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Abstract

Given today’s limited capacity at airports, and the continuous increase
in air transportation, the need for new ways to handle airport logistics
will soon be needed. The task of managing arriving and departing flights
is complex, and is today solved by several air traffic managers at each
airport. While these managers operate well within their zone, the over-
all performance with respect to capacity and punctuality would benefit
from viewing the airport as a whole. In addition, this may increase accu-
racy in predicting take-off times, allowing more reliable information for
the arrival of flights, and reduce the environmental impact of air traffic.
This thesis provides insight into how the network simplex algorithm can
be used to find a conflict free solution between flights. The focus lies on
mitigating the overall delay at airports and on reducing the taxi time of
each individual flight while at the same time complying with safety reg-
ulations on the runway. This research also provides a basis for future in-
tegration with other airport operations such as runway sequencing and
gate allocation. A data set from Stockholm Arlanda Airport was used in
order to test the algorithms.
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Chapter 1

Introduction

1.1 Motivation and background

In recent years, with the advent of the liberalisation of the airline indus-
try, the world has seen a rapid increase in air traffic volume, and IFALPA
(International Federation of Air Line Pilots’ Associations) has stated [1]
that: The growth has at times threatened to overwhelm the existing sys-
tem capacity and a paradigm shift is required for the system to safely
keep pace with the explosion in demand. The SESAR (Single European
Sky ATM Research) project predicted in 2006 [2] that the air traffic vol-
ume in Europe would double within 2020. Hence, improvements in cru-
cial airport operations will become more and more important in the near
future. With this in mind, SESAR has said [3] that its aim, amongst other
things, is to triple the capacity within the same time period and reduce
the delay both on the ground and in the air. The main operations that
affect this bottleneck is the handling of arriving and departing flights.
That is, finding a sequence on the runway, and directing the ground
movement. Due to the complexity of these operations, this is today done
by dividing the problem into subproblems. In practice this means divid-
ing the airport into zones and distributing these zones among the air
traffic controllers. The main focus for each group is the detection and
resolution of conflicts between the subset of flights in their zone. Each
group of controllers will manage the flights within their zone as best
they can, but they have no control over whether or not their decisions
are in the other controllers best interest, even less if they help form a
good global solution for the overall problem. Our belief is that having
computers equipped with optimization technology to assist the human
controllers in the decision making, will increase both the capacity at the
airport, and the punctuality of the airliners, which in the end are the
factors they are measured by.



1.2 Aims and scopes

This thesis aims to show how the airport ground movement problem can
be formulated as a minimum cost flow problem to which the network
simplex algorithm can be applied. Discussions about conflict resolution
and how to incorporate this in order to find a conflict free optimal so-
lution are also presented. As a result, we hope to contribute to airport
ground movement research by giving insight into a different solution
approach than the ones used in previous research.

1.3 Collaboration with SINTEF

This thesis has been written as part of a vision shared by a group of re-
searchers at SINTEF ICT Oslo whose goal is to design a real time system
which will enable individual air traffic control decisions to be based on
system-wide considerations. This tool will involve modern heuristic opti-
mization techniques and consider uncertainty, that is balancing the need
for responsiveness in time-critical decision making with stability of the
schedules over time. This further extends the research currently done
by SESAR in the way that while some of SESAR’s working packages
merely suggests partial integration of existing systems, this approach
develops a new concept which truly integrates the business trajectory
from approach to departure.

1.4 Structure of the thesis

The core of this thesis is organized as follows: Chapter 2 presents an
overview of existing research and contributions related to the ground
movement at airports, and mentions a related research area. Chapter
3 covers existing theory of linear programming problems, duality and
graph theory, as well as some network flow problems and algorithms for
solving these. In chapter 4 we introduce some terminology regarding
airports and flights, and give a formal formulation of the problem. The
chapter also covers how this problem then can be formulated as a linear
programming problem. Chapter 5 gives a detailed description of how to
ensure a conflict free solution, before we in chapter 6 show how an opti-
mal solution can be found. In chapter 7, we describe the test runs done,
and present the results obtained from these runs. Finally in chapter 8
we discuss some future work to be done in this research area.



Chapter 2

Background and related
research

This thesis shows how it is possible, given a sequence of arriving and
departing flights, to implement the network simplex algorithm in order
to solve the airport ground movement problem. As with most things, it is
important to begin with an understanding of the problem at hand before
introducing a potential solution method. In this chapter we describe this
problem, and present some of the related research done by others in this
area.

2.1 The airport ground movement problem

The task of managing flights at an airport, or the airport ground move-
ment problem as it is often called, is in principal a routing and schedul-
ing problem. It involves guiding flights on the ground, and getting them
to their destinations in a timely manner. The goal is often to reduce the
overall travel time of flights, reduce the number of cancelled flights, or
increase the overall punctuality of flights, while simultaneously reduc-
ing the environmental impact of the industry. It is vital that at any given
time no two flights are in conflict with one another. We will describe in
more detail what we mean by conflicting flights in section 4.1.4. Various
problem descriptions and constraints have been used in previous work
related to this problem, depending on which airport modelled. Working
with a smaller airport that has fewer active flights during peak hours,
one can rely on simpler algorithms for finding the optimal routing as
opposed to larger airports where more complex ones are needed.



2.1.1 Routing constraints

Various routing constraints have been investigated such as the extreme
point of having all routes predetermined and fixed (Rathinam, 2008)[5],
reducing the problem to finding the best possible schedule. Another,
slightly more relaxed approach used by Atkin (2008) [6] divides the
routes into subsets depending on their properties, and then for each
flight chooses a legal route from one of these subsets. The latter seems
more reasonable as different types of aircrafts have different turning
restrictions and therefore different legal routes.

2.1.2 Flight separation and movement speed

It is obvious that a solution where two or more flights are conflicting is
of little or no value. In order to avoid this during taxiing, take-off, and
landing, separation constraints are added between the flights. No uni-
versal standard for these constraints seems to be in use, but Balakrish-
nan (2007) [8] used a distance separation of 200 metres between flights.
The separation constraints were translated into capacity constraints in-
voking the separation if the traffic measured increased beyond 1. These
constraints were used only for taxiing flights, not on the runway. It was
also pointed out that different flights have different separation value
depending on the aircrafts properties, however, this was not included in
the model as it would alter the structure of the integer program substan-
tially. Ravizza (2013)[9] gave an extensive analysis of how taxi speeds
can vary and how this information can be incorporated into the solution.

2.1.3 Objectives

Different studies have had different aims when solving the ground move-
ment problem. Some, (Rathinam, 2008)[5], have focused of minimizing
the total taxi time for each flight, whilst Marin and Codina (2008)[10]
used a weighted linear objective function to minimize the number of in-
tervention of controllers to solve possible conflicts, the total delay of
outgoing traffic, the total time until take-off or final parking, and the
total delay of incoming traffic. A side effect of this is of course reduced
fuel consumption and environmental impact.



2.2 Sequencing

Ravizza [9] stated that: The ultimate goal to support airside operations
at an airport is to integrate ground movement with other operations. It
is a straightforward observation to see that the solution of the ground
movement problem affects the sequence of the departing flights and
vice versa. What good is an optimal take-off sequence if it cannot be
achieved by the taxiing flights? In the same way, the order of which
flights are landing on the runway affects the ground movement solution.
And so the ground movement problem and the arrival and departure se-
quencing problems should ultimately be solved as a single problem.

Whenever a flight takes off or land, a wake vortex which can affect a
later flight is created behind that flight. This vortex varies depending on
the type and size of the aircraft. In order to get a conflict free sequence
on the runway, wake vortex separations are imposed on the arriving and
departing flights. Atkin [6] divided the flights at London Heathrow Air-
port into 3 weight groups and produced 4 tables based on information
from NATS listing the different wake vortex separations. In addition, a
runway may be used in so called mixed mode, that is, it is used for both
take-off and landings simultaneously. Bianco (2006)[11] studied the co-
ordination of arrivals and departures in this situation by using dynamic
local search heuristic algorithm for the job-shop model.

2.3 Existing models

Atkin, Burke, and Ravizza (2010)[12] gives an overview of the existing
models and solution approaches to the ground movement problem. The
main two forms involves the development of a MILP (Mixed Integer Lin-
ear Program) formulation to which a commercial solver is applied to find
the optimal solution, and if the model is formulated so that the solver did
not yield a solution within reasonable time, heuristic methods are used.
The advantages and disadvantages of both methods are discussed be-
fore turning to other solution approaches. It is stated that a comparison
between the methods would be desirable, but that several publications
did not provide all the information needed to reproduce their results.
The need for generic benchmark scenarios in order to both quantify al-
gorithms and encourage future research by those not in contact with an
airport is also addressed.



2.4 Related research areas

2.4.1 Job-shop scheduling

The job-shop scheduling problem is a problem where jobs are allocated
to different resources in a sequential manner. Usually a finite set of jobs
is given to be executed on a finite set of machines or resources, and
each job has to undergo a chain of operations in order to be completed.
A standard condition is that each operation has an execution time, and
each resource can handle only one job at a time. The goal is to find out
how to allocate jobs on the resources in order to minimize the overall
completion time. In our setting, flights can be treated as jobs, areas on
the airport can be treated as resources, and a flights taxi route as the
chain of operations.

2.4.2 Complexity

To our knowledge, proof that the simultaneous ground movement prob-
lem is NP-hard has yet to be published, but Schipbach and Zenklusen
(2011)[4] showed that a simplified version of the conflict-free vehicle
routing problem is NP-hard. However, since the problem description
along with the objective function of the ground movement problem varies,
some instances which can be solved in polynomial time may exits.

2.5 Conclusions

It is apparent that previous research has utilised objectives and con-
straints with significant differences. This is a natural result of the dif-
ferences in airports being focused on. However, it is clear that having
standardised instances would be beneficial when comparing the differ-
ent approaches. Benefits can also be gained from integrating the ground
movement problem with other airport operations, especially sequencing
of flights. Previous research have mainly focused on MILP formulations,
and so a different type of formulation may provide interesting informa-
tion about both results and the integration of other airport operations.



Chapter 3

Background theory

In this chapter, we present some theory regarding linear programming,
graphs, and algorithms that will be useful in later chapters. The first two
sections covers linear programming problems and duality, before we in
the third present some key concepts on graph theory. Finally, the last
two sections presents an overview of two network flow problems and
their solution algorithms which are vital to the research presented later.

3.1 Linear programming problems

In this section we look at theory regarding linear programming (LP)
problems. The material presented in this section is based on the books
by Bertsimas (1997)[14] and Vanderbei (2008)[13]. Proofs of the theo-
rems and corollaries presented can all be found in [14]. We start off by
describing what an LP problem is.

3.1.1 Introduction
minimize c¢'x
subjectto Ax <b (3.1)
x>0

A problem on the form (3.1) is called a linear programming problem.
The vector x = (x1,...,x,) is the optimization variable of the problem,
The vector ¢ = (c1,...,c,) is the cost vector, and together c¢’x forms
the objective function. The functions Ax where A € R™*™ are the (in-
equality) constraint functions, and b = (b1, ..., b,) are the bounds for the
constraints. Note that the objective function and the constraints Ax < b
can be written on the form
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The goal is to find a vector x* among all vectors x that satisfies the con-
straints so that ¢’x* < ¢’x. This vector is then called the optimal solution
of (3.1).

Any minimization problem can be transformed into a maximization prob-
lem by multiplying the objective function with —1. If you want the objec-
tive value to stay the same you also have to negate the answer.

minimize ¢x = —maximize —c'x

3.1.2 Standard form and slack variables
An LP problem written on the form (3.2) is said to be on standard form.
minimize c¢'x
subjectto Ax <b (3.2)
x>0
We would like to bring all LP problems over on this form in order to
solve them. This is done by introducing so called slack variables w. We

require that these slack variables are nonnegative, and thus (3.1) can be
written as

minimize c'x
subjectto Ax+w=D>b (3.3)
x>0,w>0
To which we can apply a solution method. Note that the inequality signs
can be switched around by multiplying both sides by —1.

3.1.3 Solution set and the optimal solution

We now turn our attention to the solution sets of LP problems, and where
in these sets the optimal solution is located (if it exist). The following def-
initions are useful:

A solution that satisfies all the constraints of an LP problem is called
a feasible solution. If no such solution exist, the problem is said to be

infeasible. A set that can be described on the form {x € R"|Ax < b},

8



where A € R™*" and b € R™ is called a polyhedron. From the discus-
sion in the previous subsection it is easy to see that any feasible solution
to an LP problem must be a polyhedron.

We say that a set S C R” is bounded if there exist a constant K so
that the absolute value of every component of every element of S is less
than or equal to K. If we let P be a polyhedron, a vector x € P is called
an extreme point of P if we cannot find two vectors y,z € P, both dif-
ferent from x, and a scalar \ € [0, 1], such that x = Ay + (1 — \)z.

Using these concepts, the following theorem tells us the location of the
optimal solution of an LP problem.

Theorem 3.1.1. Given an LP problem of minimizing ¢'x over a nonempty
polyhedron P. Then, either the optimal cost is equal to —oc or there exist
an optimal solution which is an extreme point.

In other words, when solving an LP problem, one of the following
possibilities will occur:

1. There is an optimal solution.

2. The problem is unbounded and the optimal cost is —oco for mini-
mization problems, or +oco for maximization problems.

3. The problem is infeasible, i.e. it has no solution.

3.2 Duality

In this section, we start with an LP problem which we call the primal
problem, and introduce another LP problem, called the dual. Duality
theory describes the relation between these two problems and is a pow-
erful theoretical tool in linear programming. The theory in this section
is based on [14].

3.2.1 The dual problem

Associated with every LP problem is another called its dual. For in-
stance, the dual of (3.1) is

maximize y'b
subjectto y'A <c’ (3.4)
y<0



PRIMAL minimize || maximize DUAL
> b; >0
constraints < b; <0 variables
=b; free
>0 <g¢
variables <0 > cj constraints
free =c¢j

Table 3.1: Relations between primal and dual variables and constraints.

Here, y is known as the dual variables. Table 3.1 shows the relations be-
tween the primal and dual variables and constraints. If the primal had
been a maximization problem, it can always be converted to an equiva-
lent minimization problem, and then the dual can be formed according
to the rules in the table.

Taking the dual of the dual problem returns the primal problem. To see
this, we convert (3.4) to a minimization problem and change direction of
the inequality:

— minimize —y’b
subjectto  —y'A > —¢
y<0
Following the rules, taking the dual of this returns

— maximize —c'x
subject to Ax<b
x>0

Which converted into a minimization problem identical to (3.1).

3.2.2 Weak duality
The feasible solutions of the dual problem provides lower bounds on the

primal objective function value. This result is true in general and is
known as the weak duality theorem.

10



Theorem 3.2.1. (Weak duality theorem) If x is a feasible solution to the
primal problem and y is a feasible solution to the dual problem, then

y'b <c'x

In the same way, the feasible solutions of the primal problem pro-
vides upper bounds on the dual problem. Improving the solutions then
tightens the gap between the optimal objective function value of the pri-
mal and dual problem. It is worth noting that if the primal had been a
maximization problem, the feasible solutions to the dual problem would
provide upper bounds on the primal objective function value and vice
versa. We see that if one problem is unbounded then the other is in-
feasible, that is, no feasible solution to the problem exist. An important
corollary can be derived from the weak duality theorem.

Corollary 3.2.2. Let x and y be feasible solutions to the primal and the
dual, respectively. Suppose that y’'b = ¢’x. Then x and y are optimal
solutions to the primal and dual, respectively.

3.2.3 Strong duality

The next result is essential for linear programming, and the central re-
sult of LP duality. It states that if there exist a solution to an LP problem,
then there exist a solution to the dual of this problem, and the respective
optimal costs are equal.

Theorem 3.2.3. (Strong duality theorem) Given a linear programming
problem, if the primal problem has an optimal solution x, then the dual
problem has an optimal solution y such that

y'b =c'x

A final thing to mention about duality is the relation between the
primal and dual optimal solutions called the complementary slackness
conditions. Which can be useful for instance if you want to find an opti-
mal dual solution when only an optimal primal solution is known.

Theorem 3.2.4. (Complementary slackness) Suppose x € R" and y €
R"™ be feasible solutions to the primal and the dual problem, respec-
tively. Let w € R™ be the primal slack variables, and let z € R" be
the dual slack variables. Then x and y are optimal solutions for their
respective problems if and only if

xjz; =0 for j=1,...,n

w;y; =0 fori=1,...,m

11



3.3 Graph theory

3.3.1 Introduction to graphs

Graphs are mathematical structures consisting of points and lines con-
necting two and two of these points together. In this thesis we will, un-
less otherwise stated, define the points as nodes and the lines as edges.
Many situations that arise every day can be modelled as graphs, a few
examples being road networks, scheduling of tasks distributed among a
workforce, and telephone networks. In 2012 Amazon.com bought Kiva
Systems, a developer of mobile robotic fulfillment systems for $775 mil-
lion (Boston Globe, 2013)[15]. Within a year they had mapped out an
entire warehouse as a graph, and deployed over 1300 robotic workers.
These workers travel along the edges making turns on the nodes while
carrying merchandise ordered by customers to their designated spots.
Another use of graphs, recently implemented by various social media
sites, is to map each individual users social network. This is done by rep-
resenting every user as a node, and having an edge connect two nodes
if the two users are for example friends or following each other. These
sorts of graphs are then used for marketing and advertising purposes.

3.3.2 Terminology

This subsection is based on the book by Ahuja, Magnanti, and Orlin
(1993)[7]. Here we look at some of the terms and phrases often used
when discussing graphs and networks which will be used in later chap-
ters.

A graph G = (N, E) is a representation of a finite set of nodes N, and
a finite set of edges E whose elements are unordered pairs of distinct
nodes (i, 7). In some cases the edges have a specified direction, in which
case they are referred to as directed edges. A directed edge e;; is an
edge where the nodes ¢ and j are ordered, and we say that ¢ is the start
node while j is the end node of the edge. We also say that the edge is
outgoing from ¢ and incoming to j. It is worth noting that while we in
this thesis use the term directed edges, they are in the literature some-
times referred to as arcs. When the graph consists of directed edges, it
is called a directed graph or a digraph, see figure 3.1a. In this thesis we
will be working exclusively with directed graphs. Given another graph
G' = (N',E’') where N’ C N and E’ C FE, that is, all the nodes and edges
in G’ are also contained in G, we say that G’ is a subgraph of G.

12



Two nodes are adjacent to each other if they are the endpoints of the
same edge, and the edge and nodes are then said to be incident. By
ordering a list of such nodes (ni,n2,...,n;) we get a path in the graph,
provided that each adjacent pair of nodes is connected by an edge. If we
can create an alternating sequence of nodes and edges

(ng,e1,ni,€s,...,er,n,) where e; = (ni_l,ni) € E,ore; = (ni,ni_l) ek
fori=1,...,r, orin other words a walk without any repetition of nodes,
we get what is known as a walk. See figure 3.1b. An oriented version
of a walk, in the sense that for any two consecutive nodes n; and n;y1,
e; = (ni,ni+1) € F, is called a directed walk. In other words, a directed
walk has no backward edges, see figure 3.1c. The connection between
paths and walks hold for the directed versions as well, that is a directed
path is a directed walk without any repetition of nodes.

Two nodes ¢ and j are connected if there exist at least one path be-
tween them, and if every node in a graph is connected we say that the
graph is connected or that we have a connected graph, otherwise the
graph is said do be disconnected or disjoint. In addition, if this path is
directed, the graph is strongly connected, see figure 3.1d.

A path (n1,ng,...,n;) together with the edge (ng,n;) or (ni,nk), that
is, a path where the first and last node coincides, generates a cycle. See
figure 3.1e. If in addition, the sum of the weights on the edges in the
cycle is negative, we have what is called a negative cycle. If a graph
does not contain any cycles, it is said to be acyclic.

A graph that is both connected and acyclic, is know as a tree. By re-
moving one of the edges from the tree, the graph is no longer connected
and no longer a tree, however, in doing so we are left with two sub-
trees, and so a subtree is a connected subgraph of a tree. Trees are an
important theoretical concept that arises frequently in many algorithms
for solving network flow problems, and they are an essential part of the
algorithm we will look at in subsection 3.5.1 and chapter 6. We will see
later that every tree contains at least two nodes that only have one inci-
dent edge. These nodes are often called leaf nodes. We say that these
nodes have degree 1, while every other node in the tree has degree at
least 2. Another node that has a special name, is the node that is chosen
as a starting node of an algorithm, this node is referred to as the graphs
root node.

13



A tree T containing all the nodes and n — 1 edges where n is the number
of nodes of a graph G is called a spanning tree. See figure 3.1f. The
edges belonging to 7 is called tree edges while those not belonging to
T are called nontree edges. Solutions of some LP problems, such as the
minimum cost flow problem described in the next section are spanning
trees.

14
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3.4 Network flow problems

In this section we will look at some problems called network flow prob-
lems. While these types of problems arises in many instances such as
the assignment problem where you pair off two disjoint sets one to one,
the maximum s-t flow problem where you find a maximum flow from a
node s to a node ¢, or generalized flow problems where flow might be
generated or consumed along the edges, we will limit our discussion
to the, perhaps, simplest instance namely the shortest path problem,
which will play an important role in algorithms used in later chapters,
and the minimum cost flow problem which is essentially the problem we
want to solve when looking at an airport. For a detailed description of
the other instances and more, we suggest the book by Ahuja, Magnanti,
and Orlin (1993)[7]. The theory in this section is based on Vanderbei
(2008)[13].

3.4.1 The minimum cost flow problem

The minimum cost flow problem can be described like this: Find the
most efficient way of transporting a commodity through a network while
satisfying the demands at nodes in the graph with the supplies from
other nodes in the graph. The commodity can be anything from informa-
tion to physical goods, and so for simplicity, we will just call it flow. The
problem can easily be related to real life tasks, such as how to transport
merchandise from a warehouse to retailers, how to direct cars through a
road network, and as we shall see, how to guide flights along taxi routes
on an airport.

Assumption

Let G be a directed graph defined by a set N of n nodes and a set
of m directed edges. Associated with each node i € N is a number b;
representing that nodes supply or demand for the flow. If b; > 0 we say
that ¢ is a supply node, if b; < 0 it is a demand node, and if b; = 0 we
say that it is a transshipment node. Instead of having to deal with both
the supply and the demand term, we will in the proceeding stick with
demand, noting that when the demand is negative, this is equivalent to
supply. An important assumption is that no flow can enter or leave the
graph in any way, and so we require that the total sum of demand within
the graph must be zero.
Z b =0

iEN
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Constraints

The variables we want to decide, are the flows along each edge ¢;; € E
denoted z;;. So for each node i € IV (3.5) represents the total flow going
out of ¢, and (3.6) represents the total flow coming into :.

Sy (3.5)

jei;€E

>y (3.6)

jieij€EE

In order to comply with the demand at each node, the total flow out of
the node minus the total flow in to the node must be equal to the demand
of the node. This is ensured by (3.7) which is known as the flow balance
constraints:

Z Tij — Z zji = b forall 1€ N (3.7)
jiei;€E jieij€E .

In some instances the minimum cost flow problem requires capacity con-
straints on the edges saying that the amount of flow needs to lie between
some lower and upper bound, /;; < x;; < u;;. However, for the problem
discussed in this thesis we will just require the flows to be nonnegative

25 >0  forall e;€E (3.8)

Objective function

Associated with each edge ¢;; € E' is a cost, denoted c;;, of transporting
one unit of flow from node 7 to node j along this edge. As previously
mentioned, the goal is to find the most efficient way, that is, the cheapest
way, of sending the flow through the network. This translates to the
following objective function:

minimize Z CijTij
€ij er
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Problem formulation

Combining the objective function with the constraints (3.7)-(3.8), the
problem can now be formulated as:

minimize Z CijTij

eijEE

subject to Z Tij — Z Tji = b; forall i € N
jieij€E jeij€E
Tij >0 for all eij € FE

Written in matrix notation we get:

minimize c¢'x
subjectto Ax=Db (3.9)
x>0

We see immediately that (3.9) is on the LP standard form

Figure 3.2 shows an example of the minimum cost flow problem with
5 nodes formulated as a graph. The numbers next to the nodes are the
demands of each node while the numbers next to the edges are the costs
of sending one unit of flow along that edge. The solution here is to send
one unit of flow along e, ,, four units of flow along e, ,,, two units
along ey, n;, and three units along e, ,,, with a total cost of 18.

Figure 3.2: The minimum cost flow problem
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Lastly, we state the dual of the minimum cost flow problem:

maximize Z biyi
i€En
Subject to y] — yl —|— Zij = cij for all e’ij c E (310)

25 2 0 forall e;; € £

3.4.2 Shortest path

As we mentioned earlier, the shortest path problem is perhaps the sim-
plest instance of all network flow problems. It involves finding the short-
est path from one point to another. The length of a path can be seen as
the distance from the starting point to the end point, the time it takes
to travel, the fuel consumption or the reliability. One can easily see how
this model can be applied to finding the shortest taxi route from the gate
to the runway on an airport. Solutions of the shortest path problem are
used for instance by GPS systems to give users recommended driving
routes, and are also a central part of more complex problems, such as
the traveling salesman problem. Again, see [7] for a detailed descrip-
tion. More formally, the problem can be formulated as: Given a directed
graph G and two distinct nodes s,¢t € N. Assuming that each edge has
some length ¢;;, find the shortest path from the source node s to the sink
node ¢.

In order to relate this problem to the minimum cost flow problem, we
imagine that we want to send one unit of flow from s to ¢t. This means
that s has a demand of -1, ¢ has a demand of 1, and all other nodes are
transshipment nodes. In other words, b, = 1, by = —1, and b; = 0 for
alli € N\ {s,t}. We now see that the shortest path problem is just an
instance of the minimum cost flow problem, and can then be formulated
as:

minimize Z CijLij

eijEE
subject to Z Tij — Z Tji = 1 for 1 =s

jieij€E jieij€E

Z Tij — Z zj; =0 for i € N\{s,t}
j:eijEE j:eijEE

Z Tij — Z sz-:—l for i =t
jeij€E jieij€E
Tij >0 for all €ij € )
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Figure 3.3: Shortest path

In figure 3.3 we see an example of the shortest path problem with
the highlighted solution of the shortest path from s to ¢ which has length
8. The distances to the other nodes are also shown.

3.5 Network flow algorithms

Having described some of the linear programming problems, it is time
to look at how to solve them. Today, there exist several algorithms which
solves the shortest path problem and the minimum cost flow problem.
In this section we look at two of the most common ones, the Bellman-
Ford algorithm and the Network simplex method. The theory in this
section is based on the books by Ahuja, Magnanti, and Orlin (1993) [7]
and Vanderbei (2008)[13].

3.5.1 The Bellman-Ford algorithm

The Bellman-Ford algorithm, named after two of its developers, Richard
Bellman and Lester Ford, Jr. was published for the first time in the
late 1950s. While the algorithm is less efficient than some other short-
est path algorithms like Dijkstra’s algorithm, O(|N| - |E|) vs. O(|E| +
|N|log|N|), (using heaps), it has the very nice property, as opposed to
Dijkstra’s, that it works on graphs with negative costs. This property
will be important later on when we look at penalties for flights devi-
ating from their schedule. The problem it solves is this: Given a graph
G and a root node s, find the shortest path from s to all other nodes in V.

In order to solve this, the algorithm takes in a graph represented as
a list of nodes and a list of edges, and returns two lists representing the
distance and previous node of each node. It starts off by setting the dis-

20



10

11

12

13

14

15

16

17

18

19

20

21

tance to all nodes to infinity, except the root node which is set to zero.
Then, for all nodes v it loops through all edges e,, and checks if (3.11)
is satisfied.

dist(v) < dist(u) + cyy (3.11)

Here dist(i) represent the distance from s to node i. If this is not sat-
isfied, dist(v) is set to be equal to dist(u) + ¢y, and the parent of v is
set to u. While doing this, the algorithm keeps track of the number of
iterations, if this number exceeds |N|-|E| The graph contains a negative
cycle, and the problem is infeasible. Here is the resulting code:

input: a graph G and a root node s
output: a list distance and a list parents

Maximum iterations = |N| * |F]
Iterations completed = 0

% Step 1: Set distances
for each node n

distance[n] = infinity
distance[s] = 0

%Step 2: Finding shortest path
for each node n
for each edge e,y with weight cyy
if distance[v] > distancel[u] + cuv
distance[v] = distance[u] + cyv
parents[v] = wu
Increase Iterations completed by 1
if Iterations completed > Maximum iterations
error: "G contains a negative cycle."
return distance and parents

The network simplex algorithm

The network simplex algorithm is based on the famous simplex method
developed by George Bernard Dantzig who published it in 1947 (see
Vanderbei, 2008 [13] for a detailed description), and is used to solve the
minimum cost flow problem described in the previous chapter. It con-
sists of two parts, the primal network simplex algorithm, and the dual
network simplex algorithm, which are used when the problem is primal
feasible, and dual feasible, respectively.
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Given a connected graph G, we choose a root node s, and find a spanning
tree 7 C E. We then proceed to calculate the flows z,,, the dual vari-
ables y, starting from s = 0, and all the dual slacks z,, for all u,v € N,
according to the constraints of the problem. It follows from the comple-
mentary slackness conditions that for all edges e, € 7, 24w = 0, and for
all eyy ¢ T, xyp = 0. If for all ey, € T, x4, > 0, the initial solution is
primal feasible, and we apply the primal network simplex algorithm. If
not, but for all e,, ¢ T, zyy > 0, the initial solution is dual feasible, and
we apply the dual network simplex algorithm.

The primal network simplex algorithm

If we are in the situation where the solution is primal feasible but not
dual feasible, we feed all the information calculated above into the pri-
mal simplex algorithm. The algorithm then starts looking at edges e;; ¢
T to see if adding this edge to 7, and removing an edge e, € 7 from
T, results in a directing of flow which is at a lower cost than before.
However, just randomly searching for edges to add and remove is very
inefficient, and so rules from the simplex method are applied in order to
ensure efficiency:

* The edge ¢;; entering 7 must be an edge which is dual infeasible,
that is, zij < 0.

When ¢;; is added to 7, it generates a cycle. The flow on the edges in
this cycle have to change in order to accommodate the increased flow on
eij. The flows going in the same direction in the cycle as ¢;; is increased,
while the flows going in opposite direction is decreased. Continuing de-
creasing these flows, eventually one becomes zero. The edge belonging
to this flow is the one which will be removed from 7. This gives us the
following rule:

* The edge ey, being removed from 7 must be oriented along the
cycle in opposite direction of ¢;;, and of all those edges, it must
have the smallest flow.

The next step is to update the variables. As mentioned, some flows in
the cycle is increased while others decrease. The amount of this change
is equal to x,,.

In order to update the dual and dual slack variables, we look at what
would happen to the graph if we removed e,, from 7 without adding e;;.
This would split 7 into two disjoint subtrees 7’ and 7”. One of these
subtrees, let us say 7', will contain the root node. Recalling that the
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calculation of dual variables started from the root node, it is clear that
the dual variables of nodes contained in 7’ remains the same. The dual
variables in 7" will however change, and we have the following rule:

* If e;; crosses from 7' to 7", all dual variables in 7" is increased by
z;j. Otherwise, decrease these dual variables by the same amount.

The final variable update needed are the dual slacks. Only the edges
bridging between 7’ and 7" (in either direction) will have their dual
slacks changed. The reason for this is that they are the only ones where
only one of the incident nodes has had its dual value changed. We have
the following rule:

¢ The dual slack variables corresponding to edges bridging between
the subtrees in the same direction as e;; is decreased by the old
dual slack of ¢;;. Those that correspond to edges bridging in the
opposite direction is increased by the same amount.

After all the variables have been updated, e;; is added to 7 and ey, is
removed from 7.

The algorithm has now completed its first iteration. This will be repeated
until either we are back at the previous visited tree meaning we have a
degenerate solution[13], or there are no more dual infeasible edges to
be added to 7, and we have a primal dual feasible solution, meaning we
have an optimal solution. In order to obtain the objective value, all that
is needed is to multiply the costs of the edges in 7 with their respective
flows. Below is the code for the primal network simplex algorithm:
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input: a graph G, a root node s, and a tree T
output: a tree T
= edge with minimum dual slack

eij

while e;;.DualSlack < 0

e, = edge in cycle in opposite direction of e;; with minimum flow

Update flows in cycle
Remove e, from T

Update dual variables
Update dual slack variables
Add €ij to T

Update e;;

return T

The dual network simplex algorithm

We now turn our attention to the situation where the initial solution
is dual but not primal feasible. This means that for at least one edge
ew € T, Tyy < 0. The basic idea of the dual network simplex algorithm
is to remove this edge from 7, and look for an edge e;; ¢ 7T to take its
place. Again the algorithm follows certain rules to ensure efficiency.

* The edge ey, being removed from 7 must be an edge which is
primal infeasible, that is, z,, < 0.

Observe that when removing e,, from 7, 7 is split up into two dis-
joint subtrees, which we denote 7’ and 7”. It is clear that in order to
obtain a feasible solution again, e;; must be bridging across these two
subtrees. First we consider the possibility that e;; is bridging in the
same direction as e,,. This means that in order for x;; to be increased,
4, must be decreased. This leads to z,, not being increased to zero,
and e,, won’t be able to leave 7. And so it is clear that e;; must bridge
in the opposite direction of e,,. When an edge is added to 7, its dual
slack variable drops to zero. Also, all the other edges bridging in the
same direction as this edge, will have their dual slack reduced by the
same amount. And so, in order to ensure dual feasibility, of all the edges
bridging in the opposite direction of e,,, €;; must have the smallest dual
slack, giving us the following rule:

* The entering edge ¢;; must bridge across the two subtrees 7’ and
7" in the opposite direction from the leaving edge e,,, and among
all such edges, it must have the smallest dual slack.
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Having decided both the leaving and entering edge, the new spanning
tree has been determined. All that is left, is to update the variables.
This is done according to the same rules as in the primal network sim-
plex algorithm. The first iteration is now complete, if there are more
edges with negative flow, the algorithm will repeat itself until either we
are back at a previous spanning tree, meaning we have a degenerate so-
lution, or there are no more primal infeasible edges, and we have found
the optimal solution.

3.6 Minimum cost flow sensitivity analysis
In this section we take a closer look at the sensitivity analysis of the mini-
mum cost flow problem when a new constraint is added to the dual prob-

lem. The theory here is based on Bertsimas and Tsitsiklis (1997)[14].

Given our primal/dual problem pair for the graph G:

maximize 'z minimize — t'b
subjectto Az = —b subjectto 'A< ¢
x>0

Where A is the node-edge incidence matrix of G. Let B be the optimal
basis corresponding to the optimal solution x*. Here is what happens
to our problem when another inequality constraint is introduced in the
dual. The dual problem becomes

minimize —t'b
subjectto t'A <c’
t,AnJrl < Cpy1

The effect on the primal problem can be seen by taking the dual again,
which results in this primal problem

maximize ¢'X + ¢ 1Tni1
subjectto Ax+ A,i1xp11 = —b
x>0,2p,41 >0
We see that adding an inequality to the dual is equivalent to introducing

a new variable to the primal. This follows the negative transpose prop-
erty [13] of A.
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The question is, will this affect the solution? Or in other words, is the
current basis still optimal? Note that (x,z,+1) = (x*,0) is still a basic
feasible solution to the new problem associated with the basis B, and
thus we need only check the optimality conditions. For the basis B to
remain optimal, w ehave from [14] that it is necessary and sufficient that
the cost change of x,,+1 is nonpositive, that is,

_ / -1
Cnt1 =Cny1 —Cc B A, 1 <0

Using what we know from the strong duality theorem (see proof [14])
we write the condition as

- /
Cntl = Cpy1 — t An+1 <0

If this is satisfied, (x*,0) is an optimal solution to the new problem. How-
ever, if the condition is not satisfied, (x*,0) might not be the optimal
solution. In this case we apply the primal network simplex algorithm on
the new problem, starting from the current basis B. Usually, this ap-
proach leads to an optimal solution with a small number of iterations,
and it is usually faster than solving the new problem from scratch.

If we look at the dual problem, what this says is that, if by adding a
new edge we obtain some new way of pushing flow through the graph
so that the dual variables decrease, that is, the cost increases, then the
basis B is not optimal for the new problem. We let this new edge enter
the basis and remove an edge according to the rules in the primal net-
work simplex algorithm. On the airport, this corresponds to the situation
where two flights want to access the runway at the same time.

26



Chapter 4

Modelling airport flight
events as a graph

In this chapter we present some terminology about flights and airports,
and formulate the problem we want to solve. We then see how this
relates to our discussion in the previous chapter, before we introduce
what we call the events graph which lays the foundation for our solution
algorithm.

4.1 Description and terminology

4.1.1 Airports

The surface of an airport can be represented as a graph G = (P, S5),
where P is a set of points and S is a set of directed segments joining
these points together. Figure 7.3 shows how this is done for Stockholm
Arlanda Airport. In this thesis we will consider the airport to have one
operative runway, but the problem can be extended to include multiple
runways. The runway will be represented by two adjacent points, the
runway entry point and the runway exit point, and an incident directed
segment. As the names suggests, flights enter the runway at the en-
try point, either by landing or taxiing in, and leave the runway at the
exit point, either by taking off or taxiing off. We will assume that the
flights land and take off in the same direction, and so the entry and exit
points will be fixed for all flights. However, this can easily be extended
so that each flight has its own entry and exit point. A runway used in
this fashion is said to be in mixed mode. The term taxiway is used when
describing the surface on which the flights travel.

There are two types of points p € P. If at p, flights are allowed to
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stop and wait for their taxi route to clear of traffic, p is called a holding
area or holding point, while the points where f is not allowed to stop
are known as pass through points. If p is adjacent to more than two
segments, it is called an intersection. Note that a point may be both a
holding area and an intersection, or a pass through point and an inter-
section.

4.1.2 Flights

Associated with every flight f, there is a vital set of information used
by air traffic controllers to handle the flow of traffic. Below follows
some definitions of this information that are essential when modelling
the events of each flight.

When moving around on the airport, the path of points and segments
a flight f travels along, is called the taxi route of f. In this thesis, both
the runway and the gates will be included in the taxi route. If the flight
f starts off at a gate, and ends in the air, f is called a departure or de-
parting flight. Otherwise, it is called an arrival or arriving flight. Flights
merely traveling on the taxiway i.e. on its way to maintenance will not
be considered. Given that f is a departure, f is said to have a target
off-block time. That is the time when f will be ready (desires) to leave
the gate, and start taxiing. The target off-block time is given in advance
by a schedule, but may change as the schedule are updated, for instance
when there are missing passengers. The actual time at which f leaves
the gate is referred to as the actual off-block time of f. This is the mo-
ment when f is starts moving along its taxi route. As with the off-block
times, given that f is a departure, the target take-off time and the actual
take-off time of f represent the time at which f desires to take off, and
when it actually takes off. The target take-off time however is usually
given as a time window, which we refer to as the departure window of

f.

Looking at an arriving flight g, g is said to have a desired landing time,
and an actual landing time. The desired landing time is given in ad-
vance, and is often a time window bought from the airport by airliners,
referred to as the arrival window of g. Where departing flights have
off-block times, g has in-block times. The target in-block time is the
time at which g would like to park at the gate, while the actual in-block
time is the actual time at which g parks. A final thing to mention are
the total taxi times. For departing flights, this is the time difference be-
tween actual off-block time and actual take-off time, while for arriving
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flights is the time difference between actual landing time and actual in-
block time. As mentioned in chapter 2, previous research has focused
on minimizing the total of this for all flights.

4.1.3 Deviations

After a flight has left the system, either by taking off, or parking at its
gate, we need to determine whether or not that flight has deviated from
its schedule, that is whether it is early or late compared to the original
plan. To simplify the discussion, given a flight f, we use the term exit
time as a common name for both in-block time and take-off time. We
also say that a flight deviates from its schedule if there is a difference
between its target exit time, and its actual exit time. This deviation can
be divided in two depending on whether or not the actual exit time of a
flight is later than the target exit time, in which case the flight is late or
delayed, or if it is earlier, in which case the flight is early.

A flight’s deviation is penalized by a cost for each time unit it deviates
from the original plan. There are different ways to represent these costs,
for instance there might be a time window for which it is acceptable that
the flight deviates i.e. the cost is zero. However, in this thesis we will
assume that the costs are linear and starting from zero deviation. Later
we will see that this can easily be adapted. We will however allow the
marginal cost of being early differ from the marginal cost of being de-
layed, typically being delayed is penalized harder than being early, see
figure 4.1a. This is based on the fact that the points of an airport are
a shared resource of the flights, and so it is better for a departure to
be sent off early than for it to occupy a point longer and thus affecting
other flights on the taxiway. One might think that since the points are a
shared resource, would it not be better to send off the flights as early as
possible instead of penalizing it? However, the optimal would be for all
flights to be able to exit at the desired time, and hence a small cost for
being early is added. This can be seen as a penalty for having too many
flights active on one part of the taxiway at a given time, making the air
traffic controllers job more difficult.

Piecewise linear costs

According to [6], the Central Flow Management Unit of Eurocontrol in
Brussels assigns a ‘Calculated Time Of Take-off’ to a flight which will
enter congested airspace or go to congested airports. The intention is
to smooth the traffic flow by limiting the times at which a flight can enter
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these congested areas. Flights cannot take off more than five minutes
before this calculated time or more than ten minutes after the calculated
time, giving the fifteen minute take-off window or time-slot. To comply
with this, an additional penalty for taking off or parking outside this
window can be added. This penalty is an increased cost added to the
existing cost of deviation. One could force the flight to be cancelled, but
we have modeled it just as an increase, still allowing flights to take off
or park, see figure 4.1b.
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Figure 4.1: Deviation costs

4.1.4 Sequence and conflicts

The term sequence of flights or just sequence, is used about the order of
which the flights accesses the runway, and the problem of finding such
a sequence is known as the runway sequencing problem. This sequence
may be fixed, or be subject to change depending on the objective of the
problem. Air traffic controllers typically want little to no change in the
sequence as this increases the communication needed to aircrafts, and
thus the workload of each controller. However, keeping the sequence
fixed, may lead to increased delay of each flight, as one flight’s tardi-
ness will affect the other flights.

We define a conflict as an event which occurs when two flights tries to
access the same point on the airport within a given time window. Solv-
ing a conflict simply means deciding which of the flights goes first, and
we say that this flight has precedence over the other flight. The decision
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taken by the air traffic controllers is based on various criteria such as
what types of aircrafts are involved, are the flights arriving or departing,
the sequence, where on the taxiway and what the traffic situation is at
the time the conflict occurs. The two outcomes of can be seen in figure
4.2, where the conflict point is highlighted. Having made this decision,
a minimum time separation, or a separation constraint, is imposed be-
tween the two flights. A special case is when the conflict is located on
the runway. When flights take off a turbulence is created in the air space
behind it and so it is not safe for another flight to take off right away.
This safety margin here varies depending on what types of aircrafts are
involved e.g. a smaller aircraft taking off after a larger aircraft requires
a larger safety margin than a large aircraft taking off after a smaller
aircraft. Also, it is not safe for a flight to land while another flight is
occupying some part of the runway, and so some separation must be
imposed.

f has precedence ¢ has precedence

Figure 4.2: Outcomes of taxiway conflicts

4.2 Formulating the problem

Having set the scene, it is now time to formulate the problem we want
to solve. Given an airport with a single mixed mode runway, and a pre-
determined sequence on the runway, assume that all flights have been
given a taxi route for instance obtained by the shortest path algorithm.
Also assume that flights are not allowed to stop on any segments. Our
goal is to solve all occurring conflicts and obtain a schedule for each
flight, minimizing the total cost of deviations at the airport. We will see
that this can be formulated as an LP problem on standard form, and that
it is in fact the equivalent to the minimum cost flow dual problem.

31



Taxi route

In order to obtain the LP formulation, we start off by introducing the
variables associated with the taxi route of a flight f. Let 7 be a point or
a segment in the route of f. We then denote by ¢; the time f enter . If j
is a point and ¢ is the preceding segment in the route of f, then we let

Cz'j = tj — ti (4.1)

In other words ¢;; is the time needed for f to travel through segment j.
If j is a point and ¢ is the next segment on the route of f, then if f was
allowed to stop at j, the time difference ¢, —t; is greater or equal to zero
with inequality if f stopped, giving the following constraint

ti—t, <0 (4.2)
If f was not allowed to stop at j we have
tj—t4=0 (4.3)

These are the only types of constraints needed in order to describe the
taxi route of f. Figure 4.3 shows the associated variables on the airport.

Figure 4.3: Taxi route variables

Deviations

The next variables to be presented are those associated with a flight’s
deviation. We denote the variables representing how delayed or how
early the flight is as t4ejqy and t.q., respectively. In order to obtain the
inequalities for deviations, we start off with the following observations:

If a flight is early, its delay is zero. If a flight is delayed, the deviation
must be equal to the actual exit time, t.,;;, minus the target exit time.

tdelay = maz{0, teyir — target exit time}
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If a flight is delayed, its earliness is zero, and its deviation must be equal
to the target exit time minus the actual exit time.

A~

tearly = max{0, target exit time — e }
This gives us the following inequality for a delayed flight:
tezit — target exit time < tgeiqy
Which in standard form writes
texit — tdelay < target exit time (4.4)

We also see from the observation that the delay is greater than zero,
which gives us

_tdelay <0 (4.5)
From the second observation, if a flight is early, we get the following
inequality:
target exit time — tcz5 < femy

This leaves us with

~

—tearly — texit < —target exit time

However, this is not on the standard form, and so we have to use a
"trick". By letting fearly = tearly and substituting, we obtain

tearly — tezit < —target exit time (4.6)

tearly <0 (4.7)

The conditions for piecewise linear costs are similar. We introduce the
variables t4.1qy2 and t..r1y2 representing how much outside its time slot
a flight exit, and the quantities time slot delay and time slot early repre-
senting the deviations this time slot allows. In other words, the time slot
is an interval [-time slot early, time slot delay] with a given cost if the
flight exit outside this interval. We observe that the delay outside the
time slot must be at least the delay inside the time slot minus the value
of the time slot delay. This gives us

Ldelay — time slot delay < gejqq2
which we rewrite to get on the same form as the previous conditions

tdelay — tdelay2 < time slot delay (4.8)

33



Again for the early flights we have the opposite, the earliness outside
the time window must be at most the earliness inside the time window
minus the value of the time window, giving us in rewritten form

teariy2 — tearly < —time slot early (4.9)

As with the linear costs, the delay outside the time slot is nonnegative,
and the earliness is nonpositive, giving us

_tdelay2 <0

(4.10)
tearly2 <0

It is easy to see that this can be extended to include several time slots
by introducing two new variables {4eiqy; and tcq.y; for each time slot ¢,
and substituting tdelay with tdelayi—l and tdelayQ with tdelayi in (4.8), and
the same for the early variables in (4.9).

Conflicts

As mentioned previously, a conflict occurs when two or more flights want
to access the same point within a given time window. The separation
constraints imposed to avoid this can be represented as a disjunctive
pair of constraints. Assume there is a conflict between flight f and ¢ at
point p;. Let t,, represent the time f enter p; and ¢, the time g enter p;.
Then either the constraint ¢,, > t,, + dzf 9 or the constraint t,, > t, + dff ,
where dlf 9 and dff are time separations, must be satisfied in order for the
conflict to be resolved. The variables involved in the constraints varies
depending on whether the points in question are pass through points or
holding points.

Let us first look at the pass through points. Assume that f and g want
to access the point p; at the same time. Assume also that some decision
has been made, giving f precedence over g. Let t; and ¢; represent the
time variables for f and g entering p; respectively, and let dlf 9 denote the
time separation between f and g at p;. Then the condition

ty >ty +dl?

state that g cannot enter p; until at least the time f leaves the p; plus the
time separation. Rewritten on the standard form we get

t—t; < dl? (4.11)
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Now let p; be a holding point. In this case the time at which a flight
enter p; may differ from when it exits, and so if the separation constraint
is represented in the previous way, we could end up in a situation where
flight f enter the point, stops longer than the separation time, and flight
g comes crashing into it. In order to avoid this, instead of using the time
f enter p;, we use the time f leaves p;, that is, the time when f enter the
incident segment, which we denote t,. This gives the following condition
rewritten to the standard form

te—t; < d;."g (4.12)

These are the only conditions needed to avoid flights colliding on the
taxiway. In fact equations (4.1) - (4.12) are all the conditions we need,
and so we can turn our attention to the objective function.

Objective function

As stated, our objective is to find the minimum total cost of deviation for
all flights f € F where F'is a set of flights . We introduce, for each flight,
the costs of deviations denoted bgeiay, beartys bdelay2, beariy2 @ssociated with
the deviation variables, and let b; = 0 for the other variables t; . By let-
ting the delay costs be nonnegative, and the early costs be nonpositive,
we end up with the following objective function

T f f f f f f f f
minmize Z bdelaytdelay + bearlytearly + bdelayQtdelay2 + bearlyQtea’rlyQ

fer
(4.13)
Recalling the signs of the deviation variables it is clear that this sum is
nonnegative.

The complete formulation

Combining the conditions (4.1) - (4.12) together with the objective func-
tion, letting p;, be holding points, p, be pass through points, C, be con-
flicts in pass through points, and C}, be conflicts in holding points, we
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obtain the formulation

minimize b't

subject to t; —t; = ¢;j v (i,7) € pp
tj—1g <0 v (i,7) € pn
tgm-t - tf;ezay < target exit time vV fer
tfarly — tﬁm < —target exit time vV feF
tilcelay - tgelayQ < time slot delay vV feF
tgarlyQ - tfarly < time slot early VIeF (14
— tetay <0 V feF
Hapty <0 ¥ feF
— thetays <0 VfeF
Hopiyr <0 VfEF
t—t; < dl¥ v (k1) eC,
te—t; < dl’ V (s,1) € Cy

Which clearly is an LP formulation.

4.3 Minimum cost flow dual formulation

Having shown that our problem can be formulated as an LP problem,
the next step is to show that it is in fact equivalent to the dual of the
minimum cost flow problem.

We rewrite the equality constraints from (4.14) as inequalities,and note
that an important assumption is missing. Recall from section 3.4.1 that
the sum of demands must equal zero. In (4.14), the demands are the
costs b, and since these can be set so they do not add up to zero, this is
not ensured. In addition, the nonnegativity and nonpositivity conditions
on the delay and early variables are not on standard form. In order to
overcome this, we introduce a new variable ¢y representing the initial
time for all flights, that is the moment time starts running. We then
assume that this initial time is zero giving us the condition

to=0 (4.15)
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We now write the equations previously not on standard form as

to — tdelay <0
tearly —tp < 0

(4.16)
to — 75delay2 <0
tearlyQ —tp < 0
Our problem is now on the form
minimize b't
subjectto t3 =0 (4.17)

At <c
In order to handle the sum of demands, we associate the cost

_ f f f f
bo - Z bdelay + bearly + bdelayQ + bearlyQ
fer

with tg, thus fulfilling the sum of demands assumption.

However, this leaves us with another problem, namely the assumption
that g = 0. We proceed by augmenting the objective function by includ-
ing this constraint with a weight of the sum of costs giving

minimize b't — Z bito
i (4.18)
subjectto At <c

Finally we need to show that solving (4.18) is equivalent to solving
(4.17).

Proof. Assume 71 is a feasible solution to (4.17). It is clear that T satisfies
all the constraints of (4.18), and that the objective value is the same.
Hence 7 is also a feasible solution to (4.18), with the same objective
value. Assume now that 7 is a feasible solution to (4.18), and let T =

T —tgl. The following is then true for the constraints

A(T—to]l)gc
= AT — Atgl < c
= AT < ¢

where the final step follows from the fact that A is the node-arc inci-
dence matrix. And so 7' is a feasible solution to (4.17). Due to the

assumption that > b; = 0, the objective value is also the same. O
i
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4.4 The events graph

In order to solve the problem formulated in the previous section by us-
ing optimization theory, we will introduce a graph, referred to as the
events graph, which represents the flight events happening at the air-
port. While being a single graph, the events graph can be "divided" into
two parts, one part representing events happening on the taxiway, and
the other the deviation of flights.

4.4.1 Taxiroute

We start by looking at the taxi route of a flight f. For each of the vari-
ablest;,...,t; associated with f entering a point on the taxiway, we asso-
ciate nodes n;,...,nr € N. Depending on whether the point is a holding
point or pass through point, the nodes will be referred to as a holding
node or a pass through node. Note that no nodes have been associated
with the variables representing f entering a segment. We solve this by
letting ¢, in (4.2) represent the time f enter the next point instead of
the next segment, and replacing 0 in the same equation with —c;,. This
reduces the number of nodes and segments required by & for each flight.

Using this, along with the other taxi route constraints (written on stan-
dard form), we associate a directed edge ¢;; € E with each constraint.
Depending on whether the node n; is a holding node or a pass through
node, it will look like figure 4.4 in the events graph.

g K

(a) Holding node (b) Pass through node

Figure 4.4: Events graph taxi route example
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A complete taxi route example

—C12 —C34
023 N NN Cas N s O
nq N9 ng N ns ng
c2 N O/
to to t3 ty t5 tg

Figure 4.5: Single flight taxi route

We now show, complete taxi route for a flight. Given the sample airport
in figure 4.6, let f be a departing flight starting from gate 2, and let
(p2,ps, - -.,ps) be the points in the taxi route. We also include the start
node n; referring to the initial time ¢y. Node 2 represents gate 2, and ¢,
is the target off-block time of f. On its way towards take-off, f arrives
the intersection, represented by node 3, at time ¢3. Assuming this is
a pass through node, f continues towards holding area 1, node 4, and
arrives at t4. Here it may wait, or continue directly to node 5, the runway
entry, where it arrives at t5. We assume in this example that departing
flights are allowed to wait at the runway entry for the airspace to clear.
Taxiing on the runway f arrives at the runway exit a.k.a. the take-off
point, or node 6 at ¢g, and take off immediately. All in all the taxi route
of f gives us these constraints

to —t1 < ci12

t1 —t2 < —ci2

log —t3 < —c23

ly —13 < ¢34

i3 —t4 < —c34

ty —t5 < —cas

ls —te < —Cs6
The resulting events graph for this taxi route is shown in figure 4.5.
The time difference tg — t3 — co3, is the total taxi time of f, in other words

the time it spends on the taxiway. As mentioned in chapter 2 some of
the previous studies has focused on minimizing this difference.
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| RUNW AY

Areay Areas

Figure 4.6: Sample airport

4.4.2 Deviations

Next we turn our attention to the "second part" of the events graph,
representing the deviation of flights. In order to represent this, for each
flight we associate a new node, n4eqy With the variable .4, and a new
node ngqqy with the variable t.4.,. In addition we associate an edge
with the constraints (4.4),(4.6), and the first two in (4.16). Figure 4.7
shows the extended events graph. For improved readability, the figure
highlights the deviations, so the taxi route part of the graph is displayed
as a single edge, labelled taxi route. .

Piecewise linear costs

In order to represent if a flight exits within the given time slot, for each
flight we add new nodes ngejqy2 and neq12 Which is associated with the
variables tgejqy2 and teqr2. We also introduce edges associated with the
constraints (4.8), (4.9), and the final two in (4.16). The events graph is
now extended to look like figure 4.8. It is easy to see how multiple time
windows can be represented in the events graph by adding new nodes
and edges. .
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Figure 4.7: Deviation

Figure 4.8: Deviation with piecewise linear convex costs

4.4.3 Graph for a single flight

Combining the previous discussions regarding the taxiway and the devi-
ations, we now present the events graph for the single flight described
in the previous section. Figure 4.9 shows this graph, where node 6 rep-
resents the exit (parking or take-off), node 7 and 8 represents delay and
early, and node 9 and 10 represents delay2 and early2. .
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Figure 4.9: Single departing flight
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4.4.4 Multiple flights and separation constraints

So far in this section we have limited the events graph to contain events
for a single flight only. We now extend this to a more realistic situation
by introducing a second flight, and describe how this can be represented
in the graph. The goal is to, at the end of this subsection, have a clear
idea of how the events graph looks when containing multiple flights.

We continue to look at the sample airport from this section, but in addi-
tion to the departing flight we now imagine that there is a flight arriving
on the runway, traveling through holding area 2 and the intersection be-
fore parking at gate 1. The nodes representing events happening along
the arriving flight’s taxi route is generated in the same way as for the de-
parting flight, and as with the first flight, the second flight has some de-
viation nodes associated with it. It is also clear that the arriving flight’s
constraints are of the same type as the departing flight’s constraints. In
order to represent the two flights in a single events graph we note that
the flights share the same initial time, that is node 1 where ¢g is zero,
and that all nodes representing taxiway events and deviations are dis-
tinct.

When dealing with multiple flights we have seen that the introduction
of separation constraints is needed if there are any potential conflicts.
In our sample airport, we see that both flights wants so access the inter-
section and the runway entry. Following the discussion in section 4.1,
two separation constraints will be needed. However, since we no longer
have variables for flights entering segments, we need to adapt the sepa-
ration constraints to represent this. Following the notation from section
4.1, assume two flights f and g want to access the holding point p;,
since p; is a holding point, we need to set a separation between the
events when f leaves p; and when g enter. Since, we no longer have an
event representing f entering the incident segment, we instead replace
the time variable ¢, by the variable ¢; — ¢, representing the event that
f enter the next point on the taxi route minus the time difference be-
tween the two events. We see that this can also be applied to separation
constraints between events regarding pass through points, and so all
separation constraints can be written as

to—t < dl9 + cq (4.19)

Returning to our two flight example, assume a decision has been made
that the departing flight will be given precedence at the intersection,
and that the arriving flight will get precedence at the runway entry. In
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the events graph, this is represented by adding two edges associated
with the constraints

fg
t3 —t15 < dintersection + C14,15
thg —ts < diY + c11,12

runway entry

Figure 4.10 shows the events graph for this example, and in chapter
5 we discuss how to add separation constraints between flights, and
the effects this has. It is now easy to see how the events graph can
be extended to include as many flights as we want, and how avoiding
conflicts between them is represented.
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Chapter 5

Conflict resolution and
sequencing

In chapter 4 we briefly touched on the topic of conflict resolution by giv-
ing a definition, and introducing separation constraints between flights.
This chapter presents a more detailed discussion, and a proposal for
how this can be implemented in a solution algorithm. The first section
describes the concept of solving a conflict in the events graph, while
section two and three presents two algorithms for detecting and solv-
ing conflicts between flights in the events graph. In section four, we
present a discussion on where to start solving conflicts, while section
five describes how to implement a sequence in the events graph. The
final section shows why we cannot rely on Dantzig’s rule in the network
simplex algorithm in order to resolve conflicts.

5.1 Introduction

Before anything, an air traffic controllers most important job is to make
sure that no aircrafts collide. This is done by keeping a minimum safety
distance between flights at all times. An alternative method would be
to use the taxi speeds of flights, and combine them with the distances
to get a time separation. Previous research [6] have used algorithms
resolving conflicts within certain areas of the airport. It is however,
reasonable to believe that the solution would improve if flights can be
located anywhere on the taxiway when the conflict is resolved.

5.1.1 Solving a conflict in the events graph

As we have seen in chapter 4, resolving a conflict between two flights
f and g simply means deciding which flight goes first. Having made
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—time separation —time separation —time separation

(a) Choices in a conflict (b) Solution where f has precedence

a choice, this is modelled in the events graph by adding an edge rep-
resenting the precedence constraints between the events of the flights
involved. The weight on this edge represent the minimum separation
between f and g at this particular area of the airport. Figure 5.1a shows
the decision which has to be made in the events graph, where one of the
two edges is to be added, and figure 5.1b shows the solution where f
has precedence over g.

5.1.2 Making the precedence decision

The decision on which flight is to be given precedence can be based on
many variables. However, the air traffic controllers at Arlanda told us
that their decisions are mainly based on whether the flights are arrival
or departures, and which flight has the earliest scheduled exit time, and
so those are the criteria used in our solution. Arrivals will always get
precedence over departures, and if the conflict is between two arrivals
or two departures, the flight with the earliest exit time will get prece-
dence.

Other aspects that could be considered when deciding on precedence
are for instance

e Where the conflicts occurs. Perhaps one of the flights are close to
their exit point, and so should get precedence in order to minimize
the number of active flights on the taxiway regardless whether it
is a departure or not.

e The current deviation of flights. Perhaps flights that are already
delayed should get precedence so to increase the chances of it
exiting within the time window and reducing the total cost. In the
same manner, flights that are early might not need precedence in
order to exit on time.
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» Size and airline. The size of flights may be important when it comes
to wake vortex after take-off. Allowing a larger aircraft to take off
before a smaller one may increase the wait time by an unnecessary
large amount. It may also be important to spread the precedence
of flights among the airliners in such a way that no company gets
an unfair advantage.

There may be additional concerns that should be considered in addition
to the ones mentioned here, and those that are might not have a positive
effect on the solution. However, in order to test this, additional real life
test cases other than the one we have been provided with are needed.

5.2 Simple conflict resolution

Given two flights f and g with a predetermined taxi routes, the perhaps
most intuitive way of avoiding conflicts is to check each point in the taxi
route for both flights, and see if they coincide. Then, if some do, impose
a separation constraint between the flights at these points. Here is how
this can be done in the events graph.

Given an events graph G and a flight f with a predetermined taxi route.
Assume nodes have been added to NV in compliance with the discussion
in chapter 4, and let Ny C N be the set containing these nodes. Imagine
now that information about a new flight ¢ becomes available, and that
based on this information, g is given a taxi route. In order to avoid con-
flicts between f and g, we have to for each node n that is to be be added
to N as part of the taxi route of g, check if the event n refers to, happens
at the same point as any of the nodes in Ny. If it does, some decision
on which flight gets precedence is made, and an edge representing the
separation constraint between the two flights is added incident to the
nodes. The code for finding and resolving conflicts in this manner is pre-
sented below. An example of the taxi route of two flights where conflicts
have been resolved can be seen in figure 5.2. Here we have highlighted
the nodes referring to the same points. However, as we can see from
the figure, even for few flights with short taxi routes, the problem be-
comes much more complex by resolving conflicts in this manner, as one
additional edge is required for each shared point in the routes. Another
approach is therefore needed.
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input: a graph: G = (N,E)
a flight route: routeg
a list of flight routes: routes

% Compare new flight route nodes with existing flight route nodes
for each node i in routeg
for each element e in routes
for each node j in e
% Check nodes refer to the same point
if (1 =73)
Make precedence decision
Add precedence constraint to E

—C23 —C34 —C4.5 —C5.6

C2.3 \3j C3.4 \4j C45 \5/ C5.6 K6
to 1433 th tp s

—C1,2

—C3,12 —C4,13 —C5,14 —C6,15
—C1,11
c
1,11 —C11,12 —C12,13 —C14,13 —C14,15
12\/\63\/—\@@9
C11,12 U C12,13 U C13,14 \_/ C14,15
t11 t12 t13 t14 t15

Figure 5.2: Simple conflict resolution between two flights

5.3 Shared paths

Resolving conflicts at every shared point on the taxiway between every
flight, results in a large number of constraints added to the problem. In
order to avoid this situation, we now introduce the concept of shared
paths.
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5.3.1 Description

A shared path between two flights f and g is a pair of ordered sets of
one or more adjacent points on the taxiway where the taxi route of f
and g coincide, i.e. a shared path is a set of two paths. All shared paths
are undirected, and so if (p;, pi+1, pitr2) is part of the taxi route of f and
(pi+2, Pi+1,pi) is the same for g, the set consisting of (p;, pit1, pi+2) and
(pit+2, pi+1,p;) is a shared path between f and g. It is also possible to
have multiple shared paths between two flights which occurs when the
taxi routes coincide at some point, then diverge before they converge
again.

5.3.2 Shared paths and the events graph

Since the shared paths are undirected, two different methods of imple-
menting them are used depending on whether or not the flights travel
in the same or in the opposite direction.

Same direction

Assume that a shared path for f and g has been discovered, and that the
flights enter this path at the same point. In order to resolve this conflict,
a decision on who gets precedence is made, and a separation constraint
between the flights at the first point is imposed. Assuming that f and
g travels at the same speed, and that the time separation is constant
throughout the shared path, the conflict has been resolved. If this is not
the case, the conflict at the first point is still resolved, and so we move
to the next point in the shared path and impose a separation constraint.
Repeating this process eventually the conflict for the entire shared path
will be resolved. Note that in the second situation, the required number
of constraints to be added is the same as for the method in the previous
subsection.

Opposite direction

While flights traveling in the same direction may be located inside the
shared path at the same time, flights traveling in opposite directions
have to wait for the entire path to be clear before entering it. That is,
when a shared path is detected between two flights traversing it in op-
posite direction, a decision has to be made regarding precedence, then
a separation constraint has to be imposed between the flights at the first
and last point in the shared path. Doing this results in resolving the con-
flict for the entire shared path, with only two additional constraints to
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be added.

In the events graph, shared paths are represented by the nodes refer-
ring to the events of flights entering the points in the shared path. Fig-
ure 5.3 shows the implementation of shared paths for flights in the same
direction with the same speed, and figure 5.4 the same for opposite di-
rection. The nodes included in the shared path has been highlighted. We
see that it is possible in some cases to reduce the number of additional
edges required to 1 for same directional conflicts, and 2 for all opposite
directional conflicts. Below we present the code for finding a shared
path:

input: a flight route: routes
a flight route: routeq
an airport: A

output: a shared path: SP

% Detect conflict
while no conflict is detected
for each node i in routes
for each node j in routeq
if i and j refers to the runway
Continue
if i and j refers to the same point in A
Conflict is detected
i and j are contained in SP

% Get the shared path
while (i <= routes.length && j >= 0)
if (i+1 = j-1)
i+l and j-1 are contained in SP
f and g are traveling in opposite direction
return SP
while (i <= routef.length && j <= routeqy.length)
if (i+1 = j+1)
i+l and j+1 are contained in SP
f and g are traveling in the same direction
return SP
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€1,11
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Figure 5.3: Result of conflict resolution in same direction and equal

speed

—C1,2

—C1,11

C1,11

t11

Figure 5.4: Result of conflict resolution in opposite direction
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5.4 Deciding which conflict to solve

In section 5.2 we showed how to solve the first conflict detected in the
events graph. However, since solving a conflict affects the solution, see
section 3.6, and therefore also the other current conflicts, it is reason-
able to assume that making a "smart" decision on which conflict to re-
solve first may reduce the number of occuring conflicts as opposed to
just solving the first one detected. As with the task of deciding prece-
dence, several thing could be considered when making this decision. We
mention a two suggestions:

* Solve conflicts on the most conflicted node. This might be a good
place to start, depending on how the airport is structured. There
is however a risk that the conflicts will just shift to the nearest
holding area.

* Solve conflicts for the most conflicting flight. The solution of solv-
ing a conflict for this flight have the highest potential for number
of conflict resolved by solving a single conflict. There is however
the possibility of just shifting them in time generating the same
number or even more new ones.

In the end, we decided to start by solving the conflict which occurs first
in time. The motivation for this choice is that solving these conflicts may
only affect the conflicts occuring later, while solving a later conflict, may
affect the earlier conflicts which again affects the later ones generating
a cycle of negative effects. We may however still end up in the situation
that solving a conflict generates one or more new conflicts occuring both
earlier and later that the one we solved.

5.5 Sequencing

The runway sequencing problem can be viewed as a subproblem of con-
flict resolution where the goal is to find the best sequence of flights
accessing the runway. In order to find the optimal sequence, there are
several aspects that needs to be considered such as the arriving flight’s
time window, and the desired take-off times for departures. While the
simple conflict resolution algorithm described in the previous section is
too inefficient for solving all conflicts relating to the taxiway, it can be
used for implementing the sequence solution, since the only nodes in the
events graph implicated in the sequence are the ones referring to either
the entering the runway entry or the runway exit, and therefore only a
single edge needs to be added. Figure 5.5 shows how the sequencing
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between two arriving flights and one departing flight looks in the events
graph. Node 2,6 and 8 represents flights entering the runway entry,
node 3,7 and 9 the runway exit, and node 4,5 and 10 the gates. .

Figure 5.5: Sequencing

5.6 Network simplex based solution to conflicts

In section 5.1 we discussed various criteria for solving conflicts. In this
section we will show why the network simplex method using Dantzig’s
pivot rule [7] cannot be used to this purpose.

From section 3.6 we have seen the changes to a problem P of adding
a separation constraint to resolve a conflict. It is obvious, due to the
nature of conflicts that the optimal solution of P is no longer optimal
for our new problem P. The question becomes, which of the two new
edges is to be added to our tree solution? Dantzig’s pivot rule states
that the edge to enter the tree is the one with the maximum violation
i.e. the edge with the most negative dual slack for the primal iterations.
However, as we will see, following this rule may lead to a solution where
the objective value is larger than by choosing the competing edge. We
illustrate this with an example:

Assume there are two departing flights f and ¢ that wishes to take off
as early as possible, and let the cost of being delayed be 4 per minute.
Given a taxi route, the taxi time of f is 10 minutes while the taxi time
of g is 11 minutes. The events graph corresponding to this situation is
shown in figure 5.6a, where we have contracted each taxi route to a
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single edge. Assume now that, due to safety regulations, the separa-
tion time between take-off is set to 3 minutes. This results in a conflict
occurring at the runway, depicted in figure 5.6b. Using the formula
z;j = Yi — Yj + ci; we calculate the associated dual slack variables to be
203 = —4 and z33 = —2, and so according to Dantzig’s rule, edge eo3
should be added to the tree. In other words, g should get precedence
over f. Since f ideally could have taken off at 10 minutes, but now in-
stead have to wait until 14 minutes, the increase in cost equals 16. We
see however, that had f been given precedence over g, ¢ would only
have had to wait an additional 2 minutes, and the increased cost would
only have been 8. The figures 5.6¢ and 5.6d shows the two possible so-
lutions. With this, we conclude that using the simplex method with this
rule may not generate the solution with the lowest objective value.
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(b) Precedence choice

(c) g has precedence (d) f has precedence

Figure 5.6: Dantzig’s rule
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Chapter 6

Finding an optimal solution
of the events graph

Even if a proof that the simultaneous ground movement problem is NP-
hard has not been published, with regards to the proof that the sim-
plified version (see section 2.4.2) is, we find it highly likely that the
simultaneous ground movement problem is also NP-hard. The idea in
this chapter is to find a fast heuristic which solves 4.18. In order to do
this, we implement a specialized version of the simplex method. Before
we describe our heuristic, we give a proof showing how, given any con-
nected digraph with no negative cycles, it is possible to find an initial
dual feasible solution to the minimum cost flow problem, and describe
how we have calculated the values of the variables in this solution. We
then move on to the events graph, and describe our heuristic step by
step from finding an initial solution to finding the optimal solution. Note
that in the following, with the term solution, we mean a set of edges
that form a spanning tree, and the term tree solution also includes the
variables associated with this tree.

6.1 Dual feasible initial tree

Given a connected digraph G, our goal is to obtain a dual feasible tree so-
lution. In order to achieve this, we have developed an algorithm, based
on the Bellman-Ford algorithm, which in the absence of negative di-
rected cycles guarantees a dual feasible solution even if the graph is not
strongly connected. If the structure of the events graph was unknown,
this would be required due to the implementation of delay nodes which
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are unreachable from the root node. We later discovered that due to the
nature and structure of the events graph, a more efficient method could
be used to find an initial tree, see section 6.2, and this algorithm was
in fact not necessary. Nonetheless, we present it for future use where
graphs may have a different structure than our events graph, and since
some may find the theoretical concept interesting.

Theorem 6.1.1. Ifa connected digraph G does not contain any negative
directed cycles, we can always find an initial dual feasible solution to the
minimum cost flow problem.

Proof. Let G = (N, F) be a connected digraph, with no negative di-
rected cycles. We want to show how to construct a dual feasible solution
to the minimum cost flow problem associated with G. Choose a node
r € N. Let N, C N be the set of nodes reachable from r in G and let
N = N\ N, be the remaining nodes. Let G = (N, E) be the subgraph of
G induced by N, i.e. G = G[N]. Assume we have at hand a feasible tree
T and the corresponding dual tree solution ¢(7') for the dual problem
associated with G, which we know exist since G does not contain any
negative directed cycles. Such a solution can be extended to a feasible
solution for the minimum cost flow problem associated with G in the fol-
lowing way:

Apply the Bellman-Ford algorithm G, = G[V;] with root  and let d(7})
be the dual tree solution produced by the algorithm and the associated
tree T,, respectively. Let E C E be the set of edges with start node in
N and end node in N,. Observe that there are no edges e,, € E with
uw € N, and v € N, otherwise v would be reachable from r which is a
contradiction. For all edges e, € F calculate the associated dual slack
value z{, = ¢, + vy —ys. If all these 27, are positive, decrease all y;,
until one z¢, becomes zero. If not all z¢, are positive, let ¢ be the edge
with the most negative z,,, and increase y¢ until z¢, is zero. Recalculate
the variable values in ¢(T) with u as root. The tree T corresponding to
the dual feasible solution of the minimum cost flow problem associated
with G is then 7, UT U é. Which is dual feasible as 7, and T are dual
feasible, and the constraint associated with ¢é is an equality (tight).

Finally, to construct a feasible solution for G we can reason inductively,
noting that V. C V —{r}, i.e. |V;| < |V| and the induction terminates. O

Below we include the code for finding this initial dual feasible solu-
tion.
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input: a directed graph G, a list of distances to each node y
a list representing if a node has been visited
a list representing parent relations,
a list representing child relations
output: a dual feasible solution G
%Step 1: Initialize
Set all distances to infinite
Decide on a root node
Set distance to the root node to zero, and mark it as visited
%Step 2: First subset
Starting from the root node:
for each node n in N
for each edge ey, in E
if Yu + Cup < Yo
Mark v as visited
Set Yy = Yu + Cuv
Set u to be the parent of v
Add v to the children of u
Add edge e,, to G
if v is already a child to a node j
Remove that connection
Remove edge ¢j, from G
%Step 3: Second subset
if all nodes have been visited
return G
else
Repeat step 2 with the first unvisited node as root
excluding edges with end nodes that have been visited
for each edge e,, between the first and second subset.
Calculate the dual variables
if Yo — Yu < Cuw
Decrease the y,s until at least one of the
inequalities becomes an equality
Add this edge to G
Update distances in the second subset
else
Increase the y,s with the largest violation
so that they are all satisfied
Add the edge representing the equality to G
Update distances in the second subset
Repeat step 3
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We also include an example to make sure everything is clear before mov-
ing to the next step. Here we will make use of some new terms. Given a
tree 1" and an edge e,, € T, we say that the parent of v is u, and that v
is a child of u.

Let G be a directed graph with N = {ny,ng,ns, n4, ns, ne,n7,ng} and
E = {612, €13, €23, €34, €41, €52, €53, €56, €57, €61, 686} as shown in ﬁgure 6.1
where the distances are shown above the nodes. We begin by using the
standard Bellman-Ford algorithm, deciding on n; as the root node, the
distance to n; is set to zero, and the node is marked as visited. We be-
gin by looking at the edges outgoing of n;, finding no and ns, which we
both mark as visited. Checking the distances we find that, for ns, clearly
2 < oo, and we set yo = 2. Updating the child-parent relations we see
that n; is now that parent of ns, and n- is a child of n;. We add the edge
e12 to the tree solution, and check if ny had any previous child-parent
relations. Since it did not, we move on to n3. We find the same for ng
seeing that 3 < oo, so we set y3 = 3, update the child-parent relations,
and add e; 2 to the tree solution. No more nodes are reachable from 7,
and so we move on to no. Here we see that the only reachable node is ns,
however 2 + 5 > 3, and so no distances are updated. Proceeding to ng,
we see that n4 is reachable, and so we set y, = y3 + 7 = 10, and update
the child-parent relations. For n4 only n; is reachable, and no more dis-
tances can be updated. All the reachable nodes have now been visited,
and so we go to step 3 in the algorithm, choosing ns as the root node
for the second subset. Running Bellman-Ford with ns as the root node
and excluding eso and es3 we find that ng and n; are children of ns, and
that the distances are y5 = 0,y = 4 and y; = —2. We update the child-
parent relations and add esg and e57 to the tree solution. This leaves us
with three subgraphs where {ni,ng,ns,ns} € S1, {ns,ng,n7} € Sz, and
{ng} € S3 which we will come back to later. Looking at the subtrees
S1 and S5, we wish to connect them while still ensuring a dual feasible
solution. Figure 6.2 shows the situation with the node variables and
edges already included in the tree solution highlighted, and the edges
spanning the two trees in grey. The next step in the algorithm is to
check the bridging edges ess, €53 and eg; to find out which one to add to
the solution, connecting the two subgraphs. Checking the inequalities
Yo — Yu < Cun, We see that the largest violation is for edge eg ; with 6, and
so we increase ys5, yg, and y; by 6. Edge eg; is added to the tree solution,
and the child-parent relations are updated so that ng is the parent of ns
and ns is the parent of ny. The two subtrees are now connected. Going
back to step 3 in the algorithm, we find that ng is still unvisited. We
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mark ng as visited, set ys = 0, and run Bellman-Ford with ng as root. No
nodes are reachable from ng, and so we are left with two subtrees S;US5
and Ss, with only the edge egs bridging between them see figure 6.3a.
Clearly the inequality ys —ys < 0 is violated (by a value of 10), and so we
increase yg by 10. Having made the inequality into an equality, we add
the respecting edge to the tree solution, set ng as the parent of ng, and
add ng to the children of ng. All the nodes have now been visited, and
we have found a dual feasible initial solution for the network simplex
method which is highlighted in figure 6.3b.

Figure 6.1: Initial graph

Figure 6.2: Disconnected subsets
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(a) Second iteration of step 2 (b) Dual feasible initial solution

Efficiency and worst case scenario

We have seen that in addition to run Bellman-Ford from the root node,
the algorithm runs Bellman-Ford on each unreachable subsets from the
root containing subset, and so the running time is O(|N|-|E| - |G|) where
|G| is the number of subsets. From this we see that the worst case sce-
nario is obtained when the graph looks like figure 6.4 and n; is chosen
as the root node. The algorithm then has to run Bellman-Ford n times to
find an initial solution as none of the other nodes are reachable, making
|G| = n. However, the graph also represents the best case scenario! By
choosing n,, as the root node, the algorithm only have to run Bellman-
Ford once, as all the nodes are then reachable from n making |G| = 1.
And so we see that knowing the structure of the graph is vital to the
algorithms performance. It is also worth noting that the algorithm does
not require any temporary edges to be added in order to find a solution,
and so the complexity does not increase. This is important if |E| ~ |N
as an increase in the number of edges could lead to a great increase in
running time.

Figure 6.4: Worst case scenario

6.2 Optimal solution of the events graph

In this section we go through our solution approach for finding an opti-
mal conflict free solution to the problem formulated in chapter 4. The
underlying idea is to apply the network simplex algorithm on an initial
dual feasible solution in order to improve it. The initial solution is cal-
culated disregarding the sequence and all possible conflicts, then the
sequence is applied, before conflicts are detected and resolved.
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Initial solution of the events graph

In order to find an initial solution, we begin by making the following ob-
servation:

Given two flights f and g, the initial solution for f is independent of the
initial solution of g.

This follows from the fact that the initial solution is calculated by dis-
regarding all conflicts and sequencing, and so the events of g does not
affect the events of f, as each flight simply travels as it wishes. We use
this to our advantage when finding the initial solution.

Given information about a set of flights F' containing their desired entry
and exit times, and a given taxi route for each flight, we construct the
initial solution T following these steps: For each flight f € I’ add nodes
and edges to a graph G in accordance with the discussion in chapter
4. Then obtain the initial solution of f, T%, by adding all the backward
edges from the initial root node to the final node in the taxi route of f,
check if f is early or delayed, and add edges to Ty accordingly. Finally
add T to T'. Figure 6.5 shows the initial tree for two flights where the
first flight is delayed and the second is early.

Our observation also holds great value in the situation where an optimal,
conflict free, solution for a set of flights has been found and information
about a new flight becomes available. In this case we only have to add
the initial solution of the new flight to the initial solution of the existing
set of flights instead of calculating a new initial solution for the entire
set from scratch.
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Figure 6.5: Initial tree of two flights
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Calculating the variables

Having shown how to find the initial tree, we now go through the algo-
rithms we used for calculating the variables in the initial solution. We
begin by noting that from [14] we have the following: In every tree of n
> 1 nodes, there are at least two two leaf nodes.

Proof. Assume for contradiction that G’ = (N,E’) is a tree of n > 1 nodes
that has either one or zero leaf nodes. Start a walk at this node, or any
node if there are no leaves, exiting each node on a different edge than by
the one you entered. This is possible since every node except the single
leaf have at least two incident edges. Since there are a finite number of
nodes, eventually you will arrive at an already visited node on this walk.
This creates a cycle, but since G’ contains a cycle it cannot be a tree,
and we get a contradiction. O

It is at these leaf nodes we begin calculating the flow values. By look-
ing at the demand of these nodes, we immediately find the flow of the
incident edge. Sending flow along this edge changes the demand of the
leaf nodes to zero, and the adjacent nodes have their demands changed
by the equivalent of the flow value. We then "remove" the leaf nodes
and edges with flow calculated from the tree, giving us new leaf nodes.
Repeating this process until all the edges in the tree have had their flow
calculated completes the algorithm.

In order to calculate the dual and dual slack variables, we traverse all
nodes, and edges not in the tree, using the equations ¥y, = ¥, + ¢y, and
Zuv = Yu + Cuv — Yo from [13]. The complete code for finding the initial
dual feasible tree solution is presented below.
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input: a set of flights F', an events graph G
output:a tree solution T

%Step 1: Find initial tree
for each flight f in F
add backward edges on the taxi route to T
check if f is early or delayed
if early
add edges for f being early to T
if delayed
add edges for f being delayed to Tadd ¢y to T
if on time
add edges for f being on time to T

%Step 2: Calculate dual variables
for each edge ¢;; in T
t.dual = j.dual + e¢;;.weight

%Step 3: Calculate flow
Mark all edges as not visited
for each node n in T
n.nbr = number of adjacent nodes

while maximum of nbr > 0
for each edge ¢;; in T
if ¢ or j.nbr = 1 and e;; is not visited
Mark edge as visited
Set flow of edge according to demands
Update demands on incident nodes
Reduce nbr of incident nodes by 1
%Step 4: Calculate dual slack
for each edge ¢;; not in T
e;j.dual slack = id.dual — j.dual + e;;j.weight
return T

Having found the initial tree solution representing how the flights ide-
ally wish to travel, it is time to check whether or not this is possible.
We run the conflict detection algorithm from section 5.3 to see if there
are any conflicts in this solution. If there are any, solve them based on
the discussion in chapter 5.3, and update the solution using the primal
network simplex method. Below we go through all the steps required in
order to find a conflict free optimal solution.

66



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

input: a set of flights F, an events graph G
output: an events graph G, a tree T

% Step 1: Obtain initial solution
for each flight f in F
add nodes and edges to G according to taxi route events
add nodes and edges to G representing deviations
obtain initial dual feasible tree t; for f
add ¢ty to T

Calculate the initial solution
%Step 2: Update the solution
while some flow < 0

Update solution using the dual network simplex method

%Step 3: Detect and solve conflicts
Detect conflicts

while one or more conflicts are detected
Make a decision on which conflict to solve first
Add edges to G representing precedence constraints

Update solution using the primal network simplex method

return G, T
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Chapter 7

Test runs and results

Having covered the theory needed to implement our solution method,
it is time to put this theory to use. In this chapter we will present the
different test runs done in order to test the algorithm, and the results
we obtained. Our goal was to see how well the algorithm preformed in
time when faced with increasingly complex problems, and to compare
the different conflict resolution approaches. We start off by introducing
the instances and settings used for this purpose.

Remark: All test runs were performed on a Dell Latitude E6400 using
an Intel Core2 Duo T'9600 processor running at 2.8 GHz. The code has
been written in C#, and is rather extensive (around 2400 lines), so it is
not presented here. However, the code for finding an initial dual feasible
solution can be found in the appendix.

7.1 Scenarios

In order to test our algorithm, we have used three different scenarios
originating from the same data set obtained from the air traffic con-
trollers at Stockholm Arlanda Airport. The data set contained informa-
tion on each flights entry time, desired exit time, if it was an arrival, and
which gate it was allocated. Table 7.1 gives an overview of the flights
entry and desired exit times. We see from the table that many of the
departures have ben scheduled to take off at the same time and so we
can expect some conflicts to occur. We also make a note that all flights
have a taxi time of 10, even arrivals parking at different gates, which is
unrealistic, and so some deviation is expected.
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For every scenario, each flight was given a predetermined taxi route
obtained from running the shortest path algorithm on a graph based on
Stockholm Arlanda Airport. Figure 7.2 Shows an overview of the airport,
while figure 7.3 shows a section of the airport represented as a graph.
We used a fixed time window [—5, 10] for the exit times, and the cost of
deviating within this time window were set to be 4 for being delayed,
and -2 for being early. For flights deviating outside this time window,
the costs were set to be 16 and -8 respectively. The various time separa-
tions on conflicts and sequencing were set to 6 for conflicts, 2 for arrival
separation, and 6 for departure separation. It was assumed that flights
could wait at any point on the taxiway except the runway exit and also
the runway entry for arrivals. We also assume that flights travel at the
same speed.

7.2 Results

Before we present the results from the different scenarios, we make
an important remark to be remembered when comparing the numbers:
Conclusions about values of taxi times, deviations and total costs cannot
be drawn from the scenarios, as some of the input data such as travel
time of segments, arrival, departure, and conflict separations does not
reflect real life scenarios. The values can however be used to compare
the results of the scenarios with each other.

First we ran the algorithm with the conflict resolution approach of solv-
ing the first detected conflict (using the principle of shared paths), and
then reoptimizing. The results are shown in table 7.2. We then changed
the conflict resolution approach to the one described in section 5.4, giv-
ing us the results shown in table 7.3. Finally we did a run using 20
flights representing how air traffic controllers would handle the flights,
by releasing them from the gate as early as possible. The result of this
is also shown in the tables.
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Scenario (First detected conflict) Scenario 1 Scenario 2 Scenario 3 ATC
Number of flights 10 20 30 20
Number of arrivals 5 9 17 9
Number of departures 5 11 13 11
Number of nodes 440 825 1260 825
Number of edges 479 904 1379 915
Number of conflicts detected 10 33 83 33
Iterations required to reoptimize after conflicts 10 39 106 39
Separation edges required 14 42 100 42
Running time of code (seconds) 0.436 4.878 30.031 4.855
Running time of code After initial solution (seconds) 0.367 4.76 29.773 4.730
Total Desired taxi time 202 382 580 382
Total actual taxi time 211 424 753 445
Total wait time on taxiway 9 42 174 63
Total deviation (Base: Travel time) 0.6 0.65 0.754 0.6
Total cost 13560 27720 51740 27720
Average cost per time unit of deviation 9.58 9.59 9.66 9.59
Table 7.2
Scenario (First conflict in time) Scenario 1 Scenario 2 Scenario 3 ATC
Number of flights 10 20 30 20
Number of arrivals 5 9 17 9
Number of departures 5 11 13 11
Number of nodes 440 825 1260 825
Number of edges 479 904 1379 915
Number of conflicts detected 10 27 68 27
Iterations required to reoptimize after conflicts 10 31 80 31
Separation edges required 14 35 84 35
Running time of code (seconds) 0.463 4.11 24.324 4.166
Running time of code After initial solution (seconds) 0.392 3.985 24.066 3.959
Total Desired taxi time 202 382 580 382
Total actual taxi time 211 424 753 445
Total wait time on taxiway 9 42 174 63
Total deviation (Base: Travel time) 0.6 0.65 0.754 0.6
Total cost 13560 27720 51740 27720
9.58 9.59 9.66 9.59

Average cost per time unit of deviation

Table 7.3
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Comments

Complexity of the events graph: We see that the number of edges is
very close to the number of nodes for all scenarios. Relating this to the
discussion in section 4.4 this is the result of the assumption that flights
can stop on all points. The same discussion also reveals that the num-
ber of edges can at most be O(2n) + ¢ where n is the number of nodes
and c the number of edges needed to resolve conflicts. This is the case
when flights are not allowed to stop at any point. We also see that the
average number of nodes required for each flights events is 42.4, while
the average number of edges is 46.4. This gives an understanding how
how the complexity increases for each added flight.

Conflict resolution: We see that the number of conflicts increase as the
number of flights increase which is natural. In addition, the increase
from 20 to 30 flights is bigger than the increase from 10 to 20 flights
due to the increased complexity. The same goes for the number of pri-
mal iterations needed in order to obtain an optimal solution after resolv-
ing the conflicts, however we see that even for 30 flights, the number
of iterations required is not much bigger than the number of conflicts,
keeping in mind that the minimum number of iterations required equals
the number of conflicts as the definition of conflicts requires at least one
iteration to resolve. The number of required separation edges in order
to resolve the conflicts are, as a result of flights traveling at the same
speed, close to one for each conflict. The tables also show us how the
two conflict resolution approaches compares to each other. We observe
that the second method of resolving conflicts, by starting with the first
in time, results in fewer conflicts needed to be resolved in total, and
fewer iterations needed to obtain a conflict free optimal solution. This
difference increases along with the increase in number of flights. Due
to this reduction in conflicts, the number of required separation edges
naturally also decreases.

Running time: Our first observation regarding the running time is that
it increases quite drastically when the number of flights increases. How-
ever, finding the initial solution is done within 0.3 seconds even for 30
flights, and so we conclude that it is the conflict detection and resolution
that is the major time consumer with 84% of the total running time for
10 flights, and 99% for 30 flights. Our second observation is that the
second conflict resolution approach leads to a 3.7 second decrease in
running time for scenario 3 due to resolving fewer conflicts.
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Optimal solution: The optimal solution of the problem appeared to be
identical regardless of which conflict resolution approach we used, per-
haps due to using the same precedence conditions, however, we regard
this as a coincidence, and testing on other data sets should disprove that
this is always the case.

Comparing with air traffic controllers: Our algorithm tries to hold flights
at the gate as long as possible before releasing them onto the taxiway.
Comparing this with the air traffic controllers, who releases flights when
they are ready, we see that the overall taxi time is reduced, without com-
promising the solution, by following the algorithms suggestion. This is
due to flights having to wait ON the taxiway rather than at the gate in
order to avoid conflicts, when following the controllers approach. As a
result of this, the taxiway has fewer active flights over a longer period
of time. We see this from figure 7.1 where the controllers release flights
earlier than the algorithm, and since the optimal solution was the same,
none of the flights exit earlier when directed by controllers.

|

0 300 302 304 306 308 30 312 314
Time
B Controllers B Algarithm

Figure 7.1: Active flights
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7.3 Conclusions

In this thesis we have shown how the ground movement problem can
be formulated as a minimum cost flow problem to which the network
simplex method can be applied. Given a sequence on the and taxi route,
we are able to handle both arriving and departing flights, obtaining a
conflict free solution. Even with our naive implementation of this algo-
rithm, for instance we have not implemented dynamic tree algorithms,
an initial solution can be found and updated within a second even for
instances containing 30 flights. We have seen that the most time con-
suming part of our solution approach is detecting conflicts, however,
making a "smart" choice on which conflict to solve first reduces the run-
ning time by up to 19% for our test cases by reducing the number of
conflicts occuring. Still the rapid increase in total running time with the
increase in number of flights are of concern, especially for airports with
more traffic.

Comparing our algorithm to the air traffic controllers, we see that the al-
gorithms optimal solution allows flights to wait longer at the gate before
they start taxiing, reducing the overall taxi time. This could prove im-
portant as passenger delays are less likely to affect the actual off-block
time of the individual flights. It also has an environmental and econom-
ical impact, as less fuel is spent du to not needing to have the engines
running while at the gate. In addition, even less fuel is consumed, as
the flights are less likely to have to slow down and then accelerate while
taxiing, and research, (Stettler, Eastham, and Barrett, 2011)[16], has
shown that accelerating aircrafts have close to twice the fuel consump-
tion as non-accelerating aircrafts. As a result of this, airliners may tank
up less fuel before a flight, reducing the weight and overall fuel con-
sumption.

We have also shown how it is possible to find an initial dual feasible
solution on any connected digraph. This method requires running the
Bellman-Ford algorithm on multiple subsets when the graph is not strongly
connected. Therefore, knowledge of how these subsets are connected
can greatly improve the running time of the algorithm. A discussion on
different approaches to conflict resolution has also been given, and re-
sults for resolving the first detected conflict and results for resolving the
first conflict in time on a data set has been given. This thesis will be pre-
sented at the 2014 VeRoLog (EURO Working Group on Vehicle Routing
and Logistics Optimization) conference in Oslo.
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Chapter 8

Future work

A consequence of research will always be that the answers to the posed
questions, give rise to new questions. The research area of this thesis
is still very young, and vast resources are spent on it every year, just
take the SESAR project as an example with an estimated budget of €2.1
billion for its 2020 horizon. This chapter gives some suggestions on
topics to be focused on extending the work done in this thesis.

Additional data sets

The first natural step would be to obtain additional data sets from real
life data, and run simulations on them. This should be done both for
Stockholm Arlanda Airport, but also for different airports in order to get
more varied situations. Doing this would improve the understanding of
results, and additional conclusions may be drawn.

Efficiency

We have by no means claimed that our implementation of the algorithm
is the most efficient one, in fact it is rather naive, and the overall run-
ning time may benefit greatly by improving the implementation. It would
be interesting to see an implementation using for instance the LEMON
Graph Library (www.http://lemon.cs.elte.hu/trac/lemon), as this is open
source, and seems to contain some interesting implementations.

Another way to improve efficiency is to investigate different approaches
for detecting conflicts. As we have seen, this is the major time consumer
in our approach, and so have great potential for improvement. An idea
here would be to somehow use the previous solution in order to guide
the algorithm towards the next solution.

77



Stability

This is an aspect of conflict resolution which we have not discussed. In
theory, conflict resolution could be used to obtain the optimal sequence
of flights on the runway, however, careful considerations about changes
affecting flights both in time and sequence from one solution to the next
must be taken into account. If a solution requires a complete rearrange
on the sequence of flights from the previous solution, this might not
be possible as extensive communication with pilots would be required.
Therefore, investigation into how much change can be tolerated, and
the implications of these changes to each flight should be considered.

Integration with other airport operations

Improving stability of the solutions would lead to more reliable input
to other airport operational problems, such as gate allocation, baggage
handling and deicing sequencing. It is not unlikely that in the future
solutions to these problems combined form the foundation to reduce
the overall deviations of flights at an airport. Improvements in all these
areas would give the passenger more reliable information on their flights
departure.

Integration with other airports

Even though a lot of research is needed before a study of integration
with other airports is done, we still mention it as a final topic. When sta-
bility of solutions have been improved, more reliable data on flights can
be sent to different airports, improving the estimation of arrival times.
This gives both air traffic controllers, and optimization algorithms a bet-
ter chance of planning ahead, improving their choices, and obtaining a
better solution.
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Appendix A

Class objects

Node objects

public Node(T t, double demand, bool isHoldingNode,
double dual)

{
Number = t;
Demand = demand;
DemandLeft = demand;
Dual = dual;
IsHoldingNode = isHoldingNode;
OutgoingEdges = new List<Edge>();
IncomingEdges = new List<Edge>();
}

Edge objects

public Edge(Node nl, Node n2, double weight, bool isDirected,
U associatedObject)

DualSlack = 0;

marked = false;

Flow = 0;

IsDirected = isDirected;
Nodel = nl;

Node2 n2;
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11

12

13

14

Flight objects

public Flight(String id, int flightNumber, String startPoint,

String endPoint, double entryTime,
double exitTime, boolarrival, Airport airport )

ID = id;

FlightNumber = flightNumber;
StartPoint = airport.Network.FindWaypoint(startPoint);
EndPoint = airport.Network.FindWaypoint(endPoint);
EntryTime = entryTime;

ExitTime = exitTime;

Arrival = arrival;

RouteNodes = new List<Graph<Node, Edge>.Node>();
RoutePoints = new List<Point>();
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Appendix B

Finding initial dual feasible
solution

Adding nodes and edges for taxiing and sequence

1 public void TaxiAndSequence
2 input: List<Point> taxiPoints

3 List<DirectedSegment> taxiSegments

4 Flight flight

5 List<List<Point>> taxiPlan

6 Dictionary<Node, Point> dictArrival

7 Dictionary<Node, Point> dictDeparture
8 Graph<int, string> graph

9 output:

10
11 int counter = 0;
12 foreach(Point point in taxiPoints)

13 {

14 % First point in taxi route

15 if (counter == 0)

16 if(flight.arrival == true)

17 Node newNode =

18 graph.AddNode(graph.Nodes.Count + 1, 0, false);
19 flight.RouteNodes.Add(newNode);

20 flight.RoutePoints.Add(point);

21 dictArrival.Add(newNode, point);

22 else

23 Node newNode = graph.AddNode(graph.Nodes.Count + 1, 0,
24 point.IsHoldingPoint));
25 flight.RouteNodes.Add (newNode);
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27

28

29
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31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

10

11

12

flight.RoutePoints.Add(point);
dictDeparture.Add(newNode, point);
graph.AddEdge (Nodes.Count, 1, - flight.EntryTime, true,
"e" + graph.Nodes.Count + "_" +1);
% Other points in taxi route
else
Node newNode =
graph.AddNode(graph.Nodes.Count + 1, 0, true);
flight.RouteNodes.Add(newNode) ;
flight.RoutePoints.Add(point);
if (flight.Arrival == true)
dictArrival.Add(newNode, point);
if (flight.Arrival == false)
dictDeparture.Add(newNode, point);
if (newNode.IsHoldingNode == false)
graph.AddEdge(graph.Nodes.Count - 1, graph.Nodes.Count,
taxiSegments[counter -1].Segment.Distance, true,
"e" + graph.Nodes.Count -1 + "_" + graph.Nodes.Count);
graph.AddEdge(graph.Nodes.Count, graph.Nodes.Count - 1,
taxiSegments[counter-1].Segment.Distance, true,
"e" + graph.Nodes.Count + "_" + graph.Nodes.Count-1);
else if (newNode.IsHoldingNode == true)
graph.AddEdge(graph.Nodes.Count, graph.Nodes.Count - 1,
taxiSegments[counter-1].Segment.Distance, true,
"e" + graph.Nodes.Count + "_" + graph.Nodes.Count-1);
counter += 1;

}

Include edges from taxi route in the initial tree

public void InitialFlightTaxiTree
input: Node startNode
List<Node> routeNodes
List<Edge> Tree
List<int> parents

% Add nodes and edges
foreach (Node node in routeNodes)
foreach (Edge edge in node.OutgoingEdges)
parents[edge.Nodel.Number - 1] = edge.Node2.Number;
Tree.Add(edge);
node.Dual = edge.Node2.Dual - edge.Weight;

Include edges from flight deviation in the initial tree
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38

39

40

41

public void InitialFlightDeviationTree
input: Node startNode

List<Node> DeviationNodes

List<Edge> Tree

Flight flight

List<int> parents

double delayWindow

double earlyWindow

% If flight is early
if (flight.RouteNodes[last index].Dual < flight.DesiredExitTime)
parents[flight.RouteNodes[last index].OutgoingEdges[1]
.Node2.Numberl] =
flight.RouteNodes[flight.RouteNodes.Count - 1]
.OutgoingEdges[1].Nodel.Number;
Tree.Add(flight.RouteNodes[last index].OutgoingEdges[1]);
for (int 1 =0; 1 <= 3; i += 2)

{
foreach (Edge edge in DeviationNodes[i].OutgoingEdges)
{
if(edge.Node2.Number-1] = edge.Node2.Number)
parents[edge.Nodel.Number - 1] = edge.Node2.Number;
Tree.Add (edge);
}
}

% If flight is very early
if (flight.RouteNodes[last index].Dual <=
flight.DesiredExitTime - earlyWindow)
parents[DeviationNodes[1].0utgoingEdges[0].Node2.Number-1] =
DeviationNodes[1].0OutgoingEdges[0].Nodel.Number;
Tree.Add(DeviationNodes[1].0utgoingEdges[0]);

%If flight is delayed
if (flight.RouteNodes[last index].Dual > flight.DesiredExitTime)
foreach (Edge edge in DeviationNodes[0].OutgoingEdges)
{
if(edge.Node2.Number == flight.RouteNodes[last index].Number)
parents[edge.Nodel.Number - 1] = edge.Node2.Number;
Tree.Add (edge);
}

for (int 1 =1; 1 <= 3; i += 2)
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1

2

foreach (Edge edge in DeviationNodes[i].IncomingEdges)
{
if (edge.Nodel.Number == 1)
parents[edge.Node2.Number-1] = edge.Nodel.Number;
Tree.Add(edge);
}

}
% If flight is very delayed
if (flight.RouteNodes[last index].Dual >=
flight.DesiredExitTime + delayWindow)
parents[DeviationNodes[0].IncomingEdges[0]
.Nodel.Number - 1] = DeviationNodes[0]
.IncomingEdges[0] .Node2.Number;

% If flight is on time
if (flight.RouteNodes[last index].Dual ==
flight.DesiredExitTime)
parents[DeviationNodes[3].IncomingEdges[0]
.Node2.Number - 1] =
DeviationNodes[3].IncomingEdges[0]
.Nodel.Number;
parents[DeviationNodes[1].IncomingEdges[0]
.Node2.Number - 1] =
DeviationNodes[1].IncomingEdges[0]
.Nodel.Number;
parents[DeviationNodes[0].OutgoingEdges[0].
Nodel.Number - 1] =
DeviationNodes[0Q].OutgoingEdges[0]
.Node2.Number;
parents[DeviationNodes[2].0utgoingEdges[0].
Nodel.Number - 1] =
DeviationNodes[2].0utgoingEdges[0]
.Node2.Number;
Tree.Add(DeviationNodes[3].IncomingEdges[0]);
Tree.Add(DeviationNodes[1].IncomingEdges[0]);
Tree.Add(DeviationNodes[0].OutgoingEdges[0]);
Tree.Add(DeviationNodes[2].0utgoingEdges[0]);

Calculate variables and update solution

public void CalculateDualSolution
input: Node startNode

85



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24
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27

28

29

30

31

32

33

34

Graph<Node, Edge> airport
List<Edge> Tree
List<int> parents

output: List<int>[] Children

% Initialize required lists
Children = new List<int>();
foreach (Node node in airport.Nodes)
{
Children[node.Number-1] = new List<int>();
}
for (int i = 1; i <= parents.Count-1; i++)
{
Children[parents[i]-1].Add(i+1);
}
List<bool> Explored = new List<bool>();
foreach (Node node in airport.nodes)

{
Explored.Add(false);

% Calculate variables
airport.InitialFlow(Tree)
airport.dualCalc(sartNode, Explored, Tree);
airport.dualSlackCalc(Tree);

% Update solution
while (airport.MinFlow(Tree).Flow < 0)

{

airport.dualStep(Tree, parents, Children)

}

return Children
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