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Abstract

The one-shot method is an approach to solve PDE-constrained optimization
problems. In this thesis we study two models describing the deformation of
biological tissue due to harmonic acoustic waves. These models are the Pois-
son equation and the linear elasticity model. By solving PDE-constrained
optimization problems using the one-shot approach, the material parame-
ters of tissue may be reconstructed. We study how Tikhonov regularization
in the optimization problem affects the solution and the robustness of the
method with noise in the target data. Numerical simulations are carried
out using the finite element software FEniCS. Simulations are performed
with both constructed data and later on with data from magnetic resonance
elastography (MRE). The numerical results obtained in simulations with
constructed data yielded qualitatively good results and were promising for
this method to be used in application to MRE. However, carrying out simu-
lations with MRE data, did not yield satisfactory solutions and thus changes
of the model are necessary for further work.
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Chapter 1

Introduction

The mechanical properties of biological tissue in the human body can tell us
whether the tissue is healthy or not. Often the presence of stiffer (or harder)
tissue is associated with pathological (non-healthy) tissue. For instance,
most people have experienced going to the doctor for an examination, where
the doctor uses his hands to feel after abnormalities. This technique is called
palpation and is the oldest technique to find swellings, abnormal growth of
tissue and so on. In the presence of stiffer tissue, this often represents
an early warning sign for disease, because the tissue changes mechanical
properties under pathological conditions [1; 2].

There exists several techniques to obtain mechanical properties of biological
tissue. A review by Greenleaf et al. [3] discusses several methods for esti-
mating the shear stiffness of tissue. Cheng et al. [4] offer a review of various
techniques to obtain the material properties of the tissue in the brain and
the spinal cord. Most of the techniques in use today are invasive and many
are done in vitro. Therefore such data are commonly obtained from animals
and not humans. Magnetic resonance elastography (MRE) is a non-invasive
technique based on magnetic resonance imaging (MRI), which can be used
to obtain information about mechanical properties of tissue in vivo. Mari-
appan et al. [2] present a review of the many applications and possibilities
of elastography in medicine. By deciding the mechanical properties of tissue
one can tell pathological tissue from healthy tissue. Among others, it can
be used to diagnose liver diseases, breast or prostate cancer or fibrosis [2; 3].

In MRE acoustic waves are used to generate shear waves in tissue and MRI
is used to image the propagation of the shear waves inside the tissue. The
acoustic waves are typically at frequencies between 40 - 200 Hz [5]. The
MRI images are processed to generate maps of the shear stiffness of the
tissue, such maps are called elastograms. Figure 1.1 shows how shear waves
propagate through a body and how an elastogram made from this MRE
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looks; the left image shows a wave map of how the shear waves propagate
through the medium, whereas the image to the right shows an elastogram
of the medium with the values of the shear stiffness.

Elastography is already used in diagnosis of liver diseases. Today liver biopsy
is the current standard for detecting liver fibrosis. This procedure is often
painful and complications may occur [6]. Yin et al. [7] found in a study that
elastography has very high effectiveness in distinguishing healthy livers from
livers with fibrosis, with a negative predictive value of 97 %. Foucher et al.
[8] have also proven elastography to be a safe way to diagnose cirrhosis. The
technique of MRE is completely non-invasive, it does not use contrasts or
ionising radiation, thus this technique is gentle on patients and there are no
chance of complications.

A common method to compute the rheological parameters from elastography
is direct inversion methods (see for instance [9]). This method reduces to a
forward problem to solve for the shear modulus. However, according to [10]
it suffers from following drawbacks:

1. the calculation of material parameters are based on differentiation of
noisy measurements of the displacement field and the accuracy of the
method is degraded due to performing this differentiation numerically,
and

2. the required boundary data to create a well-posed forward problem for
the shear modulus are not usually known.

On the other hand, in the one-shot optimization problem the solution is
based on minimization the errors in the displacement field and shear mod-
ulus field compared to the measured target solutions, and the solutions are
constrained to satisfy the equations of motion for harmonic displacement.
Thus this method should in theory provide more accurate solutions than the
method of direct inversion.

Biological tissue can be modelled in various ways, including as a purely
elastic, as a poroelastic, or as a viscoelastic material. Given a model for the
material, the material parameters and the applied forces, the deformation
of biological tissue can be simulated using numerical methods. In this thesis
we will study two models describing the deformation of biological tissue;
the Poisson equation and the linear elasticity model. We will use PDE-
constrained optimization and adjoint methods (one-shot approach) to solve
minimization problems and study how Tikhonov regularization affects the
solutions. Moreover, we will study how noise in measurement data affect the
solutions of the optimization problems by using constructed data. Finally,
we will perform simulations with real data from MRE measurements.

For the work of this thesis data from MRE examinations of the liver have
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Figure 1.1: This figure is taken from Manduca et al. [14]. It shows MRE of
a object with diameter comparable to the wavelength. (A) shows how the
wave travels through the medium. In (B) the shear stiffness is depicted, it
is clear where the object is located.

been obtained. The rheological properties of the liver are known from other
studies, thus comparison is possible. The MR images were obtained at
UW Madison on a 3T GE Scanner. The spatial resolution was 1.5625
mm × 1.5625 mm and 32 images were obtained. Software provided by
the Mayo Clinic [11] have been used to create a wave map and an elas-
togram. This was done by Karen Støverud, before the data were given to
me for further work. All simulations will be carried out using the Python
interface of the finite element software FEniCS [12; 13]. All source code
written for this thesis are available online at bitbucket.org/istorpe/
source-code-master-s-degree/ and an excerpt is also available in Ap-
pendix A.

The thesis has the following outline. Chapter 2 presents the mathematical
models studied in this thesis. The finite element method is described in a
short presentation in Chapter 3, together with derivation of finite element
formulations of the chosen mathematical models. In Chapter 4 a study of
Tikhonov regularization and synthetic noise in input data for the Poisson
minimization problem is presented. In Chapter 5 a similar study is presented
for the linear elasticity minimization problem. Results from experiments
with real MRE data are presented in Chapter 6. Finally, a discussion of the
findings and conclusions are given in Chapter 7.

3
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Chapter 2

Mathematical models

This chapter presents two models describing deformation of a medium under
external forces. The two models ate the Poisson equation and the linear
elasticity equation. Both these models will be used in the later chapters.

2.1 The Poisson problem

Let Ω be an open and bounded domain in R2 with boundary ∂Ω. The
Poisson equation is given by

∇ · µ∇u = f , (2.1)

where u = u(x), with x = (x1,x2), is the unknown function, f = f(x)
is a prescribed function and the parameter µ may be either a constant or
a function varying through the domain. The operator ∇· is the divergence
operator and ∇ denotes the gradient.

In addition we consider pure Neumann boundary conditions:

µ
∂u

∂n
= µ∇u ·n = t, (2.2)

on the whole boundary ∂Ω, where t is some given function.

Doyley [15] reviews approaches of elastography and to the inverse elasticity
problem. He divides the current approaches to MRE into three categories:
quasi static elastography, harmonic elastography and transient elastogra-
phy. In this thesis we study the deformation of biological tissue in har-
monic elastography and to describe this deformation, we will assume the
approximation f ≈ ρω2u. Using this assumption the arising equation is
the steady-state equation describing harmonic deformation in an isotropic
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2.2. LINEAR ELASTICITY

medium [3; 15; 16]. Here, ρ denotes the density of the material and ω is the
angular frequency of the sinusoidal wavefront transmitted within the tissue
in the MRE examination.

Thus, the boundary value problem reads

ρω2u−∇ · µ∇u = 0 in Ω, (2.3a)

µ
∂u

∂n
= t on ∂Ω. (2.3b)

(2.3a) is also known as Helmholtz equation.

2.2 Linear elasticity

The linear elasticity equations describe the deformation of a purely elastic
body, occupying a domain denoted Ω ⊂ Rd, with d = 2, 3, and boundary
∂Ω. The following material is based on a book of Atkinson and Han [17].
Assume that an external body force f acts on the body and a traction force
t acts on the surface and enforces deformation. The linearised elasticity
equation arises from the equilibrium state the body reaches as a result of
the act of the external body forces. As the body deforms, consider a point
x ∈ Ω in the body before applying the external forces. This point will
be shifted to a new point x+ u after the deformation, due to the external
forces. The displacement of the point x is thus given by a function u = u(x)
and u : Ω → Rd is a vector-valued function. The equation of equilibrium
the body reaches after the deformation takes the form

∇ ·σ(u) = f in Ω (2.4)

Here, σ is the stress tensor, which describes the internal forces per unit area
neighbouring points of the body apply on each other. The stress tensor is a
second order symmetric tensor on Rd, and may be viewed as a symmetric
matrix of size d× d.

A stress-strain relation is a constitutive relation that describes the mechan-
ical response of the material. In linear elasticity, this relation is expressed
by Hooke’s law

σ(u) = Cε(u), (2.5)

where C is the stiffness (or elasticity) tensor and ε is the infinitesimal strain
tensor. When the deformation of the body is small, that is, both the dis-
placement and the displacement gradient are small, the linearised strain
tensor may be used. This tensor is defined as

ε(u) =
1
2
(
∇u+ (∇u)T

)
. (2.6)
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2.2. LINEAR ELASTICITY

The stiffness tensor is of fourth order, or in other words, it is a map between
second order tensors. Depending on the material properties, this map may
be independent on x ∈ Ω, then the material is homogeneous. Otherwise,
if C is dependent on x, the material is heterogeneous. Another important
material property is isotropy. For some fixed point x ∈ Ω, the material is
isotropic at x if C(x) is invariant with respect to rotations of the coordinate
system, otherwise it is anisotropic at x.

In the case of a homogeneous, isotropic linear elastic medium, the compo-
nents of the elasticity tensor may be expressed as

Cijkl = µ(δikδjl + δilδjk) + λδijδkl, (2.7)

where λ,µ are the Lamé elasticity parameters and δij is the Kronecker delta.
Another common name for µ is the shear modulus. Using this expression
for C leads to a new expression for the stress tensor:

σ(u) = 2µε(u) + λ tr ε(u)I. (2.8)

Here, I denotes the second order unit tensor which may be thought of as
the identity matrix. Thus, the linear elasticity equations becomes:

∇ ·σ(u) = f in Ω, (2.9a)

σ(u) = 2µε(u) + λ tr
(
ε(u)

)
I in Ω. (2.9b)

Throughout this thesis (2.9b) will be used as the definition of the stress
tensor.

Adding Neumann boundary conditions, we arrive at a linear elasticity bound-
ary value problem. The Neumann conditions describes the action of the
stress tensor, σ, along the direction of the outward pointing normal vector,
and take the form

σn = t on ∂Ω. (2.10)

Here n is the outward pointing normal vector along the boundary and t is
a given surface traction force.

The Lamé elasticity parameters in the stress tensor may be expressed in
terms of material properties like Young’s modulus, E, which is a measure of
the stiffness of an elastic isotropic body, and Poisson’s ratio, ν, which is the
ratio of transverse contraction strain to longitudinal expansion strain [18].
These expressions are given as

λ =
Eν

(1 + ν)(1− 2ν) , µ =
E

2(1 + ν)
. (2.11)
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2.3. PDE-CONSTRAINED OPTIMIZATION

The Lamé parameters are always positive, and if λ >> µ, the material is
nearly incompressible [18].

Similar as for the Poisson problem, described in Chapter 2.1, f is approx-
imated by the displacement ρω2u. The arising equation is the steady-
state equation describing harmonic deformation in an isotropic, linear elastic
medium [3; 15], which describes the action of an MRE examination. The
elastic boundary value problem now reads:

ρω2u−∇ ·σ(u) = 0 in Ω,
σ(u)n = t on ∂Ω.

(2.12)

2.3 PDE-constrained optimization

In this thesis we want to use a one-shot approach in PDE-constrained opti-
mization to find the material parameters of tissue. In problems with PDE-
constrained optimization (or minimization), one seeks to minimize a cost
functional J(u,µ) ∈ R subject to constraints [19; 20; 18]. A general PDE-
constrained optimization problem takes the form:

min
u,µ

J(u,µ)

subject to F (u,µ) = 0,
h(u,µ) = 0,
g(u,µ) ≤ 0,

(2.13)

where F (u,µ) = 0 is a PDE or a system of PDEs with control or opti-
mization parameter µ and solution u, and h(u,µ) = 0 and g(u,µ) ≤ 0 are
equality and inequality constraints, respectively, enforcing additional condi-
tions to the minimization problem.

PDE-constrained optimization problems may be solved using various meth-
ods, in this thesis the one-shot method (also called the all-at-once method or
the Lagrangian approach) will be used. This method is based on the theory
on Lagrange multipliers and may be regarded as a search of extrema of the
Lagrangian functional L, which is defined as a sum of the cost functional
and the weak constraint [20; 21]:

L(u,µ,w) = J(u,µ) +
∫

Ω
F (u,µ)w dx, (2.14)

where w is the Lagrange multiplier (also called the dual or adjoint variable).

Regularization terms may also be added to constrain possible solutions fur-
ther. Tikhonov regularization is the most commonly used method for reg-
ularization of ill-posed problems [15] and is the method that will be used
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2.3. PDE-CONSTRAINED OPTIMIZATION

in this thesis. To describe the technique of Tikhonov regularization, we
first need the definition of a well-posed problem. According to Evans [22] a
problem is well-posed if

1. there exists a solution,

2. the solution is unique, and

3. the solution is continuously dependent of the data given in the prob-
lem.

A problem that is not well-posed is ill-posed. Vogel [23] defines regulariza-
tion as it "imposes stability on an ill-posed problem in a manner that yields
accurate approximate solutions, often by incorporating prior information".
The technique of Tikhonov regularization is carried out as follows [24; 25]:
If a problem Ax = b is not well-posed, the standard technique to solve it is
by least squares which seeks to minimize the residual ‖Ax− y‖2. In the case
of Tikhonov regularization one adds an additional term α‖x‖2, to make this
minimization problem well-posed. The parameter α > 0 is the regularization
parameter and the solution x that minimizes the problem ‖Ax− b‖2 +α‖x‖2
is called the regularized solution. In the regularization term one may also
add prior knowledge, to minimize the difference between the unknown and
the prior knowledge.

The solution of (u,µ) of the optimization problem (2.13) must satisfy the
set of equations:

∂L
∂u

= 0,
∂L
∂µ

= 0,

∂L
∂w

= 0.

(2.15)

2.3.1 The Poisson minimization problem

For the Poisson problem the minimization problem the cost functional to be
minimized is

J(u,µ) = ‖u− uMR‖2L2(Ω) + α‖µ− µprior‖2L2(Ω), (2.16)

where we assume that uMR is a known function from MR measurements.
The second term, which minimizes the error in µ compared to µprior is a
regularization term, where µprior serves as a target guess for µ. The solutions
u,µ must satisfy the PDE

F (u,µ) = ρω2u−∇ · µ∇u = 0
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2.3. PDE-CONSTRAINED OPTIMIZATION

in Ω, and the boundary conditions

µ
∂u

∂n
= t

on the whole boundary ∂Ω. Thus the optimization problem becomes: Find
u ∈ V , µ ∈ S, such that

min
u,µ
‖u− uMR‖2L2(Ω) + α‖µ− µprior‖2L2(Ω) (2.17a)

subject to ρω2u−∇ · µ∇u = 0, (2.17b)

µ
∂u

∂n
= t, (2.17c)

where V and S are some suitable function spaces to be defined in Chapter
3.

By the definition of the Lagrangian, the Lagrangian for the inverse Poisson
problem becomes:

L(u,µ,w) =J(u,µ) +
∫

Ω
F (u,µ)w dx

=
∫

Ω
(u− uMR)

2 dx+
∫

Ω
(ρω2u−∇ · µ∇u)w dx

+ α

∫
Ω
(µ− µprior)

2 dx,

(2.18)

where w is the adjoint variable from a suitable function space Q to be
defined in Chapter 3, α is the regularization parameter and µprior is a guess
for the parameter µ. In the second term of the Lagrangian, second order
derivatives appear. By integration by parts, these second order derivatives
may be substituted by terms of only first order derivatives∫

Ω
(ρω2u−∇ · µ∇u)w dx =

∫
Ω
ρω2uw dx+

∫
Ω
µ∇u · ∇w dx−

∫
∂Ω
µ∇u ·nw ds

=
∫

Ω
ρω2uw dx+

∫
Ω
µ∇u · ∇w dx−

∫
∂Ω
tw ds.

Inserting this into (2.18) yields

L(u,µ,w) =
∫

Ω
(u− uMR)

2 dx+
∫

Ω
ρω2uw dx+

∫
Ω
µ∇u · ∇w dx

−
∫
∂Ω
tw ds+ α

∫
Ω
(µ− µprior)

2 dx.
(2.19)

2.3.2 Minimization of the linear elasticity problem

The minimization problem for the elasticity model is derived in the same
manner as for the Poisson problem. Assume that uMR is known displace-
ment from MR elastography and µprior and λprior are prior knowledge of µ

10



2.3. PDE-CONSTRAINED OPTIMIZATION

and λ. The cost functional is then defined as

J(u,µ,λ) = ‖u− uMR‖2L2(Ω) + α‖µ− µprior‖2L2(Ω) + β‖λ− λprior‖2L2(Ω).

(2.20)

Here both α and β are regularization parameters. The solutions u,µ and λ
must satisfy the linear elasticity equations (2.9) and the boundary conditions
(2.10). Thus the optimization problem reads: Find u ∈ V , µ,λ ∈ S, such
that

min
u,µ
‖u−uMR‖2L2(Ω) + α‖µ− µprior‖2L2(Ω) + β‖λ− λprior‖2L2(Ω) (2.21a)

subject to ρω2u−∇ ·σ(u) = 0, (2.21b)
σ(u)n = t, (2.21c)

The Lagrangian of the linear elasticity minimization problem becomes

L(u,µ,λ,w) =
∫

Ω
(u−uMR)

2 dx+
∫

Ω
(ρω2u−∇ ·σ(u)) ·w dx

+ α

∫
Ω
(µ− µprior)

2 dx+ β

∫
Ω
(λ− λprior)

2 dx.
(2.22)

Integration by parts in the term with second order derivatives yield∫
Ω
−∇ ·σ(u) ·w dx =

∫
Ω
σ(u) : ∇w dx−

∫
∂Ω

(
σ(u)n

)
·u ds

=
∫

Ω
σ(u) : ∇w dx−

∫
∂Ω
t ·u ds,

(2.23)

since σ(u)n = t. Inserting this result into (2.22) gives

L(u,µ,λ,w) =
∫

Ω
(u−uMR)

2 dx+
∫

Ω
ρω2u ·w dx

+
∫

Ω
σ(u) : ∇w dx−

∫
∂Ω
t ·w ds

+ α

∫
Ω
(µ− µprior)

2 dx+ β

∫
Ω
(λ− λprior)

2 dx.

(2.24)
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Chapter 3

Numerical formulation

Since the 1960s, numerical methods has become an invaluable tool in solving
PDEs. The use of computers in problem solving allows us to solve more
complex problems and save a huge amount of time compared to solving
them by hand. To solve the problems described in Chapter 2, the numerical
method called the finite element method (FEM) will be used. This method
is a popular and widely used method to solve PDEs [26].

3.1 The Finite element method: Linear PDEs

In this section a short description of the finite element method is given. This
description of the finite element method is based on material of Kirby and
Logg [27] and Brenner and Scott [28]. The finite element method are carried
out as follows: Starting with the strong form of a PDE, derive a weak form,
apply the Galerkin method on the weak form and finally solve a system of
equations.

Beginning at the first step we consider a general strong form of a boundary
value problem:

Lu = f in Ω (3.1a)
u = u0 on ΓD (3.1b)

∂u

∂n
= g on ΓN (3.1c)

where L is a linear differential operator, u is the unknown function and f
is some given source term. The boundaries ΓD and ΓN are Dirichlet and
Neumann boundaries, respectively, and ΓD ∪ ΓN = ∂Ω and ΓD ∩ ΓN = ∅.

13



3.1. THE FINITE ELEMENT METHOD: LINEAR PDES

In the weak form (also called variational form) one searches for a solution
u in a trial space V . To derive the weak form of (3.1a), multiply the strong
form by some test function, v ∈ V̂ , and integrate over the domain Ω:∫

Ω
(Lu)v dx =

∫
Ω
fv dx (3.2)

In the left hand side term there might be derivatives of higher order. These
terms may be reduced to be of only first order by performing integration by
parts. The space V̂ is called a test space and the spaces V and V̂ should be
defined so that the boundary conditions defined in (3.1b) are satisfied. The
weak form becomes: Find u ∈ V such that

a(u, v) = l(v) (3.3)

for all v ∈ V̂ , where a : V × V̂ → R, defined by a(u, v) =
∫

Ω(Lu)v dx, is
called the bilinear form and l : V̂ → R, defined by l(v) =

∫
Ω fv dx, is called

the linear form.

To solve the variational problem and find the finite element solution, the next
step is to define finite-dimensional trial and test spaces. Let Vh ⊂ V be finite-
dimensional and let {ϕj}Nj=1 be a basis for Vh. Also let V̂h ⊂ V̂ be finite-
dimensional and assume {ϕ̂i}Ni=1 to be a basis for V̂h. N is the dimension
of both Vh and V̂h. Assume the approximation uh ≈ u, where uh ∈ Vh, thus
uh has N degrees of freedom. Replacing u by the approximation uh in (3.3)
leads to the discrete variational problem: Find uh ∈ Vh such that

a(uh, v) = l(v) (3.4)

for all v ∈ V̂h ⊂ V̂ .

We make an ansatz for uh in terms of the trial space’s basis functions

uh(x) =
N∑
j=1

Ujϕj(x), (3.5)

where Uj are coefficients which defines the degrees of freedom of uh. Insert-
ing (3.5) into (3.4) and letting the test function v = ϕ̂i, leads to a linear
system of equations:

a

 N∑
j=1

Ujϕj , ϕ̂i

 = l(ϕ̂i), i = 1, . . . ,N , (3.6)

which may be rewritten as

N∑
j=1

Uja(ϕj , ϕ̂i) = l(ϕ̂i), i = 1, . . . ,N . (3.7)
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3.2. THE FINITE ELEMENT METHOD: NONLINEAR PDES

This is a linear algebraic system of equations, and may be represented in
matrix form as

AU = b, (3.8)
where

Aij = a(ϕj ,ϕi), for i, j = 1, . . . ,N
bi = l(ϕi), for i = 1, . . . ,N

(3.9)

and {Uj}Nj=1 ∈ RN is the vector of degrees of freedom of uh.

For the error in the approximation uh compared to the exact solution u, we
will in later chapters consider the L2-norm and the H1-norm. These norms
are defined as

E0 = ‖uh − u‖L2(Ω) =

(∫
Ω
(uh − u)2 dx

)1/2
, (3.10)

E1 = ‖uh − u‖H1(Ω)

=

(∫
Ω
(uh − u)2 dx+

∫
Ω

(
∇(uh − u)

)2
dx
)1/2

, (3.11)

respectively.

3.2 The finite element method: Nonlinear PDEs

Nonlinear problems may also be solved elegantly using FEM. Consider the
general variational form: Find u ∈ V such that

F (u; v) = 0 (3.12)

for all v ∈ V̂ , where F : V × V̂ → R is a semilinear form. A semilinear form
may be nonlinear in the argument appearing in front of the semicolon and
is linear in the argument which appears after the semicolon.

Again, let Vh be a finite dimensional subspace of V and V̂h a finite dimen-
sional subspace of V̂ . The corresponding discrete variational problem reads:
Find uh ∈ Vh such that

F (uh; v) = 0 (3.13)
for all v ∈ V̂h. By expressing uh in terms of the given basis, a system of
equations are obtained

F

 N∑
j=1

Ujϕj ; ϕ̂i

 = 0. (3.14)

This is a nonlinear system of equations. Such systems are solved effectively
using iterative methods. In this thesis, Newton’s iterative method [29] will
be used.
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3.3 Newton’s method

The starting point of Newton’s method is a nonlinear system of equations,
such as (3.13). In the following we have x = uh and G(·) = F (·; v). The
Taylor series expansion of G around y is

G(x) = G(y) + J(y)(x− y) +O
(
(x− y)2

)
, (3.15)

where J is the Jacobian of G defined by

Jij(x) =
∂Fi(x)

∂xj
. (3.16)

We introduce the linear approximation Ĝ of G:

Ĝ(x) = G(y) + J(y)(x− y). (3.17)

Denote δx = x− y. Newton’s method is based on iteratively solving

Ĝ(x) = 0 (3.18)

and updating the value of x [26]:

x = y+ δx. (3.19)

Letting the unknown x be indexed with an iteration counter, and letting
the known y be the solution of the previous iteration, the algorithm for
Newton’s method becomes as follows: Given G(x) = 0 and an initial guess
x0 = y, repeat the iteration steps

1. Solve J(xk)(δx)k+1 = −G(xk), and

2. update xk+1 = xk + (δx)k+1.

Iterations continue until the the following convergence criteria are met:

‖G(xk+1)‖ ≤ εabs, (3.20a)
‖G(xk+1)‖
g(x0)

≤ εrel, (3.20b)

where εabs is the absolute convergence criterion and εabs is the relative con-
vergence criterion.

In Newton’s method it is sometimes desirable to make smaller changes in
each iteration. This can be done by multiplying the second term in the
update of xx+1 by a constant 0 < ωrel < 1, in the standard Newton’s method,
this parameter equals 1.0. Thus the iteration algorithm for the relaxed
Newton’s method becomes [26]
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1. Solve J(xk)(δx)k+1 = −G(xk), and

2. update xk+1 = xk + ωrel(δx)
k+1.

If the relaxation parameter is < 1, it is called under-relaxation and makes
the change done in each iteration smaller.

3.4 Finite element formulation of the inverse Pois-
son problem

The finite element method will be used to solve the Poisson minimization
problem numerically. Following the description given in Chapter 3.2, we
begin with Lagrangian of the problem, given in (2.19) and reads:

L(u,µ,w) =
∫

Ω
(u− uMR)

2 dx+
∫

Ω
ρω2uw dx+

∫
Ω
µ∇u · ∇w dx

−
∫
∂Ω
tw ds+ α

∫
Ω
(µ− µprior)

2 dx.

The variational form of the minimization problem is derived by taking the
derivatives of the Lagrangian in the directions of the test functions: Find
(u,µ,w) ∈ V × S ×Q such that

∂L
∂u

[v] =
∂L
∂µ

[η] =
∂L
∂w

[q] = 0. (3.21)

for all (v, η, q) ∈ V̂ × Ŝ × Q̂. Here we let V = V̂ = H1(Ω), S = Ŝ =
L2(Ω) and Q = Q̂s = H1(Ω), where H1(Ω) is the Sobolev space of square
Lebesgue integrable functions with square integrable derivatives and L2(Ω)
is the Sobolev space of square Lebesgue integrable functions.

(3.21) solves the minimization problem in (2.15), since

∂L
∂u

= 0 ⇐⇒ ∂L
∂u

[v] = 0 ∀ v ∈ V̂ , (3.22)

and equivalently for the other derivatives [25]. To compute the directional
derivative, we define the Gâteaux derivative [25]:

∂L
∂u

[v] = lim
ε→0

L(u+ εv,µ,w)−L(u,µ,w)
ε

=
d

dε

[
L(u+ εv,µ,w)

]
ε=0

(3.23)
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Thus, the directional derivative of the Lagrangian along v is:
∂L
∂u

[v] =
d

dε

[∫
Ω
(u+ εv− uMR)

2 dx+
∫

Ω
ρω2(u+ εv)w dx

+
∫

Ω
µ∇(u+ εv) · ∇w dx−

∫
∂Ω
tw ds

+α
∫

Ω
(µ− µprior)

2 dx
]
ε=0

=

[∫
Ω

2(u+ εv− uMR) v dx+
∫

Ω
ρω2v w dx+

∫
Ω
µ∇v · ∇w dx

]
ε=0

= 2
∫

Ω
(u− uMR) v dx+

∫
Ω
ρω2v w dx+

∫
Ω
µ∇v · ∇w dx

for all v ∈ V̂ . The other directional derivatives are computed in the same
manner and become:

∂L
∂µ

[η] =
∫

Ω
η∇u · ∇w dx+ 2α

∫
Ω
(µ− µprior)η dx

for all η ∈ Ŝ, and
∂L
∂w

[q] =
∫

Ω
ρω2u q dx+

∫
Ω
µ∇u · ∇q dx−

∫
∂Ω
t q ds

for all η ∈ Q̂.

Using the syntax from Chapter 3.2, the variational form of the Poisson
minimization problem reads: Find (u,µ,w) ∈ V × S ×Q, such that

F ((u,µ,w); (v, η, q)) = 0 (3.24)

for all (v, η, q) ∈ V̂ × Ŝ × Q̂, where

F ((u,µ,w); (v, η, q)) = ∂L
∂u

[v] +
∂L
∂µ

[η] +
∂L
∂w

[q]. (3.25)

Let Vh ⊂ V , Sh ⊂ S and Qh ⊂ Q be finite dimensional spaces and let
uh ∈ Vh,µh ∈ Sh and wh ∈ Qh The discrete form is found by replacing
u,µ,w by the discrete counterparts uh,µh,wh. In this thesis we let Vh = V̂h
be the space of continuous piecewise linear polynomials, let Sh = Ŝh be the
space of piecewise constant functions and let Qh = Q̂h = Vh. The discrete
variational form reads: Find (uh,µh,wh) ∈ Vh × Sh ×Qh, such that

F ((uh,µh,wh), (v, η, q)) = 0 (3.26)

for all (v, η, q) ∈ V̂h × Ŝh × Q̂h, where

F ((uh,µh,wh), (v, η, q)) = ∂L
∂uh

[v] +
∂L
∂µh

[η] +
∂L
∂wh

. (3.27)

This problem may now be solved using Newton’s method.
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3.5 Finite element formulation of the inverse lin-
ear elasticity problem

To solve the linear elasticity minimization problem numerically we follow
the same procedure as for the Poisson minimization problem and start with
the Lagrangian given in (2.24):

L(u,µ,λ,w) =
∫

Ω
(u−uMR)

2 dx+
∫

Ω
ρω2u ·w dx

+
∫

Ω
σ(u) : ∇w dx−

∫
∂Ω
t ·w ds

+ α

∫
Ω
(µ− µprior)

2 dx+ β

∫
Ω
(λ− λprior)

2 dx.

The variational formulation of the elasticity minimization problem is given
by taking the directional derivatives of the Lagrangian along the directions
of the test functions: Find (u,µ,λ,w) in V × S × S ×Q such that

∂L
∂µ

[v] =
∂L
∂µ

[η] =
∂L
∂λ

[κ] =
∂L
∂w

[q] = 0 (3.28)

for all (v, η,κ, q) in V̂ × Ŝ × Ŝ × Q̂. We use the same function spaces for
the Poisson problem for the parameters µ and λ, that is S = L2(Ω), and
we let V = Q = [H1(Ω)]d. Let the test spaces equal the trial spaces.

By the definition of the Gâteaux derivative, the directional derivative of the
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Lagrangian in u along v is:
∂L
∂u

[v] =
d

dε

[
L(u+ εv,µ,λ,w)

]
ε=0

=
d

dε

[∫
Ω
(u+ εv−uMR)

2 dx+
∫

Ω
ρω2(u+ εv) ·w dx

+
∫

Ω
2µε(u+ εv) : ∇w dx

+
∫

Ω
λ tr

(
ε(u+ εv)

)
tr(∇w) dx

−
∫
∂Ω
t ·w ds+ α

∫
Ω
(µ− µprior)

2 dx

+β
∫

Ω
(λ− λprior)

2 dx
]
ε=0

=

[∫
Ω

2(u+ εv−uMR) · v dx+
∫

Ω
ρω2v ·w dx

+
∫

Ω
2µε(v) : ∇w dx+

∫
Ω
λ tr

(
ε(v)

)
tr(∇w) dx

]
ε=0

= 2
∫

Ω
(u−uMR) · v dx+

∫
Ω
ρω2v ·w dx

+
∫

Ω
2µε(v) : ∇w dx+

∫
Ω
λ tr

(
ε(v)

)
tr(∇w) dx.

By similar computations, the remaining three derivatives become
∂L
∂µ

[η] =
∫

Ω
2ηε(u) : ∇w dx+ 2α

∫
Ω
(µ− µMR)η dx,

∂L
∂λ

[κ] =
∫

Ω
κ tr

(
ε(u)

)
tr(∇w) dx+ 2β

∫
Ω
(λ− λMR)κ dx,

∂L
∂w

[q] =
∫

Ω
ρω2u · q dx+

∫
Ω

2µε(u) : ∇q dx

+
∫

Ω
λ tr

(
ε(u)

)
tr(∇q) dx.−

∫
∂Ω
t · q ds.

Still, let Vh ⊂ V ,Sh ⊂ S and Qh ⊂ Q and similar for the test spaces. Let Vh
and Qh be the d-dimensional space of continuous piecewise linear polynomi-
als and let Sh be the space of piecewise constant functions. Inserting the dis-
crete approximations uh,µh,λh,wh of u,µ,λ,w into the variational form, the
discrete variational form reads: Find (uh,µh,λh,wh) in Vh × Sh × Sh ×Qh
such that

F ((uh,µh,λh,wh); (v, η,κ, q)) = 0 (3.29)
for all (v, η,κ, q) in V̂h × Ŝh × Ŝh × Q̂h, where

F ((uh,µh,λh,wh); (v, η,κ, q)) = ∂L
∂uh

[v] +
∂L
∂µh

[η] +
∂L
∂λh

[κ] +
∂L
∂wh

[q].
(3.30)
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As for the Poisson problem, this problem may now be solved using Newton’s
method.
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Chapter 4

Study of Tikhonov regulariza-
tion for the Poisson equation

The numerical work in this thesis has been carried out using the FEM soft-
ware FEniCS [13; 12]. For both the Poisson problem and the linear elasticity
problem, solvers have been implemented in Python and experiments have
been carried out to verify solvers. The source code used in this chapter can
be found in Appendix A and is also available online at bitbucket.org/
istorpe/source-code-master-s-degree. Sufficient knowledge of FEniCS
to understand the code may be obtained by reading the FEniCS tutorial [30]
and for more information about weak formulation of PDEs in FEniCS read-
ing about UFL[21].

Consider the minimization problem given in (3.26) and (3.27)

F ((uh,µh,wh), (v, η, q)) = 0

for all (v, η, q) ∈ V̂h × Ŝh × Q̂h, where

F ((uh,µh,wh), (v, η, q)) = ∂L
∂uh

[v] +
∂L
∂µh

[η] +
∂L
∂wh

.

Through this chapter we will study how Tikhonov regularization and noise in
the input data affects the solutions of this optimization problem. Moreover,
we will derive an analytical manufactured solution, the numerical solutions
can be compared to the exact solutions and convergence rates can be com-
puted based on the errors.
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4.1. A MANUFACTURED SOLUTION OF THE POISSON
MINIMIZATION PROBLEM

4.1 A manufactured solution of the Poisson mini-
mization problem

Let the spatial domain be Ω = [0, 1]× [0, 1], the unit square, and let the
solution be given as

u(x, y) = e−kx (4.1)

for some integer k. Inserting this solution to the strong form (2.17b), µ may
be calculated by direct inversion. The gradient and Laplacian of u are

∇u(x, y) = (∂xu, ∂yu) = (−ke−kx, 0) (4.2)
∆u(x, y) = ∂x(−ke−kx) + ∂y(0) = k2e−kx = k2u(x, y). (4.3)

Inserting these results to Eq. (2.3a) and assuming µ is constant, leads to

ρω2u− µk2u = 0.

For simplicity, let ρω2 = 1, then solving for µ gives the analytical solution

µ =
1
k2 . (4.4)

It is important to check that the boundary conditions are fulfilled to ensure
a well-posed problem. The boundary conditions (2.17c) are pure Neumann
conditions, that is, the value of the normal derivative of u is prescribed on
all four sides of the unit square. First, consider the left boundary of the
domain, where x = 0. Then the outward pointing normal vector is given by
nleft = (−1, 0), this leads to the boundary condition

tleft =

( 1
k2∇u ·nleft

)∣∣∣∣
x=0

=

(
−1
k
e−kx, 0

)
· (−1, 0)

∣∣∣∣
x=0

=
1
k
e−kx

∣∣∣∣
x=0

=
1
k

.

Next; on the right hand side boundary, where x = 1, the outward pointing
normal vector is nright = (1, 0), and the boundary conditions must be

tright =

(
−1
k
e−kx, 0

)
· (1, 0)

∣∣∣∣
x=1

= −1
k
e−kx

∣∣∣∣
x=1

= −1
k
ek.

Finally, similar computations carried out for the top and bottom of the unit
square yields

ttop =

(
−1
k
e−kx, 0

)
· (0,−1)

∣∣∣∣
y=0

= 0

tbottom =

(
−1
k
e−kx, 0

)
· (0, 1)

∣∣∣∣
y=1

= 0.
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6

-
x

y

Γbottom

1
k2

∂u
∂n = 0

Γtop
∂u
∂n = 0

Ω
Γleft

∂u
∂n = k

Γright
∂u
∂n = −ke−k

Figure 4.1: Sketch of the Poisson problem with µ = 1
k2 throughout the

domain Ω and Neumann conditions on the boundaries.

Thus, the boundary value problem is given by

u−∇ · 1
k2∇u = 0 in Ω

∂u

∂n
= k on Γleft

∂u

∂n
= ke−k on Γright

∂u

∂n
= 0 on Γtop ∪ Γbottom,

(4.5)

where Γleft, Γright, Γtop, and Γbottom denote the left, right, top and bottom
sides of the unit square, respectively, and Γleft ∪ Γright ∪ Γtop ∪ Γbottom = ∂Ω.

To solve the minimization problem outlined in Chapter 2.3, expressions for
uMR and µprior are needed. The target solution of u, uMR, is the displace-
ment measured in the MRE measurements. Thus, in these experiments
with constructed data uexact is the target solution. however, in real MR
elastography data, there will be noise in the measurement data, thus some
white Gaussian noise will also be added to the exact solution to study how
the noise affects the solutions. The amount of noise in the measured data
is uncertain, thus adding various amounts of synthetic noise, will give an
indication on how this affect the solution. Let uMR be calculated in the
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following way:

uMR = uexact +N (0, ∆noise)‖uexact‖L2(Ω). (4.6)

Here, N (0, ∆noise) is a Gaussian distribution with mean 0 and standard
deviation (SD) ∆noise. ∆noise is the maximum percentage of noise added. In
a study of the one-shot optimization with applications to ultrasound and MR
by Oberai et al. [10], the amounts of noise considered are 3%, 1% and 0.3%.
In the following experiments we consider ∆noise = 0.1, 0.03, 0.01, 0.003, 0.0.

As target solutions for µ, that is µprior, we consider both

µprior(x, y) = 1
k2 , (4.7)

which is the exact solution from the manufactured problem, and

µprior(x, y) = 0. (4.8)

In the experiments we use k = 2, thus the analytical solutions are:

uexact = e−2x

µexact =
1
22 =

1
4

(4.9)

4.2 Experiments and results with the Poisson min-
imization problem

Consider the following scenarios:

• µ in R vs. DG0

• Varying regularization parameter, α

• µprior = 0 vs. µprior = µexact

• Adding white Gaussian noise to uMR

Materials may be either homogeneous or heterogeneous, thus we will test
searching for both a constant parameter µ, that is µ ∈ R, and a parameter
µ varying through the domain, that is µ ∈ DG0. DG is the discontinuous
Galerkin space and DG0 the discontinuous Galerkin space of degree 0, that
is the space of piecewise constants. When using the one-shot approach for
solving the inverse problem it might be useful to test with varying values
for the regularization parameter α, and how this affect the result. In the
regularization term the variable µprior prior appears as a target, or a guess,
for the solution of µ and it is therefore interesting to observe how the value
of this variable influence the solution of µ.
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For the error in u consider both the in L2-norm and the H1-norm, and for
the error in µ consider the L2-norm:

E0,u = ‖uexact − u‖L2(Ω),
E1,u = ‖uexact − u‖H1(Ω),
Eµ = ‖µexact − µ‖L2(Ω).

(4.10)

The convergence rates are computed in the following way:

ri =
log(Ei/Ei−1)

log(hi/hi−1)
, (4.11)

where index i indicate the mesh size, E is the error and h = 1/N is the
discretization parameter. Sometimes this definition of h may give artefacts,
but as we only study meshes with equal element sizes, this definition is satis-
factory here. The mesh sizes considered are N ×N for N = 8, 16, 32, 64, 128.

The experiments are carried out using the following initial guesses for the
unknowns in the Newton solver:

u0 = uexact

µ0 = µexact

w0 = 1.0
(4.12)

The parameters in the Newton solver are also as the previous experiments:
40 iterations are the maximum number of iterations, the absolute tolerance
is 10−13 and the relative tolerance is set to 10−12.

In the following section the results from the experiments are presented.

4.2.1 Minimization with homogeneous material without prior
knowledge

We start by studying the simplest case, i.e. without regularization and
without noise in the target solution of u. Table 4.1 shows the convergence
rates in this case and we observe that the convergence rates of the error of
u in L2-norm converge to 2, the convergence rates of the error of u in H1-
norm converge to 1 and the convergence rates of the error of µ in L2-norm
converge to 2. This convergence rates are the optimal rates. The solutions
are shown in Figure 4.2.

The next case to be considered is adding noise to the data. Can we still
obtain high quality solutions? Let α = 10−5 and let varying noise be added
to uMR. The errors of the solutions are presented in Figure 4.3. For the error
of u in L2-norm, we observe that the error decreases as the discretization
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N E0,u rates E1,u rates Eµ rates
8 1.888E-03 7.083E-02 4.794E-04

16 4.779E-04 1.982 3.565E-02 0.991 1.190E-04 2.010
32 1.199E-04 1.995 1.786E-02 0.997 2.954E-05 2.011
64 3.001E-05 1.998 8.936E-03 0.999 7.358E-06 2.005
128 7.505E-06 2.000 4.469E-03 1.000 1.837E-06 2.002

Table 4.1: Convergence rates with α = 0.0 and ∆noise = 0.0 when µ ∈ R

and µprior = 0.

(a) uexact (b) uapprox

(c) µapprox (d) wapprox

Figure 4.2: Plots of the analytical and numerical solutions of u and the
numerical solutions of µ and w for µ ∈ R, µprior = 0, α = 0, ∆noise = 0%
and N = 16.
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N E0,u rates E1,u rates Eµ rates
8 1.888E-03 7.083E-02 4.794E-04

16 4.779E-04 1.982 3.565E-02 0.991 1.190E-04 2.010
32 1.199E-04 1.995 1.786E-02 0.997 2.954E-05 2.011
64 3.001E-05 1.998 8.936E-03 0.999 7.358E-06 2.005
128 7.505E-06 2.000 4.469E-03 1.000 1.837E-06 2.002

Table 4.2: Convergence rates with α = 0.0 and ∆noise = 0.0 when µ ∈ R

and µprior = µexact.

parameter h decreases, with the exception of when ∆noise = 3%, where there
is a local maximum for h = 0.0625 and a local minimum for h = 0.03125.
In the case of ∆noise = 0%, the error decreases at a rate of approximately
2. The error of u in H1-norm on the other hand, are approximately equal
for all values of ∆noise, and it decreases linearly as h decreases. Finally, for
the error in µ in L2-norm, the results are similar to the ones for the error of
u in L2-norm, but the local minimum for ∆noise = 3% are at h = 0.015625
and for ∆noise = 0.3% a minimum occurs at h = 0.03125. For ∆noise = 0%,
the error decreases at a rate of approximately 2 for the largest values of h,
but the rate decreases as h decreases. Similar experiments using α in the
range (10−8, 10) yield similar results. With these configurations even with
noise in the input data, the solutions are qualitatively good.

Finally, we study the regularization parameter, α, for given N and ∆noise.
Consider the errors in u in L2- and H1-norms and the errors in µ in L2-
norm for N = 64, which are presented in Figure 4.4. We observe that the
errors in u decreases as α decreases for α = 10, 1, 10−1, · · · , 10−8 for all
∆noise, with the exception of ∆noise = 0.01, where a local minimum occurs
at α = 10−4. The same is observed for the errors in µ, except here there
are two local minima - one at α = 10−5 for ∆noise = 0.03 and the other
one at α = 10−4 for ∆noise = 0.01. In general; lower noise yields lower
errors, with the exception of no noise which has a slightly larger error than
with ∆noise = 0.003 when α is less than 10−3. Similar experiments using
N = 8, 16, 32, 128 yield similar results.

4.2.2 Minimization with homogeneous material with prior
knowledge

Consider µprior = µexact. We start by studying the case where α = 0.0 and
∆noise = 0%. The results of convergence tests are presented in Table 4.2 and
the solutions are shown in Figure 4.5. We observe that we get equal results
as when µprior = 0.

As for the studies without prior knowledge we move on to study the affect
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(a) The errors in u in L2-norm

(b) The errors in u in H1-norm

(c) The errors in µ in L2-norm

Figure 4.3: Logarithmic plot of the errors of u in L2- and H1-norms and
the errors of µ in L2 norm, respectively, with α = 10−5 and with varying
noise in uMR when µ ∈ R and µprior = 0 for N = 8, 16, 32, 64, 128. h is the
discretization parameter defined by h = 1/N .
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4.2. EXPERIMENTS AND RESULTS WITH THE POISSON
MINIMIZATION PROBLEM

(a) The errors in u in L2-norm

(b) The errors in u in H1-norm

(c) The errors in µ in L2-norm

Figure 4.4: Logarithmic plot of the errors in u in L2- and H1-norms and the
errors in µ in L2 norm, respectively, on a mesh of size 64× 64 with varying
noise in uMR and α-values from 10−8 to 101 when µ ∈ R and µprior = 0.

31



4.2. EXPERIMENTS AND RESULTS WITH THE POISSON
MINIMIZATION PROBLEM

(a) uexact (b) uapprox

(c) µapprox (d) wapprox

Figure 4.5: Plots of the analytical and numerical solutions of u and the
numerical solutions of µ and w for µ ∈ R, µprior = µexact, α = 0, ∆noise = 0%
and N = 16.
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4.2. EXPERIMENTS AND RESULTS WITH THE POISSON
MINIMIZATION PROBLEM

N E0,u rates E1,u rates Eµ rates
8 1.697E-03 7.130E-02 3.695E-03
16 4.291E-04 1.984 3.573E-02 0.997 1.335E-03 1.469
32 1.114E-04 1.945 1.795E-02 0.994 1.430E-03 −0.099
64 3.860E-05 1.530 9.511E-03 0.916 2.648E-03 −0.889

128 - - - - - -

Table 4.3: Convergence rates with α = 10−5 and ∆noise = 0.0 when µ ∈
DG0 and µprior = 0. With N = 128 the Newton solver did not converge,
thus no solution was obtained for u and µ in this case.

of noise in the input data. Consider the case where α = 10−5 with varying
amount of noise in uMR. The results are presented in Figure 4.6. Compared
to the results when µprior = 0, shown in Figure 4.3, we see that the results
are very similar.

Finally, study of the regularization parameter, α, for given N and ∆noise.
Consider results for various regularization parameters for given N and given
∆noise. Figure 4.7 present the results of the experiments. As for when
µprior = 0, the errors are stable for the smallest α-values. Different from the
case when µprior = 0, we observe here that the errors decrease as α > 102.
In general when µprior = µexact errors are less sensitive to the value of the
regularization parameter than for the case with µprior = 0.

4.2.3 Minimization with heterogeneous material

As for the experiments with homogeneous material, minimization are carried
out both with and without prior knowledge.

Experiments with no regularization, that is α = 0, the Newton solver did
not converge, independent of the level of noise in uMR. Thus, regularization
is needed for the solver to converge, when searching for µ ∈ DG0.

Letting α = 10−8 and ∆noise = 0%, the solver converges in all of the tested
configurations, using mesh sizes N = 8, 16, 32, 64, but does not converge
when N = 128. In the Tables 4.3 and 4.4 the convergence rates from
experiments with α = 10−5 and ∆noise = 0.0 are presented for µprior = 0
and µprior = µexact, respectively. We observe that the rates are optimal in
the case of µprior = µexact. In the case µprior = 0, the rates are suboptimal
and the Newton solver does not even converge for N = 128.

Computing the average of the components, µi, of the computed µ, we observe
that that it is close to the exact solution in all of the acquired results. This
is presented in the Tables 4.5 and 4.6 for µprior = 0 and µprior = µexact,
respectively, when α = 10−5 and ∆noise = 0.0. Figure 4.8 shows both the

33



4.2. EXPERIMENTS AND RESULTS WITH THE POISSON
MINIMIZATION PROBLEM

(a) The errors in u in L2-norm

(b) The errors in u in H1-norm

(c) The errors in µ in L2-norm

Figure 4.6: Logarithmic plot of the errors of u in L2- and H1-norms and the
errors of µ in L2 norm, respectively, with α = 10−5 and with varying noise
in uMR when µ ∈ R and µprior = µexact for N = 8, 16, 32, 64, 128. h is the
discretization parameter defined by h = 1/N .

34



4.2. EXPERIMENTS AND RESULTS WITH THE POISSON
MINIMIZATION PROBLEM

(a) The errors in u in L2-norm

(b) The errors in u in H1-norm

(c) The errors in µ in L2-norm

Figure 4.7: Logarithmic plot of the errors in u in L2- and H1-norms and the
errors in µ in L2 norm, respectively, on a mesh of size 64× 64 with varying
noise in uMR and α-values from 10−8 to 101 when µ ∈ R and µprior = µexact.
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4.2. EXPERIMENTS AND RESULTS WITH THE POISSON
MINIMIZATION PROBLEM

N E0,u rates E1,u rates Eµ rates
8 1.695E-03 7.130E-02 3.682E-03

16 4.262E-04 1.991 3.573E-02 0.997 1.199E-03 1.619
32 1.067E-04 1.998 1.787E-02 0.999 3.351E-04 1.839
64 2.669E-05 1.999 8.938E-03 1.000 8.828E-05 1.924
128 6.673E-06 2.000 4.469E-03 1.000 2.257E-05 1.967

Table 4.4: Convergence rates with α = 10−5 and ∆noise = 0.0 when µ ∈
DG0 and µprior = µexact.

N µavg SDµ MDµ

8 0.2495 0.0037 0.0109
16 0.2498 0.0013 0.0081
32 0.2498 0.0014 0.0139
64 0.2497 0.0026 0.0300

128 - - -

Table 4.5: The average value of the components of the calculated µ, the
standard deviation and the maximum deviation, for α = 10−5 and ∆noise =
0.0 when µ ∈ DG0 and µprior = 0. The exact value of µ is µexact = 0.25.

analytical and numerical solutions of u and the numerical solutions of µ and
w when µprior = 0. Figure 4.9 shows the solutions when µprior = µexact.
The average, µavg, the standard deviation in µ, SDµ, and the maximum
deviation (MD) in µ, MDµ, are defined by:

µavg =

∑n
i=1 µi
n

(4.13)

SDµ =

√∑n
i=1(µi − µavg)2

n
, (4.14)

MDµ = max
1≤i≤n

abs(µi − µavg), (4.15)

here µi is the i-th component of the computed µ and n is the degrees of
freedom in µ.

Adding noise in uMR, the regularization parameter must be significantly
increased for the solver to converge, using a maximum of 40 iterations, and
absolute and relative tolerance 10−13 and 10−12, respectively. In experiments
with ∆noise = 0.3%, the Newton solver does not converge for any of the tested
α-values smaller than α = 10−4, with the exception of N = 16 for µprior =
µexact when α = 10−5 and N = 16 for µprior = 0 when α = 10−6. When
α = 10−4 the solver converges for N = 8, 16, 32 and for all tested values
of N for µprior = µexact. For µprior = 0 it converges for N = 8, 16, 32, 64,
but not for N = 128, for the tested α ≥ 10−4. The results show that
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4.2. EXPERIMENTS AND RESULTS WITH THE POISSON
MINIMIZATION PROBLEM

(a) uexact (b) uapprox

(c) µapprox (d) wapprox

Figure 4.8: Plots of the analytical and numerical solutions of u and the
numerical solutions of µ and w for µ ∈ DG0, µprior = 0, α = 10−5, ∆noise =
0% and N = 16.

N µavg SDµ MDµ

8 0.2495 0.0036 0.0108
16 0.2499 0.0012 0.0053
32 0.2500 0.0003 0.0026
64 0.2500 0.0001 0.0013
128 0.2500 0.0000 0.0006

Table 4.6: The average value of the components of the calculated µ, the
standard deviation and the maximum deviation, for α = 10−5 and ∆noise =
0.0 when µ ∈ DG0 and µprior = µexact. The exact value of µ is µexact = 0.25.
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4.2. EXPERIMENTS AND RESULTS WITH THE POISSON
MINIMIZATION PROBLEM

(a) uexact (b) uapprox

(c) µapprox (d) wapprox

Figure 4.9: Plots of the analytical and numerical solutions of u and the
numerical solutions of µ and w for µ ∈ DG0, µprior = µexact, α = 10−5,
∆noise = 0% and N = 16.

38



4.3. SUMMARY

as ∆noise increases also α must increase for the solver to converge. When
∆noise = 10%, we must have α = 0.1 for the solver to converge. With
α = 0.1 the solver converges for the mesh sizes N = 8, 32 for µprior = 0
and N = 8, 16, 64, 128 for µprior = µexact. All solvers converge, for all
noise levels and all mesh sizes (N = 8, 16, 32, 64, 128), with α = 0.01 when
µprior = µexact. For µprior = 0, the only α and ∆noise the solver converge for
all tested mesh sizes, are α = 1.0 and ∆noise = 1%.

As an attempt to get convergence in the Newton solver in more of the tested
configurations when µ ∈ DG0, it has been tested with an alternative initial
guess for w. Since the Newton solver converged in all of the tests with µ ∈ R,
the solution of w from these tests were given as the initial guess w0 for µ ∈
DG0. Unfortunately, this did not help the solver to converge in more of the
experiments.

It has also been tested with lower tolerance; absolute tolerance as 10−10 and
relative tolerance as 10−9 (which are the default values in FEniCS), but this
did not give convergence in more of the experiments. The only improvement
this change of parameters gave, was that in the experiments were solutions
already were obtained fewer iterations were needed to find these solutions.
Thus, in general, if the Newton solver converges, the results are qualitatively
good.

4.3 Summary

The general findings from these experiments are:

• When searching for a homogeneous parameter µ, regularization is not
needed to obtain qualitatively good results. However, when searching
for a heterogeneous parameter µ , regularization is needed.

• When using prior knowledge the errors get smaller as the regularization
parameter gets larger (which one might expect due to higher influence
of the regularization term). Thus, if good target data is available it is
preferable to use regularization with these data, and in the case of µ
in DG0 this improves the results and the Newton solver converges in
more of the tested configurations.

• Regularization parameters α = 10i for i = −8,−7, . . . ,−4, give quali-
tatively good results when µ in R both with and without prior knowl-
edge for all noise levels.

• When µ is heterogeneous, the solver struggles with convergence when
adding noise. α = 10−2 yields qualitatively good results for all noise
levels when µ is heterogeneous and we have prior knowledge. When

39



4.3. SUMMARY

µ is heterogeneous and we do not use prior knowledge, the Newton
solver converges for all noise levels and all N when α = 1.0.

The general result for noise in the measured data is; lower amount of noise
yields lower errors.
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Chapter 5

Study of Tikhonov regulariza-
tion for the linear elasticity
model

In this chapter we perform similar experiments as for the Poisson minimiza-
tion problem, with the linear elasticity minimization problem. All source
code used is available online at
bitbucket.org/istorpe/source-code-master-s-degree. The code from
the experiments with the Poisson model can also be found in Appendix A.

Consider the linear elasticity minimization problem given in (3.29) and
(3.30): Find (uh,µh,λh,wh) in Vh × Sh × Sh ×Qh such that

F ((uh,µh,λh,wh); (v, η,κ, q)) = 0

for all (v, η,κ, q) in V̂h × Ŝh × Ŝh × Q̂h, where

F ((uh,µh,λh,wh); (v, η,κ, q)) = ∂L
∂uh

[v] +
∂L
∂µh

[η] +
∂L
∂λh

[κ] +
∂L
∂wh

[q].

Using this model, similar experiments as for the Poisson problem will be
performed to get an understanding of the sensitivity to noise in the linear
elasticity minimization problem and how regularization affects the solutions.

In stead of deriving a manufactured solution analytically as for the Poisson
problem, we solve the forward problem given in (2.12) numerically with the
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5.1. EXPERIMENTS AND RESULTS WITH THE ELASTICITY
MINIMIZATION PROBLEM

following input functions and domain:

µexact = 3.0, (5.1)
λexact = 8.0, (5.2)

t = (0.9, 0.3), (5.3)
Ω = [0, 1]× [0, 1]. (5.4)

to obtain a target solution for u and denote this solution uexact. This
method to get target solutions are commonly used when solving inverse
problems [10].

5.1 Experiments and results with the elasticity min-
imization problem

Consider the same scenarios as for the Poisson problem:

• µ,λ in R vs. DG0

• Varying regualization parameters α,β

• Adding noise in uMR

• µprior = 0,λprior = 0 vs. µprior = µexact,λprior = λexact

In these experiments we want to check whether we get similar results as for
the Poisson minimization problem or not.

Let uMR be defined as in Eq. (4.6) and let the considered amounts of noise
in uMR be, as previously, ∆noise = 10%, 3%, 1%, 0.3% and 0%. Also, consider
the error norms studied in the Poisson problem:

E0,u = ‖uexact −u‖L2(Ω),
E1,u = ‖uexact −u‖H1(Ω),
Eµ = ‖µexact − µ‖L2(Ω),
Eλ = ‖λexact − λ‖L2(Ω).

(5.5)

The convergence rates are computed as defined in Eq. (4.11). The mesh
sizes consider for the linear elasticity problem are 8× 8, 16× 16, 32× 32 and
64× 64. The mesh size 128× 128 is not tested in this case, as this was to
demanding for the computer.

In the Newton solver the absolute tolerance is 10−10 and the relative toler-
ance is 10−9, which are the default values in FEniCS. The initial guesses for
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5.1. EXPERIMENTS AND RESULTS WITH THE ELASTICITY
MINIMIZATION PROBLEM

N E0,u rates E1,u rates Eµ rates Eλ rates
8 2.50E-03 6.97E-02 6.55E-02 5.93E+00
16 9.99E-04 1.326 4.03E-02 0.789 9.78E-03 2.745 3.26E+00 0.863
32 3.67E-04 1.445 2.26E-02 0.834 1.29E-03 2.919 1.26E+00 1.370
64 1.21E-04 1.604 1.23E-02 0.883 2.50E-04 2.371 3.70E-01 1.771

Table 5.1: Convergence rates with α = 0.0, β = 0.0 and ∆noise = 0.0 when
µ,λ ∈ R and µprior = 0 and λprior = 0.

u,µ,λ and w in the Newton solver are:

u0 = uexact

µ0 = µexact

λ0 = λexact

w0 = (1.0, 1.0)

(5.6)

In the following section the results from the experiments are presented.

5.1.1 Minimization with homogeneous material without prior
knowledge

Consider the simplest test case, i.e. without regularization, that is α = β =
0, and without noise in uMR, that is ∆noise = 0. The computed convergence
rates in this case are presented in Table 5.1. The optimal values for the rates
computed in L2-norms are 2. We observe that the rates for the errors in u
in L2-norm start at 1.326 for the smallest mesh sizes, and as the mesh sizes
increase, the rates increase as well. The largest rate is 1.604, so the rate gets
closer to 2, but if larger mesh sizes had been tested we can speculate in that
the rates would show a clearer convergence to 2. The rates for the errors
in µ and λ are similar as those for u in L2-norm, except that the rate for
µ start at 2.745 and decrease as the mesh size increase and for the largest
mesh sizes the rate is 2.371. For the rates for the errors in u in H1-norm,
the lowest rate is 0.789. As the mesh size is increased the rate increase, the
largest rate is 0.883. The optimal convergence rate in the H1-norm is 1.
The numerical solutions for u,µ,λ and w are shown in Figure 5.1.

Still let the regularization parameters equal zero and let the amount of
synthetic noise in uMR vary. The errors in the approximations in this case
are presented in Figures 5.2 and 5.3. In all of the considered error norms, we
observe that the errors in the approximations without any noise decrease as
expected as the discretization parameter h = 1/N decreases. When adding
noise, the errors vary more and in the case of ∆noise = 0.1 the Newton solver
only converged for N = 32, 64, for ∆noise = 0.03 the solver only converged

43



5.1. EXPERIMENTS AND RESULTS WITH THE ELASTICITY
MINIMIZATION PROBLEM

(a) uexact (b) uapprox

(c) µapprox (d) λapprox

(e) wapprox

Figure 5.1: Plots of the analytical and numerical solutions of u and the
numerical solutions of µ, λ and w for µ,λ ∈ R, µprior = 0,λprior = 0, α = 0,
β = 0, ∆noise = 0% and N = 64.
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5.1. EXPERIMENTS AND RESULTS WITH THE ELASTICITY
MINIMIZATION PROBLEM

for N = 8, 16, 64 and for ∆noise = 0.01 the solver only converged for N =
8, 16, 32. Firstly, consider the errors in u in L2-norm. With 0.3% noise in
uMR the errors follow the errors from when ∆noise = 0 quite closely, with the
exception of the smallest h, where it is a bit larger. For the other amounts of
noise, the errors vary more, and for ∆noise = 0.1 it even increases for larger
mesh size. Secondly, consider the errors in u in H1-norm. Here, the errors
do not vary as much as for the L2-norm, except from when ∆noise = 0.1 in
which the errors are larger and does not decrease for increased mesh size.
Finally, consider the errors in µ and λ in L2-norms. We observe that adding
noise to uMR makes the errors vary a lot, and there is clear tendency that
the error decrease as the mesh size is increased. An exception is the errors
in λ when ∆noise = 0.003, here the errors are close to the errors without
noise.

Similar experiments has been carried out when letting α and β vary from
10−8, 10−7, . . . , 101 and with both α = β and α 6= β. The experiments with
the smallest values of α and β, that is the values 10−8 and 10−7 yield similar
results as those for α = β = 0. Increasing α and β makes the errors more
and more equal and the error is the about the same for all mesh sizes, that
is, for large regularization parameters the errors do not decrease as the mesh
size is increased.

Finally, we study the affect of the regularization parameters, α and β. Con-
sider the errors in the numerical solutions for N = 64 and various amounts
of noise in uMR, which are presented in Figure 5.4. We observe that the gen-
eral tendency in these plots are that the errors increase as the regularization
parameters increase. The exceptions are the errors in λ in L2-norm which
stay stable for regularization values larger than 10−6. For the errors in µ in
L2-norm, a local minimum is observed for ∆noise for α = β = 10−4. All the
∆noise-values except ∆noise = 0.1, yield a local maximum for α = β = 10−1

for the errors in u in H1-norm. Similar experiments for the mesh sizes with
N = 8, 16, 32 yield similar results.

5.1.2 Minimization with homogeneous material with prior
knowledge

As for the case when µprior = λprior = 0, consider the configuration α =
β = 0 and ∆noise = 0. As expected, the convergence rates are equal to those
computed for when µprior = λprior = 0. The rates are presented in Table 5.2
and the plots of the solution functions are shown in Figure 5.5.

Study the configuration using α = β = 10−3 and various amounts of noise in
uMR. The errors in the approximations from this setup are shown in Figures
5.6 and 5.7 and using this regularization the Newton solver converges for
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5.1. EXPERIMENTS AND RESULTS WITH THE ELASTICITY
MINIMIZATION PROBLEM

(a) The errors in u in L2-norm

(b) The errors in u in H1-norm

Figure 5.2: Logarithmic plot of the errors in u in L2- and H1-norms, respec-
tively, when µ,λ ∈ R and µprior = 0 and λprior = 0 for N = 8, 16, 32, 64.
The regularization parameters α = β = 0.0 and with varying noise in uMR.
h is the discretization parameter defined by h = 1/N .
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5.1. EXPERIMENTS AND RESULTS WITH THE ELASTICITY
MINIMIZATION PROBLEM

(a) The errors in µ in L2-norm

(b) The errors in λ in L2-norm

Figure 5.3: Logarithmic plot of the errors in µ and λ in L2 norm, respectively,
when µ,λ ∈ R and µprior = 0 and λprior = 0 for N = 8, 16, 32, 64. The
regularization parameters α = β = 0.0 and with varying noise in uMR. h is
the discretization parameter defined by h = 1/N .
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5.1. EXPERIMENTS AND RESULTS WITH THE ELASTICITY
MINIMIZATION PROBLEM

(a) The errors in u in L2-norm

(b) The errors in u in H1-norm

(c) The errors in µ in L2-norm

(d) The errors in λ in L2-norm

Figure 5.4: Logarithmic plot of the errors in u in L2- and H1-norms and
the errors in µ and λ in L2 norm, respectively, on a mesh of size 64× 64
with varying noise in uMR and equal regularization parameters α = β with
values from 10−8 to 101 when µ,λ ∈ R and µprior = 0 and λprior = 0.
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5.1. EXPERIMENTS AND RESULTS WITH THE ELASTICITY
MINIMIZATION PROBLEM

N E0,u rates E1,u rates Eµ rates Eλ rates
8 2.50E-03 6.99E-02 6.55E-02 5.93E+00
16 9.99E-04 1.326 4.03E-02 0.789 9.78E-03 2.745 3.26E+00 0.863
32 3.67E-04 1.445 2.26E-02 0.834 1.29E-03 2.919 1.26E+00 1.370
64 1.21E-04 1.604 1.23E-02 0.883 2.50E-04 2.371 3.70E-01 1.771

Table 5.2: Convergence rates with α = 0.0, β = 0.0 and ∆noise = 0.0 when
µ,λ ∈ R and µprior = µexact and λprior = λexact.

(a) uexact (b) uapprox

(c) µapprox (d) λapprox

(e) wapprox

Figure 5.5: Plots of the analytical and numerical solutions of u and the
numerical solutions of µ,λ and w for µ,λ ∈ R, µprior = µexact,λprior = λexact,
α = 0,β = 0, ∆noise = 0% and N = 64.

49



5.1. EXPERIMENTS AND RESULTS WITH THE ELASTICITY
MINIMIZATION PROBLEM

all the noise levels and all mesh sizes. The errors in the approximations
without noise in uMR are similar to those presented in Figures 5.2 and 5.3
and decrease as the mesh sizes increase. The errors in u in L2-norm are
quite similar for the noise amounts ∆noise = 0.03, 0.01, 0.003, 0.0, except for
the mesh size where N = 64, for which the error when ∆noise = 0.03 is a
bit larger. When ∆noise = 0.1, the there is a local minimum for h = 1/32
and the errors vary quite a lot. The errors in u in H1-norm are almost
equal independent of the amount of noise in uMR, with the exception when
∆noise = 0.1, where the errors are slightly larger for h = 1/64 and h =
1/16. For µ, the errors vary a lot for the two largest ∆noise-values. When
∆noise = 0.1 there is a local minimum when h = 1/32 and for ∆noise = 0.03
there is a minimum for h = 1/16. The errors when ∆noise = 0.01, 0.003
are close to the errors when ∆noise = 0.0, with the exception of a minimum
for ∆noise = 0.003 when h = 1/32. Finally, considering the errors in λ,
we observe that all errors decrease as the mesh size increase, except from
when ∆noise = 0.1 where there is a minimum for h = 1/8 and when ∆noise =
0.03, 0.01 which have minima at h = 1/32. Similar experiments using α,β =
10−8, 10−7, . . . , 101 both for α = β and α 6= β yield similar results.

Finally, study the regularization parameters α and β for given N and various
∆noise. Figure 5.8 presents the errors in the approximations on the mesh
size with N = 64. Comparing these results to the results in Figure 5.4, we
observe that regularization has opposite effect when we have prior knowledge
than without prior knowledge. For all noise levels in the case µprior = µexact
and λprior = λexact the errors decrease or remain the same with increased
values of regularization parameters, with the exception of a local minimum
for the errors in µ, which have a local minimum for α = β = 10−7. Similar
results for the mesh sizes with N = 8, 16, 32 yield similar results.

5.1.3 Minimization with heterogeneous material without prior
knowledge

Let the setup be the same as previously, but in stead of searching for
µ,λ ∈ R, let µ,λ ∈ DG0, that is the material are heterogeneous in stead
of homogeneous. The experiments show that in this case, independent of
∆noise, regularization is needed. Without regularization when µ,λ ∈ DG0,
the Newton solver diverges.

Consider the case with µprior = λprior = 0. Independent of regularization and
noise, experiments show that with these guesses for the Lamé parameters
the Newton solver only converge for the two smallest mesh sizes tested, that
is using N = 8, 16. Letting the noise in uMR be 10%, 3%, 1%, 0.3% and 0%,
experiments show that when ∆noise = 0.1 the Newton solver only converge
for the combination α = 0.001 and β = 0.001, 0.01, . . . , 10. The obtained
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(a) The errors in u in L2-norm

(b) The errors in u in H1-norm

Figure 5.6: Logarithmic plot of the errors in u in L2- and H1-norms, respec-
tively, with α = 10−3 and β = 10−3 and with varying noise in uMR when
µ,λ ∈ R and µprior = µexact and λprior = λexact.
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(a) The errors in µ in L2-norm

(b) The errors in λ in L2-norm

Figure 5.7: Logarithmic plot of the errors in µ and λ in L2 norm, respectively,
with α = 10−3 and β = 10−3 and with varying noise in uMR when µ,λ ∈ R

and µprior = µexact and λprior = λexact.
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5.1. EXPERIMENTS AND RESULTS WITH THE ELASTICITY
MINIMIZATION PROBLEM

(a) The errors in u in L2-norm

(b) The errors in u in H1-norm

(c) The errors in µ in L2-norm

(d) The errors in λ in L2-norm

Figure 5.8: Logarithmic plot of the errors in u in L2- and H1-norms and the
errors in µ and λ in L2 norm, respectively, on a mesh of size 64× 64 with
varying noise in uMR and equal regularization parameters α = β with values
from 10−8 to 101 when µ,λ ∈ R and µprior = µprior and λprior = λprior.
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MINIMIZATION PROBLEM

N E0,u rates E1,u rates Eµ rates Eλ rates
8 3.931E-03 7.827E-02 4.522E-02 2.375E-03
16 1.434E-03 1.455 4.372E-02 0.840 1.575E-02 1.522 6.883E-04 1.787
32 4.678E-04 1.616 2.352E-02 0.894 4.626E-03 1.767 1.752E-04 1.974
64 1.416E-04 1.724 1.244E-02 0.919 1.247E-03 1.891 4.248E-05 2.044

Table 5.3: Convergence rates with α = 10−3, β = 10−3 and ∆noise = 0.0
when µ,λ ∈ DG0 and µprior = µexact and λprior = λexact.

solutions with this regularization are quite far from the exact solutions, e.g.
when α = 0.001, β = 0.1 and N = 16 the obtained solutions for the Lamé
parameters are µapprox = 1.598 and λapprox = 0.0001. Recall that the exact
solutions are µexact = 3.0 and λexact = 8.0. When adding less amounts of
noise to uMR the Newton solver converges for more of the tested combina-
tions for the regularization parameters. With no noise in uMR, the Newton
solver converges for the values in the range α = 10−7, 10−6, . . . , 10−3 and
β = 10−6, 10−5, . . . , 10−1. The solutions obtained with these regularization
parameters are similar to the example given for ∆noise = 0.1.

5.1.4 Minimization with heterogeneous material with prior
knowledge

For equal regularization parameters the Newton solver converges only for
the values α = β = 10−3, 10−2. With these parameters the solver for all
the tested mesh sizes and all tested noise levels, with the exception of when
α = β = 10−3 it does not converge for any N when ∆noise = 0.1, and for
∆noise = 0.03 it only converges for N = 8, 16. Letting α 6= β, the Newton
solver converges for several of the combinations with α and β in the range
{10−6, 10−5, . . . , 10}.

Consider the case where α = β = 10−3 and ∆noise = 0. Convergence rates
from this case are computed and presented in Table 5.3. We observe as
expected that the errors in L2-norm converge to 2, and the errors H1-norm
converge to 1. For N = 64, the computed solutions are shown in Figure 5.9.
As for the Poisson equation, consider the average, standard deviation and
maximum deviation in the computed approximations of the Lamé parame-
ters, which is presented in Table 5.4 for α = β = 10−3. The definition of
these quantities are given in (4.13). We observe that the computed solutions
are very close to the exact solutions and the deviations in the solutions are
small. The other regularization parameters where the Newton solver con-
verge yield similar results.
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(a) uexact (b) uapprox

(c) µapprox (d) λapprox

(e) wapprox

Figure 5.9: Plots of the analytical and numerical solutions of u and the
numerical solutions of µ,λ and w for µ,λ ∈ DG0, µprior = µexact,λprior =
λexact, α = 10−3,β = 10−3, ∆noise = 0% and N = 64.
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5.2. SUMMARY

N µavg SDµ MDµ λavg SDλ MDλ

8 2.965 0.029 0.097 7.999 0.002 0.010
16 2.989 0.011 0.039 8.000 0.001 0.003
32 2.997 0.003 0.014 8.000 0.000 0.001
64 2.999 0.001 0.005 8.000 0.000 0.000

Table 5.4: The average value of the components of the calculated µ and λ,
the standard deviation and the maximum deviation, for α = 10−3, β = 10−3

and ∆noise = 0.0 when µ,λ ∈ DG0 and µprior = µexact and λprior = λexact.
The exact values are µexact = 3.0 and λexact = 8.0.

5.2 Summary

The general findings in the experiments done with the linear elasticity model
are similar to those found for the Poisson problem. However, the findings
were clearer in the Poisson problem and the solver struggles more with
convergence in the experiments with heterogeneous material in the elasticity
problem. The results in the elasticity experiments varies more, and with
more than 1% synthetic noise in the target data, the rates of the errors
did not converge. The general findings for the linear elasticity minimization
problem are:

• In this model, as for the Poisson model, regularization yields great
improvement when the target data is good.

• When the target data is far from the exact solutions, regularization
aggravates the results. Nevertheless, using regularization parameters
in the range 10−7 to 10−4 yield fairly good results for homogeneous
parameters in experiments both with and without prior knowledge.

• However, when µ,λ are heterogeneous, more regularization is required
to obtain satisfactory solutions. In this case α = β = 10−3 yield good
results, both with and without prior knowledge.
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Chapter 6

Qualitative experiments with
liver data

In the following experiments, data from MRE of a healthy liver will be
used to try to decide the shear modulus of said liver. The acquired MRE
data for the following experiments are from a healthy individual and the
MR images are taken as horizontal cross sections through the body in the
area were the liver is located. Figure 6.1a shows the MRE image and the
anatomy of the body. Observe that the image shows the whole cross section
of the body. The two objects on the sides in the picture, are the arms of
the volunteer. The spinal cord is in the centre of the image, the liver is
on the left hand side and the stomach is to the lower right. A wave map,
visualizing how the wave is transmitted within the tissue, and the shear
modulus is computed using the software MRE/Wave [11] provided by the
Mayo Clinic. This preprocessing was already done by Karen Støverud before
the work of this thesis started and the results are presented in Figures 6.1b
and 6.1c. Note that the shear modulus varies from 0 kPa to 8 kPa. The
area with the largest shear stiffness, where the color is red and yellow, is the
stomach. The yellow boxes in the images illustrate the area of consideration
in the following experiments. This area is located inside the liver.

All source code used is available online at
bitbucket.org/istorpe/source-code-master-s-degree. The code from
the experiments with the Poisson model can also be found in Appendix A.
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6.1. EXPERIMENTS WITH MRE DATA FROM A HEALTHY LIVER
USING THE POISSON MINIMIZATION MODEL

(a) Anatomy (b) Wave map (c) Shear stiffness (kPa)

Figure 6.1: MRE of a healthy individual. (a) Shows the anatomy and is
the original MRE image. It shows a cross section of the body and the liver
where the liver is located to the left. (b) Shows how the sinusoidal wavefront
propagates through the body and the liver. (c) Shows the shear stiffness of
the body in kPa, computed using the software MRE/Wave. The yellow
boxes indicates the domain studied in the numerical work and is located
inside the liver.

6.1 Experiments with MRE data from a healthy
liver using the Poisson minimization model

In the followin experiments, consider the domain marked by the yellow boxes
in Figure 6.1. This domain will be denoted by Ω. By using the Poisson
model and the source code from the previous experiments described in Chap-
ter 4, qualitative experiments will be performed to decide the displacement
and the shear modulus in the chosen domain.

The processing of the MRE data is described in Figure 6.2. MRE images are
given as .dcm-files. These files are then used to produce a .csv file by using
the MRE/Wave software [11]. The .csv file contains a matrix of a coordinate
system representing the displacement of each image pixel. A python script
reads the .csv-file and calculates the displacement due to the MRE waves.
The result is stored as a numpy array in a .npy-file. Another python script
makes a DOLFIN Expression from the numpy array, and this Expression
can be used as uMR in the experiments in Chapter 4. The work of this
thesis starts with creating the numpy array.

We solve the the Poisson minimization problem for harmonic elastography
with pure Neumann conditions on the whole boundary, given in (2.17), with
t = 0. In the experiments with manufactured solutions in this model, the
assumption ρω2 = 1, was made. In the following experiments we use the
frequency of the sinusoidal wave in the MRE measurements, which was
f = 60 Hz, thus the angular frequency becomes ω = 2πf = 120π rad/s.
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6.1. EXPERIMENTS WITH MRE DATA FROM A HEALTHY LIVER
USING THE POISSON MINIMIZATION MODEL

MRE image

Displacement matrix

Numpy array of displacement

DOLFIN Expression

Inverse solver

Figure 6.2: Processing of the MRE data.

Assume that the density of the body is ρ = 1000 kg/m3, which is the density
of water at body temperature. The target solution for the displacement, uMR
is the displacement calculated from the MRE data using the MRE/Wave
software. For the chosen domain, Ω, the displacement is shown in Figure 6.3.
A study performed by Rouviere et al. [31] found that the mean shear stiffness
of healthy human livers were 2.0 kPa ± 0.3 kPa (standard deviation), thus
this is used as a target solution for µ, that is µprior = 2000 Pa.

We will in the rest of this chapter present 13 experiments with the liver
MRE data and corresponding results. Unfortunately, the experiments were
not successful and we did not manage to reconstruct the shear modulus
field. In the description of these experiments, we argue why we do each of
the modifications in each experiment. The modifications are based on the
experience from the in-depth studies of the Poisson minimization problem,
in Chapter 4, trying to improve the results. In almost all experiment setups,
the obtained solution for the displacement field were approximately zero and
the shear modulus field equals target solution for µ. We start by presenting
the original setup for the experiments and the results obtained by this setup.
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The following setup was used in the first experiment:

α = 0.0
µprior = 2000,

and the initial guesses in the Newton solver were (which are the same as in
Chapter 4):

u0 = uMR

µ0 = µprior

w0 = 1.0,

with the following parameters in the Newton solver:

maximum iterations = 40
absolute tolerance = 10−10

relative tolerance = 10−9

relaxation parameter = 1.0.

The values for the absolute tolerance, relative tolerance and the relaxation
parameter are all the default values in FEniCS.

Experiment 1 Figure 6.4 shows the computed solutions using this setup.
The solutions to the left are for µ ∈ R and the solutions to the right are
for µ ∈ DG0. Ideally, uapprox should be similar to uMR depicted in Figure
6.3, but comparing these figures it is clear that this is not the case. Also,
µapprox is expected to be similar to the marked area in Figure 6.1c, but this
is not the case either. Evidently, using this setup does not provide good
approximations.

Experiment 2 To obtain better approximations, a number of various
modifications were made. First, we observe that the solution for the La-
grange multiplier w in experiment 1 is close to 0, this was also the case in
the experiments with the Poisson model, described in Chapter 4. Thus, the
modification

w0 = 0.0 (6.1)

is made. Solving the system with this modification provided the solutions
shown in Figure 6.5. Secondly, we observe that the obtained solutions are
different from the solutions in experiment 1. Without regularization the
optimization problem is ill-posed and has non-unique solutions. With this
setup, the Newton solver did not converge for heterogeneous shear modulus.
We observe that the obtained approximation for the displacement is in the
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Figure 6.3: The displacement measured in meters computed from the MRE
data which is the target solution, uMR, in the experiments.

correct order of magnitude, but other than that, the solution does not cor-
respond with the MR measurements. The approximation of µ is negative,
which is not physically correct and therefore not a satisfactory solution.

Experiment 3 To make the problem well-posed, we add regularization.
Let the regularization parameter α = 10−5, which was an optimal value in
the previous experiments with the Poisson model. The resulting solutions
are depicted in Figure 6.6. Observe that the solution of u in the homogeneous
case has the same shape as uMR, but unfortunately it is off by 12 orders of
magnitude and is approximately zero. For the heterogeneous case, the shape
similarity of the approximation of u and uMR is a little less evident and it
disagrees with uMR with 10 orders of magnitude. In both these cases, the
solution of µ is in the expected order of magnitude and the solution becomes
constant.

Experiment 4 Since the previous setup gave solutions of the displacement
field with the expected shape, but wrong order of magnitude, we consider
more strict convergence criteria in the Newton solver. Let the absolute tol-
erance be 10−16 (machine precision) and let relative tolerance be 10−15. The
results from this setup are shown in Figure 6.7. Having stricter convergence
criteria, we expected the computed displacement field to get closer to the
measured field. However, the obtained solutions for both homogeneous and
heterogeneous µ, were zero and even further away from the measured dis-
placement than in the previous experiment. In both these cases µapprox stays
constant and equals the initial guess.
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(a) uapprox (b) uapprox

(c) µapprox (d) µapprox

(e) wapprox (f) wapprox

Figure 6.4: Experiment 1: Solutions from experiments with the following
setup: α = 0.0. Neumann boundary conditions on the whole boundary:
µ ∂u∂n = 0 on ∂Ω. Target solution for µ: µprior = 2000. Initial guesses:
u0 = uMR,µ0 = µprior,w0 = 1.0. Parameters in Newton solver: maximum
iterations = 40, absolute tolerance = 10−10, relative tolerance = 10−9, re-
laxation parameter = 0. In (a), (c) and (e) µ ∈ R and in (b), (d) and (f)
µ ∈ DG0.
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(a) uapprox (b) µapprox

(c) wapprox

Figure 6.5: Experiment 2: Solutions from experiments with the following
setup: α = 0.0. Neumann boundary conditions on the whole boundary:
µ ∂u∂n = 0 on ∂Ω. Target solution for µ: µprior = 2000. Initial guesses:
u0 = uMR,µ0 = µprior,w0 = 0.0. Parameters in Newton solver: maximum
iterations = 40, absolute tolerance = 10−10, relative tolerance = 10−9, re-
laxation parameter = 0. In (a), (c) and (e) µ ∈ R and in (b), (d) and (f)
µ ∈ DG0.
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(a) uapprox (b) uapprox

(c) µapprox (d) µapprox

(e) wapprox (f) wapprox

Figure 6.6: Experiment 3: Solutions from experiments with the following
setup: α = 10−5. Neumann boundary conditions on the whole boundary:
µ ∂u∂n = 0 on ∂Ω. Target solution for µ: µprior = 2000. Initial guesses:
u0 = uMR,µ0 = µprior,w0 = 0.0. Parameters in Newton solver: maximum
iterations = 40, absolute tolerance = 10−10, relative tolerance = 10−9, re-
laxation parameter = 0. In (a), (c) and (e) µ ∈ R and in (b), (d) and (f)
µ ∈ DG0.
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(a) uapprox (b) uapprox

(c) µapprox (d) µapprox

(e) wapprox (f) wapprox

Figure 6.7: Experiment 4: Solutions from experiments with the following
setup: α = 10−5. Neumann boundary conditions on the whole boundary:
µ ∂u∂n = 0 on ∂Ω. Target solution for µ: µprior = 2000. Initial guesses:
u0 = uMR,µ0 = µprior,w0 = 0.0. Parameters in Newton solver: maximum
iterations = 40, absolute tolerance = 10−16, relative tolerance = 10−15. In
(a), (c) and (e) µ ∈ R and in (b), (d) and (f) µ ∈ DG0.
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Experiment 5 Having stricter convergence criteria did not yield satis-
factory solutions either. Instead we try changing the relaxation parameter
and again we let the convergence criteria be of the default values. To make
smaller changes in the solutions of each iteration, let the relaxation param-
eter ωrel = 0.5 . The results from this experiment are presented in Figure
6.8. We observe that these results are very similar to those in Figure 6.6.
The exceptions are that in this case the solutions are equal for homogeneous
and heterogeneous µ and uapprox are three orders of magnitude larger. The
solutions for the Lagrange multipliers are equal.

Experiment 6 In all of the previous experiments the obtained solutions of
µ have been constant, even if searching for a variable solution of µ, and the
solutions are equal to the target guess. Thus, to obtain s solution closer to
the measured solution we try letting µprior be a function in DG0 with random
integer values in each of the elements. The study performed by Rouviere et
al. [31] found that the mean shear stiffness of healthy human livers are 2.0
± 0.3 kPa. Therefore we let each cell in µprior be a random value between
1700 Pa and 2300 Pa. The resulting approximations are shown in Figure
6.9. Observe that the solutions for u and w are equal. For µapprox ∈ R,
the solution is 2 kPa and for µapprox ∈ DG0, the solution is equal to the
random valued target solution µprior. Thus, it seems like the choice of µprior
is dominant, even though the regularization is weak.

Experiment 7 Because the target guess µprior appears to be a decisive fac-
tor in the solutions, a better target solution for µ may improve the solutions
of the minimization problem. We use the Poisson equation for harmonic
deformations,

ρωu− µ∆u = 0,

to calculate µprior by direct inversion:

µprior =
ρωu

∆u
. (6.2)

In the implementation, this is calculated in discrete values by computing the
mass matrix, M , and the stiffness matrix, A. These matrices are defined in
the following way:

M =
∫

Ω
uv dx, d

A =
∫

Ω
∇u · ∇v dx.d

(6.3)
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(a) uapprox (b) uapprox

(c) µapprox (d) µapprox

(e) wapprox (f) wapprox

Figure 6.8: Experiment 5: Solutions from experiments with the following
setup: α = 10−5. Neumann boundary conditions on the whole boundary:
µ ∂u∂n = 0 on ∂Ω. Target solution for µ: µprior = 2000. Initial guesses:
u0 = uMR,µ0 = µprior,w0 = 0.0. Parameters in Newton solver: maximum
iterations = 40, absolute tolerance = 10−10, relative tolerance = 10−9, re-
laxation parameter to 0.5. In (a), (c) and (e) µ ∈ R and in (b), (d) and (f)
µ ∈ DG0.
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(a) uapprox (b) uapprox

(c) µapprox (d) µapprox

(e) wapprox (f) wapprox

Figure 6.9: Experiment 6: Solutions from experiments with the following
setup: α = 10−5. Neumann boundary conditions on the whole boundary:
µ ∂u∂n = 0 on ∂Ω. Target solution for µ:µprior = randint(1700, 2300). Initial
guesses: u0 = uMR,µ0 = µprior,w0 = 0.0. Parameters in Newton solver:
maximum iterations = 40, absolute tolerance = 10−10, relative tolerance =
10−9, relaxation parameter = 0.5. In (a), (c) and (e) µ ∈ R and in (b), (d)
and (f) µ ∈ DG0.
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Here u is a trial function and v is a test function. Thus, the definition of
µprior in the implementation is:

µprior =
ρωMuMR
AuMR

. (6.4)

Solving the minimization problem with this setup yield the solutions de-
picted in Figure 6.10. In this case, the solutions of u are of about the
expected orders of magnitude, but the shapes are not similar to the shape
of uMR. Also, µ is a lot larger than expected, and in the variable case it
does not resemble the computed shear stiffness from MRE/Wave. To try to
get better resemblance in µ, we tested searching for a continuous µ, that is
µ ∈ CG1, however the Newton solver diverged.

Experiment 8 and 9 In the following experiment we consider other
boundary conditions. Instead of t = 0 in the Neumann boundary condi-
tions, let

t = µ
∂uMR
∂n

, (6.5)

where we let µ be the unknown parameter. The resulting approximations
are shown in Figure 6.11. In this case uapprox is of the expected order of
magnitude, however the shape of the field does not resemble the measured
displacement field. The solution µapprox becomes equal to the target solution
µprior = 2000, both when µ ∈ R and µ ∈ DG0.

Letting t = µprior
∂uMR
∂n , yield the same results.

Experiment 10, 11 and 12 Now, consider Dirichlet boundary conditions
instead of Neumann boundary conditions. Applying the Dirichlet boundary
condition

u = uMR on ∂Ω, (6.6)

the Newton solver did not converge. Applying this conditions only on the
left or the bottom boundary and u = 0 on the rest of the boundaries, did
not yield convergence either. Thus, no results were obtained with Dirichlet
boundary conditions.

Experiment 13 So far, none of the tested configurations have given sat-
isfactory solutions. As a last attempt, consider changing the regularization
parameter to try to obtain better solutions. The choice of the target guess
for µ seems to be dominating the solving of the minimization problem, thus
we let α = 10−6 instead of α = 10−5. Otherwise, let the setup be the same
as in experiment 5. The resulting solutions from this new setup are pre-
sented in Figure 6.12. Comparison of these two figures show that the results
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(a) uapprox (b) uapprox

(c) µapprox (d) µapprox

(e) wapprox (f) wapprox

Figure 6.10: Experiment 7: Solutions from experiments with the following
setup: α = 10−5. Neumann boundary conditions on the whole boundary:
µ ∂u∂n = 0 on ∂Ω. Target solution for µ: µprior = ρω2uMR

∆uMR
. Initial guesses:

u0 = uMR,µ0 = µprior,w0 = 0.0. Parameters in Newton solver: maximum
iterations = 40, absolute tolerance = 10−10, relative tolerance = 10−9, re-
laxation parameter = 0.5. In (a), (c) and (e) µ ∈ R and in (b), (d) and (f)
µ ∈ DG0.
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(a) uapprox (b) uapprox

(c) µapprox (d) µapprox

(e) wapprox (f) wapprox

Figure 6.11: Experiment 8: Solutions from experiments with the following
setup: α = 10−5. Neumann boundary conditions on the whole boundary:
µ ∂u∂n = t on ∂Ω, where t is computed based on uMR and µ is the func-
tion to solve for. Target solution for µ: µprior = 2000. Initial guesses:
u0 = uMR,µ0 = µprior,w0 = 0.0. Parameters in Newton solver: maximum
iterations = 40, absolute tolerance = 10−10, relative tolerance = 10−9, re-
laxation parameter = 0.5. In (a), (c) and (e) µ ∈ R and in (b), (d) and (f)
µ ∈ DG0.
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are approximately equal, and therefore making the regularization parameter
smaller did not improve the results.

As seen from this review of the experiments with MRE data, we did not
succeed in reconstructing the shear modulus of the liver using the one-shot
optimization approach. We will discuss this further in the next chapter.
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(a) uapprox (b) uapprox

(c) µapprox (d) µapprox

(e) wapprox (f) wapprox

Figure 6.12: Experiment 13: Solutions from experiments with the following
setup: α = 10−6. Neumann boundary conditions on the whole boundary:
µ ∂u∂n = 0 on ∂Ω. Target solution for µ: µprior = 2000. Initial guesses:
u0 = uMR,µ0 = µprior,w0 = 0.0. Parameters in Newton solver: maximum
iterations = 40, absolute tolerance = 10−10, relative tolerance = 10−9, re-
laxation parameter to 0.5. In (a), (c) and (e) µ ∈ R and in (b), (d) and (f)
µ ∈ DG0.
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Chapter 7

Discussion

In this thesis we have studied two models for describing harmonic defor-
mation of biological tissue. These models are the Poisson equation and the
linear elasticity model. To reconstruct the mechanical properties of tissue,
we have solved PDE-constrained optimization problems by the one-shot ap-
proach. We have conducted in-depth studies of how Tikhonov regularization
and noise in input data affects the solutions of these minimization problems
with constructed data. Moreover, we have performed simulations with data
from MRE examinations of a healthy liver in the Poisson optimization prob-
lem. By these experiments we tried to obtain the rheological properties of
the liver.

Through the experiments with manufactured solutions it is clear that regu-
larization is needed when the material is heterogeneous, that is, the material
parameters (µ and λ) varies throughout the domain. With target solutions
close to the exact solutions of the manufactured solutions, the one-shot ap-
proach yields qualitatively good results for both the displacement and the
material parameters, both in the case of the Poisson problem and the linear
elasticity problem. However, when simulating with the real MRE measure-
ment data, the outcome was not as expected. Even though using the regu-
larization that was found optimal in the case of the manufactured solution,
the simulations did not yield satisfactory solutions.

The solutions we obtained in the simulations with real data were far from the
target solutions. Therefore it is necessary to add more constraints in further
experiments or reformulate the problem. Firstly, adding box constraints on
u or µ (or both) may be a good approach. A box constraint restricts the
solution with an upper and a lower bound, for instance:

µmin ≤ µ ≤ µmax. (7.1)
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Applying such constraints will force the solution of µ to be within the set
range.

In some of the experiments the solution of the displacement field was zero.
By studying the optimization problem, this is obviously a solution to the
PDE, however not a good solution to the minimization problem as it is far
from the measured displacement field. When we get the solution u = 0, also
the derivative of u is zero, and in that case all gradient-based optimization
approaches will fail. A possible way to avoid this solution, is to add a
constraint such that the displacement is not allowed to be zero everywhere.
This can be done by adding a box constraint on the absolute value of u.
Another possibility is to apply Dirichlet boundary conditions on parts of
the boundary or on the whole boundary. Then the zero solution would no
longer satisfy the constraints.

In the simulations with manufactured solutions, we did not test with an
actual varying shear modulus field. Even though searching for a solution of µ
varying throughout the domain, the exact solution of µ in the manufactured
solutions was constant. Testing with a heterogeneous shear modulus in the
manufactured solutions should therefore be investigated further.

In the experiments with manufactured solutions we used ρω2 = 1. However,
in the experiments with real data the parameters are ρ = 1000 and ω =
120π. Moreover, the value of µ in the manufactured solution of the Poisson
problem was µ = 0.25, whereas the expected value of the shear modulus of
the liver is about 2000 Pa. It is uncertain how this difference in values affect
the results, therefore it should be tested further.

7.1 Concurrence with other studies

A study by Oberai et al. [10] uses the one-shot approach to solve the quasi-
static inverse elasticity model with constructed data. This study yielded
similar results as the experiments with manufactured solutions in this thesis.
Yuan and Guzina [32] successfully applied an adjoint-based approach to
reconstruct the viscoelastic tissue properties. However, also in this study
only constructed data were considered. The most commonly used method to
reconstruct material parameters and create elastograms are direct inversion
schemes [15]. This have been done in the following studies [14; 33]. However,
when solving with a direct scheme the results are less accurate than for a
gradient-based approach such as the one-shot approach [15].
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7.2 Conclusion

We have successfully implemented inverse solvers for both the Poisson and
the linear elasticity minimization problems. By using manufactured so-
lutions we have been able to reconstruct the displacement field and the
material parameters in the optimization problems. Even with up to 10 %
of synthetic noise in the target solution of the displacement field, the ob-
tained solutions of the minimization problem were qualitatively good when
Tikhonov regularization were added and/or prior knowledge of the material
parameters were used.

However, when solving the inverse Poisson problem with data from MRE
measurements, the method failed. The obtained results in these simulations
were far from the measured solutions. Even though these solutions satisfied
the minimization problem, they are not satisfactory solutions, as they fails in
reconstructing the measured data. For this method to have potential more
constraints must be added, other boundary conditions must be applied or
the optimization problem must be defined differently.

To my knowledge the one-shot optimization method has not been used to
reconstruct material properties of tissue with real MRE data in previous
research. In all publications I have found, this method has only been tested
with constructed data. Also, to my knowledge all successful reconstructions
of the rheological parameters of biological tissue are conducted using other
inversion methods, such as direct inversion schemes.

7.3 Future work

The results of this thesis shows that the one-shot optimization approach
yields qualitatively good results in the simulations with constructed data.
However, in simulations with real MRE data the method fails to give satisfac-
tory solutions. Therefore future work should involve further investigations
of the method with manufactured solutions, such as

• test with manufactured solutions closer to the values of the MRE data
in both the Poisson and the linear elasticity models, and

• test with heterogeneous parameters in the manufactured solutions for
both models.

Moreover, in the experiments with real MRE data the following modifica-
tions should be investigated:
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• adding more constraints, for instance box constraints such as

µmin ≤ µ ≤ µmax

or
umin ≤ |u| ≤ umax,

and

• other boundary conditions.

If none of these suggestions succeed in obtaining qualitatively good solutions
to the optimization problems, the optimization problems should be defined
differently or other approaches should be considered.
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Appendix A

Source code

A.1 Solver for the Poisson optimization problem

from dolfin import *
import ufl, sys, random, numpy
from time import clock, strftime, gmtime

def convergence_rate(E, h):
from math import log as ln
r = []
for i in range(1, len(E)):

if E[i] and E[i-1]:
r.append(ln(E[i]/E[i-1])/ln(h[i]/h[i-1]))

else:
r.append("False")

return r

def solver(N, k, noise, degree=1, makeplot=False, alpha=0.0, mu_space="constant",
mu_prior_function="0"):

# Create mesh
mesh = UnitSquareMesh(N, N)

# Create classes for defining parts of the boundaries
class Left(SubDomain):

def inside(self, x, on_boundary):
return near(x[0], 0.0)

class Right(SubDomain):
def inside(self, x, on_boundary):

return near(x[0], 1.0)
class Bottom(SubDomain):

def inside(self, x, on_boundary):
return near(x[1], 0.0)

class Top(SubDomain):
def inside(self, x, on_boundary):

return near(x[1], 1.0)

# Initialize sub-domain instances
left = Left()
top = Top()
right = Right()
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bottom = Bottom()

V = FunctionSpace(mesh, ’Lagrange’, degree)
if mu_space == "constant":

S = FunctionSpace(mesh, ’R’, 0)
elif mu_space == "DG":

S = FunctionSpace(mesh, ’DG’, 0)

M = MixedFunctionSpace([V, S, V])

# Code for C++ evaluation of noise function
noise_code = """
class Noise : public Expression
{
public:

// Create expression
Noise() : Expression() {}

// Function for evaluating expression on each cell
void eval(Array<double>& values, const Array<double>& x,

const ufc::cell& cell) const
{

const uint D = cell.topological_dimension;
const uint cell_index = cell.index;
values[0] = (*noise_mesh)[cell_index];

}

// The data stored in mesh functions
boost::shared_ptr<MeshFunction<double> > noise_mesh;

};
"""

# Define known functions
u_exact = Expression(’exp(-k*x[0])’, k = k, degree = degree)
mu_exact = Expression(’1.0/(k*k)’, k = k, degree = degree)

if noise != 0.0:
# Define noise expression
noise_mesh = MeshFunction("double", mesh,

"noise/u_MR_mesh_noise_%s_N_%i.xml.gz" % (noise, N))
noise_function = Expression(cppcode=noise_code)
noise_function.noise_mesh = noise_mesh
u_MR = u_exact + noise_function

else:
u_MR = u_exact

if mu_prior_function == "0":
mu_prior = Constant(0.0)

elif mu_prior_function == "mu_exact":
mu_prior = mu_exact

print "-------------------------------------------------------------------"
print "Computing solution. mu_prior = %s, alpha = %s, noise = %s, N = %i,

degree = %i \n" \
% (mu_prior_function, alpha, noise, N, degree)

# Define trial functions and test functions
z = TestFunction(M)
(v, eta, q) = split(z)

# Define function
y = Function(M)
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# Set initial guesses
u0 = u_exact
mu0 = mu_exact
w0 = Expression("1.0")

y0 = project(as_vector((u0, mu0, w0)), M)
y.assign(y0)

# Split mixed functions
(u, mu, w) = split(y)

# Initialize mesh function for boundary domains
boundaries = FacetFunction("size_t", mesh)
left.mark(boundaries, 0)
top.mark(boundaries, 2)
right.mark(boundaries, 1)
bottom.mark(boundaries, 2)

# Define boundary conditions
t_l = Constant(1.0/k)
t_r = Constant(-exp(-k)/k)
n = FacetNormal(mesh)
t = dot(project(mu_exact, S)*grad(project(u_exact, V)), n)

# Define new measures associated with the boundaries
ds = Measure("ds")[boundaries]

# Define Lagrangian
L = (u - u_MR)**2*dx + u*w*dx \

+ inner(mu*grad(u), grad(w))*dx \
+ alpha*(mu - mu_prior)**2*dx \
- t_l*w*ds(0) - t_r*w*ds(1)

# Compute directional derivatives
F = derivative(L, y, z)

# Solve nonlinear problem
problem = NonlinearVariationalProblem(F, y, J=derivative(F, y))
newtonsolver = NonlinearVariationalSolver(problem)
max_iter = 40
newtonsolver.parameters["newton_solver"]["maximum_iterations"] = max_iter
newtonsolver.parameters["newton_solver"]["absolute_tolerance"] = 1E-13
newtonsolver.parameters["newton_solver"]["relative_tolerance"] = 1E-12
start = clock()
try:

iterations, convergence = newtonsolver.solve()
except RuntimeError:

iterations = max_iter
convergence = False

end = clock()
print "finished solving"

# Plot solution
if makeplot:

plot(mesh)
u_V = project(u, V)
u_e_V = project(u_exact, V)
u_MR_V = project(u_MR, V)
mu_S = project(mu, S)
w_V = project(w, V)
plot(u_V, title="Numerical solution of u, N=%i, alpha=%s, noise=%s,
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mu_space=%s" % (N, alpha, noise, mu_space))
plot(u_e_V, title="Analytical solution of u, N=%i, alpha=%s, noise=%s,

mu_space=%s" % (N, alpha, noise, mu_space))
plot(u_MR_V, title="u_MR, N=%i, alpha=%s, noise=%s, mu_space=%s"

% (N, alpha, noise, mu_space))
plot(mu_S, title="numerical solution of mu, N=%i, alpha=%s, noise=%s,

mu_space=%s" % (N, alpha, noise, mu_space))
plot(w_V, title="Numerical solution of w, N=%i, alpha=%s, noise=%s,

mu_space=%s" % (N, alpha, noise, mu_space))
interactive()

if convergence:

# Compute error in u
(u, mu, w) = y.split(True)

u_exact = Expression(’exp(-k*x[0])’, k = k, degree = degree + 4)
mu_exact = Expression(’1.0/(k*k)’, k = k, degree = degree + 4)

error_u_L2 = errornorm(u_exact, u, ’L2’)
error_u_H1 = errornorm(u_exact, u, ’H1’)
error_mu_L2 = errornorm(mu_exact, mu, ’L2’)
mu_approx_avg = numpy.mean(mu.vector().array())
mu_std = numpy.std(mu.vector().array())
mu_e_vector = numpy.ones(len(mu.vector().array()))*(1.0/k**2)
diff = mu.vector().array() - numpy.ones(len(mu.vector().array()))

*mu_approx_avg
mu_dev = numpy.abs(diff).max()

print "\nerror_u (L2-norm): ", error_u_L2
print "error_u (H1-norm): ", error_u_H1
print "mu_error (L2-norm): ", error_mu_L2
print "mu average: %.4f" % mu_approx_avg
print "mu std : %.4f" % mu_std
print "mu max dev: %.4f" % mu_dev

return error_u_L2, error_u_H1, error_mu_L2, end - start, iterations,
mu_approx_avg, mu_std, mu_dev

else:
return False, False, False, end - start, max_iter, False, False, False

N = 32
k = 2.0
noise = 0.0 # 0.0, 0.003, 0.01, 0.03, 0.1
degree = 1
makeplot = True
alpha = 0.0
mu_space = "constant" # "constant" or "DG"
mu_prior_function = "0" # "0" or "mu_exact"
solver(N, k, noise, degree, makeplot, alpha, mu_space, mu_prior_function)
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PROBLEM

A.2 Script to generate synthetic noise in the Pois-
son problem

from dolfin import *
import random

noise_list = [0.003, 0.01, 0.03, 0.1]
N_list = [4, 8, 16, 32, 64, 128]
for N in N_list:

print "Creating noise, N=%i" % N
mesh = UnitSquareMesh(N, N)
V = FunctionSpace(mesh, "CG", 1)
for noise in noise_list:

u_exact = Expression(’exp(-k*x[0])’, k = 2.0, degree = 1)
u_exact_V = project(u_exact, V)

u_MR_mesh = MeshFunction("double", mesh, 2)

for cell in cells(mesh):
u_MR_mesh[cell] = random.gauss(0, noise)*norm(u_exact_V, ’L2’)

u_MR_mesh_file = File("noise/u_MR_mesh_noise_%s_N_%i.xml.gz"% (noise, N))
u_MR_mesh_file << u_MR_mesh

plot(mesh, title="mesh")
plot(u_MR_mesh, title="noise_%s_N_%i" % (noise, N))
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