and clinical

outcome [5–11].

Several previous DNA microarray expression analyses of EOC

have identified genes related to histology or clinical outcome

parameters [12,13]. A few DNA microarray expression analyses,

restricted to the molecular differences between MD/PD SC and

SBOT have been carried out [9,10,14,15]. However, the

differentially expressed mRNAs were not correlated with clinical

parameters. Moreover, only one of these studies [9] included

normal ovarian surface epithelium (OSE), which has been shown

to be a valid control tissue [16].

Improved insight into the molecular characteristics of the

different subgroups of EOC should eventually lead to more

individualized and effective treatments. The aim of this study was

to identify mRNAs differentially expressed between MD/PD SC,
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SBOT and superficial scrapings from normal ovaries (SNO), using

global gene expression profiling and validation by RT-qPCR, and

to correlate differentially expressed mRNAs of MD/PD SC with

clinical parameters. In contrast to previous studies, we initially

analyzed gene expression based on histological subgroups and

then linked the differentially expressed mRNAs to clinical

parameters. We have identified several subgroup characteristic

mRNAs, including some with apparent clinical relevance.

Materials and Methods

Ethics Statement
The study was approved by the Regional Committee of Medical

and Health Research Ethics (REK, ref.no. 530-02163) in Eastern

Norway and all participants signed informed consent.

Patients and Tissue Material
Women were recruited prior to operations for gynaecological

diseases at Oslo University Hospital, Ulleval, in the period 2003 to

2007. Clinicopathological and laboratory information were

obtained from hospital records and additional preoperative patient

interviews. Tissue specimens were obtained from women previ-

ously not receiving chemotherapy, during their primary operation.

SNO samples collected from patients operated for benign

gynaecological diseases were used as control material [17]. By

scraping the surface of normal ovaries gently with a scalpel, the

vast majority of the harvested cells were verified cytologically as

normal OSE cells, being positive for pankeratin by immunocyto-

chemistry (data not shown). Immediately after harvesting the tissue

samples were snap-frozen in liquid nitrogen, whereas the SNO

samples were transferred to 500 ml TRIzol solution (Invitrogen.-

com) in order to avoid mRNA degradation. The samples were

stored at 280uC until processed.

The histological classification and clinical stage were according

to the World Health Organization classification of tumours and

the International Federation of Gynecology and Obstetrics

classification, respectively. The tumours were reviewed by two

experienced and independent pathologists, and prior to RNA

isolation a frozen section of all biopsies was examined to ensure

satisfying sample quality and representativeness. By histological

evaluation, only carcinomas presenting more than 50% tumour

cells were included in the RT-qPCR analyses.

Global gene expression was carried out in eleven MD/PD SC,

eight SBOT and four SNO samples. The tumours were selected

Table 1. Histological classification and group selection for
patients selected for global gene expression analyses.

Group Histological classification

1 (n = 3) SC, MD, FIGO stage IIIC

2 (n = 3) SC, PD, FIGO stage IIIC

3 (n = 3) SC, 2MD, 1PD, FIGO stage IV

4 (n = 2) SC, PD, FIGO stage IV

5 (n = 3) SBOT, FIGO stage IA

6 (n = 1) SBOT, FIGO stage IB

7 (n = 1) SBOT, FIGO stage IC

8 (n = 3) SBOT, FIGO stage II–III

SC: Serous ovarian carcinomas. MD: Moderately differentiated. PD: Poorly
differentiated. SBOT: Serous ovarian borderline tumours. FIGO: International
Federation of Gynecology and Obstetrics. A minor sarcoma component was
retrospectively discovered in one SC, but was not found in the biopsy used, still
excluded from RT-qPCR.
doi:10.1371/journal.pone.0046317.t001

Table 2. Clinicopathological and laboratory information for patients selected for RT-qPCR analyses.

Parameters MD/PD SCa, n=21 SBOT, n=13

Age; mean 6 SD (range) 69.069.9 (51–84) 58.5614.9 (36–82)

Preoperative CA125 (kU/L); mean 6 SD 332064761 3506714

FIGO stage

I n = 2 (IC) n = 10 (6IA, 3IB, 1IC)

II n = 1 (IIC) n = 2 (1IIB, 1IIC)

III n = 14 (1IIIB, 13IIIC) n = 1 (IIIB)

IV n = 4 n= 0

Residual tumour

0 cm n= 5 n= 12

,2 cm n= 5 n= 1

.2 cm n= 11

Start of chemotherapy (days after surgery); mean 6 SD 30.4611.6

CA125 response n = 20

Optimal CA125 normalization n = 14

Median time (months) until progression (95%CI) 13 (10–16)

Median time (months) until death (95%CI) 29 (17–41)

Status at last follow-up

Alive, no EOC n= 3 n= 12

Dead of EOC n= 18 n= 0

a12 MD, 9 PD. SD: Standard deviation. CI: Confidence Interval. Further abbreviations are given in Table 1.
doi:10.1371/journal.pone.0046317.t002
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and some pooled (n= 2–3) according to histological classification

and stage, resulting in four MD/PD SC groups and four SBOT

groups (Table 1). The SNO samples were analyzed individually.

Differentially expressed candidate mRNAs were validated by RT-

qPCR in all but three of these samples and in additional samples

totalling 21 MD/PD SC, 13 SBOT and seven SNO, analyzed

individually.

RNA Preparation
Tissue specimens were homogenized directly for 262 minutes

in 750 ml TRIzol using a Tissuelyzer (Qiagen.com). Total RNA

was extracted using Trizol (Invitrogen, Carlsbad, CA) and further

purified by the RNeasy MinElute cleanup kit (Qiagen catalog

no. 74204) according to the manufacturer’s instructions. The

isolated total RNA was quantified (Nano Drop spectrophotometer;

Saveen Werner AB) and quality controlled using the Agilent

BioAnalyzer 2100 system and the RNA 6000 Nano assay. All

samples showed high RNA quality.

Global Gene Expression Profiling
Five micrograms of total RNA were used for analysis with the

one-cycle cDNA synthesis kit following the manufacturer’s

(Affymetrix) recommended protocol for gene expression analysis.

Biotinylated and fragmented cRNA was hybridized to the

Affymetrix HG U133 Plus 2.0 array, representing 47000

transcripts for 38500 well characterized human genes. The signal

intensities were detected with the Hewlett-Packard gene array

scanner 3000 7G (Hewlett-Packard, Palo Alto, CA). Complete

microarray expression data have been deposited in NCBI’s Gene

Expression Omnibus [18] (accession number GSE36668).

Quantitative Reverse Transcription-Polymerase Chain
Reaction (RT-qPCR)
RT-qPCR reactions were performed by using ABI Prism 7900

HT sequence detection system (Applied Biosystems). Microfluidic

Taqman arrays were designed to measure the mRNA expression.

Briefly, total RNA was reversely transcribed using Omniscript

(Qiagen Ltd., Crawley, United Kingdom). 300 nanograms of

cDNA were used per sample-loading port, each allowing 48 q-

Table 3. Differentially expressed mRNAs selected for RT-qPCR validation.

Symbol Title Biological function

ALPP Alkaline phosphatase, placental Metabolism

BIRC5 Baculoviral IAP repeat containing 5 Cell proliferation

CRABP2 Cellular retinoic acid binding protein 2 Transcription

CRISP2 Cysteine-rich secretory protein 2 Cell-cell adhesion

CRISP3 Cysteine-rich secretory protein 3 Immune response

CTCFL CCCTC-binding factor (zinc finger protein)-like Transcription

DNAH9 Dynein, axonemal, heavy chain 9 Cell motility

DYNLRB2 Dynein, light chain, roadblock-type 2 Metabolism

FOXM1 Forkhead box M1 Transcription

GRIA2 Glutamate receptor, ionotropic, AMPA 2 Ion transport

HLA-DQB1 Major histocompatibility complex, class II, DQ beta 1 Immune response

HLA-DRB1 Major histocompatibility complex, class II, DR beta 1 Immune response

KLK8 Kallikrein-related peptidase 8 Proteolysis

LCN2 Lipocalin 2 Immune response

MMP10 Matrix metallopeptidase 10 (stromelysin 2) Proteolysis

PRAME Preferentially expressed antigen in melanoma Transcription

PROM1 Prominin 1 Signal transduction

PTH2R Parathyroid hormone 2 receptor Signal transduction

RBFOX1 RNA binding protein, fox-1 homolog (C. elegans) 1 RNA processing

S100A8 S100 calcium binding protein A8 Inflammatory response

SCEL Sciellin Cell differentiation

SFRP2 Secreted frizzled-related protein 2 Cell differentiation

SST Somatostatin Signal transduction

TMEM190 Transmembrane protein 190 Unknown

TOP2A Topoisomerase (DNA) II alpha 170 kDa Transcription

TPPP3 Tubulin polymerization-promoting protein family member 3 Microtubule bundle formation

TPX2 Microtubule-associated, homolog (Xenopus laevis) Cell proliferation

VEGFA Vascular endothelial growth factor A Cell proliferation, angiogenesis

ZIC1 Zic family member 1 Cell differentiation

ZNF385B Zinc finger protein 385B DNA binding

According to Ingenuity Systems.
doi:10.1371/journal.pone.0046317.t003
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PCR reactions following the manufacturer’s instructions. Each

mRNA was run in triplicates. Based on high expression and

negligible variation, the reference gene GAPDH was used to

normalize gene expression levels.

Gene expression patterns were calculated using the comparative

crossing threshold method of relative quantification (DDCq
method) [19], and presented as relative (DCq) and fold change

(FC) values. DCq was designated as the mean quantification cycle

(mean of triplicates) of an mRNA in a sample subtracted by the

mean quantification cycle (mean of triplicates) of GAPDH in the

same sample. DDCq was calculated as mean DCq of the SNO

subtracted by DCq of each tumour sample, whereas FC was

2DDCq. DCq values were imported into Patrek Genomics Suite

(Partek Inc., St Louis, MO, USA), and subjected to a non

supervised cluster analysis using the euclidean/average linkage

algorithm.

Ingenuity Pathway Analysis
Ingenuity Pathway Analysis (Redwood City, CA) was used for

classifying genes into biological functions and signalling pathways.

Statistical Analyses
The eight groups classified in Table 1 and four samples of SNO

were processed using GCOS 1.4 (Affymetrix). The CEL files were

imported into Array Assist software (v5.2.0; Iobion Informatics

LLC, La Jolla, CA) and normalized using the PLIER (probe

logarithmic intensity error) algorithm in Array Assist to calculate

relative signal values for each probe set. In order to filter for low

signal values, the MAS5 algorithm in Array Assist was used to

create a data set of absolute calls, showing the number of present

and absent calls for each probe set. The filtration was performed

by eliminating probe sets containing$10 absent calls across the

data set, resulting in a reduction of probe sets from 47000 to

32707. For expression comparisons of different groups, unpaired t-

tests and Benjamini Hochberg correction of p-values for multiple

testing were used.

When comparing DCq values in different histological sub-

groups, a two-sided independent sample t-test was used since the

DCq values were close to normally distributed. Differentially

expressed mRNAs given as FC values were correlated with clinical

parameters. In order to decide whether an mRNA expression was

significantly associated with time until death or time until

progression, Cox regression analyses were used. When significant,

Kaplan-Meier plots were used to estimate survival curves for

tertiles of the expression variable. To compare mRNA expression

levels in two groups of patients, a two-sided Mann-Whitney U-test

was used, since the FC expression levels were not normally

distributed. The results for each group are presented as medians. A

significance level of 1% was used for differential mRNA

expression, and 5% for correlating mRNAs with clinical param-

eters. The statistical analyses were performed by employing SPSS

version 18.

Results

Patient Characteristics
Clinicopathological and laboratory information regarding

patients selected for the RT-qPCR analyses is given in Table 2.

The patients had no other diseases than ovarian cancer influencing

Table 4. Differentially expressed mRNAs (p,0.01) between MD/PD SC, SBOT and SNO.

MD/PD SC vs. SNO MD/PD SC vs. SBOT SBOT vs. SNO

mRNAs p-values FC values p-values FC values p-values FC values

ALPP 4.361026 217.0 4.461024 10.3

BIRC5 1.261023 24.4 1.6610210 8.5

CRABP2 2.661027 20.4 8.861028 10.9

CRISP2 2.161023 257.9

CRISP3 7.661024 260.4

CTCFL 1.561023 34.7 3.461026 60.8

DNAH9 1.6610210 2414.5 2.361025 32.7

DYNLRB2 2.261023 26.9 1.061027 223.1 1.461023 3.4

FOXM1 5.661024 46.2 1.4610210 14.8

KLK8 1.361023 40.1 5.561025 28.1

LCN2 2.261025 113.7 2.061023 170.4

PTH2R 8.061026 41.3 4.361027 50.3

RBFOX1 2.961023 214.2

S100A8 1.661023 5.6

TMEM190 4.161029 266.4 5.061027 50.3

TOP2A 1.561029 30.4 1.461026 5.2 1.561024 5.9

TPPP3 6.3610211 221.9 2.161025 7.8

TPX2 2.7610210 28.5 1.5610213 10.5 2.861023 2.7

VEGFA 6.061026 6.1 8.361026 3.1

ZIC1 8.661023 11.3

ZNF385B 1.261027 2130.5 8.161024 211.4 6.661023 211.5

- illustrate downregulation. FC: Fold change. Further abbreviations are given in Table 1and 3.
doi:10.1371/journal.pone.0046317.t004
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survival, were in good preoperative condition [17] and were

Caucasian except for one Latino SBOT patient. All were

postmenopausal except for three SBOT patients, and no cancer

patients were currently receiving hormone therapy. Primary

debulking surgery was performed in all carcinoma patients, and

with the exception of two patients, all received platinum-based

adjuvant treatment.

Follow-up data (Table 2), including clinical examinations,

standard laboratory analyses and complementary diagnostic

imaging were available for all patients. The protein CA125

(cancer antigen 125) was measured prior to each chemotherapy

cycle and was used as a marker for response to therapy. A CA125

response was defined according to The Gynecologic Cancer

Intergroup (GCIG) criteria, including at least a 50% reduction in

CA125 levels from a pre-treatment sample. A CA125 normaliza-

tion was defined as optimal when normalized (,35 kU/L) within

four cycles of chemotherapy. After completion of treatment, the

patients were evaluated every third months for two years, every six

months for the next three years, and thereafter once a year.

Progression-free survival (PFS) and overall survival (OS) were

defined as the time interval from the date of surgery to the date of

first confirmed disease recurrence and to the date of death,

respectively. Disease progression was based on an increase in the

CA125 level according to the GCIG criteria and a verified clinical

relapse, and the date of the first event was used. Clinical data was

current as of 25 August 2011.

Global Gene Expression Analyses and RT-qPCR Validation
From 47000 transcripts a comparison between MD/PD SC,

SBOT and SNO was made to detect differentially expressed

mRNAs. Based on p-values (,0.005), FC values (.10) and visual

investigation of the microarray cluster analysis heatmap, 30

mRNAs (Table 3) were selected for RT-qPCR validation. The

global mRNA expression results were largely confirmed by the

RT-qPCR analyses. By applying a significance level of 1%, 21 of

30 mRNAs were verified as differentially expressed between MD/

PD SC, SBOT and SNO (Table 4). Twenty of these mRNAs were

markedly differentially expressed (p,0.005), including 14 with a

p,1025. Thirteen mRNAs distinguished MD/PD SC from SNO

Figure 1. Cluster analysis heatmap. Cluster analysis heatmap of the expression levels (DCq values) of 21 differentially expressed mRNAs (p,0.01)
in moderately (MD) and poorly differentiated (PD) serous ovarian carcinomas (SC), serous ovarian borderline tumours (SBOT) and superficial scrapings
from normal ovaries (SNO). Each column represents an mRNA and each row a sample. The more over-and under-expressed the mRNA, the brighter
the red and blue colour, respectively. Due to technical analysis errors for DYNLRB2, CRABP2, CRISP2, CRISP3 and LCN2 in sample nr 7, 21 and 26, these
values are calculated as the mean DCq values of each subgroup. Further abbreviations are given in Table 3.
doi:10.1371/journal.pone.0046317.g001
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(ten up- and three down-regulated). ZNF385B was the most

differentially expressed mRNA according to the FC value

(p = 1.261027, FC=2130.5), followed by LCN2, CRISP2 and

FOXM1. When comparing MD/PD SC with SNO and SBOT,

respectively, ten mRNAs were similarly differentially expressed.

Eight mRNAs were differentially expressed in MD/PD SC only

when compared with SBOT, including DNAH9 (p= 1.6610210,

FC=2414.5). Comparison of SBOT and SNO showed an

entirely different pattern (Table 4). When SC were subgrouped

into MD and PD tumours and separately compared with SNO

and SBOT (t-test of DCq values), similar profiles were found for

the two subgroups (data not shown).

Figure 1 visualises a cluster analysis heatmap of the expression

levels of the 21 differentially expressed mRNAs (p,0.01), showing

that MD/PD SC, SBOT and SNO are almost perfectly

segregated. Generally, the MD/PD SC mRNA expression levels

clustered together as did those of SBOT and SNO. Two distinct

portraits appeared, illustrating differential expression of these

mRNAs in MD/PD SC versus both SBOT and SNO, whereas

SBOT and SNO showed more similar patterns. The SC was

separated into MD and PD, and their portraits overlapped

considerably. Notably, the expression of BIRC5, FOXM1, TPX2

and TOP2A clustered together, adjacent to the cluster with

VEGFA.

Ingenuity Pathway Analysis
The 21 differentially expressed mRNAs (Table 4) were mapped

in the Ingenuity Pathways of Knowledge Base. Comparison of

MD/PD SC with SNO revealed two connecting networks linked

together by FOXM1. These two networks included all the 13

differentially expressed mRNAs in MD/PD SC. One of the

networks (Fig. S1) included nine of the 13 mRNAs (BIRC5,

CRABP2, DYNLRB2, FOXM1, KLK8, LCN2, TOP2A, TPX2

and VEGFA), whereas the other network (not shown) included five

of the 13 mRNAs (CRISP2, CTCFL, FOXM1, PTH2R and

ZNF385B). Direct interactions between five of the most signifi-

cantly upregulated mRNAs shown in Figure S1 (VEGFA,

FOXM1, TPX2, BIRC5 and TOP2A) and the tumour suppressor

gene TP53 (tumour protein p53) were found, and a core pathway

for MD/PD SC was generated (Fig. 2). In retrospect, the

microarray analyses showed that TP53 was highly, although not

among the most differentially expressed mRNAs in MD/PD SC

compared with both SBOT (p= 2.561024, FC= 2.4) and SNO

(p= 1.261023, FC= 2.0). The molecular interactions of the

pathway were related to mRNAs, DNA and proteins.

Correlation of mRNA Expression with Clinical Parameters
The 13 differentially expressed mRNAs in MD/PD SC

compared with SNO (Table 4) were correlated with OS, PFS,

optimal CA125 normalization after treatment and residual tumour

amount after surgery. ZNF385B and VEGFA were associated with

OS (p= 0.03) and PFS (p= 0.037), respectively. The ZNF385B

and VEGFA expression levels for MD/PD SC were divided into

tertiles, and Kaplan-Meier plots made (Fig. 3A–B). Patients with

the lowest tertile of ZNF385B expression level had a much longer

OS than patients with the highest tertile level, with median time

until death of 48 and 16 months, respectively. In the intermediate

ZNF385B tertile group the average median time until death was

32 months, averaging the survival times for the high and low

ZNF385B tertile groups. Patients with the lowest VEGFA

expression levels had a much longer PFS than patients with the

highest and intermediate levels, with median time until progres-

sion of 28 and 11 months, respectively. When adjusting for FIGO

stage, the associations between ZNF385B and OS as well as

VEGFA and PFS were still significant (p = 0.030 and p=0.031,

respectively).

TPX2 and FOXM1 correlated with optimal CA125 normali-

zation (p = 0.03 and p= 0.044, respectively). Patients with optimal

CA125 normalization had higher expression levels of TPX2 and

FOXM1 (n= 14; median FC=33.0 and 51.2, respectively) than

patients without optimal CA125 normalization (n= 7; median

FC=14.2 and 20.7, respectively). No association between the 13

differentially expressed mRNAs and residual tumour amount was

found.

Discussion

The mRNA profile of MD/PD SC was clearly different from

that of SBOT and SNO, while the latter two showed marked

similarities. In fact, the mRNAs differentially expressed in MD/

PD SC showed predominantly inverse heatmap portraits com-

pared with SBOT/SNO. A lower potential of malignancy

combined with a reduced proportion of tumour cells in SBOT

compared with MD/PD SC may at least partly explain the similar

gene expression in SBOT and SNO. The similar mRNA

expression profiles of MD and PD SC have been recognized

previously [10].

Expression of ZNF385B was 130 times less in MD/PD SC

compared with SNO, and the degree of downregulation correlated

positively with OS. ZNF385B belongs to the family of zinc-finger

genes, which encode transcription factors, playing an essential role

in gene expression. This mRNA is supposed to be a transcription

repressor, but the specific target genes have not been identified

[20]. We hypothesize that its repression of transcription somehow

inhibits neoplasia and/or tumour cell metastasis. Thus, when the

transcriptional inhibition of ZNF385B decreases and mRNA levels

increase, tumour growth/metastasis is promoted, resulting in

shorter OS. The present study is to our knowledge the first to link

ZNF385B to ovarian cancer.

VEGFA, a major mediator of tumour angiogenesis [21], was

significantly upregulated in MD/PD SC, and a high expression

was associated with a short progression-free survival. Consistent

with our findings, a high expression of VEGFA as well as an

Figure 2. Molecular pathway for moderately and poorly
differentiated serous ovarian carcinomas. .acts on (– direct
interaction, -- indirect interaction), ) inhibits. The pathway was
facilitated through Ingenuity Pathway Analysis. Abbreviations are given
in Table 3.
doi:10.1371/journal.pone.0046317.g002
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Figure 3. Kaplan-Meier survival curves. Overall survival curves according to ZNF385B mRNA expression level (FC) tertiles (A) and progression-
free survival curves according to VEGFA mRNA expression level (FC) tertiles (B) in patients with moderately and poorly differentiated serous ovarian
carcinomas. A: High expression. B: Intermediate expression. C: Low expression.
doi:10.1371/journal.pone.0046317.g003

ZNF385B and VEGFA in Ovarian Cancer

PLOS ONE | www.plosone.org 7 September 2012 | Volume 7 | Issue 9 | e46317



association with poor prognosis have previously been found in

malignant tumours including EOC [22–25], indicating that

VEGFA may be a possible prognostic marker. A humanized

monoclonal antibody targeting VEGFA, Bevacizumab, has been

approved for the treatment of several tumour types, including

EOC [21,26,27]. For ovarian cancer patients Bevacizumab in

combination with standard chemotherapy has shown improve-

ment in PFS in several phase III trials, including front line [26,27]

and platinum-resistant recurrent [28] treatment.

High expression levels of TPX2 and FOXM1 correlated with

optimal CA125 normalization, and were among the most

markedly upregulated mRNAs in MD/PD SC compared with

both SNO and SBOT. Thus, effective chemotherapy appears to

be associated with upregulation of these genes.

TPX2 has an important function in spindle assembly during cell

division [29] and has previously been shown to be overexpressed

in ovarian cancer, including MD/PD SC, and other malignancies

[10,30–32]. TPX2 is an activator of AURKA (aurora kinase A)

[33,34], which is overexpressed in cancer and regarded as a key

regulator of mitosis [33]. There is an overexpression of both

AURKA and TPX2 in many different cancer forms, including

ovarian cancer [24,33], and it has been proposed that TPX2 and

AURKA is a functional unit with oncogenic properties [33]. In

concordance we found that AURKA was upregulated in MD/PD

SC compared with SNO (p= 0.10, FC=3.8) and SBOT

(p= 5.961024, FC= 6.3).

FOXM1 encodes a transcriptional activator involved in cell

proliferation, and is overexpressed in various human malignancies,

including ovarian carcinomas [35,36]. FOXM1 promotes metas-

tasis [37], and correlates with poor prognosis [36]. FOXM1

regulates several genes involved in the cell cycle progression,

including BIRC5 and TP53 and is regulated by TP53 [38,39].

TP53 represses FOXM1 after DNA damage [39], and the high

rate of TP53 mutation in MD/PD SC has therefore been

suggested to contribute to FOXM1 overexpression [11], in

support of our presented MD/PD SC pathway.

Overexpression of FOXM1 [11,14] and BIRC5 [11,14,40] in

MD/PD SC has previously been described, also when compared

with SBOT [14], strengthening the relevance of the present

results. Also, a FOXM1 transcription factor network, including

BIRC5 has recently been identified for MD/PD SC, in support of

our findings [11]. BIRC5, also repressed by TP53 protein [41,42],

encodes survivin, which is regarded as one of the most cancer

specific proteins identified, inhibiting apoptosis and promoting cell

proliferation [41–43]. Survivin is expressed in about 90% of EOC,

and appears to be a prognostic marker [44,45]. Strategies for

inhibiting BIRC5 are now utilized in several ongoing clinical trials

on different cancer forms [43], but so far not in ovarian cancer.

Our results suggest that BIRC5 might be a potential target for

therapy in EOC.

A molecular pathway for MD/PD SC was identified, involving

five markedly upregulated mRNAs (VEGFA, FOXM1, TPX2,

BIRC5 and TOP2A), all directly interacting with TP53. The fact

that TP53 was upregulated in MD/PD SC may represent a

compensatory mechanism, since TP53 is mutated in almost all

MD/PD SC [11], resulting in high levels of dysfunctional proteins.

A normal TP53 protein inhibits all mRNAs in the pathway, but

VEGFA. We postulate that a mutation in the TP53 gene results in

a decreased inhibition and consequently an upregulation of

FOXM1, TPX2, BIRC5 and TOP2A.

Conclusions
We have identified several known and hitherto partly unrecog-

nized mRNAs as significantly differentially expressed between

MD/PD SC, SBOT and SNO, including a set with apparent

clinical relevance. In spite of the relatively small sample size, we

have found several significant associations between mortality/

morbidity and gene expressions in patients with MD/PD SC.

Survival curves indicate that these associations are strong and of

clinical importance. ZNF385B, previously unrecognized as a

potential ovarian tumour marker, and VEGFA correlated with

overall and progression-free survival, respectively, whereas TPX2

and FOXM1 with optimal CA125 normalization. However, the

novel findings should be interpreted with caution until verified in

larger studies. We also present a molecular pathway facilitated

through Ingenuity Pathway Analysis for MD/PD SC, including

VEGFA, FOXM1, TPX2, BIRC5 and TOP2A, all directly

interacting with TP53, possibly representing a carcinogenic

hierarchical molecular structure. Mechanistic studies will be

needed to test the functional associations postulated in this

pathway in MD/PD SC. The identified mRNAs should be

explored in future studies as candidates for potential biomarkers

and targets for therapy.

Supporting Information

Figure S1 Network of molecular interactions for mod-
erately and poorly differentiated serous ovarian carci-
nomas. .acts on (– direct interaction, -- indirect interaction), )
inhibits. The network was generated by Ingenuity Pathway

Analysis.
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Abstract 
Background: Improved insight into the molecular characteristics of the different ovarian cancer subgroups is 
needed for developing a more individualized and optimized treatment regimen. The aim of this study was to a) 
identify differentially expressed miRNAs in high-grade serous ovarian carcinoma (HGSC), clear cell ovarian 
carcinoma (CCC) and ovarian surface epithelium (OSE), b) evaluate selected miRNAs for association with 
clinical parameters including survival and c) map miRNA/mRNA interactions.  
Methods: Differences in miRNA expression between HGSC, CCC and OSE were analyzed by global miRNA 
expression profiling (Affymetrix GeneChip miRNA 2.0 Arrays, n=30), validated by RT-qPCR (n=63), and 
evaluated for associations with clinical parameters. For HGSC, differentially expressed miRNAs were linked to 
differentially expressed mRNAs identified previously. 
Results: Differentially expressed miRNAs between HGSC, CCC and OSE were identified, of which 18 were 
validated (p<0.01) using RT-qPCR in an extended cohort. Compared with OSE, miR-205-5p was the most 
overexpressed miRNA in HGSC. miR-200 family members and miR-182-5p were the most overexpressed in 
HGSC and CCC compared with OSE, whereas  miR-383 was the most underexpressed. miR-509-3-5p, miR-509-
5p, miR-509-3p and miR-510 were among the strongest differentiators between HGSC and CCC, all being 
significantly overexpressed in CCC compared with HGSC. High miR-200c-3p expression was associated with 
poor progression-free (p=0.031) and overall (p=0.026) survival in HGSC patients. Interacting miRNAs and 
mRNA targets, including those of a TP53-related pathway presented previously, were identified in HGSC.  
Conclusions: Several miRNAs are overexpressed in HGSC and CCC compared with OSE, including the miR-
200 family, among which miR-200c-3p is associated with survival in HGSC patients. A set of miRNAs 
differentiates CCC from HGSC, of which miR-509-3-5p and miR-509-5p are the strongest classifiers. Several 
interactions between miRNAs and mRNAs in HGSC were mapped.  
 
Keywords : ovarian carcinoma; microRNA; microarray; quantitative PCR; survival  
 
Background  

Ovarian cancer is the fourth and fifth most frequent cause of cancer death in women in Norway and the U.S., 
respectively [1,2]. Two-thirds of patients have advanced-stage disease (International Federation of Gynecology 
and Obstetrics [FIGO] stage III-IV) at diagnosis, resulting in 5-year survival at <30% [1,2].  

Ovarian carcinoma (OC) constitutes about 90% of ovarian cancers, and is a heterogeneous group of tumors, 
encompassing several distinct subgroups with respect to molecular profiles, biological behavior and clinical 
features [3]. Nevertheless, OC patients generally receive similar, non-individualized treatment. Therefore, 
improved insight into the molecular characteristics of the different OC subgroups may aid in development of a 
more subgroup-specific treatment, thereby improving prognosis.  

microRNAs (miRNAs) are short, non-coding RNA molecules, which by targeting mRNAs cause mRNA 
degradation or translational repression [4]. Involvement of miRNAs in translational activation has also been 
described [5-7]. Since functional interactions with mRNA targets do not seem to require perfect base 
complementarity, a single miRNA may have multiple different mRNA targets and conversely, a given mRNA 
might be targeted by multiple miRNAs. Therefore, miRNAs play a central role in regulating gene expression 
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post-transcriptionally and are involved in many biological processes. Alterations in miRNA expression level 
may consequently alter the level of a wide spectrum of mRNAs and subsequently cellular functions.     

miRNAs show abnormal expression patterns in different cancer forms [8]. Some act as tumor suppressor 
genes or oncogenes and may therefore be important in cancer development. Various gene expression analysis 
approaches, including microarrays, have identified aberrantly expressed miRNAs in OC [9-25], of which some 
are related to progression [12], outcome [17-23] and chemotherapy resistance [22-24]. However, the studies have 
in general utilized non-subgroup specific tumors [9], and only a few included normal ovarian surface epithelium 
(OSE) [14-16], which has been shown to be valid control material [26,27]. 

The aim of this study was to identify miRNAs differentially expressed between moderately and poorly 
differentiated serous OC, referred to as high-grade serous OC (HGSC), clear cell OC (CCC) and scrapings from 
ovarian surface epithelium (OSE), and to evaluate their association with clinical parameters, including survival. 
To identify potential key molecular pathways of the carcinogenesis of HGSC, differentially expressed miRNAs 
and mRNAs identified previously [28] were linked. We have identified several miRNAs differentially expressed 
between HGSC, CCC and OSE, including miR-200c-3p with apparent clinical relevance in HGSC. Several 
interactions between aberrantly expressed miRNAs and mRNAs in HGSC have also been mapped.  
 
Material and methods 

Ethics statement 
The study was approved by the Regional Committee of Medical and Health Research Ethics of South-Eastern 

Norway (ref.no.530-02163 and S-04300) and all participants signed informed consent.  
 
Patients and material 

Women were enrolled prior to operations for gynecological diseases at OUH during 2003-2012. Patient 
information was obtained from hospital records and preoperative interviews. Patients were evaluated routinely 
[28] and follow-up data, including clinical examinations, laboratory analyses and imaging were available for all 
patients. CA125 level was used as marker for therapy response. CA125 normalization (<35 kU/L) was defined as 
optimal when achieved within four cycles of chemotherapy. Time until progression and time until death were 
defined as the time interval from the date of surgery to the date of first confirmed disease recurrence and to the 
date of death, respectively. Disease progression was based on CA125 level increase according to GCIG criteria 
(www.gcig.igcs.org) and verified clinical relapse, and the date of first event was used. Clinical data were current 
as of March 20, 2013.  

Tumors comprised primary OC obtained pre-chemotherapy. OSE samples were collected from patients with 
benign diseases, as previously described [26]. Tumors were snap-frozen in liquid nitrogen immediately after 
harvesting, whereas OSE samples were transferred to QiaZol solution (Invitrogen, Carlsbad, CA). All samples 
were stored at -80°C until processed.  

The histological classification and clinical staging were according to the World Health Organization 
classification and FIGO, respectively. Tumors were reviewed by a gynecological pathologist (BD) to confirm the 
histological type and grade. A frozen section from all biopsies was examined prior to RNA isolation to ensure a 
tumor component of at least 50% and absence of necrosis. 
 
RNA preparation 

Frozen tumors (<50mg) were homogenized directly for 3 minutes in 700μl QIAzol using a TissueLyzer 
(Qiagen, Hilden, Germany). Total RNA was extracted using the miRNeasy Mini Kit (Qiagen) and Phase Lock 
Gel™ Heavy (5 PRIME GmbH, Hamburg, Germany). RNA was quantified with a NanoDrop® ND-1000 
Spectrophotometer (Saveen Werner, Malmö, Sweden), and quality assessed on Agilent 2100 Bioanalyzer RNA 
6000 Nano Kits (Agilent Technologies, Palo Alto, CA). All samples showed adequate RNA quantity and quality. 
 
Global miRNA expression profiling  

Global miRNA expression was analyzed in 12 HGSC, 9 CCC and 9 OSE samples. Total RNA (400ng) was 
used for biotin labeling of miRNA by the Genisphere FlashTag HSR kit following the manufacturer's 
recommendations (Genisphere, Hatfield, PA). Labeled miRNAs were hybridized to the GeneChip miRNA 2.0 
Array (Affymetrix, Santa Clara, CA), representing 1,105 mature human miRNAs, as recommended by the 
manufacturer. Arrays were washed and stained using the FS-450 fluidics station (Affymetrix). Signal intensities 
were detected by Hewlett Packard Gene Array Scanner 3000 7G (Hewlett Packard, Palo Alto, CA). Microarray 
data were deposited in NCBI's Gene Expression Omnibus [29] and are accessible through GEO Series accession 
number GSE47841 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE47841). 
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Quantitative Reverse Transcription-Polymerase Chain Reaction (RT-qPCR) 
Selected candidate miRNAs were validated by RT-qPCR in all samples analyzed by global miRNA 

expression profiling (except one excluded) and in additional samples, totaling 35 HGSC, 19 CCC and 9 OSE 
samples. Custom-made TaqMan® Low Density Array (TLDA) cards for human miRNA expression analysis 
(Applied Biosystems, Life Technologies, Carlsbad, CA) were used for quantification of specific miRNAs, each 
card allowing 384 simultaneous qPCR reactions of 24 different miRNAs run in duplicates. Included were two 
selected reference genes and one mandatory control (U6(mammu6)snRNA).  

Total RNA (350ng) was applied for reverse transcription (RT) with stem-looped RT primer-mix, enabling 
synthesis of cDNA from mature miRNAs. Unbiased custom-based pre-amplification was performed according to 
protocols, using gene-specific forward and reverse primers. The PCR reactions were performed on Unocycler 
(VWR International, B-3001 Leuven, Belgium). The TLDA cards were used for further PCR-amplification on a 
ViiA7™ Real Time PCR system thermocycler and analyzed with ViiA7 RUO Software (Applied Biosystems, 
Life Technologies).  

Relative gene expression levels were calculated using the comparative crossing threshold method of relative 
quantification (∆∆Cq method) [30], and presented as relative quantification cycle (ΔCq) and fold change (FC) 
values. ΔCq was designated as the mean Cq (mean of duplicates) of a miRNA in a sample subtracted by the 
mean Cq (mean of duplicates) of two reference genes in the same sample. Based on recommendations from the 
manufacturer and comparison between the microarray and RT-qPCR analyses, Cq expression cutoff was set to 
30, which was applied for calculations. For analyzing associations with clinical parameters, ΔΔCq was 
calculated as mean ΔCq of the OSE controls subtracted by ΔCq of each tumor sample. For comparison of mean 
expression levels between different groups, ΔΔCq was calculated as mean ΔCq of one group subtracted by mean 
ΔCq of another group. FC was designated as 2ΔΔCq.
All miRNAs analyzed were from Homo sapiens (hsa) and the prefix hsa was therefore excluded.  

Ingenuity Pathway Analysis (IPA)
Data were analyzed through the use of IPA (Ingenuity® Systems, www.ingenuity.com). 

Statistical analysis 
For computational analysis of the microarray data, scanned images were processed using the AGCC 

(Affymetrix GeneChip Command Console) software, and the CEL files were imported into Partek Genomics 
Suite software (PGS; Partek, Inc., St Louis, MO). The Robust Multichip Analysis (RMA) algorithm was applied 
for generation of relative signal values and normalization. For expression comparisons of different groups, a 1-
way ANOVA model followed by calculation of FDR was used. Results were expressed as FC and p-values. 
Signal values were subjected to a non-supervised cluster analysis using the Euclidean/average linkage algorithm.  

Associations between signal values and progression-free survival (PFS) and overall survival (OS) were 
evaluated by Cox regression analyses followed by FDR correction. FDR q-values of 0.1 and 0.25 were used as 
significance levels for PFS and OS, respectively. 

When comparing ΔCq values in different histological subgroups, a two-sided independent samples t-test was 
used since the ΔCq values were close-to-normally distributed. Associations between FC values of the RT-qPCR 
analyses and clinical parameters were evaluated. In order to decide whether expression of a miRNA was 
significantly associated with PFS and OS, Cox regression analyses were used. When significant, Kaplan-Meier 
plots were used to estimate survival curves for tertiles of the expression variable. To compare miRNA expression 
levels in two groups of patients, a two-sided Mann-Whitney U-test was used, since the FC expression levels 
were not normally distributed. The results for each group are presented as medians. 

A significance level of 1% was used for differential miRNA expression, and 5% when analyzing associations 
with clinical parameters. Statistical analyses were performed using the SPSS-PC package (Version 20, Chicago 
IL).   

Results 

Patient characteristics 
Clinicopathologic data for the RT-qPCR cohort are shown in Table 1. All HGSC patients were diagnosed 

with FIGO stage IIIc/IV, whereas CCC patients were diagnosed at all stages due to limited patient material. The 
patients had no disease other than OC influencing survival, were Caucasian, and except for 1 with HGSC and 2 
with CCC all were in good preoperative condition [26].

Primary surgery was performed in all patients. With the exception of 4 HGSC and 5 CCC patients, all 
received platinum-based chemotherapy. The 4 HGSC patients were considered to be in too poor general 
condition to tolerate chemotherapy. Among CCC patients, 1 received paclitaxel-based treatment, 1 was in too 
poor general condition, and 3 did not receive chemotherapy due to FIGO stage IA.  
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Global miRNA expression analyses 
Seventy-eight miRNAs were differentially expressed between HGSC, CCC and OSE applying a FDR 

<0.01%. Principal component analysis showed that these miRNAs could distinguish the 3 groups almost 
perfectly (Figure 1). Cluster analysis, visualized by a heatmap (Figure 2) showed almost perfect segregation of 
the 3 groups. Striking differences were observed between HGSC and OSE samples, whereas CCC had an 
intermediate profile. Moreover, miR-508-5p, miR-509-3p, miR-509-5p, miR-509-3-5p, miR-510 and miR-514b-
5p clearly distinguished HGSC from CCC. OSE control samples were homogeneous. 
 
Evaluation of associations between global miRNA expression and survival 

Associations between miRNAs with signal values >7 (n=297) and PFS (FDR q<0.1) and OS (FDR q<0.25) 
were separately evaluated in HGSC and CCC. No statistically significant associations were found. However, 
when not corrected for multiple testing, 11 miRNAs had p<0.05, indicating an association with survival. Of 
these, miR-505-5p, miR-1281 and miR-29b-2-5p had the lowest p-values (p<0.03), all with potential association 
with survival in HGSC. These miRNAs were among the miRNAs chosen for RT-qPCR validation and 
subsequent evaluation for association with outcome in the extended patient cohort. Noteworthy, only miR-29b-2-
5p was among the differentially expressed miRNAs shown in Figure 2.  
 
RT-qPCR validation of selected miRNAs  

Twenty-one miRNAs and 2 reference genes were selected for RT-qPCR validation in the extended patient 
material. Of these, 18 miRNAs (Table 2A) were predominantly selected based on differential expression 
(Figure 2). All miRNAs with FC>±20 (n=16) and 2 of the mRNAs with FC>±15 were included, reaching a 
highest FC value of 105. Additionally, the 3 above-mentioned miRNAs were selected based on possible 
association with survival. miR-24 and miR-26a were selected as reference genes, having the lowest expression 
variation (0.11 and 0.10, respectively) in the global miRNA analysis. Their mean value reduced the variation to 
0.029, and their mean Cq value was therefore used for calculations. 

All miRNAs selected based on differential expression were verified as markedly differentially expressed, 
with p-values varying from 10-7 to 10-21 and FC values up to 95 (Table 2B). When comparing HGSC with OSE, 
7 and 6 miRNAs were over- and under-expressed in HGSC, respectively. According to FC values, miR-205-5p 
was the most overexpressed (FC=74), followed by miR-200c-3p, miR-182-5p, miR-141-3p and miR-200b-3p. 
When comparing CCC with OSE, 11 and 2 miRNAs were over- and underexpressed, respectively, including 8 
common with the HGSC vs. OSE analysis. miR-182-5p best distinguished CCC from OSE (FC=66), followed by 
miR-200a-3p, miR-200c-3p, miR-200a-5p and 200b-3p. All these miRNAs were overexpressed, whereas miR-
383 was the most underexpressed in both HGSC and CCC. 

Twelve miRNAs distinguished CCC from HGSC, all except 1 being overexpressed in CCC. The miRNA 
with highest FC values was miR-509-3-5p (FC=95), followed by miR-509-5p, miR-509-3p, miR-510 and miR-
508-5p. 

Experimental information annotated from IPA for these miRNAs is provided in Table 2C.  As shown, these 
miRNAs are active regulators of the expression of several cancer-related mRNAs, including ZEB1, ZEB2, VIM, 
VEGFA, NTRK3 and SPDEF, and most of the miRNAs are cancer-related. 
 
Associations between validated miRNA expression and clinical parameters  

All miRNAs validated by RT-qPCR were evaluated for association with PFS, OS, optimal CA125 
normalization and residual disease (RD). In HGSC, miR-200c-3p was found to be associated with PFS (p=0.031) 
and OS (p=0.026). The miR-200c-3p FC expression level was divided into tertiles, and Kaplan-Meier plots made 
(Figure 3). Patients with highest tertile level had shorter OS than patients with intermediate or lowest levels, 
with median time until death of 18 and 30 months, respectively (Figure 3A). Patients with the highest tertile 
level had shorter PFS compared with patients with lowest levels, with median time until progression of 7 and 11 
months, respectively (Figure 3B). No association was found between the miRNAs and CA 125 normalization or 
RD (cut-off at 2 cm) in HGSC. The 3 miRNAs selected for RT-qPCR based on possible association with 
survival were not found to be associated with outcome.  

In CCC, no associations with PFS or OS were found. However, patients with macroscopic RD (cut-off at 0 
cm) had significantly lower miR-202-3p (p=0.018) and miR-1281 (p=0.035) levels (n=6; median FC=-5.3 and -
2.0, respectively) than patients without RD (n=13; median FC=1.6 and -1.2, respectively). Associations with CA 
125 normalization could not be evaluated in CCC, since all but 3 patients achieved optimal CA 125 
normalization.  
 
Ingenuity Pathway Analysis (IPA)  

To identify miRNAs/mRNA interactions in HGSC, differentially expressed miRNAs were linked to 
differentially expressed mRNAs identified previously [28]. miRNAs and mRNAs of the microarray analyses 
(ANOVA, FDR 5%) were imported to the IPA software and filtered for interactions. When including only 
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miRNAs and mRNAs with FC ±10, interactions of inverse miRNA/mRNA expression pairing, interactions 
experimentally observed and of high predicted confidence, 19 miRNAs targeting 47 mRNAs (Table 3) were 
found. All but 3 miRNAs are included in Figure 2. Core analysis was performed, and selected cancer-related 
functions are shown in Table 3. Fifty-four RNAs were cancer-related, of which 11 mRNAs and 8 miRNAs were 
OC-related. Thirty-one and 10 molecules were related to cell proliferation and cell cycle, respectively.  

We previously presented a HGSC pathway comprising VEGFA, FOXM1, TPX2, BIRC5 and TOP2A, all 
significantly overexpressed and directly interacting with TP53 [28]. These mRNAs were linked to differentially 
expressed miRNAs (FC>±2) in HGSC (ANOVA, FDR 5%). When inverse and similar miRNA/mRNA 
expression pairing and all confidence levels were included, 26 miRNAs and 30 interactions were found (Figure 
4). Of these, 7 and 12 were experimentally observed and of high predicted confidence, respectively. Among the 
miRNAs, 16 were under- and 10 overexpressed. All but 9 miRNAs are included in Figure 2. 
 
Discussion 

In this study, a number of miRNAs distinguishing HGSC and CCC from OSE, as well as CCC from HGSC 
have been identified, including a set validated by RT-qPCR. These miRNAs could be involved in the biology of 
these OC subgroups. 

The most differentially expressed miRNAs in both HGSC and CCC compared with OSE were miR-200 
family members, including miR-200a-3p, miR-200b-3p, miR-200c-3p and miR-141-3p. These miRNAs are 
aberrantly expressed in different cancers [31-34], and have been found to be overexpressed in serous and clear 
cell OC, although few CCC were analyzed [16,21,25]. 

miR-200 family members have been demonstrated to regulate epithelial-mesenchymal transition (EMT) by 
targeting ZEB1 and ZEB2, resulting in altered expression of the cell-cell adhesion molecule E-cadherin [35-38]. 
E-cadherin down-regulation is apparently important in cancer progression, facilitating cell detachment and 
metastasis. At a favorable distant location, cells may undergo mesenchymal-epithelial transition (MET) and re-
express E-cadherin. This is supported by the finding of elevated E-cadherin and reduced ZEB1 in metastatic 
epithelial ovarian cancer [39]. ZEB1 and ZEB2 are also targets of miR-205-5p [35], which was highly 
overexpressed in HGSC compared with OSE and CCC.  

miR-200c-3p and miR-200b-3b, having similar seed sequences, have been shown to decrease VIM 
expression and thereby its protein vimentin [37]. Vimentin is found in various non-epithelial cells, especially 
mesenchymal cells, and is used as marker for EMT during metastasis. Elevated expression of miR-200c-3p and 
miR-200b-3b, resulting in reduced vimentin levels, is therefore expected in metastatic cancer, where epithelial 
features are important for re-colonization.  

miR-182-5p had the highest FC in CCC compared with OSE. This miRNA regulates the expression of 
PIK3CA, a frequently mutated gene in CCC and a candidate for targeted therapy [40]. Little is known about 
miR-200a-5p, although it has been related to colorectal cancer [34].  

To the best of our knowledge, the present study is the first to identify differentially expressed miRNAs in a 
relatively large CCC series. The miRNAs most clearly separating CCC from HGSC were miR-509-3-5p and 
miR-509-5p, having similar seed sequences, as well as miR-509-3p and miR-510. miR-509-3p has been shown 
to target NTRK3 [41], encoding the receptor tyrosine kinase TrkC, which is involved in the oncogenic PIK3CA 
pathway. miR-509-3p, miR-509-3-5p and also miR-513a-5p have been found overexpressed in stage I OC [22], 
and miR-509-5p have been found to inhibit cancer cell proliferation [42]. miR-510 targets SPDEF [43], which 
have been found underexpressed in OC compared with breast carcinoma [44]. 

High level of miR-200c-3p was found to be associated with short PFS and OS in HGSC, indicating it may be 
a prognostic marker for HGSC. This finding is in accordance with a study analyzing miRNA expression in SC 
vs. normal ovaries [21]. This miRNA has also been associated with survival in stage I OC patients [45] and 
chemotherapy response [46]. miR-200c-3p was among the most differentially expressed miRNAs in both HGSC 
and CCC compared with OSE separately, and had the lowest  p-value in both comparisons. miR-200c-3p has 
previously been found to be overexpressed in SC [21,25], HGSC cell lines [47], serum from HGSC patients [47] 
and in a small series of CCC [25].  

A larger cohort is warranted for CCC to explore the associations between miRNAs and survival. However, 
miR-202-3p and miR-1281 were found to be associated with RD in CCC, although this could not be adjusted for 
stage due to the small series. 

We further identified interactions between differentially expressed mRNAs and miRNAs in HGSC. The vast 
majority of these RNAs has previously been associated with cancer and cancer-related functions, and may 
represent important key molecular pathways in HGSC. VEGFA, which we previously found to be overexpressed 
and associated with PFS in HGSC, is a target of miR-200c-3p. Since both RNAs were overexpressed, an 
interaction may be explained by activation of gene expression [5-7]. The identified interactions should be 
experimentally evaluated in HGSC. 
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Conclusions 

Several miRNAs significantly differentially expressed between HGSC, CCC and OSE were identified 
through global miRNA expression profiling and RT-qPCR validation analysis, suggesting a role for these 
miRNAs in OC. The differences emphasize the biological distinctiveness of these OC subgroups. Highly 
overexpressed miRNAs including miR-205-5p in HGSC and members of the miR-200 family in HGSC and CCC 
target EMT drivers, and may be important in OC progression. Overexpression of miR-182-5p and miR-200a-5p 
and underexpression of miR-383 was also found in HGSC and CCC. Some miRNAs separating CCC from 
HGSC were also identified, including miR-509-3-5p, miR-509-5p, miR-509-3p and miR-510. miR-200c-3p, the 
most significantly differentially expressed miRNA in both HGSC and CCC according to p-values, was found to 
be associated with PFS and OS in HGSC, representing a potential prognostic marker for HGSC. In HGSC, 
several interacting differentially expressed miRNAs and mRNAs were mapped, but need to be experimentally 
verified. The identified miRNAs should be explored in future studies as candidate biomarkers and therapeutic 
targets. 
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Table 1. Clinicopathological and laboratory information for patients selected for 
RT-qPCR analysis. 
Parameter HGSC a, n=35 CCC a, n=19 
Age; mean ± SD (range) 64.0 ± 11.3 (45-87) 63.9 ± 15.3 (28-83) 
Preoperative CA125 (kU/L); mean ± SD 3023 ± 4129 1438 ± 2198 
FIGO stage I 0 10 

II 0 3 
III 25 5 
IV 10 1 

Residual disease 0 cm 3 13 
<2cm 9 4 
>2cm 23 2 

Start of chemotherapy (days after surgery); mean ± SD 27.7 ± 11.6 25.7 ± 13.8 
CA125 response b Yes 31 15 

No 1 0 
Optimal CA125 normalization b Yes 20 13 

No 14 3 
Median time (months) until progression (95%CI) 10 (7-13) NA c 
Median time (months) until death (95%CI) 26 (18-34) 105 (35-175) 
Status at last follow-up d NED  1 11 

AWD 1 1 
DOD 33 6 

DOUC 0 1 
a HGSC: High-grade serous ovarian carcinoma; CCC: Clear cell ovarian carcinoma. bAccording to the 
GCIG criteria (www.gcig.igcs.org). For HGSC: Two patients who received no postoperative treatment 
due to poor general condition, one patient with preoperative CA125<70; For CCC: One patient who 
received no postoperative treatment due to poor condition, three patients with preoperative CA125<70. c 
Could not be calculated since the Kaplan-Meier survival curve stays above 50%. d NED = No evidence of 
disease; AWD = Alive with disease; DOD = Dead of disease; DOUC = Dead of unrelated cause. 
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Table 2A. Differentially expressed miRNAs between HGSC, CCC and OSE 
selected for RT-qPCR validation. 
 HGSC vs. OSE a CCC vs. OSE a CCC vs. HGSC a 
miRNAs p-values FC values p-value FC value p-value FC value 
miR-134 8.3x10-8 -16.7  b   1.0x10-4 5.8 
miR-141-3p 1.1x10-11 46.1 2.4x10-10 34.9   
miR-182-5p 6.0x10-9 30.2 1.4x10-8 32.7   
miR-200a-3p 7.3x10-10 33.6 1.3x10-9 38.8   
miR-200a-5p 3.0x10-13 33.5 6.9x10-12 26.5   
miR-200b-3p 1.1x10-9 29.1 2.9x10-8 21.1   
miR-200c-3p 1.2x10-12 16.5 1.2x10-11 15.0   
miR-202-3p 8.0x10-6 -36.9   2.3x10-4 16.3 
miR-205-5p 4.9x10-5 105.1   3.1x10-3 -23.1 
miR-383 8.2x10-12 -33.7 1.5x10-11 -38.7   
miR-424-5p 2.6x10-9 -26.0 4.0x10-6 -10.1   
miR-508-5p   4.4x10-3 11.6 3.1x10-6 75.0 
miR-509-3p 4.3x10-3 -10.3   2.6x10-6 83.4 
miR-509-5p   5.6x10-4 11.4 1.8x10-6 34.0 
miR-509-3-5p 3.9x10-3 -10.2   1.9x10-6 84.6 
miR-510 9.3x10-3 -5.2 7.9x10-3 6.1 3.0x10-6 31.7 
miR-513a-5p   4.8x10-3 7.4 4.1x10-6 33.5 
miR-514b-5p 9.7x10-3 -6.5 3.8x10-3 9.8 1.3x10-6 63.6 

a HGSC: High-grade serous ovarian carcinoma. OSE: ovarian surface epithelium. CCC: Clear cell 
ovarian carcinoma. b ‘-‘ illustrates underexpression. FC: Fold change.  P-values are calculated on 
original data (before FDR corrections). 
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Table 2B. Differentially expressed miRNAs (p<0.01) between HGSC, CCC 
and OSE verified by RT-qPCR. 
 HGSC vs. OSE a CCC vs. OSE a CCC vs. HGSC a 
miRNAs p-values FC values p-values FC values p-values FC values 
miR-134 8.7x10-11 -5.7 b   3.1x10-6 4.3 
miR-141-3p 1.7x10-18 40.3 7.2x10-11 45.3   
miR-182-5p 9.5x10-15 42.4 1.2x10-8 66.2   
miR-200a-3p 3.6x10-5 33.0 9.3x10-10 57.8   
miR-200a-5p 3.1x10-15 33.8 4.3x10-11 53.0   
miR-200b-3p 5.3x10-18 38.8 3.7x10-11 51.0   
miR-200c-3p 6.0x10-21 48.2 3.2x10-12 53.4   
miR-202-3p 1.3x10-14 -14.7   1.6x10-7 10.1 
miR-205-5p 9.0x10-9 74.3   4.4x10-3 -8.4 
miR-383 2.2x10-14 -36.6 9.8x10-10 -15.1 2.2x10-3 2.4 
miR-424-5p 3.1x10-13 -10.7 3.5x10-4 -4.2 1.6x10-3 2.5 
miR-508-5p   3.5x10-3 10.1 1.0x10-8 27.5 
miR-509-3p     2.0x10-7 46.3 
miR-509-5p 5.0x10-3 -4.1 2.4x10-3 13.3 1.3x10-8 54.7 
miR-509-3-5p 1.1x10-4 -11.0   2.2x10-8 95.3 
miR-510   2.5x10-3 9.0 8.7x10-10 32.9 
miR-513a-5p   6.6x10-4 6.2 9.1x10-7 8.3 
miR-514b-5p   9.7x10-5 12.1 2.3x10-9 25.8 
a HGSC: High-grade serous ovarian carcinoma. OSE: ovarian surface epithelium. CCC: Clear cell 
ovarian carcinoma. b ‘-‘ illustrates underexpression. FC: Fold change.   
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Table 2C. Experimentally observed information for differentially expressed miRNAs 
(p<0.01) between HGSC, CCC and OSE.  
miRNAs Regulated mRNAs Cancer 

association 
OC 

association
miR-134  x  
miR-141-3p TGFB2, ZEB2, JAG1, BAP1, CLOCK, ELMO2, ERBB2IP, 

KLHL20, MAP2K4, PLCG1, PTPRD, WDR37 
x x (EC) 

miR-182-5p FOXO3, ADCY6, CASP2, CLDN17, NCAM1, NFASC, RARG, 
BCL2L14, CARD11, CASP10, CASP12, CDH1, CDH4, CDK6, 
CLDN15, COL11A2, COL4A4, FNDC3A, FOXO1, GADD45G, 
GJA3, IGF1R, INHBC, ITGA4, LRP6, MALAT1, MITF, MTSS1, 
NLGN2, PGF, PIK3CA, RPS6KB1, SOS1, VWF 

x x (EC) 

miR-200a-3p CTNNB1, VIM, ZEB1, ZEB2, BAP1, CDK6, CDKN1B, CTBP2, 
CYP1B1, ELMO2, ERBB2IP, KLHL20, PLCG1, PTPRD, TUBB, 
WDR37, ZFPM2 

x x (EC, 
ROC) 

miR-200a-5p  x  
miR-200b-3p VIM, ZEB1, ZEB2, BAP1, ELMO2, ERBB2IP, ERRFI1, KLHL20, 

PLCG1, PTPRD, RERE, WASF3, WDR37, ZFPM2 
x x (ROC) 

miR-200c-3p CDH1, PTPN13, ZEB1, ZEB2, FHOD1, PPM1F, JAG1, MARCKS, 
VIM, CDKN1B, ERRFI1, PLCG1 

x x  (EC) 

miR-202-3p    
miR-205-5p ERBB3, F Actin, INPPL1, MED1, VEGFA, ZEB1, ZEB2, PRKCE x x  (EC) 
miR-383    
miR-424-5p FGFR1, MAP2K1, NFIA, PLAG1 x  
miR-508-5p    
miR-509-3p NTRK3   
miR-509-5p    
miR-509-3-
5p 

   

miR-510 HTR3E, SPDEF x  
miR-513a-5p CD274 x  
miR-514b-5p    

OC: Ovarian carcinoma. EC: Endometrioid OC. ROC: Recurrent OC. Data were according to IPA. Further 
abbreviations are given in Table 2A. 
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Table 3. Differentially expressed (FC ±10) interacting miRNAs and mRNAs in 
HGSC. 
miRNAs mRNAs 
miR-1341,5 KLHL141, PAX81,3,5 
miR-141-3p1,2,6/ miR-
200a-3p1,2,6 

FOXP21,2,5, HLF1, PCDH95, PEG31,6, SCN7A1, SDC21,2,3,4,5,6 

miR-182-5p1,2 ANGPTL11,2,5, CACNB21,5, FOXP21,2,5, KCNMB21,5, PID11, SDC21,2,3,4,5,6, 
TMEM150C 

miR-183-5p1,2,6 ABCA81, HLF1 
miR-187-3p1 TSPAN51,2 
miR-200b-3p1,2,6/ 
miR-200c-3p1,2,6 

CACNB21,5,CDH111,2,5,6, COL4A31,2,5,6, GPM6A1, HLF1, HS3ST3A11, 
LEPR1,2,4,5,6, MCC1,2, NEGR11,2,6, SDC21,2,3,4,5,6 

miR-202-3p RRM21,2,4,6 
miR-203-3p1,2,6 ANGPTL11,2,5, EDNRA1,2,6, FOXP21,2,5,GNG42,6, IGFBP51,2,3,4,5,6, 

NEGR11,2,6,SMAD91 
miR-205-5p1,6 BAMBI1,2,5,6, NR3C21,2,5,6, PEG31,6 
miR-376c-3p1 EHF1,2,3,6, LRP81,5,6 
miR-379-5p KLHL141 
miR-381-3p1 EGFL61, NOTCH31,2,3,5,6, RRM21,2,4,6 
miR-383 MAL2 
miR-424-5p1,2,3,4,5,6 AHNAK21, CCNE11,2,3,4,6, ESRP11,6, HMGA11,2,3,4,6, LAMP31,2, PSAT11, 

UCP22,5, VAMP81,2 
miR-485-5p1 KRT71,3,4, LRP81,5,6, ST141 
miR-887 TMEM139 
miR-4324 ERBB31,2,3,5,6, GALNT6 

1, 2, 3, 4, 5, 6 Related to cancer (underlined for ovarian cancer), cellular growth and proliferation, cell 
cycle, DNA replication, recombination and repair, cell-to-cell signaling and interaction, cellular 
development, respectively. Results were generated through the use of IPA. 
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Figure Legends 

Figure 1. Principal component analysis (PCA). 
A two-dimensional PCA showing different expression patterns of differentially expressed miRNAs based on 
global miRNA expression analyses (ANOVA, FDR<0.01%) in high-grade serous ovarian carcinomas (HGSC; 
blue), clear cell carcinomas (CCC; red) and ovarian surface epithelium (OSE; green).  
 
Figure 2. Cluster analysis heatmap.  
Cluster analysis heatmap of miRNA expression levels (signal values) of differentially expressed miRNAs based 
on global miRNA expression analyses (ANOVA, FDR<0.01%) in high-grade serous ovarian carcinomas 
(HGSC; blue), clear cell carcinomas (CCC; red) and ovarian surface epithelium (OSE; green). Each column 
represents a miRNA and each row a sample. The more over- and under-expressed the miRNA, the brighter the 
red and blue color, respectively. 
 
Figure 3. Kaplan-Meier survival curves for miR-200c-3p expression. 
Overall survival curves (A) and progression-free survival curves (B) according to miR-200c-3p expression level 
(FC) tertiles in patients with HGSC. A: High expression. B: Intermediate expression. C: Low expression. 
 
Figure 4. Differentially expressed (FC 2) miRNAs targeting a molecular pathway of 
HGSC [28].  

 acts on (  direct interaction, -- indirect interaction),  inhibits. FC: Fold change. 1: Experimentally observed 
interactions. 2: Interactions of high predicted confidence. 3: Interactions of moderate predicted confidence. 
Results were generated through Ingenuity Pathway Analysis. 
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