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Abstract

This thesis presents experimental work on thin films of different compounds containing 

lithium, sodium or potassium has been synthesized by atomic layer deposition (ALD). The 

overall motivation for this work has been to develop materials and methods to improve 

lithium ion battery technology by using ALD.

A cathode in a lithium ion battery should have a long operating life, be environmentally 

benign and have high capacity and power density. Vanadium oxides are popular as cathodes 

in lithium ion batteries due to their relative low price and potentially high capacity. Most 

studies of vanadium oxide cathodes shows relatively short lifetime of the cathode or relatively 

fast cathodes. In this work a high power thin film cathode of V2O5 for lithium ion batteries 

has been developed. The cathode is deposited by ALD using VO(thd)2 and ozone, which 

displays a rather peculiar type of ALD-growth. This peculiar growth is studied in detail, and 

the optical properties of these films are investigated. The films have an unusually rough 

surface, and it was found that a 10nm thick film deposited at 235oC consisted of individual 

nano particles. The 10 nm thick cathode has been shown to endure more than 4000 discharge-

cycles at 120C and almost 1600 cycles while staying within 80% of the original capacity. The 

same cathode was also shown to sustain discharge rates of 960C which corresponds to a 

discharge in 3.75s. The power density obtained in this work bridges the gap between super 

capacitors and batteries and the combination of long lifetime and high discharge rate is not 

found previously for thin film batteries of V2O5.

ALD of lithium containing materials has attracted widespread interest the last few years. The 

number of known precursors for lithium has grown, but the complete picture is still not 

understood. Therefore lithium hexamethyldisilazane (LiHMDS) is explored as a precursor for 

ALD of lithium compounds. The precursor is shown successful in deposition of Li3N, Li2CO3

and LiNbO3. The deposition of Li3N may be an important step to deposit solid electrolytes 

and the deposition of Li2CO3 proved to be important for proving the growth of oxides using 

this precursor. When comparing the growth of Li3N and Li2CO3 it was found significant 

difference in the surface chemistry. The LiNbO3-films were shown to be ferroelectric with an 

unusually high coercive field. It proved possible to deposit epitaxial LiNbO3 on single crystal 

substrates of LaAlO3 and Al2O3 and the orientation of the films could be controlled by the 

orientation of the substrate. 
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A milestone in atomic layer deposition of lithium compounds would be to deposit a full 

battery. In order to realize this, a lithiated cathode material must be deposited. The cathode 

material LiMn2O4 was also studied in this work. It was discovered that the amount of lithium 

in the deposited films is more or less independent of the number lithium cycles to manganese 

cycles. It is hypothesized that the ligand of the lithium precursor reduces the manganese and 

the lithium is intercalated into the manganese oxide. This is a new approach to ALD of 

lithium compounds and the term film body controlled lithium deposition is used to describe 

the mechanism. The use of LiHMDS is also attempted in deposition of LiMn2O4, with no 

success.

Sodium and potassium are among the few elements in the periodic table which are not yet 

used in ALD. Sodium and potassium are relatively similar to lithium and exploring the 

deposition of these elements will hopefully shed new light on the deposition of lithium 

compounds. Many oxides of sodium and potassium also have piezo- and ferroelectric 

properties, and the sodium ion battery is predicted to be a way to combat lithium shortage. 

Atomic layer deposition of sodium and potassium oxides is reported for the first time in this 

thesis. Six different precursors are investigated and evaluated and precursors for sodium and 

potassium. The initial study was performed by depositing sodium and potassium aluminates, 

in order to evaluate the precursors. The process for the aluminates was found to scale up to 

the 200mm wafer scale. The precursors were found to work in a large temperature window 

and react with both water and ozone, thus proving to relatively flexible and possible to 

combine with most known ALD-processes. Further development into deposition of sodium 

based ferroelectrics then explored by deposition of sodium tantalate and sodium niobate.
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1 Introduction

State of the art functional materials are often so important for society that they define the 

name of the age, such as the Stone Age or the Iron Age. What our age will be named is hard 

to predict, but it is certain that our progress and standard of living is strongly dependent on 

our materials. Every day we use and take for granted a large variety of materials of different 

sizes and scales. Everything from construction materials as steel, glass, concrete and plastics 

to electrical conductors such as copper are an integral part of our lives. We also rely heavily 

on materials with advanced functional properties in our modern society. Materials such as 

semiconductors, catalysts, insulators, magnetic materials or materials for energy storage and 

production are important for our technology and devices. Increasing material performance and 

development of new materials is what drove humans out of the caves and into skyscrapers and 

replaced the stone axe with a smart-phone. Materials are not only the core of our technology, 

but also of our art and our culture.

Energy consumption is a defining property of a civilisation; it is a measure of productivity and 

a measure of living standard. Many functional materials are in some way connected to how 

we are harvesting, transporting or utilizing energy, such as electroactive materials in batteries 

and fuel cells, catalysts for production of chemicals or semiconductors in solar cells and 

computers to name a few. We cannot meet our energy demands without construction 

materials or functional materials as the devices and machinery that consumes the energy are 

also made from materials of some sort. In the last few decades, energy distribution and 

storage has also become dependent on functional materials in the form of batteries or in the 

form of hydrogen storage. Energy storage is of paramount importance when utilizing energy 

from renewable sources, as the supply and demand for wind and solar energy are rarely in 

phase. Electrochemical storage of energy relies on many different types of materials which 

should function together at a variety of conditions. In fuel cells and batteries the materials are 

exposed to large chemical- and electrical potential gradients, high current densities and ions 

which move through solid materials and interfaces as well as to phase transitions during 

operation, which are quite brutal conditions. In order to cope with these conditions materials 

need to be designed on many different scales. In materials science it is not just the chemical 

composition that is important for the function but also crystalline structure, texture and 

morphology of the material. With the advent of nano-science it has become clear that also the 



2

shape and size can define the properties of materials and by working on all these scales we 

can design materials with a new degree of freedom.

As devices are becoming smaller and more mobile, integration of the energy supply into the 

device is increasingly important. Micro batteries are of increasing importance for 

development of among other things medical-, communication- and entertainment-

technologies. The technological development the past decades have given us computers and 

other devices with increasing speed and storage, but recently there has been a shift where 

mobility and size has become an important parameter. This trend does not only apply to 

computers and cell phones, but also to devices such as medical devices, motion sensors and 

communication tags. The demand for mobility also calls for increasingly advanced batteries, 

and the possibility to integrate batteries into the device.

Another important dimension to technological development is to use environmentally benign 

materials. The history of technology is full of examples such as leaded fuels, acid rain and 

climate change where the cost of progress has been higher than expected. Therefore a range of 

materials such as lead are banned from use. In battery production the uses of metals such as 

lead and cadmium are problematic and should therefore be substituted. In this thesis a cathode 

for lithium ion batteries made from V2O5 have been developed and the performance and 

lifetime have been shown to be superior to most other reported V2O5-based cathodes in the 

literature. Lead based ferroelectrics are known for their high performance, but due to 

environmental concerns new lead-free ferroelectrics should be developed. In this thesis new 

ALD-processes for the alkali metals are developed with the aim of producing new piezo- and 

ferroelectric materials. The niobates and tantalates of the alkali metals are deposited and 

studied and LiNbO3 is studied extensively and found to be ferroelectric.

Atomic layer deposition (ALD) is a method for producing thin films with very high precision. 

Films produced using this technique can be controlled down to a fraction of a nanometre with 

extremely good uniformity and reproducibility. ALD can also be utilized for deposition on 

surfaces with 3D structures. The uniformity and the indifference to substrate morphology 

enable the use of ALD in most areas of nanotechnology and research. ALD has over the last 

40 years been used to deposit a wide host of materials, with an equally wide range of 

applications. Methods for depositing compounds of most of the elements in the periodic table 
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have been developed during the history of ALD. However, it is only in the recent years that 

processes for lithium compounds have reported. In this thesis the first results for deposition of 

sodium and potassium oxides are reported.
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2 Applications of alkali metal compounds

This chapter will outline some applications of alkali metal compounds, especially in battery 

technology and give an introduction to dielectric materials.

2.1 Batteries

Every new generation of consumer technology is required to have better performance, be less 

expensive and more efficient. This seems like an impossible task, but by developing better 

materials, making the constituent parts smaller and more efficient and scaling the production, 

it has proven possible for several decades. For a mobile device, improved performance ideally 

includes a better battery. Unfortunately, the capacity of a battery is limited by chemistry and 

hence the capacity cannot be increased at the same rate as semiconductor technology. 

However, making a better battery does not necessarily mean only higher capacity, but can 

also mean for instance increased stability, charge rate or voltage. These properties are not 

only dependant on the elemental content and can often be improved by nano structuring.

A battery is in principle, a simple device and it consists of three main parts which are 

common to all types and designs of batteries: a cathode, an electrolyte and an anode. 

Depending on the design the components and chemistry will be different, but the operating 

principle is always that the electrolyte transports some ion from the anode to the cathode

while at the same time an electron is transferred in an outer circuit, as outlined in Figure 1.

This effectively causes an oxidation to occur at the anode while the cathode is reduced. As 

this work is concentrated on alkali metals, batteries using these metals will be used as 

examples here.
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Figure 1 Illustration of the parts and operation of a lithium ion battery during discharge. The lithium ions 
move from the anode to the cathode, which are separated by a separator and an electrolyte while the 
electrons drive the load. 

Lithium and sodium ion batteries

A lithium ion battery is a secondary battery where lithium ions are moved from the anode to 

the cathode during discharge. Lithium has the most negative standard reduction potential of 

the elements in the periodic table. Considering that lithium is also the lightest metal both in 

terms of molar mass and density; both the energy- and power-density of lithium ion batteries 

are high. The lithium ion battery does not have the disadvantages which lead-acid, nickel-

cadmium or nickel-metal hydride has such as the high weight and hydrogen production during 

charge. Lithium ion batteries on the other hand are expensive and also have some safety 

issues. Commercial batteries which have flammable electrolytes in the form of an organic 

solvent have caused accidents and fires [1, 2].

A lithium ion battery consists of the same three parts as all batteries - cathode, anode and 

electrolyte. The materials for these components are required to be good lithium ion 
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conductors, or be nano structured in such a way that the diffusion distance through the 

electrolyte is very short. The electrodes are also required to be electronically conductive,

which enables the transport of electrons from the current collector to where the lithium ions

are to be intercalated. The electrolyte on the other hand is required to be an electrical 

insulator; otherwise the battery would self-discharge rapidly.

The anode could be made from metallic lithium which gives the highest voltage and capacity 

per weight or volume. However, lithium anodes are prone to some disadvantages, especially 

safety issues and dendritic growth of lithium on the anode during charging which eventually 

short circuits the battery [3]. The anode is therefore often lithium ions intercalated into carbon

[4], metal oxides [5], nitrides [6] or metals such as tin [7]. Silicon is also suggested as a high 

capacity anode – but the volume work is too large for a long lifetime of the assembled 

batteries [7, 8]. The mentioned anodes have capacities in the range 300 mAh/g to 3900 mAh/g 

for graphite and metallic lithium, respectively and the oxide and nitride anodes between 400-

1000 mAh/g. The voltages vs. Li/Li+ of these materials range from ~1.5 V for the oxides to 

0.7V for the nitrides and 0.05-0.2V for the carbons [3]. The high capacities suggest that the 

main contribution to increased capacity per weight or volume does not come from improving 

the anode, but rather the cathode.

Cathodes for lithium ion battery should also ideally consist of materials with high electronic

and ionic conductivity, and react with lithium in a reversible way. One of the first 

breakthroughs in cathode materials were TiS2 [9], which is a layered compound. Layered 

compounds are materials which have crystal structures which are built up from sheets. The 

sheets separated by ions and these structures have the advantage that they often allow for high 

ion mobility in the space between the sheets. Later, layered oxides, such as LiMO2 (M=Ni,

Co, Mn) were discovered to have higher intercalation potential than the sulphides and the first 

commercial lithium ion battery, marketed by Sony, utilized layered LiCoO2[10]. In the last 

two decades, other structure classes such as the manganese oxide spinels [11] and the 

LiFePO4 [12] have also been commercialized. These common cathode materials have 

capacities from about 140 mAh/g for LiCoO2 to about 220 mAh/g for the vanadium oxides, 

and the other mentioned materials, between 160-180 mAh/g [3]. A limitation of the cathode 

materials most commonly used in commercial applications, such as LiFePO4, LiCoO2 of 

LiMn2O4 is that they exchange at most one electron per transition metal ion, and often less. A 
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big paradigm shift would therefore be to increase the number of electrons exchanged as this 

would literally double the capacity of the battery without increasing the mass or volume [3].

Exchanging more electrons often causes different voltages during discharge and often the 

intermediate phases have different conductivities and are unstable, causing precipitation of 

electrochemically inactive phases. Elements such as tungsten and molybdenum can form 

compounds which can exchange more than one electron per formula unit. However, 

molybdenum and tungsten are quite heavy and do not necessarily contribute to net gain in 

specific capacity. An alternative is vanadium, which can form oxides that exchange more than 

one electron, but the life time is short and the kinetics is slow when exchanging more than one 

electron per vanadium atom from V2O5.

The demand for high intrinsic conductivities is not absolute. For instance LiFePO4 is a quite 

poor electronic and ionic conductor, but still a successful cathode material when prepared as 

nano particles [10]. There are also other advantages to nano structuring of electrodes, such as 

increased rate capability and longer lifetime[8]. The increased lifetime gained from nano 

structuring originates in the ability of smaller particles to cope with the volume variations of 

repeated lithium insertions [13].

Electrolytes for lithium ion batteries should have high mobility of lithium and high electronic 

resistivity, allowing them to only transport lithium ions between the electrodes and no 

electrons. Electrolytes can be divided into two main categories, solid and liquid. Liquid 

electrolytes are normally used in commercial batteries and consists of a lithium salt in an 

organic solvent [14] or an ionic liquid which contains lithium [15, 16]. The liquid electrolytes 

have the advantage that they are inexpensive and easy to prepare. On the other hand, they are 

also a safety concern due to the flammable solvents used [17, 18] and the toxic products such 

as HF are released if the electrolyte salts comes in contact with water. Another drawback with 

liquid electrolytes is the decomposition of the solvent when charged at high voltages, which 

limits the potential to about 4V for lithium ion batteries with liquid electrolytes. All these 

problems can be potentially be circumvented with the application of a solid - polymeric, 

ceramic or glassy – electrolyte, which does not suffer from decomposition at high voltages 

[16, 18-20]. These electrolytes can be materials such as LiPON, amorphous LiTaO3, lithium 

phosphide sulphide glasses or complex oxides such as lithium lanthanum titanate or -zirconate

[16, 21-24]. The conductivities of solid electrolytes at room temperature are typically between 
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~10-3 and  ~10-8 S/cm [16, 22, 24], compared to ~10-3S/cm for liquid electrolytes [14]. Low 

conductivities could be compensated by a thinner electrolyte or higher operation temperature.

Yet, the implementation of solid electrolytes is not simple, especially due to the chemical 

compatibility between the electrodes and electrolytes during sintering [16] and mechanical 

properties of the electrolyte [22] .

Na-ion batteries

A similar type of battery as the lithium ion battery is the sodium ion battery. The basic design 

and construction is similar, however the sodium ion battery is not yet commercialized to the 

same degree as the lithium ion battery. The sodium ion battery has a few obvious advantages, 

primarily the amount of sodium in the world which is about 1000 times higher than the 

amount of lithium. Sodium is also readily available from seawater and sodium chloride could 

be mined, making the sodium available everywhere on the planet. In contrast, the amount of 

lithium in the world is projected to be a problem if electric vehicles should be fitted with 

lithium ion batteries. However, it is debated if the lithium supplies actually will run out[15].

Another advantage of sodium batteries is that the cathodes could readily be made from oxides 

of common metals such as iron, vanadium and manganese.

Although sodium ion batteries have some advantages, they also have some disadvantages

compared to lithium ion batteries. The disadvantages arise mostly from the properties of 

sodium. Sodium have higher molar mass which will cause lower capacity, while the lower 

reduction potential causes lower cell voltages and a larger ionic radius which gives slower 

diffusion and kinetics [25]. Lastly, the low melting point of 98 oC can be a potential safety 

issue [25]. Thus at the moment the sodium ion battery is a supplement to lithium ion batteries 

for larger applications such as stationary energy storage and electric vehicles.

The sodium ion battery research field is not as mature as the lithium field, and such there is

big room for improvement of the materials. Pure solid sodium anodes cannot be used with 

liquid electrolytes in commercial batteries for safety reasons as the dendrite formation is even 

more prominent for sodium compared to that for lithium. The anodes for first generation 

sodium ion batteries are thought to be carbons, which have a capacity of about 220 mAh/g 

[25]. Cathode materials which are investigated are either oxides which are analogous to the 

layered or spinel oxides used in lithium ion batteries or novel compounds such as the 
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fluorophosphates [26]. The liquid electrolytes used are currently also analogues of the lithium 

electrolytes. However a recent review [25] indicates that organic solvents corrode the anodes 

and does not form the stable surface-electrolyte-interface (SEI), which is formed in lithium 

ion batteries. This suggests that integration of solid electrolytes could make a big impact on 

sodium ion batteries as there already exist good solid state sodium ion conductors, such as the 

-alumina [27].

Thin film batteries

A battery does not necessarily have to be assembled from powders and liquid electrolytes; it

could also be made from a stack of thin films. A thin film battery will obviously contain less 

electroactive material than a bulk battery, and hence the total capacity of a thin film battery 

will be low. However this is not necessarily problematic in the applications areas of thin film 

batteries. Such batteries are thought to have applications in technologies such as CMOS and 

MEMS, medical implants or smart cards [23, 28, 29] where the power consumption is low. A

thin film battery has some advantages compared to a normal battery, such as shorter diffusion 

paths and the potential for much faster discharge rates than a normal battery. For a thin film 

battery there is no need for binders and carbon which yield higher efficiencies [23] and longer

lifetime [29]. It is very desirable to utilize solid state electrolytes in thin film batteries. A solid 

electrolyte can be prepared with a thickness of < 1μm, compared to liquid electrolytes which 

are normally in the range of 20μm [30].

Thin film batteries have previously been prepared using techniques such as PLD [28]

sputtering [31]. However, deposition of thin films of only the cathode materials without the 

rest of the battery structure using CVD has also been proven for LiCoO2 [32, 33] and V2O5

[34-36]. PLD and sputtering have been utilized to successfully deposit batteries on flat 

substrates with performances close to the theoretical capacity and with very long life time [23,

28, 31]. Notten et al. have pointed out that these systems do not necessarily provide sufficient 

energy for the desired applications [29]. Their proposed solution was to increase the surface 

area of the battery without increasing the footprint by making a “3D-integrated all-solid-state 

battery”. This concept, which has not yet been realized, estimates energy densities of about 5 

mWh/μm cm2 compared to 0.1 mWh/μm cm2 [29, 37], i.e. a 50-fold increase compared to 

planar thin film battery structures. A key to realize such a concept is the ability to deposit thin 

films on a 3D structured substrate. ALD is the only known thin film technique which can 
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deposit thin films of complex oxides on the high aspect ratio substrates, which are needed as 

templates for this type of battery [29].

There are already commercial all solid state thin film batteries on the market [38-40] built for 

integration in devices. These devices are specified to endure more than a decade of service 

and 100’000 discharge cycles [38], due to the use of solid electrolytes. The dimensions of the 

smallest packaged commercial batteries are in the order of 5 x 5 x 1 mm3. The thickness is 

quite large, however, the active battery structure can be as thin as 10-20μm and the bulk of 

the thickness comes from packaging to protect the battery from air and moisture [41].

Commercial batteries can be deposited either on silicon [39] or on polymer substrates using 

either PECVD or sputtering of LiCoO2, V2O5 or LiMn2O4 as cathode materials and tin-based 

anodes [40]. The commercial alternative to thin film batteries are supercapacitors [42],

however the thin film batteries are already superior to supercapacitors in terms of voltage and 

energy density, while the supercapacitors are superior in terms of power density. Commercial 

batteries can also be supplemented with energy harvesting modules for full wireless operation 

[38, 39]. The prices for such batteries are below $0.5 for a 4V, 50μAh battery [39].

2.2 Electrical properties of alkali metal oxides

Alkali metal oxides can have other functional properties than electrochemical properties. The 

perovskite related complex oxides of the alkali metals and a six-valent metal are insulators

and often piezo- or ferroelectric, depending on composition and temperature. Apart from 

insulators, NaxCoO2 H2O is also known to be superconductor [43] and NaxCoO2 is known to 

be a thermoelectric[44, 45].
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Figure 2 Comparison of different classes of dielectric materials with examples of materials.

Figure 2 shows an overview of different classes of dielectric materials with some examples.

The figure illustrates that all ferroelectrics must be pyro-, piezo- and dielectric, but only some 

of the dielectric materials are piezo-, pyro- and/or ferroelectrics. This classification has, of 

course, some physical origin which can be traced back to the placement of atoms inside the 

material and can be explained by the symmetry of the crystal. A piezoelectric material must 

be both insulating and have a point group without a centre of symmetry in its crystal structure,

the exception is the point group 432 which cannot be piezoelectric. If the material also has a 

unique polar axis, which causes a permanent polarization in the material, it is pyro electric.

The lack of centre of symmetry allows for a relative displacement of the centre of gravity of 

positive and negative ions in the structure. The shift can be induced by mechanical stress, in 

the case of piezoelectrics and thermal gradients, in the case of pyroelectrics. The reverse will 

also be true; mechanical deformation of the material or temperature change under the 

application of an electric field. The applications of piezoelectrics are many, but especially 

electromechanical systems such as motors and actuators[46], and pressure sensors are a prime 

uses of piezoelectrics in modern technology. Pyroelectrics have found use in infrared sensors, 

where the performance is comparable to that of semiconductor diodes, without the need for 

cooling required for diode detectors [46, 47].

Ferroelectrics are pyroelectrics which can have a spontaneous polarization in two different 

directions. Ferroelectrics are characterized by hysteresis behaviour of the polarization upon 

the applied field which originates from the two different directions of spontaneous 
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polarization. There are many mechanisms which ferroelectricity can originate from such as,

polar groups such as NO2
-, hydrogen bonds as in KH2PO4, polarisable lone pairs of Pb2+ and 

Bi3+ or small ions in large octahedra. Many perovskites are ferroelectrics and among them, the 

alkali metal niobates and tantalates [48-53]. In perovskites a common mechanism for 

ferroelectricity is d0-ions such as Ti4+ and Nb5+ inside a too large coordination polyhedron as 

in e.g. BaTiO3 and LiNbO3. In these oxides the mechanism for ferroelectricity is the 

displacement of the oxygen octahedra relative to the transition metal between two stable 

positions along the polar axis [54]. In the LiNbO3 structure the polar axis is along the c-axis 

[54] and the stable positions of the Nb5+ ions are close to the faces of the octahedra which are 

perpendicular to the c-axis. Another common mechanism for ferroelectricity in perovskites is 

the lone-pair displacement of the 6s electrons for Bi3+ and Pb2+, which is responsible for the 

ferroelectricity of bismuth- and lead-based ferroelectrics as BiFeO3 and Pb(Zr,Ti)O3.

The applications of ferroelectrics are many, but FeRAM is important [55, 56]. In FeRAM the 

permanent storage of charge is used to store a “1” or a “0” as either the positive or negative 

remanent polarization. The large advantage of FeRAM is the low power consumption and the 

non-volatile nature. The ferroelectric will remain polar when the field is switched off and 

therefore do not need power to store information causing less heat evolution and more robust 

storage.
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3 Atomic layer deposition

One of the ways materials can be designed on the nanoscale is as thin films. The applications 

of thin films are diverse, and range from corrosion and wear protection of tools to reflecting 

aluminium layers in mirrors, food packaging or electronic devices. These different 

applications require different materials and different tolerances. For instance in food 

packaging a diffusion proof layer that lasts for some weeks may be enough, while 

semiconductor devices needs several layers of different materials where thickness, 

composition, crystal structure, orientation, morphology and other properties are controlled 

carefully, and the device should have a lifetime of many years. 

Materials deposited as thin films span all classes and properties of materials, from metals to 

insulators, from single elements to complex oxides and from amorphous materials to highly 

epitaxial layers and super-lattices. Also the methods for making thin films are very varied.

The methods are often divided into physical methods which are based on evaporation of a 

material for instance by a direct heat, laser pulses or sputtering with highly energetic ions, and 

chemical methods which rely on a chemical reaction either in the liquid phase as spin coating 

or from the gas phase as chemical vapour deposition (CVD) or atomic layer deposition 

(ALD).

In this work, samples have been synthesized using ALD. Although ALD is also well known 

in the literature, a description is given in order to compare the growth of alkali metal 

compound to better known processes.

The ALD technique was patented in 1974 and was originally developed for industrial 

production of thin film electroluminescent displays [57]. The electroluminescent displays are 

still in production today, almost 40 years later. ALD is also used extensively by the 

microelectronics industry for deposition of high- [58], metallization [59] and 

MEMS devices [60, 61] . New technologies are also being developed which can utilize the 

advantages of ALD on industrial scale in more mundane applications such as strengthening of 

glass [62], gas and moisture barrier coatings [63-65] and corrosion protection [66, 67].
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A typical ALD-process runs at relatively low temperature. Most processes can be run 

somewhere between 100-400oC, but many processes work all the way down to room 

temperature, while others work at much higher temperature. The low deposition temperature 

possible in ALD allows the use of substrates such as plastics and polymers [63, 64, 68, 69] in 

addition to ceramic-, metal-, glass- and semiconductor substrates which are normally used. 

The types of materials which can be deposited by ALD span almost all material classes, from 

single elements [70-74] to oxides [75-78], nitrides [79-84], phosphates [85-87], silicides [88],

carbides [89], sulphides [90-92], selenides [93], tellurides [93, 94] and fluorides [95-100].

The materials can be deposited as amorphous, polycrystalline or epitaxial or with different 

orientations depending on deposition temperature [101-103], substrate [102, 104-108] and 

other processing conditions [109-111].

The underlying principle behind ALD is a series of consecutive self-limited solid-gas 

reactions, separated in time or space if the substrate is moving [65, 112]. As an example an 

imaginary material AX is to be deposited by a thermal process. In this process, precursor A-R

is a molecule containing a metal and precursor H-X is a molecule that contains the anion, 

normally water or ozone for deposition of oxides, ammonia for deposition of nitrides or 

TMPO for the deposition of phosphates, and so on. The role of precursor A is therefore to 

provide the cation of the deposited material and the role of precursor X is to supply the anion 

by ligand exchange, and in some cases reduce or oxidize the metal. The precursor X can also 

be ozone or a plasma which combusts the ligand and releases combustion products from the 

ligand. In a typical ALD-cycle a vaporized precursor, A-R, is pulsed into the reactor chamber. 

The precursor reacts with the surface which is to be covered until the surface is saturated with 

precursor A, and the reaction reaches a steady state regime. After the pulse, the reaction 

chamber is purged of un-reacted precursor before the surface is exposed to the next precursor,

H-X, which forms AX on the surface and releases H-R. After this step the chamber is purged 

of H-X and H-R. This sequence, A/purge/X/purge, is called an ALD-cycle. At ALD-

conditions the number of adsorbed precursor molecules on the surface is constant, and 

therefore the growth per cycle is also constant. Therefore, the thickness can be predicted 

exactly from the number of cycles, and the cycle is then repeated until the desired film 

thickness is obtained.

True self-limiting reactions can only take place when there are no side reactions as such as 

etching, precursor desorption or thermal decomposition of the precursors [113]. The 
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temperature interval where the self-limiting reactions occur is called the “ALD-window” and 

is often assumed to have a growth rate which is constant with temperature. The important 

feature of the ALD-window is that the reactions are self-limiting, not that the growth rate is 

constant. In fact, most “text-book” ALD-processes do not have a constant growth rate at 

different temperatures, but are still ALD-processes [114-116].

ALD can also be used to deposit films that consist of more than two elements. In order to 

deposit a compound ApBqXp+q sub-cycles of AX and BX are mixed so that the total cycle 

becomes (n(A+X)+m(B+X)). The problem of relating n and m to p and q, i.e. the relation 

between the pulsed stoichiometry and the stoichiometry which is deposited, can be solved by 

measuring the elemental content in the film for different pulsed ratios. The required values for 

n and m can to the first approximation be estimated from the ratio of the growth rates of AX

and BX. The models by Lie [117] and by Elliott [118] can then find the desired stoichiometry.

Another option for deposition of ternary compounds is to use a bimetallic precursor; that is a

precursor which contains more than one element. 

The self-limiting surface reactions give rise to some intrinsic advantages and disadvantages of 

ALD. The main disadvantage of ALD is often considered to be the growth rate. As the film 

thickness is dependent on the number of cycles, the film thickness obtained per hour is 

dependent on the length of a cycle. The cycle length is typically between one second and 30 

seconds and the growth rate per cycle is normally in the range of 0.1-2Å per cycle. When 

compared to other deposition techniques, ALD is therefore is often considered quite slow. On 

the other hand, the advantage is that the area which can be coated by a single pulse is in 

principle only limited by the size of the deposition chamber and therefore the batch size can 

be very large. Batch sizes in the order of tens of wafers can be run routinely or in some cases 

up to 250 wafers [119] or 1000 wafers [120] depending on wafer size and the specific process

is advertised. The large batch size can therefore make the total production volume per day 

very large. Due to the purge step there are no gas-phase reactions, and the deposited films are 

in principle particle free, and particles which are already on the surface is covered by the film, 

thus depositing, in principle, pinhole free films. Another advantage is that the films are 

extremely uniform, thickness variations of <1Å on a 12” wafer is obtainable [58, 121], as the 

growth per cycle is the same everywhere in the reactor. 
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ALD is also one of the few thin film techniques which can be used to deposit thin films inside 

high aspect ratio surfaces. As there are no reactions between the precursors the aspect ratios 

can routinely be as high as 100, or even as high as 1000 [122], depending on the reactor 

design and process. ALD can also be used to deposit thin films onto powders with the same 

accuracy [123, 124].

These properties make ALD ideal for depositing insulating layers and for applications in 

batteries. In ferroelectrics and battery electrolytes there cannot be any pinholes or the device 

will short circuit or self-discharge. In batteries applications, a thin film battery will benefit 

from being deposited on a high aspect ratio surface such as the “3D-integrated all-solid-state 

battery” mentioned above [29]. For such a battery to be realized, a complete set of materials 

for a lithium ion battery must be developed for cathodes, anodes and electrolytes into a

process which can be deposited on high aspect ratio substrates.

3.1 Applications of ALD in battery research

Atomic layer deposition has been suggested for use in battery research as a way to study 

electro active materials [125-128], as a means to deposit entire battery structures [29] or in 

order to enhance the performance of bulk electrodes [123, 124, 129].

Lithiated cathode materials such as LiMn2O4 [125] and LiCoO2 [130] have been deposited by 

ALD and their electrochemical performance have been evaluated. Also many of the transition 

metal oxides with potential as cathodes in lithium ion batteries have been deposited; however 

lithium intercalation studies have only been performed in a few cases. The vanadium oxides 

have been subject to extensive studies, both Le et. al. [131] and later by Badot et al. [132,

133], Chen et. al. [134-136] and Pomerantseva et al. [137]. In all these studies VO(OiPr)3 has 

been used as vanadium precursor, however depending on the process conditions either 

crystalline [134] and amorphous films can be deposited. There is no clear consensus on the 

optimum parameters for a vanadium oxide based cathode as the experimental details for the 

electrochemical studies vary. Generally, if the cathodes are cycled in the high voltage region, 

i.e. the lower voltage is above 2.5 V, the crystalline cathodes have longer lifetime than their 

amorphous counterparts. If the cathodes are cycled to about 1.5 V the cycling stability of the 

cathodes suffers, but the amorphous cathodes are more stable, but requires very slow cycling 
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speeds. There is also a general trend that thinner films gives better capacity retention and 

faster cycling speeds. 

Li4Ti5O12 is the only lithium containing anode material which has been deposited using ALD 

[126, 138], however there are still no reports on the electrochemical performance of the thin 

films. Other oxide thin films have been studied with respect their performance as anodes in 

lithium ion batteries. SnO2 anodes deposited using plasma-ALD have been reported show 

capacities in the order of 365 mAh/g when cycled up to 0.8V, in this range, no degradation of 

the anodes are observed after 500 cycles [139]. TiO2 anodes are shown to have good lifetime 

and good rate capabilities [140].

As described above, one of the intrinsic properties of ALD is the ability to cover all exposed

surfaces inside the reaction chamber. This ability is advantageous when coating powders, as 

the film covers the surface of the powder with a uniform layer. The performance of bulk 

electrodes can be enhanced by surface coatings through different mechanisms. Better 

electronic conductivity, modified surface chemistry, HF-removal, physical protection, lower 

dissolution of the cathode and solvent decomposition [129, 141, 142] have been listed as 

possible mechanisms, depending on coating material. The most utilized material for 

performance enhancement of cathodes is Al2O3. Al2O3 is an insulator and a lower total 

electronic conductivity of the cathode is observed when the cathode is covered with Al2O3

[142], on the other hand the stability of the material increases. When the coating is 

sufficiently thin the advantages of high stability outweigh the drop in conductivity. Typically 

2-4 ALD-cycles of TMA + H2O, which corresponds to 0.25-0.5 nm appears to be the ideal 

thickness of coatings on LiCoO2, 10 cycles (1.2nm) was found to be the optimal thickness on 

LiMn2O4 cathodes [143] and 6 cycles on Li(Li0.2Mn0.54Ni0.13Co0.13)O2 [144]. Other materials 

have also been utilized, such as TiN on Li4Ti5O12 anodes which showed better capacity at 

high C-rates [145], ZnO on LiCoO2 was found to yield poorer performance than Al2O3 [142]

and recently TiO2, Al2O3 and ZrO2 films with different thicknesses on LiCoO2 were compared 

and supports the notion of 2-4 cycles of Al2O3 as the ideal coating [146].

3.2 Deposition of lithium and other alkali metal compounds with ALD

The field of lithium in ALD-processes have recently been reviewed [147], but will be also be 

briefly summarized and commented here. Since the first report of a proof of concept for 
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lithium based processes, many different lithium containing materials have been reported such 

as lithium oxides [104, 126-128, 148, 149], -fluoride [98, 99], -nitride [80], -carbonate [80], -

silicate [86] and –phosphate [86]. The applications are mostly centred on materials for lithium 

ion batteries, but in this work ferroelectrics are also shown to be an application of lithium 

based ALD [104].

The different materials also require different types of precursors, and a large range of 

precursors have therefore been explored. The precursors in the literature which are reported to 

work for deposition of lithium based materials are shown in Table 1. There are also a large 

range of other potential lithium compounds which are investigated as precursors, but which 

do not work for deposition due to low vapour pressure or low temperature thermal 

decomposition [86, 148].

The properties of the reported lithium precursors, such as deposited materials, reactivity and 

vapour pressure can be linked to the composition and structure of the precursors. One obvious 

difference between these precursors is their composition. For instance when LiHMDS is used 

with ozone it will deposit LixSiO2+x/2 [150], while Li(thd) will deposit Li2CO3 with ozone

[148]. Similarly, the purity of the films depends on the composition of the precursor, as the 

Li(thd) and LiOtBu may leave significant carbonate contamination and LiHMDS yields high 

amounts of silicate when used with ozone and hydrogen impurities when used with water 

[104].
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Table 1 Summary of reported processes for lithium containing materials

Precursor 
name

Evaporation
temperatures

Deposition 
temperatures

Materials 
deposited

References

Li(thd) 175-200oC 180-300oC Li2CO3

Li-La-O

LiF

LiMn2O4

[98, 125,

148]

LiOtBu 90-160oC 225-275oC Li3PO4

LiAlO2

Li4Ti5O12

LiMn2O4

LiCoO2

LiTaO3

[86, 125,

126, 128,

130, 149]

LiHMDS 60-90oC 89-380oC LiNbO3

Li3N

Li2CO3

Li3PO4

LixSiO2+x/2

[80, 86,

104, 150]

The structures of these compounds are quite diverse, and there can also be significant 

differences between gas, solid, liquid or solvated state. LiHMDS is a dimer in the gas phase 

and liquid phase and a trimer in the solid state [151, 152]. LiOtBu is reported to exist as a 

hexamer in the solid state [153] and in gas phase [154, 155]. Li(thd) on the other hand is 

reported to be tetrameric in the gas phase[156]. The degree oligomerization of these 

compounds is a compromise between increasing the coordination number of the alkali metal

and the steric hindrance of the ligand. The degree of oligomerization will affect the 

evaporation temperature of a compound, as the evaporation temperature is to the first 

approximation proportional to the molecular mass, and will be modified by the intermolecular 

forces [157]. By utilizing the size of the gas phase cluster it is possible to find a clear 

correlation between the molecular mass and the reported evaporation temperature as shown in 

Figure 3. This correlation does not take any thermodynamical parameters into account, but 

helps to rationalize the relatively high precursor temperature needed for evaporation of alkali 

metal compounds. For instance, the sublimation temperature of Li(thd) is in the same range as 



22

La(thd)3 [158] , which is surprising when only comparing the formula weights. When the 

tetrameric structure of the lithium compound is taken into account, the molecular weights for 

these two compounds are also comparable.

The composition and structure of the ligand determines the pKa, which governs the materials 

which can be deposited. The high pKa in the range of 26-36 makes the free OtBu- and HMDS-

ligands superbases [159]. The high affinity for protons makes LiHMDS able to strip protons 

from ammonia [80] and both the HMDS and OtBu can take methyl groups from TMPO [86]

and protons from water [80, 104]. The thd ligand on the other hand has a pKa in the range of 

7-9 [160], and therefore requires ozone as precursor. Apparently, the ligand largely 

determines the possible products. The lithium containing materials deposited with ALD are 

already quite diverse, and there is reason to believe that a similar diversity can be obtained 

with sodium and potassium.

The precursors for sodium and potassium share many of the properties of the lithium 

analogues, however there are some differences. For the HMDS compounds the Li- and 

NaHMDS are reported to be covalent compounds while KHMDS is considered as ionic [151].

NaHMDS is polymeric in the solid state [161], and monomeric in the gas phase [162] which 

makes the compound under coordinated, and unstable in the gas phase. KHMDS is a dimer in 

the solid state [163] and to the best of knowledge there is no reported gas phase structure.

From TGA-data there is reason to believe that KHMDS decompose rather than evaporate

[164]. The large structural variation in this series is dependent on both the metal centre and

the state of the compound. This difference is probably the explanation for the difference in 

usability between LiHMDS and the sodium and potassium analogues. The tert-butoxides and 

silanolates of all the alkali metals form four to nine-membered cages with four coordinated 

metal atoms at half the vertices and alkoxy or silanolate groups at the other vertices. These 

structures are found in the solid state structures and the known gas phase structures [165-168].

Where lithium tert-butoxide forms cages with six lithium atoms per cage, sodium forms cages 

with either six [164] or six and nine sodium atoms and potassium forms cages with four 

potassium atoms per cage [165-168]. These molecules with four-coordinated alkali metals are 

also thermally stable as the usable temperature interval for this group of precursors is quite 

large. The sodium precursors seem to fit the pattern in Figure 3, and KOtBu is an outlier in the 

proposed relationship. From the evaporation temperature of KOtBu, it is tempting to suggest 

that it exists as a hexamer as well. However, as all other experimental evidence is against the 
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hexamer model, the explanation for the discrepancy is probably stronger interactions between 

the cages, arising from the more ionic character of the potassium-oxygen bond.

Figure 3 Correlation between reported evaporation temperature values of lithium precursors and total 
molar mass of the complexes, the data is assembled from Table 1 and [154-156, 164-168]. Black markers 
correspond to lithium, blue to sodium and red to potassium compounds.

It has previously been speculated if true ALD growth of lithium compounds is impossible due 

to the single positive charge of lithium and this causes lithium to exist as complexes with only 

one ligand [148], if true this would also extend to other alkali metals. This is however not the 

case as shown for example for LiOtBu which exist as a hexamer [153, 154, 169] in the gas 

phase and LiHMDS exists as a dimer in the gas phase [152], as described previously. 

Therefore this cannot be the origin of the differences between lithium processes and other 

processes.

How are alkali metal processes different from other processes?

The application of lithium processes can in practice be somewhat different compared to other 

ALD-processes. Lithium is a quite unusual metal when compared to most of the other p-, d-

and f-block metals, especially in terms of mass and charge. The low mass and size contributes 

to a relatively high mobility in most matrixes [170, 171]. Also lithium is restricted with 

respect to bonding as only the s-orbital is available. The alkali metals also have a higher

affinity for water and CO2 than most other elements.

The high affinity for CO2 and water is a challenge, as mentioned above. The affinity for 

carbonate is mainly problematic as a purity issue, and the alkali earth metals readily forms 

carbonate impurities or main phases when deposited using ozone [106, 172]. Carbonate 

contamination can be removed by annealing the sample at high temperature [172], by using 
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precursors which reacts with water [173, 174], or in some cases a stable phase can suppress

the formation of carbonates [107, 117]. The tendency to form carbonates is also present 

among the lanthanide oxides [175].

The high affinity for water on the other hand opens the discussion if true ALD growth is 

possible with lithium and the other alkali metal compounds. If water is used a precursor in 

lithium processes the lithium oxide will absorb water to form LiOH, possibly with a 

significant amount of crystal water in the material [176, 177]. This ability to “store” water 

between the pulses has become known as the “reservoir effect” [178, 179] as the deposited 

film acts as a reservoir of water. The excess water will then react with the subsequent metal 

pulse and hence lead to an increased growth rate from the subsequent pulse. As shown by 

Aaltonen et. al., the growth rate of LiAlO2 depends on the number LiOtBu cycles preceding 

the TMA-pulse [128]. The increased growth rate probably arises from the amount of water 

present in the film. There may also be a slow release of the water during the purge and the 

subsequent metal pulse, which may disrupt the ALD-growth and cause inhomogeneous 

thickness profiles and particle formation. Comstock et al. has shown by QCM-analysis of 

LiOH-growth that after a nucleation period, a large mass gain during the water pulse occurs 

and a slow decrease in mass during the purge as well as conversion of LiOH-films to Li2O-

films after 10-20 min in vacuum at 300 oC. Cavanagh et al. have shown in a similar 

experiment that the deposited film continues to lose mass for two hours after the last water 

pulse at 225 oC [177]. A similar case is described by Vehkamäki for the growth of barium 

compounds. Vehkamäki showed that thin films of crystalline barium hydroxide or barium 

oxide capped with Al2O3 can be deposited. Depending on the deposition temperature and 

waiting time before capping different phases of Ba(OH)2 or BaO can be obtained. Ba(OH)2

may contain up to nine equivalents of water, however only one crystal water left above 110 oC

[180], thus it is uncertain if the material on the surface is Ba(OH)2 or Ba(OH)2 H2O. The 

deposited film releases water from hydroxide ions and crystal water to form the oxide after 

one hour in vacuum at 340oC [174], however there were no tests of exactly how fast this 

release was. 

There is an indication of a limit to how many hygroscopic metal ions which can be 

incorporated into an ALD-surface. In the case of BaTiO3 growth from Ba(tBu3C5H2)2,

Ti(OMe)4 and water, the maximum ratio between barium and titanium cycles which yielded 
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stable films was 1:1 which also corresponded to a stoichiometric ratio of barium and titanium 

in the film [174]. For LiAlO2 growth from LiOtBu, TMA and water the 1:1 ratio between 

LiOH and Al2O3 cycles is found also deposit a 1:1 ratio which is the maximum content which 

can be incorporated while retaining linear growth [176]. Aaltonen has verified that a 1:1 ratio 

of LiOtBu, TMA and water results in linear growth at 225 oC. Li4Ti5O12 can be deposited 

from LiOtBu, Ti(OiPr)4 and water with any ratio up to 2:1 Li:Ti with no significant change in 

growth rate and the deposited films can contain up to nine times more lithium than titanium.

In this work the limit to how much lithium which could be safely incorporated into niobium 

oxide was found to be every third cycle of LiHMDS and Nb(OEt)5 i.e. a 1:2 ratio [104], and

for sodium aluminate every second cycle of NaOtBu and TMA while for potassium aluminate 

every third cycle of KOtBu per cycle of TMA, corresponding to a 1:3 ratio of deposited 

potassium gave stable growth [164].

In a textbook ALD-process the surface hydroxyls thought of as only bound to the actual top 

layer of atoms, however in processes containing hygroscopic metal oxides the surface may 

mean the top few atomic layers. The surface required for ALD-growth contains some reactive 

surface sites, normally hydroxyls, for growth of Al2O3 from TMA and water, the amount of 

surface hydroxyls will be limited by the number of Al3+-ions on the surface, which is where 

the hydroxyls are bound. If the deposited material can form hydroxides or take up crystal 

water, such as Li2O, the total number of reactive sites can be larger than what would normally 

be fit in a single layer on the surface, as for instance in the case of Al2O3-growth. The larger 

amount of accessible water will then yield a higher growth rate of the next cycle compared to 

the previous cycle. If the amount of water is too large the reservoir of water can potentially 

increase with the volume of the film, i.e. exponentially, and the process is no longer surface 

controlled. As discussed above, there seems to be a limit to the amount of cations which 

readily forms hygroscopic compounds which can be deposited. The limit of appears to be 

about half of the total metal ions in the film, with the exception of potassium aluminate and 

lithium titanate. A suggestion to the origin of this limit is that the balance between the cations 

which do and do not form hygroscopic compounds. The (sub)-stoichiometric amounts of 

cations which do form hygroscopic materials are stable, and if they are in excess the growth 

gets uncontrolled. Therefore materials with stoichiometric or sub-stoichiometric amounts of 

hygroscopic metal oxides will display ALD-growth, as the precursors are not decomposing 

and the surface actually controls the growth. However the remaining challenges are that the 
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excess hydroxide must be released during the purge. The implications are that the process 

optimization or reactor design and the coating of high aspect ratio substrates may be more 

challenging, due to the purge step.

Most of the applications for lithium processes are deposition of materials for lithium ion 

batteries. The deposited materials will therefore, normally, lithium ions which to some degree 

are mobile. Considering that the depositions happen at elevated temperatures, the lithium will 

be even more mobile in the film during deposition than after. The mobility of lithium inside 

the films after deposition is evidenced by lithium enrichment at surfaces [104, 128]. The 

mobility during deposition is evidenced by intercalation of lithium from the gas phase as in 

the case of deposition of LiMn2O4 and the intercalation of lithium into V2O5 [125] or 

exchange of magnesium with lithium in the transformation of MgF2 to LiF by Li(thd) [99].

The two cases described above both signify the mobility of lithium and the latter also suggests 

that Mg2+ ions are also mobile. The reactions in the two examples are probably quite different. 

In the transformation of MgF2 to LiF there is a ligand exchange between the lithium ions in 

the gas phase and the magnesium ions in the film with a subsequent evaporation of Mg(thd)2.

Surprisingly, crystalline LiF is the product. In the case of the manganate and vanadate, there 

is an intercalation of lithium into the structure, and probably a reduction of the transition 

metal ions by the ligand. These processes may be better described as a transformation or 

reaction than a film built up by atomic layers. Still, the processes retain the properties of an 

ALD process. The uniformity and coverage of 3D-structures and so on, are guaranteed as the 

film body, the MgF2, MnO2 or V2O5, is still deposited using ALD. These processes are not 

surface limited in the same way as conventional ALD-processes; they are rather limited by the 

film body. In this sense they are still self-limiting although the space inside the structure, 

instead of by the number of sites on the surface. 

The high mobility of lithium also partially constrains which characterization techniques which 

can be used to determine lithium content. Several methods have been used such as XPS [21,

128], ICP-analysis [128] and ion beam analysis as TOF-ERDA [86, 104, 125, 150] or nuclear 

reaction analysis [130] have been utilized to determine the lithium content, however there is 

normally a discrepancy between these techniques. Enrichment of lithium at surfaces will 

cause XPS-measurements to yield a higher value of the lithium content, and sputtering during 

XPS will cause an unphysical depth profile due to mobile lithium ions. The safest and most 

robust method appears at the moment to be ion beam analysis.
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The implications of the highly mobile lithium ions and the possible reduction of transition 

metal ions by the ligands set some limitations to how thin film lithium ion batteries can be 

designed. First the control of the total amount of lithium in the battery is important. The total 

lithium content of the deposited cathode and anode must correspond to a fully charged 

battery, in order to exploit the full capacity. This requires a good control of the lithium 

stoichiometry and implies that some of the transition metal ions in the cathode or anode will 

be deposited in a reduced oxidation state. For realization of the 3D-battery using ALD, it

appears that the best substrate is a structured silicon substrate. Li4Ti5O12 is recently reported 

deposited by ALD [126, 138] and is a good anode for thin film batteries due to the low 

volume expansion during cycling [5]. A promising candidate as a solid electrolyte, amorphous 

lithium tantalate, is recently reported; however it is not yet tested in a battery [149]. For the 

cathode LiMn2O4 or V2O5, which is lithiated after deposition, is suggested. This scheme will 

deposit a fully discharged battery and will also enable annealing of the anode before 

deposition of the electrolyte and cathode. As an added benefit, when using a 3D-substrate, the 

water used for the anode and the electrolyte is used when the pores are at their largest -

causing the least problems with purging the excess water out of the pores. 
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4 Methods for characterization

This chapter will describe some of the characterization methods used in this work. The 

emphasis is put on x-ray scattering and ellipsometry and electrochemical characterization. 

These methods described here have contributed to the bulk of the results and have been used 

most extensively in this work. This section describes briefly the principles behind the methods

used, while the details of each experiment can be found in the experimental sections of the 

papers.

4.1 X-ray based methods

The x-ray based methods used in this work are either scattering techniques, such as diffraction 

(XRD) or reflectometry (XRR) or spectroscopic techniques such as fluorescence (XRF) and 

photoelectron spectroscopy (XPS). The spectroscopic methods are not used to the same extent 

as scattering and therefore only scattering methods will be described here.

X-ray scattering is one of the ways that x-rays can interact with matter. In a scattering process 

the interaction is elastic and thus the wavelength for the incident and the scattered beam is the 

same. A scattering experiment is normally performed by shining x-rays with a known 

wavelength and direction onto a material and measuring the intensity of the scattered radiation 

at different values of the scattering vector Q, which is defined in Eq. 1. The length of Q

corresponds to the scattering angle, , and direction corresponds to the angles between the 

incident beam and the sample, .

Q = |k0 – k’| Eq. 1

A general feature of scattering experiments is that the intensity obtained is the square of the

Fourier transform of the structure that scatters the radiation. As the Fourier transform includes 

a complex number, squaring expression implies that the phase information is lost and the full 

interpretation of the data can only be performed by modelling and data fitting.

X-ray reflectometry measurements normally refer to measurements of the specular reflectivity 

at low incident angles, normally below 5-8 degrees. An interesting feature of x-ray 

reflectometry is that the refractive index in the x-ray range, which is given by Eq. 2, is slightly 

less than unity.
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ñ = 1- – Eq. 2

In Eq. 2 -5

absorption coefficient. A refractive index less than unity give rise to the phenomenon of total 

external reflection. The reflected x-rays from the interfaces in the sample interfere, causing 

what is known as Kiessing fringes which can be used to determine the thickness. In 

measurements of x-ray reflectivity the contrast comes from the derivative of the electron 

density as shown if Eq. 3. The electron density can then be interpreted as the thickness, 

roughness and the density of the deposited layer, or layers in the case of a multilayer. 
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The software packages used to fit the data (GENX or Reflectivity) use a description of the 

sample called Parrat’s exact recursive formalism [181] which separates the reflected intensity 

into intensity from infinitely thin strata in the sample and then sums over all strata to obtain 

the total intensity. 

X-ray diffraction is also a scattering technique, but the scattering here comes from atoms 

positioned on crystalline lattice sites instead of from interfaces. The signal is again a Fourier

transform, but in this case of the product of the Fourier transforms of the lattice and the 

atomic motif of the sample. The vectors spanning the reciprocal space is described by Eq. 4,

where G is the reciprocal space vector, h, k and l are the Miller-indices of a plane and a1
*,

a2
*and a3

* are the unit vectors of the reciprocal space.

*
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2

*
1 aaaG lkh Eq. 4

There is a relation between planes in real space and points in the reciprocal space which gives 

rise to the Laue condition for diffraction is given in Eq. 6. The Laue condition states that 

diffraction occurs if the scattering vector is equal to a reciprocal lattice vector, G.

Q = G Eq. 5

The Laue diffraction condition could be reduced to the familiar Braggs law, which is shown 

in Eq. 6.
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Eq. 6

The direction of the incident beam -angle, will matter if the sample shows some 

preferred orientation. A symmetric reflection, that is a reflection belonging to a lattice plane 

parallel to the sample surface, will only be brought into diffraction condition when the angle 

asymmetric reflection is one that belongs to some other plane which is not parallel to the 

surface.

The diffracted intensity from a single crystal will in the ideal case be distributed as points in 

the reciprocal space. However, effects such as strain, disorder, particle sizes and mosaicity 

will change the shape of the intensity. In most cases a film deposited at low temperature is not 

epitaxial or even crystalline. The most common case is polycrystalline films which can be 

treated as a powder which will either be randomly oriented or show some type of preferred 

orientation and in these cases the intensity is distributed on concentric spheres or rings in the 

reciprocal space, respectively. Different types of samples will therefore call for different 

measurement geometries and the demand for resolution depends on the information needed. 

For example, will a randomly oriented film benefit from grazing incidence geometry;

however for a textured sample it is most beneficial to use a symmetric scan. Measurements of 

epitaxial films will be a combination of symmetrical scans and scans of separate reflections. 

More thorough measurements of the intensity around the reflections, referred to as reciprocal 

space maps (RSM), will give information of the particle size and mosaicity and the position of 

the reflection will give information on the exact lattice parameter and the strain in the film.
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4.2 Ellipsometry and optical methods

Ellipsometry has been used extensively in this work for determining thicknesses and 

refractive indices of deposited materials. In some cases UV-VIS spectroscopy has been used 

to establish boundary conditions for fits of the ellipsometry data of vanadium oxide and 

infrared (IR) spectroscopy has been used to determine the impurities of hydroxyl and 

carbonate in sodium and potassium oxides.

Optical methods utilize the fact that materials, depending on their electronic configuration, 

will have different interactions with radiation of different wavelengths. An easy example is 

shown in Figure 4, with pictures are taken of a rainbow with visible light and infrared light.

From the pictures it is obvious that infrared light behaves similarly to visible light, however 

the refractive index is slightly lower for IR-light so rainbows are shifted slightly. The concept 

of colours does not make real sense outside the visible range; however, in spectroscopy the 

“colour” is described as the energy or wavelength of the photons. The absorption of light 

comes from an interaction between the photons of light and the electrons in the sample. For 

radiation around the visible range, these interactions can be the band gap of the material or d-

metal absorption, for infrared light the interaction can be absorptions from functional groups 

such as carbonate or hydroxyl groups. All these interactions are described by the dielectric 

function of the material:

21 i Eq. 7

By determining the absorption of light, and determining the optical properties and dielectric 

function, detailed knowledge of the material, such as the presence of impurities, the band gap 

and dopants can be inferred.
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Figure 4 Hyperspectral photographs of a rainbow over Oslo with (from top) visible light and 900-1100nm 

showing that the rainbow extends into the IR-range. The images are not processed except for a normalized 

exposure and transformed into black and white.

The way materials changes polarization of light can be used to determine the optical 

properties and the thickness of the deposited films. Most light sources such as incandescent 

light bulbs, the sun and LED’s emit unpolarised light which means that all polarization states 

are present and a polarization filter is needed to polarize the light. Some sources, such as 

lasers can directly emit polarized light. Another example is again shown by the rainbow 

photographed with different polarization directions in Figure 6. A light beam can be described 

by an oscillating electric field, which involves a propagation direction, amplitude frequency 

and phase. The polarization of the beam is given by the direction of the electrical field vector

and the phase. There are two special cases of polarization, linear and circular. If the x- and y-

components of the electric field are in phase the light has a linear polarization, and if they are 

180o shifted the light has circular polarization. Between these special cases the light is 

elliptically polarized.

As the polarization is a vector, it can be decomposed into two components, the Ep, the

component parallel to the plane of incidence and Es, perpendicular to the plane of incidence. 
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When a polarized light beam is reflected by an interface there is a change in the reflected 

intensity and phase between the two components, Rs and Rp. In an ellipsometry experiment

the beam is polarized at an angle to the surface as shown in Figure 5. When a polarized light 

beam interacts with a material there is a change in intensity of the two components, Rs and Rp.

as:

s

p

R

R
tan Eq. 8

Figure 5 Principle of operation for an ellipsometer showing the geometry and how the sample changes the 

polarization from linearly to elliptiacally polarized light the picture is taken from[182]
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Figure 6 Photographs of a rainbow over Oslo taken with a circular polarization filter with different 

rotation directions of the polarizer illustrating the difference in intensity for the different components of 

the light. The images are cropped.

The absorption of light will affect the phase difference of between the Rs and Rp components 

the fundamental equation of ellipsometry:

s

p
i

R
Retan Eq. 9



36

measured as a function of wavelength and 

possibly also incident angle which enables simultaneous determination of the both thickness 

and optical properties. The experimental parameters such as incident angle and wavelength,

and the derived parameters such as thickness and optical properties of the sample are included 

in the Rp and Rs.

Simultaneous determination of the thickness and optical parameters of the sample is not 

completely straight forward as there is no unique solution to Eq. 9 and Rp and Rs are in 

general complex numbers. The thicknesses and optical constants must therefore be 

determined by constructing a model of the film and fit free parameters to the data. Normally 

the best strategy for obtaining the film thickness is to determine an energy range where k = 0,

i.e. the film is transparent, as this reduces the number of complex factors in the calculations.

The data can then be fitted to the Cauchy function in Eq. 10

as a function of the wavelength of the incident beam, while n0, n1 and n2 are the fit parameters. 

ness normally can be determined easily.

4
2

2
1

0)( nnnn Eq. 10

Determining the absorption or the dielectric function of the material can then be performed by 

first obtaining the thickness and then iteratively including data into a B-spline function [183]

which is an arbitrary smooth function which fits the data. This B-spline function can then be 

used as a starting point for modelling the dielectric function through the use of oscillators 

which describes the polarisability of the material with physically meaningful parameters. The 

different types of absorption which must be included in the model is for instance the band 

gap, d-metal absorptions and the free carrier absorption, depending on the energy range 

investigated.

4.3 Electrochemical characterization of cathodes

Characterization of the electrochemical properties of V2O5 has been performed using cyclic 

voltammetry and chronopotentiometry. This chapter will describe some terminology and the 

techniques used in this part of the work.
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The electrochemical characterization is performed in a coin cell. The coin cells are assembled 

as shown in Figure 7, and top and bottom are pressed together in order to seal the cell. The 

material studied is used as a cathode and cycled against a lithium metal foil. In this thesis a 

liquid electrolyte is used in all experiments. The cells are assembled inside a glove box as the 

lithium foil and electrolyte are air sensitive. 

Figure 7 Drawing of the coin cells used in characterization of the electrochemical properties 

In order to compare the performance of batteries it is customary to compare the capacity of 

the battery. Normally this is done in the amount of charge the battery can store per unit 

weight, as is done here by using mAh/g, or by unit volume or area which can be useful in the 

case of a thin film battery. An interesting parameter is the speed of which a battery can be 

charged or discharged. In order to compare the discharge current of different materials the C-

rate is often used. The C-rate is defined so that 1C is one discharge per hour. From the 

definition it follows that 0.1C equals 0.1 discharges per hour or 10 hours per discharge and 

60C equals 60 discharges per hour or one discharge per minute, and so on. The voltage of the 

battery is also an interesting parameter. The voltage is dependent on the redox-pairs in the 

cathode and anode. The voltage will however change during discharge of the battery. From 

the charge and the voltage of a battery the power and energy densities can be calculated.

Voltammetry is the measurement of a current during a voltage sweep and cyclic voltammetry 

(CV) refers to series of voltammetry measurements where the voltage is swept back and forth.

When performing voltammetry on an electrochemical cell the current is monitored while the 

voltage is changed in order to charge or discharge the cell. An increased current will be 

observed when the voltage corresponds to the voltage associated with the redox pairs in the 

electrode which is under investigation. There might be several peaks in the voltammogram for 
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a single redox pair which is caused by the different free energies associated with intercalation 

of lithium into different sites in the structure. Changing structural environments and 

difference in diffusivity due to phase transitions will change the appearance of the 

voltammogram for successive charge discharge cycles, however ideally the voltammograms 

should not change.

Chronopotentiometry or galvanostatic cycling is the application of a current pulse while 

measuring the voltage required for keeping that current. The current is chosen according to 

the desired C-rate and kept until the desired threshold voltage is reached. 

In order to characterize an electrode material a combination of CV and galvanostatic 

measurements will be performed. Typically a CV will be performed first with a slow scan

speed before the cell is subjected to galvanostatic cycling at different C-rates.
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5 Summary and discussion of the results

This section will summarize and discuss the results of the experimental work in this thesis. 

First the part of the work concerned with deposition of vanadium oxide is summarized and 

discussed (paper I and II). Then the part of the work concerned with ALD of lithium 

compounds is summarized discussed (paper III-VI), before finally the work with sodium and 

potassium oxides are treated (paper VII-VIII). The chapter is concluded with a discussion of 

the evidence of redox reactions on the surface and a comparison between lithium, sodium and 

potassium processes.

5.1 Work with vanadium oxide based processes

The motivation for the part of the thesis concerned with vanadium oxide was to make a thin 

film cathode based on vanadium oxide. When assembling a battery and using an un-lithiated

metal oxide as cathode, the metal should normally be in the highest possible oxidation state. 

Preparing the oxide in a high oxidation state will give the possibility of intercalating the

highest number of lithium ions, which gives the largest capacity. This first part of the results 

describes the development of a high power cathode of V2O5 using ALD. By utilizing a new 

vanadium precursor VO(thd)2, a process for depositing thin films of crystalline V2O5 with a 

highly textured surface is developed. The morphology of the surface is strongly dependent on 

the deposition temperature as shown in Figure 9. Depending on the number of ALD-cycles

used the preferred orientation of the films change. The process conditions were optimized so 

that the films consisted of a single layer of nano-platelets which showed unprecedented 

lifetime and cycling speeds when cycled in a battery vs. lithium.

Paper I describes the growth and optical characterisation of V2O5 from VO(thd)2 and ozone.

The growth dynamics of this system is quite complex, and a thorough investigation was 

conducted and presented in paper I. It is hypothesized in paper I that a catalytic combustion of 

the precursor occurs at some crystal facets. The growth rate is too large to be explained by the 

size of the precursor, regardless of the number of ligands used in the calculations, however 

QCM-experiments verifies that the process is self-limiting. The anisotropic growth rate of 

different crystallite surfaces can also be explained by the catalytic reaction. Depending on the 

temperature, the growth rate is in most cases higher for samples deposited with 2000 cycles 

than with 500 cycles, as shown in Figure 8. The growth rate of the films is not only dependent 
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on the deposition temperature, but also on the number of deposition cycles. It is speculated in 

paper II that the crystallites oriented with the fastest growing direction normal to the surface 

will dominate for thicker films. This result could also be obtained through modelling of the 

growth.

Figure 8 Growth per cycle of V2O5 from VO(thd)2 and ozone vs. Temperature for 500 ALD-cycles (red 

dots) and for 2000 cycles black dots. Open and closed symbols signify the full thickness of the films and 

the dense bottom layer, respectively [103]

Figure 9 AFM images of thin films deposited using 2000 cycles at different temperatures a) 162 oC, b) 186 
oC, c) 206 oC, d) 215 oC,  e) 236 oC and f) 283 oC . The height scale is ±40 nm except for e) and f) where the 

height scale is ±75 nm.
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Determining the thickness of the films was far from trivial as the surface roughness was very 

high, as shown in Figure 9. A method for using spectroscopic ellipsometry was found to be 

useable after the realisation that the films were a combination of a dense part and a relatively 

thick surface layer as indicated in the sketch in Figure 10. The surface layer has the same 

properties as the dense part, but also consists of some fraction of air. The theory is already 

well known in the literature and is named the Bruggemann effective media approximation 

(BEMA) [184]. In paper II the method for measuring thickness was verified by exactly 

reproducing the thickness derived from ellipsometry with measurements of the deposited 

mass from XRF. 

For BEMA to be effective, the dielectric function is also needed. In paper I, the dielectric 

function of the V2O5 films was parameterized using a model based on two Lorentzian 

oscillators. The oscillators are assumed to represent transitions over the optical band gaps in 

the material. The model corresponds well with the band structure of V2O5 and with the band 

gaps extracted from UV-VIS spectroscopy. The band gap varies slightly with deposition 

temperature, but a direct band gap is found at 2.6±0.1eV and an indirect band gap at 

2.25±0.1eV.

Figure 10 Effective thickness of films deposited on silicon at 215 oC [185]. The thickness derived from 

XRF and ellipsometry are compared. The inset is a sketch of the model used to determine the thickness.

It was found that ALD-growth of amorphous films could be obtained at 162oC and crystalline 

samples could be deposited from 186oC and up to the limit of self-limited growth at 267oC. 

The crystalline samples showed strong texture and very rough surfaces, with surface 

roughness up to 50 nm for a 200 nm thick film. Films were normally textured with preferred 
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orientation along the b-axis up to 200oC and along the b- and c-axes at temperatures up to 

225oC, and for samples deposited at the highest temperatures where the films became more or 

less randomly oriented. In paper II it was found that the texture also depends on the number of 

cycles. At 215 oC, the films are oriented along the c-axis until 500 cycles before b-axis-

reflections appear at 1000-2000 cycles and random orientation is found above 5000 cycles. 

The catalytic reaction mentioned above explains this change. This reaction will cause 

different growth rates for different crystal facets. The crystallites oriented with the fastest 

growing direction normal to the surface, i.e. the b-axis will therefore dominate the surface for 

high number of cycles as they overgrow the other crystallites oriented in other directions. 

After the growth dynamics of the V2O5-films were understood, the films were developed into 

a high power density cathode for lithium ion batteries, which is described in paper II. The aim 

was to make the roughest possible surface as this would promote the area in contact with the 

electrolyte which again would promote the transport of lithium into the material. Figure 11

shows schematically how a rough surface of the same thickness has more contact points to the 

electrolyte; the thicker film has fewer grains in simultaneous contact with both the electrolyte 

and the current collector. A series of samples with different thickness were then deposited at 

215oC, which was found in paper I to yield the largest surface roughness. The fact that the 

samples would, at least for thin samples consist of more or less free nano particles was 

thought to have a positive impact on the electrochemical performance. 

Figure 11 Schematic drawing which compares, (from bottom to top) a thin amorphous film, thin nano 

crystalline film and thicker nano crystalline film.
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The electrochemical characterizations revealed that all samples showed relatively good 

electrochemical performance when cycled between 3.75 and 2.7 V vs. Li/Li+. All samples 

were stable for at least 75 cycles when cycled at 1 C and the samples were exposed to varying 

discharge speeds between 1 C and 10 C. The samples deposited using 500 cycles showed only 

a small decrease in capacity at a discharge rate of 10 C. These samples were then investigated 

more thoroughly and discharged at different rates between 1C and 960C as shown in Figure 

12. In order to test the long term stability of the samples they were exposed to 4000 

charge/discharge cycles at 120 C, which corresponds to 30 s charge and discharge. The 

battery endured more than 1500 cycles before dropping below 80 % of the original capacity, 

as shown in Figure 12. The battery could still take charge after 4000 cycles, although the 

battery was permanently damaged and had decreased capacity which did not recover when 

cycled at slow speeds. It is likely that the sample has such a high performance because it 

contains freestanding nano particles of V2O5 which results in short diffusion length for lithium 

and good electric and ionic contact with the current collector and electrolyte, respectively.

The current collector also works as a heat sink, which is an important factor as the current per 

gram of material is in the range of 140A/g when discharged at 960 C, which would vaporize a 

bulk cathode. 

When comparing the results obtained in paper II with the literature, is appears as if these 

results are comparable to the best results reported for V2O5-cathodes with respect to cycling 

speeds and cycling stability. The combination of high rate performance and long term stability 

reported is unprecedented. This is a promising result for use of V2O5-cathodes in thin film 

batteries as the high stability will give a long lifetime of the device. The high power density 

can be used to build a device with a small battery which gives the same power as a much 

thicker battery.
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Figure 12 Top: High rate test; bottom: cycling stability test of V2O5 cathode deposited using 500 cycles at 

215 oC 

5.2 Work with lithium ALD

This section describes the part of the work concerned with direct deposition of films that 

contain lithium. The relevant papers here are papers III-V.

Paper III describes the use of LiHMDS as precursor for deposition of lithium nitride and 

lithium carbonate. The motivation for this part of the work was threefold; first the deposition 

of Li3N is potentially interesting for future depositions of LiPON. Secondly, a part of the 

work was also originally planned to be on nitrogen doped oxide cathodes and therefore a 

process for Li3N was tentatively important. Finally it was interesting to develop LiHMDS as a 

precursor for lithium oxides; Li2CO3 was used as a model system for oxides. The use of 
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LiHMDS was chosen as the silylamide group is extremely alkaline and is capable of stripping 

protons from ammonia.

The first part of paper III describes the growth of Li2CO3 from LiHMDS, H2O and CO2 at 

temperatures from 89oC to 332oC. The deposited films are crystalline from 186oC to 332oC, 

and amorphous when deposited outside this temperature range. It was also found that the 

growth of Li2CO3 required relatively long pulses of both LiHMDS in order to achieve

saturation and CO2 in order to completely convert the deposited LiOH to Li2CO3. The long 

LiHMDS pulses are probably required as the Li2CO3 surface is poor in -OH groups and hence 

quite unreactive. The growth per cycle of Li2CO3 is lower at higher temperatures inside the 

ALD-window, which is rationalized as the packing density of the LiHMDS precursor on the 

surface and not –OH-group density. At low temperatures, such as 89oC, the surface species 

probably packs in a quite dense fashion as the temperature does not provide the necessary 

energy for free rotation of the surface species and the growth rate is about 0.41 Å/cycle. As

illustrated in Figure 13, packing without free rotation will cause the precursor to occupy an 

area shaped as an ellipse. At higher temperatures such as 289 oC the molecules are free to 

rotate, i.e. occupy a circular area, and thus lowering the packing density resulting in a growth 

rate of 0.23 Å/cycle. The deposition of Li3N was found to achieve saturation much faster than 

in the case of Li2CO3. Pulses of only one second for both LiHMDS and ammonia were 

sufficient to achieve saturation when depositing Li3N. The reaction is probably faster because 

of the higher reactivity of the amine-terminated surface than the carbonate surface. 

Characterization of the deposited Li3N films were challenging as both lithium and nitrogen

interacts quite poorly with x-rays and the material is very air sensitive. When exposed to air, 

the films turned milky white within the span of a few seconds. To increase the lifetime of the 

samples, they were capped with a layer of MoNx and it was also found that the reproducibility 

of the samples were better when a nucleation layer of MoNx was deposited first. The capping 

layer increased the lifetime up to a few days before the samples deteriorated, which gave 

sufficient time for characterization of the samples. The MoNx layers also had the advantage 

that they enhanced the contrast in XRR-measurements. 
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Figure 13 Different models for packing of LiHMDS-molecules on Li2CO3 (Case I-II) at high and low 

temperature, respectively, and on Li3N (Case III-IV) [178]. 

Both Raman-spectroscopy and x-ray diffraction proved the existence of both the - and -

Li3N phases. The diffractograms also revealed the existence of impurities of hydroxides and 

carbonates. The growth per cycle of Li3N is relatively high, around 0.95 Å/cycle at 186 oC.

When applying the same arguments as presented for the growth of Li2CO3 the growth rate 

could again be reproduced theoretically, see case III in Figure 13. The surface reaction is 

thought to proceed through proton transfer between amine-groups on the surface and the 

LiHMDS-dimer and the subsequent release of a HMDS-group. This reaction is quite fast and 

selective as the deposited films are almost free of silicon from the ligand.

At this point in the work there was an emerging pattern both in the work performed by other 

members of the research group and in the literature that deposition of thin films containing 

lithium, which contained p-block-elements such as LiAlO2, Li3PO4 and LixSiO2+x/2 worked 

quite well, while deposition of compounds containing transition metals as LiFePO4 and 

LiMn2O4 did not work exactly as expected. Some preliminary attempts of deposition of 

compounds in the Li-Mo-O-N system also failed. In order to explain this pattern, a hypothesis 

was then formulated: the problems connected with deposition of lithium-transition metal 

compounds come from the ability of the transition metal to change oxidation state and hence 
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intercalate lithium into the film during growth. A necessary criterion for this hypothesis is that 

the carbon in the precursor ligand reduces the transition metal. The reduction will seem like a 

decomposition of the lithium precursor, which is not self-limited in the classical sense, but is 

limited by the volume of the film body. Further, the high mobility of lithium allows the 

lithium to distribute evenly inside the sample. From this hypothesis it follows that deposition 

of LiNbO3 should behave “as the p-block compounds as pentavalent niobium does not reduce 

to the tetravalent state with carbon. Therefore it should be possible to deposit LiNbO3 with a 

normal approach to ALD.

In paper IV the success with the LiHMDS precursor was explored further through the 

deposition of LiNbO3. A process for deposition of LiNbO3 was then developed using 

LiHMDS, Nb(OEt)5 and water as precursors. Figure 14 shows that it was possible to deposit 

samples with controllable Li-Nb contents from pure Nb2O5 up to a lithium content of about 70 

% as measured with TOF-ERDA. The pristine films were characterized by ellipsometry and 

the refractive index proved to be a good figure of merit for the lithium content, as shown in 

Figure 14.

Figure 14 Refractive index and growth per cycle for Li-Nb-O-films deposited using LiHMDS, Nb(OEt)5

and water for varying ratios of niobium and lithium.

The stoichiometric phase LiNbO3 was also successfully deposited when combining two pulses 

of Nb(OEt)5 with one pulse of LiHMDS. This ratio was then used to deposit amorphous films, 

which crystallized into phase pure LiNbO3 after annealing at 650oC. Films were then 

deposited onto several different single crystal substrates such as Al2O3, SrTiO3, LaAlO3 and 

silicon and epitaxial films were obtained on Al2O3-(001) and (012) as well as LaAlO3 (012)
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after annealing. The annealed films were also proven to be ferroelectric when deposited on 

silicon. Hysteresis loops were collected on samples deposited on silicon, the remanent

polarization was found to be 0.4μC/cm2 and the coercive field was found to be 220kV/cm.

These values are consistent with the congruent composition. 

It was also discovered that two consecutive depositions, with the same cycle ratio between 

lithium and niobium, never gave the same result, especially for films rich in lithium, unless 

the reactor was passivated with Nb2O5 between the depositions. This suggests that the films 

contain some mobile lithium ions that can give rise to the reservoir effect which resulted in 

enhanced growth rate and poor uniformity. Considering that amorphous lithium niobate is a 

good lithium ion conductor [24] it is not unexpected that this could occur. However, the 

lithium content could be controlled for a transition metal oxide of lithium, so the prediction 

from hypothesis that lithium niobate is possible to deposit is tested.

In-situ XRD annealing experiments of LiNbO3 showed that the lithium is mobile at high 

temperature. In-situ experiments were performed using x-ray diffraction where the intensity 

of the 006-reflection was monitored as a function of temperature and used as a measure of 

crystallinity, as shown in Figure 15. As expected there are different onsets of the 

crystallization with different heating rates. However, it was unexpected that the intensity 

dropped to zero when heated to ~700 oC. The loss of crystallinity is ascribed to evaporation of 

lithium from the film, and supports the notion that lithium is very mobile in these samples.

Figure 15 Intensity of the 006-reflection of LiNbO3 deposited on c-Al2O3 when heating up to 700 oC with 

varying heating rates.
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In paper V the hypothesis of intercalation of lithium into transition metal oxides where the 

oxidation state could be changed was tested. LiMn2O4 was deposited from Mn(thd)3, Li(thd)

or LiOtBu and ozone and/or water, respectively. It was found that the lithium mangante spinel 

could be deposited by using any pulsed ratio of manganese to lithium between 1:99 and 1:19.

This ratio is unusually low for deposition of a complex oxide, and it should be a relation 

between the deposited content and the pulsed content. This finding strengthened the belief in 

the hypothesis as it suggests that the ALD-growth during the lithium cycles in this system is 

not limited by the surface species, as is the case for normal ALD-processes, but by the bulk of 

the film. In order to really test the hypothesis films metal oxides that were thought to be able 

to intercalate lithium and get reduced, such as for instance V2O5, Co3O4 and MnO2, as well as 

some films that were thought not get reduced as ZnO and Al2O3 was exposed to Li(thd) and 

LiOtBu vapours inside the ALD-reactor. This treatment caused intercalation of lithium into 

V2O5 and MnO2 thin films and which formed LixV2O5 and LiMn2O4, respectively, when 

exposed to Li(thd) and ozone or LiOtBu and water. 

In order to test if a redox reaction happens and to control the stoichiometry, deposition of 

lithium manganese compounds from a divalent manganese precursor (Mn(EtCp)2) was 

attempted. The idea was that the divalent manganese ions would not get reduced by the 

lithium precursor, and that the process should be similar to the lithium niobate. The film could 

then be annealed in oxygen after deposition in order to crystallize the desired phase.

Regardless of the lithium precursor the film thickness decreased with increasing amount of 

lithium pulses and no lithium was found in the film after deposition. Both LiHMDS and 

LiOtBu was attempted, but both precursors showed either etching or growth inhibition of the 

manganese precursor, resulting in little or no film growth, as shown in Figure 16. Also 

depositions using sodium in place of lithium was then performed using NaOtBu with a similar 

result. No sodium was found in the films and all the films were profiled with a strong gradient 

along the flow direction.
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Figure 16 Growth rate versus pulsed stoichiometry of sodium or lithium in the Mn(EtCp)2 + H2O-process 

showing decreased growth rate when the alkali metal precursors are pulsed.

5.3 Work with other alkali metal processes

The work done with lithium processes provided the inspiration for developing processes for 

sodium and potassium oxides. In order to fully understand the chemistry of lithium processes, 

deposition of sodium and potassium compounds are important. Especially to understand to 

which degree the mobility of the lithium ions in the film affects the growth and how the 

reservoir effect works and being able to check hypotheses with sodium or potassium 

processes may is important. As the ionic radii of sodium and potassium are significantly 

larger than for lithium and they will therefore be less mobile in the deposited films. Thus it 

provides an opportunity to study ALD-chemistry of monovalent elements with less diffusion 

than what is the case for lithium. It is also worth mentioning that the other alkali metals 

scatter x-rays stronger and it is possible to get good and fast compositional analyses using 

XPS or XRF without having to rely on the heavy infrastructure of ion-beam measurements. 

Thin films of sodium and potassium compounds could also have potential as piezo- and 

ferroelectric materials and thin film sodium ion batteries.

In paper VII the first depositions of sodium and potassium oxides are reported. Six different 

precursor candidates were evaluated, and the main findings are that sodium and potassium 

oxides can be deposited with ALD, using the respective tert-butoxide compounds. The 

candidate precursors that were evaluated were the sodium and potassium tert-butoxides,

trimethyl silanolates (TMSO) and hexamethyldisilazane. Of these six candidates, only the 
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tert-butoxides and the sodium silanolate were found to evaporate cleanly, the other 

compounds yielded a black residue and left a high residual mass – suggesting thermal 

decomposition before evaporation, as shown in Figure 17.

Figure 17 TGA of the candidate precursors for sodium and potassium oxides performed nitrogen 

atmosphere at a heating rate of 2oC/min [164].

Sodium silanolate was tested as a single source precursor for deposition of sodium silicate in a 

reaction with ozone. The films always displayed gradients in thickness and the refractive 

index along the direction of the flow, suggesting that the composition is different along the 

flow direction. It was clearly not a saturation issue as the gradient in thickness and refractive 

index was independent of the precursor dose. The most probable cause is therefore a side 

reaction which poisons the surface; however this was not explored in detail. The silanolate 

was also tested with water as reactant and combined with the TMA/H2O process, but this did 

not remedy the gradients, nor did using another tool.

From experience and literature on lithium processes, it was considered that the pure sodium or 

potassium oxides and hydroxides would not be obtainable due to the reservoir effect and 

reactions with ambient CO2. To circumvent this problem and in order to be able to evaluate 

the precursors, the sodium and potassium tert-butoxide processes were combined with the 

TMA-water and the TMA-ozone process. The sodium and potassium tert-butoxides on proved 

to be robust precursors which, when mixed with the TMA-water or TMA-ozone process 

showed saturation and gave uniform films, before scaling up to 8”-wafer scale. An ALD-
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window was found from 225oC to 375oC for sodium and 225-300oC for potassium. It was also 

found that the stoichiometry could be controlled, as expected from an ALD-process, as shown 

in Figure 18. The high sodium or potassium regions were not explored. The samples were all 

amorphous as deposited.

Figure 18 Growth rate, composition and refractive index for samples deposited using NaOtBu and TMA 

and water (left) or ozone (right). 

After a robust set of precursors for sodium and potassium was developed, the work was 

extended into deposition of more interesting materials. The deposition of lithium niobate was 

already known and a natural path was then to compare the alkali metal processes through 

deposition of niobates and tantalates. In paper VIII the deposition of perovskites of sodium 

niobate and tantalate are explored. The paper shows that the chemistry developed in paper VII 

is transferrable to other complex oxides.

It was found that amorphous thin films of both sodium and potassium niobate could be 

obtained on silicon, and epitaxial NaNbO3 could be obtained on SrTiO3 substrates when 

deposited at 250 oC. When attempting to crystallize films deposited on silicon, the films also 

turned amorphous when heated further after crystallization. As shown in Figure 19, a similar

effect was found for NaNbO3 as was found for LiNbO3. When heated above ~475 oC the films 

crystallized very fast. If the heating was continued to over 500 oC, the intensities of the 

reflections decreased before vanishing completely. This is also ascribed to loss of alkali 

metal; however it unexpected as thin film deposition of these compounds is routinely 

performed at much higher temperatures [186].
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Figure 19 Crystallinity of NaNbO3 deposited on silicon when annealed at different temperatures, obtained 

by in-situ high temperature GIXRD. 

5.4 Redox reactions on the surface

Possible surface redox reactions are found in this work, both the process for V2O5 and the 

LiMn2O4 process indicates this behaviour. In the V2O5 process the growth rate is too high to 

be explained by the relatively large size of the precursor, even though the process is 

demonstrably self-limiting. In the LiMn2O4 process the redox reaction is thought to be the 

cause of the uniform lithium incorporation. The generally accepted “textbook” reaction 

mechanism occurring in ALD consists of precursor absorption on the surface and subsequent 

ligand exchange reaction with water to form the oxide and a gaseous by-product [187], these 

processes are in general well understood and described[188]. For an ozone process the simple 

ligand exchange does not occur, but to the first approximation is that the ligand gets oxidized 

by a pulse of ozone and forming the oxide and combustion products from the ligand.  

However, for ozone based processes there is significant dispute in the literature on the 

mechanism even for simple process as the TMA and ozone process, where the experimental 

and theoretical models do not agree [189, 190], and the mechanisms for ozone processes can 

be quite complex [179]. Theoretical studies of ozone based processes are also scarce, see 

[191] and references therein, and experimental studies of the reaction mechanisms and 

chemistry of ozone processes are also rare, see [192] and the references therein. It is 

established in the literature that ozone combusts the ligand and for some processes leaves a 

surface covered with hydroxyls and/or chemisorbed active oxygen [192]. It should also be 

noted that many of the transition metal oxides can be used as oxidation catalysts for 
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hydrocarbons. If the metal can easily change oxidation states, such as vanadium or 

manganese, the redox mechanism may play an important role in the growth chemistry of even 

binary oxides.

5.5 Comparison of the alkali metal ALD-processes

It is interesting to contrast and compare the ALD-chemistry of lithium to that of sodium and 

potassium. It appears that some of the basic features of the lithium processes are similar, such 

as the tendency to form carbonates and hydroxides. By extension the reservoir effect, should 

also occur in these kinds of processes. In the case of an ozone based process, the surface 

redox could not be excluded, but the intercalation of sodium and potassium from the gas 

phase would likely be suppressed as the larger size of sodium and potassium reduces the 

diffusivity of these ions compared to lithium. The processes for sodium and potassium 

appears to be more stable and easier to control than lithium processes, however this is hard to 

quantify.

The precursors evaluated for sodium and potassium are analogues of known lithium 

precursors. However the HMDS-complexes of sodium and potassium do not behave as the 

lithium analogues – which probably arise from their structures being different. The silanolates 

are not well known, but it is surprising that they are very different from the tert-butanol-

complexes. In the case of the tert-butanol-complexes, the precursor chemistry is similar as the 

molecular structures of the precursors similar and the chemistry of the elements are also 

similar, but the ionic radius is quite different. 
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6 Conclusion and future perspectives
In this thesis the development of a high power cathode of V2O5, the exploration of LiHMDS 

in order to develop processes for Li3N, Li2CO3 and LiNbO3, deposition of LiMn2O4 as well as 

deposition of sodium and potassium compounds such as the Na-Al-O and K-Al-O and 

NaNbO3 have been discussed. These subjects are chemically somewhat different from each 

other; however, they are all steps on the way to improve lithium ion battery technology by 

ALD. 

Two different ways to incorporate lithium ions into thin films have been explored; either by 

directly depositing the lithiated material or incorporating lithium electrochemically into V2O5.

These methods are in general the only two ways to incorporate lithium into the cathode and 

they differ quite a lot when designing the process. Direct deposition of materials containing 

alkali metals is shown for lithium, sodium and potassium. In the cases of alkali metal 

niobates, tantalates and aluminates, this route has been quite successful. It is hypothesized that 

direct deposition of materials which contains alkali metals is possible when there is no 

reaction between the ligand of the lithium precursor and the deposited material.

The process for V2O5 has been used to develop a thin film cathode with very high power 

density and long lifetime. The combination long lifetime, fast cycling speed and high power 

density is among the best of what is reported in the literature. The results suggest that V2O5

could be used as a cathode in future thin film batteries. The results also imply that bulk 

cathodes of V2O5 could be optimized further to yield longer lifetime and higher power 

densities. If this material is integrated into all solid state thin film batteries, there is good 

promise that the cathodes will have even longer lifetime due to the solid electrolyte. The “3D-

integrated all-solid-state battery” is probably also even more important than previously 

thought. While thinner cathode is probably normally beneficial thicker cathode with respect to 

power density and lifetime, a thicker cathode is superior with respect to energy density per 

area. While the performance of the reported cathodes already bridges the gap between 

batteries and supercapacitors with respect to power and energy density, the benefit of these 

findings can be even greater if the energy density per area can be increased by another order 

of magnitude by utilizing the “3D-integrated all-solid-state battery.” It is also probable that 

the effect of a thin cathode is not exclusive to V2O5, and therefore ALD should be used to 
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explore the thickness effect of other potential cathode materials with the aim of determining 

the optimal cathode for the “3D-integrated all-solid-state battery.”

The deposition of lithium containing materials is still not a mature field. The deposition of 

lithium manganate has also been studied in this work and has given new insight into the 

chemistry of lithium processes. In the LiMn2O4 process the lithium precursor reduces the

manganese ions and the spinel phase which is formed is so stable that it does not oxidize once 

formed A new mechanism for incorporation of lithium has been suggested, and hopefully this 

opens up for use in other systems. Lithium manganate is also the first lithiated cathode 

material deposited by ALD, and therefore a key to the “3D-integrated all-solid-state battery.”

In this study, LiHMDS has been used to deposit lithium nitride, carbonate and niobate which 

have further increased the available chemistries for lithium in ALD-processes. This opens up 

for deposition of a number of complex oxides, or complex nitrides for anodes. Amorphous 

lithium niobate should also be investigated with respect to ionic conductivity, as the tantalate 

was recently shown to have ionic conductivity. Especially since the present results suggests 

that the lithium ions are quite mobile in the lithium niobate films. 

The lithium niobate was shown to be ferroelectric when deposited on silicon, and epitaxial 

when deposited on different single crystal substrates. Different epitaxial relationships could 

be obtained depending on the orientation of the substrate. Sodium and potassium oxides have 

been deposited for the first time. Many different precursor candidates have been investigated, 

and processes for aluminates and niobates have been developed. The deposition of amorphous 

NaNbO3 both silicon and epitaxial on single crystal substrates are also shown. The deposition 

of alkali metal based ferroelectrics is promising for the use of ALD to deposit lead-free 

ferroelectrics. 

The deposition of sodium and potassium compounds is still in its early days and should be 

explored further. The work with sodium and potassium oxides would hopefully be developed 

further to realize proof of concept sodium batteries and sodium and potassium based 

ferroelectrics. In situ studies using quartz crystal microbalance and spectroscopy should be 

performed, in order to work out the mechanisms and comparison to the growth of lithium 

compounds would yield useful insights. A number of interesting transition metal oxides could 
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also be investigated such as NaxCoO2 and other materials with potential as electrodes for 

sodium ion thin film batteries. 
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