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Abstract 
Introduction 

Breast cancer is a molecularly heterogeneous disease. The existing molecular classifications provide a good 

introduction of the molecular heterogeneity. However more efforts are necessary to characterize 

molecularly distinct tumor subgroups that are likely responders to novel targeted therapy interventions. One 

of the classification strategies is to characterize robust classes based on activity of specific biological 

pathways and networks. This thesis describes a classification based on activity status of p53, ER and VEGF 

signaling in breast cancer.    

Methods 

In paper I, canonical sequences from the proximal promoter of the genes that distinguish the molecular 

portraits are studied to identify the significantly overrepresented potential TFBS motifs for each molecular 

class. Subtype-specific networks based on previously reported or predicted interactions between subtype-

specific genes and corresponding transcription factors. In paper II, breast cancer expression profiles were 

analyzed for inferring differentially activated pathways and differentially expressed genes by p53 gene 

mutation status using geneset-based and individual gene search methods. Genes are evaluated for 

prognostic significance. Paper III compares miRNA and mRNA expression profiles from the same sample 

set by VEGF mRNA expression status and for each differentially expressed miRNA, class-specific 

potential targets are the mRNAs having target site (based on the target database) and are differentially 

expressed as well as class-specific anti-correlated to their potential regulator miRNA.  

Results 

We identified the significantly overrepresented potential TFBS motifs by subtype and showed positive 

correlation between the subtype-specific mRNA expressions of some of their corresponding TF genes and 

degree of TFBS overrepresentation. The network analysis showed p53 as a topological hub that has 

interactions with subtype-specific genes thus explaining core functional significance of p53 signaling 

(Paper I). We also identified about 40 pathways differentially activated by the p53 mutation status. Besides 

VEGF expression was shown to predict survival after controlling for p53 mutation status and subtype. In 

ER+/PR+ patients, effect of VEGF was found significant but not in ER–/PR– patients (Paper II).  MiRNA 

profiles of VEGF upregulated group showed upregulation of miR-590-5p, miR-18a/18b/19a cluster, miR-

9/9*, miR-135b, and downregulation of miR-149, miR-342-3p/5p, miR- 449a. The anti-correlated targets 

of upregulated miRNAs were enriched for angiogenesis pathway, vasculature development, TGF-β 

signaling and focal adhesion. Anti-correlated targets of downregulated miRNAs in VEGFA+ group were 

associated with EGFR pathway, positive regulation of DNA binding and nucleolus (Paper III). This work 

implicates experimental validation. 

Keywords: Breast cancer, p53 signaling, molecular classification, VEGF signaling, pathway analysis, 

transcriptional regulation, miRNAs, miRNA regulatory modules  
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Preface 
Significant technological advances in the past decade have enhanced the potential to 

study the molecularly heterogeneous diseases such as breast cancer. The goals of 

breast cancer management are: to increase the rates of pathologic complete response, 

prevention of metastasis, relapse and recurrence, increase the relapse free and overall 

survival of patients and minimize the treatment-associated adverse effects. In the 

current scenario, both chemotherapy and available targeted therapy options (for 

instance Tamoxifen, Herceptin) are associated with significant proportion of failure 

or resistance. The possible explanation for the treatment failure is lack of 

consideration to pathways, networks and their feedbacks that are responsible for 

shaping the overall phenotype. Efficient individualized cancer management requires 

the focus on three main goals: 1. Characterization of tumor classification based on the 

combination of molecular alterations in each individual patient and then formulating 

the cancer management strategy tailored to the individual’s genetic profile and 

tumor characteristics. 2. Individualizing the treatment choices and drug doses to 

minimize the treatment associated adverse effects and chances of metastasis and 

thereby improving patients’ quality of life. 3. Developing efficient diagnostic and 

treatment-response predictive markers that help avoid unnecessary administration of 

therapy to patients that are less likely to benefit from a specific option of therapy. 

However, these goals are far from being achieved given the complexity of the 

disease, given the large number of genetic and epigenetic factors that have potential 

influence on the phenotype and its response to therapy. Today, estimated 25000 

known protein-coding genes, non-coding RNAs, more than 250,000 proteins and 

epigenetic factors – are the basic variables. In addition, interactions between these 

proteins, feedback mechanisms, mutations, and copy number variations, 

combinatorial transcription factor binding, and epigenetic modifications– are other 

variables. How to identify those molecular alterations in the high-dimensional omics-

universe that can significant influence on the phenotypic consequences? How to 

effectively predict treatment response? Microarray technology has been the most 

evolved, widely used and robust technology. MicroArray Quality Control (MAQC) 

project has helped to improve the interplatform consistency of microarray data and 
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has facilitated the merger of publicly available datasets from different technology 

platforms and different cohorts, for performing studies to infer novel classes and 

thereby to generate the clues of class-specific diagnostic and therapeutic markers. 

High-throughput methods including microarrays generate multivariate and 

multidimensional data. Several dimensionality reduction methods have been 

developed in the past decade to infer the reduced geneset that represent the 

maximum variance within the data and can be used for any further analysis such as 

biomarker search, class-description or class-inference. Given the tens of thousands of 

covariates (expression measures of genes) and small number of samples in a typical 

expression dataset to capture the heterogeneity of genes, overfitting and false 

positivity are likely limitations regardless of the strength of statistical methods 

applied. One of the possible solutions is to reduce the multidimensional structure of 

data by not analyzing the individual genes, but sets of genes representing the 

biological processes. Such an analysis would shift the focus from individual genes to 

the processes that they are involved in. Thereby the effect of the variability and noise 

of individual genes could be reduced and the sensitivity of analysis would improve 

because individual gene measures are weighted by the overall changes of genes 

within the pathway or process.  In a realm of individualized diagnostics and 

therapeutics, activity status of biological pathways and networks is the key 

information for planning the targeted therapy. Therefore pathway-based analysis has 

immense potential to bridge the gap between the genomics and cancer management.  

The work presented here as a part of this thesis starts with a study on potential 

transcription factors linked to the molecular subtypes, advances to study pathway 

deregulation by p53 mutation status and demonstrates the prognostic impact of p53 

signaling and VEGF expression status. The key finding of the work is that over-

expression of VEGF mRNA is an important predictor of survival in breast cancer, 

remarkably in a group of patients categorized otherwise as having favorable 

prognosis. The work then investigated VEGF expression class-specific miRNA-

mRNA modules by using the miRNA and mRNA expression profiles from the same 

patients.   
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1 Overview 
Breast cancer is the leading cause of cancer and cancer mortality among all cancers in females 

with an estimated incidence of 1.38 million globally and 458500 deaths (equivalent to one in 

every seven cancer deaths) worldwide among women in 2008 [1]. With the annual percentage 

change of 0.1% in incidence between 2004-2010, the recent estimates in the United States 

show that one in every eight women (estimated 12.38% women) carries the risk of being 

diagnosed breast cancer during their lifetime [2]. Over 1.1 million cases of breast cancer are 

diagnosed across the world each year, compared with about 500,000 cases in 1975. This 

represents about 10% of all new cancer cases and 23% of all female cancers. An annual 

prevalence of more than 4.4 million cases of breast cancer is expected worldwide by the year 

2012, with its occurrence in 3 out of every 10 females during their lifetime worldwide and 

likelihood of one of them to die. Incidence varies considerably across the world ranging from 

19.3 per 100,000 in Eastern Africa to 89.7 per 100,000 in Western Europe [1]. The 

differences in the access to treatment world-wide mainly contributes to the fact that despite of 

the wide-ranging differences in incidences, breast cancer remains the most frequent cause of 

cancer deaths (12.7% of total) among women of both developed and developing world. 

Recent estimates in the United States show the mortality decreasing at the rate of slightly 

below 2% annually. Decreasing mortality can be attributed to early detection, screening 

programs, use of predictive and prognostic markers, introduction of Her2-neu targeted 

therapy, use of adjuvant (particularly post-operative Tamoxifen). However, the observed 

reduction in mortality is suboptimal compared to the size of likely to be benefited patient 

groups identified by available predictive markers. Besides affordability and access to 

treatment options such as Trastuzumab, fewer drugs compared to the broad spectrum of 

biological complexity and heterogeneity  – remains to be very important factors underlying 

the suboptimal improvement in mortality figures and in relapse-free patient survival. 

An important priority to effectively reduce the mortality from breast cancer is to advance the 

expertise in molecular diagnostics and therapeutics and to translate it into routine breast 

cancer management practices with specific emphasis on those molecular classes of cancer that 

are likely to recur and experience poor survival. Not just the advancement of such expertise 

and its translation into practice but priority is also required in making these options uniformly 

accessible, affordable and cost-effective across the world.  
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1.1 Complexities underlying the molecular portraits 
of breast cancer  
The concept of molecular subtypes of breast cancer has constantly evolved since the last 

decade in an effort to understand the heterogeneity and resultant phenotypic diversity of 

breast cancer. Molecular heterogeneity can be within-tumor heterogeneity (such as cellular 

heterogeneity, heterogeneity of molecular programs active within different cells within the 

same tumor, etc.) in the tumor microenvironment and between-tumors (from different 

patients) heterogeneity. Together these two types of heterogeneity form major challenge to 

the molecular categorization and its successful application to personalized medicine. The 

existing description of molecular portraits can be viewed as a categorization derived by the 

efforts to understand between-tumor heterogeneity. Originally defined molecular portraits in 

the past decade, that are based on differential gene expression pattern demonstrated in the 

microarray data, have been further studied by the aberrations at the level of DNA methylation, 

microRNA (miRNA) because of the technological advances. In parallel with the increasing 

understanding about the molecular portraits, advances in understanding the cancer stem cells 

have led to the discussion about their role in initiation, maintenance, progression and 

recurrence. While comparing to the conventional categorization of breast cancers, which is 

mainly based on grade, stage, size, histopathology, categorization of breast cancer based on 

molecular heterogeneity could provide more detailed explanation of the phenotypic diversity 

because of being a better reflection of the biological differences. Thorough understanding of 

molecular heterogeneity and corresponding molecular categorization may implicate a 

paradigm shift from conventional diagnostic and therapeutic protocols and more precise 

prognostic profiling. However, the success of any type of molecular categorization including 

the molecular portraits depends upon how closely these molecular categorizations represent 

the differences of inherent biological complexity observed in breast cancer.  

1.1.1 Motivation underlying the study of molecular profiles of tumor 

The following factors form the major motivating factors for the study of molecular profiling 

in breast cancer.  

1. Tumors with relatively similar grade, stage, size may have different biological profiles. 
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2.  Tumors classified into same morphological class on the basis of histological study may 

vary considerably at molecular level and therefore morphological classes are insufficient to 

represent the biological differences. 

3. Different molecular profiles indicate differences in diagnostic and therapeutic markers. 

While targeted interventions might achieve relatively higher specificity of action compared to 

the conventional therapeutics, characterization of robust and standard molecular classification 

could significantly improve the patient outcome.  

1.1.2 Reasons for the limited clinical utility of molecular portraits 

As mentioned earlier, the successful application of molecular classification depends on how 

well it represents the molecular heterogeneity and the distinctive biological character of the 

tumor. With this viewpoint, the following are the limitations of existing molecular portraits:   

1. Lack of uniform and standard definition of known molecular portraits  

2. Lack of practical and cost-effective diagnostic methods that can be used at clinical level to 

classify each cancer into molecular portraits  

3. The existing molecular portraits are broadly defined classes with considerable within-class 

heterogeneity. For each molecular portrait there could be uncharacterized biological 

differences. This core limitation of existing molecular portraits questions the marginal benefit 

of applying molecular portraits beyond the conventional protocol used for diagnosis and for 

treatment response prediction.  

4. Molecular portraits are the snapshots mainly based on statistical approaches, such as 

clustering, classification and differential expression. Variation presented by these methods in 

high-throughput data represents statistical measure of gene-expression differences. The actual 

differences in their biological effect-sizes may not necessarily be proportionate to the 

expression differences as estimated by these methods.  

5. Results may vary by the high-throughput technological platform used and by laboratory 

where samples were processed and therefore the interpretation of molecular classifications 

may vary. This is one of the general limitations in understanding the molecular heterogeneity. 
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1.2 The histopathological classification 
The conventionally used scheme of classification is based on the grade and the differences in 

architectural features and growth patterns identified by histopathological study of the tumors. 

The grade of tumor is based on the degree of pleomorphism, loss of tubule formation, etc. and 

thus provides an idea about the aggressiveness of the tumor. Histological typing is based on 

the cytological and morphological patterns of tumor. Several studies have shown that 

histological grade can be used as an indicator of survival. Both grade and histological type 

provide complimentary information. 

1.2.1 Histopathological classes of breast cancer 

Invasive ductal cancer - not otherwise specified (NOS) is the most common 

histopathological subtype with its occurrence in 40-75% of invasive breast cancers. Because 

of having no peculiar histopathological feature, it is often referred as- not otherwise specified 

(NOS). Degree of differentiation can vary from well-differentiated with abundant gland 

formation to poorly differentiated having sheets of cancer cells. These tumors are less 

common in younger age group. Prognosis is intermediate.  

Invasive lobular cancer is another histological subtype with occurrence of about 10-15%, 

typically presenting with grade 2, lack of cellular cohesion and more likely to be multicentric 

and 20% chance of bilateral presentation. Nuclei have typically signet ring appearance 

because of round or oval shaped notched nuclei with thin rim of cytoplasm. About 10% of the 

lobular tumors present with grade 3 pleomorphic features and clinically aggressive behavior. 

Medullary carcinoma is a relatively less frequent subtype with 1-5% of invasive cancers, 

usually presenting as a syncytial growth, marked with stromal infiltration by lymphocytes and 

plasmocytes. Regardless of the high proliferation and poor differentiation, this subtype often 

carries a good prognosis. 

Tubular carcinoma is another infrequent subtype with about 2-5% of invasive breast 

cancers. The histopathological characteristics are marked by high degree of differentiation, 

randomly distributed cells in tubular architecture and open lumens, small size of cells, scanty 

mitosis and low degree of pleomorphism. These tumors have favorable prognosis.  
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Cribriform Carcinoma is a rare subtype (1 – 3 %) with favorable prognosis. The 

histopathological features are cribriform architecture, scanty mitosis, and low to medium 

degree of pleomorphism. 

Mucinous or colloid carcinoma is a subtype marked by the uniform small cells with 

eosinophilic cytoplasm surrounded by extracellular mucus. Other characteristics are – lack of 

myoepithelial cells, low degree of pleomorphism and scanty mitosis. The tumor is seen in 

patients above the age of 60.  

Apocrine carcinoma is a subtype that arises from the apocrine cells of sweat glands of 

breast. Apocrine cells presenting with: abundant cytoplasm, vesicular nuclei, GCDFP15 

positivity and apocrine snouts appearance (secreted granules in the apical cytoplasm).  

Micropapillary carcinoma is an aggressive but uncommon subtype with poorly 

differentiated cells with prominent nucleoli, coarse chromatin, and increased mitotic count 

and higher likelihood of lymph node metastasis. 

Other rare varieties include metaplastic carcinoma, lipid-rich carcinoma, glycogen-rich 

carcinoma, adenoid cystic cancer and inflammatory carcinoma.  

1.2.2 Pros and cons of histological classification 

The following are the advantages of histological classification of breast cancer:  

1. Histopathological subtypes are practically feasible and have proven to be a cost-

effective, gold-standard and routinely accepted method for diagnosis of invasive 

cancer.  

2. Some of the specific subtypes are also able to predict the prognostic profile based on 

histopathology. This can be used to supplement the information obtained by IHC or 

molecular studies. 

3. Histological grading system can provide a criterion for deciding the need for post-

operative chemotherapy. 
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4. Histopathological response can be a possible mean to evaluate or monitor the response 

to treatment. While it is more suitable in case of clinical trials, repeating the biopsy 

has no proven value in routine cancer management. 

The following are the limitations of histological classification: 

1. Most histological subtypes cannot specifically indicate any particular biological 

feature. That means the histological subtypes do not have predictive utility. 

2. While it is possible to gain certain prognostic indications based on the 

histopathological study, such prognostic stratification is broader compared to the one 

provided by molecular classification. 

3. Histopathological appearance might sometimes lead to differing conclusions. Even 

expert pathologists might have differences of opinions.  

4. Unsuitable for monitoring the treatment response, given the invasive procedure 

5. Large fraction is categorized as grade 2. Besides most tumors have the histological 

type of IDC-NOS. Therefore the information gain from such classification is limited.  

1.3 IHC in breast cancer 
IHC has also got a vital role in diagnostics, prognostics and predicting the response to 

therapy. Conventionally, the histological classification together with IHC-based markers has 

been used in determining the management strategy of breast cancer. ER has been the oldest 

known prognostic and predictive marker, even before the IHC came into practice in 1990s.  

While the decrease in breast cancer mortality is observed over past few years, use of adjuvant 

therapy, particularly post-operative Tamoxifen adjuvant therapy- is an important underlying 

factor. ER status (together with PR status) helps in predicting which patients would likely 

benefit from Tamoxifen. Earlier ligand-binding assays for assessment of ER status have been 

replaced by IHC. Today most experts worldwide recommend both ER and PR measurement 

in all primary invasive breast cancers (but not in DCIS) to identify the patient subset likely to 

benefit from the hormonal treatment in both the adjuvant and metastatic settings. PR is a co-

dependent marker with ER. Positivity of both ER and PR has been shown to improve the 

accuracy of likelihood of responsiveness to endocrine therapy. In addition to the tremendous 



7 
 

evidence regarding the clinical value of ER and PR assay, Her-2/neu positivity has also been 

shown to confer poor prognosis in breast cancer. With the introduction of HerceptinTM  

(trastuzumab) since 1998, Her-2/neu became the predictive marker for responsiveness to 

Herceptin therapy. The overexpressed Her-2/neu antigen in tumor is targeted by humanized 

monoclonal antibody (Herceptin). About 20-30% of patients show Her-2/neu overexpression. 

IHC is one of the standard tests available for Her-2/neu protein assay. FISH is an alternative 

to IHC, though it is indicated for improving accuracy when tumors score 2+ by IHC. IHC 

provides a score representing the degree of positivity of Her2 protein, whereas FISH provides 

the status of Her2 gene amplification in nucleus. It has to be noted that the predictive value of 

ER, PR and Her-2/neu is not merely reflected by the positivity or negativity on IHC staining, 

but also by the quantity of antigen present. IHC-based scores of these markers that represent 

the degree of positivity or negativity can be useful in combination with histological grade and 

type –for improved clinical decision-making.    

1.4 Combining the histopathology, IHC and 
molecular portraits in the clinics 
Conventionally diagnostics is based on histopathology. In order to determine the indication of 

chemotherapy, clinicians conventionally rely upon criteria, such as size, grade, Ki-67 index, 

ER/PR/Her-2 status and nodal involvement. These criteria largely provide an idea about the 

aggressiveness, proliferation, hormone receptor status etc. However, these criteria are 

insufficient for determining the indication of chemotherapy and efficient response prediction 

for the available options in view of the heterogeneity and variation in response. 

Given the considerably high proportion of non-/partial responders to chemo-

/endocrine/targeted therapy, the vital question is to what extent the inclusion of available 

molecular knowledge in breast cancer management can improve the patient outcome, 

proportion of responders to chemotherapy and help avoiding the unnecessary chemotherapy 

to the potential non-responders. Molecular portraits and the corresponding commercial assays 

can improve the understanding of the biology of tumor in individual patient and can provide 

an opportunity for more informed choice to clinicians in optimizing the plan of treatment of 

individual patients.  



8 
 

It is known that ER+ve group has a poor responsiveness to chemotherapy compared to triple 

negative groups. Relative advantage of using molecular portraits in predicting treatment 

response was demonstrated by similar higher rates of complete pathological response 

achieved with neoadjuvant chemotherapy even after exclusion of triple negative patient group 

by using the 70-gene signature [3]. Besides the assay based on 70-gene signature separates the 

patients with nodal involvement (up to 3 nodes) and excellent prognosis from the rest [4].  

Question is – can we use the existing definitions of molecular classes? If so, how to utilize 

this available knowledge of molecular portraits for improving the clinical decision-making? 

There has been availability of commercial assays that can be used in combination with the 

routine practice of histopathological assessment and IHC. Table 1 shows a number of assays 

that can be useful together with histopathology and IHC. 

The prediction of prognosis and response to chemotherapy, inclusion of molecular 

classifications might also help response prediction to the targeted therapy. The need of precise 

diagnostic and predictive tools is evident as therapeutic advances aim to target a specific 

biological marker or a pathway. One such example is Her-2 overexpression and response to 

trastuzumab. Only about 30% of the tumors respond to Trastuzumab therapy among potential 

target group of patients with Her-2 amplification detected by IHC or FISH as a criterion for 

therapy. There is a lack of precise assays for the response-prediction to Trastuzumab. In case 

of molecular classes, such as basal-like, normal-like have no unique markers of biology that 

can indicate a response to any specific drug.  

This means that the existing definitions of molecular classes need to advance and more 

precise tools and assays have to be developed to improve the predictive, therapeutic and 

prognostic performance. 

1.4.1 Commercially available assays for diagnostics 

Some of the commercially available assays are listed in Table 1. MammaPrint is the first 

assay that is approved by USFDA’s new In Vitro Diagnostic Multivariate Index Assay 

(IVDMIA) classification. Many of these assays based on characterizing molecular profile of 

breast cancer are not shown of significant clinical value based on large-scale public trials. 

Besides, higher cost of implementing them at clinical level has raised the concern among 

health economists. But the most important strength of these assays is the marginal utility and 



9 
 

improvement in clinical decision-making relative to IHC and histological review of tumors. 

For the time, two large-scale trials have been implemented– MINDACT [5] and TAILORx 

[6] for evaluating MammaPrint and Oncotype Dx, respectively. The MINDACT trial has been 

recruiting about 6000 patients with invasive, node –ve, stage 1, 2 or 3 breast cancers. In this 

prospective cohort, the trial aims to compare two groups of patients – group I: low genomic 

risk and high clinical risk; group II: high genomic risk and low clinical risk. In these groups, 

cases with high clinical or genomic risk respectively - would receive the chemotherapy and 

the study would confirm that cases with low genomic risk and high clinical risk could be 

safely spared chemotherapy without influencing the DMFS. Besides, this trial would also help 

in inference and validation of novel multigene signatures that can predict response to 

chemotherapy and endocrine therapy. The TAILORx is organized by the National Cancer 

Institute to test in a prospective cohort to evaluate the utility of Oncotype Dx in determining 

whether diagnosed ER+ve breast cancer cases with intermediate recurrence score of Oncotype 

Dx would benefit from adjuvant chemotherapy or not. This trial has been recruiting ER/PR 

+ve, Her-2/neu –ve, lymph node –ve breast cancer cases.  

1.4.2 Correspondence between IHC and molecular portraits 

There have been a number of studies that tries to simplify the criteria of defining the 

molecular portraits on the basis of IHC. It is not certain to what extent the surrogate IHC-

based markers can reflect the underlying biological traits represented by the molecular 

portrait. Studies that have discussed the correspondence between the IHC and molecular 

portraits are shown in Table 2, including the latest study[7] that provides comprehensive 

discussion in it.  

While gene expression profiling based molecular portraits are not practically suitable for 

routine use in clinics, IHC has far more proven to be practical and cost-effective means as a 

method for use in clinics. So far limited set of IHC-based markers are used to describe the 

molecular portraits or to predict the response to chemotherapy and prognosis. While the 

knowledge of molecular portraits is evolving, it is crucial that IHC continues to evolve in 

terms of its applied value by inclusion of more IHC-based markers. 
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Table 1: Commercially available multigene signature-based tests for predictive and prognostic purposes 

  

 
Gene-

set size 

Method/ 

Technology 
Indication 

MammaPrint [3, 

8] 
70 

Oligonucleotide 

array 

Prognostic: predicts the recurrence risk in both ER+ and ER – 

cases 

Oncotype Dx [9] 21 
Quantitative RT-

PCR 

Predictive for response to tamoxifen and to the CMF adjuvant 

chemotherapy regimen for ER+ cases, either stage I or II node 

–ve or postmenopausal node +ve; can also be prognostic 

The Rotterdam 

Signature [10] 
76 

Oligonucleotide 

array 

Prognostic: predicts the risk of distant metastasis in node –ve 

cases irrespective of the ER status 

The Invasiveness 

Signature [11] 
186 

Oligonucleotide 

array 

Prognostic: Predicts the risk of metastasis and poor survival in 

all breast cancers irrespective of the ER/node status 

AmpliChip 

CYP450 Test [12] 
2 

Oligonucleotide 

array 

Predictive: Determines the genotype of CYP- 2D6 and 2C19. 

Used in ER+ve cases to evaluate Tamoxifen sensitivity 

NuvoSelect [13, 

14] 

30 

and 

200 

cDNA array 

Predictive: predicts response to preoperative TFAC 

chemotherapy; Prognostic/predictive: predicts outcome after 5 

years of endocrine therapy 

Wound response 

signature [15] 
380 

Oligonucleotide 

array 
Prognostic: For risk stratification 

Celera Metastatic 

score [16] 
14 RT-PCR 

Prognostic: predicts recurrence risk in ER+ve, node–ve caes 

treated with Tamoxifen 

Breast 

bioclassifier [17] 
50 qRT-PCR Prognostic: Predicts risk in both ER+ve and ER–ve cases 

Breast Cancer 

Two-Gene 

Expression Ratio 

(H/I™) [18] 

2 qRT-PCR 
Prognostic:  predicts 5-year recurrence risk in ER+ve, node 

negative cases 

eXagenBC [19] 6 FISH Prognostic: provides a prognostic index 
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Table 2: Table shows IHC-based status of known markers and corresponding molecular portraits, as 
defined by various literature sources 

IHC-based status of markers 
Corresponding 

Molecular portrait 
Source 

ER–, Her-2– or low, CK-5/6+ and/or EGFR+ Basal-like Nielsen et al, 2004 [20] 

ER−, PR−, Her-2−, CK-5/6+ 

Her-2+, ER−, PR− 

ER+ and/or PR+, Her-2− 

ER+ and/or PR+, Her-2+ 

Basal-like 

Her-2+ 

Luminal A 

Luminal B 

 

Carey et al. 2006 [21] 

Spitale et al.2009 [22] 

 

ER+, PR +, Her-2 –, and Ki67 index<14% 

ER+, PR +, Her-2 –, and Ki67 index≥14% 

ER+, PR +, Her-2 + 

Luminal A 

Luminal B 

Luminal Her-2+ 

Cheang et al. 2009 [23] 

ER+, PR+, Her-2−, CK-5/6 or EGFR- 

ER+, PR+, Her-2−, CK-5/6 or EGFR+ 

ER+, PR+, Her-2+, CK-5/6 or EGFR+ or – 

ER–, PR–, Her-2+, CK-5/6 or EGFR+ or – 

ER–, PR–, Her-2–, CK-5/6 or EGFR+ 

ER–, PR–, Her-2–, CK-5/6 or EGFR- 

Luminal 1 (Luminal A) 

Luminal 1 (Luminal B) 

Luminal 2 (Luminal B) 

Non-Luminal Her-2+ 

Triple Neg : Core basal 

Triple Neg : 5-Negative 

Blows et al. 2010 [7] 
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1.4.3 Correspondence between the histopathology, IHC and 
molecular portraits 

It could be intriguing to compare the molecular heterogeneity to IHC and histological classes 

provided by grade and type. Because differences in molecular events that underlie the 

causation and progression of cancer could give rise to differing morphological patterns. 

Besides the molecular heterogeneity can also determine the degree of differentiation of 

particular clones of cells. Specific driver mutations or genetic abnormalities have been known 

to confer selective growth advantage under a specific set of selective pressures, thus evolving 

into specific clonal dominance and proliferation, reflected in the tumor grade. As a result of 

several mechanisms – observations made at histopathological level, levels of biomarkers as 

determined by the IHC and the snapshot of differential gene expression patterns representing 

the molecular portraits – are all linked and show corresponding differences to certain extent.  

Figure 1 shows how these different types of classifications have correspondence in between 

one another. Most high-grade tumors are classified as basal or ERBB2+/Her-2+ at molecular 

level. The status of biomarkers by IHC of these tumors is as shown in Table 2.  Histological 

appearance of these tumors shows mostly cells with higher tumor grade, lower differentiation. 

Histological subtypes high-grade ductal, medullary, metaplastic cancers correspond to these 

tumors. Association of medullary subtype with triple negativity and BRCA1 germline 

mutations [24] and expression of cytokeratins and EGFR correspond well with the basal-like 

group [25]. Tumors described as luminal B at molecular levels are intermediate grade tumors 

and at IHC level they represent largely as ER+/PR+ but some of the tumors might be Her2+. 

Pleomorphic variety of lobular, Micropapillary and apocrine tumors correspond to this group. 

Regarding the patient outcome, micropapillary variant has been reported to have high 

proportion of tumors with ER and Her2 positivity [26] and though not associated with 

significant difference in patient outcome compared to ductal cancers with similar nodal status 

[27]. Molecular class luminal A is usually ER+ /PR+ and Her-2– and usually associated with 

good prognosis. Correspondingly, large majority of ductal carcinoma- NOS, tubular [28], 

mucinous [29] and classical lobular and cribriform [30] carcinoma share similar IHC and 

prognostic profile. About 70–95% of lobular carcinomas are ER+ [31] having low Ki67 index 
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[32] and with the exception of pleomorphic variety, Her2+ [33] and p53 mutations [34] are 

less frequent compared to the ductal cancers.  

 

Figure 1: Possible overlap between molecular, histological and IHC-based class.  
Comparison of the molecular portraits to the histological and IHC based classes together with the grade and degree of 
differentiation 

1.5 Pathway approach in breast cancer 
For any form of categorization of breast cancer to be sensible, the most important criteria is – 

how uniformly the core biological characteristics are represented in each of the defined 

classes. The objective is to link the mechanisms of carcinogenesis that involve processes and 

pathways causing and driving the cancer process to the diagnostics, therapeutics and 

prognostics, while minimizing the within-class heterogeneity. This means characterization of 

classes that have unique and class-specific differential activation or repression of specific 

biological pathways and processes responsible for driving the specific categories or classes of 

cancer. This is becoming more important priority with the expanding world of molecular 

therapy. Application of pathway approach in breast cancer implicates the methodological 
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means for quantification of the pathway activity in each individual tumor. Inference of 

pathway activity is performed by a variety of approaches. For instance, pathway activity can 

be shown as a probability [35] of activation or as a summative pathway activity score [36], 

based on consistency of the pathway-specific genes’ differential expression. The key 

objective of the statistical approach is to predict the key pathways out of many, having 

dominant role in cancer-progression specific processes. Cancers showing such specific pattern 

of pathway perturbations should be categorized in one particular subgroup that can likely 

respond to the pathway-targeting therapy. The more specific the pathway identification is, the 

higher likelihood of such therapeutic options to prove efficacious while minimizing the 

chances of relapse and resistance. The implication of such effort can be predicting the 

likelihood of resistance and recurrence in a group of cancers that are broadly described to 

have good prognostic profile based on the conventional diagnostic protocols or vice versa. 

Classic example is – only half of the hormone receptor positive breast cancers respond to 

Tamoxifen [37]. Among the non-responders fraction of the cases have dominant activity of 

other cancer progression-related pathways (with the exception of those cases with ESR1 

mutation).  

1.5.1 Pathways concept in context of cancer genomics 

Pathways are defined as a set of functional interactions between the genes, proteins or other 

molecular components that together act and thereby perform a specific biological process. 

Pathways can be categorized as: signaling pathways, metabolic pathways and disease-

associated pathways. The disease-associated pathways are the set of interactions found to be 

functional in certain disease or disease subgroup. The concept of pathways makes it 

convenient to formulate network models of genes and proteins involved in specific pathways 

and then to perform systems modeling of a particular pathway or of a set of pathways. 

Besides it also helps in understanding the interaction between the pathways and models the 

possible consequences.  

Even when pathway concept provides the simplified means to understand the phenotype, it is 

important to note that involvement of pathways in cancer is a dynamic process. Because 

cancer is a multistep process, where driver mutations initiate the cancer by altering the one or 

more pathways, and eventually more genes might accumulate mutations that can alter their 

function and can influence the function of the downstream genes. This means that 
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perturbations of pathways demonstrated at a particular time-point represent only a snapshot of 

pathway activity, not as an ongoing process.    

1.5.2 Publicly available pathway databases 

Pathway databases are the repositories of the available experimental or sometimes prediction-

based evidence of gene-gene, gene-protein, protein-protein or other forms of interactions 

organized by commonality of the processes they are involved in. The utility of pathway 

databases is not merely limited to the curation of the available interaction data in pathway 

format but these databases provide a standard protocols of data-exchange between other 

relevant databases or tools, serve as a means for statistical and graphical approaches of 

pathway analysis and network modeling.  In a pathway-based approach, functional groupings 

of genes that are based on canonical pathways curated from literature resources such as the 

Kyoto Encyclopedia of Genes and Genomes (KEGG) [38], Reactome [39], National Cancer 

Institute’s Pathway Interaction Database (PID) [40], curated functional genesets(C2) of 

MSigDB [41], Gene Ontology [42], PantherDB [43] or other experiment-based annotations 

describing the interactions between the genes. Reactome and C2 of MSigDB cross-reference 

with several other databases and thereby provide better inclusion of available evidence. Many 

of these databases provide support to multiple data formats, such as Biological Pathways 

Exchange (BioPAX) [44], Systems Biology Markup Language (SBML) [45], KEGG Markup 

Language (KGML) [38] . 

1.5.3 Advantages of pathways-based analysis over individual gene-
based analysis 

Cancer genome is usually characterized by derangement of several biological processes as a 

consequence of altered function of genes and proteins. The following are the advantages of 

pathway-based analysis over the individual gene based analysis.  

i. Genes act in concert to activate or repress specific pathways. Genes can be involved in 

one or many pathways.  Subtle changes in the expression of one or more genes and 

their complex interactions can strongly alter the activity of the process or pathways 

and thereby can shape the biology underlying a specific disease or cancer subtype 

[46]. 
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ii. Biological pathways are altered as a consequence of a variety of defects of individual 

genes involved in the pathway or their regulators. This means similar phenotypic 

manifestation of cancer can be a result of one of the many possible genetic or 

epigenetic alterations. Pathway-supervised approaches can help understand the basis 

of such alterations by incorporating interactions of genes involved in same or related 

pathways. The best example is the p53 pathway, which is inactivated mostly via p53 

inactivating point mutation. Notably inactivation of p53 signaling pathway can also 

occur by alternative mechanisms such as MDM2 amplification or MDM2 splice.  

iii. Certain gene mutations are more frequent compared to others and can alter a set of 

protein-protein interactions, giving rise to alteration of a process or pathway. Others 

are infrequent mutations or epigenetic modifications giving rise to rare forms of 

cancer. Application of pathway approach groups the cancers by pathway and not by 

individual gene alterations. Thereby it increases statistical power for analyzing the 

biology of uncommon genetic alterations. 

iv. From methodological perspective, methods used to identify differential expression 

suffer from the major setback of being dependent on the most suitable statistical cut-

off that can identify most functionally altered genes. Statistical significance of 

differential expression values might not necessarily represent the biological 

significance. Besides, methods used for quantifying absolute gene expression levels 

such as microarrays, RNAseq have their own limitations. Therefore changes in gene 

expression values that might not pass the cut-off of statistical significance, will remain 

undetected (false negatives). Pathway-based approach can be used as an improvement 

for biomarker search [47, 48].  

1.6 Deregulation of transcriptional networks in 
cancer pathways 
Gene transcription is a process determined by the complex interaction of one or more 

regulatory transcription factors with the putative regulatory region on a gene promoter. It is 

also known that genes that are co-expressed are likely “co-regulated”. This means the group 

of genes involved in a given biological process might be regulated by a set of common 

transcription factors (TFs) and therefore can share a set of corresponding transcription factor 
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binding sites (TFBSs) for allowing the binding of their regulator TFs. The combinatorial 

effect of multiple transcription factors binding the promoter of the given set of genes could be 

induction or repression of target gene transcription. The regulatory binding by transcription 

factors is a context-specific event and is selective to the specific target promoters. This 

regulatory mechanism maintains the homeostasis in the signaling pathways activity and 

thereby regulates the cell physiology. 

Deregulation of transcriptional networks within the biological pathways can occur as a 

consequence of the alterations of upstream regulatory TFs, alterations in the co-activators of 

signaling cascade, elimination of negative regulatory feedbacks or by alterations in the 

downstream signal transduction pathway. The alterations of transcription factors occur due to 

mutations, deletions, amplifications, or due to post-transcriptional modification. Certain 

alterations of TFs might confer oncogenic properties to cells by perturbing the downstream 

processes involved in proliferation and growth regulation, DNA repair and replication. 

Alterations of TFs can be linked to the specific sets of target genes and pathways that are 

likely to be perturbed in subclasses of cancer. This implies that inference of molecular 

phenotype-specific regulatory TFs is of immense importance in developing gene-based 

diagnostic and therapeutic strategies.   

1.6.1 Inference of transcriptional factors underlying deregulation 

Inference of regulatory transcription factors can be performed experimentally (i.e. ChIP-

sequencing, ChIP-chip) or by using in silico methods.  

Here the basic rationale of the in silico approach has been briefly described. The 

methodological approach for the computational inference of potential regulatory transcription 

factors underlying molecular subclasses is the following:  

Molecular class-representative clusters in the gene expression signatures are often composed 

of a set of co-expressed genes observed only in a subset of cancers. One strategy to find the 

potential functional transcription factors in a given cancer class is to find a set of significantly 

over-represented motifs in the promoters of a set of co-expressed genes (usually a signature 

genes of a given phenotype class). Computational methods either search for a known TFBS 

motif or for new, previously uncharacterized motifs (de novo motif discovery). The de novo 

motifs can be filtered based on the criteria such as degree of conservation of the motif across 
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species. Discovered potential TFBS motifs needs to be experimentally validated. Among the 

gene promoters that show statistically significant overrepresentation of TFBS, those that show 

significant co-expression of their corresponding TF gene-target gene pairs in the expression 

profiles of given cancer class- increase the likelihood of true positivity of biologically 

functional interaction. 

Variations in transcriptional deregulation form an important source of heterogeneity within 

molecular classification. For example, hormone receptor negative breast cancers might be 

composed of the samples having mutations in p53, PIK3CA, BRCA1 etc. 

1.6.2 Defining novel cancer classes by the activity of transcriptional 
hubs 

Class-representative metagene consists of genes including the ones that code transcription 

factors. When a particular transcription factor regulates multiple target genes involved in 

diverse processes and pathways that are involved in more than one class-representative 

clusters, it is referred as transcriptional hub protein (TH). Given the multitarget interactions, it 

appears as a topological hub in the disease-specific functional interaction networks. 

Dysfunction due to under-/over-expression, amplification, deletion, mutation of these TH 

genes and resultant aberrant activity of TF protein might have diverse consequences on the 

expression of genes regulated by it and thereby can influence activity of all connected 

pathways. Co-existing mutations or aberrant expression of other genes might act as an 

additional source of heterogeneity in cancer. These hub genes might also have conserved 

function across species and are often linked to chromatin modifications [49]. 

In figure 2, TH, the hub transcription factor is shown to have multiple targets in multiple class-

defining clusters (s1-s4). Given the larger impact of the differential activity status of hubs, 

corresponding novel cancer phenotypic classes can be defined. These classes might not just 

represent the differential activity of TF hub and its target genes, but can have considerable 

clinical relevance.  
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Figure 2: Graphical illustration of the transcriptional and topological hub protein  
Transcriptional hub (central node in black) regulates the target genes (circular nodes) including transcription factor genes 
(diamond shaped nodes) in four class-defining clusters (s1-4 in different colors). 

1.7 Transcriptional deregulation by p53 in breast 
cancer 
TP53 is a tumor suppressor transcription factor with paramount clinical value because of its 

association with tumor progression [50], metastatic potential [51], early relapse [52], response 

to chemotherapy [52, 53], ultimately to prognosis and survival [54, 55] . TP53 is a master 

regulator transcription factor, which is involved in key processes such as cell cycle, DNA 

repair and genomic stability and most importantly also of cell death. The core of p53 

functions is by the sequence-specific DNA binding to target genes that are involved in 

carrying out diverse cellular functions. Recent studies have revealed its role in differentiation 

[56], angiogenesis [57], mitochondrial respiration[58], glycolysis [59], glutamine metabolism 

[60], response to anti-oxidants [61]. While the levels of p53 are maintained low by the 

binding of MDM2, COP1, PIRH2 or JNK etc-mediated degradation in ubiquitin-proteasome 

proteolytic pathway, the activation of p53 occurs in response to the DNA damage and other 

types of stresses. The activity of p53 is initiated with the elimination of negative feedback 
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mechanisms including MDM2, increased mRNA translation of p53 and by increased 

transcription induced by specific modulators.  

1.7.1 Determinants of functional specificity and promoter selectivity 
of p53 

The following factors determine the functional selectivity of p53:  

1. Its differential affinity to the response elements located on the target gene promoter 

2. Differences in the post-translational modifications within amino-, carboxy-terminals or 

DNA binding domain 

3. Alterations by the cofactors 

In breast cancer, the p53 transcriptional program may get deranged because of one or more 

factors. Large majority of breast cancers are ER+ve and tend to have wild-type p53, whereas 

about 20-30% of them are associated with mutant p53. While deregulations in the 

transcriptional program are obvious in the presence of mutant p53 protein, deregulated 

transcription programs of p53 target genes can also occur with wild-type p53 in breast cancer. 

Recently transcriptional regulation by ERα and its consequences on transcriptional response 

of p53 target genes have been studied. ER can bind to p53 targets and thus can inhibit the 

p53-mediated apoptosis [62, 63]. This effect is also explained by the binding of ER that 

represses p53 on the p21, survivin, and MDR1 promoters with subsequent inhibition of gene 

expression. Besides, ERα can directly bind p53 and thereby can access its target gene 

promoters and may repress p53 transactivation by recruiting NCOR, SMRT, and HDAC1[64].  

The ER effect on p53 transcription program can be partly explained by the observation that 

response to Tamoxifen-therapy in ER+ve breast cancers is better in cancers with p53 wild-

type compared to ones with mutant p53 [55].  

Mutations in p53 are often of missense (point mutation caused by the replacement of a single 

nucleotide) variety, and occur frequently within the DNA-binding domain of p53 protein. 

Thus the deregulation of p53 transcription program by mutant p53 varies widely according to 

the location and type of mutation. For instance, codons 273 and 248- the mutation hotspots 

presenting with sequence alterations in the DNA-binding (contact) region of p53 can alter the 

sequence-based affinity of p53 to its targets, whereas mutations on codons 175 and 220 can 
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lead to structural alterations in the DNA binding region. Besides, most missense mutations 

can lead to partial or subtle effects on p53 transcriptional program and therefore the overall 

outcome on pathway activity and phenotype may vary considerably [65]. Many mutant p53 

forms can induce cell cycle arrest but lose the ability to induce apoptosis [66]. However, some 

studies also propose that mitochondrial and cytoplasmic fractions of p53 may retain the 

apoptotic function regardless of mutation status of p53 and without the influence of domain 

negativity [67, 68]. Mutant p53 can also alter the binding of cofactors on the target genes. 

Some of the effects include induction of IGF1R [69]- that in turn can activate PI3K/AKT and 

MAPK signaling pathways [70], induction of VEGFA [71]-responsible for increased 

angiogenesis and invasion, induction of NF-κB activity in response to TNF-α [72].  Mutant 

p53 also gains new roles as transcriptional activator or repressor (gain of function). EGFR, 

HSP70, MDR-1, VEGFR- are some of the genes that can be transcriptionally activated by 

mutant p53 [73]. This results in chemo-resistance and activation of tumor promoting 

pathways- such as angiogenesis, proliferation and transformation. 

Mutation status of p53 is not only prognostic, but also its effect on patient survival varies 

according to the ER status in breast cancer. Pathway analysis of breast cancer expression 

profiles aimed at investigating which pathways are the most significantly differentially 

enriched – identified at least 40 differentially enriched pathways by p53 mutation status. 

These pathways include metabolic pathways - such as glycine, serine and threonine 

metabolism, arginine and proline metabolism, sphingolipid metabolism; signaling pathways - 

such as p53 signaling, hedgehog signaling, calcium signaling, insulin signaling, MAPK 

signaling, ERBB signaling; and cancer pathways – such as renal cell cancer, pancreatic 

cancer, melanoma etc.  Genes involved in ER signaling, PIK3K cascade, mammary gland 

development and apoptosis were found associated with wild-type p53 breast cancers, whereas 

genes involved in cell cycle, DNA replication, p53 signaling, purine nucleotide metabolism, 

p53 signaling and VEGF signaling were found upregulated or associated with mutant p53 

breast cancer profiles [74].    

1.8 Pathway-based molecular diagnostics 
In a view of the dynamic nature of the biological processes and pathways that initiate and 

propagate cancer, the task of characterizing the activity status of molecular pathways in 

cancer is complex.  
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1.8.1 Characteristics of malignancy and pathway aberrations 

Cancer cells have the property of hyperproliferation, invasiveness and metastasis to remote 

sites. Histologically, the following are the characteristics of cancer cell: 

1. Increased nuclear/cytoplasmic ratio 

2. Nuclear pleomorphism  

3. Hyperchromatism and enlarged nucleoli 

4. Bizarre appearance of mitotic spindle 

5. Anaplasia or lack of differentiation 

These histological features and their variations represent the manifestations of molecular and 

pathway aberrations. Characterization of the pathway aberrations that underlie these 

histological characteristics - is the mission of the pathway-based molecular diagnostics. The 

basic molecular traits or capabilities of cancer are earlier described as hallmarks of cancer 

[75]  (shown in the figure 3). These ten basic traits are: evasion of growth suppressors, 

avoiding immune destruction, enabling the replicative immortality, tumor promoting 

inflammation, activating invasion and metastasis, induction of angiogenesis, genomic 

instability and mutation, resisting apoptosis, deregulation of cellular energetics and sustaining 

proliferative signaling.  

Each hallmark trait might be the consequence of one or more perturbed pathways and each 

pathway might be associated with more than one trait. Differential activation of biological 

pathways and consequent pathway reprogramming, changes in their mutual regulatory 

feedbacks and summative effect aimed at achieving the hallmark capabilities – are 

represented in the phenotypic differences of cancers. Among the cancer pathways, some are 

initiators whereas others are involved as a secondary event. Some pathways are commonly 

active in cancer conditions, which means they carry minimal diagnostic value. Diagnostics 

based on these pathways may help reducing the within-class heterogeneity in presently known 

broader molecular classes. Besides involvement of pathways in cancer may not be static but is 

rather a dynamic and continuous process. Therefore pathway-based diagnostic profiling of 

cancer is more useful for the subsequent clinical decision-making, compared to other forms of 

classifications. For the pathway-based diagnostics in cancer, biomarkers that can uniquely 
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represent the dysregulated pathway and the corresponding cancer subclass – needs to be 

explored.  

The core of pathway-based marker-search is formed by the following questions:  Which 

pathways significantly influence the outcome and overall phenotype? Which pathways are 

commonly perturbed/active in more than a single subclass of cancer? Which pathways can 

uniquely underlie a specific molecular subclass? Which pathways are cancer-initiating 

pathways and which ones are secondarily activated pathways?  

 

Figure 3: Hallmark processes of cancer 
Common hallmark processes drive the initiation and progress of cancer. (Figure source: [75])  

1.8.2 Overview about pathway analysis approaches for genomic 
data  

There has been progress in developing the computational prediction algorithms for addressing 

some of these questions. The goal of such algorithms is typically to identify the sets of 

pathways differentially perturbed in a given pair of conditions and infer genes that contribute 
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to the pathway deregulation. The priority of pathway-based diagnostics is to develop the tools 

that facilitate unsupervised analysis of cancer datasets and thereby can categorize cancers 

according to the pathway deregulation. Some of the pioneering publications [76-79] have 

outlined the statistical approaches and associated methodological issues.  

The overview and classification of the available algorithms for pathway analysis is shown in 

figure 4.  

 

Figure 4: Overview of the pathway-based approaches.  
Pipeline with variety of previously published approaches used for the pathway analysis and identifying the 
pathway marker genes associated with the known condition or response variable 

 

Among the approaches that are pathway-guided and class-supervised, the analysis can be 
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enriched as genes not involved in that pathway. Because the number of genes in pathway is 

usually too small in comparison to the total number of genes excluding genes in the pathway, 

the likelihood of null hypothesis rejection is higher in case of self-contained null hypothesis 

compared to the competitive null hypothesis and thus yields more power [77]. SAM-GS 

[80](a generalization of SAM [81] for individual genes), globaltest [47] and pathway-

significance approach described by Tian et al [82] are two published algorithms that assume 

self-contained null. Geneset enrichment analysis (GSEA) [83] and SAFE [84] are the ones 

that assume competitive null. Globaltest algorithm also provides a possibility to identify the 

significant genes that contribute to the differential pathway activity. As an alternative, every 

gene within each significant pathway (identified with any of the abovementioned methods) 

can be tested for its association to the categorical or continuous outcome by using the logistic 

and linear regression model, respectively. Since the test is performed for each gene as 

covariate within each individual pathway, it is possible that a gene might assume significance 

in more than a single pathway it is involved in, or can be found significant in one but not in 

the other pathway. 

Another approach is a pathway-independent search for individual genes and subsequently 

performing the pathway-analysis by using overrepresentation tests with each available 

genesets or pathways. Besides, the analysis can be class-supervised (e.g. SAM [81], 

moderated t-test [85]) or unsupervised approaches that include clustering, biclustering (e.g. 

iterative signature analysis [79] , principal component analysis etc.  

The functional derangement of genes and pathways in cancer may not be merely an outcome 

of their markedly altered gene expression patterns, but a combination of subtle to strong and 

coherent changes in a set of gene expressions, leading to a significant alteration in the overall 

pathway activity. In this view, diagnostic marker search should be based on a combination of 

methods that can explore pathway genes having subtle but coherent class-specific expression 

changes and ones that search for individual genes with significant and strong gene expression 

changes. 

1.8.3 Limitations of pathway-based analysis  

It is obvious that subgroups with differences in pathway activity do not necessarily indicate 

the differences in survival. Therefore pathway analysis approaches that do not merely rely 

upon the survival data for either deriving or validating the classes- might have the advantage 
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in better sensitivity in characterization of novel pathway-based classes and/or signatures. 

Besides, pathway analysis depends upon the available annotations and interactions. Therefore 

genes with unknown involvement in specific pathways might go unnoticed. The statistical 

significance of pathways and each particular gene within the pathway might be influenced by 

the size (number of genes involved in the pathway) of the pathway. Pathways are defined 

based on the canonical functional role reported by published literature sources. However 

many interactions are context-specific and stromal interactions may alter the canonically 

known interaction. Therefore it could be a chance that the assumption of similar activity of 

genes in vivo as reported by the available experimental evidence holds true.    

1.9 Implications of pathway-based diagnostics on 
breast cancer therapeutics 
Historically, the improved diagnostics has provided opportunities for more informed 

therapeutics. Since the first ever isolation of estrogen receptor[86] from breast tumors and 

introduction of mammography in 1967, the diagnostics has improved considerably with the 

advances in laboratory methods and scanning techniques. Improvements radiotherapy and 

surgery have also contributed to the quality improvements in multimodal management of 

breast cancer. Since past decade, molecular research has paved the way for improvement in 

diagnostics and therapeutics. 

The hallmarks concept [75] of cancer implicates the focus of novel treatment strategies at 

targeting the specific key biological pathways that underlie one or more of the hallmarks. The 

genes that are computationally identified as significant within each differentially active 

pathways within a given cancer class - are the potential therapeutic targets. Computational 

approaches, similar to the ones described in the previous section – provides an opportunity to 

identify the novel markers of diagnostics and therapeutics.  

Ideally the therapeutic intervention should selectively target the tumor driver pathways and 

reversibly rectify the alterations of molecular pathways with minimum possible effect on non-

cancer cells and with minimum possible systemic adverse effects. However, currently there is 

no such treatment option available and therefore clinicians make the decisions by weighing 

benefit against the risk of adverse effects. Gene or pathway based therapy options mainly 

target a specific pathway(s) and therefore might confer lower systemic risk of adverse effects. 
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Because the observed effect on pathway genes and possible effect of targeting the gene within 

the significant pathway are the consequence of complex multidimensional interactions 

between proteins and genes, it requires further systems biology work-up to model the network 

and simulate the effect of perturbations in the network at different genes and select the best 

possible target(s). The process of drug discovery, design and clinical trials takes a long time 

and involves a considerably high cost without any certainty. Despite of these difficulties, 

therapeutics based on molecular diagnostics and pathways has become a priority. 

1.9.1 Limitations of currently available chemotherapy options   

The following are the major limitations of the currently available chemotherapy options: 

1. Most currently available chemotherapeutic options are associated with cytotoxicity, which 

is not limited to cancer cells. The cytotoxic effect varies depending upon the dose and 

administration schedule. Such as – cytotoxic effect of anthracycline can cause cardiac 

toxicity by damage to the cardiomyocytes, bone marrow suppression, etc.  

2. Currently chemotherapy is administered in triple negative patients, in Her2+ patients 

combined with Trastuzumab and in some of the high-risk categorized ER+/Her2– patients. 

However, complete response is observed only in a fraction of patients receiving the 

chemotherapy. Previous trials showed that pathologic complete response to pre-operative 

chemotherapy in hormone-negative breast cancer varies between 9% to 26% [87].  

3. While the combined regimens (polychemotherapy) might help in improving the response, 

it also increases the side effects.  

4. Available chemotherapy options may provide significant though relatively shorter duration 

of survival benefit in metastatic breast cancer. Median survival with first line 

chemotherapy is up to 25 months [88] and even shorter for second or further lines of 

chemotherapy.  

5. The criteria of decision-making for chemotherapy are limited. Considerable fraction of 

patients who might have responded to hormonal therapy only, receive unnecessary 

chemotherapy.  
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1.9.2 Advantages of pathway-based therapy compared to 
chemotherapy 

The main goal of pathway-targeted therapy is to target the derangement of specific pathways 

and thereby addressing one or more hallmark characteristics of cancer. For example, pathway 

targeted therapy by VEGF signaling inhibitors may target the enhanced angiogenesis, 

proliferative signaling, invasion and metastatic properties of cancer cells. Successful therapy 

should not only improve overall patient survival and arrest the progression of cancer but 

should also maintain the quality of life by minimizing the treatment adverse effects.  

Figure 5 shows the overview of currently available strategies aimed at specific hallmark 

characteristics of cancer [75]. 

The basis of pathway-based therapy is in successful diagnosis of pathway derangement. Once 

the aberrant key pathway is known, suitable target within that pathway is identified. The 

following are the benefits of a well-planned pathway-based therapy: 

1. Combination of pathway-based therapy together with available chemo- or endocrine 

therapy can reduce the chances of resistance and recurrence by achieving early response 

and preventing secondary involvement of more biological pathways. 

2. Monodrug therapy can be sufficient in case the suitable target is determined and that the 

therapy targets the most dominant pathway that is responsible for the cancer growth. 

3. Most pathway-based drugs are cytostatic. Therefore, the effect is more likely to be 

reversible.  

4. Many of the drugs are administered orally, in contrast to chemotherapy where large 

majority of drugs have to be administered intravenously. 

5. While pathway-based therapy might also cause systemic side effects just as do 

chemotherapy, it is anticipated that novel drugs with fewer side effects and optimized 

targeting strategy would be able to reduce the burden of side effects and thereby would 

relieve morbidity. 

In the figure 5, the treatment strategies for which the drugs are either under design, 

development or trial are shown in orange color fonts. Drugs that are already approved for 

breast cancer are shown in green fonts. This figure shows that large majority of therapeutic 

options have not yet entered into practice.   
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Figure 5: Hallmark-based illustration of novel targeted therapeutic strategies 
Novel treatment strategies of cancer target the specific hallmarks of cancer by targeting the specific dysregulated 
pathways or selected molecule within in the pathway. Orange fonts indicate strategies under trial and green fonts 
indicate approved strategies or drugs for treatment of breast cancer. (Figure adapted from [75]) 

1.9.3 Challenges in pathway-guided diagnostics 

The term prognostic factor is used to define any measurement available at the time of 

diagnosis or surgery that is associated with clinical outcome in the absence of systemic 

adjuvant therapy. On the other hand, the term predictive factor defines any measurement 

associated with response or non-response to therapy. Substantial number of studies has 

focused on prognostication but relatively fewer studies have investigated the predictive 

markers. The priority in interest of advancing cancer therapeutics has to be on predictive 

diagnostics. Precisely estimated activity of key biological pathways and networks may help 

identify the key biological pathways shaping the phenotype. Classification based on this 

approach can provide robustness. Biologically, robustness means an ability of pathways and 

networks to overcome the effect of other biological processes on phenotype. In terms of 

therapeutics, robustness means that the inferred classes can robustly predict response to 

Avoiding 
Immune 

destruction 

Enabling 
replicative 
immortality 

Tumor 
promoting 

inflammation 

Activating 
invasion and 
metastasis 

Inducing 
angiogenesis 

Genomic 
instability and 

mutation 

Resisting 
apoptosis 

Deregulation 
of cellular 
energetics 

Sustaining 
proliferative 

signaling 

Evading 
growth 

suppressors 

anti-CTLA4 mAbs 
e.g. Tremelimumab 

Telemerase 
inhibitors 

e.g. Imetelstat 

Selective cox2 
inhibitors 

e.g. celecoxib 

HGF/cMET 
inhibitors 

e.g. Onartuzumab, 
Cabozantinib 

VEGF inhibitors 
e.g. Bevacizumab 

PARP inhibitors 
e.g. Rucaparib

+cisplatin 

BH3 mimetics 
e.g. ABT-737 with 
Tamoxifen in ER+ 

aerobic glycolysis 
inhibitors 

e.g. oxamate + 
trastuzumab 

EGFR inhibitors 
e.g. cetuximab with 
irinotecan in MBC 

CDK inhibitors 
e.g. palbociclib + 

letrozole in  
ER+ ,Her2– BC 



30 
 

corresponding pathway- or network-targeted therapy. It is difficult to achieve this objective of 

pathway-based approach in reality. 

The following are the challenges in the pathway-guided diagnostics: 

Despite of encouraging results from clinical trials, robust and efficient predictive biomarkers 

are yet to be discovered. It sounds intuitively logical to hypothesize that the best predictive 

marker of pathway directed therapy is aberrantly expressed or mutated. However, the 

experience with Trastuzumab and its predictive marker Her-2 suggests that expression of the 

target could probably be a good marker of biology but not the only response-predictive 

marker. In reality, only 30% of patients with Her-2 overexpression respond to Trastuzumab 

[89]. Various explanations are proposed for the resistance, such as compensatory activation of 

other members of HER family [90] or other signaling pathway, inhibition of trastuzumab 

activity by fragments of Her-2 extracellular domain cleaved from the Her-2 receptor[91], 

formation of IGF-IR/HER-2 heterodimer [92].  

The differences between the pathway-based classes might be subtle and the priority should be 

to acquire an ability to develop a set of pathway activity-based predictive markers that guide 

selecting individualized pathway-guided therapy.  

In general, it is anticipated that the levels of markers usually correlate with the response. This 

assumption appears to be partly true in context of some but not all markers. Such as ER 

positivity and response to endocrine therapy.   

Insufficient sample quantity, improperly localized biopsy site etc could also lead to 

misleading conclusions.  

Within-tumor heterogeneity is one more challenge that is difficult to be accounted for in most 

high throughput analyses. Therefore the signatures and target selection made by these studies 

could overestimate the size of possible responders. 

Despite of the improved efficiency and lowered cost of target identification by computational 

analysis of high-throughput omics data, high-throughput screening and computation drug 

design methods, the cost per novel drug approved has increased substantially [93] with no 

significant reduction in time to introduce the drug in practice. This presents as a barrier to 

efforts of innovative novel drug discovery and development.    
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2 Aims of the thesis 
Improving the understanding about molecular heterogeneity is essential step towards defining 

the molecular classification of breast cancer that has translational value. Existing definitions 

of molecular portraits are based on unsupervised methods on high-throughput omics data and 

differences of survival according to the classes are demonstrated.  

The study involved understanding the known molecular classification, predict the relevant 

potential transcriptional mechanisms and then to identify novel classes having diagnostic, 

therapeutic and prognostic significance based on the status of key transcription factors, 

deriving the novel class-specific signature based on pathway-based approach, recognizing the 

interaction of key signaling pathways in defined classes.  This approach helps understanding 

the advantages and limitations of the existing breast cancer molecular classification by focus 

on pathways and processes that have considerably higher prognostic impact rather than 

merely focusing on individual genes. This work might help contributing an additional 

perspective in understanding the tumor driver mechanisms by the application of the pathway-

/process based approach, in contrast to large volume of studies that are based on individual 

gene-based approaches. The study started with the investigation of the transcription factors 

involved in the regulatory networks of genes defining the existing molecular portraits. The 

study also involved understanding the context-specific regulation of mRNAs bytheir potential 

regulator miRNAs.   

The following are the main aims of the study:  

1. To study the promoter composition of subtype-distinguishing genes and predict the key 

transcription factors regulating these genes and thus having potential functional role in the 

phenotypic diversity of subtypes.  

2. To identify the master regulator transcription factor with functional relevance to the 

subtypes 

3. To identify the differentially activated pathways with respect to the categorization based on 

the status of one such a master regulator (p53). 
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4. To identify the class-specific candidate marker genes that influence the differential activity 

of pathways with respect to the status of one master regulator transcription factor (here p53 

mutation status).  

4. To evaluate the signature genes for their prognostic significance by controlling for the 

existing determinants of patient survival.  

5. To elucidate the context-specific potential regulatory miRNAs-mRNA modules in breast 

cancer expression profiles with reference to the newly identified molecular classes of 

prognostic significance.  
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3 Materials 

3.1 Breast cancer expression profiles 
The project was facilitated by the public access to three datasets from Norwegian and 

Swedish cohorts of breast cancer. The MicMa dataset was the primary or learning dataset. 

Data from two other cohorts – Uppsala (N=251) and Ullevål (N=76) were used as test 

datasets. Table 3 provides the overview of the datasets.  

Table 3: Overview of the datasets used in this study 

Dataset Geographic 
profile 

Sample 
profile 

 Years of 
study 

Type of data #Samples 
used 

Platform Source 

mRNA 
expressions 

114 

Agilent-014850 
Whole Human 
Genome 
Microarray 
4x44K G4112F 

GSE19783 

MicMa Norwegian 
Primary 
human breast 
cancer 

1995-
1998 

miRNA 
expressions 

100 

Agilent-019118 
Human miRNA 
Microarray 2.0 
G4470B 

GSE19783 

Uppsala Swedish 
Primary 
human breast 
cancer 

1987-
1989 

mRNA 
expressions 

251 

Affymetrix 
Human Genome 
U133A and 
U133B arrays 

GSE3494 

Ullevål Norwegian 
Primary 
human breast 
cancer 

1990-
1994 

mRNA 
expressions 76 

42 K cDNA 
microarrays 

Stanford 
Microarray 
database 

 

3.1.1 MicMa dataset 

Out of the 900 patients diagnosed with breast cancer diagnosed between May 1995 and 

December 1998 at Oslo, mRNA expression profiles are available for 115 samples. After 

performing the quality control and clinical data availability, 111 samples were included in the 

analysis for this project. Patients less than 55 years with grade 2-3 and/or nodal involvement 

were treated with CMF chemotherapy and additional Tamoxifen if hormone receptor positive. 
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Hormone receptor positive patients who were older than 55 years received only Tamoxifen. 

Hormone receptor negative cases with grade 2-3 or nodal involvement in the 55-65 years age 

group received CMF regimen but older patients were not administered adjuvant therapy [94]. 

Complete clinical data is available in the respective publications. Follow up time was about 

10 years in this cohort.  

3.1.2 Uppsala Dataset 

Out of the 315 diagnosed primary breast cancer patients registered between January 1, 1987 

to December 31, 1989 [95] in the Uppsala county of Sweden, a subset of 251 samples was 

processed for TP53 mutations and microarray data. Therefore this subset has been used for 

the analysis. Systemic adjuvant therapy was administered to all patients with nodal 

involvement. Premenopausal women received chemotherapy and postmenopausal women 

received endocrine treatment. About 55% patients did not receive adjuvant therapy. The 

median follow-up duration was 122 months [96].  

3.1.3 Ulleval dataset 

This dataset consist of 80 samples (76 included after quality control) out of a series of 212 

primary breast cancer cases collected at the Ullevål Hospital between 1990 and 1994. Large 

fraction of patients with larger tumor size is included in this dataset. Follow up period for this 

dataset was about 12 to 16 years. The group received chemo according to existent 

management guidelines published by the Norwegian Cancer society. 

3.2 Microarray technology platforms  

3.2.1 Human whole genome oligoarray (Agilent)  

The breast cancer samples from MicMa cohort (N=111) are based on the Agilent-014850 

Whole Human Genome Microarray 4x44K G4112F (Probe name version) –GEO accession: 

GPL6480 platform. This platform provides a possibility to hybridize the RNA transcripts to  

~41,000 unique 60-mer probes. Agilent provides the feature extraction tools and the 

annotation files with mapping of probes to the genomic transcripts. 
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3.2.2 Human genome U133 oligoarray (Affymetrix) 

Expression profiles from the Swedish Uppsala cohort are based on the Affymetrix Human 

Genome U133 (hgu133) platform. The hgu133 platform consists of two arrays – hgu133A 

and hgu133B, together consist of 44928 probe sets that represent >39,000 transcripts derived 

from ≈33,000 human genes. Probesets in the hgu133A represents RefSeq database sequences 

and probe sets related to sequences previously represented on the Human Genome U95Av2 

Array. Probesets of hgu133B represents EST clusters. 

3.2.3  Human genome cDNA arrays 

Expression profiles for the Ulleval dataset are based on the cDNA arrays. The protocol uses 

amplified RNA from the tumor material. The platform provides cDNA microarray chip with 

more than 42000 elements. Full details of this platform are accessible from the Stanford 

Microarray database (http://smd.princeton.edu//) 

3.2.4 Human miRNA Microarray (Agilent) 

MiRNA expression profiles from the MicMa were based on the Human miRNA Microarray 

2.0 G4470B (Agilent). This platform consists of 723 human and 76 human viral microRNAs 

from the Sanger database v.10.1. Full annotations are available at GEO accession : GPL8227.  

3.3 TP53 mutation data 
MicMa and Ullevål dataset uses TP53 mutations data derived from tumor DNA by 

prescreening exons 2–11 with temporal temperature gradient gel electrophoresis (TTGE) 

protocol. Whereas TP53 mutation data from Uppsala cohort was based on solid phase 

sequencing on p53 amplified from tumor cDNA using PCR [95] and analysis was performed 

on exons 2-11.  
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4 Summary of papers 

Paper I: Overrepresentation of transcription factor 
families in the genesets underlying breast cancer 
subtypes.  
BMC Genomics, 2012; 13:199. 

This piece of work involves an approach of exploration of transcriptional regulatory networks 

that underlie the heterogeneity of breast cancer. Regulation of gene regulation in eukaryotes is 

highly complex and depends on sets of transcription factors rather than individual 

transcriptional factors. In normal or diseased human tissues, functional diversity is achieved 

by the combination of a small number of transcription factors whose activities are modulated 

by diverse sets of conditions. Sets of common transcription factors might be responsible for 

activation or repression of sets of target genes that act in coherent manner to produce the 

phenotype. This analysis is based on the hypothesis that overrepresented transcriptional factor 

binding site motifs within a group of co-expressed gene promoter sequences are more likely 

to be co-regulated by a set of transcription factors and can have a role in transcriptional 

activation. We aimed to identify distinct promoter composition and overrepresentation of key 

transcription factors in a set of co-expressed genes that give rise to the breast cancer subtype-

specific expression patterns. We have applied a pipeline that includes transcription factor 

binding site overrepresentation analysis of putative promoter regions of the genes for 

distinguishing between five molecular subtypes. The transcription factor genes were mapped 

based on the overrepresented transcription factors in order to validate this hypothesis in real 

mRNA expressions within each predicted subtype. In order to pursue this analysis, mRNA 

expression profiles of breast cancer from previously published dataset of Norwegian cohort 

consisting of 111 samples were first categorized into molecular subtypes by using PAM50 

classifier algorithm. In the classified samples, the actual mRNA expression values of 

transcription factor genes were correlated with fold-factor overrepresentation of the 

corresponding transcription factor binding site motif.  

Approaches as the one used in this paper demonstrate the differential overrepresentation of 

transcription factors binding sites corresponding to the differential expression pattern of genes 
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referred as molecular subtypes. Besides, the transcription factors corresponding to the 

significantly overrepresented transcription factor binding sites are representative of the 

biological characteristics of the subtypes. This work implicates further experimental studies to 

investigate and validate the precise regulatory interactions. 

Paper II: Potential tumorigenic programs associated 
with TP53 mutation status reveal role of VEGF 
pathway 
British Journal of Cancer, 2012; 107:10(1722-1728) 

Targeting differentially activated or perturbed tumor pathways is the key idea in 

individualized cancer therapy, which is emerging as an important option in treating cancers 

with poor prognostic profiles. With the view of obtaining better understanding about the 

molecular heterogeneity and for enhancing the translational potential of molecular classes, it 

is essential to identify novel classes that have prognostic, therapeutic and diagnostic 

significance. Known prognostic markers-based classification not only provide the insight 

about biological pathway activity differences between different phenotypes but also provides 

an opportunity of exploring other associated significant markers and thereby in help creating 

novel diagnostically meaningful classification. TP53 mutation status is known as a core 

determinant of survival in breast cancer. The pathways disrupted in association with TP53 

mutation status in tumors are not well characterized.   

TP53 is a key regulatory gene and an independent predictor of clinical progression, prognosis 

and therapeutic response of breast cancers, apart from the molecular subtypes. However, the 

driver pathways underlying the differential phenotype and their underlying regulatory 

interactions remain to be elucidated. TP53 mutation type (e.g. missense, frameshift, splice and 

nonsense mutations) and its location (such as within the CpG island, DNA-binding region and 

location in terms of the domain) of TP53 gene, subsequent influence on the extent of loss of 

transactivation ability or structural alteration of TP53 determines the prognosis and survival 

of breast cancers.   

In this study, we stratify breast cancers based on their TP53 mutation status and identify the 

set of dysregulated tumorigenic pathways and corresponding candidate driver genes using 
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breast cancer gene expression profiles. Expressions of these genes were evaluated for their 

effect on patient survival first in univariate models, followed by multivariate models with 

TP53 status as a covariate. 

The most strongly differentially enriched pathways between breast cancers stratified by TP53 

mutation status include in addition to TP53 signaling, several known cancer pathways 

involved in renal, prostate, pancreatic, colorectal, lung and other cancers, and signaling 

pathways such as calcium signaling, MAPK, ERBB and vascular endothelial growth factor 

(VEGF) signaling pathways. We found that mutant TP53 in conjunction with active estrogen 

receptor (ER) signaling significantly influence survival. We also found that upregulation of 

VEGFA mRNA levels in association with active ER signaling is a significant marker for poor 

survival, even in the presence of wild-type TP53. 

Consistent with the survival differences, we identified the class-specific candidate marker 

genes in each group. In contrast to the routinely used methods focusing on differential 

expressions of genes, we successfully applied a combined strategy that involved methods 

accounting for the condition-specific association by coherent expression or biased expression 

of genes. Genes driving the abnormal pathway activity were identified.  

This work concluded that mutation status of TP53 in breast cancer involves wide ranging 

derangement of signaling, metabolic and other pathways. Among the candidate genes of the 

significantly deranged pathways, VEGFA expression status is an important marker of survival 

even when controlled by TP53 mutation status. Interestingly, independent of the TP53 

mutation status, the survival effect of VEGFA was found significant in patients with active ER 

signaling (ER/PgR+), but not in those with ER/PgR− status. Therefore, this work proposes 

more studies to focus on the role of complex interplay between TP53, ER and VEGF 

signaling from therapeutic and prognostic context in breast cancer. 

 

Paper III: Implications of VEGFA upregulation on 
microRNA-mRNA Modules in Breast Cancers 
Interactions between MicroRNAs (miRNAs) and mRNAs form the crucial components of 

post-transcriptional regulation of gene expression both in healthy as well as in the malignant 
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state of the tissues. Given the tissue- and context-specificity of their function, it is useful to 

decipher modules of miRNAs and their targets that exhibit specific functionally correlated 

expression patterns in previously known classes of cancers. Many of these classes were earlier 

studied only by using their mRNA expressions and then the disease-specific networks were 

predicted based on protein-protein interactions.  

Activation of vascular endothelial growth factor (VEGF) pathway in breast cancer has been 

associated with high microvascular density, influencing prognosis and response to 

conventional hormonal therapy. In this study, breast cancers are categorized into a subgroup 

with upregulated VEGFA mRNA and a subgroup with normal/downregulated VEGFA 

mRNA levels. By using previously published miRNA and mRNA expression dataset of a 

Norwegian cohort from the same breast cancer cases, differential correlative expression 

patterns of miRNA modules and their predicted targets that overlap differentially expressed 

genes between the two groups of breast cancers are studied.   

Differential expression analysis revealed 36 miRNAs and 162 gene features differentially 

expressed between the two VEGFA expression groups. Predicted mRNA targets of miRNAs 

were obtained from the predicted miRNA target database. For each of differentially expressed 

miRNA, its correlation with the mRNA expression of its corresponding predicted target genes 

was computed.  Among the profiles with VEGFA-upregulation, miR-18a/18b/19a cluster, 

miR-9/9*, miR-342-3p/5p etc and downregulation of miR-149, miR-135b, miR-449a was 

observed. Anticorrelated targets of miRNAs upregulated in VEGFA+ group were enriched for 

angiogenesis pathway, biological processes of vasculature development and TGFβ signaling 

and focal adhesion. Whereas the anti-correlated targets of downregulated miRNAs in 

VEGFA+ group were found significantly associated with EGFR pathway.  

In this study, differential anti-correlative patterns between miRNAs and their targets with 

respect to the VEGFA expression status are found. More work is proposed for the validation 

of the findings on an independent dataset.  
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5 Discussion 
With the evolution of high-throughput technologies, omics profiling has generated large-scale 

data. This has implicated the need of developing efficient computational approaches, tools 

and methodological pipelines for genomic data analysis and correct interpretation.  DNA 

microarrays remains to be a technology with proven track record in providing the 

transcriptomic snapshot. Molecular breast cancer research has benefited considerably during 

the past decade as a result of these technologies.  

Pathway-based genomics and the study of the cancer heterogeneity require large size of 

cohorts where the independent pathway-based alterations can be characterized with sufficient 

statistical power. This implies the need of genomic data from large cohorts. With the 

exception of a few, there has been an increasing trend towards unrestricted public 

accessibility of data among the experimental biologists and cancer labs. As a result, large 

number of expression profile datasets and clinical profiles of patients have become available 

in public repositories. This has made it possible for the independent researchers to combine 

the datasets from different cohorts to achieve sufficient statistical power for the pursuit of 

biomarker discovery. Besides projects such as TCGA are going to be helpful to 

bioinformaticians and medical scientists in pursuing freelance research that can promote 

innovation.  

5.1 Methodological considerations 
This study involves the publicly available data from the Swedish and Norwegian cohorts. The 

analysis was performed on the raw data downloaded from the respective sources. 

Preprocessing was then performed with quality control and elimination of samples with either 

poor quality or high fraction of missing values.  

Paper I and II used PAM50-centroid based method [97] for categorizing the molecular 

portraits in expression profiles, rather than using the previously used centroid-based approach 

[98]. PAM50-centroid based method is based on small signature size and therefore improves 

objectivity. Besides it has shown higher predictive value for complete response among the 

patients with chemotherapy. 



41 
 

Paper II uses two different approaches – pathway-based and gene-based methods for 

identifying the p53 mutation class-specific signatures of breast cancer. This combined 

approach enhances the sensitivity of marker search, as it does not use strict cut-offs of 

differential expression methods but identifies genes with weaker differential expression active 

within the pathway. Thus it helps deriving more biological information compared to the 

previously published signatures.   

Intra-tumor heterogeneity is one of the significant limitations of the work presented in this 

thesis. Concurrent occurrence of cell subpopulations with differing clonality within a single 

tumor is referred as intra-tumoral heterogeneity.  These cell subpopulations possess different 

sets of genomic alterations. Even though tumor cells are believed to have originated from the 

same progenitor cell, during the evolution of the tumor cells are believed to achieve the 

diversity in genomic alterations, where these alterations confer differing degree and types of 

hallmark characteristics to the cell subpopulations. Some tumors show dominance of one 

clonal subpopulation with stable chromosomal structure (monogenomic), whereas others 

show presence of multiple clonal subpopulations at one or more locations (polygenomic) [99]. 

Tumor progression, aggressiveness, biological characteristics and even therapeutic response- 

can have considerable influence from the degree of intra-tumoral heterogeneity.  Intra-tumoral 

heterogeneity poses to be an issue for interpretation of microarray-based expression profiles 

because there is no way to ascertain which clonal subpopulations is represented in the biopsy 

material and subsequently derived expression profile.  Among the major implications of this 

unaddressed source of intra-tumor heterogeneity within tumor comes mainly from the cancer 

stem cells, as presence of stem cell population in the tumor might indicate poor response to 

chemotherapy [100] and increase the likelihood of recurrence. It is necessary to acknowledge 

that results from this study do not account for the cell population heterogeneity arising from 

the clonal architecture of the tumor. Despite of this limitation, it has been argued that intra-

tumor heterogeneity being a continuous and accumulative process, most subpopulations might 

represent the fundamental genomic alterations of diagnostic and prognostic significance 

[101].    

Paper I presents statistical overrepresentation of known transcription factor binding families 

in the promoter sequences of subtype-relevant clusters. The subtype-relevant clusters were not 

based on significance of co-expression within each subtype. Besides, the statistical 

overrepresentation as seen in this work only accounts for the overrepresentation of known or 
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predicted potential TFBS motifs from a proprietary database- Transfac and not 

uncharacterized motifs or known motifs from other database. However, we believe that 

Transfac database accommodates most motifs that can be interpreted for possible functional 

role based on the literature evidences. Previously uncharacterized motifs even when detected, 

could be difficult to explain their possible functional role.  

Even when the cohorts of all three datasets are primary breast cancers, the Ullevål cohort 

consists of the samples collected from relatively larger tumors and therefore it is likely that 

these tumors are relatively more advanced compared to the other two cohorts. But still the 

methodological stratification by TP53 mutations status and ER status might have controlled 

for any possible bias in the results.  

There are between-cohort variations in the treatment protocols of adjuvant regimens and that 

means that expression patterns of certain genes might vary accordingly, in particular genes 

influenced by immune response. These differences are not accounted in signatures. However, 

none of the study focuses on processes with major implications from therapeutic regimen 

(such as immune response) and therefore the results might not have been significantly biased 

by the therapeutic differences.  

The original aim of paper II was to infer the differentially perturbed pathways by p53 

mutation classes (such as missense within DNA-binding region, missense outside DNA-

binding region, non-missense etc). However, the analysis remained limited to major classes- 

wild-type p53 and mutant p53 in breast cancer because of lower number of individual 

mutation classes and non-availability of large publicly available data on p53 mutations and 

corresponding expression profiles.  

Paper II uses the large cross-platform cohort by merging the Swedish and Ullevål datasets by 

cross-platform normalization method for the validation of the signatures inferred on the 

primary dataset. Expression data in these three cohorts is based on different technology 

platforms. Differences in probe designs, labeling, hybridization, and scanning may lead to the 

variability in gene expression estimates. Sufficient evidence showing concordance between 

the cDNA arrays and Agilent or Affymetrix whole genome arrays is lacking.  Besides 

differences in the laboratory protocols, sample collection protocols are another source of 

variability. However, Affymetrix and cDNA platform-based data were merged using UniGene 

identifiers in order to compile them as a validateion dataset. Class-specific signatures derived 
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by analyzing the primary data (based on Agilent whole genome technology) were then 

validated. There is an evidence that variability of expressions because of the platform 

differences might not considerably change the model performance[102] in case of 

classification analysis, which means that sensitivity might not be affected by cross-platform 

variability. Therefore we consider that sensitivity to find the true positives in inferred 

signatures would have either remained unchanged or improved by performing analysis on a 

data from one platform and then validating it on a cross-platform dataset. In addition, it might 

have also helped eliminating the laboratory and platform-specific bias.  

Paper III studies VEGF expression class-specific miRNA-mRNA modular relationship. The 

two basic assumptions for the study are: 1. Class-specific anti-correlation between the 

expression values of differentially expressed miRNA and putative target mRNA indicates 

potential functional regulatory role of the miRNA on the target mRNA. Putative target mRNA 

means a predicted target site with good mirSVR score (score <= 0.1 obtained by mirSVR 

algorithm) and conserved miRNA according to microRNA.org [103].  2. Downregulation or 

upregulation of mRNA target is a consequence of differentially expressed (in opposite 

direction) and anti-correlated putative regulatory miRNA and is not as a result of any other 

factors such as epigenetics, gene-protein and protein-protein interactions etc. These 

assumptions might not always hold true. MiRNAs act on several pathways and processes and 

can regulate many genes, however functional role of many miRNAs is not sufficiently 

proven. Therefore it is could be difficult to prove that the regulatory role of miRNA is the 

only major role associated with the consequence on the expression of the target. This 

limitation remains true even in case of experimentally validated regulatory relationship. Many 

of the regulatory functions of miRNAs are often transient, cell-condition and tissue-specific. 

Therefore considerable fraction of the inferred miRNA-mRNA regulatory interactions might 

be false positives. Despite of these limitations, there is no doubt that the computational 

pipeline used here forms an extremely useful means to formulate a hypothetical miRNA-

mRNA regulation network that can be validated by suitable experimental methods. 

5.2 Future directions 
The work presented in the thesis has got several interesting dimensions. Here some of the 

possible developments of this work are discussed.  
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Paper I presents a group of interesting transcription factors that are significantly 

overrepresented in the subtype-distributing gene promoter sequences. This analysis was 

performed on proximal promoters (–500 bp to +100 bp from the transcription start site) of the 

subtype distinguishing genes. The possible directions from this work are the following: 1. 

Instead of a subset of subtype-classifier genes, genes that follow class-specific significant co-

expression can be used in the analysis. 2. This work involves the putative regulatory region of 

–500 bp to +100 bp relative to the TSS. Because it is known that this region in proximity of 

the transcription start site has high density of functional transcription factor binding sites. 

However, there are other regulatory elements that occur in the distal promoter regions and 

they follow the sequence-based binding. 3. Transcription regulation might often involve a 

combination of multiple transcription factors binding on a same set of promoters, referred as 

cis-regulatory modules. Linking the cis- regulatory modules to a set of class-defining cluster 

genes could be a possible direction. 4. This analysis searched for the known transcription 

factor binding sites for the motifs (motif families) included in the Transfac database. Inclusion 

of motifs from multiple other databases such as Jaspar, ORegAnno after eliminating 

redundant motifs could be a strategy to expand the spectrum of search. 5. For a given set of 

transcription factor families that were found significantly overrepresented within the subtype-

distinguishing gene promoters, experimental validation using ChIP followed by ChIP-Seq 

could be performed.  

Paper II is presents the pathway analysis of breast cancer expression profiles by using the 

mutation status of p53 gene (wild-type versus mutant p53 gene). Primary dataset included 111 

samples, out of which 73 were included in the wild-type and 38 in the mutant p53 class. It is 

important to note here that the effect of p53 mutation varies considerably depending upon the 

location and type of the mutation on the p53 gene and consequent loss of function on resultant 

p53 protein. Mutation status of p53 can be categorized into subclasses that can be described as 

TP53 mutation effect groups[104], because of their differing degree of impact on patient 

survival. Besides, mutations located on specific positions on p53 central DNA binding region 

are relatively more frequent. Study focusing on the effect of the individual p53 mutation types 

and mutation effect group could provide interesting insight into the effects of p53 mutation.  

The plan is to obtain a large publicly available dataset and then to apply the similar 

methodological pipeline using the individual mutations as well as p53 mutation effect groups 

(such as missense within DNA-binding region, missense outside DNA-binding region, non-



45 
 

missense etc) as classes. Such an analysis would reveal a set of biological pathways that 

differentially activated according to p53 mutation effect group.  

Analysis presented in Paper III compares the mRNA and miRNA expression profiles of same 

breast cancer samples categorized into two classes according to VEGF expression status and 

identified differentially expressed genes and miRNAs. By using a predicted target site 

database for humans (August 2010 release, available from microRNA.org) having good 

mirSVR score (score <= 0.1 obtained by mirSVR algorithm) and conserved miRNA, sets of 

predicted mRNA targets were obtained for each of the differentially expressed miRNAs. 

Correlation was then computed between class-specific expression values of each of the 

miRNA and its potential target mRNA. Significantly anti-correlated and differentially 

expressed (in opposite direction) mRNAs were considered as potential targets.  In this 

analysis pipeline, some modifications are possible. Instead of using the predicted target site 

database, it is possible to use miRNA target predicting algorithm alone or in combination of 

one or more of the target site database. MiRNA annotation and their functional GO terms are 

poorly defined, but one can perform the functional representation of analysis by using 

custom-made miRNA functional database. The results obtained in this analysis will be 

validated with a publicly available independent dataset of miRNA and mRNA expression 

profiles. Moreover, experimental demonstration of miRNA-mRNA target functional 

interaction in cell-lines with VEGF upregulation is possible. 

  



46 
 

References 
1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM: Estimates of 

worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010, 
127(12):2893-2917. 

2. Howlader N NA, Krapcho M, Garshell J, Neyman N, Altekruse SF, Kosary CL, Yu 
M, Ruhl J, Tatalovich Z, Cho H, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin 
KA (eds). SEER Cancer Statistics Review, 1975-2010. In. Bethesda, MD: National 
Cancer Institute; 2013. 

3. Straver ME, Glas AM, Hannemann J, Wesseling J, van de Vijver MJ, Rutgers EJ, 
Vrancken Peeters MJ, van Tinteren H, Van't Veer LJ, Rodenhuis S: The 70-gene 
signature as a response predictor for neoadjuvant chemotherapy in breast 
cancer. Breast Cancer Res Treat 2010, 119(3):551-558. 

4. Mook S, Schmidt MK, Viale G, Pruneri G, Eekhout I, Floore A, Glas AM, Bogaerts J, 
Cardoso F, Piccart-Gebhart MJ et al: The 70-gene prognosis-signature predicts 
disease outcome in breast cancer patients with 1-3 positive lymph nodes in an 
independent validation study. Breast Cancer Res Treat 2009, 116(2):295-302. 

5. Cardoso F, Van't Veer L, Rutgers E, Loi S, Mook S, Piccart-Gebhart MJ: Clinical 
application of the 70-gene profile: the MINDACT trial. J Clin Oncol 2008, 
26(5):729-735. 

6. Sparano JA: TAILORx: trial assigning individualized options for treatment (Rx). 
Clinical breast cancer 2006, 7(4):347-350. 

7. Blows FM, Driver KE, Schmidt MK, Broeks A, van Leeuwen FE, Wesseling J, 
Cheang MC, Gelmon K, Nielsen TO, Blomqvist C et al: Subtyping of breast cancer 
by immunohistochemistry to investigate a relationship between subtype and 
short and long term survival: a collaborative analysis of data for 10,159 cases 
from 12 studies. PLoS Med 2010, 7(5):e1000279. 

8. Glas AM, Floore A, Delahaye LJ, Witteveen AT, Pover RC, Bakx N, Lahti-Domenici 
JS, Bruinsma TJ, Warmoes MO, Bernards R et al: Converting a breast cancer 
microarray signature into a high-throughput diagnostic test. BMC Genomics 
2006, 7:278. 

9. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, Baehner FL, Walker MG, Watson 
D, Park T et al: A multigene assay to predict recurrence of tamoxifen-treated, 
node-negative breast cancer. N Engl J Med 2004, 351(27):2817-2826. 

10. Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F, Talantov D, 
Timmermans M, Meijer-van Gelder ME, Yu J et al: Gene-expression profiles to 
predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 
2005, 365(9460):671-679. 

11. Liu R, Wang X, Chen GY, Dalerba P, Gurney A, Hoey T, Sherlock G, Lewicki J, 
Shedden K, Clarke MF: The prognostic role of a gene signature from tumorigenic 
breast-cancer cells. N Engl J Med 2007, 356(3):217-226. 

12. Heller T, Kirchheiner J, Armstrong VW, Luthe H, Tzvetkov M, Brockmoller J, 
Oellerich M: AmpliChip CYP450 GeneChip: a new gene chip that allows rapid 
and accurate CYP2D6 genotyping. Ther Drug Monit 2006, 28(5):673-677. 

13. Ayers M, Symmans WF, Stec J, Damokosh AI, Clark E, Hess K, Lecocke M, Metivier 
J, Booser D, Ibrahim N et al: Gene expression profiles predict complete pathologic 
response to neoadjuvant paclitaxel and fluorouracil, doxorubicin, and 
cyclophosphamide chemotherapy in breast cancer. J Clin Oncol 2004, 
22(12):2284-2293. 



47 
 

14. Rouzier R, Pusztai L, Delaloge S, Gonzalez-Angulo AM, Andre F, Hess KR, Buzdar 
AU, Garbay JR, Spielmann M, Mathieu MC et al: Nomograms to predict pathologic 
complete response and metastasis-free survival after preoperative chemotherapy 
for breast cancer. J Clin Oncol 2005, 23(33):8331-8339. 

15. Chang HY, Nuyten DS, Sneddon JB, Hastie T, Tibshirani R, Sorlie T, Dai H, He YD, 
van't Veer LJ, Bartelink H et al: Robustness, scalability, and integration of a 
wound-response gene expression signature in predicting breast cancer survival. 
Proc Natl Acad Sci U S A 2005, 102(10):3738-3743. 

16. Tutt A, Wang A, Rowland C, Gillett C, Lau K, Chew K, Dai H, Kwok S, Ryder K, 
Shu H et al: Risk estimation of distant metastasis in node-negative, estrogen 
receptor-positive breast cancer patients using an RT-PCR based prognostic 
expression signature. BMC Cancer 2008, 8:339. 

17. Perreard L, Fan C, Quackenbush JF, Mullins M, Gauthier NP, Nelson E, Mone M, 
Hansen H, Buys SS, Rasmussen K et al: Classification and risk stratification of 
invasive breast carcinomas using a real-time quantitative RT-PCR assay. Breast 
Cancer Res 2006, 8(2):R23. 

18. Ma XJ, Wang Z, Ryan PD, Isakoff SJ, Barmettler A, Fuller A, Muir B, Mohapatra G, 
Salunga R, Tuggle JT et al: A two-gene expression ratio predicts clinical outcome 
in breast cancer patients treated with tamoxifen. Cancer Cell 2004, 5(6):607-616. 

19. Davis LM, Harris C, Tang L, Doherty P, Hraber P, Sakai Y, Bocklage T, Doeden K, 
Hall B, Alsobrook J et al: Amplification patterns of three genomic regions predict 
distant recurrence in breast carcinoma. The Journal of molecular diagnostics : 
JMD 2007, 9(3):327-336. 

20. Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z, Hernandez-Boussard T, 
Livasy C, Cowan D, Dressler L et al: Immunohistochemical and clinical 
characterization of the basal-like subtype of invasive breast carcinoma. Clin 
Cancer Res 2004, 10(16):5367-5374. 

21. Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K, Karaca G, 
Troester MA, Tse CK, Edmiston S et al: Race, breast cancer subtypes, and survival 
in the Carolina Breast Cancer Study. JAMA 2006, 295(21):2492-2502. 

22. Spitale A, Mazzola P, Soldini D, Mazzucchelli L, Bordoni A: Breast cancer 
classification according to immunohistochemical markers: clinicopathologic 
features and short-term survival analysis in a population-based study from the 
South of Switzerland. Ann Oncol 2009, 20(4):628-635. 

23. Cheang MC, Chia SK, Voduc D, Gao D, Leung S, Snider J, Watson M, Davies S, 
Bernard PS, Parker JS et al: Ki67 index, HER2 status, and prognosis of patients 
with luminal B breast cancer. J Natl Cancer Inst 2009, 101(10):736-750. 

24. Marcus JN, Watson P, Page DL, Narod SA, Lenoir GM, Tonin P, Linder-Stephenson 
L, Salerno G, Conway TA, Lynch HT: Hereditary breast cancer: pathobiology, 
prognosis, and BRCA1 and BRCA2 gene linkage. Cancer 1996, 77(4):697-709. 

25. Vincent-Salomon A, Gruel N, Lucchesi C, MacGrogan G, Dendale R, Sigal-Zafrani 
B, Longy M, Raynal V, Pierron G, de Mascarel I et al: Identification of typical 
medullary breast carcinoma as a genomic sub-group of basal-like carcinomas, a 
heterogeneous new molecular entity. Breast Cancer Res 2007, 9(2). 

26. Walsh MM, Bleiweiss IJ: Invasive micropapillary carcinoma of the breast: eighty 
cases of an underrecognized entity. Hum Pathol 2001, 32(6):583-589. 

27. Nassar H, Wallis T, Andea A, Dey J, Adsay V, Visscher D: Clinicopathologic 
analysis of invasive micropapillary differentiation in breast carcinoma. Mod 
Pathol 2001, 14(9):836-841. 



48 
 

28. Papadatos G, Rangan AM, Psarianos T, Ung O, Taylor R, Boyages J: Probability of 
axillary node involvement in patients with tubular carcinoma of the breast. Br J 
Surg 2001, 88(6):860-864. 

29. Shousha S, Coady AT, Stamp T, James KR, Alaghband-Zadeh J: Oestrogen 
receptors in mucinous carcinoma of the breast: an immunohistological study 
using paraffin wax sections. J Clin Pathol 1989, 42(9):902-905. 

30. Venable JG, Schwartz AM, Silverberg SG: Infiltrating cribriform carcinoma of the 
breast: a distinctive clinicopathologic entity. Hum Pathol 1990, 21(3):333-338. 

31. Sastre-Garau X, Jouve M, Asselain B, Vincent-Salomon A, Beuzeboc P, Dorval T, 
Durand JC, Fourquet A, Pouillart P: Infiltrating lobular carcinoma of the breast. 
Clinicopathologic analysis of 975 cases with reference to data on conservative 
therapy and metastatic patterns. Cancer 1996, 77(1):113-120. 

32. Marchetti A, Buttitta F, Pellegrini S, Campani D, Diella F, Cecchetti D, Callahan R, 
Bistocchi M: p53 mutations and histological type of invasive breast carcinoma. 
Cancer Res 1993, 53(19):4665-4669. 

33. Soomro S, Shousha S, Taylor P, Shepard HM, Feldmann M: c-erbB-2 expression in 
different histological types of invasive breast carcinoma. J Clin Pathol 1991, 
44(3):211-214. 

34. Ercan C, van Diest PJ, van der Ende B, Hinrichs J, Bult P, Buerger H, van der Wall E, 
Derksen PW: p53 mutations in classic and pleomorphic invasive lobular 
carcinoma of the breast. Cellular oncology 2012, 35(2):111-118. 

35. Monk N, Efroni S, Schaefer CF, Buetow KH: Identification of Key Processes 
Underlying Cancer Phenotypes Using Biologic Pathway Analysis. PLoS One 2007, 
2(5):e425. 

36. Guo Z, Zhang T, Li X, Wang Q, Xu J, Yu H, Zhu J, Wang H, Wang C, Topol EJ et al: 
Towards precise classification of cancers based on robust gene functional 
expression profiles. BMC Bioinformatics 2005, 6:58. 

37. Pritchard KI: Endocrine therapy of advanced disease: analysis and implications of 
the existing data. Clinical cancer research : an official journal of the American 
Association for Cancer Research 2003, 9(1 Pt 2):460S-467S. 

38. Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes. Nucleic 
Acids Res 2000, 28(1):27-30. 

39. Matthews L, D'Eustachio P, Croft D, de Bono B, Gopinath G, Jassal B, Lewis S, 
Schmidt E, Vastrik I, Wu G et al: An Introduction to the Reactome Knowledgebase 
of Human Biological Pathways and Processes. NCI Nature Pathway Interaction 
Database 2007. 

40. Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, Buetow KH: PID: 
the Pathway Interaction Database. Nucleic Acids Res 2009, 37(Database 
issue):D674-679. 

41. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdottir H, Tamayo P, Mesirov JP: 
Molecular signatures database (MSigDB) 3.0. Bioinformatics 2011, 27(12):1739-
1740. 

42. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, 
Dolinski K, Dwight SS, Eppig JT et al: Gene ontology: tool for the unification of 
biology. The Gene Ontology Consortium. Nat Genet 2000, 25(1):25-29. 

43. Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, Diemer K, 
Muruganujan A, Narechania A: PANTHER: a library of protein families and 
subfamilies indexed by function. Genome Res 2003, 13(9):2129-2141. 



49 
 

44. Demir E, Cary MP, Paley S, Fukuda K, Lemer C, Vastrik I, Wu G, D'Eustachio P, 
Schaefer C, Luciano J et al: The BioPAX community standard for pathway data 
sharing. Nat Biotechnol 2010, 28(9):935-942. 

45. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein 
BJ, Bray D, Cornish-Bowden A et al: The systems biology markup language 
(SBML): a medium for representation and exchange of biochemical network 
models. Bioinformatics 2003, 19(4):524-531. 

46. Balmain A: Cancer as a complex genetic trait: Tumor susceptibility in humans 
and mouse models. Cell 2002, 108(2):145-152. 

47. Goeman JJ, van de Geer SA, de Kort F, van Houwelingen HC: A global test for 
groups of genes: testing association with a clinical outcome. Bioinformatics 
(Oxford, England) 2004, 20(1):93-99. 

48. Lee E, Chuang H-Y, Kim J-W, Ideker T, Lee D: Inferring pathway activity toward 
precise disease classification. PLoS Comp Biol 2008, 4(11):e1000217. 

49. Lehner B, Crombie C, Tischler J, Fortunato A, Fraser AG: Systematic mapping of 
genetic interactions in Caenorhabditis elegans identifies common modifiers of 
diverse signaling pathways. Nat Genet 2006, 38(8):896-903. 

50. Norberg T, Klaar S, K\"arf G, Nordgren H, Holmberg L, Bergh J: Increased p53 
mutation frequency during tumor progression--results from a breast cancer 
cohort. Cancer Res 2001, 61(22):8317--8321. 

51. D'Assoro AB, Leontovich A, Amato A, Ayers-Ringler JR, Quatraro C, Hafner K, 
Jenkins RB, Libra M, Ingle J, Stivala F et al: Abrogation of p53 function leads to 
metastatic transcriptome networks that typify tumor progression in human 
breast cancer xenografts. Int J Oncol 2010, 37:1167-1176. 

52. Aas T, Børresen AL, Geisler S, Smith-Sørensen B, Johnsen H, Varhaug JE, Akslen 
LA, Lønning PE: Specific P53 mutations are associated with de novo resistance to 
doxorubicin in breast cancer patients. Nat Med 1996, 2:811-814. 

53. Bertheau P, Turpin E, Rickman DS, Espié M, De Reyniès A, Feugeas J-P, Plassa L-F, 
Soliman H, Varna M, De Roquancourt A et al: Exquisite Sensitivity of TP53 Mutant 
and Basal Breast Cancers to a Dose-Dense Epirubicin−Cyclophosphamide 
Regimen. PLoS Med 2007, 4:10. 

54. Takahashi S, Moriya T, Ishida T, Shibata H, Sasano H, Ohuchi N, Ishioka C: 
Prediction of breast cancer prognosis by gene expression profile of TP53 status. 
Cancer Sci 2008, 99:324-332. 

55. Berns EM, Foekens JA, Vossen R, Look MP, Devilee P, Henzen-Logmans SC, Van 
Staveren IL, Van Putten WL, Inganas M, Meijer-Van Gelder ME et al: Complete 
sequencing of TP53 predicts poor response to systemic therapy of advanced 
breast cancer. Cancer Res 2000, 60:2155-2162. 

56. Molchadsky A, Rivlin N, Brosh R, Rotter V, Sarig R: p53 is balancing development, 
differentiation and de-differentiation to assure cancer prevention. Carcinogenesis 
2010, 31(9):1501-1508. 

57. Teodoro JG, Evans SK, Green MR: Inhibition of tumor angiogenesis by p53: a new 
role for the guardian of the genome. J Mol Med (Berl) 2007, 85(11):1175-1186. 

58. Lebedeva MA, Eaton JS, Shadel GS: Loss of p53 causes mitochondrial DNA 
depletion and altered mitochondrial reactive oxygen species homeostasis. Biochim 
Biophys Acta 2009, 1787(5):328-334. 

59. Kawauchi K, Araki K, Tobiume K, Tanaka N: P53 regulates glucose metabolism 
through an IKK-NF-kappa B pathway and inhibits cell transformation. Nat Cell 
Biol 2008, 10(5):611-618. 



50 
 

60. Suzuki S, Tanaka T, Poyurovsky MV, Nagano H, Mayama T, Ohkubo S, Lokshin M, 
Hosokawa H, Nakayama T, Suzuki Y et al: Phosphate-activated glutaminase 
(GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen 
species. Proc Natl Acad Sci U S A 2010, 107(16):7461-7466. 

61. Budanou AV, Lee JH, Karin M: Stressin' Sestrins take an aging fight. Embo Mol 
Med 2010, 2(10):388-400. 

62. Bailey ST, Shin H, Westerling T, Liu XS, Brown M: Estrogen receptor prevents 
p53-dependent apoptosis in breast cancer. Proc Natl Acad Sci U S A 2012, 
109(44):18060-18065. 

63. Sayeed A, Konduri SD, Liu W, Bansal S, Li F, Das GM: Estrogen receptor alpha 
inhibits p53-mediated transcriptional repression: implications for the regulation 
of apoptosis. Cancer Res 2007, 67(16):7746-7755. 

64. Konduri SD, Medisetty R, Liu W, Kaipparettu BA, Srivastava P, Brauch H, Fritz P, 
Swetzig WM, Gardner AE, Khan SA et al: Mechanisms of estrogen receptor 
antagonism toward p53 and its implications in breast cancer therapeutic 
response and stem cell regulation. Proc Natl Acad Sci U S A 2010, 107(34):15081-
15086. 

65. Jordan JJ, Inga A, Conway K, Edmiston S, Carey LA, Wu L, Resnick MA: Altered-
function p53 missense mutations identified in breast cancers can have subtle 
effects on transactivation. Molecular cancer research : MCR 2010, 8(5):701-716. 

66. Rowan S, Ludwig RL, Haupt Y, Bates S, Lu X, Oren M, Vousden KH: Specific loss 
of apoptotic but not cell-cycle arrest function in a human tumor derived p53 
mutant. EMBO J 1996, 15(4):827-838. 

67. Vaseva AV, Moll UM: The mitochondrial p53 pathway. Biochim Biophys Acta 
2009, 1787(5):414-420. 

68. Heyne K, Schmitt K, Mueller D, Armbruester V, Mestres P, Roemer K: Resistance of 
mitochondrial p53 to dominant inhibition. Mol Cancer 2008, 7:54. 

69. Werner H, Karnieli E, Rauscher FJ, LeRoith D: Wild-type and mutant p53 
differentially regulate transcription of the insulin-like growth factor I receptor 
gene. Proc Natl Acad Sci U S A 1996, 93(16):8318-8323. 

70. Gallagher EJ, LeRoith D: Minireview: IGF, Insulin, and Cancer. Endocrinology 
2011, 152(7):2546-2551. 

71. Berns EM, Klijn JG, Look MP, Grebenchtchikov N, Vossen R, Peters H, Geurts-
Moespot A, Portengen H, van Staveren IL, Meijer-van Gelder ME et al: Combined 
vascular endothelial growth factor and TP53 status predicts poor response to 
tamoxifen therapy in estrogen receptor-positive advanced breast cancer. Clin 
Cancer Res 2003, 9(4):1253-1258. 

72. Weisz L, Damalas A, Liontos M, Karakaidos P, Fontemaggi G, Maor-Aloni R, Kalis 
M, Levrero M, Strano S, Gorgoulis VG et al: Mutant p53 enhances nuclear factor 
kappaB activation by tumor necrosis factor alpha in cancer cells. Cancer Res 
2007, 67(6):2396-2401. 

73. Roemer K: Mutant p53: gain-of-function oncoproteins and wild-type p53 
inactivators. Biol Chem 1999, 380:879-887. 

74. Joshi H, Bhanot G, Borresen-Dale AL, Kristensen V: Potential tumorigenic 
programs associated with TP53 mutation status reveal role of VEGF pathway. Br 
J Cancer 2012, 107(10):1722-1728. 

75. Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell 2011, 
144(5):646-674. 

76. Segal E, Friedman N, Koller D, Regev A: A module map showing conditional 
activity of expression modules in cancer. Nat Genet 2004, 36(10):1090-1098. 



51 
 

77. Goeman JJ, Buhlmann P: Analyzing gene expression data in terms of gene sets: 
methodological issues. Bioinformatics 2007, 23(8):980-987. 

78. Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D, Joshi MB, Harpole D, 
Lancaster JM, Berchuck A et al: Oncogenic pathway signatures in human cancers 
as a guide to targeted therapies. Nature 2006, 439(7074):353-357. 

79. Bergmann S, Ihmels J, Barkai N: Iterative signature algorithm for the analysis of 
large-scale gene expression data. Physical review E, Statistical, nonlinear, and soft 
matter physics 2003, 67(3 Pt 1):031902. 

80. Dinu I, Potter JD, Mueller T, Liu Q, Adewale AJ, Jhangri GS, Einecke G, Famulski 
KS, Halloran P, Yasui Y: Improving gene set analysis of microarray data by SAM-
GS. BMC Bioinformatics 2007, 8(1):242. 

81. Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays applied to 
the ionizing radiation response. Proc Natl Acad Sci U S A 2001, 98(9):5116-5121. 

82. Tian L, Greenberg SA, Kong SW, Altschuler J, Kohane IS, Park PJ: Discovering 
statistically significant pathways in expression profiling studies. Proc Natl Acad 
Sci U S A 2005, 102(38):13544-13549. 

83. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, 
Paulovich A, Pomeroy SL, Golub TR, Lander ES et al: Gene set enrichment 
analysis: a knowledge-based approach for interpreting genome-wide expression 
profiles. Proc Natl Acad Sci U S A 2005, 102(43):15545-15550. 

84. Barry WT, Nobel AB, Wright FA: Significance analysis of functional categories in 
gene expression studies: a structured permutation approach. Bioinformatics 2005, 
21(9):1943-1949. 

85. Smyth GK: Limma: linear models for microarray data. In: Bioinformatics and 
Computational Biology Solutions using R and Bioconductor. Edited by Gentleman R, 
Carey V, Duboit S, Irizarry R, Hubber W. New York: Springer; 2005. 

86. Toft D, Shyamala G, Gorski J: A Receptor Molecule for Estrogens - Studies Using 
a Cell-Free System. Proc Natl Acad Sci U S A 1967, 57(6):1740-&. 

87. Kaufmann M, von Minckwitz G, Rody A: Preoperative (neoadjuvant) systemic 
treatment of breast cancer. Breast 2005, 14(6):576-581. 

88. Gennari A, Conte P, Rosso R, Orlandini C, Bruzzi P: Survival of metastatic breast 
carcinoma patients over a 20-year period: a retrospective analysis based on 
individual patient data from six consecutive studies. Cancer 2005, 104(8):1742-
1750. 

89. Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, Slamon 
DJ, Murphy M, Novotny WF, Burchmore M et al: Efficacy and safety of 
trastuzumab as a single agent in first-line treatment of HER2-overexpressing 
metastatic breast cancer. J Clin Oncol 2002, 20(3):719-726. 

90. Arpino G, Gutierrez C, Weiss H, Rimawi M, Massarweh S, Bharwani L, De Placido 
S, Osborne CK, Schiff R: Treatment of human epidermal growth factor receptor 
2-overexpressing breast cancer xenografts with multiagent HER-targeted 
therapy. J Natl Cancer Inst 2007, 99(9):694-705. 

91. Nahta R, Shabaya S, Ozbay T, Rowe DL: Personalizing HER2-targeted therapy in 
metastatic breast cancer beyond HER2 status: what we have learned from 
clinical specimens. Current pharmacogenomics and personalized medicine 2009, 
7(4):263-274. 

92. Nahta R, Yuan LX, Zhang B, Kobayashi R, Esteva FJ: Insulin-like growth factor-I 
receptor/human epidermal growth factor receptor 2 heterodimerization 
contributes to trastuzumab resistance of breast cancer cells. Cancer Res 2005, 
65(23):11118-11128. 



52 
 

93. Munos B: Lessons from 60 years of pharmaceutical innovation. Nature reviews 
Drug discovery 2009, 8(12):959-968. 

94. Wiedswang G, Borgen E, Karesen R, Kvalheim G, Nesland JM, Qvist H, Schlichting 
E, Sauer T, Janbu J, Harbitz T et al: Detection of isolated tumor cells in bone 
marrow is an independent prognostic factor in breast cancer. J Clin Oncol 2003, 
21(18):3469-3478. 

95. Bergh J, Norberg T, Sjogren S, Lindgren A, Holmberg L: Complete sequencing of 
the p53 gene provides prognostic information in breast cancer patients, 
particularly in relation to adjuvant systemic therapy and radiotherapy. Nat Med 
1995, 1(10):1029-1034. 

96. Miller LD, Smeds J, George J, Vega VB, Vergara L, Ploner A, Pawitan Y, Hall P, 
Klaar S, Liu ET et al: An expression signature for p53 status in human breast 
cancer predicts mutation status, transcriptional effects, and patient survival. Proc 
Natl Acad Sci U S A 2005, 102(38):13550-13555. 

97. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, Davies S, Fauron 
C, He X, Hu Z et al: Supervised risk predictor of breast cancer based on intrinsic 
subtypes. J Clin Oncol 2009, 27(8):1160-1167. 

98. Kapp AV, Jeffrey SS, Langerod A, Borresen-Dale AL, Han W, Noh DY, Bukholm IR, 
Nicolau M, Brown PO, Tibshirani R: Discovery and validation of breast cancer 
subtypes. BMC Genomics 2006, 7:231. 

99. Navin N, Krasnitz A, Rodgers L, Cook K, Meth J, Kendall J, Riggs M, Eberling Y, 
Troge J, Grubor V et al: Inferring tumor progression from genomic heterogeneity. 
Genome Res 2010, 20(1):68-80. 

100. Singh A, Settleman J: EMT, cancer stem cells and drug resistance: an emerging 
axis of evil in the war on cancer. Oncogene 2010, 29(34):4741-4751. 

101. Li J, Wang K, Jensen TD, Li S, Bolund L, Wiuf C: Tumor heterogeneity in 
neoplasms of breast, colon, and skin. BMC research notes 2010, 3:321. 

102. Fan X, Shao L, Fang H, Tong W, Cheng Y: Cross-platform comparison of 
microarray-based multiple-class prediction. PLoS One 2011, 6(1):e16067. 

103. Betel D, Koppal A, Agius P, Sander C, Leslie C: Comprehensive modeling of 
microRNA targets predicts functional non-conserved and non-canonical sites. 
Genome biology 2010, 11(8):R90. 

104. Olivier M, Langerød A, Carrieri P, Bergh J, Klaar S, Eyfjord J, Theillet C, Rodriguez 
C, Lidereau R, Bièche I et al: The clinical value of somatic TP53 gene mutations in 
1,794 patients with breast cancer. Clin Cancer Res 2006, 12:1157-1167. 

 

 



I





RESEARCH ARTICLE Open Access

Overrepresentation of transcription factor families
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Abstract

Background: The human genome contains a large amount of cis-regulatory DNA elements responsible for
directing both spatial and temporal gene-expression patterns. Previous studies have shown that based on their
mRNA expression breast tumors could be divided into five subgroups (Luminal A, Luminal B, Basal, ErbB2+ and
Normal-like), each with a distinct molecular portrait. Whole genome gene expression analysis of independent sets of
breast tumors reveals repeatedly the robustness of this classification. Furthermore, breast tumors carrying a TP53
mutation show a distinct gene expression profile, which is in strong association to the distinct molecular portraits.
The mRNA expression of 552 genes, which varied considerably among the different tumors, but little between two
samples of the same tumor, has been shown to be sufficient to separate these tumor subgroups.

Results: We analyzed in silico the transcriptional regulation of genes defining the subgroups at 3 different levels: 1.
We studied the pathways in which the genes distinguishing the subgroups of breast cancer may be jointly
involved including upstream regulators (1st and 2nd level of regulation) as well as downstream targets of these
genes. 2. Then we analyzed the promoter areas of these genes (−500 bp to +100 bp relative to the transcription
start site) for canonical transcription binding sites using Genomatix. 3. We looked for the actual expression levels of
the identified TF and how they correlate with the overrepresentation of their TF binding sites in the separate
groups. We report that promoter composition of the genes that most strongly predict the patient subgroups is
distinct. The class-predictive genes showed a clearly different degree of overrepresentation of transcription factor
families in their promoter sequences.

Conclusion: The study suggests that transcription factors responsible for the observed expression pattern in breast
cancers may lead us to important biological pathways.

Background
Previous studies have shown that breast tumors can be
divided into five subgroups (Luminal A, Luminal B,
Normal-like, ErbB2 over-expressing, and Basal-like)
based on their mRNA expression patterns [1]. These
patterns have been validated in independent datasets
representing different laboratories, platforms and differ-
ent patient cohorts [2]. Survival analyses on a sub-cohort
of patients with locally advanced breast cancer showed a

significant difference in outcome of the patients in the
various expression subgroups, with poor prognosis for
the ErbB2+ and basal-like subtypes [2]. The expression
of 552 genes, the intrinsic gene list, has been suggested
to be sufficient to separate breast carcinomas into the
five distinct subgroups. What mechanisms of common
regulation make these genes cluster together? We
have previously shown that we can separate the pa-
tient clusters based only on the promoter composition
of single binding sites in the promoters of the genes
from the intrinsic gene list [3]. However, regulation of
gene expression in eukaryotes is highly complex and
depends on sets of TFs rather than individual TFs [4]
and in this study we attempt to characterize the over-
representation of entire TF families. The promoter
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composition of the genes is one of the major determi-
nants of gene regulation including multiple transcrip-
tion binding sites that interact with a specific
combination of transcription factors (TF). Eukaryotes
achieve this diversity by combining a small number of
transcription factors whose activities are modulated by
diverse sets of conditions [5]. Different functionalities
can be conferred on one TF by its association with dif-
ferent co-factors. These factors may act as global TFs
that assist their gene-specific partners in their function,
and may thus activate or repress transcription depend-
ing on the partner motif and the condition [5]. Analyz-
ing transcription network dynamics in yeast, Luscombe
et al. showed that, in response to diverse stimuli, tran-
scription factors may alter their interaction patterns to
varying degree, thereby rewiring the network [6]. While
few transcription factors serve as permanent hubs, most
of them act transiently during certain conditions. Ex-
ogenous processes like environmental responses facili-
tated fast signal transductions to multiple genes with
short regulatory cascades, whereas endogenous pro-
cesses needed to progress through multiple stages with
a complex combination of TFs to fewer target genes [6].
The same TFs may act both in endogenous and exogen-
ous processes. Regulatory hubs targeting disproportion-
ately large numbers of genes and thereby representing
the most influential components of a network- have
been described. Both Pilpel [5] and Luscombe [6] con-
cluded that precise regulation of a condition cannot
arise from the specificity of individual TFs, therefore
combinatorial TF usage seems to be the key. The NF-
κB family of TFs is an example of transcription regula-
tors that are activated by both intra- and extra-cellular
stimuli such as cytokines, oxidant-free radicals, ultravio-
let irradiation, and bacterial or viral products [7]. Aber-
rant NF-κB activity has been implicated in
carcinogenesis and in the control of cellular response to
anti-cancer agents. Activated NF-κB was detected pre-
dominantly in ER-negative breast tumors, and mostly in
the ErbB2 over-expressing tumor subgroup [8].

Methods
The in silico analysis of the transcriptional regulation
of genes defining the subgroups was performed at
three different levels: (1) Study of the pathways in
which the genes distinguishing the subgroups of
breast cancer may be jointly involved including up-
stream regulators (1st and 2nd level of regulation) as
well as downstream targets of these genes. (2) Then
we analyzed the promoter areas of these genes (−500
bp to +100 bp relative to the transcription start site)
for canonical transcription binding sites using Geno-
matix. (3) We looked for the actual expression levels
of the identified TF and how they correlate with the

overrepresentation of their TF binding sites in the
separate groups.

Selection of genes
The expression of 552 genes, the intrinsic gene list,
which has been suggested to be sufficient to separate
breast carcinomas into the five distinct subgroups
defined in [1] and [2,9] was used for the pathway ana-
lysis in this study (referred to as full list). A subset con-
sisting of 197 genes [10] that best represented the
classification scheme in breast cancer (referred as top
list) were selected from the intrinsic list, and used in the
promoter analysis part (Additional file 1: Table S1).

Pathway analysis
Pathway analysis was performed using Pathway Studio
[11] from Ariadne Genetics. Two network prediction
algorithms were used that allow to discover the patterns
of gene expression inherent in the experimental data:
Pearson Correlation and Auto Net Finder network pre-
diction algorithm. Pathway Studio’s text mining tools
were applied to extract biological associations by mining
PubMed to build pathways from extracted facts using
data from recent publications and public and commer-
cial databases such as KEGG, BIND, GO, and the
PathArt database of curated signaling and disease path-
ways. The algorithm for building Correlation Network in
Pathway Studio is based on Pearson Correlation. Genes
with similar expression profiles are connected with edges
indicating the significance of the correlation. The group
of tightly correlated genes form cluster in the correlation
network. The algorithm can be used for clustering genes
according to their expression profiles across multiple
samples. The tool calculates correlation coefficients be-
tween all pairs of gene expression profiles measured in
the experiment and outputs clusters of highly correlated
genes. Identified gene clusters can be further validated
and analyzed using relations from the database that have
been extracted from the literature by Ariadne Genetics.
Auto Net Finder is a network estimation system that
combines hierarchical clustering and Graphical Gaussian
Modeling and is used for distinguishing direct and indir-
ect relationship among variables. Bibliosphere pathways
(release 7.1) [12] (http://www.genomatix.de, Genomatix
Software GmbH) was used for extracting the associa-
tions between gene, transcription factor and proteins
corresponding with the genesets defining each molecular
subtype of breast cancer. Genomatix Bibliosphere is a
knowledge database consisting of manually curated co-
cited genes in PubMed, which additionally provides in-
formation about the presence of TFBS in their promo-
ters, using in silico tool- MatInspector, interactions and
associated pathways from Molecular Interactions data-
base-NetPro and BioCyc, respectively.
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Analysis of overrepresentation of TFBS families in the
promoter sequences
We extracted the putative regulatory promoter regions
from 500 bp upstream to 100 bp downstream of RefSeq
promoters of the subtype-associated genes. Further ana-
lysis was based on the hypothesis that overrepresenta-
tion of potential transcription factor binding site (TFBS)
motifs in a set of co-expressed gene promoters may indi-
cate regulatory relationship. In order to emphasize the
functional representation of TFBS motifs overrepre-
sented in a set of promoters, we used the TFBS matrix
family concept. TFBS matrix families are defined as
groups of TFBS weight matrices corresponding to the
same or functionally similar transcription factors. For
any given TF, there could be multiple matrices described
by different independent sources, leading to multiple
matches for similar position or shifting of matches by a
few base pairs. By using the functional domain clustering
based on di/tri/tetra-nucleotide occurrence and add-
itionally function-based subgrouping, TFBS matrices can
be grouped according to their functional similarity,
known as TFBS families [13]. Thus members sharing
same TFBS family are expected to have functional simi-
larity in addition to binding domain similarity. For esti-
mation of over-representation of each TFBS family, first
occurrences of its corresponding TFBS motifs within
a set of subtype-specific promoter sequences was
obtained. Then relative occurrence of each TFBS family
was estimated by comparing this observed occurrence
to the rate of occurrence of the same TFBS matrix fam-
ily in an equal base-pair long reference background
sequences from human promoter. Overrepresentations
of a motif is measured by two different methods:

1. In terms of fold factor of overrepresentation
compared to the background
Fold factor of TFBS overrepresentation was
calculated by a formula as mentioned below:

r Xð Þ ¼ nobs Xð Þ
nexp Xð Þ

Where, r(X) = fold factor of overrepresentation of a
TFBS family, X
nobs (X) = observed number of hits of X in a given
set of promoter sequences
nexp (X) = expected number of hits of X in an equally
sized sample from genomic promoter background
sequences

2. As z-scores that provide a measure of the distance
of sample from the reference population mean. Here
sample refers to the number of observed hits of any
particular TFBS in a given input set of sequences

and reference refers to the number of hits of the
same TFBS in equally sized human genomic
promoter sequence population.

z Xð Þ ¼ nobs Xð Þ � nexp Xð Þ � 0:5
S Xð Þ

z(X) is a z-score of overrepresentation of a
transcription factor binding site family (X);
nobs (X) is a number of observed hits of X in an
input promoter sequences;
nexp (X) is expected number of hits of X in an
equally sized sample sequences in human genomic
promoter background;
S(X) is a population standard deviation of number of
hits of X

We used Genomatix RegionMiner tool (Genomatix
Software GmbH, http://www.genomatix.de) in order
to evaluate the degree of TFBS family overrepresen-
tation. The histogram of z-scores of each TFBS motif
families in each subtype-specific promoter sequences
is shown in the Additional file 2: Figure S1. Histo-
grams like this indicate that choosing the cut-off
level of 2.0 allows identifying TFBS families that are
overrepresented. However, z-score cut-off level of 2.0
does not provide a precise measure of significance,
because of the disparity of sample size between sam-
ple and reference. Due to the copyright and tech-
nical limitations in accessing the Transfac database,
further statistical testing of over-representation could
not be performed within that tool.
Under-representations or absence of TFBS family

motifs in sub-type specific genes may occur due to a
fewer number of subtype-representative genes and
subsequently a smaller number of promoter
sequences used for any particular subtype. This can
be a source of false positivity. Therefore we have not
taken into account the under-representations of
TFBS family motifs in this analysis.

Principal component analysis to identify TFBS with
maximum variance between subtypes
Principal component analysis (PCA) [14] was per-
formed for ranking the TFBS families with respect to
the variance of fold-factor overrepresentation con-
tributed by them between five subtypes. We pre-
pared a matrix of TFBS fold-factors for subtypes,
with subtypes as columns and TFBS families as rows.
We performed PCA on this matrix using the
princomp function of Matlab. Subtracting each data
point from the column mean represents a center of
this matrix. Hotelling’sT2 statistic was used as a
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measure of multivariate distance of each TFBS family
from the center of the TFBS fold-factor matrix as
described in [http://www.mathworks.com/help/tool-
box/stats/princomp.html].

Gene expression data
We used a subset of the samples (n= 114) from previ-
ously published [15] mRNA expression data [GEO data-
set #GSE19783]. Subtypes were predicted by using the
PAM50 [16].

mRNA expression of the studied TF
Transcription factor families with overrepresentation z-
score >2.0 were mapped to their corresponding probes
in the mRNA expressions dataset. By applying multiclass
SAM, we extracted 120 TF genes with significantly dif-
ferent (at the FDR <0.1) expression between the five
subtypes. Pearson’s correlation between the subtype-
specific geometric mean expression of this subset of
transcription factor genes and fold overrepresentation
was computed. The justification of using geometric
mean instead of arithmetic mean is that typically mRNA
expression values are log-normally distributed.

Results and discussion
Pathway analysis of the genes that define the five breast
cancer subgroups
Using Pathway Studio from Ariadne Genetics, we studied
the direct interactions between the genes with distin-
guished gene expression pattern in the breast cancer sub-
groups as described in Materials and Methods, selection of
genes. Most profound direct interactions were observed
for the genes defining the luminal A group with protein-
protein interactions between XBP1 and ESR1 and CCND1
(Additional file 3: Figure S2). Trefoil (TFF3) has been
functionally coupled to CCND1 through angiotensin re-
ceptor 1 (AGTR1). Angiotensin II is converted from its
precursor by angiotensin I-converting enzyme (ACE) and
has been shown to mediate growth in breast cancer cell
lines via ligand-induced activity through the angiotensin II
type 1 receptor (AGTR1). We also searched for upstream
regulators as well as downstream targets of these genes.
Downstream targets could be observed centered at the
ESR1, MYC, NFKB1, GATA3, CCND1, TP53 and MSX2/
FOXC1 (Additional file 4: Figure S3).
A somewhat less organized pathway structure is

observed in the luminal B subclass. The ESR1 node was
not observable and the TP53 network was more sparse
with fewer partner genes. Novel nodes were centered at
NRG1, GSTP1 and CUL1 (Additional file 5: Figure S4),
CUL1 has homology to yeast Cdc53, which is part of a
complex known as SCF that mediates the ubiquitin-
dependent degradation of G1 cycles and cyclin-dependent
kinase inhibitors, while NRG1 contains a domain related

to the epidermal growth factor family of ligands and can
act as receptor agonists. The direct interactions between
genes highly expressed in Luminal B subtype were
observed between GSTP1 and CDK2AP1, S100A10 and
S100A11 and PPP1R13B and TP53BP2. The latter protein
interacts with TP53 to specifically enhance p53-induced
apoptosis but not cell cycle arrest.
Four distinct regulatory nodes were observed in the

ERBB2 group: around the ERBB2 itself, TP53, NFKB1
and CTNNB1 (cadherin-associated protein, beta 1)
(Additional file 6: Figure S5). NFkB-p65 was shown to
repress β-catenin-activated transcription of cyclin D1
[17]. Moreover, a direct interaction is established be-
tween ERBB2 and GRB7 (Additional file 3: Figure S2).
The solution structure of the Grb7-SH2/erbB2 peptide
complex was described and suggested to be involved in
cell signaling pathways that promote the formation of
metastases and inflammatory responses. PPARBP, which
is co-amplified with ERBB2, has in early studies been
suggested to play a role in mammary epithelial differen-
tiation and in breast carcinogenesis by its ability to func-
tion as ESR1 coactivator. It was shown to contain a
typical CCAT box and multiple cis-elements such as C/
EBPbeta, YY1, c-ETS-1, AP1, AP2, and NFkappaB bind-
ing sites. The 4 different regulatory nodes are connected
by FLOT2, the human epidermal surface antigen
involved in epidermal cell adhesion. NFKB1 was present
in the network for the Basal group, where also the FOX
family, a whole family of cyclins and CDK2, and CDK6
and isoforms of protein kinase (RPS6K) were present
(Additional file 7: Figure S6). Interestingly, a large num-
ber of connections lead to GJA1 (Cap junction protein,
alpha, also known as connexin 43). Other distinct nodes
around TP53 are those connecting to KRT5, MAPK sig-
nalling, E2F1 and NCL. NCL, Nucleolin, one of the most
abundant nucleolar proteins, has been recently shown to
be involved in the reprogramming of somatic cells for
derivation of either embryonic stem (ES) cells, by som-
atic cell nuclear transfer (SCNT), or ES-like cells, by
induced pluripotent stem (iPS) cell procedure. Nucleolar
proteins are proposed to be the markers of activation of
embryonic genes [18] and provide mechanism for nucle-
olar control of progression of cell cycle in stem cells and
cancer cells [19]. TP53 was a central node in the regula-
tory network of the normal-like subgroup, surrounded
by JUN, ACSS2, ACSL1, KRT13, PIK3R1 and other
nodes some representing glycolysis, energy metabolism,
pyruvate metabolism and metabolism of carbohydrate
(Additional file 8: Figure S7).
Noteworthy, a TP53 network node was observed in

each of the studied expression subclasses shown here
(Additional file 4: Figure S3, Additional file 8: Figures
S7). It is of interest to note that in every case TP53 was
a hub in a somewhat different neighborhood. While in
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the basal subtype TP53 was connected to CDK6, a cyc-
lin-dependent protein kinase (CDKs) that regulate major
cell cycle transitions and CDH3, cadherin 3, as well as
FZD7 and KRT5, in the luminal A tumors one could ob-
serve detoxifying enzymes such as NAT1, CYP2A6 as
well as the retinoic acid receptor RARRES3 in the TP53
hub (Figure 1).

Over-representation of specific transcription factor
binding sites in the promoter of the genes that
distinguish the subtypes
The correlation matrix of TFBS fold-overrepresentation
vectors for the five subtypes shows positive correlation
in terms of potential TFBS family overrepresentation be-
tween 1. ERBB2+ and basal subtypes (0.27); 2. Luminal
B and ERBB2+ (0.16); 3. Luminal A and luminal B
(0.11). In order to visualize the differential TFBS overre-
presentation, we performed the principal component
analysis (PCA). PCA plot (Figure 2) displays the signifi-
cant differences between the subtypes in terms of fold-
factor of motif frequencies observed in promoter
sequences of subtype-associated gene promoters

compared to their corresponding normal frequencies in
genomic promoter sequences. Distances between points
representing the TFBS matrix families are the multivari-
ate distances of fold-factor overrepresentation of each
TFBS family in each of the subtype. This indicates that
the shorter the distance, the greater similarity in fold-
overrepresentation of that particular TFBS family in given
subtypes. More than 60% and 76% of cumulative variance
is captured by first two components and first three princi-
pal components, respectively. The top ten ranking TFBS
families in distance from center and some of the func-
tionally significant TFBS families are specifically labeled
in the PCA plot. Biplots of first and second principal
components show differentially overrepresentated TFBS
families between the normal-like and rest of the subtypes.
Biplot of second and third principal components shows
TFBS family overrepresentations in luminal B. Differen-
tial TFBS family representations between ERBB2+ and
basal groups cannot be seen in biplots of first three prin-
cipal components, but can be visualized in a biplot of first
and fourth principal components. In the first principal
component, V$BTBF, V$PAX1, V$PAX4 and V$TCFF
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Figure 1 Predicted functional relationship of TP53 in different molecular subtypes of breast cancer. Figure shows predicted interactions
of genes or proteins with TP53. Source: Bibliosphere pathway database. (green edges: TF motif match found in target promoter of target genes;
genes associated with basal subtype are shown as red nodes, ones with luminal A in blue, luminal B in cyan and normal-like as green nodes.)
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are the major contributors of variance, where as V$PAX4,
V$GUCE, V$ARID are the major contributors of variance
in the second principal component.
Several of the gene clusters shared cis-elements that

were present in more than 90% of the promoters.
For the top six genes that classify the ErbB2+ over-
expressing cluster, four TFBSs were found to be present
in 100% of the promoters. These were NOLF (Neuron-
specific-olfactory), ETSF (E26 Transformation-Specific
factor 1), STAT (the Signal Transducers and Activator of
Transcription protein) and NF-κB (Nuclear Factor κappa
Beta) (Additional file 9: Table S2). NF-κB is the family of
nuclear factor kappa beta of transcription factors. NF-κB
has been shown to promote cell proliferation, to sup-
press apoptosis, to promote cell migration, and suppress

differentiation [7]. NF-κB binding sites were found sig-
nificantly over-represented in the promoters that best
classify the ErbB2+ subgroup compared to the other 4
subgroups (Additional file 9: Table S2; Figure 3B) and
78% of the 27 genes expressed in the basal-like subgroup
had also NF-κB binding site in the promoter. This was
in marked contrast compared to the promoter compos-
ition of the normal-like and luminal subgroups
(Figure 3B). The presence of NF-κB binding sites in the
genes from the ERBB2 and basal groups is in concord-
ance with the pathway analysis performed on the down-
stream genes (see above). The cis-elements PAX1, PAX9
(The paired box gene 5), MAZF (myc-associated zinc
finger) and EGRF (epidermal growth factor receptor)
were overrepresented in the genes that are over-
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Figure 3 Subtypes with relevance to NF-κB binding sites and TP53 mutations. A. The five subtypes shown by hierarchical clustering using
the “intrinsic” gene set. Dendrogram shows the clustering of the tumors into five subgroups. Branches are color-coded. B. Frequency of NF-κB
binding sites in the 5 subgroups; and C. Frequency of TP53 mutations.
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expressed in the Luminal B subgroup (Additional file 9:
Table S2). While the PAX superfamily is involved in a
multitude of developmental processes and is required
for initiating B cell lineage and maintaining neural devel-
opment and spermatogenesis, the MAZF is a common
transcription factor and might play a more general role.
The major distinction between the luminal A and B,
both consisting of ER positive tumors, is the presence of
a strong proliferations cluster in the luminal B subtype.
Noteworthy, binding sites for growth factors and their
receptors like EGRF are over-represented in the promo-
ters of the genes that define the luminal B subgroup and
were overrepresented in the pathway analysis as well (see
above). EGRF is not only a receptor for EGF (Epidermal
growth-factor), but also for other members of the EGF
family and it is involved in the control of cell growth
and differentiation. For the geneset of the normal-like
subgroup, we observed overrepresentation of NRF1 fam-
ily of TFBS (Additional file 9: Table S2).

Presence of promoter modules in genes that define the
ErbB2+ subgroup
The specificity of promoter-controlled gene regulation
may depend on the relative organization of the elements
within the promoter rather than solely on individual ele-
ments [20–22]. Genes expressed in the same functional
context do often share promoter modules [20,21]. The

binding elements are often occupied differently in differ-
ent tissues, and these differences can be used to derive
all type-specific sub-modules in silico. A promoter mod-
ule may be defined as an organized group of regulatory
elements where both order and distance should be con-
sidered. Genes expressed in the same functional context
do often share promoter modules [20,21]. For the six
best genes of the ErbB2+ over-expressing cluster, a com-
mon framework consisting of NF-κB and ETS1 tran-
scription factor binding sites was found (Figure 4). The
ETS are fundamentally important TFs with roles in cell
development, cell differentiation, cell proliferation, apop-
tosis and tissue remodeling (reviewed [23]). The family
is characterized by an evolutionarily conserved DNA-
binding domain that regulates expression by binding to
a purine-rich core sequence in cooperation with other
TFs. Most of the proteins in the ETS family are down-
stream nuclear targets of ras-MAP kinase signaling, and
the deregulation of ETS genes results in the malignant
transformation of cells [24] It has previously been
reported that mutant TP53 required ETS1 to synergistic-
ally activate the expression of ABCB1. ETS1 was shown
to interact exclusively with mutant TP53 in vivo, but not
with wild-type TP53 [25]. High levels of ETS1 expression
were associated with poorer prognosis [26]. The pres-
ence of a promoter module constituting of NF-κB and
ETS has been reported previously in genes co-regulated

Figure 4 Common Framework in the ErbB2+ subgroup. The common framework consisting of NF-κB and Ets found in the 6 cluster defining
genes of the ErbB2+ over-expressing subgroup. Distance to next element is between 29 and 79 bp (ETSF). Directions (up/down) of the elements
indicate presence of hits on sense or antisense strands respectively.
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in mitogen-stimulated T-cells [27]. Interactions between
members of the ETS family and NF-κB have been
described previously. ETS1 induces IKKα expression.
IKKα is a kinase that marks the NF-κB inhibitor IκB for
degradation, and active NF-κB is translocated to the nu-
cleus. ETS1-mediated activation of IKKα is negatively
regulated by TP53 binding to ETS1. TP53 physically
interacts with ETS1 and specifically inhibits ETS1
induced IKKα promoter activity. Loss of TP53-mediated
control over ETS1 dependent transactivation of IKKα
may represent a novel pathway for the constitutive acti-
vation of NF-κB mediated gene expression and therapy
resistance in cancer cells [28] TP53 is therefore an ETS1

and ETS2 target gene [29]. NF-κB controls a broad
spectrum of genes by a variety of mechanisms in re-
sponse to diverse environmental changes. NF-κB may be
a universal regulator, while ETS could reflect cell-type or
stimulation specific differences since ETS binding sites
were detected in a fraction of the NF-κB controlled
genes.

Over-representation of TP53 mutations in the tumors that
belong to the ErbB2+ and basal-like subgroups
In human breast tumors, the two tumor subgroups exhi-
biting the most prominent activation of putative NF-κB
target genes (ErbB2+ and Basal-like) also harbored the
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Figure 5 Heatmap of fold overrepresentations for the TFBS families ranked according to their distance from center. Out of all, 25 TFBS
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highest frequency of p53 mutations. 86% of the patients
in the ErbB2+ subgroup had TP53 mutations in their
tumors and all the genes that are abnormally expressed
in this tumor type have NF-κB binding sites in their pro-
moter (Figure 3C). There is an evidence that NF-κB can
regulate TP53 expression and that NF-κB is required for
TP53-dependent cell death [30]. In turn, TP53 activates
NF-κB through the RAF/MEK1/p90 pathway [30]. The
TP53 protein interacts with NF-κB and enhances its
transcriptional activity and its anti-apoptotic efficacy.
Over-expression of ErbB2 is known to induce the clas-
sical NF-κB pathway [31,32]. The estrogen receptor (ER)
can bind physically to NF-κB to inhibit its DNA binding
functions, hitherto repressing gene expression [33].
Therefore the NF-κB pathway was shown to be a major
stroma-tumor signaling mediator in ER negative tumors
with over-expression of ErbB2 [8]. NF-κB signaling has
been associated with doxorubicin resistance, and agents
blocking NF-κB function have been proven beneficial in
the treatment of tumors in combination with standard
anti-cancer therapies [34].

Over-represented transcription factor families within the
promoter sequences
We observed the over-representation of V$BTBF (kaiso),
V$OAZF and V$PAX8 in basal and ERBB2+ tumor asso-
ciated gene promoters (Figure 5, Additional file 10: Table
S3). Kaiso group of transcription factors are known to
show nuclear accumulation during active mitosis [35]
and their over-representation indicates potential func-
tional role in these two subtypes showing aggressive
tumor progression and high cell proliferation. PAX8 ac-
tivity has also been observed in metastatic renal tumors
[36]. Precise role of PAX8 and OAZF groups of tran-
scription factors is yet unknown in breast cancers.
ERBB2+ gene promoters also show over-representation
of V$NFKB, Pleomorphic adenoma gene associated
V$PLAG and ras-responsive element binding protein
associated V$RREB families of TFBS. Activity of
NFKappa B is already discussed in the earlier section.
RREB1 activity plays a role in TP53 mediated apoptosis

[37] that gets perturbed in absence of functional TP53,
which is a common phenomenon in ERBB2+ tumors.
Both luminal groups involve over-representation of PAX
subgroup 1 member TFBS’s- V$PAX1, V$PAX9 and
V$ZF5F families. PAX9 activity is known to be a marker
of better prognosis. Overrepresentation of V$P53F,
V$HOXF, V$CLOX, V$PARF and V$GATA was
observed specifically in luminal A group in which estro-
gen receptor signaling is a predominant characteristic.
The transcription factors corresponding to V$PARF
group (PAR bZIP TFs) are mediators in oxidative stress-
induced apoptosis [38]. In the luminal B group of
promoters, we observed over-representation of V$EGRF,
V$CTCF and V$EKLF etc. Egr-1 which corresponds to
the V$EGRF family is known to be associated with cell
cycle entry in response to growth stimuli [39]. We also
observed significant over-representation of V$NRF1 in
both normal-like and luminal B group of promoters.
NRF-1 transcription factor is an oxidant-sensitive tran-
scription factor, usually found in ER positive breast can-
cers [40] and is shown to be associated with higher
tumor grade [41].
By using the Wilcoxon rank sum test, we observed sig-

nificantly elevated mRNA expressions of ESR1 and PGR
in Luminal A or Luminal samples compared to the basal
ones (p< 1.0e-6), with non-significant differences in
ERBB2 expressions. As expected ERBB2 was significantly
upregulated in ERBB2+ tumors along with downregu-
lated ESR1 and PGR, compared to the rest (p< 1.0e-4).
Regulation by many transcription factors shown overre-
presented here in ER+ ve or ER-ve subtypes is not well
characterized in context of estrogen and progesterone
receptor activity. However, overrepresentation of some
of the TFBS, such as GATA, BTBF, NF Kappa B –
appear to be consistent with prevailing knowledge about
the subtypes and their ER/PR or Her2 status.
Thus functions of the TF genes corresponding to the

over-represented TFBS families hint the predominant
characteristics of the subtypes. Findings from the above
in silico analysis will be further validated in reporter
studies and ChIP analyses. The approach of identifying

NFKB family

0
0.5

1
1.5

2
2.5

Bas
al

ERBB2+

Lu
mA

Lu
mB

Nor
mal-

lik
e

0
500
1000
1500
2000
2500

AP1F family

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Bas
al

ERBB2+

Lu
mA

Lu
mB

Nor
mal-

lik
e

0
1000
2000
3000
4000
5000
6000
7000
8000

GATA family

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Bas
al

ERBB2+

Lu
mA

Lu
mB

Nor
mal-

lik
e

0
500
1000
1500
2000
2500

Figure 6 Correlation between TF overrepresentation and corresponding TF gene in each subtype. Correlation between geometric mean
of TF gene expressions in each subtype (shown as red bars) and their corresponding TF matrix family overrepresented in subtype-specific
promoter sequences (shown as blue points) is plotted.
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overrepresented TFBS in a set of coordinately
expressed genes under a particular disease class or con-
dition can improve the specificity and noise tolerance
[42]. However, its main limitation is that it does not ac-
count for the role of local chromatin environment
constituted by structural properties, epigenetic modifi-
cation etc. The local chromatin environment can offer
condition-specific functionality to the existing TFBSs in
a set of promoters.
Promoter sequences extending from 500 bp upstream to

100 bp downstream relative to TSS typically contain core
promoter elements, CpG islands, downstream promoter
element and other components of transcriptional machin-
ery. Besides, this region has been demonstrated to have
high density of positional as well as comparative TFBS [43],
many of which are typically location sensitive. Thus limiting
the analysis to this proximal promoter region, rather than
analyzing the broader region (i.e. -1000 bp to +500 bp rela-
tive to the TSS) – could reduce false positives in TFBS
overrepresentation. However, by that very limitation we
may omit important information about second alternative
promoters and distant control loci, which are therefore out-
side the scope of this analysis.

Correlation between actual abundance of TFs and
frequency of their BS in the genes defining the clusters
Some of the TFBS family overrepresentations were posi-
tively correlated with the geometric means of subtype-
specific mRNA expressions of their corresponding TF
genes. (Shown in Figure 6, Additional file 11: Table S4). The
rationale underlying the use of geometric mean is that gene
expression intensity values follow lognormal distribution.
Biological uncertainty in a correlation between the

abundance of TFs and frequency of their BS might be
attributed to several factors. The most common and ob-
vious reason could be mutant or copy number altered
TF. Moreover, here we have not accounted for the
expressions of downstream targets of the TFs. It is note-
worthy that mutations (point mutation and copy number
alteration) in TFs can also have an impact on the level
of expression of the downstream genes. For instance, a
mutant TP53, which is still highly expressed, may not
recognize the original binding sites anymore, leading to
a drop in the expression of the target genes.

Conclusion
Here we report that the promoter composition of the
genes that strongly predict the patient subgroups is dis-
tinct. The gene classes showed a clear separation when
based solely on their promoter composition. This finding
suggests that studying those transcription factors asso-
ciated to the observed expression pattern in breast cancers
may lead us to important biological pathways responsible
for the regulation of gene expression in breast cancer.

Additional files

Additional file 1: Table S1. Subtype-specific gene list. Table shows the
197 subtype-specific best discriminatory genes, which is a subset of the
intrinsic gene-list.

Additional file 2: Figure S1. Histogram of z-scores of
overrepresentation. Histogram of TFBS matrix family overrepresentation
observed in subtype-specific promoters compared to the reference
genomic promoter background shown as z-scores.

Additional file 3: Figure S2. Direct interactions between genes
defining subtypes. Subtype-relevant key driver interactions for Luminal A,
B and ERBB2+ subtypes.

Additional file 4: Figure S3. Protein-protein interactions and TF
interactions associated with Luminal A subtype. Network shown here is
based on the luminal A specific genelist.

Additional file 5: Figure S4. Protein-protein interactions and TF
interactions associated with Luminal B subtype. Network shown here is
based on the luminal B specific genelist.

Additional file 6: Figure S5. Protein-protein interactions and TF
interactions associated with ERBB2+ subtype. Network shown here is
based on the ERBB2+ subtype-specific genelist.

Additional file 7: Figure S6. Protein-protein interactions and TF
interactions associated with basal subtype. Network shown here is based
on the basal subtype-specific genelist.

Additional file 8: Figure S7. Protein-protein interactions and TF
interactions associated with normal-like subtype. Network shown here is
based on the normal-like subtype-specific genelist.

Additional file 9: Table S2. TFBS overrepresentation in subtypes-specific
gene promoters. List of significantly over-represented transcription factor
binding site families in subtypes of breast cancers at the cut-off level of z-
score>=2.0.

Additional file 10: Table S3. Over-representation of potential TFBS in
subtype-specific promoter sequences. Table shows the fold over-
representation of potential transcriptional factor hits (represented as TFBS
families) in subtype- specific gene promoter sequences.

Additional file 11: Table S4. Correlation between TFBS overrepresentation
and mRNA expression of corresponding TF genes. Table displays the
Pearson’s correlation between the geometric mean of expression values of
transcription factor genes in subtypes and fold overrepresentation of
corresponding TFBS families.
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Subtype Name Symbol

LUMINAL A Acyl-Coenzyme A dehydrogenase, short/branched chain ACADSB

Adrenergic, alpha-2A-, receptor ADRA2A

Angiotensin II receptor, type 1 AGTR1

Activated leukocyte cell adhesion molecule ALCAM

Annexin A9 ANXA9

N-acylsphingosine amidohydrolase (acid ceramidase) 1 ASAH1

Beclin 1, autophagy related BECN1

Complement factor B CFB

Biliverdin reductase A BLVRA

Chromosome 14 open reading frame 132 C14orf132

Complement component 4B (Childo blood group) C4A

Calcium/calmodulin-dependent protein kinase II inhibitor 1 CAMK2N1

Cyclin D1 CCND1

Cytochrome c oxidase subunit VIc COX6C

Carnitine acetyltransferase CRAT

Cytochrome b5 type A (microsomal) CYB5A

Cytochrome P450, family 2, subfamily A, polypeptide 6 CYP2A6

Adaptor protein, phosphotyrosine interaction, PH domain and leucine zipper containing 2 APPL2

Receptor accessory protein 5 REEP5

Ectonucleotide pyrophosphatase/phosphodiesterase 5 (putative function) ENPP5

Estrogen receptor 1 ESR1

Fructose-1,6-bisphosphatase 1 FBP1

Enoyl Coenzyme A hydratase domain containing 2 ECHDC2

Acyl-Coenzyme A binding domain containing 4 ACBD4
Fms-related tyrosine kinase 1 (vascular endothelial growth factor/vascular permeability factor 
receptor)

FLT1

Flavin containing monooxygenase 5 FMO5

Fibromodulin FMOD

Forkhead box A1 FOXA1
UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 10 
(GalNAc-T10)

GALNT10

GATA binding protein 3 GATA3

Glucocorticoid receptor DNA binding factor 1 GRLF1

Glutathione S-transferase M3 (brain) GSTM3

Hexamethylene bis-acetamide inducible 1 HEXIM1

Hydroxysteroid (17-beta) dehydrogenase 4 HSD17B4

KIAA0182 KIAA0182

PHD finger protein 15 PHF15

Jumonji domain containing 2B JMJD2B

Mediator complex subunit 13-like MED13L

Solute carrier family 39 (zinc transporter), member 6 SLC39A6

Nephronectin NPNT

LPS-responsive vesicle trafficking, beach and anchor containing LRBA

Basal cell adhesion molecule (Lutheran blood group) BCAM

Methylcrotonoyl-Coenzyme A carboxylase 2 (beta) MCCC2

Chromosome 10 open reading frame 32 C10orf32

Sushi, nidogen and EGF-like domains 1 SNED1

Mahogunin, ring finger 1 MGRN1

Msh homeobox 2 MSX2

Mucin 1, cell surface associated MUC1

N-acetyltransferase 1 (arylamine N-acetyltransferase) NAT1

Transcribed locus IMAGE:132012

Neuropeptide Y receptor Y1 NPY1R

Plasminogen activator, tissue PLAT

Sushi, von Willebrand factor type A, EGF and pentraxin domain containing 1 SVEP1

Supplementary Table 1: Table shows the 197 subtype-specific best discriminatory genes, which is a 
subset of the intrinsic gene-list.

N.B. : Table truncated because of the size. Complete table is available at : http://www.biomedcentral.com/1471-2164/13/199/

Additional file 1: Table S1
Additional Files to Paper I
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TFBSFamilyName Basal ERBB2+ LumA LumB Normal-like
O$INRE 1.04 0.69 1.34 0.65 1.23
O$MTEN 1.47 0.85 1.32 1.81 0.87
O$PTBP 0.94 0.51 2.01 0.6 1.07
O$TF2B 1.89 0.34 0.98 2.24 1.32
O$TF2D 0.81 1.32 0.95 1.35 0.86
O$TF3C 0.67 0 0.83 1.36 0
O$VTBP 1.24 0.75 1.03 0.98 1.28
O$XCPE 0.86 1.61 1.29 1.7 1.05
V$AARF 0.84 0.6 0.95 0.99 1.17
V$AHRR 0.72 0.78 0.85 1.71 0.87
V$AIRE 0.75 0.81 1.11 1.05 1.05
V$AP1F 1.24 0.47 1.32 0.52 1.33
V$AP1R 0.93 0.71 0.97 0.75 1.07
V$AP2F 0.87 1.19 1.3 1.21 1.55
V$AP4R 0.6 0.64 1.06 1.12 0.42
V$ARID 0.7 1.52 2.85 0.36 0
V$ATBF 0.66 0.32 1.01 0.79 0.52
V$BARB 0.91 0.49 1.23 0.92 0.95
V$BCL6 0.82 0.95 1.12 1 1.24
V$BNCF 1.08 1.16 0.67 0.46 1.51
V$BPTF 1.24 1.14 0.66 0.54 0.74
V$BRAC 1.39 0.54 1.17 1.21 1.8
V$BRNF 0.86 0 1.08 0.99 0.96
V$BTBF 3.2 1.97 0.64 0.35 0.96
V$CAAT 0.82 0.73 1.18 1.26 1.1
V$CABL 1.02 0.73 0.63 0.87 0.48
V$CART 0.56 0.45 1.08 1.06 0.58
V$CDEF 0.72 0.78 0.75 1.95 0.67
V$CDXF 1.03 0.69 1.1 1.38 1.62
V$CEBP 1.23 0.63 1.07 1.16 0.82
V$CHOP 1.08 1.75 0.59 1.1 0
V$CHRE 0.8 0.69 0.7 1.31 1.12
V$CHRF 0.55 0.98 0.74 0.6 1.66
V$CIZF 0.84 0.9 1.07 0.85 1.32
V$CLOX 1.1 0.99 1.17 1.03 0.77
V$CP2F 1.51 1.37 1.01 0.85 0.67
V$CREB 0.75 1.02 0.98 0.93 0.98
V$CSEN 0.75 2.01 1.34 0.48 1.31
V$CTCF 1.05 1.34 1.15 1.73 1.07
V$DEAF 1.08 1.54 0.82 1.1 0.5
V$DICE 1.07 0.58 1.12 0.95 0.19
V$DMRT 0.86 0.77 1.13 0.99 0.58
V$DMTF 1.54 0.74 1.17 1.04 0.24
V$E2FF 0.88 0.6 0.97 1.87 0.71
V$E4FF 0.64 1.11 1 1.24 1.44
V$EBOX 0.69 0.84 1.25 1.11 0.69
V$EGRF 0.96 1.24 1.06 1.68 0.85
V$EKLF 1.12 1.73 0.99 1.31 0.75
V$EREF 0.87 1.53 0.96 1.01 1.11
V$ETSF 0.86 1.19 0.92 1.14 0.91
V$EVI1 0.71 0.75 0.92 1.09 1.18
V$FAST 0.82 1.23 0.77 0.74 0.97
V$FKHD 0.98 0.61 1.05 0.79 0.82
V$FXRE 0.7 0 1.04 0.81 1.97
V$GABF 0.16 1.59 1.17 0.92 0.11
V$GATA 1.09 0.72 1.24 0.91 0.9
V$GCMF 1.51 1.08 0.6 0.77 0.47
V$GCNR 0.69 0 0.43 0 0
V$GFI1 0.94 1.18 0.97 0.95 0.55
V$GKLF 0.84 1.47 0.88 1.02 0.88
V$GLIF 1.04 1.07 1.27 1.24 0.57
V$GREF 1.04 2 0.78 0.71 0.86
V$GRHL 0.77 0.71 0.65 0.68 0.93
V$GUCE 1.3 0 1.21 1.32 0
V$GZF1 0.64 0.69 1.34 0.57 0.67
V$HAML 1.22 1.5 1.38 1.06 0.73
V$HAND 0.85 1.1 1.08 0.94 0.79
V$HEAT 1.14 1.22 0.96 0.93 0.75
V$HESF 0.73 0.55 1.08 1.27 0.96
V$HICF 0.54 0.58 1.42 1.36 1.12
V$HIFF 0.55 0.88 0.98 1.11 1.24
V$HMTB 1.62 1.28 1.06 0.95 1.67
V$HNF1 0.68 0.39 1.32 0.8 1.07
V$HNF6 0.55 0.6 1.17 0.93 1.08
V$HOMF 0.76 0.73 1 0.84 1.01
V$HOXC 0.74 0.79 0.88 1.07 0.82
V$HOXF 0.84 0.92 1.16 0.9 0.87
V$HOXH 0.69 0.4 1.09 0.96 1.14
V$IKRS 1.09 0.65 1.13 1.05 0.76
V$INSM 1.31 1.56 0.88 1.03 1.52
V$IRFF 1.05 0.82 1.24 1.25 1.12

Supplementary Table 3: Table shows the fold over-representation of potential transcriptional factor hits (represented as TFBS families) in subtype-
specific gene promoter sequences.

N.B. : Table truncated because of the size. Complete table is available at : http://www.biomedcentral.com/1471-2164/13/199/

Additional file 10: Table S3



Gene Symbol GeneName TFBS families Pearson's 
correlation

SNFT Jun dimerization protein p21SNFT V$AP1F 0.37
FOS v-fos FBJ murine osteosarcoma viral oncogene homolog V$AP1F 0.65
FOSB FBJ murine osteosarcoma viral oncogene homolog B V$AP1F 0.83
FOSL2 FOS-like antigen 2 V$AP1F 0.85
FOSL1 FOS-like antigen 1 V$AP1F 0.43
JDP2 jun dimerization protein 2 V$AP1F 0.48
JUN jun oncogene V$AP1F 0.74
JUNB jun B proto-oncogene V$AP1F 0.72
JUNB jun B proto-oncogene V$AP1F 0.66
ARID5B AT rich interactive domain 5B (MRF1-like) V$ARID -0.16
ARID5B AT rich interactive domain 5B (MRF1-like) V$ARID -0.07
ARID5B AT rich interactive domain 5B (MRF1-like) V$ARID 0.27
CUTL1 cut-like 1, CCAAT displacement protein (Drosophila) V$CLOX 0.14
CUTL2 cut-like 2 (Drosophila) V$CLOX -0.74
E2F1 E2F transcription factor 1 V$E2FF 0.34
E2F2 E2F transcription factor 2 V$E2FF 0.15
E2F3 E2F transcription factor 3 V$E2FF -0.21
E2F4 E2F transcription factor 4, p107/p130-binding V$E2FF -0.53
E2F4 E2F transcription factor 4, p107/p130-binding V$E2FF -0.68
E2F5 E2F transcription factor 5, p130-binding V$E2FF 0.81
E2F7 E2F transcription factor 7 V$E2FF 0.37
E2F8 E2F transcription factor 8 V$E2FF 0.18
TFDP1 transcription factor Dp-1 V$E2FF -0.01
TFDP1 transcription factor Dp-1 V$E2FF -0.05
ATF6 activating transcription factor 6 V$EBOX 0.88
CREBL1 cAMP responsive element binding protein-like 1 V$EBOX 0.49
MAX MYC associated factor X V$EBOX 0.85
MGA MAX gene associated V$EBOX -0.58
MLX MAX-like protein X V$EBOX 0.26
MLXIPL MLX interacting protein-like V$EBOX 0.78
MLXIPL MLX interacting protein-like V$EBOX -0.83
MLXIPL MLX interacting protein-like V$EBOX 0.76
MYC v-myc myelocytomatosis viral oncogene homolog (avian) V$EBOX -0.38
MYCN v-myc myelocytomatosis viral related oncogene, neuroblastoma derived (avian) V$EBOX -0.35
TCF4 transcription factor 4 V$EBOX -0.36
EGR1 early growth response 1 V$EGRF -0.76
EGR2 early growth response 2 (Krox-20 homolog, Drosophila) V$EGRF -0.78
EGR3 early growth response 3 V$EGRF -0.51
ZBTB7A zinc finger and BTB domain containing 7A V$EGRF 0.29
ZBTB7B zinc finger and BTB domain containing 7B V$EGRF -0.02
KLF2 Kruppel-like factor 2 (lung) V$EKLF -0.01
KLF2 Kruppel-like factor 2 (lung) V$EKLF -0.21
KLF3 Kruppel-like factor 3 (basic) V$EKLF -0.16
KLF4 Kruppel-like factor 4 (gut) V$EKLF -0.13
KLF6 Kruppel-like factor 6 V$EKLF -0.34
KLF6 Kruppel-like factor 6 V$EKLF -0.75
KLF6 Kruppel-like factor 6 V$EKLF -0.21
KLF7 Kruppel-like factor 7 (ubiquitous) V$EKLF 0.86
KLF8 Kruppel-like factor 8 V$EKLF 0.09
KLF8 Kruppel-like factor 8 V$EKLF -0.21
TRPS1 trichorhinophalangeal syndrome I V$GATA 0.37
GATA2 GATA binding protein 2 V$GATA -0.04
GATA3 GATA binding protein 3 V$GATA 0.35
GATA6 GATA binding protein 6 V$GATA -0.67
GATAD2A GATA zinc finger domain containing 2A V$GATA -0.31
GATAD1 GATA zinc finger domain containing 1 V$GATA 0.61
GATAD1 GATA zinc finger domain containing 1 V$GATA 0.50
GLI1 glioma-associated oncogene homolog 1 (zinc finger protein) V$GLIF -0.87
GLI2 GLI-Kruppel family member GLI2 V$GLIF -0.84
GLI2 GLI-Kruppel family member GLI2 V$GLIF -0.79
GLI3 GLI-Kruppel family member GLI3 (Greig cephalopolysyndactyly syndrome) V$GLIF -0.10
GLIS1 GLIS family zinc finger 1 V$GLIF -0.69
GLIS2 GLIS family zinc finger 2 V$GLIF 0.17
ZIC1 Zic family member 1 (odd-paired homolog, Drosophila) V$GLIF -0.18
ZIC1 Zic family member 1 (odd-paired homolog, Drosophila) V$GLIF -0.22
ZIC4 Zic family member 4 V$GLIF -0.02
ZIC5 Zic family member 5 (odd-paired homolog, Drosophila) V$GLIF -0.22
AR androgen receptor (dihydrotestosterone receptor; testicular feminization; spinal and 

bulbar muscular atrophy; Kennedy disease)
V$GREF -0.09

NR3C1 nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor) V$GREF -0.48

Supplementary Table 4: Table displays the pearson´s correlation between the geometric mean of expression values of transcription factor 
genes in subtypes and fold overrepresentation of corresponding TFBS familes

N.B. : Table truncated because of the size. Complete table is available at : http://www.biomedcentral.com/1471-2164/13/199/additional

Additional file 11: Table S4
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Potential tumorigenic programs associated with TP53 mutation
status reveal role of VEGF pathway

H Joshi*,1, G Bhanot2,3, A-L Børresen-Dale4,5 and V Kristensen1,4,5

1Medical Division (EpiGen), Akershus University Hospital and University of Oslo, Lorenskog 1478, Norway; 2Department of Molecular Biology and
Biochemistry, Rutgers University, Piscataway, NJ 08854, USA; 3Department of Physics and BioMaPS Institute, Rutgers University, Piscataway, NJ 08854,
USA; 4Institute of Clinical Medicine, University of Oslo, Oslo 0450, Norway; 5Department of Genetics, Institute for Cancer Research, Oslo University
Hospital Radiumhospitalet, Oslo 0310, Norway

BACKGROUND: Targeting differentially activated or perturbed tumour pathways is the key idea in individualised cancer therapy, which is
emerging as an important option in treating cancers with poor prognostic profiles. TP53 mutation status is known as a core determinant
of survival in breast cancer. The pathways disrupted in association with TP53 mutation status in tumours are not well characterised.
METHOD: In this study, we stratify breast cancers based on their TP53 mutation status and identify the set of dysregulated tumorigenic
pathways and corresponding candidate driver genes using breast cancer gene expression profiles. Expressions of these genes were
evaluated for their effect on patient survival first in univariate models, followed by multivariate models with TP53 status as a covariate.
RESULTS: The most strongly differentially enriched pathways between breast cancers stratified by TP53 mutation status include in
addition to TP53 signalling, several known cancer pathways involved in renal, prostate, pancreatic, colorectal, lung and other cancers,
and signalling pathways such as calcium signalling, MAPK, ERBB and vascular endothelial growth factor (VEGF) signalling pathways. We
found that mutant TP53 in conjunction with active estrogen receptor (ER) signalling significantly influence survival. We also found
that upregulation of VEGFA mRNA levels in association with active ER signalling is a significant marker for poor survival, even in the
presence of wild-type TP53.
CONCLUSION: Mutation status of TP53 in breast cancer involves wide ranging derangement of several pathways. Among the candidate
genes of the significantly deranged pathways, we identified VEGFA expression as an important marker of survival even when controlled
by TP53 mutation status. Interestingly, independent of the TP53 mutation status, the survival effect of VEGFA was found significant in
patients with active ER signalling (ER/PgRþ ), but not in those with ER/PgR� status. Therefore, we propose more studies to focus on
the role of complex interplay between TP53, ER and VEGF signalling from therapeutic and prognostic context in breast cancer.
British Journal of Cancer (2012) 107, 1722–1728. doi:10.1038/bjc.2012.461 www.bjcancer.com
Published online 18 October 2012
& 2012 Cancer Research UK

Keywords: breast cancer; TP53 mutation status; estrogen receptor signalling; vascular endothelial growth factor signalling; dysregulated
pathways; survival
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The fact that nearly 30% of early-diagnosed breast cancer cases
might eventually develop recurrent or metastatic disease
(O’Shaughnessy, 2005) – underscores the priority to explore the
mechanisms of advanced disease. The TP53 protein is an
important clinical biomarker of breast cancer because of its
association with tumour progression (Norberg et al, 2001),
metastatic potential (D’Assoro et al, 2010), early relapse (Aas
et al, 1996), response to chemotherapy (Aas et al, 1996; Kandioler-
Eckersberger et al, 2000; Bertheau et al, 2007), and ultimately, to
prognosis and survival (Børresen et al, 1995; Berns et al, 2000;
Olivier et al, 2006). It is also of relevance to molecular subtypes of
breast cancer (Miller et al, 2005; Langerød et al, 2007). Whereas
B70% of breast cancers with wild-type TP53 are mostly of the
Luminal A subtype, mutant TP53 is common in the remaining
30%, which have a poorer prognosis and are classified as triple
negative or luminal B. The focus of this work is to identify

diagnostic, prognostic and therapeutic biomarkers associated with
pathways perturbed by TP53 mutations and understand their
relationship to patient survival in breast cancer, under current
therapeutic protocols.
TP53 is a key regulator of programmed cell death, cell cycle,

DNA repair and genomic stability. In response to stimulus-specific
post-transcriptional modification, TP53 regulates genes, which
activate specific cellular programs. The TP53 protein has three
major functional domains: a transactivation domain at its
N-terminal, a central DNA-binding domain (which includes
mutation hotspots) and tetramerization and regulatory domains
at the C-terminal. The location and type of TP53 mutation affect
the ability of TP53 to regulate its target genes, leading to aberrant
functions (Blandino et al, 1999) with clinical implications (Kim
and Deppert, 2006). Characterisation of the differential activation
of key pathways and candidate genes according to the TP53
mutation status may therefore identify mechanisms correlated
with TP53 mutation status in breast cancer.
In this study, we stratify breast cancers based on their TP53

mutation status and identify the set of dysregulated tumorigenic
pathways and their candidate driver genes by using gene
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expression data sets obtained from tumours. The goal is to infer
the class-specific candidate gene signature by identifying weak
to moderate, but coherent gene expressions that significantly
influence tumorigenic pathways and survival.

RESULTS

We first categorised breast cancer samples by their corresponding
TP53 mutation status, as described in Supplementary Table 1 and
performed analysis as shown in the flow-chart (Supplementary
Figure 1).

Candidate driver pathways differentially perturbed by
TP53 mutations

Enrichment analysis of pathways between mutation status classes
was performed using globaltest (Goeman et al, 2011) and SAM-GS

(Dinu et al, 2007) on the primary and combined validation data set.
Globaltest, although being sensitive to genes with smaller regression
coefficients, its results might be influenced by the standardisation
and normalisation procedures. SAM-GS on the other hand is shown
to have relatively higher power in the lower alpha-level region, thus
can better focus on pathways of greatest interest (Liu et al, 2007).
Therefore, we use a combination of the two approaches here. The
list of differentially enriched KEGG (Kanehisa and Goto, 2000)
pathways identified by each of the methods on each of the data set
is shown together in Supplementary Table 2. A set of 40 pathways
inferred as commonly significant by both the methods in both
data sets (Table 1) – are graphically presented as an enrichment
map color-coded according to globaltest FDR corrected P-values
(Supplementary Figure 2). The most dysregulated pathways
included a group of key signalling pathways – such as p53 signall-
ing, calcium signalling, MAPK, ErbB, vascular endothelial growth
factor (VEGF) signalling and various cancer pathways.

Table 1 Consensus list of differentially enriched pathways between two TP53 mutation status classes (wild-type TP53 profiles compared with the mutant
TP53 profiles), based on pathway analysis performed by using two approaches – globaltest and SAM-GS on primary (n¼ 111 samples) and validation data
sets (a combined cross-platform data set with n¼ 327)

Primary data set Validation data set

Asymptotic global test SAM-GS Asymptotic global test SAM-GS
KEGGID KEGG pathway name BH corrected P-value FDR adj P-value BH corrected P-value FDR adj P-value

hsa:00230 Purine metabolism 1.8E� 09 o10e� 6 2.37E� 36 o10e� 6
hsa:04115 p53-signalling pathway 1.8E� 09 o10e� 6 2.43E� 34 o10e� 6
hsa:05211 Renal cell carcinoma 3.72E� 09 o10e� 6 1.32E� 17 o10e� 6
hsa:05200 Pathways in cancer 1.1E� 08 o10e� 6 6.86E� 29 o10e� 6
hsa:05215 Prostate cancer 1.1E� 08 o10e� 6 1.32E� 29 o10e� 6
hsa:04020 Calcium-signalling pathway 4.12E� 08 o10e� 6 4.81E� 27 o10e� 6
hsa:00260 Glycine, serine and threonine metabolism 4.73E� 08 o10e� 6 1.44E� 25 o10e� 6
hsa:05212 Pancreatic cancer 5.65E� 08 o10e� 6 1.15E� 39 o10e� 6
hsa:04340 Hedgehog-signalling pathway 6.02E� 08 o10e� 6 5.76E� 21 o10e� 6
hsa:05222 Small-cell lung cancer 7.93E� 08 o10e� 6 6.75E� 40 o10e� 6
hsa:04120 Ubiquitin-mediated proteolysis 0.00000012 o10e� 6 3.26E� 40 o10e� 6
hsa:04910 Insulin signalling pathway 0.00000012 o10e� 6 5.83E� 27 o10e� 6
hsa:00051 Fructose and mannose metabolism 1.28E� 07 o10e� 6 2.51E� 30 o10e� 6
hsa:05218 Melanoma 0.00000014 o10e� 6 1.7E� 17 o10e� 6
hsa:04150 mTOR-signalling pathway 1.68E� 07 o10e� 6 9.66E� 26 o10e� 6
hsa:00380 Tryptophan metabolism 1.96E� 07 o10e� 6 1.48E� 08 o10e� 6
hsa:04144 Endocytosis 2.39E� 07 o10e� 6 4.96E� 24 o10e� 6
hsa:00330 Arginine and proline metabolism 0.00000025 o10e� 6 1.29E� 18 o10e� 6
hsa:05214 Glioma 0.00000025 o10e� 6 1.47E� 14 o10e� 6
hsa:04010 MAPK-signalling pathway 0.00000031 o10e� 6 2.44E� 34 o10e� 6
hsa:04012 ErbB-signalling pathway 3.65E� 07 o10e� 6 2.68E� 17 o10e� 6
hsa:04520 Adherens junction 4.03E� 07 o10e� 6 9.78E� 13 o10e� 6
hsa:05217 Basal cell carcinoma 0.00000048 o10e� 6 6.47E� 11 o10e� 6
hsa:00600 Sphingolipid metabolism 4.94E� 07 o10e� 6 4.67E� 14 o10e� 6
hsa:05120 Epithelial cell signalling in Helicobacter

pylori infection
5.79E� 07 o10e� 6 1.45E� 11 o10e� 6

hsa:04722 Neurotrophin-signalling pathway 6.72E� 07 o10e� 6 1.09E� 21 o10e� 6
hsa:04912 GnRH-signalling pathway 8.22E� 07 o10e� 6 6E� 18 o10e� 6
hsa:05219 Bladder cancer 8.23E� 07 o10e� 6 1.61E� 17 o10e� 6
hsa:05210 Colorectal cancer 0.00000116 o10e� 6 3.9E� 11 o10e� 6
hsa:04070 Phosphatidylinositol-signalling system 0.00000117 o10e� 6 2.16E� 12 o10e� 6
hsa:04110 Cell cycle 0.00000125 o10e� 6 3.7E� 27 o10e� 6
hsa:04370 VEGF-signalling pathway 0.00000153 o10e� 6 1.01E� 07 o10e� 6
hsa:05221 Acute myeloid leukaemia 0.00000205 o10e� 6 6.36E� 12 o10e� 6
hsa:00270 Cysteine and methionine metabolism 0.0000036 o10e� 6 1.24E� 25 o10e� 6
hsa:04530 Tight junction 0.00000531 o10e� 6 6.85E� 18 o10e� 6
hsa:04350 TGF-b-signalling pathway 0.00000725 o10e� 6 5.93E� 14 o10e� 6
hsa:04310 Wnt-signalling pathway 0.0000103 o10e� 6 8.24E� 19 o10e� 6
hsa:00590 Arachidonic acid metabolism 0.0000146 o10e� 6 1.16E� 11 o10e� 6
hsa:05213 Endometrial cancer 0.000018 o10e� 6 0.00000131 o10e� 6
hsa:04142 Lysosome 0.0000489 o10e� 6 6.09E� 18 o10e� 6

Abbreviations: BH, Benjamini-Hochberg; FDR, false discovery rate; MAPK, mitogen-activated protein kinase; mTOR, mammalian target of rapamycin; SAM-GS, significance
analysis of microarrays for genesets; TGF, tumour growth factor; VEGF, vascular endothelial growth factor. The full pathway lists that show significance of differential enrichment
in each individual data set are shown with their respective P-values of significance in Supplementary Table 2.
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Candidate genes deregulated according to the TP53
mutation status

Candidate genes were identified by applying a combination of two
mutually complementary approaches: pathway-based gene-search that
infers class-specific association (globaltest) and pathway-independent
search that identifies individual genes with class-specific upregulation
(modified Kolmogorov-Smirnov approach) on both primary and
validation data sets (Supplementary Tables 3 and 4). Combining
genesets inferred by these two approaches would help to account for
the genes with smaller as well as larger effects on the overall biological
condition. A consensus genelist (Supplementary Table 5) of 112 genes
consists of genes inferred as significant at least by either of the two
statistical tests (but not necessarily by the same test) in both
primary and validation data sets, as shown in the Venn diagram
(Supplementary Figure 3). Class-specific predicted functional networks
based on these genesets are plotted in Figures 1A and B for wild-type
and mutant TP53 samples, respectively. These networks reflect the key
genes and corresponding processes that have potential functional
implication in association with the one of the TP53mutation status
class. Wild-type TP53 samples showed significance of genes involved
in estrogen receptor (ER) signalling, whereas mutant TP53 samples
in proliferative processes. Besides, GO terms–response to insulin
stimulus and mammary gland development in wild-type and protein
kinase activity, mitotic cell cycle, microtubule cytoskeleton in mutant
TP53 class were over-represented (Supplementary Figure 4).

Association of EMT and stemness to TP53 mutation status

Aberrant TP53 function is shown to induce epithelial-mesenchy-
mal transition (EMT) and thereby confers stemness properties to
the cancer cells (Dhar et al, 2008). Therefore, we compared our
inferred TP53 status-specific candidate genesets with the published
EMT and stemness marker sets. We found that mutant TP53-
marker geneset was significantly associated with embryonic stem
cell (ESC) and its TP53 targets (p53ESC) genesets (P-valueo0.05).
Whereas wild-type TP53 signature was found significantly
associated with PRC2 targets (P-value: 0.003) (Table 2). Top 1000
upregulated genes (according the signal-to-noise ratio) in mutant
TP53 class were significantly associated with EMT, ESC and
induced pluripotent stem cell marker genesets. Moreover, KEGG
pathways involved in stemness and EMT properties such as TGFb,
wnt signalling were found differentially enriched (Supplementary
Table 6b).

Vascular endothelial growth factor A upregulation with
wild-type TP53 associates with activation of pro-
angiogenic and pro-metastatic biological processes

Among the inferred candidate genes that were found upregu-
lated and/or significantly associated to one of the TP53 mutation
status class, 47 genes showed univariate significance to overall
patient survival. Vascular endothelial growth factor A (VEGFA)
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Figure 1 TP53 mutation status-specific network of potential candidate driver genes shown based on their known and predicted functional interactions.
(A) Network for wild-type TP53 breast cancer profiles. (B) Network for mutant TP53 breast cancer profiles. Significant association of gene means significant
non-zero regression coefficient of a gene in a significantly differentially enriched KEGG pathway. Gene upregulation means its class-specific upward biased
expression pattern, inferred by the rank-sum statistic of the modified Kolmogorov–Smirnov test. Relevant biological processes represented by these genes
are also highlighted in background.
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maintained significance in multivariate model (Supplementary
Table 7), even after adjusting for TP53 mutation status. VEGFA
might be induced by estrogen receptor in breast cancer cells
(Buteau-Lozano et al, 2002; Applanat et al, 2008). Besides, wild-
type TP53 could block VEGFA function induced by active estrogen
receptor signalling (Liang et al, 2005). However, implications of
VEGFA in wild-type TP53/ERþ patients are less understood. We
therefore analysed this subgroup separately by using the globaltest
and moderated t-test (Smyth, 2004).
Using moderated t-test of differential expression on a cross-

platform compiled data set, we found 516 gene features
(Supplementary Table 8a) differentially expressed between
VEGFA upregulation (VEGFAþ ) vs VEGFA normal/� samples
(VEGFA� /N). IGF1 and PPARG were found differentially down-
regulated in samples with VEGFA upregulation. A GO analysis
identified pathways associated with blood vessel morphogenesis,
cell migration and regulation of VEGF signalling pathway. The
complete list of over-represented GO terms and predicted
functional interactions are shown in Supplementary Table 9
and Supplementary Figure 5, respectively. Notably, VEGFAþ vs
VEGFA� /N comparison for mutant TP53 subgroup does not
show any remarkable difference apart from differential expression
of VEGFA itself and pH regulator CA9 (Supplementary Table 8b).
Tumours overexpressing VEGFA (both ERþ wild-type TP53

and mutant TP53 irrespective of ER status) show a differential
enrichment of the mTOR-signalling pathway compared with
normal/downregulated VEGFA samples. VEGFAþ /ERþ wild-
type TP53 samples showed significant association of EIF4EBP1,
MAPK1 (P-valueo0.05) and weak association of MTOR, ULK3 and
RPTOR. Conversely, PIK3CA and IGF1 were significantly associated
with VEGFA N/� tumours (Supplementary Figure 5 and Supplemen-
tary Table 10a). Interestingly, different sets of genes, although involved
in the same pathways were found associated with VEGFA status in
the mutant TP53 subgroup (Supplementary Table 10b).

TP53 mutation, ER status and VEGFA upregulation
influence survival

Samples were substratified according to the ER status in each
TP53 mutation class. While comparing the ERþ /mutant TP53
to the ERþ /wild-type TP53 samples, we noted a death hazard
ratio (HR) of 2.15 (95% CI: 1.25–3.70) and likelihood P-value
o0.01. On the other hand, ER� samples showed weaker
significance (P¼ 0.2; HR: 2.6; 95% CI: 1.14–5.91). As proges-
terone receptor (PgR) positivity is a better marker of active
ER signalling (Bardou et al, 2003), we also used PgR status as
an indicator of active ER signalling. PgRþ samples showed a

significant survival difference between mutant and wild-type
tumours (P¼ 1.53e� 05, HR: 7.2, 95% CI: 3.03–17.1). However,
PgR-tumours do not show significant survival differences (P40.1)
(Figure 2A and B). On the basis of these findings, we propose
that active ER signalling can influence the effect of mutant TP53 on
survival.
As VEGFA expression is observed here as a significant

influencer on survival even after controlling for TP53 status, we
reanalyzed the above effects by adding VEGFA expression status as
a covariate. Among ERþ group, the overall patient survival was
significantly influenced by TP53 mutation status and VEGFA
(model significance¼ 0.0005) with their corresponding HR¼ 2.02
and 2.08, compared with baseline risk for wild-type TP53 and
VEGFA normal/downregulation. Even stronger effect was observed
after excluding samples with non-missense mutant TP53
(P-value¼ 0.0001, HR¼ 2.38 and 2.11, respectively). Survival effect
of TP53 mutation status and VEGFA was stronger in PgRþ cases
(HR¼ 2.35, 95% CI: 1.17–4.74 for VEGFA upregulation, HR¼ 5.2,
95% CI: 2.43–11.1 for mutant TP53 status, and overall likelihood
ratio test P¼ 2.76e� 6), but non-significant effect in PgR–cases
(Figure 2C and D). Although active ER signalling in general is
known to predict better prognosis, these findings show that
irrespective of the TP53 mutation status, ERþ cases with high
mRNA levels of VEGFA indicates poor prognosis. Interestingly,
despite of the lowest occurrence of cases with upregulated VEGFA
in ERþ /wtTP53 subgroup (Supplementary Figure 6), its prognostic
significance underscores further exploration.

DISCUSSION

Our findings show predominance of ER signalling in breast
cancers with wild-type TP53, marked by the upregulation of ESR1,
GATA-binding protein 3, retinoic acid receptor alpha (RARa) and
CA12. Estrogen receptor a, a direct transcriptional activator of
RARa (Han et al, 1997), mediates anti-proliferative response by
vitamin A metabolite (all-trans-retinoic acid ) in breast cancer cells
(Dawson et al, 1995). Retinoic acid receptor a is a rate-limiting
factor for ER transcriptional activity (Ross-Innes et al, 2010).
Co-expression of BCL2, ERBB4, IGF1R, IRS1 was also found in this
group. Our observation of consistent upregulation of CA12, AGR3,
IL6ST and STC2 genes is in agreement with their previously
reported association with ERþ breast cancers. Our findings also
showed upregulation of SIRT3, a mitochondrial p53 activity
regulator, necessary for averting TP53-mediated growth arrest
(Li et al, 2010). Predicted functional network (Figure 1A) provides
a hint that genes involved in ER signalling form a core group of

Table 2 Association between the inferred TP53 mutation status-specific signatures with previously reported EMT and stemness markers. Statistical
significance of differential expressed geneset overlapping the stemness and epithelial-mesenchymal transition (EMT) marker genelistsa. Statistical significance
was computed by applying hypergeometric testb

wtTP53 signature Mutant TP53 signature

Top 1000 genes ranked
acc to absolute SNR
(wt vs mtTP53 BC)

Top 1000 mtTP53-
upregulated genes
ranked acc to SNR

EMT and stemness
geneset and its
transcript size

Number of
overlapping genes P-value

Number of
overlapping genes P-value

Number of
overlapping genes P-value

Number of
overlapping genes P-value

EMT (n¼ 497) 0 NS 1 NS 11 NS 15 0.031
ESC (n¼ 553) 0 NS 14 2.65E� 13 22 2.60E� 04 35 4.34E� 11
PRC2 (n¼ 1016) 7 3.25E� 03 0 NS 25 NS 19 NS
iPSC (n¼ 597) 1 NS 3 NS 17 4.50E� 02 22 1.50E� 03
p53esc (n¼ 912) 2 NS 5 2.66E� 02 12 NS 15 NS

Abbreviations: BC, breast cancer; ESC, embryonic stem cell; iPSC, induced pluripotent stem cell; NS, not significant; p53esc, p53 targets identified in murine embryonic stem cells;
PRC2, polycomb repressive complex 2; SNR, signal-to-noise ratio. aSources of the genelists are described in the Supplementary Table 6A. bStatistical significance was evaluated by
Fisher’s exact test, in instances where number of overlapping genes p5.
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interactions in TP53 wild-type tumours. A strong relationship
between ER signalling and TP53 can be observed in our results.
This relationship also has got implications on proliferation and
treatment responsiveness. The presence of wild-type TP53
improves sensitivity to Tamoxifen (Berns et al, 2000) and inhibits
ER cross-talk with the EGFR/HER2 pathways (Fernandez-Cuesta
et al, 2010). Experimental observations have provided evidence
about potential direct ER–TP53 interactions (Liu et al, 2006).
However, these complex interactions and their effects on
transactivation activity of TP53 and ERa in ERþ breast cancer
remains to be understood. Given that TP53 status is an important
predictor of response in patients receiving therapy targeting the
ER pathway (SERM), we expect that TP53 retains a subset of
functions necessary for the response to such therapy.
Genes in pathways related to cell cycle, angiogenesis, chromo-

somal instability and metastasis were significantly affected in mutant
TP53 tumours. We found the gene BUB1 and spindle-checkpoint
associated kinases were significantly associated with TP53 mutant
tumours. In the presence of dysfunctional TP53, their aberrant
expression can cause genomic instability, leading to aneuploidy
and malignant transformation (Gjoerup et al, 2007). Other genes
associated with mutant TP53 included ones involved in prolifera-
tion, angiogenesis and metastasis-VEGFA, HIF1a, E2F1, CDK6 and
EGFR.
VEGFA upregulation is an important indicator of pro-angiogenic

and pro-metastatic activity. Dysregulation of TP53-VEGF signal-
ling may potentially be a key event in breast cancers with

mutant TP53. Mutant TP53 may facilitate this tumorigenic
programme by: passing the direct survival advantage to malig-
nant cells, by facilitating the VEGF-mediated enhanced cell
migration, angiogenesis and metastasis or by overcoming the
regulation by ETS1 (Dittmer, 2003). Active ER signalling and
mutant TP53 are also reported to activate VEGF and mark poor
prognosis (Berns et al, 2003). In our data, we see that mutant TP53
and VEGF upregulation significantly affects patient survival in
ERþ /PgRþ samples, but not in ER� /PgR� samples. Activation
of VEGFA may also be attributed to the expression of EGFR
(Maity et al, 2000) or CDK6, which can correlate with the
expression of mutant TP53 (Wyllie et al, 2003) and potentially
delay cell senescence. Thus, besides the direct effects of lost
TP53 function, other related opportunistic mechanisms, such as
dysregulated proliferative effects of VEGFA may contribute the
overall manifestation.
ERþ /wild-type TP53 samples showed relatively low occurrence

of VEGFA upregulation but poor survival profile. ER-mediated
induction of VEGF (Berns et al, 2003; Applanat et al, 2008) and
VEGF regulation by TP53 (Liang et al, 2005) suggests a complex
interplay between these three signalling mechanisms. This group
also showed the differential enrichment of mTOR signalling. Co-
activation of VEGF and mTOR pathway components has been
previously reported (Trinh et al, 2009). Thus, VEGFA may
represent a biomarker of interest to identify the target subset of
ERþ breast cancer patients who might benefit from early
administration of VEGFA or mTOR-targeted therapy.

wtTP53

mtTP53

Survival differences in PR +ve cases
(n=269) P=1.53e-05

Overall patient survival (months)

P
ro

ba
bi

lit
y 

of
 s

ur
vi

va
l

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A C

B D

0 20 40 60 80 100 120 140 160 180

wtTP53 VEGFA N/–
wtTP53 VEGFA+
mtTP53 VEGFA N/–
mtTP53 VEGFA+

Survival differences in PR +ve cases
(n=269) P=2.76e–06

Overall patient survival (months)

P
ro

ba
bi

lit
y 

of
 s

ur
vi

va
l

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 20 40 60 80 100 120 140 160 180

wtTP53
mtTP53

Survival differences in PR –ve cases
(n=128) P=0.18

Overall patient survival (months)

P
ro

ba
bi

lit
y 

of
 s

ur
vi

va
l

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 20 40 60 80 100 120 140 160 180

wtTP53 VEGFA N/–
wtTP53 VEGFA+
mtTP53 VEGFA N/–
mtTP53 VEGFA+

Survival differences in PR –ve cases
(n=128) P=0.1

Overall patient survival (months)

P
ro

ba
bi

lit
y 

of
 s

ur
vi

va
l

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 20 40 60 80 100 120 140 160 180

Figure 2 Overall patient survival differs significantly according to the TP53 mutation status and VEGFA expression status in PgRþ and PgR� subgroups
of patients. Survival differences between wild-type TP53 and mutant TP53 in each of the subgroups are shown in Kaplan–Meier plots shown in A and B.
Survival differences of four classes: (1) wild-type TP53 and VEGFA normal/downregulation (wtTP53 VEGFA N/� ); (2) wild-type TP53 and VEGFA
upregulation (wtTP53 VEGFAþ ); (3) mutant TP53 and VEGFA normal/downregulation (mtTP53 VEGFA N/� ); and (4) mutant TP53 and VEGFA upregulation
(mtTP53 VEGFAþ ) – in PgRþ and PgR� subgroups are shown in C and D. Significance of overall model is based on the likelihood ratio test P-value.
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MATERIALS AND METHODS

Agilent chip based gene expression data for a subset of 111 breast
cancer cases from (Enerly et al, 2011) GEO (accession number
GSE19783) was used as the primary data set. TP53 mutations for
the primary data in coding regions of exons 2–11 and clinical data
were obtained from (Naume et al, 2007). Expression data used for
validation was obtained from GEO (accession number GSE3494) and
from Stanford Microarray Database. Clinical and TP53 data for these
data sets were obtained from (Miller et al, 2005; Langerød et al, 2007).

Methods used to merge data sets to form a validation
data set

Two expression data sets (Miller et al, 2005; Langerød et al, 2007)
from independent studies and different technology platform were
preprocessed, quantile normalised and combined based on
UniGene identifiers. Batch effects were corrected by applying
parametric empirical Bayes method (Johnson et al, 2007).

Differential enrichment of pathways and candidate genes

The globaltest (Goeman et al, 2011) uses a regression model where
genes are covariates and sample classes are response variables.
Significant association of gene means significant non-zero regres-
sion coefficient of a gene in a geneset (here a particular KEGG
pathway). SAM-GS is another geneset enrichment analysis method
based on the t-like statistic for assessing the permutation-based
significance of association between an individual pathway and a
phenotype of interest. KEGG pathways inferred as significant by
globaltest at FDR corrected P-value of 10e� 5 and validated by
SAM-GS (Dinu et al, 2007) at FDR corrected P-value cutoff¼
10e� 6 on both primary and validation data sets were analysed by
post-hoc covariate test to identify significant genes. Gene upregula-
tion means its class-specific upward biased expression pattern,
inferred by the rank-sum statistic of the modified Kolmogorov–
Smirnov test (Yang et al, 2010).
Class-specific predicted functional interactions between genes in the

genesets were obtained from STRING database (Jensen et al, 2009).

Pathways enrichment and GO analysis

Gene Ontology (GO) analysis was performed for each TP53 muta-
tion status-specific genesets using DAVID (Huang et al, 2009) by
Fisher’s exact test with human whole genome as a background.
Differentially enriched pathways and GO terms were graphically

presented as Enrichment map (Merico, 2009), with nodes color-
coded by FDR-adjusted P-value of significance and node-size
proportionate to number of genes in the pathway. Fraction of
overlapping genes between any two pathways is represented by the
edge thickness, with cutoff overlap coefficient of 0.1.

Association of TP53 biology with EMT and stemness
marker signatures

Inferred class-specific genesets were tested by hypergeometric test
for their association to the published EMT and stemness marker
genesets shown in Supplementary Table 6a. A larger genelist inferred
by using signal-to-noise ratio between TP53 mutation status classes
was also tested for its association to these published genesets.

Survival analysis

A combined cohort of 438 cases obtained by merging clinical data
from three individual clinical data sets (Supplementary Table 1)
was used. Kaplan–Meier estimation of survival and computation of
Cox proportional hazards frailty model for the death event was
performed by using R package survival (Therneau and Lumley, 2009).
Inferred candidate genes were assessed for their uni-/multivariate
effect on survival. The effect of TP53 mutation status together with
genes that maintain significance in a multivariate model (VEGFA
expression status) and predicted subtype (Parker et al, 2009)- was
computed with and without stratification by ER/PgR status.

Discretisation of gene expression

The mRNA expression levels of candidate genes were discretised
into two levels using mean (m)þ 0.5*standard deviation (s.d.) as a
cutoff in each data set.
Analysis was performed by using R (R Development Core Team,

2011).
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Supplementary Figures for Paper II 
 

Suppl Figure 1  - Flowchart of analysis. 

Suppl Figure 2  - Enrichment map showing the differentially enriched pathways according to the TP53 

mutation status. 

Each node, a differentially enriched pathway, is color-coded according to the FDR corrected globaltest p-values. 

Node side represents number of genes in the pathway. Thickness of the edges represents the fraction of overlapping 

genes between any two adjacent nodes (pathways). 

Suppl Figure 3  - Venn diagram displays a gray intersection area representing the validated geneset. 

Four genesets were inferred by using globaltest and modified KS test by performing analysis on primary and compiled 

validation datasets (Suppl Table 3 and 4). Validated gene signature of 112 (Suppl Table 5) consensus genes consists of 

ones that are found to be either significantly associated or upregulated in primary and validation datasets. In the Venn 

diagram these genes are marked by an intersection of blue and red areas with the number of genes in each of the areas 

shown in bold italics fonts. Numbers of genes shown in the diagram correspond to the number of unique gene 

identified as significant in each geneset. 

Suppl Figure 4  - Class-specific potential candidate genesets by TP53 mutation status show differential GO 

enrichment.   

Nodes are color-coded according to the class of their overrepresentation. Nodes in red indicate enriched GO terms in 

mutant TP53 samples; blue nodes indicate enriched GO terms in wt TP53 samples. Node size is proportionate of the 

number of genes assigned to a particular GO term. Thickness of the edges is proportionate to the overlap between the 

GO terms.   

Suppl Figure 5  -Predicted protein-protein functional interaction network corresponding to the differentially 

expressed genes between wtTP53 ER+ VEGFA+ samples and wtTP53 ER+ VEGFA- samples.  Besides nodes 

differentially associated between ER+ VEGFA+ wt TP53 and ER+ VEGFA- wtTP53 samples are also shown. 

Suppl Figure 6  - Proportion of cases with VEGFA upregulation in subgroups based on ER status and TP53 

mutation status. Lowest occurrence of VEGFA upregulation was observed in wtTP53/ER+ samples, but is predictive 

of poor survival. Thus, in this group of tumors, complex interplay between ER, TP53 and VEGF signaling forms a 

core biological feature. 
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ER+/wtTP53 tumors show active interaction 
between ER and P53 signaling along with their 
transactivation effects. Dark gray fraction of the bar 
indicates percentage of samples with VEGFA 
upregulation. The proportion of patients with cause 
of death attributed to breast cancer in each of the 
strata are also mentioned on the respective bar. 
Subset (here about 18% of all) of tumors manifest 
with upregulated VEGFA with its consequences on 
VEGF signaling pathway and ultimately poor 
patient survival. 
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ER -ve ER +ve Unknown

wild-type TP53 16(38) 55(82) 2(100) 73(66)
mutant TP53 26(62) 12(18) 0(0) 38(34)

42 67 2 N=111

wild-type TP53 12(44.5) 36(88) 8(100) 56(73.5)
mutant TP53 15(55.5) 5(12) 0(0) 20(26.5)

27 41 8 N=76

Validation Dataset II : Miller et al. 2003
wild-type TP53 15(44) 174(81.5) 4(100) 193(77)
mutant TP53 19(56) 39(18.5) 0(0) 58(23)

34 213 4 N=251

Combined clinical dataset
wild-type TP53 43(41.5) 265(82.5) 14(100) 322(73.5)
mutant TP53 60(58.5) 56(17.5) 0(0) 116(26.5)

103 321 14 N=438

Primary Dataset: Naume et al 2007; Enerly et al, 2010

Validation Dataset I: Langerød et al, 2007

Estrogen receptor status

Supplementary table 1: Sample characteristics table showing the number and percentage of
patients in each TP53 mutation status class with its estrogen receptor status (Percentage of total
number of samples in each TP53 status stratified by ER status are shown in the bracket; Last
column shows sum of samples in each TP53 status class and in percentage of total samples
categorized in that class shown in bracket)



P-value  
asymptotic 
globaltest

BH 
corrected 
p-value

SAMGS 
p-

value

FDR 
adj p-
value

P-value  
asymptotic 
globaltest

BH 
corrected 
p-value

SAMGS p
value

FDR 
adj p-
value

hsa:00230 Purine metabolism 1.6e-11 1.8e-09 <10e-6 <10e-6 6.8e-35 2.4e-36 <10e-6 <10e-6

hsa:04115 p53 signaling pathway 2.4e-11 1.8e-09 <10e-6 <10e-6 4.3e-33 2.4e-34 <10e-6 <10e-6

hsa:05211 Renal cell carcinoma 6.5e-11 3.7e-09 <10e-6 <10e-6 4.2e-17 1.3e-17 <10e-6 <10e-6

hsa:05200 Pathways in cancer 3.3e-10 1.1e-08 <10e-6 <10e-6 6.5e-28 6.9e-29 <10e-6 <10e-6

hsa:05215 Prostate cancer 4.3e-10 1.1e-08 <10e-6 <10e-6 1.4e-28 1.3e-29 <10e-6 <10e-6

hsa:04540 Gap junction 2.1e-09 3.9e-08 NS NS 7.4e-38 1.6e-39 <10e-6 NS

hsa:04020 Calcium signaling pathway 2.3e-09 4.1e-08 <10e-6 <10e-6 3.1e-26 4.8e-27 <10e-6 <10e-6

hsa:00260
Glycine, serine and threonine 
metabolism 3.1e-09 4.7e-08 <10e-6 <10e-6 7.7e-25 1.4e-25 <10e-6 <10e-6

hsa:05212 Pancreatic cancer 4.2e-09 5.7e-08 <10e-6 <10e-6 6.6e-38 1.2e-39 <10e-6 <10e-6

hsa:04340 Hedgehog signaling pathway 4.7e-09 6.0e-08 <10e-6 <10e-6 2.4e-20 5.8e-21 <10e-6 <10e-6

hsa:05222 Small cell lung cancer 7.3e-09 7.9e-08 <10e-6 <10e-6 5.1e-38 6.8e-40 <10e-6 <10e-6

hsa:04120 Ubiquitin mediated proteolysis 1.2e-08 1.2e-07 <10e-6 <10e-6 3.7e-38 3.3e-40 <10e-6 <10e-6

hsa:04910 Insulin signaling pathway 1.2e-08 1.2e-07 <10e-6 <10e-6 3.5e-26 5.8e-27 <10e-6 <10e-6

hsa:00051 Fructose and mannose metabolism 1.3e-08 1.3e-07 <10e-6 <10e-6 3.4e-29 2.5e-30 <10e-6 <10e-6

hsa:05218 Melanoma 1.5e-08 1.4e-07 <10e-6 <10e-6 5.2e-17 1.7e-17 <10e-6 <10e-6

hsa:04150 mTOR signaling pathway 1.9e-08 1.7e-07 <10e-6 <10e-6 5.6e-25 9.7e-26 <10e-6 <10e-6

hsa:00380 Tryptophan metabolism 2.3e-08 2.0e-07 <10e-6 <10e-6 2.2e-08 1.5e-08 <10e-6 <10e-6

hsa:04144 Endocytosis 2.9e-08 2.4e-07 <10e-6 <10e-6 2.5e-23 5.0e-24 <10e-6 <10e-6

hsa:00330 Arginine and proline metabolism 3.3e-08 2.5e-07 <10e-6 <10e-6 4.5e-18 1.3e-18 <10e-6 <10e-6

hsa:05214 Glioma 3.3e-08 2.5e-07 <10e-6 <10e-6 3.7e-14 1.5e-14 <10e-6 <10e-6

hsa:00030 Pentose phosphate pathway 4.0e-08 2.9e-07 NS NS 1.7e-28 1.6e-29 <10e-6 NS

hsa:04010 MAPK signaling pathway 4.6e-08 3.1e-07 <10e-6 <10e-6 4.3e-33 2.4e-34 <10e-6 <10e-6

hsa:04012 ErbB signaling pathway 6.2e-08 3.7e-07 <10e-6 <10e-6 8.2e-17 2.7e-17 <10e-6 <10e-6

hsa:05220 Chronic myeloid leukemia 5.9e-08 3.7e-07 <10e-6 <10e-6 2.0e-22 4.3e-23 <10e-6 NS

hsa:04520 Adherens junction 7.1e-08 4.0e-07 <10e-6 <10e-6 2.1e-12 9.8e-13 <10e-6 <10e-6

hsa:05217 Basal cell carcinoma 9.7e-08 4.8e-07 <10e-6 <10e-6 1.2e-10 6.5e-11 <10e-6 <10e-6

hsa:00600 Sphingolipid metabolism 1.0e-07 4.9e-07 <10e-6 <10e-6 1.2e-13 4.7e-14 <10e-6 <10e-6

hsa:05120
Epithelial cell signaling in Helicobacter 
pylori infection 1.3e-07 5.8e-07 <10e-6 <10e-6 2.8e-11 1.5e-11 <10e-6 <10e-6

hsa:04722 Neurotrophin signaling pathway 1.5e-07 6.7e-07 <10e-6 <10e-6 4.7e-21 1.1e-21 <10e-6 <10e-6

hsa:00240 Pyrimidine metabolism 1.6e-07 6.8e-07 <10e-6 <10e-6 1.3e-30 9.0e-32 <10e-6 NS

hsa:04912 GnRH signaling pathway 1.9e-07 8.2e-07 <10e-6 <10e-6 2.0e-17 6.0e-18 <10e-6 <10e-6

hsa:00310 Lysine degradation 2.0e-07 8.2e-07 <10e-6 <10e-6 9.2e-23 1.9e-23 <10e-6 NS

hsa:05219 Bladder cancer 2.0e-07 8.2e-07 <10e-6 <10e-6 5.0e-17 1.6e-17 <10e-6 <10e-6

hsa:05210 Colorectal cancer 3.0e-07 1.2e-06 <10e-6 <10e-6 7.3e-11 3.9e-11 <10e-6 <10e-6

hsa:04070 Phosphatidylinositol signaling system 3.1e-07 1.2e-06 <10e-6 <10e-6 4.4e-12 2.2e-12 <10e-6 <10e-6

hsa:04110 Cell cycle 3.5e-07 1.3e-06 <10e-6 <10e-6 2.4e-26 3.7e-27 <10e-6 <10e-6

hsa:03018 RNA degradation 3.8e-07 1.3e-06 NS NS 2.1e-27 2.5e-28 <10e-6 <10e-6

hsa:05223 Non-small cell lung cancer 4.3e-07 1.5e-06 NS NS 2.8e-13 1.2e-13 NS NS

hsa:04370 VEGF signaling pathway 4.5e-07 1.5e-06 <10e-6 <10e-6 1.4e-07 1.0e-07 <10e-6 <10e-6

hsa:05221 Acute myeloid leukemia 6.2e-07 2.1e-06 <10e-6 <10e-6 1.3e-11 6.4e-12 <10e-6 <10e-6

hsa:00270 Cysteine and methionine metabolism 1.2e-06 3.6e-06 <10e-6 <10e-6 6.8e-25 1.2e-25 <10e-6 <10e-6

hsa:04530 Tight junction 1.8e-06 5.3e-06 <10e-6 <10e-6 2.2e-17 6.9e-18 <10e-6 <10e-6

hsa:04350 TGF-beta signaling pathway 2.6e-06 7.3e-06 <10e-6 <10e-6 1.5e-13 5.9e-14 <10e-6 <10e-6

hsa:04310 Wnt signaling pathway 3.8e-06 1.0e-05 <10e-6 <10e-6 2.9e-18 8.2e-19 <10e-6 <10e-6

hsa:04210 Apoptosis 5.2e-06 1.4e-05 NS NS 6.0e-13 2.6e-13 <10e-6 <10e-6

hsa:04630 Jak-STAT signaling pathway 5.3e-06 1.4e-05 NS NS 8.4e-11 4.6e-11 NS NS

hsa:00590 Arachidonic acid metabolism 5.7e-06 1.5e-05 <10e-6 <10e-6 2.3e-11 1.2e-11 <10e-6 <10e-6

hsa:05213 Endometrial cancer 7.3e-06 1.8e-05 <10e-6 <10e-6 1.7e-06 1.3e-06 <10e-6 <10e-6

hsa:04060 Cytokine-cytokine receptor interaction 9.8e-06 2.3e-05 NS NS 2.8e-12 1.3e-12 NS NS

hsa:04142 Lysosome 2.2e-05 4.9e-05 <10e-6 <10e-6 2.0e-17 6.1e-18 <10e-6 <10e-6

hsa:03008 Ribosome biogenesis in eukaryotes 3.4e-05 7.4e-05 NS NS 5.6e-25 9.7e-26 NS NS

hsa:00562 Inositol phosphate metabolism NS NS <10e-6 <10e-6 2.4e-20 5.7e-21 <10e-6 <10e-6

hsa:04260 Cardiac muscle contraction NS NS <10e-6 <10e-6 9.8e-29 8.2e-30 <10e-6 <10e-6

hsa:04270 Vascular smooth muscle contraction NS NS <10e-6 <10e-6 1.7e-24 3.3e-25 <10e-6 <10e-6

hsa:04360 Axon guidance NS NS <10e-6 <10e-6 3.8e-32 2.3e-33 <10e-6 <10e-6

hsa:04610 Complement and coagulation cascades NS NS <10e-6 <10e-6 6.4e-11 3.4e-11 <10e-6 <10e-6

hsa:04810 Regulation of actin cytoskeleton NS NS <10e-6 <10e-6 2.0e-17 6.0e-18 <10e-6 <10e-6

hsa:04916 Melanogenesis NS NS <10e-6 <10e-6 3.1e-12 1.5e-12 <10e-6 <10e-6

hsa:05010 Alzheimer's disease NS NS <10e-6 <10e-6 5.8e-25 1.0e-25 <10e-6 <10e-6

hsa:05014 Amyotrophic lateral sclerosis (ALS) NS NS <10e-6 <10e-6 2.9e-11 1.5e-11 <10e-6 <10e-6

hsa:05110 Vibrio cholerae infection NS NS <10e-6 <10e-6 1.8e-10 1.0e-10 <10e-6 <10e-6

SAM-GS

Primary dataset Validation dataset

Supplementary Table 2: Table shows differentially enriched pathways identified by comparing two classes- presence or absense
of TP53 mutation in BC expression profiles in primary and validation datasets. The analysis was performed by using two tests-
globaltest and SAMGS. The list of significant pathways at Benjamini-Hochberg(BH) adjusted p-value cut-off level <1.0e-4 in
primary datasets are shown in the table, sorted by BH adjusted p-value. The signficant pathways based on primary datasets were
also found significant on validation dataset.

KEGG PATHWAY NAMEKEGGID

Asymptotic global test SAM-GS Asymptotic global test



ProbeID Inheritance p-value Symbol ProbeID Inheritance p-value Symbol ProbeID Inheritance p-value Symbol ProbeID Inheritance p-value Symbol
A_32_P161140 6.4E-04 5.9E-07 UGCG A_23_P110122 1.6E-04 8.9E-07 CCNG2 A_24_P179400 3.6E-04 6.0E-06 VEGFA A_23_P253484 1.7E-05 4.5E-07 AADAT
A_23_P46819 1.4E-04 1.1E-06 BTRC A_23_P108143 6.4E-06 2.1E-07 GAMT A_23_P259692 6.1E-07 4.3E-10 PSAT1

ProbeID Inheritance p.value Symbol ProbeID Inheritance p.value Symbol ProbeID Inheritance p-value Symbol ProbeID Inheritance p-value Symbol
A_23_P382775 1.1E-05 7.2E-08 BBC3 A_24_P305312 5.3E-03 3.7E-05 BBC3 A_23_P209200 3.2E-06 9.5E-09 CCNE1 A_24_P180680 4.6E-03 8.8E-05 LAPTM4B
A_24_P224488 1.1E-05 2.0E-07 MAPT A_23_P83579 5.5E-03 3.1E-04 ARNT2 A_23_P210726 1.4E-05 1.4E-07 CDC25B A_23_P1782 4.9E-03 1.0E-04 CD82
A_32_P183765 1.9E-05 1.2E-06 ERBB4 A_23_P349416 6.3E-03 7.9E-05 ERBB3 A_23_P100344 2.5E-05 2.3E-07 ORC6L A_23_P214121 6.0E-03 1.6E-04 AMD1
A_24_P19228 3.1E-05 7.1E-07 GAMT A_23_P202837 6.4E-03 2.7E-04 CCND1 A_24_P103264 3.7E-05 9.8E-07 UGT8 A_23_P55477 6.1E-03 5.0E-05 ADORA2B
A_32_P6344 1.0E-04 1.6E-06 MAP2K4 A_23_P83192 6.5E-03 9.6E-05 PHPT1 A_24_P397107 4.3E-05 1.0E-07 CDC25A A_23_P68487 6.6E-03 5.7E-04 BMP7
A_23_P22143 1.3E-04 2.1E-06 PDE6B A_23_P423853 6.6E-03 8.9E-05 ERBB4 A_24_P916195 4.9E-05 1.4E-07 GTSE1 A_23_P48637 6.7E-03 1.1E-04 HIF1A
A_23_P156402 1.6E-04 5.8E-07 NME5 A_24_P225679 7.4E-03 8.5E-05 IRS1 A_23_P215790 8.7E-05 6.9E-07 EGFR A_24_P37441 6.7E-03 5.5E-05 PDK1
A_23_P257111 1.7E-04 1.3E-07 FBP1 A_23_P4161 7.5E-03 5.4E-05 ARSG A_23_P22224 1.0E-04 2.1E-06 EIF4EBP1 A_23_P65757 7.2E-03 8.7E-05 CCNB2
A_23_P352266 2.7E-04 6.9E-06 BCL2 A_23_P55107 7.6E-03 4.0E-05 ULK2 A_23_P80974 1.3E-04 3.6E-06 TDO2 A_24_P393449 7.3E-03 1.3E-05 DAPK1
A_23_P417282 4.3E-04 1.0E-05 IGF1R A_24_P53976 7.8E-03 1.3E-04 GLUL A_23_P56898 1.3E-04 8.4E-06 KYNU A_24_P48856 7.4E-03 4.8E-04 CBS
A_24_P945147 4.5E-04 3.2E-07 RABEP1 A_32_P32739 7.9E-03 1.9E-04 NAGS A_24_P942589 1.3E-04 3.5E-06 UGT8 A_24_P115762 7.5E-03 2.3E-05 CTSC
A_24_P12065 5.4E-04 6.3E-06 CCNG2 A_32_P41574 9.0E-03 7.0E-05 PXN A_24_P11506 1.5E-04 8.8E-06 KYNU A_23_P163481 5.0E-02 6.8E-04 BUB1B
A_24_P935103 5.6E-04 4.2E-06 ADCY9 A_23_P211835 9.1E-03 1.3E-04 AGTR1 A_23_P132019 1.6E-04 3.7E-07 ITCH A_24_P313504 7.8E-03 1.4E-04 PLK1
A_23_P207699 8.0E-04 7.2E-06 MAPT A_23_P385105 9.2E-03 3.6E-04 PLCD4 A_23_P168651 2.1E-04 8.8E-07 CDK6 A_23_P420196 9.1E-03 7.2E-05 SOCS1
A_24_P339514 9.4E-04 1.8E-04 CYP2B6 A_23_P353905 9.7E-03 3.4E-05 DUSP16 A_23_P93641 2.3E-04 1.9E-05 AKR1B10 A_23_P7144 9.4E-03 6.7E-04 CXCL1
A_24_P339416 9.7E-04 9.0E-06 ARSG A_23_P167093 9.8E-03 5.2E-05 IDUA A_23_P85783 2.3E-04 1.2E-05 PHGDH A_23_P7636 9.7E-03 1.5E-04 PTTG1
A_23_P35414 1.0E-03 3.1E-05 PPP1R3C A_24_P227993 1.0E-02 7.4E-05 UBE2I A_24_P166663 2.7E-04 4.4E-06 CDK6 A_24_P414999 9.8E-03 2.0E-04 LAPTM4B
A_24_P399174 1.1E-03 6.3E-06 RABEP1 A_32_P98298 1.1E-02 8.9E-05 DUSP8 A_23_P58321 2.7E-04 5.7E-07 CCNA2 A_24_P200000 1.0E-02 1.2E-05 STEAP3
A_23_P10743 1.3E-03 1.5E-05 PDE6B A_23_P216325 1.3E-02 8.4E-04 ASAH1 A_23_P124417 2.7E-04 9.6E-07 BUB1 A_23_P140256 1.1E-02 8.5E-05 PNP
A_23_P502047 1.4E-03 4.5E-05 CHRD A_23_P500381 1.7E-02 1.9E-04 HTR7 A_23_P112026 2.8E-04 2.4E-05 IDO1 A_24_P234196 1.1E-02 1.3E-04 RRM2
A_23_P201731 1.5E-03 2.2E-05 TRAF5 A_24_P80532 1.7E-02 3.5E-04 CCNG2 A_23_P208126 3.6E-04 7.2E-06 SERPINB5 A_23_P205828 1.1E-02 1.7E-05 TJP1
A_32_P17182 1.6E-03 6.5E-05 THBS1 A_24_P193011 1.8E-02 1.1E-03 CCND1 A_23_P121423 3.6E-04 6.7E-07 CDC25A A_23_P155335 1.1E-02 1.1E-04 PLD1
A_23_P111531 1.7E-03 6.9E-05 GLI3 A_24_P782308 1.9E-02 1.6E-04 NEDD4L A_23_P50081 3.7E-04 9.9E-06 IMPA2 A_23_P79398 1.2E-02 1.8E-05 IL1R2
A_23_P166616 1.9E-03 3.8E-05 AGTR1 A_23_P127367 1.9E-02 1.1E-04 POLD4 A_24_P212086 3.8E-04 2.5E-06 SERPINB5 A_24_P371962 1.5E-02 3.6E-04 AMD1
A_23_P258018 1.9E-03 1.4E-05 MYL5 A_23_P405794 2.1E-02 3.3E-04 NAGS A_23_P259586 4.5E-04 3.8E-06 TTK A_23_P166306 1.5E-02 2.2E-03 CBS
A_23_P20392 1.9E-03 3.1E-05 PSD3 A_23_P24433 2.1E-02 2.4E-04 CTSF A_23_P57588 4.9E-04 5.4E-06 GTSE1 A_23_P161297 1.5E-02 6.6E-04 OGDHL
A_24_P577694 1.9E-03 5.0E-05 ADCY1 A_23_P406187 2.2E-02 5.4E-04 NAGS A_23_P149200 4.9E-04 7.3E-06 CDC20 A_23_P123478 1.6E-02 7.8E-05 PDE7A
A_24_P18146 2.6E-03 3.7E-05 PSD3 A_23_P92042 2.4E-02 7.3E-04 ITPR1 A_23_P116123 5.3E-04 8.2E-06 CHEK1 A_23_P80032 1.6E-02 3.7E-04 E2F1
A_32_P205637 2.6E-03 7.4E-05 PARD6B A_24_P184031 2.6E-02 4.3E-04 PHPT1 A_23_P70398 6.4E-04 1.7E-05 VEGFA A_23_P28953 1.6E-02 6.5E-04 DNMT3B
A_24_P108311 3.5E-03 3.8E-05 NEDD4L A_24_P357266 2.7E-02 5.1E-04 GRPR A_23_P147431 4.1E-03 4.7E-05 LYN A_24_P410363 1.7E-02 4.6E-05 EGLN1
A_24_P63380 3.8E-03 1.2E-04 BMPR1B A_23_P308924 3.2E-02 1.1E-04 DUSP16 A_24_P180654 6.7E-04 5.2E-06 CREB3L2 A_23_P343935 1.7E-02 6.6E-06 EGLN1
A_23_P113111 4.1E-03 1.6E-04 AR A_23_P146990 3.6E-02 7.5E-04 WWP1 A_23_P359245 7.9E-04 3.3E-05 MET A_32_P72447 1.8E-02 2.6E-04 UBE2S
A_24_P322474 4.4E-03 5.6E-05 PDE4A A_24_P397294 4.2E-02 4.9E-06 LTC4S A_24_P129341 9.8E-04 1.0E-04 AKR1B10 A_32_P171328 1.8E-02 2.2E-04 UBE2S
A_23_P313389 4.5E-03 2.2E-04 UGCG A_24_P688133 4.5E-02 8.9E-05 PPM1A A_23_P81805 1.2E-03 2.9E-05 VEGFA A_23_P104493 1.8E-02 4.6E-04 PAPSS2
A_23_P152115 5.0E-03 1.2E-05 NME3 A_23_P216167 4.6E-02 1.0E-03 PSD3 A_23_P170037 1.5E-03 7.2E-06 MID1 A_23_P571 2.2E-02 6.3E-04 SLC2A1
A_23_P18559 5.0E-03 1.4E-04 INPP4B A_23_P99442 4.9E-02 2.0E-03 FLT3 A_23_P119916 1.7E-03 9.8E-05 WNT6 A_23_P370989 2.3E-02 6.7E-06 MCM4

A_23_P65651 2.0E-03 4.6E-05 WARS A_23_P103720 2.4E-02 1.5E-04 AGMAT
A_23_P53476 2.0E-03 7.9E-05 LDHB A_23_P393531 2.4E-02 6.4E-05 INPP4A
A_23_P502520 2.1E-03 1.1E-04 IL4I1 A_23_P102117 2.4E-02 4.4E-04 WNT10A
A_23_P124095 2.1E-03 3.7E-04 CALML5 A_23_P46928 2.5E-02 2.0E-05 PFKP
A_23_P102113 2.3E-03 7.3E-05 WNT10A A_24_P283288 2.5E-02 3.5E-05 MAPK14
A_24_P91566 2.3E-03 1.1E-05 BMP7 A_23_P254522 2.6E-02 2.1E-06 COL4A4
A_23_P57379 2.3E-03 2.9E-05 CDC45L A_24_P297539 2.7E-02 7.3E-04 UBE2C
A_23_P250914 2.5E-03 9.9E-05 ATP6V1C2 A_23_P74269 2.8E-02 1.7E-04 SRM
A_23_P408955 2.9E-03 8.4E-05 E2F2 A_23_P160618 2.9E-02 1.1E-04 SH2D2A
A_23_P118174 3.0E-03 1.6E-05 PLK1 A_23_P377197 2.9E-02 8.6E-05 MRAS
A_23_P45799 3.1E-03 1.0E-05 ORC1L A_32_P184933 3.0E-02 4.3E-04 UBE2S
A_23_P209778 3.2E-03 6.6E-06 POLR2D A_32_P181131 3.5E-02 1.1E-04 AK3L1
A_23_P31921 3.2E-03 1.0E-04 ASS1 A_23_P110725 3.6E-02 2.6E-04 PRKAA1
A_23_P252163 3.4E-03 3.4E-05 DAPK1 A_24_P376556 3.6E-02 6.0E-05 CYCS
A_23_P28898 3.4E-03 7.6E-05 PLCB4 A_23_P80098 3.7E-02 1.4E-04 GART
A_23_P72747 3.6E-03 4.6E-05 UGT8 A_24_P56388 3.8E-02 8.1E-04 HIF1A
A_23_P10614 3.7E-03 1.4E-05 PDK1 A_23_P29330 4.0E-02 1.7E-04 SMC1B
A_23_P122197 4.1E-03 5.6E-05 CCNB1 A_23_P118815 4.0E-02 1.1E-03 BIRC5
A_23_P146456 7.4E-04 2.9E-06 CTSL2 A_23_P127525 4.1E-02 9.8E-05 ETS1
A_23_P106675 4.1E-03 6.3E-05 PLCG2 A_23_P217339 4.6E-02 8.8E-04 PRKX
A_24_P77082 4.2E-03 8.2E-05 KMO A_23_P29773 7.5E-03 6.6E-06 LAMP3
A_23_P18579 4.4E-03 5.8E-05 PTTG2

ProbeID Symbol ProbeID Symbol ProbeID Symbol ProbeID Symbol ProbeID Symbol ProbeID Symbol ProbeID Symbol ProbeID Symbol
A_32_P5251 RARA A_23_P48339 IFT88 A_23_P93514 C6orf97 A_24_P316257 FLJ36208 A_32_P84084 MTSS1L A_24_P335620 SLC7A5 A_23_P71989 UPP1 A_23_P18135 MRPS25
A_32_P45168 MEIS3P1 A_23_P42811 AGR3 A_23_P75056 GATA3 A_24_P211420 SPEF1 A_32_P77989 NETO2 A_24_P306214 KIAA1609 A_23_P71170 TRPV6 A_23_P168259 ULBP2
A_32_P190303 LONRF2 A_23_P422115 C9orf116 A_23_P62831 FAM176B A_24_P153840 FGD3 A_32_P32391 OR7E156P A_24_P277576 TRIP13 A_23_P70448 HIST1H1A A_23_P160537 C1orf135
A_32_P16007 POTEB A_23_P420348 POTED A_23_P502470 IL6ST A_23_P95594 NAT1 A_32_P113784 SOX11 A_24_P213924 KIAA1609 A_23_P50990 CENPO A_23_P157793 CA9
A_24_P923684 SIRT3 A_23_P416395 STC2 A_23_P50167 SLC39A6 A_23_P372234 CA12 A_24_P93901 SIN3B A_24_P205604 PADI2 A_23_P415510 LAD1 A_23_P145485 ULBP2
A_24_P586712 TPRG1 A_23_P41634 ANKRA2 A_23_P132378 CELSR1 A_23_P32577 DACH1 A_24_P873688 CENPN A_24_P193648 GPT2 A_23_P381945 KRT7 A_23_P112159 EIF2C2
A_24_P383478 ESR1 A_23_P41487 TBC1D9 A_23_P27734 NPAS1 A_23_P309739 ESR1 A_24_P722155 LOC100128098 A_24_P187970 PADI2 A_23_P355075 CENPN A_23_P1043 C1orf106
A_24_P368575 SLC4A7 A_23_P40280 SPEF1 A_23_P255701 LRRC48 A_23_P29663 ZMYND10 A_24_P411749 GPR126 A_24_P165450 TTLL7 A_23_P251730 ATP11C A_23_P88873 GAN
A_24_P330518 CA12 A_23_P381102 CCDC74B A_23_P212608 CLSTN2 A_23_P140427 EVL A_24_P384018 OR7E156P A_23_P92261 ECE2 A_23_P22378 SOX11 A_23_P210581 KCNG1
A_23_P148249 THSD4 A_23_P16648 PCSK4

C: Genes identified as upregulated in wt TP53 BC class using modified KS test C: Genes identified as upregulated in mt TP53 BC class using modified KS test

 Gene signature specific to mtTP53 BC

Supplementary Table 3. Genesets representing TP53 mutation class-specific signatures inferred using the analysis of primary dataset: Sets of genes
that were found either upregulated (by modified Kolmogorov Smirnov test) or significantly associated (by globaltest at inheritance cut-off <0.05) to one of the class.
Association means probe feature smaller non-zero regression coefficient found to be associated with one of TP53 mutation status by using globaltest.

 Gene signature specific to wtTP53 BC
A: Genes identified as significantly associated or upregulated in wt TP53 BC class using both methods A: Genes identified as significantly associated or upregulated in mtTP53 BC class using both methods

B: Genes identified as significantly associated to the wt TP53 BC class using globaltest B: Genes identified as significantly associated to the wt TP53 BC class using globaltest



UnigeneID Inheritance p-value Symbol UnigeneID Inheritance p-value Symbol UnigeneID Inheritance p-value Symbol UnigeneID Inheritance p-value Symbol
Hs.101174 6.8E-15 2.2E-16 MAPT Hs.439726 1.0E-11 2.2E-13 LAMB2 Hs.169840 2.5E-23 7.6E-30 TTK Hs.58974 1.5E-18 1.8E-20 CCNA2
Hs.471508 4.2E-13 7.3E-15 IRS1 Hs.445000 1.6E-05 1.8E-11 PTGER3 Hs.226390 1.4E-18 5.1E-20 RRM2 Hs.591697 2.9E-15 9.0E-17 MAD2L1
Hs.185677 4.2E-13 7.3E-15 NEDD4L Hs.657729 9.7E-12 1.0E-12 LRP2 Hs.350966 6.9E-19 1.3E-20 PTTG1 Hs.592049 4.0E-16 8.5E-18 PLK1

Hs.388733 2.8E-13 1.8E-15 PNPT1 Hs.93002 3.51E-20 1.41E-21 UBE2C

UnigeneID Inheritance p.value Symbol UnigeneID Inheritance p.value Symbol UnigeneID Inheritance p-value Symbol UnigeneID Inheritance p-value Symbol
Hs.567295 7.1E-12 2.3E-13 ITPR1 Hs.54941 6.9E-03 4.0E-05 PHKA2 Hs.494261 6.3E-19 6.0E-20 PSAT1 Hs.128065 3.4E-04 6.3E-07 CTSC
Hs.81131 3.0E-10 2.6E-11 GAMT Hs.150718 7.2E-03 1.6E-04 JAM3 Hs.159118 5.5E-17 1.3E-18 AMD1 Hs.632282 3.8E-04 3.2E-08 SLC25A5
Hs.390729 7.7E-10 3.4E-11 ERBB4 Hs.405961 8.4E-03 2.6E-04 CREB3L1 Hs.533573 6.1E-17 8.0E-19 CDC7 Hs.591360 4.3E-04 9.6E-09 CCDC6
Hs.476273 8.9E-10 1.5E-11 CACNA2D2 Hs.494312 8.4E-03 1.9E-04 NTRK2 Hs.631709 1.1E-16 4.8E-18 RAD51 Hs.292026 4.7E-04 6.3E-06 EIF4E2
Hs.494496 2.4E-09 3.2E-10 FBP1 Hs.32959 9.5E-03 7.6E-05 GRK4 Hs.334562 8.1E-16 2.0E-17 CDK1 Hs.512656 5.6E-04 3.8E-05 PSPH
Hs.597664 1.6E-08 4.3E-10 IKBKB Hs.505545 1.0E-02 5.7E-05 SLC11A2 Hs.24529 3.4E-15 4.8E-17 CHEK1 Hs.709 6.0E-04 5.6E-06 DCK
Hs.304249 3.1E-08 1.6E-09 UGCG Hs.370771 1.1E-02 4.6E-04 CDKN1A Hs.555956 1.6E-14 1.4E-16 NUDT5 Hs.201446 7.9E-04 2.4E-08 PERP
Hs.417962 6.3E-08 2.1E-09 DUSP4 Hs.481022 1.1E-02 5.4E-04 SFRP2 Hs.517582 2.6E-13 7.1E-15 MCM5 Hs.654401 9.3E-04 8.3E-06 IMPDH1
Hs.496240 8.1E-08 4.3E-09 AR Hs.655455 1.1E-02 3.1E-04 PVRL2 Hs.386189 4.2E-13 7.7E-15 GTSE1 Hs.163451 9.4E-04 2.4E-06 PYCR1
Hs.598475 8.9E-08 1.2E-08 BMPR1B Hs.298654 1.2E-02 2.4E-04 DUSP6 Hs.438720 6.2E-13 9.8E-15 MCM7 Hs.469022 1.0E-03 5.4E-06 DGUOK
Hs.77810 1.2E-07 1.1E-09 NFATC4 Hs.643802 1.3E-02 2.5E-04 BTRC Hs.194698 6.3E-13 1.2E-14 CCNB2 Hs.34012 1.1E-03 2.9E-05 BRCA2
Hs.476358 1.8E-07 4.9E-09 CACNA1D Hs.434375 1.3E-02 7.8E-09 PTPRB Hs.374378 2.1E-12 3.6E-14 CKS1B Hs.198072 1.2E-03 8.3E-06 PDE4B
Hs.200841 3.4E-07 1.2E-08 LAMA2 Hs.49774 1.3E-02 2.3E-05 PTPRM Hs.23348 2.6E-12 3.3E-14 SKP2 Hs.502773 1.2E-03 8.2E-05 ADI1
Hs.212088 6.5E-07 2.8E-08 EPHX2 Hs.523852 1.3E-02 1.6E-03 CCND1 Hs.26010 3.7E-12 4.8E-13 PFKP Hs.441498 1.4E-03 5.1E-08 STAM
Hs.352298 6.8E-07 2.4E-08 PDGFD Hs.241575 1.4E-02 1.5E-04 GNPTG Hs.460184 3.9E-12 7.3E-14 MCM4 Hs.2256 1.4E-03 8.6E-05 MMP7
Hs.509067 6.8E-07 1.7E-08 PDGFRB Hs.654400 1.4E-02 2.7E-04 IMPDH2 Hs.23960 4.5E-12 1.3E-13 CCNB1 Hs.379466 1.5E-03 8.6E-06 UBE2A
Hs.592317 7.0E-07 2.2E-08 TGFB3 Hs.567268 1.6E-02 4.6E-04 FGF7 Hs.437705 6.1E-12 8.7E-14 CDC25A Hs.73527 1.7E-03 1.1E-05 CSNK2B
Hs.160562 7.4E-07 5.4E-08 IGF1 Hs.648394 1.6E-02 4.8E-08 EIF4B Hs.153752 7.2E-12 1.7E-13 CDC25B Hs.183671 1.9E-03 1.0E-04 TDO2
Hs.98367 7.5E-07 4.6E-09 SOX17 Hs.207776 1.6E-02 1.8E-04 AGA Hs.153479 1.3E-11 2.2E-13 ESPL1 Hs.129683 2.0E-03 2.0E-05 UBE2D1
Hs.503163 1.0E-06 7.0E-09 PDE2A Hs.128433 1.6E-02 2.7E-04 HPGDS Hs.202672 1.9E-11 4.4E-13 DNMT1 Hs.163776 2.0E-03 1.9E-05 UBE2J1
Hs.212606 1.4E-06 5.4E-08 GLS2 Hs.471675 1.7E-02 7.7E-04 DGKD Hs.477481 3.9E-11 9.2E-13 MCM2 Hs.593413 2.0E-03 3.1E-05 CXCR4
Hs.517227 2.4E-06 3.8E-08 JAM2 Hs.149261 1.9E-02 5.2E-05 RUNX1 Hs.209983 7.8E-11 3.6E-14 STMN1 Hs.411695 2.0E-03 1.9E-04 HK3
Hs.11590 2.8E-06 1.5E-08 CTSF Hs.591464 1.9E-02 5.0E-04 CGN Hs.74405 8.7E-11 8.4E-13 YWHAQ Hs.654580 2.2E-03 1.6E-05 PRIM2
Hs.643120 2.9E-06 1.2E-07 IGF1R Hs.431101 2.0E-02 1.6E-04 GNG12 Hs.444118 1.3E-10 2.3E-12 MCM6 Hs.521693 2.3E-03 4.1E-05 CCNE2
Hs.664080 3.3E-06 1.6E-08 RASA1 Hs.30213 2.0E-02 6.9E-07 CLN5 Hs.49760 3.2E-10 6.3E-12 ORC6 Hs.160786 2.5E-03 1.8E-04 ASS1
Hs.603842 4.3E-06 9.7E-08 MAGI2 Hs.69089 2.0E-02 1.8E-03 GLA Hs.492314 4.4E-10 1.7E-11 LAPTM4B Hs.642615 2.7E-03 3.3E-04 SHC4
Hs.591336 4.4E-06 8.5E-08 SESN1 Hs.280987 2.0E-02 2.9E-04 MSH3 Hs.522819 6.1E-10 7.5E-12 IRAK1 Hs.71040 2.8E-03 1.8E-05 AP1M1
Hs.477887 4.6E-06 2.1E-07 AGTR1 Hs.9914 2.1E-02 5.7E-05 FST Hs.367992 7.2E-10 3.7E-11 IMPA2 Hs.654952 3.0E-03 3.4E-05 POLR2J
Hs.89560 6.3E-06 8.2E-08 IDUA Hs.196384 2.1E-02 1.2E-03 PTGS2 Hs.279413 1.3E-09 1.2E-11 POLD1 Hs.410228 3.0E-03 2.8E-05 ORC3
Hs.434255 6.9E-06 2.8E-07 PSD3 Hs.55999 2.2E-02 1.5E-03 NKX3-1 Hs.405958 3.9E-09 1.3E-10 CDC6 Hs.144496 3.1E-03 2.9E-04 GMDS
Hs.460109 8.5E-06 2.4E-07 MYH11 Hs.510225 2.2E-02 2.3E-04 RPS6KA5 Hs.207745 4.4E-09 5.4E-11 RBL1 Hs.181326 3.2E-03 2.1E-04 MTMR2
Hs.1565 9.4E-06 1.0E-07 NEDD4 Hs.482562 2.4E-02 3.7E-04 F2R Hs.527119 4.4E-09 2.7E-11 PDE7A Hs.472101 3.3E-03 1.5E-04 PLCB4
Hs.471404 1.0E-05 1.8E-07 STK36 Hs.475896 2.4E-02 1.0E-06 PDCD6IP Hs.235116 5.1E-09 2.6E-11 GRK6 Hs.654377 3.6E-03 7.0E-04 LDHC
Hs.370854 1.1E-05 1.9E-07 TSC1 Hs.593446 2.4E-02 4.9E-04 FRS2 Hs.654393 5.8E-09 2.0E-10 E2F1 Hs.416848 3.7E-03 1.6E-04 CTSW
Hs.234898 1.8E-05 6.1E-10 ACACB Hs.415768 2.4E-02 1.3E-03 NGFR Hs.306791 7.3E-09 6.1E-11 POLD2 Hs.519972 3.8E-03 1.4E-05 HLA-F
Hs.514681 1.8E-05 4.6E-07 MAP2K4 Hs.465744 2.7E-02 3.4E-04 INSR Hs.533013 2.1E-08 2.4E-09 CBS Hs.351475 3.8E-03 1.4E-06 POLR2K
Hs.21509 3.9E-05 1.5E-06 GLI3 Hs.433738 2.9E-02 3.5E-04 GGT7 Hs.244723 2.8E-08 1.1E-09 CCNE1 Hs.84 3.9E-03 4.2E-05 IL2RG
Hs.192215 4.1E-05 1.3E-06 ADCY1 Hs.9701 2.9E-02 1.5E-03 GADD45G Hs.492407 3.4E-08 7.7E-10 YWHAZ Hs.659263 4.4E-03 1.2E-05 PMM2
Hs.523930 4.1E-05 9.2E-07 TRAF5 Hs.2128 2.9E-02 3.9E-04 DUSP5 Hs.411641 3.5E-08 2.3E-09 EIF4EBP1 Hs.22587 4.5E-03 6.5E-06 SSX2IP
Hs.482660 4.6E-05 1.5E-07 ZFYVE16 Hs.169378 3.0E-02 1.7E-04 MPDZ Hs.6906 3.5E-08 2.4E-16 RALA Hs.88778 4.6E-03 2.5E-04 CBR1
Hs.527412 4.7E-05 1.7E-06 ASAH1 Hs.111867 3.1E-02 5.0E-04 GLI2 Hs.469649 3.9E-08 9.5E-10 BUB1 Hs.408458 5.0E-03 3.8E-05 WWP2
Hs.460238 5.8E-05 4.7E-07 SH3GLB2 Hs.500409 3.2E-02 5.5E-04 GLUD1 Hs.470907 4.4E-08 2.1E-10 AK2 Hs.514012 5.1E-03 5.4E-05 MAP2K3
Hs.65735 5.9E-05 7.4E-07 PHKG2 Hs.232375 3.2E-02 7.4E-04 ACAT1 Hs.497599 7.5E-08 2.1E-12 WARS Hs.231367 5.2E-03 5.0E-05 IL2RA
Hs.475506 6.3E-05 2.5E-09 IQSEC1 Hs.514496 3.3E-02 2.8E-04 EXOC7 Hs.518448 8.0E-08 3.4E-11 LAMP3 Hs.523836 5.2E-03 3.3E-04 GSTP1
Hs.514423 6.5E-05 1.5E-08 CACNG4 Hs.195364 3.3E-02 4.8E-04 MLH1 Hs.709893 1.0E-07 4.1E-10 SOS1 Hs.280604 5.5E-03 3.9E-05 PPP3R1
Hs.183109 6.6E-05 8.0E-06 MAOA Hs.459070 3.4E-02 5.0E-03 ARNT2 Hs.291363 1.1E-07 1.3E-09 CHEK2 Hs.488293 5.7E-03 2.4E-04 EGFR
Hs.198241 6.6E-05 5.6E-06 AOC3 Hs.655277 3.5E-02 1.8E-03 RPS6KA2 Hs.486502 1.1E-07 2.1E-09 NRAS Hs.16130 5.8E-03 1.4E-04 UBE2O
Hs.211426 9.9E-05 5.6E-06 THBS4 Hs.469820 3.5E-02 7.8E-04 RALB Hs.467701 1.2E-07 3.5E-09 ODC1 Hs.435051 5.8E-03 1.3E-04 CDKN2D
Hs.369089 1.0E-04 3.0E-06 COL4A5 Hs.89901 3.5E-02 6.1E-06 PDE4A Hs.179565 1.6E-07 2.3E-09 MCM3 Hs.515130 5.9E-03 5.2E-05 VANGL1
Hs.485572 1.0E-04 2.7E-06 SOCS2 Hs.265829 3.5E-02 1.2E-03 ITGA3 Hs.19400 1.7E-07 1.7E-09 MAD2L2 Hs.656 6.0E-03 1.8E-04 CDC25C
Hs.350475 1.5E-04 1.4E-09 SUMF1 Hs.129206 3.7E-02 4.9E-05 CSNK1G3 Hs.194148 2.4E-07 3.2E-09 YES1 Hs.458276 6.3E-03 1.5E-06 NFKBIE
Hs.162129 1.5E-04 1.1E-06 RASGRF2 Hs.145586 3.7E-02 1.2E-03 COL4A6 Hs.75514 2.6E-07 2.5E-09 PNP Hs.382865 6.6E-03 1.2E-04 PLD1
Hs.391860 1.6E-04 2.7E-06 ADCY9 Hs.72912 3.8E-02 1.3E-03 CYP1A1 Hs.477693 2.6E-07 1.1E-09 NCK1 Hs.388004 6.8E-03 1.0E-04 AHCY
Hs.515417 1.8E-04 5.3E-06 EGLN2 Hs.421724 3.8E-02 2.1E-03 CTSG Hs.81848 3.0E-07 5.9E-09 RAD21 Hs.696032 7.1E-03 1.0E-07 PPARD
Hs.156527 1.8E-04 3.0E-06 AXIN2 Hs.183713 4.0E-02 7.4E-04 EDNRA Hs.412707 3.7E-07 4.0E-09 HPRT1 Hs.571037 7.6E-03 3.7E-08 ACAT2
Hs.445884 1.9E-04 9.1E-06 WNT3 Hs.167700 4.1E-02 2.2E-04 SMAD5 Hs.524219 4.8E-07 2.0E-13 TPI1 Hs.591571 8.1E-03 9.2E-05 PPP1CB
Hs.82002 2.1E-04 2.1E-06 EDNRB Hs.16695 4.2E-02 9.1E-04 UBA7 Hs.470633 6.6E-07 1.1E-08 PDK1 Hs.1183 8.2E-03 1.3E-04 DUSP2
Hs.102 2.3E-04 1.7E-07 AMT Hs.600384 4.3E-02 4.4E-04 HGSNAT Hs.597656 1.1E-06 3.1E-09 MSH2 Hs.103527 8.6E-03 2.0E-04 SH2D2A
Hs.19121 2.5E-04 7.3E-07 AP2A2 Hs.516306 4.5E-02 2.0E-04 PSD4 Hs.591054 1.9E-06 5.2E-09 BID Hs.478199 8.8E-03 6.2E-05 PRKCI
Hs.592123 2.7E-04 6.5E-06 SREBF1 Hs.524517 4.5E-02 2.6E-04 CSF3R Hs.597216 2.4E-06 1.0E-07 HIF1A Hs.474949 8.9E-03 2.1E-04 RBX1
Hs.410970 3.1E-04 4.3E-06 MYL5 Hs.175343 5.0E-02 3.3E-05 PIK3C2A Hs.76244 2.8E-06 8.6E-08 SRM Hs.475688 9.4E-03 1.9E-04 UBE2E2
Hs.658169 3.2E-04 2.6E-06 SFRP4 Hs.221472 5.0E-02 9.9E-04 FER Hs.154510 3.0E-06 1.4E-08 CBR3 Hs.181301 1.1E-02 2.4E-04 CTSS
Hs.651939 3.2E-04 3.4E-09 MAGI1 Hs.108112 3.0E-06 1.8E-08 POLE3 Hs.487933 1.2E-02 1.3E-04 NT5C3
Hs.700338 3.7E-04 6.2E-06 DDB2 Hs.529618 3.2E-06 3.1E-08 TFRC Hs.128420 1.3E-02 5.6E-05 VPS4A
Hs.525401 3.8E-04 5.2E-06 ADCY6 Hs.531818 3.9E-06 9.4E-09 POLR1A Hs.425777 1.3E-02 2.9E-04 UBE2L6
Hs.171626 5.0E-04 2.2E-06 SKP1 Hs.390788 4.1E-06 1.4E-07 PRKX Hs.155247 1.3E-02 1.6E-03 ALDOC
Hs.499886 5.2E-04 1.2E-05 ALDH3A2 Hs.144197 4.5E-06 3.7E-07 UGT8 Hs.470126 1.3E-02 9.3E-04 KYNU
Hs.106070 5.9E-04 4.1E-06 CDKN1C Hs.103755 5.1E-06 7.6E-08 RIPK2 Hs.469060 1.4E-02 1.5E-04 POLE4
Hs.591968 6.6E-04 1.2E-05 FZD4 Hs.380277 5.6E-06 1.6E-08 DAPK1 Hs.492333 1.4E-02 1.1E-04 STK3
Hs.150749 7.5E-04 3.1E-05 BCL2 Hs.95577 6.9E-06 9.3E-08 CDK4 Hs.436527 1.4E-02 4.4E-05 ANAPC1
Hs.436367 7.7E-04 1.9E-05 LAMA3 Hs.170009 7.1E-06 1.5E-07 TGFA Hs.79353 1.6E-02 1.1E-04 TFDP1
Hs.31595 8.4E-04 9.9E-06 CLDN11 Hs.65758 1.1E-05 1.8E-07 ITPR3 Hs.201897 1.8E-02 1.9E-04 POLA2
Hs.632702 9.6E-04 1.1E-05 GLI1 Hs.431367 1.1E-05 1.8E-10 VTA1 Hs.584238 1.8E-02 3.3E-03 GLDC
Hs.442378 1.0E-03 1.4E-04 CDO1 Hs.470804 1.1E-05 3.5E-07 UBE2E3 Hs.82919 1.9E-02 2.4E-04 CUL2
Hs.372924 1.1E-03 4.6E-05 CREB3L4 Hs.485717 1.1E-05 3.6E-10 SMAP1 Hs.856 2.1E-02 2.6E-04 IFNG
Hs.518525 1.3E-03 2.3E-05 GLUL Hs.73793 1.4E-05 6.9E-07 VEGFA Hs.272062 2.1E-02 1.3E-04 PTPRF
Hs.1360 1.4E-03 7.3E-05 CYP2B6 Hs.178695 1.5E-05 2.5E-07 MAPK13 Hs.696238 2.2E-02 2.6E-04 BIRC2
Hs.441072 1.4E-03 2.1E-05 POLR2L Hs.75850 1.6E-05 4.3E-07 WASF1 Hs.50640 2.2E-02 4.0E-04 SOCS1
Hs.1872 1.5E-03 8.9E-05 PCK1 Hs.515840 1.7E-05 3.3E-09 DNMT3A Hs.512152 2.5E-02 3.8E-04 HLA-G
Hs.368431 1.5E-03 4.8E-06 RUNX1T1 Hs.514821 1.8E-05 9.9E-07 CCL5 Hs.518530 2.5E-02 3.1E-04 PAK2
Hs.372688 1.5E-03 3.0E-05 RHOBTB2 Hs.446149 2.3E-05 2.7E-06 LDHB Hs.500756 2.8E-02 2.3E-03 GOT1
Hs.118262 1.6E-03 2.1E-05 CACNA1C Hs.518774 2.8E-05 2.4E-07 PAICS Hs.88556 2.9E-02 6.7E-04 HDAC1
Hs.130036 1.7E-03 3.1E-06 PPM1A Hs.297413 3.7E-05 1.0E-06 MMP9 Hs.27695 2.9E-02 1.0E-03 MID1
Hs.589848 1.8E-03 1.1E-04 PARD6B Hs.479214 4.7E-05 1.5E-06 CD38 Hs.402773 3.1E-02 1.4E-04 PTPN7
Hs.653654 1.8E-03 5.7E-05 MAP3K1 Hs.180142 4.8E-05 1.3E-05 CALML5 Hs.173724 3.1E-02 1.4E-03 CKB
Hs.523829 1.9E-03 7.4E-05 POLD4 Hs.523012 5.0E-05 3.5E-06 DDIT4 Hs.432574 3.2E-02 2.3E-04 POLR2H
Hs.74034 2.1E-03 3.0E-06 CAV1 Hs.162777 6.9E-05 4.5E-07 POLE2 Hs.523774 3.2E-02 2.4E-04 EHD1
Hs.476448 2.1E-03 1.8E-06 FLNB Hs.526464 7.1E-05 3.5E-08 PML Hs.134084 3.2E-02 3.3E-04 M6PR
Hs.435761 2.7E-03 3.7E-05 PIAS3 Hs.631580 7.5E-05 4.0E-07 UBA2 Hs.624 3.3E-02 4.6E-04 IL8
Hs.529862 2.8E-03 1.2E-05 CSNK1A1 Hs.496487 8.3E-05 8.7E-07 ATF4 Hs.198998 3.3E-02 6.3E-04 CHUK
Hs.162646 2.8E-03 3.1E-05 PPARG Hs.523718 9.2E-05 3.4E-06 SFN Hs.436219 3.3E-02 8.7E-04 ALDH1B1

Supplementary Table 4. Genesets representing TP53 mutation class-specific signatures inferred using the analysis of validation dataset: Sets of genes that 
were found either upregulated (by modified Kolmogorov Smirnov test) or significantly associated (by globaltest at inheritance cutoff <0.05)  to one of the class.  
Association means probe feature smaller non-zero regression coefficient found to be associated with one of TP53 mutation status by using globaltest.

 Gene signature specific to wtTP53 BC  Gene signature specific to mtTP53 BC
A: Genes identified as significantly associated or upregulated in wt TP53 BC class using both methods A: Genes identified as significantly associated or upregulated in mtTP53 BC class using both methods

B: Genes identified as significantly associated to the wt TP53 BC class using globaltest B: Genes identified as significantly associated to the wt TP53 BC class using globaltest



UnigeneID Inheritance p.value Symbol UnigeneID Inheritance p-value Symbol UnigeneID Inheritance p-value Symbol
Hs.168762 3.3E-03 1.7E-05 ULK2 Hs.484741 1.0E-04 1.9E-06 GMPR Hs.355927 3.4E-02 2.3E-04 VDAC2
Hs.75262 3.5E-03 4.5E-12 CTSO Hs.28914 1.1E-04 1.2E-06 APRT Hs.112432 3.5E-02 1.5E-03 AMH
Hs.437058 3.6E-03 6.1E-05 STAT5A Hs.17908 1.2E-04 3.3E-06 ORC1 Hs.655552 3.5E-02 2.7E-04 ASAP1
Hs.292524 4.0E-03 4.9E-05 CCNH Hs.119882 1.3E-04 4.4E-06 CDK6 Hs.55279 3.6E-02 7.5E-03 SERPINB5
Hs.515032 4.4E-03 4.4E-05 MKNK2 Hs.127799 1.7E-04 6.4E-06 BIRC3 Hs.659934 3.6E-02 2.0E-03 SESN3
Hs.2820 4.5E-03 8.6E-05 OXTR Hs.9731 1.8E-04 1.6E-06 NFKBIB Hs.395482 3.8E-02 7.6E-04 PTK2
Hs.421649 4.9E-03 2.1E-04 HTR2B Hs.507162 1.8E-04 1.7E-06 VPS37B Hs.596514 3.9E-02 1.5E-05 ATP6V0B
Hs.650382 5.2E-03 1.4E-06 RAB5C Hs.82201 1.9E-04 1.8E-06 CSNK2A2 Hs.78089 3.9E-02 5.5E-04 ATP6V1F
Hs.11392 5.3E-03 3.8E-04 FIGF Hs.331420 1.9E-04 1.4E-06 PPAT Hs.221889 4.1E-02 8.0E-04 CSDA
Hs.171695 5.5E-03 4.8E-07 DUSP1 Hs.502461 2.1E-04 3.2E-06 DGKZ Hs.654604 4.7E-02 1.1E-04 PPP5C
Hs.321709 5.7E-03 5.1E-05 P2RX4 Hs.75527 2.5E-04 1.9E-06 ADSL Hs.145442 4.7E-02 1.0E-03 MAP2K1
Hs.78183 6.2E-03 3.7E-04 AKR1C3 Hs.147433 2.6E-04 9.2E-06 PCNA Hs.404914 4.7E-02 5.0E-04 ADAM17
Hs.118681 6.6E-03 5.1E-05 ERBB3 Hs.119591 3.3E-04 1.9E-06 AP2S1 Hs.473927 4.8E-02 1.0E-03 PDE9A

Hs.40499 3.3E-04 1.5E-05 DKK1

UnigeneID Symbol UnigeneID Symbol UnigeneID Symbol UnigeneID Symbol UnigeneID Symbol UnigeneID Symbol UnigeneID Symbol
Hs.446680 RAI2 Hs.81934 ACADSB Hs.100686 AGR3 Hs.129452 DACH1 Hs.1594 CENPA Hs.179718 MYBL2 Hs.498248 EXO1
Hs.403171 EFHC1 Hs.595458 MAST4 Hs.8876 NAGS Hs.208124 ESR1 Hs.83758 CKS2 Hs.615092 NUSAP1 Hs.270845 KIF23
Hs.634522 CIRBP Hs.491148 PCM1 Hs.21380 LONRF2 Hs.480819 TBC1D9 Hs.444082 EZH2 Hs.62180 ANLN Hs.184339 MELK
Hs.189780 NOSTRIN Hs.133062 STK32B Hs.524134 GATA3 Hs.716456 SIRT3 Hs.409065 FEN1 Hs.524571 CDCA8 Hs.3104 KIF14
Hs.513871 CYB5D2 Hs.533738 IFT46 Hs.526735 ZMYND10 Hs.532082 IL6ST Hs.239 FOXM1 Hs.14559 CEP55 Hs.574492 IL4I1
Hs.29190 C1orf64 Hs.35096 ZBTB4 Hs.125867 EVL Hs.356135 MEIS3P1 Hs.308045 NCAPH Hs.532968 HJURP Hs.449415 EIF2C2
Hs.78913 CX3CR1 Hs.523468 SCUBE2 Hs.239154 ANKRA2 Hs.387057 THSD4 Hs.370834 ATAD2 Hs.380857 RCC2 Hs.519035 LAD1
Hs.523080 ZCCHC24 Hs.208681 BBS4 Hs.654583 RARA Hs.579264 LRRC48 Hs.5199 UBE2T Hs.250822 AURKA Hs.518997 C1orf106
Hs.642706 FMO5 Hs.283749 RNASE4 Hs.210995 CA12 Hs.233160 STC2 Hs.584901 GPSM2 Hs.524216 CDCA3 Hs.488240 UPP1
Hs.444767 KIF13B Hs.406050 DNALI1 Hs.660044 C6orf97 Hs.591847 NAT1 Hs.632586 CXCL10 Hs.651950 NUF2 Hs.146161 ECE2
Hs.356416 CBX7 Hs.110298 ACBD4 Hs.187376 IFT88 Hs.436912 KIFC1 Hs.470654 CDCA7 Hs.514527 BIRC5
Hs.283749 ANG Hs.657403 C7orf63 Hs.584784 RABEP1 Hs.486401 CENPW Hs.514527 EPR1 Hs.513797 SLC7A5

C: Genes identified as upregulated in wt TP53 BC class using modified KS test C: Genes identified as upregulated in mt TP53 BC class using modified KS test
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Name of the 
stemness 
geneset

Nr of unique 
genes

EMT markers 281

ESC targets 380

PRC2 targets 654

iPSC 340

p53 targets in 
ESC 549

probeID inheritance p.value class of 
association symbol

A_23_P46819 0.000136 1.05E-06 wtTP53 BTRC
A_23_P502470 0.00083972 1.60E-07 wtTP53 IL6ST
A_23_P46819 0.00105316 1.05E-06 wtTP53 BTRC
A_23_P502047 0.00135703 4.48E-05 wtTP53 CHRD
A_23_P111531 0.0017726 6.91E-05 wtTP53 GLI3
A_32_P17182 0.0019344 6.48E-05 wtTP53 THBS1
A_24_P63380 0.00371579 1.21E-04 wtTP53 BMPR1B
A_23_P144096 0.00529956 7.42E-05 wtTP53 CISH
A_23_P202837 0.01435174 2.70E-04 wtTP53 CCND1
A_23_P202837 0.02304684 2.70E-04 wtTP53 CCND1
A_23_P46482 0.03522856 8.22E-04 wtTP53 IL20
A_24_P193011 0.03775724 1.11E-03 wtTP53 CCND1
A_23_P91850 0.00055479 2.18E-06 mtTP53 IL20RB
A_23_P119916 0.00170403 9.85E-05 mtTP53 WNT6
A_23_P102113 0.00227874 7.34E-05 mtTP53 WNT10A
A_24_P91566 0.00229898 1.12E-05 mtTP53 BMP7
A_24_P91566 0.00423626 1.12E-05 mtTP53 BMP7
A_23_P119916 0.00574177 9.85E-05 mtTP53 WNT6
A_23_P68487 0.00663903 5.73E-04 mtTP53 BMP7
A_23_P28898 0.01154005 7.62E-05 mtTP53 PLCB4
A_23_P68487 0.01218241 5.73E-04 mtTP53 BMP7
A_23_P420196 0.01291511 7.17E-05 mtTP53 SOCS1
A_23_P76078 0.0131133 8.25E-05 mtTP53 IL23A
A_23_P102117 0.02410461 4.36E-04 mtTP53 WNT10A
A_23_P127288 0.02940133 1.35E-04 mtTP53 IL2RA
A_24_P59667 0.03234319 4.51E-04 mtTP53 JAK3
A_23_P217339 0.04590294 8.77E-04 mtTP53 PRKX

JAK-STAT signaling
JAK-STAT signaling
Hedgehog signaling

Common genes between ChIP-baed Su12 targets, Eed targets 
and H3K27 targets

Detailed source

Genes overexpressed in hESCs by at least five studies

Union of core EMT signature from Taube et al. 2010 and EMT 
associated genes from Sarrio et al 2008

PubMedID of Source 
Publication 

16630818

17204602

20713713; 
22102611

21149740

20018659

wnt signaling

JAK-STAT signaling

Hedgehog signaling

Supplementary Table 6 A: Sources of previously reported EMT and stemness marker genelists that 
were used for enrichment analysis (results shown in Table 2) of stemness and EMT signatures.

Supplementary Table 6 B: List of pathways involved in sustainance of stemness properties in breast 
cancer and their correponding genes. This table is partly a subset of gene signatures (Supplementary 
Table 3) inferred on primary dataset.

PathwayName

Hedgehog signaling

Signature based on metaanalysis with exclusion of cell cycle 
and proliferation genes

p53 target genes in experimental model ES culture were 
mapped by mouse-human ortholog database

wnt signaling
JAK-STAT signaling
JAK-STAT signaling

TGF Beta signaling
Hedgehog signaling
TGF Beta signaling
TGF Beta signaling
JAK-STAT signaling

TGF Beta signaling

JAK-STAT signaling

Hedgehog signaling
wnt signaling

Hedgehog signaling
JAK-STAT signaling

JAK-STAT signaling

Hedgehog signaling
Hedgehog signaling
TGF Beta signaling
wnt signaling

JAK-STAT signaling



Factor Significance Log 
odds

95% Confidence 
Interval

UBE2C 1.53E-05 2.25 1.56-3.25
CCNB2 2.49E-05 2.23 1.53-3.23
IMPA2 4.46E-05 2.17 1.5-3.15
CCNA2 1.36E-04 2.07 1.43-3.02
PLK1 1.81E-04 2.03 1.4-2.93
TTK 2.04E-04 2.05 1.4-2.99
EIF2C2 2.08E-04 2.03 1.4-2.95
CDC25A 2.40E-04 2.01 1.38-2.91
LAPTM4B 4.50E-04 1.95 1.34-2.83
PTTG1 4.91E-04 1.93 1.33-2.79
BIRC5 5.20E-04 1.92 1.33-2.77
STC2 7.51E-04 0.48 0.31-0.73
VEGFA 7.95E-04 1.90 1.31-2.76
LRRC48 1.21E-03 0.47 0.3-0.74
SLC7A5 1.32E-03 1.84 1.27-2.68
MEIS3P1 1.53E-03 0.49 0.32-0.76
PDK1 1.53E-03 1.85 1.26-2.7
E2F1 1.54E-03 1.82 1.26-2.63
MAPT 1.73E-03 0.52 0.34-0.78
CDC25B 1.78E-03 1.84 1.26-2.71
CCNB1 4.30E-03 1.73 1.19-2.53
EIF4EBP1 6.82E-03 1.69 1.16-2.47
LAD1 7.65E-03 1.67 1.14-2.42
AMD1 7.83E-03 1.71 1.15-2.55
MCM4 8.64E-03 1.66 1.14-2.41
BUB1 8.90E-03 1.65 1.13-2.41
SIRT3 9.44E-03 0.57 0.38-0.87
ANKRA2 9.57E-03 0.57 0.37-0.87
EVL 1.02E-02 0.56 0.36-0.87
NAGS 1.07E-02 0.55 0.35-0.87
CBS 1.53E-02 1.61 1.1-2.37
IFT88 1.64E-02 0.60 0.4-0.91
C1orf106 1.66E-02 1.59 1.09-2.33
PFKP 1.86E-02 1.58 1.08-2.32
SRM 1.93E-02 1.59 1.08-2.33
CHEK1 1.93E-02 1.59 1.08-2.35
IL6ST 2.09E-02 0.59 0.38-0.92
PRKX 2.25E-02 1.56 1.07-2.29
CCNE1 3.34E-02 1.52 1.03-2.24
ARNT2 3.35E-02 0.63 0.41-0.96
NAT1 3.68E-02 0.66 0.44-0.97
GLI3 3.86E-02 0.63 0.4-0.98
RABEP1 4.18E-02 0.64 0.42-0.98
MYL5 4.22E-02 0.64 0.42-0.98
RRM2 4.38E-02 1.47 1.01-2.13
C6orf97 4.66E-02 0.66 0.43-0.99
UGCG 4.73E-02 0.65 0.42-0.99
IMPA2 0.013 2.04 1.17-3.57
RRM2 0.019 0.46 0.24-0.88
VEGFA 0.029 1.72 1.06-2.80
Others NS
Overall model 
significance 
(Wald test p-
value)

TP53 mutation 
status 0.03 1.69 1.06-2.72
VEGFA 0.03 1.56 1.04-2.36
predicted 
subtype NS

IMPA2 NS

RRM2 NS
Overall model 
significance 
(Wald test p-
value)
VEGFA 3.1E-02 1.54 1.04-2.29

TP53 mutation 
status 1.9E-04 2.12 1.43-3.14

* Expression profiles were categorized into five molecular subtypes by using a published algorithm 
described in Parker et al. J Clin Oncol. 2009 Mar 10;27(8):1160-7.

Supplementary table 7: Univariate and multivariate prognostic value of all 112 genes in
validated TP53 status-specific gene signatures based on Cox regression model (cut-off of
significance level p<0.05). Out of 112 genes, expression values of 47 genes correlate with
survival. Corresponding significance (p-value), log odds and its 95% confidence interval have
been shown Multivariate model based on all 47 genes that initially showed univariate
significance of survival results in only three significant genes in a multivariate model. Out of
three genes, VEGFA maintains significance when tested with TP53 status and predicted subtype.
Wald test p-values have been mentioned for the final Cox regression model based on two factors
that maintained significance in multivariate model: TP53 mutation status and VEGFA expression
status. For performing this analysis, expression values of genes were discretized by following the
procedure described in materials and methods.

Univariate analysis

Multivariate analysis (all 47 genes 
with significant effect on survival 
by using cox proportionate hazard 

model)

Final multi(bi-)variate model (TP53 
mutation status + VEGFA)

2.3E-06

Multivariate analysis((TP53 
mutation status + VEGFA 

+IMPA2+RRM2+ Predicted 
subtype*)

2.0E-06



symbol unigene_id logFC adj.P.Val symbol unigene_id logFC adj.P.Val
VEGFA Hs.73793 1.10 1.9E-58 POC5 Hs.432726 -0.33 6.2E-03

ESM1 Hs.129944 0.73 5.0E-19 CA9 Hs.63287 0.89 3.0E-03

COL4A2 Hs.508716 0.52 2.1E-06 VEGFA Hs.73793 0.94 1.2E-21

TK1 Hs.515122 0.48 1.2E-03

EGLN3 Hs.135507 0.43 1.2E-02

CSPG4 Hs.513044 0.43 4.3E-04

GJC1 Hs.532593 0.40 3.1E-07

KCNN2 Hs.98280 0.39 2.4E-03

ANGPT2 Hs.583870 0.39 1.7E-05

ENPEP Hs.435765 0.39 2.3E-05

HIST1H2BD Hs.591797 0.36 4.2E-02

COL4A1 Hs.17441 0.36 1.6E-04

GOT1 Hs.500756 0.35 1.9E-04

PRSS8 Hs.75799 0.35 1.9E-02

NANOS1 Hs.591918 0.35 3.1E-02

ELF3 Hs.67928 0.35 2.3E-02

BDKRB2 Hs.654542 0.34 4.3E-03

NDRG1 Hs.372914 0.33 2.4E-02

MRPL14 Hs.311190 0.33 2.1E-04

CDH13 Hs.654386 0.33 2.9E-02

NDUFA4L2 Hs.75069 0.33 3.4E-04

HMGB3 Hs.19114 0.33 3.9E-02

C6orf129 Hs.284207 0.32 3.6E-02

COL18A1 Hs.517356 0.32 3.2E-03

MCAM Hs.599039 0.32 1.2E-03

MBOAT2 Hs.467634 0.31 1.8E-02

GPR56 Hs.513633 0.31 2.4E-02

USP14 Hs.464416 0.30 1.3E-03

SLC16A3 Hs.500761 0.30 2.7E-02

MCM5 Hs.517582 0.30 4.3E-02

HSP90AB1 Hs.509736 0.30 2.4E-03

PCDH17 Hs.106511 0.29 1.9E-03

FAM83D Hs.472716 0.29 3.8E-02

DYSF Hs.252180 0.29 2.0E-03

TMEM63B Hs.414473 0.29 8.4E-04

GPD2 Hs.512382 0.27 2.3E-03

ALDOA Hs.513490 0.27 2.4E-02

KCNK5 Hs.444448 0.27 3.4E-02

TUBA4A Hs.75318 0.27 3.8E-02

NUP155 Hs.547696 0.27 1.4E-02

B4GALT3 Hs.321231 0.27 4.9E-03

RRP12 Hs.434251 0.27 2.5E-03

GPI Hs.466471 0.27 3.6E-03

TRAF4 Hs.8375 0.27 6.4E-03

ERO1L Hs.592304 0.27 1.6E-02

IL17RC Hs.129959 0.27 4.2E-03

GCAT Hs.54609 0.26 3.0E-02

SPRY4 Hs.323308 0.26 1.2E-02

EGLN2 Hs.515417 0.26 2.9E-02

EFNA4 Hs.449913 0.26 3.8E-02

TLE1 Hs.197320 0.26 2.2E-02

PRKCD Hs.155342 0.26 2.4E-02

FLT1 Hs.654360 0.26 3.2E-05

APLN Hs.303084 0.26 3.6E-02

DHTKD1 Hs.104980 0.26 1.1E-02

PPPDE2 Hs.570455 0.26 1.5E-03

SEC61A1 Hs.518236 0.26 5.2E-03

FN3KRP Hs.31431 0.26 2.0E-03

SLC9A1 Hs.469116 0.25 4.9E-03

BMP8A Hs.472497 0.25 1.9E-02

CENPA Hs.1594 0.25 4.4E-02

STRA13 Hs.37616 0.25 2.4E-02

DDT Hs.656723 0.25 1.8E-02

SNRPD3 Hs.356549 0.25 6.2E-03

Suppl Table 8 A: Set of differentially expressed genes between
VEGFA+ and VEGFA normal/- wtTP53 ER+ samples

Suppl Table 8 B: Set of differentially expressed genes between
VEGFA+ and VEGFA normal/- mtTP53 samples

Complete table is available at : http://www.nature.com/bjc/journal/v107/n10/extref/bjc2012461x3.xls
N.B. : Table truncated because of the size. 



GO Category GO Term 
Fraction of 
genes

Fisher Exact

biological process blood vessel morphogenesis 3.2 4.0E-04

biological process
positive regulation of mast cell activation during 
immune response 

0.6 9.3E-05

biological process cell migration 3.4 2.7E-03

biological process positive regulation of chemotaxis 1 1.3E-03

biological process
negative regulation of ubiquitin-protein ligase 
activity during mitotic cell cycle 

1.4 2.6E-03

biological process anti-apoptosis 2.6 6.7E-03

biological process
regulation of vascular endothelial growth factor 
receptor signaling pathway 

0.6 1.7E-03

cellular component cytosol 13.6 4.8E-07

cellular component secretory granule 3 1.9E-04

cellular component MHC class II protein complex 1.2 1.3E-04

cellular component proteasome complex 1.6 3.0E-04

cellular component platelet alpha granule lumen 1.2 9.6E-04

molecular function MHC class II receptor activity  1 1.3E-04

molecular function serine-type peptidase activity 2.6 1.3E-03

molecular function nucleoside transmembrane transporter activity 0.6 1.0E-03

molecular function ubiquitin thiolesterase activity 1.2 1.7E-02

Supplementary table 9: GO Terms Overrepresented in genes found differential expressed 
between VEGFA+ and VEGFA normal/- wtTP53 samples



probeID p-value class of association symbol
A_24_P179400 4.62E-08 VEGFA+ VEGFA
A_23_P70398 3.45E-07 VEGFA+ VEGFA
A_23_P81805 1.25E-05 VEGFA+ VEGFA
A_24_P12401 2.58E-04 VEGFA+ VEGFA
A_23_P22224 7.40E-03 VEGFA+ EIF4EBP1
A_24_P237265 4.36E-02 VEGFA+ MAPK1
A_23_P206103 6.48E-02 VEGFA+ ULK3
A_24_P156781 6.64E-02 VEGFA+ PIK3R3
A_23_P34606 7.12E-02 VEGFA+ MTOR
A_23_P384499 8.89E-02 VEGFA+ RPTOR
A_23_P92057 2.11E-02 VEGFA- PIK3CA
A_24_P398572 5.18E-02 VEGFA- IGF1
A_24_P304423 6.39E-02 VEGFA- IGF1

probeID p-value class of association symbol
A_23_P70398 1.79E-06 VEGFA+ VEGFA
A_24_P179400 9.26E-06 VEGFA+ VEGFA
A_23_P81805 2.35E-05 VEGFA+ VEGFA
A_24_P12401 6.89E-05 VEGFA+ VEGFA
A_23_P16483 2.99E-02 VEGFA+ STK11
A_23_P42935 3.58E-02 VEGFA+ BRAF
A_32_P15017 5.43E-02 VEGFA+ RICTOR
A_23_P110725 6.14E-02 VEGFA+ PRKAA1
A_23_P92057 7.02E-02 VEGFA+ PIK3CA
A_23_P26444 1.51E-02 VEGFA- MLST8
A_23_P37910 5.40E-02 VEGFA- MAPK3
A_24_P830690 6.58E-02 VEGFA- PDPK1

Suppl Table 10 B:  Sets of differentially associated genes of mTOR 
signaling pathway between VEGFA+ and VEGFA normal/- in 
mutant TP53 samples. Genes are inferred by applying globaltest

Suppl Table 10 A: Sets of differentially associated genes of mTOR 
signaling pathway between VEGFA+ and VEGFA normal/- in 
wtTP53/ER+ samples. Genes are inferred by applying globaltest
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